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Agräıments
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5.7 Funcions de Conversió i Predicats Booleans . . . . . . . . . . . 38
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3.2 Recopilació de tasques . . . . . . . . . . . . . . . . . . . . . . 19

6.1 A l’esquerra, temps de la segona versió del algorisme. A la

dreta, diferències de temps amb la primera versió. . . . . . . . 44
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Caṕıtol 1

Introducció

1.1 Codis Correctors

Els codis correctors d’errors ens serveixen per augmentar la fiabilitat en una

transmissió d’informació. Actualment, els codis correctors estan presents en

gran quantitat d’aplicacions informàtiques, des dels CD’s fins a Internet. La

necessitat de trobar un compromı́s entre rapidesa i fiabilitat de les dades

transmeses, va fer pensar en algun sistema capaç de detectar i corregir errors

o esborralls (dades no llegibles).

Els codis correctors d’errors afegeixen redundància en el missatge a trans-

metre, de manera que enviarem més dades que ens serviran per corregir pos-

sibles errors en la informació. Evidentment, tindrà un cost pel que fa a la

velocitat de transmissió, doncs el volum d’informació enviada és inversament

proporcional a la velocitat de la transmissió. O sigui:

Velocitat = Capacitat del Canal / Volum d’Informació

Per una banda, ens interessarà trobar codis en que cada missatge rebut

tingui una única descodificació possible. Aquest tipus de codis s’anomenen

codis perfectes. El problema de trobar-los tots però, no és trivial. Per altra

banda, ens interessen els codis lineals i binaris. Els codis binaris perme-

ten treballar directament a nivell de bit i els codis lineals compleixen una

propietat fonamental:

1



2 CAPÍTOL 1. INTRODUCCIÓ

• Tancament per la suma. És a dir, dues paraules del codi sumades han

de donar una altra paraula del codi.

Aquesta propietat ens permet veure els codis lineals com un conjunt de

generadors capaços de generar totes les paraules del codi combinant-se entre

ells. Per tant no haurem de tenir tots els vectors del codi en memòria, sinó

que en tindrem prou amb el conjunt de generadors. Mitjançant el que anome-

nem una matriu generadora, podrem representar i treballar amb codis lineals

d’una manera minimalista, sense grans costos en memòria ni en còmput.

Els codis lineals i binaris han estan molt estudiats i per tant són força

coneguts, per això la possibilitat de convertir, mitjançant una bijecció, codis

binaris no lineals en codis lineals en una altra base, sembla força interessant.

D’aquesta manera podem treballar de forma lineal sobre uns codis que no ho

serien en base binària.

En aquest sentit les estructures de tipus Z2Z4-additiu són estructures

que ens permeten representar codis binaris no necessariament lineals, en una

base, on aquests codis compleixen propietats que permeten treballar de forma

lineal amb ells.

1.2 Objectius

1. Documentació sobre els codis Z2Z4-additus.

• Recopilació d’informació sobre l’estat de l’art.

• Comprensió del funcionament dels codis Z2Z4-additius.

2. Implementació d’una llibreria de codis Z2Z4-additius en Magma.

• Algoŕısmica i implementació de funcions de creació de codis Z2Z4-

additius.

• Algoŕısmica i implementació de funcions per al càlcul d’invariants

i formes de representació dels codis (matrius generadores, de pa-

ritat, estàndards, etc...).
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• Algoŕısmica i implementació de funcions de conversió entre codis

Z2Z4-additius i altres tipus d’estructures com per exemple codis

binaris.

• Algoŕısmica i implementació de funcions per al càlcul de dualitats

amb codis Z2Z4-additius.

• Algoŕısmica i implementació eficient de funcions per al càlcul del

rang i el nucli.

• Disseny d’un conjunt de testos seguint els estàndards de Magma.

3. Documentació, manual d’usuari i exemples de la llibreria, seguint el

format establert de Magma

4. Redacció de la memòria del projecte.

1.3 Contingut de la Memòria

La memòria esta composta per 7 caṕıtols:

Caṕıtol 2: Fonaments Teòrics. En aquest caṕıtol s’expliquen les bases

teòriques en les que es sustenta tot el treball fet. Es tracta d’un resum

de tots aquells conceptes que s’han adquirit per al correcte desenvolupa-

ment del projecte. En aquest caṕıtol, el lector trobarà una introducció

a la teoria de codis i informació cient́ıfica que s’ha anat publicant sobre

codis Z2Z4-additius en un format planer.

Caṕıtol 3: Planificació del Projecte. En aquest caṕıtol es descriu el procés

que es seguirà per al correcte desenvolupament del projecte en els ĺımits

de temps establerts. El lector podrà observar les diverses tasques a

desenvolupar en un format estàndard, establert per a la planificació de

projectes.

Caṕıtol 4: Entorn de Desenvolupament. En aquest caṕıtol s’expliquen

les caracteŕıstiques de l’entorn sobre el qual s’ha desenvolupat el pro-
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jecte. Es dóna informació sobre la màquina utilitzada i l’entorn de pro-

gramació. Es descriu de manera breu, els estàndards de programació

que s’han utilitzat i les caracteŕıstiques espećıfiques del llenguatge triat.

El lector també podrà trobar una breu descripció d’altres possibilitats

existents al mercat i la justificació sobre l’elecció del Magma com a

entorn per al desenvolupament.

Caṕıtol 5: Desenvolupament del Projecte. En aquest caṕıtol es des-

criu l’algoŕısmica de les funcions més importants utilitzades per al

desenvolupament del projecte. El lector podrà tenir una visió gene-

ral del paquet de funcions aix́ı com entrar en detall sobre l’algoŕısmica

i els criteris de programació utilitzats. També es descriu la documen-

tació associada al projecte aix́ı com el joc de proves utilitzat per al test

del paquet de funcions.

Caṕıtol 6: Resultats. En aquest caṕıtol s’exposen els resultats obtinguts.

El lector podrà observar les millores de temps aconseguides respecte a

versions anteriors d’algunes funcions, aix́ı com els ĺımits obtinguts en

l’execució del paquet de funcions.

Caṕıtol 7: Conclusions. En aquest caṕıtol s’exposen les conclusions ob-

tingudes durant el desenvolupament del projecte, aix́ı com possibles

millores i ampliacions a desenvolupar en el futur.



Caṕıtol 2

Fonaments Teòrics

2.1 Codis: binàris i quaternaris

Quan parlem de Z2 = {0, 1}, estem parlant del cos format pels enters mòdul

2 i quan parlem de Z4 = {0, 1, 2, 3}, estem parlant de l’anell format pels

enters mòdul 4.

Definition 1 Definim distància de Hamming dH entre dos vectors binaris

de la mateixa longitud, com el nombre de coordenades diferents entre els dos

vectors.

Per exemple dH ((1011101) , (1001001)) = 2.

Definition 2 Un codi (n,M, d) C sobre un cos o anell A és un subconjunt

amb M vectors sobre A de longitud n i distància mı́nima de Hamming d, tal

que d = min {dH(x, y) : ∀x, y ∈ C, x 6= y}

És a dir, un codi és un subconjunt de vectors sobre A que s’anomenen

paraules codi. El conjunt d’aquestes paraules codi defineix i construeix aquest

codi.

Si el codi C té una estructura lineal, vol dir que és un subespai de An, on

n és la longitud de les paraules codi. Llavors, C compleix la propietats de

5



6 CAPÍTOL 2. FONAMENTS TEÒRICS

tancament per la suma abans descrita en la secció 1.1, i es podrà represen-

tar tots els vectors del codi amb un conjunt de generadors. Això permetrà

rebaixar molt el cost:

• En memòria: El fet de poder representar el codi com un conjunt mini-

mal de vectors linealment independents rebaixa l’espai en memòria

• En CPU: Podem organitzar els generadors del codi en una matriu ano-

menada matriu generadora que denotarem per G i la matriu generadora

del codi dual C⊥ anomenada matriu de control i denotada per H. Mit-

jançant aquesta representació, les operacions de codificar i descodificar

seran multiplicacions vector-matriu.

Tan sols una petita part de tot el conjunt de codis possibles són lineals.

Per tant, és interessant buscar algun tipus de representació eficient per tots

aquells codis que són no lineals.

Definition 3 Un codi binari (n,M, d) C és un subconjunt amb M elements

de Zn
2 i distància mı́nima de Hamming d.

Quan parlem d’un codi binari ens referim al fet que el codi es un subespai

de vectors de n coordenades a Z2. Aquest cas serà especialment important

degut al tractament binari de la informació que es dóna habitualment en les

transmissions i en l’enmagatzematge de dades.

El conjunt de vectors sobre Zn
2 és de 2n i els possibles subconjunts seran

22n
. D’aquests conjunts però, només una petita part tindran una estructura

lineal. Es pretén trobar estructures capaces de representar codis binaris no

lineals, de manera que ens donin eines per classificar-los i per treballar amb

ells.

Definition 4 El pes de Lee d’una coordenada d’un vector quaternari es de-

termina seguint la següent funció:

wL(0) = 0 wL(1) = wL(3) = 1 wL(2) = 2
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El pes de Lee d’un vector quaternari x de n coordenades és:

wL(x) =
n∑
i=1

wL(xi).

Definim la distància de Lee dL entre dos vectors de la mateixa longitud x i

y com

dL = wL(x− y).

Definition 5 Un codi quaternari (β,M, d) C és un subconjunt amb M ele-

ments de Zβ
4 i distància mı́nima de Lee d.

Podem veure qualsevol codi quaternari com un codi binari un cop passat

una certa aplicacio lineal bijectiva que anomenarem mapa de Gray i denota-

rem per φ. Aquesta aplicació codificarà les coordenades del codi quaternari i

les representarà amb dos bits al codi binari. El mapa de Gray per a un codi

quaternari queda definit de la següent manera: φ : Zβ
4 −→ Zn

2 , on n = 2β, i

en cada coordenada ve donat per:

φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1), φ(3) = (1, 0)

La tria d’aquest mapa de Gray és especialment important, doncs com-

pleix que transforma la distància de Lee definida sobre el codi quaternari a

distància de Hamming sobre el codi binari.

Els codis quaternaris serviran de base per al desenvolupament dels codis

Z2Z4-additius. Tal com va demostrar Solé en el seu article [8] hi han codis

binaris no lineals, que són lineals com a quaternaris un cop transformats

mitjançant φ. És més, hi ha famı́lies de codis sense relació en binari però

que śı la tenen vistos com a codis quaternaris. El lector interessat en codis

quaternaris pot trobar més informació a [22].
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2.2 Codis Z2Z4-additius

Segons la definició de codis additius donada per Delsarte el 1973 [2] els codis

additius són subgrups dels grups abelians. En el cas del esquema de Ham-

ming, és a dir quan el grup abelià és de tamany 2n, les úniques estructures

per al grup abelià són aquelles de la forma Zα
2 × Zβ

4 , amb α + 2β = n.

Els codis Z2Z4-additius els podem veure com subgrups de Zα
2×Zβ

4 , pertant

les paraules codi són una tupla de dos vectors, un dels quals es troba a Zα
2 i

l’altre a Zβ
4 . D’aqúı s’extreu que quan α = 0 estarem en el cas quaternari i

quan β = 0 estarem en el cas binari.

• Un vector és d’ordre dos si generara dos vectors diferents al sumar-se

amb ell mateix, i per tant compleix que 2v = 0. Per exemple v =

(2, 0, 2, 0).

• Un vector és d’ordre quatre si genera quatre vectors diferents al sumar-

se amb ell mateix, i per tant compleix que 4v = 0. Per exemple v =

(1, 0, 2, 3).

Sigui C un codi Z2Z4-additiu, llavors C és un subgrup de Zα
2 ×Zβ

4 i també

és isomòrfic a una estructura abeliana Zγ
2 × Zδ

4. Per tant el codi C es pot

generar a partir de δ+ γ generadors, on γ és el mı́nim nombre de generadors

d’ordre 2 i δ és el mı́nim nombre de generadors d’ordre 4. A més, tenim que

el nombre de paraules del codi és |C| = 2γ4δ i el nombre de paraules d’ordre

2 dins de C serà 2γ+δ.

Si X (respectivament Y ) és el conjunt de coordenades de Z2 (respecti-

vament Z4), és a dir |X| = α i |Y | = β. Anomenarem CX (respectivament

CY ) al codi C restringit a les coordenades X (respectivament Y ). Llavors si

Cb és el subcodi de C amb totes les paraules d’ordre 2, i el restringim a les

coordenades X, això és (Cb)X llavors κ és la dimensió de (Cb)X , que és un

codi lineal i binari. Per al cas α = 0 també tindrem κ = 0.

En resum, els parametres amb els que distingirem un codi Z2Z4-additiu

seran:
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• α: Nombre de coordenades de les paraules-codi a Z2.

• β: Nombre de coordenades de les paraules-codi a Z4.

• γ: Nombre mı́nim de generadors d’ordre 2.

• δ: Nombre mı́nim de generadors d’ordre 4.

• κ: Dimensió del subcodi de C restringit als generadors d’ordre dos de

la part binaria, és a dir limitada per α i γ.

Podem dir llavors que C és del tipus (α, β; γ, δ;κ). Un cop definits aquests

paràmetres, podem veure el codi quaternari CY de tipus (0, β; γY , δ; 0) on

γY ≤ γ. Equivalenment podem veure CX com un codi binari de tipus

(α, 0; γX , 0; γX), on γX ≥ κ.

2.2.1 Mapa de Gray

Com ja hem esmentat a la secció 2.2 els codis Z2Z4-additius són subgrups C
de Zα

2 ×Zβ
4 . Tal com passa amb els codis quaternaris, podem veure els codis

Z2Z4-additius com a codis binàris un cop els hem passat una certa aplicació

C = Φ(C), on Φ és la extensió del Gray map habitual que anomenem φ,

llavors tenim que Φ : Zα
2 × Zβ

4 −→ Zn
2 , on n = α + 2β, donat per

Φ(x, y) = (x, φ(y1), . . . , φ(yβ)) ∀x ∈ Zα
2 , ∀y = (y1, . . . , yβ) ∈ Zβ

4 ;

a on φ : Z4 −→ Z2
2 és el mapa de Gray a Z4.

De la mateixa manera que en el cas quaternari el mapa de Gray és una

isometria que transforma les distancies de Lee definides als codis C sobre

Zα
2 × Zβ

4 , a distàncies de Hamming definides pels codis binaris C = Φ(C).

2.2.2 Matriu Generadora

Definition 6 Dos codis que només difereixen en una permutació de colum-

nes de les seves coordenades, es diuen codis equivalents.
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La matriu generadora G d’un codi C, conté la informació essencial per

representar el codi. Juntament amb la matriu de control H, seran la base per

a totes les operacions de codificació i descodificació. En el cas dels codis Z2Z4-

additius no només necessitarem les matrius, sinó que també necessitarem

saber com a mı́nim el valor de α.

En general però, podem donar una matriu amb el mı́nim nombre de

files on podrem fer dues particions: una partició vertical que separarà la

part binària de la quaternària, i una partició horitzontal que separarà els

generadors d’ordre 2 i d’ordre 4.

Aix́ı la matriu generadora G d’un codi Z2Z4-additiu es pot escriure com:

G =

(
B1 2B3

B2 Q

)
(2.1)

on B1, B2 és la part binària dels generadors d’ordre 2 i d’ordre 4 respecti-

vament i B3, Q és la part quaternària dels generadors d’ordre 2 i d’ordre 4

respectivament. Cal destacar el fet que B3 tot i ser quaternària correspon

als generadors d’ordre 2 i per tant les seves coordenades contindran només

elements de {0, 2} .

Theorem 2.2.1 Si C és un codi Z2Z4-additiu amb tipus (α, β; γ, δ;κ). Lla-

vors, podem obtenir un codi Z2Z4-additiu equivalent a C amb una matriu

generadora de la forma

GS =


Iκ Tb 2T2 0 0

0 0 2T1 2Iγ−κ 0

0 Sb Sq R Iδ

 , (2.2)

on Tb, T1, T2, R, Sb són matrius a Z2 i Sq és una matriu a Z4. Cal destacar

que Iδ, Iγ−κ són les matrius identitat de tamany δ i γ − κ respectivament.

Aquesta matriu ens serveix per representar d’una forma estàndard tots

els codis Z2Z4-additius i per tant facilitarà la feina en varis sentits:
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Figura 2.1: Representació d’un codi no lineal.

• Creació de codis concrets Z2Z4-additius mitjançant la construcció d’una

matriu estàndard.

• Comparació de codis Z2Z4-additius.

• Codificació i descodificació sistemàtica, ja que sabem a on està la in-

formació i a on la redundància.

2.3 Rang i Nucli per codis binaris

El problema de la classificació dels codis binaris no lineals no és trivial, es

tracta de trobar invariants per a codis equivalents que els determinin de

forma única. En aquest sentit s’ha investigat sobre dos invariants dels codis

binaris: el rang i la dimensió del nucli.

El rang d’un codi binari C, que denotarem per r, és la dimensió del

subespai lineal minimal que conté tot el codi. Per veure-ho d’una forma més

gràfica és la dimensió de l’espai creat pels vectors del codi, més el mı́nim

nombre de vectors a afegir per convertir l’espai en lineal. Per tant,

r = Dim(〈C〉).
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El nucli d’un codi binari C, que denotarem per Ker(C), es defineix com

la intersecció dels subespais lineals i maximals del codi a analitzar. Degut

a aquesta definició, sempre podrem trobar un codi equivalent al nucli de C

que sigui lineal. Per tant podem veure el nucli com aquella part lineal més

representativa d’un codi.

En realitat ens interessarà, com en el cas del rang, la dimensió de l’espai

del nucli que anomenarem k on

k = Dim(Ker(C)).

És fàcil veure que

Ker(C) ≤ C ≤ 〈C〉.

A més, si el codi és lineal

C = Ker(C) = 〈C〉.

i per tant,

Dim(C) = k = r.

Efectivament, en un codi lineal, el nucli, 〈C〉 i el codi seran exactament

el mateix. Podem veure per tant 〈C〉 i el nucli Ker(C) com dos subconjunts

lineals que marquen els ĺımits superiors i inferiors de la linealitat d’un codi

(veure Figura 2.1).

Per altra banda, el nucli ens permetrà extreure d’un codi no lineal, un

subcodi d’aquest que śı que ho sigui, i que per tant es pugui representar i

treballar d’una manera eficient amb ell. Cal remarcar que el nucli només té

sentit per a codis binaris.

Matemàticament, el nucli ve definit per:

Ker(C) = {x : x+ y ∈ C, ∀y ∈ C} (2.3)

Com es pot veure la definició de nucli porta a un problema de complexitat
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clarament exponencial, serà doncs interessant veure com es pot reduir aquest

cost. En aquest projecte s’estudiarà el nucli només per codis Z2Z4-additius

i per tant s’aprofitaran propietats especials d’aquests codis.

Per al cas d’un codi binari sense estructura, el cómput hauria de ser a

priori més dif́ıcil, ja que la complexitat d’un algorisme és inversament pro-

porcional a l’informació de la qual es disposa. Dit d’una altra manera, com

més informació menys complexitat alhora d’implementar-ho. Si es vol apro-

fundir en el càlcul del nucli per a codis binaris en general es pot consultar el

projecte [14].

Donat un codi binari, es pot fer un primer subconjunt lineal considerant

els vectors que formen el nucli. Si el codi és lineal, no hi haurà més vectors

que els continguts al nucli, però si no ho és, hi hauran vectors que pertanyen

al codi però que no pertanyen al nucli del codi.

A partir de la definició del nucli, es pot veure que aquests vectors es poden

classificar en subconjunts disjunts constrüıts a partir de traslladats del nucli.

Un cop fet això, podem representar qualsevol codi com a unió del nucli i dels

traslladats del nucli, anomenats cossets:

C =
t⋃
i=0

(
K(C) + ci

)
D’aquesta manera dividim un codi que no és lineal, en subconjunts d’aquest

que representen el nucli, més el nucli traslladat tantes vegades com cossets

tingui el codi (veure figura 2.2). Es conclou doncs, que qualsevol codi es pot

representar simplement amb el nucli, més un vector que anomenarem ĺıder,

per cada cosset del codi.

2.4 Rang i Nucli per codis Z2Z4-additius

Com es comenta a la secció 2.3 el rang d’un codi només té sentit per a codis

binàris. El fet de parlar del rang per a codis Z2Z4-additius doncs, sembla a

priori il·lògic.
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Figura 2.2: Representació d’un codi com a unió dels cossets del nucli.

Donat un codi Z2Z4-additiu C, el rang r d’aquest codi serà el conjunt de

vectors de la forma:

r = Dimensio(〈Φ(C)〉)

A [4] es demostra que el rang d’un codi Z2Z4-additiu es pot calcular a

partir de la dimensió de l’espai format pels γ + δ generadors d’ordre dos, els

δ generadors d’ordre 4 i tots els vectors de la forma:

{2x ∗ y : ∀x, y ∈ GeneradorsOrdre4}

Cal destacar que el rang serà un codi lineal i que no cal utilitzar totes les

paraules del codi sinó que en tindrem prou amb un conjunt de generadors.

En concret el conjunt tindrà γ + 2δ +
(
δ
2

)
generadors.

Com es comenta a la secció 2.3 el nucli d’un codi només té sentit per a

codis binàris. Donat un codi Z2Z4-additiu C, el nucli d’aquest codi serà el

subconjunt de C format pels vectors:
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K(C) = {v ∈ C : Φ(v) ∈ Ker(Φ(C))}

Aquest subconjunt K(C) és també un subcodi Z2Z4-additiu de C.
Com ja s’ha vist a la subsecció 2.2.1, es pot canviar de base d’un codi

binari C a un codi Z2Z4-additiu C i viceversa amb el mapa de Gray. En

resum, existeix el nucli a Z2Z4 anomenat K(C) com a mapa de Gray del

nucli binari anomenat Ker(Φ(C)).
Dit això, es pot passar a analitzar les propietats d’aquest nucli Z2Z4-

additiu. Intüıtivament podem veure que serà més fàcil treballar, i per tant

calcular, el nucli dins del codi C que en el seu corresponent codi no lineal

binari C, ja que es disposarà d’una estructura de tipus Z2Z4-additiva que

facilitarà els càlculs.

Es pot comparar el comportament amb el ben conegut sistema de Fou-

rier per al tractament del senyal, el que es necessita és el senyal en domini

temporal, però es pot passar a domini freqüencial, treballar amb ell (ja que

és més fàcil) i en acabat tornar-lo a transformar al domini temporal.

Veiem doncs les propietats que ens facilitaran el càlcul:

• El nucli d’un codi lineal binari es pot calcular a partir dels generadors

del codi. En el cas d’un codi lineal Ker(C) = C com s’explica a 2.3.

Sabem que podem representar C a partir dels seus generadors degut

a les propietats de linealitat. Per tan podrem representar Ker(C) a

partir dels generadors de C.

• [4] Donat un codi Z2Z4-additiu podem calcular el seu nucli mitjançant

els generadors del codi Z2Z4-additiu. De fet, els vectors del nucli d’un

codi Z2Z4-additiu compleixen:

K(C) = {x ∈ C | ∀y ∈ G, 2x ∗ y ∈ C} (2.4)

Notem que tots els γ+δ generadors d’ordre dos d’un codi Z2Z4-additiu

seran part del nucli, ja que l’operació 2x sobre un vector d’ordre 2 dóna

la paraula zero.
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Aquestes propietats facilitaran molt els càlculs ja que treballarem només

amb els generadors del codi, però algoŕısmicament parlant de fet, l’únic que

suposarà un cost elevat seran els generadors d’ordre 4 ja que els d’ordre 2

automàticament quedaran afegits al nucli.



Caṕıtol 3

Planificació del Projecte

El projecte que es pretén portar a terme és un projecte d’investigació i desen-

volupament. Per una banda com ja s’ha vist, el projecte té una forta base

teòrica que s’ha d’anar assolint conforme s’avança en la seva implementació.

La feina de documentació teòrica i d’assoliment dels conceptes serà sens dubte

una de les bases per a completar els objectius establerts.

Pel que fa al desenvolupament s’haurà de separar la part d’algoŕısmica i

d’implementació. Degut a la naturalesa del projecte d’investigació, la majoria

de temps serà destinat al desenvolupament d’algorismes, capaços de tractar

de la forma més òptima possible els diferents problemes de còmput. Ja que

la complexitat en la teoria de codis és en molts casos no polinòmica, aquest

requeriment d’optimització serà molt important.

Les úniques referències que es tindran, pel que fa a l’algoŕısmica d’aquests

tipus de funcions, seran els projectes fets anteriorment al departament aix́ı

com els articles teòrics publicats per part dels membres del CCG. Tot això

ens servira de base per al correcte desenvolupament i optimització dels algo-

rismes.

L’implementació per la seva banda haurà de ser de tipus matemàtica,

aquest fet suposarà un esforç d’adaptació degut a que aquest tipus de llen-

guatges no són els més habituals durant la carrera. Es vol aconseguir un

paquet capaç de ser distribüıt per al seu ús, i pertant seguirà els estàndards

17
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i Best-Practices coneguts pel que fa a programació. Concretament el llibre

d’estil estarà basat en el CCG Style Guide.

Per altra banda s’haurà d’incloure l’explicació i documentació de totes

les funcions implementades per al projecte. Per a aquest procés es seguirà

l’estil que ja dóna Magma per a la seva documentació (veure Annex 1). El

programa haurà de comptar amb un procés explicatiu d’instal·lació i uti-

lització (fitxer README). S’inclouran també una sèrie d’exemples seguint

l’estil de Magma per complementar la documentació (veure Paquet “Codis

Z2Z4-Additius”). Tota el paquet està disponible a la web del grup CCG [23].

El programa haurà de comptar amb una llicència, ja que es pretén distribuir-

lo, per evitar implicacions legals tot software ha de contindre una llicència.

En aquest cas s’ha triat la versió GPLv3, una llicència que permet l’us, dis-

tribució i modificació del software sempre que sigui per a fins no comercials.

Aquesta llicència està secundada per la Free Software Fundation [5].

3.1 Tasques

Figura 3.1: Model en cascada
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El cicle de desenvolupament serà de tipus clàssic o cascada (veure Fi-

gura 3.1) i el desglossament en tasques el podem veure a la Figura 3.2. A

continuació les tasques seran explicades detingudament:

Figura 3.2: Recopilació de tasques

1. Codis Z2Z4-additius

(a) Fonaments Teòrics

i. Documentació Z2Z4: L’objectiu d’aquesta tasca és assolir

les bases teòriques en que es sustenten els codis Z2Z4-additius.

ii. Documentació Nucli: L’objectiu d’aquesta tasca és enten-

dre el concepte de nucli i els avantatges que comporta al tre-

ballar amb codis no lineals.

(b) Implementació Llibreria

i. Llibreria Z2Z4: L’objectiu d’aquesta tasca és implementar

totes les funcions bàsiques que permeten crear i treballar amb

codis Z2Z4-additius. Es seguirà el format que Magma dóna
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per altres tipus de codis, especialment per als codis quaterna-

ris que ens serviran de base.

ii. Implementació Nucli: L’objectiu d’aquesta tasca és im-

plementar una funció eficient per al còmput del nucli dels

codis binaris associats als codis Z2Z4-additius. L’algorisme

que s’utilitzi serà bàsic per al èxit d’aquesta tasca i per tant

hauria de ser el més òptim possible.

iii. Implementació Rang: En aquesta tasca s’implementarà un

algorisme eficient per al comput del rang dels codis binàris

associats als codis Z2Z4-additius. L’algorisme que s’utilitzi

serà bàsic per al èxit d’aquesta tasca i per tant hauria de ser

el més òptim possible.

(c) Test:

i. Test de Z2Z4: S’ha de provar el correcte funcionament de

totes les funcions de la llibreria Z2Z4, minimitzant els errors i

evitant que l’usuari faci crides incorrectes. S’haurà de crear un

conjunt de tests i exemples, aquests últims en format Magma

i que seran inclosos dins la documentació.

ii. Test del Nucli: Aquesta tasca tindrà dues bessants, per una

banda provar el correcte funcionament de la funció del nucli.

Per altra banda s’haurà d’optimitzar al màxim possible la

funció, refent si cal l’algorisme per a un millor aprofitament

dels recursos.

iii. Test del Rang: Provar el correcte funcionament de l’implementació

usada per a calcular el rang dels codis.

(d) Manual de l’aplicació

i. Documentació Llibreria Z2Z4: Es seguirà el model i estil

de Magma pel que fa al manual de la llibreria. L’explicació

inclosa dins de cada funció serà també el help de la funció des

de la ĺınia de comandes.
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ii. Documentació Rang i Nucli: Es seguirà el mateix estil que

en el cas de la Llibreria. S’haurà de tenir en compte l’especial

dificultat d’aquests dos conceptes i la seva importància, amb

una més extensa explicació al respecte.

(e) Memòria: Redacció de la memòria del projecte, seguint les pau-

tes donades per a la presentació de “Projectes de final de car-

rera” a l’Escola Tècnica Superior d’Enginyeries (ETSE) dins de

l’Universitat Autònoma de Barcelona (UAB).

3.2 Recursos

La majoria dels recursos utilitzats per a aquest projecte han estat submi-

nistrats pel Departament d’Enginyeria de l’Informació i les Comunicacions

(dEIC). Bàsicament s’han usat tres tipus de recursos.

3.2.1 Recursos Documentals

Els recursos documentals utilitzats en aquest projecte han estat bàsicament

els articles referents a codis quaternaris i especialment a codis Z2Z4-additius.

Aquesta sèrie d’articles s’han anat esmentant durant el caṕıtol 2, i estan

recollits dins la bibliografia del projecte. També s’ha utilitzat el manual

de Magma especialment pel que fa a codis quaternaris [1]. Pel que fa a

l’implementació s’ha usat de base, el codi obert que Magma proporciona en

el cas d’algunes funcions.

3.2.2 Recursos de Software

Magma és un software privat (veure secció 4.2) amb dos tipus de llicència:

• Llicència d’estudiant: limitat a un ús de memòria de 2 GB i un rendi-

ment computacional mitjà.
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• Llicència completa: ús de memòria total (limitat per l’arquitectura del

computador), i rendiment computacional alt.

Per al nostre cas es necessitarà una llicència completa de la qual ja disposa

el departament.

En el cas dels editors de text s’han usat dos diferents, un per al codi i

l’altre per a la documentació.

• Per a programar s’ha utilitzat el GEDIT, ja que l’ordinador amb llicència

per a Magma exporta l’ambient gràfic del que disposa: el GNOME.

• Per a la documentació s’ha emprat l’editor de texts cient́ıfics LATEX

el motiu és la gran quantitat de funcionalitats per a l’escriptura ma-

temàtica de les que disposa. Com a frontal s’ha utilitzat el Kile un

editor de LATEX per GNU/Linux.

3.2.3 Recursos de Hardware

Per al desenvolupament del projecte, tenint en compte les necessitats de

còmput, l’entorn triat i la disponibilitat de material, s’ha escollit:

• Ordinador Intel Dual Core 3700 amb 2 GB de Ram i sistema operatiu

Fedora-GNU/LINUX core 6. Aquest ordinador és el servidor disponible

al departament amb llicència completa de Magma.

• Es disposarà d’un computador d’altes prestacions (4 nuclis i 7 GB de

RAM) per a càlculs especials, disponible al departament també amb

una llicència completa.
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Entorn de Desenvolupament

4.1 Software Matemàtic

Al tractar-se d’un projecte sobre teoria de codis, treballarem sobre anells,

cossos i matemàtica discreta. S’havia de buscar per tant, un software prepa-

rat per a la programació matemàtica.

La capacitat de treballar amb estructures matemàtiques i guardar-les com

a tals (com guardar un codi lineal només amb els seus generadors) era bàsica

per a la implementació del paquet de funcions. A més, calia valorar les

utilitats ja implementades bàsicament pel que fa a codis correctors d’errors,

la facilitat d’ús, l’eficiència i la flexibilitat per crear estructures pròpies.

Cal destacar les diferències entre la programació numèrica i la progra-

mació simbòlica. La programació numèrica està destinada al càlcul d’operacions

purament numèriques, per contra, la programació simbòlica permet declarar

variables dins d’una expressió. Un cas clar de programació simbòlica (i que

els programes purament numèrics no poden fer), és el d’una equació de tipus

3 = 2 + x.

A continuació es descriuran les alternatives més importants existents al

mercat i se’n farà un breu anàlisi.

Maple [10] és un dels entorns de programació matemàtica més estesos al

mercat. Es tracta d’un software de llicència privada desenvolupat a

23
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Canadà. Té gran quantitat de possibilitats, des del càlcul simbòlic fins

a la teoria de nombres, l’àlgebra o el càlcul. També afegeix una interf́ıcie

gràfica amigable que permet veure gràfiques i programar d’una forma

molt intüıtiva.

El Maple és molt utilitzat sobretot en les comunitats educatives, degut

a la facilitat del llenguatge, la seva gran versatilitat i l’orientació gràfica

de que disposa. Malauradament, els temps de càlcul no són excessiva-

ment bons; quan es tracta d’aplicacions petites no hi ha problemes,

però per a grans quantitats de dades es queda bloquejat fàcilment.

Mathematica [11] és un software privat molt optimitzat fet als EUA. Té

un llenguatge de programació propi i moltes llibreries fortament opti-

mitzades per al càlcul simbòlic i numèric. Mathematica és molt apre-

ciat degut al seu alt rendiment i a la capacitat de representar gràfiques

complexes 2 i 3-dimensionals.

Mathematica dóna suport a gran quantitat de camps, però pel que

fa a la teoria de nombres, a la criptografia i a la codificació, el seu

comportament és bastant fluix; sobretot en la varietat d’utilitats per

treballar en aquests camps.

Matlab [12] és un software privatiu desenvolupat als EUA. Està bàsicament

orientat a la programació numèrica i cobreix un gran nombre de fun-

cionalitats en aquest camp. El seu funcionament és orientat a vector,

obtenint grans resultats amb les operacions que impliquen vectors i

matrius.

Matlab també té una interf́ıcie gràfica i un llenguatge de programació

propi. Permet enllaçar amb l’eina de càlcul simbòlic del Maple estenent

la seva funcionalitat en aquest camp. Per altra banda però, Matlab no

té cap tipus de de funcionalitat pel que fa a la teoria de codis.

Number Theory Library (NTL) over C++ [17] és una llibreria orien-

tada a objecte i programada en C++. Es tracta d’una llibreria com-
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posta per una sèrie d’objectes capaços de representar estructures ma-

temàtiques i mètodes per al seu tractament.

NTL té la principal avantatge en la seva rapidesa i flexibilitat, ja que

utilitza un llenguatge de programació molt ràpid com el C++ direc-

tament. El fet de ser de codi lliure permet configurar les estructures

existents o afegir noves funcionalitats. El problema principal de NTL és

el fet que les estructures definides són de molt baix nivell (matrius, vec-

tors, etc) i no incorpora funcionalitats per a la teoria de codis, encara

que en el futur, degut a la seva naturalesa, algú podria programar-les.

Software for Algebra and Geometry Experimentation (SAGE) [20]

és un projecte de software lliure que pretén unificar les solucions de pro-

gramació matemàtica existents al mercat. El projecte SAGE s’inspira

en l’eslògan “Fabricar el cotxe sense re-inventar la roda” i va començar

el 2005 liderat pel professor W. Stein de la universitat de Washington.

SAGE intenta donar resposta a tots els àmbits de la matemàtica actual

i incorpora interf́ıcies per a poder executar tot el software descrit en

aquesta secció. Permet importar i exportar els resultats de SAGE a les

altres solucions per a una programació integral. El principal problema

de SAGE és la maduresa com a programa, ja que fa poc que s’ha

tret al mercat comparat amb les altres solucions. Cal destacar però,

que aquest projecte està cridat a ser un dels entorns de programació

matemàtica del futur.

GAP [6], PARI [15], Singular [18], Macaulay2 [7], Maxima [13] són

entorns de software lliure orientats a la programació matemàtica. Tots

continuen actualitzats avui en dia i alguns d’ells són dels primers que

van sortir al mercat. El principal problema de tots ells es que no co-

breixen alguna part important de la programació matemàtica (veure

Taula 4.1)
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funció Singular GAP PARI Maxima
Factorització de polinomis Si No No Si
Grups No Si No No
Cossos i Anells No No Si No
Càlcul Simbòlic No No No Si

Taula 4.1: Taula de funcionalitats suportades per les diferents solucions.

4.2 Entorn Utilitzat: Magma

Magma [1] és un software d’alt rendiment amb llicència privada per part

d’una companyia australiana. Segons la seva web es defineixen com:

Magma és un software ampli i ben soportat dissenyat per solucionar

problemes d’alt cost computacional relacionats amb l’algebra, la teoria de

nombres, la geometria i la combinatòria. Proporciona un entorn matemàtic

rigorós per treballar en tots aquests camps.

Magma té un ampli conjunt de funcionalitats en els àmbits comentats i

el seu llenguatge de programació propi es basa en l’escriptura matemàtica,

tot i això, té un dèficit important pel que fa a programació simbòlica. No

disposa de cap interf́ıcie gràfica però disposa d’una ĺınia de comandes molt

bona, amb ajudes i explicacions.

Actualment no hi ha la possibilitat per part dels usuaris de definir les seves

pròpies estructures de dades i incloure-les al nucli. En els darrers anys però,

s’ha avançat en aquest sentit i des de fa unes quantes versions es disposa d’una

comanda de tipus record per a la creació d’estructures compostes. Magma

deixa definir paquets de funcions i bases de dades per part de l’usuari i ofereix

la possibilitat de carregar-les en l’arrancada del programa.

Magma està escrit en C i utilitza els millors algorismes coneguts per a la

solució de problemes matemàtics, aquesta caracteŕıstica és molt important

per al tractament de problemes no polinomials, com és el cas del nucli (veure

secció 2.3). Degut al llenguatge C, Magma permet enllaçar llibreries existents

com per exemple General Multiprecision Package (GMP). Tot i això, com

compilar el nucli no és possible per part dels usuaris, només ho poden fer els
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programadors de Magma.

Magma és segurament, el millor programa actualment al mercat per

treballar en certs camps com per exemple la geometria aritmètica, la teoria

de grups o la teoria de codis. Bàsicament, aquest últim camp és el que es

necessita per al desenvolupament del projecte i és l’entorn triat per a la seva

implementació.
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Caṕıtol 5

Desenvolupament del Projecte

5.1 Qüestions Prèvies

Un cop estudiats els codis Z2Z4-additius es pretén implementar una llibreria

capaç de crear-los i treballar amb ells. Amb aquest objectiu s’estudia les

llibreria de codis quaternaris implementada en Magma, ja que les propietats

dels codis Z2Z4-additius i dels codis quaternaris són força semblants.

Un codi de longitud β definit sobre l’anell Z4 conté β coordenades de

valors {0, 1, 2, 3}, per contra un codi de longitud α definit sobre el cos Z2 conté

α coordenades de valors {0, 1}. Es pot veure que el valors {0, 2} quaternaris

es comporten de la mateixa manera que els valors {0, 1} en binari, analitzant-

ho:

Z2 Z4

{0, 1} {0, 2}
0 + {0, 1} = {0, 1} 0 + {0, 2} = {0, 2}
1 + {0, 1} = {1, 0} 2 + {0, 2} = {2, 0}

Per tant podem representar la part Zα
2 d’un codi Z2Z4-additiu a Zα

2 ×Zβ
4 ,

convertint els uns en dosos a Zα
4 es a dir: {0, 1} ∈ Z2 ⇔ {0, 2} ∈ Z4. Aquest

codi estarà representat com un objecte compost d’un codi quaternari i del

paràmetre α, que permetrà distingir les dues parts de les paraules codi.

29
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Cal esmentar que Magma no treballa amb codis no lineals, encara que

permet representar-los mitjançant un conjunt de paraules. Serà especialment

important el fet de poder representar alguns codis binaris no lineals com a

codis Z2Z4-additius, o sigui com a conjunció del paràmetre α i d’un codi

quaternari lineal.

L’implementació, documentació, exemples i test de la llibreria, s’han fet

basant-se en els estàndards utilitzats pels desenvolupadors de Magma, amb

l’idea de ser el màxim integrables dins de l’entorn en el futur.

En aquest caṕıtol s’explicarà de forma resumida les funcions implemen-

tades en el projecte, agrupades per grups d’utilitat tal i com fa Magma. No

s’explicaran totes les funcions una a una, sinó que es pretén donar una vista

general de les utilitats de la llibreria i entrar en detall tan sols de les funcions

més significatives.

El lector interessat pot veure el “Z2Z4-additive Handbook” (Annex 1)

que s’ha desenvolupat com a ajuda, ı́ndex i explicació de totes les funcions

implementades. El paquet desenvolupat és accessible des de la web del grup

[23].

5.2 Creació de Codis Z2Z4-additius

Per a la creació d’aquests codis es decideix utilitzar una estructura de tipus

record en Magma. El record és un conjunt de variables agrupades en un sola

estructura, molt semblant a la comanda struct de C. Les variables o estruc-

tures emmagatzemades en el record seran públiques per definició, Magma

no deixa declara-les privades. Aquest record o registre que anomenarem R

contindrà dues variables.

• Code: Un codi quaternari de longitud α + β que representarà el codi

Z2Z4-additiu amb les cordenades binàries transformades a coordenades

quaternàries.

• Alpha: Un enter que marca el paràmetre α del codi, si α = 0, Code

serà exactament un codi quaternari.
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S’utilitzarà una arquitectura basada en una funció de creació de codis

Z2Z4-additius, que accepti múltiples estructures d’entrada, i d’un valor α. La

funció retornarà un registre R corresponent al codi Z2Z4-additiu. A partir

d’aquesta funció se’n crearan altres, que construiran certs tipus de codis

especials (ex. codi zero, univers i de repetició).

Z2Z4AdditiveCode: Aquesta funció construirà un codi Z2Z4-additiu se-

guint les premises explicades a la secció 5.1. Per flexibilitzar-la al

màxim, el primer paràmetre pot ser de diferents tipus, veiem doncs

els dos paràmetres que pot rebre la funció:

• L:

1. Seqüència de vectors quaternaris.

2. Subespai quaternari.

3. Matriu de mida m× n.

4. Codi quaternari.

5. Codi binari.

• alpha: Enter que marca el nombre de coordenades binàries del

codi.

RandomZ2Z4AdditiveCode: Aquesta funció permet crear un codi alea-

tori passant una llista de paràmetres que conté de 2 a 5 paràmetres. Els

paràmetres que falten es calculen de manera aleatòria amb les següents

restriccions:

γ: γ ≥ 0

δ: δ ≥ 0, γ + δ ≤ β

κ: κ ≥ 0, κ ≤ min(γ, α)

Un cop es tenen els 5 paràmetres [α, β, γ, δ, κ] es calcula un codi aleatori
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a partir de les submatrius de la matriu estàndard (veure Teorema 2.2.1).

GS =


Iκ Tb 2T2 0 0

0 0 2T1 2Iγ−κ 0

0 Sb Sq R Iδ

 (5.1)

S’utilitzaran funcions de diagonalització per a les matrius Iκ, 2Iγ−κ i Iδ.

Per a la resta, es definiran matrius random sobre l’anell que els correspon

segons el Teorema 2.2.1.

5.3 Invariants Numèriques i Espai del Codi

En aquesta secció s’implementen funcions per al càlcul dels invariants bàsics

d’un codi tals com la longitud, la dimensió, el nombre de generadors, el

nombre de paraules o la taxa d’informació. Totes aquestes utilitats es basen

en les funcions ja donades per a codis quaternaris de Magma.

Pel que fa a l’espai del codi, hi ha funcions per trobar el conjunt de

paraules i generadors d’un codi, aix́ı com els generadors d’ordre dos i quatre.

Les funcions de construcció de les diferents matrius generadores, especialment

la de la matriu generadora amb mı́nim nombre de files, o sigui amb γ + δ

files, seguiran algorismes molt semblants al càlcul del tipus que descrivim a

continuació:

Z2Z4Type: Pel que fa als invariants es necessita una funció de càlcul del

tipus del codi (veure secció 2.2). L’algorisme per trobar els diferents

paràmetres és el següent.

1. δ = # {v ∈ G | 2v 6= 0}.

2. γ = NumeroF iles(G)− δ.

3. β = NumeroColumnes(G)− α.

4. κ = Dimensio(Subespai(< γ >| α)).
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5.4 Forma Estàndard

Donat un codi Z2Z4-additiu C es pretén trobar la matriu estàndard correspo-

nent a un codi equivalent a C. Per a fer-ho, s’utilitzarà el teorema 2.2.1. Per

aquesta funció es va intentar usar la seva equivalent per a codis quaternaris

en Magma, però contenia un error. Aquest problema ja s’ha fet arribar als

desenvolupadors de Magma.

El fet de no poder aprofitar l’equivalent per a codis quaternaris, implicarà

diagonalitzar matrius sobre anells, en concret sobre l’anell Zβ
4 . Aquesta és

una feina complicada, ja que encara que hi han algorismes capaços de dia-

gonalitzar amb rapidesa, el fet que el cas quaternari sigui un anell, només

permet la utilització del sistema de Gauss.

Pel que fa a l’algorisme, recordem la forma d’una matriu estàndard:

GS =


Iκ Tb 2T2 0 0

0 0 2T1 2Iγ−κ 0

0 Sb Sq R Iδ

 , (5.2)

S’hauran de complir les restriccions imposades per aquesta. S’ha de respectar

per tant, la posició i valors d’aquelles submatrius que composen la matriu

estàndard (bàsicament les submatrius zero i les diagonals). Per a fer-ho

partirem de la matriu generadora amb mı́nim nombre de files (veure secció

5.3).

L’algorisme utilitzat cridarà per ordre a les subfuncions de diagonalit-

zació. Cada una d’aquestes subfuncions retornarà la matriu diagonalitzada

per la seva part, més la permutació de columnes que hagi estat necessària.

Cal recordar que en codis la permutació de columnes és important, ja que

genera un codi diferent però equivalent.

Diagonalització Iκ: Aquesta funció diagonalitzarà la submatriu correspo-

nent a Iκ i generarà les matrius zero de sota seu.

Diagonalització Iδ: Aquesta funció diagonalitzarà la submatriu correspo-

nent a Iδ i generarà les matrius zero de sobre seu.
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DiagonalitzacióIγ−κ: Aquesta funció diagonalitzarà la submatriu correspo-

nent a Iγ−κ i generarà la matriu zero de sobre seu.

La funció Z2Z4StandardForm doncs, retornarà la matriu estàndard

equivalent, la permutació de columnes total i una isometria que converteix C
al codi estàndard equivalent.

5.5 Mapa de Gray

En aquesta secció s’implementen funcions per al càlcul del mapa de Gray i

equivalències entre codis binaris i codis Z2Z4-additius (veure secció 2.2.1).

Aquest fet serà bàsic, doncs ens permetrà passar de codis Z2Z4-additius

teòrics als codis binàris que s’utilitzen a la pràctica. Les funcions més im-

portants d’aquesta secció són:

Z2Z4GrayMap: Donat un codi Z2Z4-additiu C, retorna la isometria Φ, que

transforma C al codi binari corresponent C.

Z2Z4GrayMapImage: Utilitza Φ i C per a retornar tot el conjunt de pa-

raules que composen C. Per tant, retorna el seu codi binari equivalent

com un conjunt de vectors, ja que no necessàriament serà lineal.

HasZ2Z4LinearGrayMapImage: Aquesta funció comprova que el codi bi-

nari C = Φ(C) sigui lineal. En cas afirmatiu retorna el codi binari

lineal.

5.6 Rang i Nucli

El rang d’un codi Z2Z4-additiu r, com ja s’ha comentat a la secció 2.4, és

la dimensió del subespai lineal minimal 〈C〉 que conté el codi. Però r és

equivalent a la dimensió del conjunt format per γ + 2δ +
(
δ
2

)
generadors.

Aquest fet permetrà rebaixar la complexitat.

Pel que fa al nucli, l’implementació ha estat depurada durant varies ver-

sions. Com ja es comenta a la secció 2.3, el càlcul del nucli és un problema
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no polinòmic, però aprofitant certes propietats podem reduir-ne el cost de

càlcul.

5.6.1 Càlcul Exhaustiu

Una primera aproximació al càlcul de nuclis podria ser la de prendre la de-

finició de nucli, l’equació 2.3 i aplicar-la. L’algorisme per tant agafarà totes

les paraules del codi binari C i les sumarà amb totes les paraules de C altre

cop. Com veiem en aquest cas estem agafant tot el conjunt de paraules codi

i per tant, es pot tractar d’un conjunt realment molt gran.

funcio Kernel (Code)

∀v ∈ C
∀w ∈ C

si v + w /∈ C llavors

Aquest vector no està al nucli

fisi

fi for

si No ha estat descartat llavors

nucli.add(v)

fi si

fi for

return nucli

fi funcio

La complexitat d’aquest algorisme és exponencial sobre el nombre de

paraules #C , en concret serà de O
(
2γ+2δ

)
. Aquest càlcul es pot arribar

a millorar, però l’àmbit dels codis binàris queda fora d’aquest projecte, per

més informació sobre càlcul de nuclis per a codis binaris el lector pot veure

[3] i [14].
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5.6.2 Càlcul per a codis Z2Z4-additius: Primera Versió

Aquesta serà la primera versió en la que acotarem l’anàlisi als codis Z2Z4-

additius. Això ens permetrà usar propietats d’aquest tipus de codis que ens

facilitaran els càlculs. Bàsicament ara es treballarà només amb els generadors

del codi, per tant les operacions seran de multiplicació vector matriu. Per a

més informació veure la secció 2.4.

funcio Z2Z4Kernelv1 (Code)

MG = Matriu dels generadors d’ordre 4

for totes les combinacions possibles de vectors de MG que

anomenarem v

for w = tots els generadors d’ordre 4

si v ∗ 2w /∈ Code llavors

Aquest vector no està al nucli

fisi

fi for

si No ha estat descartat llavors

nucli.add(v)

fi si

fi for

return nucli

fi funcio

Com veiem en aquest cas, es poden descartar tots els vectors γ+δ d’ordre

dos aprofitant la propietat que es decriu a la secció 2.4. La complexitat

d’aquest nou algorisme és O(2δ).

5.6.3 Càlcul per a codis Z2Z4-additius: Segona Versió

Un cop sabem que un vector v d’ordre 4 està al nucli, v no aporta més

informació. Per tant, podem treure v de l’espai de les combinacions dels ge-
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neradors d’ordre quatre. Aquest fet permet reduir el nombre de combinacions

en certs casos especials.

En el cas d’un codi que només conté els generadors d’ordre 2 al nucli,

el problema continuarà sent igual de costós, ja que haurem de provar els

δ vectors sense poder descartar-ne cap. En el pitjor dels casos doncs, la

complexitat continuarà sent O(2δ), però en la majoria dels casos, aquesta es

podrà veure redüıda fins a la O(δ) del cas lineal.

funcio Z2Z4Kernelv2 (Code)

MG = Matriu dels generadors de ordre 4

MK = Matriu que conté el nucli temporal (vectors d’ordre 2)

Recórrer la matriu des de l’ultim vector fins al primer combinant aquest

vector amb els que té per sota a la matriu

Comprovar que el vector estigui al nucli

Si esta al nucli treure vector de la matriu i afegir-lo al nucli temporal

Sinó deixar-lo a la matriu

return nucli, matriu resultant de vectors que no estan al nucli

fi funcio

Com veiem, aquesta funció no combina tots els vectors d’ordre 4, sinó

que tan sols ho fa amb aquells que previament ha comprovat que no són al

nucli. Si un vector és al nucli, no ens aporta cap informació, en canvi, un

vector que no estigui dins el nucli, podria combinar-se amb un altre vector

que tampoc estigui dins el nucli, per donar-ne un que śı hi sigui inclòs. Tot

i això, en el pitjor dels casos la complexitat continua sent de O(2δ).

Cal fixar-se també, amb el fet que retornem no només el nucli, sinó també

la matriu dels vectors que no estan al kernel. Aquests vectors corresponen

als ĺıders dels cossets (veure secció 2.3).
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5.7 Funcions de Conversió i Predicats Boole-

ans

Les funcions de conversió tenen utilitats molt diverses, però comparteixen

que permeten convertir diversos tipus d’estructures a codis Z2Z4-additius i

viceversa. En aquest apartat destaquen les funcions que permeten crear codis

Z2Z4-additius a partir de codis binaris i quaternaris.

En aquest sentit, es pot trobar una funció que converteix un codi Z2Z4-

additiu representat com a objecte compost d’una α i d’un codi quaternari,

a un producte de vectors a Zα
2 i vectors a Zβ

4 . És a dir, mostra l’estructura

real que tenen aquests codis com a subgrups de Zα
2 × Zβ

4 .

A continuació trobem els predicats booleans. Els predicats booleans són

un conjunt de funcions que calculen propietats dels codis C, i en donen una

resposta binària. En aquesta secció es pot trobar per exemple, funcions per

a comprovar la igualtat de dos codis Z2Z4-additius, per comprovar si un

codi està o no contingut en un altre o si un codi és efectivament de tipus

Z2Z4-additiu.

5.8 Construcció de nous codis a partir d’altres

En aquesta secció es creen nous codis Z2Z4-additius a partir d’altres co-

dis també Z2Z4-additius. Aquest fet és especialment important, perquè ens

permet implementar operacions molt usades com l’obtenció de subcodis res-

tringits; el codi suma, intersecció o concatenació a partir de dos codis Z2Z4-

additius, o els codis retallats (shorten i punctured codes).

Cal destacar les funcions que implementen les formes de Plotkin. Aques-

tes seran la base per a crear famı́lies de codis, com per exemple els Reed-

Muller, sobre Zα
2 ×Zβ

4 . Per saber més sobre famı́lies de codis amb estructura

Z2Z4-additiva, el lector es pot adreçar a [16].

Z2Z4PlotkinSum: Donats dos codis C i D retorna el codi Plotkin Z2Z4-

additiu que consisteix en tots els vectors de la forma (uα, uα+vα|uβ, uβ+
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vβ), on (uα|uβ) ∈ C i (vα|vβ) ∈ D. Per aquesta funció es va intentar

usar la seva equivalent per a codis quaternaris en Magma, però conte-

nia un error. Aquest problema ja s’ha fet arribar als desenvolupadors

de Magma. L’algorisme construirà aquest codi, tal i com es demostra

a [16], a partir d’una matriu de la forma:

GPC =

(
GA GA
0 GB

)

Z2Z4QuaternaryPlotkinSum: Donats dos codis Z2Z4-additius A i B tots

dos amb els mateixos paràmetres α = 0 i β, construeix un codi Z2Z4-

additiu que consisteix en els vectors de la forma (u, u+v, u+2v, u+3v),

on u ∈ A i v ∈ B. En base a [16], l’algorisme trobarà el codi de suma

Plotkin quaternària a partir d’una matriu de la forma:

GQP =

(
GA GA GA GA
0 GB 2GB 3GB

)

Z2Z4DoublePlotkinSum: Donats quatre codis Z2Z4-additius A, B, C i D

amb els mateixos paràmetres α = 0 i β, construeix un codi de suma

doble Plotkin que consisteix en tots els vectors de la forma (u, u+v, u+

2v + z, u + 3v + z + t), on u ∈ A, v ∈ B, z ∈ C i t ∈ D. En base a

[16], l’algorisme trobarà el codi de suma Plotkin doble a partir d’una

matriu de la forma:

GDP =


GA GA GA GA
0 GB 2GB 3GB
0 0 GC GC
0 0 0 GD


Z2Z4BQPlotkinSum: Donats 3 codis Z2Z4-additius A, B i C tots amb els

mateixos paràmetres α = 0 i β, construeix la BQ suma Plotkin de A,

B i C. En base a [16], l’algorisme trobara el codi a partir d’una matriu
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de la forma:

GBQ =


GA GA GA GA
0 G ′B 2G ′B 3G ′B
0 0 ĜB ĜB
0 0 0 GC

 ,

Si GB és la matriu generadora de B i tipus (0, β; γ, δ;κ), el codi Z2Z4-

additiu B′ s’obté de B canviant els dosos per uns a les γ files d’ordre 2

de GB. El codi Z2Z4-additiu B̂ s’obté de B esborrant les γ files d’ordre

dos de GB.

La BQ suma Plotkin és un codi Z2Z4-additiu que consisteix en tots els

vectors de la forma (u, u + v′, u + 2v′ + v̂, u + 3v′ + v̂ + z), on u ∈ A,

v′ ∈ B′ v̂ ∈ B̂, i z ∈ C.

5.9 Test del Software

El procés de test, és un conjunt de proves aplicades al software per validar-

ne el seu funcionament i són utilitzats per determinar paràmetres com la

completesa, la seguretat o la qualitat del software desenvolupat. De totes

maneres, mai podrem estar al cent per cent segurs que el software no tindrà

cap malfuncionament o bug.

El producte ha de complir les especificacions requerides, per a això el

responsable del producte ha d’assegurar el correcte funcionament, però també

ha d’anar més enllà, intentant predir quins seran els punts foscos o el mal ús

que es pot donar al producte. El test és per tant, un procés d’investigació.

El test és una part important del control de qualitat d’un projecte, alguns

dels paràmetres que determina són la fiabilitat, l’estabilitat, la portabilitat,

la mantenibilitat o la usabilitat.

Hi han diverses tècniques per al test de software [21], les més conegudes

són les de caixa blanca i caixa negra, però també hi han tests d’unitat, de

sistema, de regressió. Alguns d’aquests tests són responsabilitat del progra-

mador i uns altres del client.
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El procés de test en Magma, no és massa complet. Encara que té instruc-

cions per a controlar els paràmetres d’entrada, té molts problemes alhora de

provar els errors. Magma no permet continuar l’execució d’un programa un

cop s’ha produit un error predit o un malfuncionament no predit. S’espera

que en el futur Magma millori en aquest sentit.

En aquest projecte s’han fet bàsicament tests d’unitat, per validar que un

mòdul funcioni correctament. Es tracta d’escriure crides a les funcions del

mòdul per provar-les, sobretot mirant aquells casos especialment complicats.
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Caṕıtol 6

Resultats

En aquest caṕıtol es veuran els resultats obtinguts amb el desenvolupament

de la llibreria. Com ja s’ha anat explicant en caṕıtols anteriors, aquest pro-

jecte pretén establir les bases per a futures investigacions sobre els codis

Z2Z4-additius.

Per la majoria de funcions implementades no té sentit presentar-ne resul-

tats escrits, doncs són funcions fins ara no implementades. Per veure’n els

seus resultats om hauria de descarregar-se el paquet i utilitzar-lo en l’entorn

de Magma.

Hi ha una funció però, que śı pot ser analitzada a fons, es tracta del

càlcul del nucli de codis Z2Z4-additius. Aquesta serà doncs la funció que

analitzarem detingudament, veient els rendiments de temps i memòria que

s’aconsegueixen.

6.1 Rendiment en Memòria

El fet de poder treballar amb els generadors del codi, tant pel càlcul del rang

com del nucli és un gran avantatge. Mantenir en memòria totes les paraules

d’un codi que pot arribar a ser molt gran, és en molts casos intractable.

Aquest problema és el que es millora ostensiblement entre la versió exhaustiva

del càlcul de nuclis (veure subsecció 5.6.1) i les versions sobre codis Z2Z4-

43
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Figura 6.1: A l’esquerra, temps de la segona versió del algorisme. A la dreta,
diferències de temps amb la primera versió.

additius (veure subseccions 5.6.2 i 5.6.3).

Fins ara en còmputs del nucli per codis binaris estem arribant a codis

de 216 paraules. En general però, serà impossible treballar amb tota aquella

xifra de paraules codi que s’apropi a 220 (per a un ordinador de 32 bits).

El fet de poder utilitzar generadors per generar totes aquestes paraules en

temps d’execució, millora molt l’espai en memòria.

6.2 Rendiment en Temps

Comparar els temps del càlcul del nucli per a codis binaris amb el del nucli per

a codis Z2Z4-additius, no té massa sentit. Primer, les escales de mesura són

diferents; mentre que en el nucli d’un codi binari es compara el temps segons

el nombre de paraules del codi, en el nucli per a codis Z2Z4-additius aquesta

mesura no té massa sentit. Per a aquest segon cas, s’hauria de comparar

segons el nombre de generadors del codi.

Al provar de construir un codi Z2Z4-additiu segons els paràmetres γ i δ

i comparar el temps entre el càlcul del nucli per a codis binaris i per codis

Z2Z4-additius, ens trobem que per γ i δ petites (menors que 10) el temps del
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algorisme per codis binaris és molt dolent, quan en canvi per al algorisme

per a codis Z2Z4-additius no passem de les dècimes de segon.

Arribem a la conclusió que els dos algorismes no es poden comparar,

doncs un cop podem transformar un codi no lineal en lineal, les propietats

que es donen en el cas lineal fan els dos algorismes incomparables. És un cas

semblant al d’un cotxe i un avió, els dos serveixen per al transport, però es

regeixen per paràmetres diferents.

Entrant a comparar les dues versions de l’algorisme del càlcul del nucli

per a codis Z2Z4-additius, hi ha una consideració a fer:

• Considerem que un codi C1 és més lineal que un codi C2, quan el k(C1)
està més aprop del C1 que no pas k(C2) del C2. Aquesta propietat és

important, doncs el segon algorisme té el millor rendiment quan el codi

és lineal. En canvi per al cas no lineal complet, els dos algorismes són

pràcticament iguals en temps.

Recordem que la dimensió k del nucli d’un codi Z2Z4-additiu està comprès

entre els paràmetres:

k ∈ {γ + δ, . . . , γ + 2δ} .

per tant un codi serà completament no lineal quan k = γ+δ mentre que serà

lineal quan k = γ + 2δ.

Aquest fet provoca uns resultats aleatoris en les comparatives segons si

un codi és més o menys lineal que un altre, sense dependre dels generadors

del codi.

Un cop fetes aquestes consideracions, es pot intentar donar una certa

comparació de temps entre els dos algorismes (veure Figura 6.1). En general

es veu com el temps de còmput augmenta exponencialment amb una pen-

dent més important en l’eix dels δ generadors. La millora, també augmenta

exponencialment, amb unes petites variacions segons si el codi és més lineal

o menys.
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Conclusions

En aquest projecte es presenta el desenvolupament d’un paquet d’aplicacions

en l’entorn de programació matemàtica Magma, per al tractament dels codis

anomenats Z2Z4-additius. Tot el paquet desenvolupat és accessible des de la

web del grup CCG a ccg.uab.es i es pretén que sigui proposat a Magma

com a paquet de facto en les pròximes versions.

Els codis Z2Z4-additius permeten representar alguns codis binàris en ge-

neral (especialment important per al cas no lineal), com a codis lineals en

l’espai dels codis Z2Z4-additius. Aquest fet permetrà l’estudi de tota una

sèrie de codis binaris no lineals que fins ara eren intractables. El treball

desenvolupat en aquest projecte senta les bases per a futures investigacions

sobre les propietats de codis i famı́lies de codis Z2Z4-additius.

7.1 Objectius Complerts

S’han assolit els objectius estimats al principi del projecte:

• S’han assolit els coneixements necessaris per a l’implementació del con-

junt de funcions de la llibreria.

• S’ha desenvolupat un paquet de funcions per treballar amb codis Z2Z4-

additius.
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• S’han assolit i sobrepassat, en algun cas, els requeriments d’optimització

per a càlculs d’alt cost.

• S’ha desenvolupat un manual d’ajuda i funcionament de tot el paquet

desenvolupat.

• S’han provat les funcions per al control de qualitat associat al paquet.

7.2 Millores i Futures investigacions

Un cop sentades les bases per a la creació de codis Z2Z4-additius, es pretén

que es continüı investigant i desenvolupant funcions per afegir al paquet base.

En aquest sentit podem preveure dos camins clars de millora; l’optimització

i el desenvolupament.

Pel que fa a l’optimització, seria interessant veure si els càlculs no po-

linòmics implementats en aquest projecte (bàsicament el càlcul del nucli),

poden rebaixar-se de categoria i convertir-se en polinòmics. L’optimització

que s’ha aconseguit a la pràctica es bona però en el pitjor dels casos la com-

plexitat continua sent de O(2δ).

S’espera que en el futur es desenvolupin famı́lies de codis perfectes so-

bre estructures Z2Z4-additives. Els codis perfectes són aquells en que per

cada paraula del codi només hi ha una possible descodificació, i per tant no

pot donar lloc a ambigüitats. Les famı́lies de codis perfectes que es pretén

desenvolupar a curt i mig termini són:

• Codis Z2Z4-additius de Hadamard.

• Codis Z2Z4-additius de Hamming estesos.

• Codis Z2Z4-additius Reed-Muller.
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7.3 Conclusions Finals

Aquest ha estat un projecte complex, sobretot pel que fa al volum d’informació

i conceptes teòrics que s’han hagut d’assolir. Aquesta ha estat potser la part

més farragosa del projecte tant pel que fa a l’assoliment com a l’escriptura.

Les bases que s’han assolit en aquesta part però, eren completament ne-

cessàries.

Un cop assolides les bases, el procés d’investigació i desenvolupament ha

estat molt interessant. El fet d’haver de buscar la solució i de planificar els

temps d’entrega, han donat un plus al projecte que he trobat molt enriquidor.

Espero que en el futur es puguin desenvolupar i investigar nous codis

sobre la base dels codis Z2Z4-additius i potser, que siguin prou interessants

per aplicar-los en algun projecte pràctic. El temps ho aclarirà.
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Bellaterra, 12 de Juny de 2008

53



54
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Resum

En aquest projecte es presenta el desenvolupament d’un paquet d’aplicacions

en l’entorn de programació matemàtica Magma, per al tractament dels codis

anomenats Z2Z4-additius.

Els codis Z2Z4-additius permeten representar alguns codis binaris, com a

codis lineals en l’espai dels codis Z2Z4-additius. Aquest fet permetrà l’estudi

de tota una sèrie de codis binaris no lineals que fins ara eren intractables.

Resumen

En este proyecto se presenta el desarrollo de un paquete de aplicaciones

en el entorno de programación matemática Magma, para el tratamiento de

codigos Z2Z4-additivos.

Los codigos Z2Z4-additivos permiten representar algunos codigos bina-

rios, como codigos lineales en el espacio de los codigos Z2Z4-additivos. Este

hecho permitirá el estudio de toda una serie de codigos binarios no lineales

que hasta ahora eran intratables.

Abstract

In this project we present the development of an application package in

the mathematical programming environment Magma, for the treatment of

Z2Z4-additive codes.

Z2Z4-additive codes allow us to represent some binary codes, as linear

codes in the Z2Z4-additive code space. This fact will allow us to study some

binary non linear codes which were impossible to work with until now.


