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Abstract

El treball presentat suposa una visió general de la ‘Endoscopia amb Càpsula de Ví-
deo Wireless’ i la inspecció de sequències de contraccions intestinals amb les últimes
tecnologies de visió per computador. Després de la observació preliminar dels fona-
ments mèdics requerits, la aplicació de visió per computador es presenta en aquestos
termes. En essència, aquest treball proveïx una exhaustiva selecció, descripció i ava-
luació de cert conjunt de mètodes de processament d`imatges respecte a l`anàlisi
de moviment, en el entorn de seqüències d`imatges preses amb una càpsula endos-
cópica. Finalment, es presenta una aplicació de software per configurar i emprar de
forma ràpida i facil un entorn experimental.

El trabajo presentado supone una visión general de la ‘Endoscopia con Cápsula de
Video Wireless’ y la inspección de secuencias de contracciones intestinales con las
últimas tecnologías en visión por computador. Tras la observación preliminar de los
fundamentos médicos requeridos, la aplicación de visión por computador se presenta
en éstos términos. En sustancia, este trabajo provee una exhaustiva selección, des-
cripción y evaluación de cierto conjunto de métodos de procesamiento de imágenes
con respecto al análisis de movimiento, en el entorno de secuencias de imágenes
tomadas con una cápsula endoscópica. Finalmente, se presenta una aplicación de
software para configurar y usar de forma rápida y facil un entorno experimental.

The presented work yields a survey of Wireless Video Capsule Endoscopy and the
examination of intestinal contraction sequences by the use of state-of-the-art com-
puter vision technologies. After an introductory observation of required medical
foundations, the application of computer vision within these terms is pointed out.
In essence, this paper provides a comprehensive selection, description and evalua-
tion of a certain set of image processing methods and algorithms with respect to
the analysis of motion in an environment of capsule endoscopy image sequences.
Finally, a software application for setting up a fast and easy to use experimental
environment is presented.
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Chapter 1

Introduction

Wireless Video Capsule Endoscopy is an up-to-date medical field of research which
focuses on the examination of the human gastrointestinal tract to provide physicians
with a diagnostic tool for the detection and diagnosis of gastrointestinal diseases. To
be brief, capsule endoscopy obtains a video sequence from the inside of the human
gastrointestinal tract which can be later examined by a physician or trained medical
expert. In essence, this is a very time-consuming and exhausting working task. For
that reason, computer vision and artificial intelligence technologies are applied to
improve and support this procedure. From the computer vision point of view, this
implies the application of high-level image processing methods and algorithms for
the establishment of relevant image features.

1.1 Providing a Set of Motion Analysis Tools

The presented work concentrates on the selection, description and evaluation of
image processing tools for the estimation of motion in medical images obtained
by Wireless Video Capsule Endoscopy. The main goal of this project has been to
provide a theoretical description and evaluation of these tools as well as a software
application for practical experimentation and visualisation. The main focus within
the terms of capsule endoscopy has been the examination of intestinal contractions
through the analysis of motion performed by the lumen and the intestinal wall.
The provided set of image processing tools may be considered as a useful source
of information when analysing this motion in a computer-supported way. Each
tool description is completed by the proposal of optimal parameters which have
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been obtained through extensive experimentation. For a clear understanding and a
good manageability of this paper, the set of tools has been divided into three main
categories: pre-processing, optical flow estimation and feature extraction.

1.2 Main Contributions

Basically, this project provides three main contributions to the appliance of com-
puter vision within capsule endoscopy. First of all is the extensive testing of a
phase-based optical flow algorithm including its Gabor filtering approach. During
the project, the algorithm has been fully adapted for the application to intestinal
contraction sequences.
A further contribution can be identified in the selection and evaluation of a certain
set of image filtering methods for refining capsule endoscopy images before applying
optical flow estimation algorithms. Especially the median filtering and the Laplacian
of Gaussian approach for blob detection have been considered to be very useful.
The third main contribution of this work is represented by the development of a
fast and easy to use visualisation application for motion analysis experimentation
in terms of Wireless Video Capsule Endoscopy.

1.3 Material

All of the practical work for this project has been carried out on a portable Apple
Macintosh computer, powered by a 1.42 GHz G4 PowerPC processor and 1 GB
DDR SDRAM of main memory. The base operating system has been Mac OS
X Tiger, software version 10.4.11. Programme code has been implemented with
MATLAB 7.3.0 (R2006b) for Mac OS X. Due to the use of a Macintosh system
and the lack of a corresponding version of the Intel Image Processing Library (IPL),
previously implemented C++ code for optical flow estimation could not be used.
For that reason, each considered method and algorithm had to be either already
available for MATLAB or implemented newly. To provide a good co-operation of
the source code with the graphical user interface, the software application has been
implemented with the built-in MATLAB GUI editor. Furthermore, the source code
of this project has been prepared to be ready for a later integration in the currently
available software framework INTES SOFT 1.0.3 from the Medical Imaging Group
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of the Computer Vision Center, Universitat Autònoma de Barcelona.
The considered medical image material has been provided by the hospital of Vall
d’Hebron, Barcelona. Each of the images and sequences which are illustrated in
this paper have been extracted from capsule endoscopy videos, captured by medical
research personnel using the Wireless Video Capsule Endoscopy approach.
For testing the accuracy of the regarded motion estimation algorithms and for further
comparison purposes, a ground truth video solution has been produced which has
been captured using the built-in 2.0 mega-pixel camera device of a regular Sony
Ericsson mobile phone.

1.4 How to Use This Paper

In essence, this paper is organised in three main parts. Starting with an introduc-
tory description of the medical framework, the first part of this paper is dedicated to
a comprehensive explanation of the technological framework. In this spirit, chapter
2 illustrates the underlying medical area of application and describes the terms and
definitions of Wireless Video Capsule Endoscopy. In addition, a brief illustration
of the identification and classification of intestinal contractions is given as well as
the mention of the intestinal contraction bouncing point to be of special interest.
Chapter 3 explains and describes the set of image pre-processing methods and op-
tical flow algorithms which is followed by an extensive evaluation and comparison
on the basis of a synthetic ground truth solution and realistic intestinal contraction
sequences. Chapter 4 is dedicated to the brief description of a simple feature extrac-
tion approach. Both chapters 3 and 4 are completed by explaining implementation
information.
The second part of this paper is dedicated to the description of the graphical user
interface application which has been implemented during this project. Chapter 5
explains the design and implementation process whereas a brief explanation of the
developed source code is provided. Chapter 6 represents a detailed user manual
and should be the main source of information belonging to graphical user interface
issues.
The third and last part of this paper acts as a summary. Chapter 7 discusses the
main contributions of the underlying work by pointing out the most important re-
sults of the theoretical and practical experimentation. This is summed up by final
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conclusions. In the end, chapter 8 completes this work by presenting ideas for fur-
ther experimentation with the presented set of tools and how it could be improved
and extended.
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Part I

Medical and Technological

Framework
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Chapter 2

Medical Foundations

When starting to work with medical images, it is of essential importance to under-
stand the application area and basic terms and definitions of the underlying medical
field. This chapter is dedicated to achieve the task of providing a basic introduc-
tion to the examination of the gastrointestinal tract, including the description of a
modern capsule endoscopy approach. While medical image material is illustrated,
the application of computer vision within this approach is pointed out. It has to be
mentioned that the provided information is basic and that only essential terms and
definitions are described.

2.1 Examination of the Gastrointestinal Tract

The examination of the human digestion is an important medical procedure for de-
termining the cause of gastrointestinal symptoms such as abdominal pain, diarrhoea,
bleeding or anaemia. Currently used methods for the exploration of the gastroin-
testinal tract are gastroscopy and colonoscopy. Those are generally performed by
a physician who is manually moving a tube with a camera unit mounted to its top
through the oesophagus or the anus respectively to reach the concerned area which
is then examined at the time while the patient has to lay down calm for the duration
of the routine. These procedures are complex and usually carried out in a clinical
situation which means discomfort and stress for the patient. Wireless Video Capsule
Endoscopy is committed to revise this procedure by proposing an modern endoscopy
approach using a capsule-shaped camera device. [Ima08], [Vil06]
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2.2 Wireless Video Capsule Endoscopy

Wireless Video Capsule Endoscopy (WVCE) is an up-to-date medical field of re-
search which concentrates on the examination of the human gastrointestinal tract
to provide physicians with a high standard diagnostic tool to detect and diagnose
gastrointestinal diseases. As it has been mentioned before, the examination pro-
cedure is carried out by the use of an especially designed independently moving
capsule (figure 2.1) rather than a tube which has to be moved manually by a physi-
cian. The capsule is swallowed by the patient and travels through the human body
by following the digestion. Usually, this process takes from six to eight hours while
the capsule is gathering information continuously. [Ima08]

Figure 2.1 – Picture of the PillCam SB (front) and the PillCam ESO (back) developed

by Given Imaging.1

Figure 2.2 shows an illustrative visualisation of the PillCam SB which has been
developed by Given Imaging, a medical imaging research facility. The PillCam SB
measures around 11 mm by 26 mm and weighs not more than four grams. Regarding
its inner life, it is equipped with state-of-the-art electronic devices. The PillCam
SB is capable of capturing a video of around two frames per second over a period
of time of up to eight hours. The video frames are limited to the size of 256-by-
256 pixels. To get bright images, the area in front of the camera is illuminated by
powerful light-emitting diodes (LEDs). Throughout the procedure, the captured
video is constantly transmitted to a nearby computer terminal using a wireless
infrared connection. [Ima08] In the following, the PillCam SB may be referred to as
the capsule or the capture device.

1Source: http://www.vccafe.com/wp-content/uploads/2008/02/pillcam_large.jpg, retrieved on
January 27, 2009.

2Source: http://www.fda.gov/cdrh/maturityhealthmatters/images/issue6-05.jpg, retrieved on
January 27, 2009.
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Figure 2.2 – Illustrative visualisation of the PillCam SB.2

To provide an impression of the considered material, figure 2.3 shows example images
which have been extracted from a random patient study. Looking at figure 2.3a, we
can clearly identify the intestinal lumen as a dark area near the centre, surrounded
by the intestinal wall. In this case, the capsule obtains a clear view on the scene.
Figure 2.3b shows a similar situation in which the lumen is still visible but turbid
liquid blurs the sight. Artefacts, such as turbid liquid and intestinal content, may
narrow or completely blur the view on the lumen and influence the analysis of
motion within a sequence. It has to be mentioned that during this project only
images without the occurrence of such artefacts have been considered in order to
focus completely on the lumen motion. Figure 2.3c illustrates how the lumen may
disappear when the intestinal wall performs a contraction.

Once the whole video of the intestinal tract has been recorded, it needs to be ex-
amined in order to identify parts of special interest. For this reason, a physician or
trained medical expert has to look through all of the video material to manually set
flags wherever an interesting event occurs. Remembering the fact that these videos

8



(a) (b) (c)

Figure 2.3 – Capsule endoscopy images of the intestinal tract. (a) The lumen can be

identified as a dark area near the centre, surrounded by the intestinal wall. (b) Turbid

liquid is narrowing the view in the lumen. (c) The lumen may disappear when the

intestinal wall performs a contraction

last from around six to eight hours, this is a very time-consuming and exhausting
working task. To improve and support this procedure, computer vision and artifi-
cial intelligence technologies are applied to the video material in order to examine
it automatically. Upcoming relevant events shall be identified by computer vision
and classified by artificial intelligence technologies for a later inspection by a physi-
cian. [Vil06] For this project, the examination of an event identified as an intestinal
contraction has been of major interest.

2.3 Identification, Examination and Classification

of Intestinal Contractions

When digestive content moves along the intestinal tract it is forwarded by contrac-
tions of the intestinal wall. The way these contractions are performed describes the
physical condition of the intestine. This is of important relevance for the detection
and diagnosis of intestinal diseases. For this reason, the identification, examination
and automatic classification of intestinal contractions is a crucial task in WVCE.
[Vil06], [ISV+07], [SIV+08], [VSV+06]
The following figures provide an impression of the changeable appearance of intesti-
nal contractions from the WVCE point of view. A series of representative examples
has been picked out and illustrated. Each contraction consisting of nine subsequent
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frames starts with the top left and ends with the bottom right image whilst con-
sidering one row after the other. Figure 2.4 shows a series of capsule endoscopy
images which have been identified as an intestinal contraction by previous process-
ing. Looking at the image sequence, it can be clearly identified that the lumen is
positioned near the centre along almost all nine images and that it is totally closed
at one time during the contraction is performed.

Figure 2.4 – Image sequence of an intestinal contraction. The lumen is completely

closed at one time during the performance.

In comparison to that, figure 2.5 shows another image sequence of a correctly iden-
tified contraction whereas the lumen is never completely closed during the perfor-
mance.

Furthermore, it can happen that the lumen is not visible as good as it has been in
the previous examples. Figure 2.6 shows a contraction sequence where the lumen
can not be clearly extracted from the intestinal wall along each of the nine frames.

The previously illustrated circumstances describe only a few of several possibilities.
As we are going to see later, the estimation of motion is of course seriously influ-
enced by the varying appearance of intestinal contractions and the choice of optimal
parameters for the considered methods and algorithms is a difficult working task.
For the objective of examining intestinal contractions, evaluation characteristics are

10



Figure 2.5 – Image sequence of an intestinal contraction. The lumen is never com-

pletely closed during the performance.

Figure 2.6 – Image sequence of a blurry intestinal contraction. The lumen can not

be clearly extracted from the intestinal wall along each of the nine frames.
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established in order to support the motility assessment of the intestinal tract [Vil06].
The following section mentions the location estimation of the intestinal contraction
bouncing point which shall be considered as an example for such a characteristic.

2.4 Location Estimation of Intestinal Contraction

Bouncing Points

Roughly, the bouncing point of a contraction is positioned in the centre of the
intestinal lumen in the very exact moment when the contraction performance reaches
its peak at this certain time. Its location may be used for examining the contractions
performance. Figure 2.7 shows the image sequence from figure 2.4 with a manually
marked bouncing point location (white plus). It has to be mentioned that the
position of this point has not been estimated by a physician or trained medical
expert. It has only been used as a ground truth solution for illustration and testing
purposes during this project. The presented set of tools has been arranged to support
a future approach for automatically estimating this location by considering motion
information of the intestinal lumen.

12



Figure 2.7 – Intestinal contraction sequence from figure 2.4 with manually marked

bouncing point location (white plus). The position of this point has not been marked

by a physician or trained medical expert. It has only been used as a ground truth

solution for illustration and testing purposes during this project

13



Chapter 3

Motion Analysis

As it has been explained at the beginning of this paper, the main focus of this project
has been set to the analysis of motion within intestinal contraction images obtained
by WVCE. For this purpose, several computer vision strategies have been evaluated
in order to provide a set of motion analysis tools which may be considered as a
useful source of information when studying motion within capsule endoscopy image
sequences. For a clear understanding and a good manageability of this chapter,
the considered image processing procedures have been divided into three main cate-
gories: pre-processing, optical flow estimation and feature extraction. The selection
and evaluation of appropriate pre-processing methods and optical flow estimation
algorithms has been the most important part of this project and is described in this
chapter. A simple feature extraction approach is presented in the following chapter.
The following sections are dedicated to elaborated descriptions for each of the differ-
ent tools, combined with illustrations of the corresponding results. The optical flow
algorithms are applied to a self-produced ground truth solution and their differences
are compared. In the end, representative experimental results on intestinal contrac-
tion sequences are discussed. This chapter is then completed by a brief presentation
of the source code, which has been implemented for experimentation purposes.

3.1 Pre-Processing

Pre-processing methods are applied to an image preceding to further image process-
ing procedures. In general, this is done for the objective of reducing noise and to
save expensive computation time. In this spirit, each image is initially downsized
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from the original size of 256-by-256 to 128-by-128 pixels. Furthermore, each image
is converted to greyscales. Both procedures are straightforward and do not need
any further explanation. Instead, we want to focus now on more elaborated forms
of pre-processing which shall prepare our images for the further application of high-
level optical flow estimation algorithms.
In the following, several methods for pre-processing an image are described. Each
of the methods has been evaluated during this project and considered to be relevant
for the analysis of motion in capsule endoscopy images with respect to the further
usage of optical flow algorithms. If a method is adjustable by the choice of one
or more parameters, appropriate values are proposed which have been obtained by
extensive empirical testing. Figure 3.1a shows an example image which has been
extracted from an intestinal contraction. It may define the base image for the illus-
tration of the results obtained by the proposed set of pre-processing methods. Figure
3.1b shows the same image after it has been initially re-sized to 128-by-128 pixels
and converted to greyscales. Please take notice that both images are illustrated
with their actual size. Looking at figure 3.1b, we can see that neither resizing nor
conversion to greyscales did affect essential information of the original. Important
artefacts, such as lumen and wrinkles of the intestinal wall, are still clearly visible
whilst the amount of data has been successfully reduced and further high-level image
processing should be less time-consuming and computational inexpensive.

3.1.1 Median Filtering

The median filtering method belongs to the category of rank filters.3 It is performed
by sorting the grey values of a certain M -by-N region around the regarded pixel
and replacing the original grey value with the median which is considered to be
representative for the whole region. This procedure is repeated recursively until
every pixel of the original has been processed. The resulting image is a blurred
representation of the original whereas noise has been reduced while edges have been
preserved. As we are going to see later, this is very useful for the further application
of an optical flow algorithm.
Median filtering can be adjusted by choosing the size of the considered region. The
higher the values of M and N , the more blurred the result will become. Figure

3Source: http://en.wikipedia.org/wiki/Median_filter, retrieved on January 31, 2009.
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(a) (b)

Figure 3.1 – Base image for the evaluation of pre-processing methods and optical flow

algorithms. (a) Original 256-by-256 capsule endoscopy image. (b) Re-sized 128-by-128

greyscale conversion. Please notice that both images are illustrated with their actual

size.

3.2 illustrates the application of two different filter sizes to the image from figure
3.1b. Looking at figure 3.2a, the image is constantly blurred and noise, such as
the small bright dots in the top right area of the image, has been removed while
important edges, such as the border of the lumen and wrinkles of the intestinal
wall, are still clearly visible. This result has been obtained by a 7-by-7 median
filter. In comparison to that, figure 3.2b shows the result of a 9-by-9 filter region
where noise has been reduced as well but wrinkles of the intestinal wall have been
almost eliminated and the lumen border is starting to dissolve due to stronger blur
effect. For that reason, the choice of a 7-by-7 median filter has been considered to
be appropriate when working with 128-by-128 pixels capsule endoscopy images.

3.1.2 Logical Filtering

For further image processing, it has been useful to separate darker from brighter im-
age regions. This may be performed by a simple logical filtering approach. Whilst we
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(a) (b)

Figure 3.2 – Result of median filtering the image from figure 3.1b. (a) 7-by-7 median

filter. (b) 9-by-9 median filter.

are already working with greyscales this procedure (equation 3.1) is straightforward.

valuenew =

 1 valueold ≥ threshold

0 valueold < threshold
(3.1)

Every grey value is checked against a condition. If the value is higher than or equal
to the threshold value, its new value is set to 1 (white pixel). If the value is lower
than the threshold, the new value is set to 0 (black pixel). Figure 3.3 illustrates the
application of the logical filtering method to the initial image from figure 3.1b. The
resulting image is binary whereas the lumen has been extracted from the intestinal
wall. The certain threshold of 60 has been obtained by empirical testing of several
different values and intestinal contraction images. It has to be mentioned that the
definition of a global threshold is not a convenient approach and may be revised
by the following blob detection. Nevertheless, logical filtering is a fast and easy
thresholding method and has been useful in different situations combined with other
pre-processing methods.

3.1.3 Blob Detection

Whilst thresholding greyscale images is a rather simple approach for separating
significantly different regions, blob detection is more sophisticated and appropriate
for the separation of the lumen from the intestinal wall. Basically, blob detection
examines an image for the existence of regions of either significantly dark or bright

17



Figure 3.3 – Result of thresholding the image from figure 3.1b (threshold = 60).

pixels. This is usually performed by applying differential methods based on partial
derivatives. For the objective of this project, we want to focus on a method which is
based on the Laplacian of Gaussian (LoG). The LoG operator is widely used for blob
detection nowadays.4 In 2-dimensional problems, this is performed by applying the
Laplace operator, or Laplacian, ∆ to a 2-dimensional Gaussian kernel f . Equations
3.2 and 3.3 show the corresponding 2-dimensional Gaussian function f(x, y) and the
resulting function g(x, y) after applying the Laplace operator.

f(x, y) =
1

2πσ2 e
−x2+y2

2σ2 (3.2)

g(x, y) = ∆f(x, y) =
∂2f(x, y)

∂x2 +
∂2f(x, y)

∂y2 (3.3)

Looking at equation 3.3, the result is computed as the sum of the second partial
derivatives of the 2-dimensional Gaussian function. This results in strong positive
responses for dark and strong negative responses for bright blobs in the image which
usually range around

√
2 for a 2-dimensional problem. The resulting LoG operator is

then convoluted with the original and an edge detected representation of the image
is the result.
This process can be adjusted by the choice of two parameters, the size s of the
Gaussian filter kernel and its standard deviation σ. Figure 3.4 shows the application
of the LoG operator to the image from figure 3.1b. Both parameters s = 9 and
σ = 0.35 have been obtained through empirical testing. Looking at figure 3.4,

4Source: http://en.wikipedia.org/wiki/Blob_detection, retrieved on January 31, 2009.
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strong edges, such as the border of the lumen and of course the border of the image,
are pointed out clearly.

Figure 3.4 – Application of the LoG operator to the image from figure 3.1b (Gaussian

filter kernel parameters: s = 9, σ = 0.35).

Furthermore, a combination of morphological procedures is carried out on the edge
detected image provided by the LoG operator to extract the lumen. Figure 3.5 shows
the image from figure 3.4 after morphological dilation with a flat 2-dimensional
structure element.

Figure 3.5 – Morphological dilation on the image from figure 3.4 (parameters: disc

element, radiusof 6 pixels).

The previously processed edges are pointed out by overlapping with disc elements
of 6 pixels radius. The resulting image may then be improved by morphological
closing in order to fill the areas between smaller blobs which are near to each other
but not connected so far. The morphological closing procedure can be adjusted by
the choice of the structure element and its size as well. With thresholding the image
as an intermediate step, using the previously described logical filtering, for reducing
noise surrounding the lumen, figure 3.6 shows the final result of this procedure. The
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lumen has been successfully separated from the intestinal wall and has formed a
blob whose movement may be estimated by an optical flow algorithm.

Figure 3.6 – Morphological closing on the image from figure 3.5 (parameters: disc

element, radius of 6 pixels).

3.2 Optical Flow Estimation

After refining the images through the application of pre-processing methods, we want
to concentrate now on the analysis of motion in intestinal contraction sequences by
estimating the optical flow. Optical flow is a term of computer vision which has been
formed in the last decades of image processing. In essence, it refers to the establish-
ment of a motion vector field which describes the underlying motion of objects in
a certain scene. Generally, there are several techniques for this objective including
pixel comparison and signal processing algorithms.5 [BA96], [ASM08], [BBPW04]
In the following, two representative algorithms for both techniques are picked out,
described and evaluated by the use of a ground truth solution and simple capsule
endoscopy image sequences. After that, the application of the most promising algo-
rithm to intestinal contraction sequences is discussed extensively.

3.2.1 Block-Matching Technique

Block-matching is a major pixel comparison technique which is widely used in video
coding. The basic idea is to divide the concerned frame into macro-blocks and check
these for similarities with corresponding macro-blocks of the subsequent frame of an
image sequence. The supposition here is that macro-blocks belonging to a certain

5Source: http://en.wikipedia.org/wiki/Optical_flow, retrieved on January 31, 2009.
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shape or object in the original frame will correspondingly move to form the same
shape or object in the subsequent frame. It is straightforward to understand that
only macro-blocks within a certain radius around the original block have to be
observed in order to reduce computational effort. Figure 3.7 shows possible patterns
for macro-block comparison.

Figure 3.7 – Different block-matching search patterns including the exhaustive search

(top left), the big diamond (top right), the hexagon (bottom left) and the small dia-

mond (bottom right). [HWJJ06]

A certain cost function is used to compute the most suitable macro-block in order
to finally obtain a motion vector from the original to the new position. Equation
3.4 illustrtes the Mean Absolute Difference (MAD) which is generally used as a
macro-block matching criterion.

MAD =
1

N2

N−1∑
i=0

N−1∑
j=0

|Cij −Rij| (3.4)

Whereas Cij refers to the pixels in the corresponding macro-block of the current
frame and Rij refers to the pixels from the corresponding macro-block of the refer-
ence frame. N declares the number of macro-blocks.
Ever since the computation of the cost function is a computational expensive task,
its usage preferably needs to be avoided by the block-matching algorithm. In the
last years, a number of different strategies has been developed. An explanation
and evaluation of some of them can be found in [Bar04]. Most of the actual block-
matching algorithms differ in the choice of the used search pattern. The choice of
a good search pattern shall allow faster computations and a better motion vector
field. The Variable Shape Search (VSS) algorithm [HWJJ06] has been considered
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to form the base of further experimentation because of its use of variable search
patterns and its availability for MATLAB. An open source version of the algorithm
can be downloaded from the MATLAB File Exchange [Jal07].

Variable Shape Search (VSS) Algorithm

The Variable Shape Search (VSS) algorithm has been proposed by L. Hao et al.
in 2006 at the University of Shanghai. In essence, it implements a block-matching
strategy which uses combinations of both diamond and hexagonal search patterns
for macro-block comparison. According to its authors, it can reduce computa-
tional complexity significantly and provides competitive computational speedups
when compared to the Diamond Search (DS) algorithm which is generally used in
block-matching and based on diamond search patterns only. Figure 3.8 illustrates
the design of two basic search patterns.

(a) (b)

Figure 3.8 – Variable Shape Search (VSS) algorithm search patterns. (a) A combina-

tion of the big and the small diamond including a vertical hexagon. (b) A combination

of the big and the small diamond including a horizontal hexagon. [HWJJ06]

For macro-block matching, the MAD (equation 3.4) is used. The following lines
illustrate the function of the algorithm which basically includes four steps:

1. The big diamond pattern is checked. For each of its five points, the MAD
of its macro-block is computed and compared to the according block from
the subsequent image. The minimum MAD and its location are stored. If
the minimum MAD is found at the centre of the big diamond, the algorithm
proceeds directly to step 4, otherwise it continues by processing step 2.
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2. At this stage, the algorithm needs to decide between the two basic search
patterns, determining the direction of the following procedures. Therefore, it
reconsiders the locations of the minimum MADs, found during step 1. If the
minimum MAD has been found at a horizontal corner of the big diamond,
search pattern 1 (figure 3.8a) is used and the points of the horizontal hexagon
are checked. Otherwise, if the minimum MAD has been found at a vertical
corner of the big diamond, search pattern number 2 (see figure 3.8b) is used.

3. The location of the minimum MAD, determined by the previous steps, is
considered to be the centre point of a new search pattern. Whether the new
pattern is using a vertical or horizontal shape is determined by step 2. Non-
overlapping points of the new search patterns with the old ones are checked
this time. If the minimumMAD is still found at the centre point, the algorithm
proceeds to step 4. Otherwise, step 3 is repeated recursively whereas there is
yet no restriction in the number of recursions.

4. Finally, the small diamond is checked. For each of its four points, the MAD is
computed. If the minimum MAD found during this step is less than the one
found by the previous steps, it is the new and final minimum MAD.

This procedure leads to a field of 2-dimensional motion vectors containing exactly
one vector for each macro-block. It is straightforward to understand that the choice
of the macro-block size determines the density of the final motion vector field and
the accuracy of the algorithm. The computation of the motion vector field for a
sequence of two images takes less than 1.5 seconds for images of 128-by-128 pixels.
An evaluation of the obtained optical flow estimation is provided during the following
comparison to the results of the signal processing approach.

3.2.2 Signal Processing

Instead of observing pixel data, such as colour and location information, signal
processing methods establish the estimation of the optical flow by processing and
analysing the image signal through various methods, such as differential techniques
based on partial derivatives and methods based on the phase-response of the image
signal. Generally, these methods provide smoother motion vector fields than block-
matching techniques. However, the major drawbacks of signal processing methods

23



are a comparable great computational effort and their runtime.
Due to its usage of the promising Gabor filtering technique, the phase-based optical
flow approach by T. Gautama and M. M. van Hulle [GvH02] has been considered
to be the one to base further experiments on. Furthermore, its availability for
MATLAB from the MATLAB File Exchange [Gau04] has been a major reason for
this decision. In the following, a short introduction to Gabor filtering is provided,
followed by the explanation of the phase-based optical flow approach.

Gabor Filtering

The Gabor filtering method belongs to the category of linear filters and is widely
used in computer vision. [BNB04], [NMR92], [Mov08] Basically, it is represented by
a harmonic base function which is multiplied by a Gaussian. Equation 3.5 illustrates
a 2-dimensional Gabor function [PW08].

gλ,θ,ψ,σ,γ(x, y) = exp(−x´2 + γ2y´2

2σ2
)cos(2π

x´

λ
+ ψ) (3.5)

Whereas x´ and y´ are defined as follows, x´ = xcosθ + ysinθ and y´ = −xsinθ +

ycosθ. The variables λ, θ, γ and ψ represent prime parameters of the Gabor function
while σ belongs to the Gaussian. In fact, λ describes the wavelength of the cosine
factor of the Gabor filter kernel and is specified in pixels. The variable θ refers
to the orientation angle of the Gabor filter kernel and is specified in degrees. The
ellipticity of the Gabor function may be adjusted by choosing γ and the value of σ
describes the standard deviation of the Gaussian envelope. Finally, ψ describes the
offset of the Gabor filter kernel. For the objective of this project, the offset has not
been taken into account and is set to 0.
The Gabor filter kernel is convolved with the image in order to compute an edge
detected representation. For the objective of reducing computational effort, usually
a bank of pre-computed filter pairs with different scales (referring to λ and γ) and
rotations (θ) is provided while each filter pair is applied to the image subsequently.
This procedure results in a so-called Gabor-space, containing an edge detected rep-
resentation for each of the filter pairs.6 Figure 3.9 shows the application of a single
Gabor filter to the base image from figure 3.1b. Detected edges have been pointed

6Source: http://en.wikipedia.org/wiki/Gabor_filter, retrieved on February 2, 2009.
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out clearly (bright spots) on which basis the following phase-based algorithm is
executed.

Figure 3.9 – Gabor filtered representation of the image from figure 3.1b. Edges have

been pointed out clearly and can be identified as bright spots.

Phase-Based Approach

The phase-based optical flow approach based on spatial filtering [GvH02] has been
introduced in 2002. According to its authors, it provides a reasonable fast and ac-
curate technique for estimating the optical flow, based on the phase-information of
the image signal. The considered images are initially processed by the previously
described Gabor filtering method and the resulting contours are tracked by consid-
ering only the ones of which provide a constant phase-response over a certain period
of time.
Basically, the algorithm runs through three main steps for a sequence of input images
which are explained in the following:

1. Gabor filtering. Initially each frame of the sequence is spatially filtered using
a bank of Gabor filter pairs. The algorithm uses pre-computed pairs of dif-
ferent scales and rotations in order to save computation time, as it has been
mentioned before. However, the wavelength λ and the bandwidth b, which
is a relation of λ and σ (equation 3.6 [PW08]), of the filter pairs can still be
adjusted and represent essential parameters for the accuracy of the optical
flow estimation. For good results, both parameters need to be adjusted to the
current image size.
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b = log2
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√
ln2
2

σ
λ
π −

√
ln2
2

(3.6)

Furthermore, the filtering procedure is carried out by performing cascaded
1-dimensional convolutions rather than 2-dimensional which would be com-
putational more expensive and time-consuming. The length l of the used
1-dimensional filter template is of essential importance as well. The correct
choice of wavelength, bandwidth and template length is explained later during
the discussion of the experimental results. After the application of the Ga-
bor filter pairs at each spatial location, the component velocity of each phase
gradient is derived and all of them are combined to form a set of velocity
components which represent a first estimation of the full velocity at this lo-
cation. Each velocity component direction is orthogonal to the orientation of
the corresponding filter pair.

2. Linearity criterion. The linearity criterion is defined by a certain treshold. If
a component velocity is not linear over a given time span (i.e. not reliable) it
is rejected and not taken into account when computing the full velocity during
the next step.

3. Recurrent neural network. At this point, each spatial location yields a set
of reliable velocity components. The algorithm proceeds by computing the
full velocity out of the set of components. According to the authors of the
algorithm, every component velocity constrains the full velocity to lie on a
so-called constraint line in a hypothetical velocity space. As there are several
component velocities at a single spatial location, the intersection of the corre-
sponding constraint lines is supposed to yield the full velocity of this location.
Ever since the component velocities are effected by noise, they do not intersect
in a single point. For achieving the most suitable intersection location, refer-
ring to the optimal full velocity constraint line, a goal programming strategy
is performed which strives towards all goals of the problem simultaneously by
minimising the sum of all orthogonal distances between each constraint line
and the full velocity. This is achieved by the application of a recurrent neural
network.
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This approach leads to a smooth motion vector field whereas its density can be
customised by choosing gx, the number of evaluation points along the x-axis of the
considered frames. Furthermore, the linearity threshold thres_lin and the minimum
number of valid component velocities nc_min can be adjusted in order to adapt the
algorithm to the current problem. Optical flow estimation results on the basis of
both synthetic ground truth and realistic capsule endoscopy image sequences are
illustrated in the following. Moreover, it has to be mentioned that the computation
of a sequence of two frames (i.e. one optical flow estimation) takes from 3 to 5
seconds on the basis of 128-by-128 pixels images which is around three times the
runtime of the block-maching technique.

3.2.3 Evaluation and Comparison

For initial testing and evaluation purposes, a ground truth video solution has been
established, focusing a black spot on a whiteboard while the camera is moving along
two axes. The video frames have been limited to the size of 128-by-128 pixels and
provide good contrasts combined with a simple object motion which has been suit-
able to initially evaluate the accuracy of the optical flow algorithms. Furthermore,
the ground truth solution provides a good environment to adapt the parameters of
both algorithms to the current problem. The ground truth video has been initially
median filtered in order to minimise compression noise resulting from the capture
device.
Figure 3.10 illustrates subsequent frames of the ground truth video which have been
overlaid with the optical flow estimation of the VSS block-matching algorithm. A
macro-block size of 8 pixels has been considered to be appropriate for 128-by-128
pixels images while trying to find a compromise between motion vector field den-
sity, accuracy and computational effort. In comparison, figure 3.11 shows the same
sequence after it has been overlaid with the optical flow estimation obtained by the
phase-based algorithm. It has to be mentioned that in this phase of the project
the adaptation of the included Gabor filtering has not been taken into account and
the algorithm has only been configured by setting gx = 16, thres_lin = 0.025 and
nc_min = 9 which are proposed to be reasonable parameters. Please take notice
that the black spot is moving up and around the corner to the right during the
sequence.
Looking at figure 3.10, the optical flow estimation is not smooth and contains several
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arbitrarily pointing motion vectors. These mostly result from the straight movement
of the black spot where the block-matching criterion fails to determine the optimal
macro-block. In comparison to that, figure 3.11 shows the much better result ob-
tained by the phase-based approach. The motion vector field is smooth and describes
the movement of the black spot correctly. However, the motion vector field does not
exactly fit the area of the motion. It appears enlarged around the main area of the
motion. Furthermore, noise data can be clearly identified in regions where there is
no motion at all. Due to the fact that this could not result from compression noise,
this has been the first evidence of a necessarily need of adaptation of the included
Gabor filtering approach.

Figure 3.10 – Ground truth optical flow estimation obtained by the VSS algorithm.

Sequence starts with top left and ends with bottom right image. The black spot is

moving up and around the corner to the right.

After that, both algorithms have been applied to simple capsule endoscopy sequences
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Figure 3.11 – Ground truth optical flow estimation obtained by the phase-based

algorithm. Sequence starts with top left and ends with bottom right image. The black

spot is moving up and around the corner to the right.

where the movement of lumen and intestinal wall has been clearly identifiable. Fig-
ures 3.12 and 3.13 show the corresponding results of both algorithms with respect
to the previously proposed parameters. As expected, the VSS block-matching algo-
rithm shows an unsatisfactory result consisting of arbitrarily seeming motion vectors
whereas the phase-based approach shows a combination of accuracy and outliers.
At this stage, further work on the VSS algorithm has been considered to be unnec-
essary for the objective of this project because the block-matching technique could
not be evaluated as appropriate for the approach of studying motion in realistic
capsule endoscopy images. The focus has been set to the further improvement of
the phase-based approach.

Through the optimisation of the phase-based algorithm for capsule endoscopy images
and extensively testing and adapting the Gabor filter parameters, the optical flow
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Figure 3.12 – WVCE optical flow estimation obtained by the VSS algorithm.

Figure 3.13 – WVCE optical flow estimation obtained by the phase-based algorithm.

estimation could be improved to produce expected results. Figure 3.14 illustrates
the final result with regard to appropriate parameters: wavelength λ = 4, bandwidth
b = 0.5, template length l = 1.

3.3 Experimental Results

In the following, the application of the phase-based optical flow algorithm to sev-
eral intestinal contraction sequences is illustrated and the effect of different pre-
processing methods is discussed. Each optical flow estimation has been carried out
on initially re-sized 128-by-128 pixels greyscale converted frames.
Figure 3.15 shows the contraction sequence from figure 2.7 after it has been over-
laid with the corresponding optical flow estimation. For this experimentation, no
further improvement of the images by pre-processing methods has been performed.
Only the Gabor filtering method, which is of course included in the phase-based
algorithm, is used. The resulting sequence shows a good motion estimation for both
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Figure 3.14 – WVCE optical flow estimation obtained by the optimised phase-based

algorithm (λ = 4, b = 0.5, l = 1).

the lumen and the intestinal wall. Even in single sequences where the lumen per-
forms a greater change of its size (e.g. between the first and the second frame) the
algorithm delivers a convenient motion vector field. As it has been explained before,
this follows from the fine-tuning of the Gabor filtering wavelength and bandwidth
parameters. In comparison to that, figure 3.16 shows the optical flow estimation
whereas the frames have been initially processed by a 7-by-7 median filter. This
results in almost the same motion vector field but on closer inspection we can see
that the length of the arrows has changed. This implies that the magnitudes of the
motion vectors have been influenced by the median filter resulting in diminishing
the total motion vector field and reducing noise. Although, prime directions seem
to be left almost unchanged.
Figures 3.17 and 3.18 show the same contraction sequence from figure 2.7 whereas
the LoG operator blob detection approach has been initially applied to the frames.
Looking at figure 3.17, the motion vector field has been reduced to the area of the
lumen. Apparently, this follows from the application of the blob detection approach
which converts the frames to the binary representation, shown in figure 3.18. The
resulting motion vector field illustrates that the movement of the lumen is lost when
there is a greater change of its size between single frames. This is a matter of
parameter choice (i.e. the size and the shape of the structure element) and may
be improved by dynamically estimating these parameters for each single sequence.
Moreover, the area of motion vectors around the lumen has been enlarged which
results from the morphological dilation procedure as well. Nevertheless, the blob
detection approach may be used to extract the single movement of the lumen from
the movement of the intestinal wall in order to observe both motions separately.
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Figures 3.19 and 3.20 illustrate again the same contraction sequence whereas a com-
bination of median filtering and blob detection has been applied initially. Compared
to figure 3.17, figure 3.19 shows again the reduction of noise resulting from the me-
dian filtering. The final motion vector field has been reduced even more and limited
to the movement of the lumen, which can be clearly identified from the middle
frames of the sequence.
In comparison, figure 3.21 shows the application of the algorithm to the contraction
sequence from figure 2.5 where the lumen is not closed completely during the contrac-
tion is performed. The frames have not been improved by further pre-processing to
illustrate the general optical flow estimation. The resulting sequence shows further-
more a good motion estimation whereas noise occurs inside the intestinal lumen.
The same sequence has been processed by initially applying median filtering and
blob detection with the same parameters as before (figure 3.22). The results shows
that the previously estimated blob detection parameters could not extract the lumen
from the intestinal wall correctly in this case.
Finally, figure 3.23 shows an optical flow estimation for the contraction sequence
from figure 2.6 where the lumen cannot be clearly extracted from the intestinal
wall. The resulting motion vector field is clearly distracted. Median filtering and
blob detection could not significantly improve the result (figure 3.24) whereas the
same parameters for blob detection have been used as before. This shows once again
that the choice of global parameters may not be a convenient approach.
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Figure 3.15 – Intestinal contraction sequence from figure 2.7 after estimating the

optical flow. No further pre-processing has been performed.

Figure 3.16 – Optical flow estimation from figure 3.15 after initially applying a median

filter.
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Figure 3.17 – Optical flow estimation from figure 3.15 after initially applying the

blob detection approach. Note: original frames are illustrated.

Figure 3.18 – Optical flow estimation from figure 3.15 after initially applying the

blob detection approach. Note: blob detected frames are illustrated.
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Figure 3.19 – Optical flow estimation from figure 3.15 after applying a median filter

and the blob detection approach. Note: median filtered frames are illustrated.

Figure 3.20 – Optical flow estimation from figure 3.15 after applying a median filter

and the blob detection approach. Note: blob detected frames are illustrated.
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Figure 3.21 – Intestinal contraction sequence from figure 2.5 after estimating the

optical flow.

Figure 3.22 – Optical flow estimation from figure 3.21 after applying a median filter

and the blob detection approach. Note: median filtered frames are illustrated.

36



Figure 3.23 – Intestinal contraction sequence from figure 2.6 after estimating the

optical flow.

Figure 3.24 – Optical flow estimation from figure 3.23 after applying a median filter

and the blob detection approach. Note: median filtered frames are illustrated.
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3.4 Implementation

This section provides a brief presentation of the source code which has been imple-
mented during the motion analysis phase of the project. For a smooth integration of
the code in the current software framework, its structure has been followed crucially.
In this spirit, all of the MATLAB source code files have been embedded in a separate
module using the prefix ma_. In the following, this module may be referred to as the
Motion Analysis Module. For the sake of this papers manageability, the explana-
tion of the code has been kept very compact and only the most important facts are
explained. For a more detailed description of the source code, the interested reader
may be forwarded to the MATLAB files. Each file has been commented extensively
to improve its understanding and to give the ability to be modified and extended
easily.
Table 3.1 contains a list of all MATLAB files which have been created for this
module, containing a brief description of their purpose. Moreover, the following
subsections describe a selection of important files whereas useful information is pro-
vided.

ma_compute_bma_vss.m

The file ma_compute_bma_vss contains source code for the previously described VSS
block-matching algorithm for estimating the optical flow of two input images. The
implementation is based on the MATLAB version by Arash Jalalian [Jal07] which
is available from the MATLAB File Exchange. Unfortunately, the original source
code contains several bugs which had to be erased during its adaptation to the
current software framework. Furthermore, detailed testing of the algorithm with
both synthetic and realistic medical images showed irregularities which have been
attributed to the implementation. Further information can be found in the source
code file. As a matter of fact, the VSS algorithm could not produce satisfying results
with realistic medical images and further work on it has been considered to be too
time-consuming and dispensable for the objective of this project.

ma_compute_pb_gautama.m

The file ma_compute_pb_gautama.m contains source code the previously described
PB algorithm for estimating the optical flow of two input images. The implemen-

38



tation is based on the MATLAB version by Temujin Gautama [Gau04] which is
available from the MATLAB File Exchange as well. The original source code has
been adapted to be used with the current software framework and in order to make
more parameters of its Gabor filtering approach adjustable. Detailed information
on the changes can be found in the source code file.

ma_helper_filter.m

The MATLAB function ma_helper_filter is used to execute pre-processing meth-
ods by demanding the original image, filter name and its parameters and delivering
the filtered result. When extending the source code by adding new pre-processing
methods, their implementation or execution, respectively, should be done with this
function.
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Table 3.1 – List of implemented MATLAB source code files for the Motion Analysis

Module.

ma_init.m Script for the initialisation of the Motion
Analysis Module;

ma_module_path.m Function for returning the path of the Motion
Analysis Module;

ma_start.m Script for testing purposes of the Motion
Analysis Module;

ma_compute_bma_vss.m Block-matching algorithm (BMA) through
Various Shape Search (VSS);

ma_compute_pb_gautama.m Phase-based approach by T. Gautama et al.;

ma_helper_compare.m Function for comparing different optical flow
algorithms;

ma_helper_filter.m Function for filtering an input image with a
given filter and its parameters;

ma_helper_greyscale.m Function for checking an image and convert-
ing it to greyscales;

ma_helper_LoG.m Function for applying the Laplacian of Gaus-
sian (LoG) filter to an image;

ma_helper_logical.m Function for creating a logical image by using
a desired threshold;

ma_helper_normalise.m Function for vector normalisation;

ma_helper_resize.m Function for checking and resizing an image;

ma_helper_template.m Motion Analysis Module template;
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Chapter 4

Feature Extraction

To use the obtained optical flow data for further processing by artificial intelligence
technologies it is necessary to establish appropriate features which represent the
data set in a convenient way. This chapter is dedicated to the design and extraction
process of a simple feature extraction approach. At the end, a short presentation of
the implemented source code for the purpose of feature extraction is provided.

4.1 Feature Extraction

The final result of the optical flow estimation is represented by a certain field of
motion vectors. Within the terms of this project, these motion vectors correspond
to conventional 2-dimensional vectors which may be described by their direction and
their magnitude. A common approach for designing simple features is to establish
representative histograms. In this spirit, both direction and magnitude of the mo-
tion vectors should be the basis of a corresponding histogram feature. Furthermore,
the mode of each histogram is stored as well to create another feature. Finally, all
of those are combined to form up the dimensions of the final feature vector which
may then be used for further classification methods.
Figure 4.1 shows a sequence of two capsule endoscopy images which have been
extracted from an intestinal contraction. The second image has been overlaid with
the corresponding motion vector field obtained by the phase-based optical flow algo-
rithm. In the following, this motion vector field is processed by the simple histogram
feature extraction approach and corresponding results are illustrated.
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Figure 4.1 – Capsule endoscopy image sequence extracted from an intestinal con-

traction. The second image has been overlaid with the corresponding optical flow

estimation.

4.1.1 Direction Histogram

The direction of a motion vector can be seen as the angle between itself and a certain
pre-defined vector. The corresponding angle may then be computed by reforming
the scalar product (i.e. dot product) of the two vectors. To make this clear, we
want to take a look at the polar co-ordinate system. Figure 4.2 shows an illustrative
visualisation with associated angle values. For this simple feature, the scalar product
between the actual motion vector and the vector

(
1
0

)
is reformed and expressed in

degrees of the polar co-ordinate system. Finally, all of those values are sorted in a
certain number of histogram classes (i.e. bins). Figure 4.3 shows a bar chart for the
motion vector field from figure 4.1.

Figure 4.2 – Illustrative visualisation of the polar co-ordinate system.7
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4.1.2 Magnitude Histogram

The magnitude (i.e. length) of each motion vector is computed using the Euclidean
norm which is straightforward and does not need further explanation. The resulting
values are sorted in a certain number of histogram classes (i.e. bins) as well. Figure
4.4 shows the corresponding bar chart for the motion vector field from figure 4.1.

4.1.3 Histogram Mode

The computation of the histogram mode is straightforward. It represents the his-
togram class with the greatest number of elements. In our terms, this refers to the
class with the greatest number of motion vectors of a certain direction or magnitude.
The mode should provide us with a simple and fast estimation of prime directions
and magnitudes of a certain motion vector field. In fact, the histogram mode would
be fairly useless when used as a stand-alone feature. But in combination with other
features it may be useful in order to extend the number of characteristics for the
final feature vector.

Figure 4.3 – Direction histogram plot for the motion vector field from figure 4.1.

7Source: http://en.wikipedia.org/wiki/File:Polar_graph_paper.svg, retrieved on February 6,
2009
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Figure 4.4 – Magnitude histogram plot for the motion vector field from figure 4.1.

4.2 Implementation

This section provides a brief presentation of the MATLAB source code which has
been developed during the feature extraction phase of the project. All of the source
code files have been embedded in a separate module using the prefix hist_. In the
following, this module is referred to as the Histogram Module. Table 4.1 contains
a list of the MATLAB files for this module, containing a brief description of their
purpose. To complete the description of the implementation process of the His-
togram Module, the two most important source files are picked out and additional
information is explained.

hist_compute_direction_single.m

The MATLAB function hist_compute_direction_single computes a direction
histogram for the motion vector field through reforming the scalar product. As it
has been described before, the reference vector for the angle computation is pointing
to 0 of the polar co-ordinate system (figure 4.2). The resulting direction values are
represented by degrees. The certain number of histogram bins is set to 18 which
delivers a range of 20 degrees for each histogram bin. The mode is stored for further
computations.
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hist_compute_magnitude_single.m

The MATLAB function hist_compute_magnitude_single computes the magni-
tude component for each vector of a motion vector field, normalises the values with
respect to the greatest magnitude of the field and hands them over to the MATLAB
hist function. The number of histogram bins is set to 100 to get a histogram bin
for each hundredth of the normalised motion vector magnitudes ranging from 0 to
1. The corresponding mode is computed as well.

Table 4.1 – List of implemented MATLAB source code files for the Histogram Module.

hist_init.m Script for the initialisation of the Histogram
Module;

hist_module_path.m Function for returning the path of the His-
togram Module;

hist_start.m Script for testing purposes of the Histogram
Module;

hist_compute_direction_single.m Function for computing the direction his-
togram of a motion vector field;

hist_compute_magnitude_single.m Function for computing the magnitude his-
togram of a motion vector field;

hist_helper_template.m Histogram Module template;
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Part II

Graphical User Interface
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Chapter 5

The Visualisation Application

One of the main objectives of this project has been the establishment of a software
application for experimentation with the previously described set of motion analysis
tools. The application should provide a fast and easy to use visualisation environ-
ment for the study of motion within the domain of WVCE images.
This chapter is dedicated to the design and implementation process of the visuali-
sation application whereas the development of the graphical user interface (GUI) is
explained and useful details on the source code files are provided. In the following,
the visualisation application may be referred to as the Visualiser.

5.1 Design

For the sake of a fast implementation process and good co-operation with the previ-
ously developed source code, the built-in MATLAB GUI editor (figure 5.1) has been
used for the development of the Visualiser GUI. The editor can be run by executing
the command guide from the MATLAB console. Due to the plainness of the editor
and its limited abilities, the final GUI is indeed quite simple. In essence, it follows
a strategy of modular boxes (figure 5.2):

• In the top area of the application window we can see the Information box.
Once a patient study has been loaded, it contains useful information about
the study and its image files.

• The Player box in the middle implements the functionality of a regular image
or video player. It is possible to play the images of a study as a video stream,
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with respect to the currently set rate of frames per second, and pause or stop
this video at any time to perform further processing on the current image.
This is carried out by switching the image over to the Detail box.

• The Detail box can be identified in the middle area on the right hand side of
the Player. Once an image has been selected, further image processing steps
can be performed, with respect to the selected methods and algorithms in the
bottom area of the application window.

• The Configuration box, which can be identified in the middle area on the
left hand side of the Player, is used to manually navigate to either a desired
frame or a contraction sequence and to configure further parameters of the
application. There is space left for future configuration parameters.

The bottom area of the application window contains selection and configuration
options for pre-processing steps and optical flow estimation procedures. All of these
steps are carried out on the single image which has been selected to be viewed in
the Detail box. Each result will be shown in the Detail box as well, except for
the simple histogram feature approach which will be displayed in a separate figure.
Furthermore, each of the procedures can be performed on a sequence of images
by choosing the corresponding option from the menu-bar on top of the Visualiser
window.
Mainly, this design strategy should make the software highly user-friendly and easy
to understand. For a good usability, the Visualiser has been fully equipped with tool-
tip texts which briefly explain the functionality of the corresponding user interface
component or configuration parameters. Furthermore, each parameter is initially set
to proposed optimal values. Altogether, its design should make the Visualiser easily
modifiable and extendable which can be performed by adjusting old and appending
new boxes respectively.
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Figure 5.1 – Screenshot of the MATLAB GUI editor.

Figure 5.2 – Screenshot of the Visualiser main window.
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5.2 Implementation

All of the source code files for the Visualiser have been embedded in a separate
module using the prefix vis_. In the following, this module will be referred to as
the Visualisation Module. Table 5.1 contains a list of MATLAB files which have
been created for the Visualisation Module, containing a short description of their
purpose. To complete the description of the implementation process, a selection of
important source code files and additional information is presented for the objective
of reusability.

vis_start.m

The MATLAB script vis_start represents the prime starting point of the Visu-
aliser. The main purpose of this script is to initialise required global variables and
execute the GUI by calling vis_main and receiving its handle. The handle is cur-
rently unused but may be relevant when the application is extended or included in
another MATLAB application framework.

vis_main.fig

The file vis_main.fig is automatically created by the MATLAB GUI editor and
contains the layout of the Visualiser interface in form of a MATLAB figure. It
should only be modified by using the editor. Modifying the file manually can make
it totally unusable.

vis_main.m

The file vis_main.m is automatically created by the MATLAB GUI editor as well
and contains the main functionality of the Visualiser interface in form of many
separate MATLAB functions (i.e. callbacks). If there are modifications to the
interface layout via the GUI editor, the corresponding callbacks are automatically
created within this file. The functionality has to be implemented manually within
the corresponding function inside this file. Each of the GUI elements yields own
callbacks which are executed on different behaviour (e.g. key press, mouse click,
etc.). Furthermore, each GUI element has a create function which is initially
executed when the application is launched. This is very useful for setting initial
appearance and behaviour of GUI elements.
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vis_map_sequence.m

The MATLAB function vis_map_sequence contains functionality for mapping a
sequence of images, with respect to the currently selected pre-processing step and
optical flow algorithm. After plotting the whole image sequence, the user can man-
ually estimate a certain position to plot a marker. The result is stored as a high
resolution JPEG image for illustration and further image processing.

5.3 Known Bugs and Incompleteness’

This section contains a listing of known bugs and incompleteness’ which have been
discovered while working with the Visualiser:

• The Visualiser must be closed using the Close option from the File menu.
Otherwise, it may come to irregularities.

• Only one pre-processing step can be enabled at a time.

• Mapping all contractions of a study folder is not yet implemented correctly
because the first approach did crash the Visualiser due to the great amount of
data.

• Viewing all contraction histograms of a study folder is not yet implemented
correctly because the first approach did crash the Visualiser due to the great
amount of data.

• Only one study folder can be loaded at a time.

• Mapping a contraction can crash the Visualiser. In this case it may be restarted
and shut down correctly by using the Close option from the File menu. After
that, it should work fine again.

This listing is related to user interface issues and should complete the explanation
of the GUI design and implementation process. Furthermore, it should be assis-
tant to further programmers who are planning to reuse, modify and extended the
Visualiser.
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Table 5.1 – List of implemented MATLAB source code files for the Visualisation

Module.

vis_init.m Script for the initialisation of the Visualisa-
tion Module;

vis_module_path.m Function for returning the path of the Visu-
alisation Module;

vis_start.m Script for running and maintaining the GUI;

vis_main.fig Visualiser GUI layout;

vis_main.m Visualiser GUI functionality;

vis_map_sequence.m Function for mapping a sequence of images;

vis_helper_template.m Visualisation Module template;
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Chapter 6

User Manual

This chapter is dedicated to the interaction process between the presented software
and its user. On the one hand, it provides a comprehensive user manual with detailed
application descriptions and actual screenshots of each user interface component. On
the other hand, it illustrates the usage of the Visualiser on the basis of an example
procedure which is carried out in an iterative manner and may be reproduced step
by step. Altogether, it should be considered as the prime source of information
belonging to the correct usage of the Visualiser.

6.1 The Visualisation Application

First of all, the Visualisation Module needs to be initialised by executing vis_init

from the MATLAB console which will set-up all necessary MATLAB paths. After
that, the Visualiser is started by executing vis_start from the MATLAB console.
The application will then be loaded and the main window of the GUI (figure 5.2)
will be displayed.
The first step of each session should be to load a patient study by choosing the option
Open Study ... from the File menu of the menu-bar on top of the main window
(figure 6.1). This will display the Browse For Folder user interface dialogue which
allows you to browse your hard drive and select a study folder (figure 6.2). Once
a correct folder is selected, the MATLAB workspace is set-up by loading initially
required data and the GUI is updated by showing the first image of the study in the
Player box and listing current information in the Information box on top of the
window (figure 6.3). The Visualiser is then ready to perform further experimentation
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with the study. In essence, there are two main functions:

1. The player functionality. The Player box right in the middle of the application
window implements the functionality of a regular video player. It allows you
to browse through the images in several different ways in order to select a
certain image for further image processing.

2. The image processing functionality. Image processing functions include pre-
processing methods and optical flow estimation algorithms which can be se-
lected by using the corresponding box from the two sections, visible in the
bottom area of the application window.

An important fact is that every image processing function is carried out on a single
image and the previous one, in case of an optical flow estimation respectively. If
an image sequence is regarded, image processing functions may be carried out on
the whole sequence by selecting the corresponding option from the View menu of
the menu-bar on top of the Visualiser window. Those options will view additional
MATLAB figures with corresponding results. Starting number and length of a
sequence can be adjusted by selecting the start image in the Detail box and setting
the sequence length parameter in the Configuration box of the main window.

6.2 The Player

The player functionality allows you to browse through the images of a patient study
using four different methods:

1. Press the Play button. This will automatically play the images as a video
stream consisting of single frames and with respect to the currently set rate
of frames per second which can be changed by entering a valid number in the
corresponding field below the Player box and pressing the enter-key of the
keyboard. The automatic playback can be paused and stopped at any time
by pressing the corresponding buttons Pause and Stop.

2. Drag the slider below the Player box to jump to any desired frame.

3. Enter the desired frame number in the corresponding field of the Configura-
tion box and hit the enter-key. If the entered frame number is valid, the
Player box will display the desired frame.
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4. Select the desired contraction number from the pop-up menu in the Confi-

guration box. If a valid contraction number is selected, the Player box will
display the first frame of the desired contraction sequence.

If an image is displayed in the Player box, the > button will be enabled. It allows you
to select the currently displayed image and flip it over to the Detail box for further
image processing (figure 6.4). By pressing the FILT button, the selected function
from the pre-processing section will be executed on the currently selected image and
the results will be shown in the Detail box. Further explanation on how to use and
configure pre-processing methods can be found in the next section of this chapter.
By pressing the OF button, the selected function from the optical flow estimation
section will be applied to the currently selected image. The preceding image will be
the reference for the estimation of the optical flow. Once again, the result will be
shown in the Detail box. Further explanation on usage and configuration of the
optical flow estimation algorithms can be found in the corresponding section of this
chapter. If the estimation of the optical flow has been executed successfully and the
corresponding motion vector field is shown in the Detail box, the HIST button will
be enabled. By pressing it, a new MATLAB figure is displayed which contains a
direction and a magnitude histogram for the currently available optical flow motion
vector field.

6.3 Pre-Processing Section

The lower left area of the Visualiser window contains boxes for adjusting pre-
processing methods including Median and logical filtering as well as a blob detection
approach through the application of the Laplacian of Gaussian filtering method.
Those will be applied previous to further computations and should therefore be the
first thing to think about when starting a new experimentation session. By clicking
the corresponding radio button, a method will become enabled, or disabled respec-
tively. By leaving out the selection, none of the just mentioned methods will be
applied. Furthermore, it should be mentioned that currently only one of these pre-
processing steps can be enabled via the graphical user interface at the same time. If
a method can be configured by choosing one or more parameters, this is performed
by typing the desired value into the corresponding field and pressing the enter-key
of the keyboard to set-up its value. All parameters are initially set to optimal de-
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fault values which are also explained in the corresponding tool-tip text. To find out
more about the parameters, please study the corresponding section of this paper.
Figure 6.5 shows the result of a 7-by-7 median filter which has been applied to the
previously selected image from figure 6.4.

6.4 Optical Flow Estimation Section

The lower right area of the Visualiser window contains boxes for adjusting opti-
cal flow estimation algorithms including the phase-based approach and the block-
matching technique. The estimation of the optical flow is the main purpose of the
Visualiser and should be considered after selecting a pre-processing step. Only one
algorithm or none can be selected at the same time by clicking the corresponding
radio button. Once more, parameters can be changed by typing the desired value
into the corresponding field and pressing the enter-key to set-up the new value.
When starting the Visualiser, all parameters are set to optimal default values which
are explained in the corresponding tool-tip text too. Figure 6.6 shows the result of
applying the phase-based optical flow estimation approach to the previously selected
image from figure 6.4. The Player box displays the preceding reference image.

6.5 The Mapping Tool

The term mapping tool describes all functions and user interface elements which
have been implemented to map a sequence of images. Mainly, separate MATLAB
figures are created which can be saved to high resolution JPEG files and printed
out using the MATLAB figure print function. The mapping tool can be executed
by selecting the option Map sequence ... from the View menu of the menu-bar on
top of the Visualiser window.
Choosing the option Map sequence ... displays a new MATLAB figure and plots
a sequence of images with respect to the currently selected pre-processing method,
optical flow estimation algorithm and sequence size (figure 6.7). A sequence of im-
ages can be plotted with or without both pre-processing and optical flow estimation
steps. The plotting procedure takes some time within no other user input should
be performed. Otherwise the image sequence may not be plotted correctly and the
Visualiser could crash. After plotting, the whole image sequence is displayed and
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you can manually select a point by moving the mouse to the desired position and
clicking the left mouse-button. This function is optional and can be omitted by
pressing the enter-key on the keyboard to proceed without marking.

6.6 The Histogram Tool

The term histogram tool describes all functions and user interface elements which
have been implemented to create motion vector field histograms. The main his-
togram tool (figure 6.8) can be executed by choosing the option View histogram

... from the View menu of the menu-bar on top of the Visualiser window.
Choosing the option View histogram ... creates a new MATLAB figure with both
direction and magnitude histograms for each motion vector field of the the currently
computed sequence. The histograms may be stored as JPEG or MATLAB files by
using the corresponding MATLAB save function.
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Figure 6.1 – Screenshot of the File menu.

Figure 6.2 – Screenshot of the Browse For Folder user interface dialogue.
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Figure 6.3 – The Visualiser after loading a patient study folder.

Figure 6.4 – Flipping an image over to the Detail box for further image processing.
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Figure 6.5 – Application of a pre-processing step to the currently selected image.

Figure 6.6 – Application of an optical flow algorithm to the currently selected image.
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Figure 6.7 – Screenshot of using the mapping tool.

Figure 6.8 – Screenshot of using the histogram tool.
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Part III

Discussion, Final Conclusions and

Further Work
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Chapter 7

Discussion and Final Conclusions

The presented set of tools, combining pre-processing methods, optical flow algo-
rithms and a simple feature extraction approach, has been proposed to provide a
useful source of information when studying motion in intestinal contraction images
obtained by WVCE. Throughout the previous chapters, this objective has been
worked out in detail. At this point, we shall now focus on discussing major findings
and providing final conclusions.
All things considered, it has to be argued that the comparable poor frame rate of
the capsule endoscopy video material demonstrates a major problem for applying
motion analysis procedures. Due to the fact that there can be great changes between
two subsequent frames, the estimation of appropriate parameters is a crucial task.
Experimental results show that there can be a good estimation of the lumen motion
with the provided set of tools, once appropriate parameters have been determined.
Nevertheless, the same parameters may fail on another contraction sequence. For
this reason, it is not only a matter of what combination of methods and algorithms
to use but how those are adapted to the changeable appearance of intestinal con-
traction sequences obtained by WVCE. The determination of global parameters for
both pre-processing and optical flow estimation can be seen as a major source of
discontinuities.
The median and logical filtering methods have been quite useful in order to reduce
noise and may be appropriate in many different situations. To be considered as
pre-processing steps, both median and logical filtering can be highly recommended
within the scope of capsule endoscopy image sequences. Especially initial median
filtering has been appropriate at almost any time while working with contraction se-
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quences as well as ground truth solutions. The blob detection approach through the
application of the Laplacian of Gaussian operator provided a convenient separation
of the lumen from the intestinal wall while it suffers from the previously mentioned
frame rate problem. Nevertheless, it can be recommended as well while there is
probably plenty of space for further improvement (e.g. through dynamic parameter
estimation).
For estimating the optical flow in intestinal contraction sequences, the block-matching
technique has not produced convenient results. The resulting motion vector field
contains to much noise and due to the fact that there is not really much room for im-
provement except for the choice of the macro-block size, it may not be recommended
for this objective. The phase-based approach on the other hand shows expected re-
sults, once it had been adapted to the current problem, of course. Maybe there is
even more improvement of the final results by dynamically adapting the parameters
of the included Gabor filtering approach to the current contraction sequence.
The Visualiser has been a convenient visualisation application in order to apply
both pre-processing methods and optical flow algorithms in a fast and easy way.
Furthermore, it has improved presentational purposes.
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Chapter 8

Further Work

The final chapter of this paper yields a brief proposal of which further experimenta-
tion could be done with the proposed set of motion analysis tools and how it could
be improved and extended to carry on with the objective of this project.
For further improvement of the pre-processing section, the blob detection approach
could be revised. In order to minimise the drawbacks of determining certain global
parameters, an approach to dynamically estimate appropriate parameters for each
contraction sequence may be established. Moreover, the experimentation with dif-
ferent parameters for both morphological dilation and closure has not been carried
out extensively and could provide room for improvement of the blob detection and
final optical flow estimation results.
The optical flow estimation section may be improved by separating the motion of
the lumen from the motion of the intestinal wall in order to be observed individu-
ally. This may be carried out by detecting the current position of the lumen and
extracting a certain region around it (e.g. by utilising the blob detection approach).
Probably, this would lead to a more focused and noise reduced experimentation
environment for the study of the lumen motion. Furthermore, one could focus on
utilising the motion vector field around the lumen for estimating the location of the
intestinal contraction bouncing point.
For further classification, the simple feature extraction approach needs to be tested
with a classifier and may be revised and improved by the development of additional
features in order to extend the characteristics of the final feature vector.
Concerning the Visualiser, the previously mentioned bugs and incompleteness’ may
be eliminated by revising and extending the current source code.
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