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Abstract

Intestinal infections in poultry chickens can not only cause damage to the animals who interact with them
by any means but they are also a threat to human health as chickens are a part of our food chain. This
work is a study of such infections which are caused by Salmonella bacteria in chickens and their therapy
with bacteriophages. We introduce a mathematical model which is a time dependent convection model
to discuss the dynamics of bacterial infections and their treatment with bacteriophages within a single
host. We analyze the model in one spacial dimension within the intestine of chickens by considering
only the convection term. We discuss that organism remains infected due to constant stationary behavior
of bacteria within the intestine when there are no bacteriophages and also observe a constant stationary
behavior of bacteriophages which make the organism infection free when administered to organism with
food. We explain that death of infections also depends on certain parameters which can happen without
any treatment. Stability analysis with respect to x variable show that none of these constant stationary
states of the model are stable. Solutions of the model for variations of burst size b, adsorption coefficients
r and K, growth rate o and detachment rate ;1 and velocity v show that dynamics is sensitive to all of
them.
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Chapter 1

Introduction

This work is a part of a collaboration of Mathematics department and CRM with department of Genetics
and Microbiology, UAB; on therapy of different type of bacteria with bacteriophages. It is aimed to study
the use of bacteriophages to fight against Salmonella bacteria within intestine of chickens.

Salmonella has the potential to cause a bacterial infection in chickens which is not very dangerous
for them but it is harmful to the health of other organisms who interact with them by any means. These
infections can create a serious illness in humans also when they pass in them with food through chickens.
Due to rising levels of multidrug resistant pathogenic bacteria, the use of antibiotics to treat bacterial
infections is becoming compromised, it is necessary to develop some alternative methods. Therefore the
interest in phage(virus) therapy has increased because of the food safety issues and the emergence of
these multidrug resistant pathogenic bacteria.

Bacteriophages are viruses that are obligate intracellular parasites, which multiply inside bacteria
by making use of some or all of the host biosynthetic machinery (i.e., viruses that infect bacteria.).
They were discovered by Twort in 1915 during first World War and independently by Felix d’Herelle in
1917, see [8] and [9]. They gave the idea of using Bacteriophages as a method of treatment of bacterial
infections. They observed that broth cultures of certain intestinal bacteria could be dissolved by addition
of a bacteria-free filtrate obtained from sewage. The lysis of the bacterial cells was said to be brought
about by a virus which meant a "filterable poison" ("virus" is Latin for "poison").Probably every known
bacterium is subject to infection by one or more viruses or "Bacteriophages" as they are known ("phage"
for short, from Gr. "phagein" meaning "to eat" or "to nibble"), see [3]. It’s structure can be seen in the
following figure 1.1.

/ x =
Baseplate Tail
fibers

Figure 1.1: Left: Electron Micrograph of bacteriophage, Right: Model of phage . The phage possesses DNA
contained within an icosahedral head. The tail consists of a hollow core through which the DNA is
injected into the host cell. The tail fibers are involved with recognition of specific viral "receptors” on
the bacterial cell surface, see [3].

Like most viruses, Bacteriophages typically carry only the genetic information needed for replication
of their nucleic acid and synthesis of their protein coats. They may contain different materials but they
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all contain nucleic acid and protein. Depending upon the phage, the nucleic acid can be either DNA
or RNA but not both and it can exist in various forms, see [2]. The nucleic acids of phages often
contain unusual or modified bases. These modified bases protect phage nucleic acid from nucleases that
break down host nucleic acids during phage infection. A Bacteriophage can only infect certain bacteria
bearing receptors that they can bind to, these receptors are on the bacteria for other purposes and phage
have evolved to use these receptors for infection, which in turn determines the phage’s host range. As
phage virions do not move independently, they must rely on random encounters with the right receptors
when in solution (blood, lymphatic circulation, irrigation, soil water etc.). This explains the modeling of
these infections by means of Law of mass action. After making contact with the appropriate receptor,
the phage then injects genetic material through the bacterial membrane. When the phage has gotten
through the bacterial envelope, the nucleic acid from the head passes through the hollow tail and enters
the bacterial cell. Usually, the only phage component that actually enters the cell is the nucleic acid.
The remainder of the phage remains on the outside of the bacterium, this process is called adsorption.
The virus nucleic acid uses the host cell’s machinery to make large amounts of viral components. After
many copies of viral components are made, they are assembled into complete viruses. The phage then
directs production of an enzyme that breaks down the bacteria cell wall and allows fluid to enter. The
cell eventually becomes filled with viruses (typically 100-200 is the burst size) and liquid, and bursts
or lyses; as the host cells are ultimately killed by lysis, this type of viral infection is referred to as lytic
infection, see [1] and [3]. It can be seen in the following figure 1.2.

The first step in the multiplication of a virus
is its attachment to a host cell; more than one
virus particle can simultaneously adserb to o
single cell,
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Figure 1.2: The lytic cycle of a bacterial virus, e.g. Bacteriophage, see [3].

Phage therapy is the therapeutic use of lytic bacteriophages to treat pathogenic bacterial infections.
Phage therapy is an alternative to antibiotics being developed for clinical use by research groups in East-
ern Europe and the U.S. Several studies have shown that the bacteriophages may be useful in reducing
the number of Escherichia coli O157, Campylobacter, Listeria and Salmonella contaminating the surface
of food. Studies have also recently sought to utilize bacteriophages to treat airsacculitis in chickens and
infections of fish. Several studies have investigated the use of bacteriophages to reduce Salmonella loads
in the poultry intestine; however its application is resulted in modest success. Therefore in this work
we will study the interaction of bacteriophages with Salmonella bacteria in order to cure the bacterial
infections within chicken intestine by bacteriophages. An important benefit of phage therapy is derived
from the observation that bacteriophages are much more specific than most antibiotics that are in clinical
use. Theoretically, phage therapy is harmless to the eucaryotic host undergoing therapy, and it should not
affect the beneficial normal flora of the host. Phage therapy also has few, if any, side effects, as opposed



to drugs, and does not stress the liver. Since phages are self-replicating in their target bacterial cell, a
single, small dose is theoretically efficacious. On the other hand, this specificity may also be disadvanta-
geous because a specific phage will only kill a bacterium if it is a match to the specific subspecies. Thus,
phage mixtures may be applied to improve the chances of success, or clinical samples can be taken and
an appropriate phage can be identified and grown, see [3].

This research is aimed to study and to develop an understanding of intestinal infections in poultry
chickens. In order to study such infections at population level, one needs to understand these infec-
tions on an individual level and determine some individual characteristics. We can study the dynamics
of bacteriophages and bacteria and their interaction within host at individual level and carry it to their
dynamics within host at population level. Thus in our research we aim to model the dynamics of in-
teraction between bacteriophages and Salmonella in the intestine of a single infected host. We draw an
understanding of their interaction in one spatial dimension that is the direction of flow of food in the
intestine of the organism which is the source of bacteriophages and Salmonella bacteria to move and to
get interacted in the intestine in that direction. First we construct a mathematical model which is a time
dependent convection model of interactions of bacteriophages with Salmonella bacteria. We establish
the conditions which give the stationary solutions of the model in the case when the bacteria will grow
in the intestine and when they will die due to treatment or infections by bacteriophages. Secondly we
investigate whether or not these stationary solutions are stable. We have addressed the above in two
different cases; when there is no inflow of bacteriophages i.e. when the organism or host is not treated
with phages and when the host is infected or treated with some dose of bacteriophages. We then make
an analysis of parameters of the model to develop an understanding of their affect on dynamics in the
model.

This research work is structured as follows. The model describing the infections of two types of
bacteria in the intestine and their interaction with bacteriophages within the intestine is introduced in
chapter 2, we discuss the idea of the model and make a numerical exploration of our model for two
different cases drawing some biological interpretations in chapter 3, we establish the conditions for sta-
tionary solutions of the model in chapter 4, and carry out the stability analysis of the constant stationary
solutions in the sense of their behavior with respect to the x variable in chapter 5, we observe the model
parameters and analyzed them in chapter 6. In chapter 7 we present the conclusions, propose some facts
related to infections which can be of interest to biologists and mathematicians. In chapter 8, we give the
Mat 1lab codes or programs used to find the solutions of the model and for other similar purposes.
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Chapter 2

Mathematical Model

2.1 Introduction and motivation

We begin our study by writing the following system of ODE’s;

ﬁ =as — kKPS,
dt

al 1
ar b

System (2.1) is a simple model for bacteriophage infections, in this model S is the density (i.e., number
of bacteria per ml) of susceptible bacteria, I is the density of infected bacteria, and P is the density
(number of viruses per ml) of viruses (phages). A bacterium becomes infected / when viruses P attack
the susceptible bacteria S and successfully injects its genetic material through the bacterial membrane.
The virus then starts replicating inside the bacterium. The infected bacterium does not replicate itself
by division. After a latency time of average length of time equal to T, an infected bacterium will die by
lysis; i.e., the bacterium explodes releasing b copies (b > 1) of the virus, where b is called the burst size,
which are then free to attack other susceptible bacteria.

Previously, Gourley and Kuang discussed the dynamics of marine bacteriophages in [7], they have
proposed a delay reaction diffusion model in one spatial dimension, it can be seen as follows:

S (x,t) 9?8 (z,t) S (x,t)
5 = Ds 52 + S (z,t) (1 — 7) — kS (z,t) P (x,t), (2.2)
OP (x,t 0%P (z,t
({gf ) = D, 83(::5 ) _ ppP (2, t) — mP?(x,t) — KS(x,t)P(x,t) +

b x {rate of death of infectives by lysis}

On an infinite one-dimensional domain —oo < x < 00, in their work this model helps to discuss what
types of diffusion are appropriate and derivation of the time-delay terms for the case when there is
diffusion, importantly it discusses the movement of infectives during the period between infection and
lysis, so when an infective dies by lysis it will release b copies of the virus into the water at a different
location from where it originally became infected.

This model assumes that once a bacterium become infected by a virus, it no longer competes with
susceptibles for resources.This assumption means that there is no need of differential equation for I(¢).
On the right hand side, D, and D), are the diffusivities of the susceptibles and the phages. The second
term in the .S equation shows a logistic growth of susceptibles, the last term in the S and fourth term

5
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in P equation reflect the loss of bacteria and phages due to infections, and the last term in P equation
shows the fact that each time an infective dies by lysis, it releases b copies of the virus. The difficulty of
writing this last term in mathematical form is due to the fact that, already discussed, that lysis occurs at
a different place than infection.

On the other hand Boldin [5] discussed the persistence and spread of bacterial gastro intestinal infec-
tions in her recent work. Her work is focused on within host dynamics and present a model describing
the dynamics of pathogens in the intestine of a single host. Her model offers an acceptable description of
within-host dynamics of several other gastro-intestinal infections. It represents the intestine as a cylin-
drical, but not necessarily circular, tube of length L, of constant cross-sectional area A and of constant
circumference C. It considers two types of bacteria: the ones attached to the wall of the intestine and free
bacteria that move down the intestine. First it helps to establish the conditions that guarantee growth of
pathogens in the intestine and specify when the pathogen population will not be able to persist and then
secondly it investigates the convergence of pathogens to a stable pathogen distribution.

The work done by Viladrich in [10] and by Gallardo in [6] is also used as reference for the following
model. In their work they have focused on interactions of bacteriophages and bacteria with constant
latency period T for lysis.
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2.2 Model for interaction of bacteria and bacteriophages within intestine

In this work, we have proposed a model of interaction between Salmonella bacteria infecting the intes-
tine of chickens and their specific bacteriophages. Following the lines of Boldin [5] and adding the virus
populations, we present a model describing the dynamics of bacteria (Salmonella) and virus (bacterio-
phages) in the intestine of a single host. We consider two types of susceptibles (bacteria) and viruses
(phages), ones attached S and P at the wall of the intestine and the free bacteria S and phages P which
move down in the intestine of the organism. We derive our model in a finite one dimensional domain
x = [0, L], which is the length of intestine in cm i.e. the intestine starts at x = 0 and ends at x = L,
we consider a zero influx of bacteria and a constant influx of viruses (bacteriophages) P at the boundary
x = 0 which we assume they are administered to the host mixed with the food.

The model we present discuss that for a given constant dose of bacteriophages P, how they affect the
growth of susceptible bacteria, S at the wall and the free bacteria S in the intestine due to infections, and
how much free phages P and free bacteria S at x = L move out of the intestine and leave the organism.
Like in Gourley and Kuang [7] we also assume that once a bacterium becomes infected by a virus, it
no longer competes with susceptibles for resources therefore we do not need a differential equation for
infectives I and we also neglect the latency period 7. This avoids the need of an analysis like the one in
the last term of P equation in (2.2). Similarly we consider the logistic growth of susceptibles S and S.
According to our assumptions, we now impose the boundary conditions: S(0,¢) = 0 and P(0,t) = Py
and derive our model which is the following system of PDE’s.

oS oS S = _
a—kva—x— (a (1_U) —(/fP+/<;P)>S—>\15+mS, (2.3)
oS S N _
P P _ _ _
or + va— =(b—1)kSP+biPS — RSP — \oP + po P, (2.5)
ot ox
oP - o _
5= (b—1)RSP +brSP — RPS + \oP — uaP, (2.6)

where S = S (x,t), S = S(x,t), P = P(z,t) and P = P (x,t). Here we assume that the free
bacteria .S and viruses P move with constant velocity v i.e. the flow of food through which the free
bacteria S and viruses P move in the intestine is steady. The rate at which the attached bacteria(viruses)
detach from the wall is p(p2) and the rate at which the free bacteria(viruses) attach to the wall is
A1 (X2), U(U) is the carrying capacity of free(.S) (attached(S)) bacteria and x(%) the adsorption constant
for free(attached) bacteria and viruses, whereas & is the transmission coefficient for attached bacteria S
and attached viruses P, b the burst size and « is the bacterial growth rate constant.

The first term on right hand side in (2.3) and (2.4) shows the logistic growth of attached and free
bacteria (S, S) and the second term the loss of attached and free bacteria (S, S) due to infections, the
rest gives the loss and gain of attached and free bacteria population due to detachment and attachment
from the wall of intestine. Similarly in (2.5) and (2.6) the first three terms on right hand side show that
each time an infective dies, it releases b copies of viruses thus giving the number of viruses produced at
any time and the loss of viruses due to the infections, there we assume that a lysis of a free bacterium
produce free phages whereas the attached ones produce the attached viruses. Finally the fourth and fifth
terms give the loss and gain of viruses due to attachment and detachment from the wall of intestine. The
terms on the left hand side of the system involve the time derivatives whereas (2.3) and (2.5) have the
convection terms of S and P.
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Chapter 3

Model Analysis

Instead of analyzing the model derived in previous section we will consider a simplified version of it,
which seems rather realistic from the biological point of view. Indeed we will assume that there are no
attached viruses P at the wall of the intestine and the infections of bacteria by bacteriophages happen
due to the free phages P only. i.e. Only free viruses P can interact with the attached bacteria S and free
bacteria S within the intestine of chickens. In particular lysis of attached bacteria will result in releasing
free phages. This leaves us with the following system of PDE’s:

oS oS S —
oS S\ \= -
oP oP _ =
e + Vs = (b—1) (kS + RS)P. (3.3)

We are interested in looking for the stationary solutions of the above model in a bounded one dimen-
sional domain [0, L], they are analytically discussed in next section. In this section we want to see how
our model behaves for different values of Fy; that is how it behaves for the imposed boundary condition
i.e. P(0,t) = Py which means there is a constant influx I of bacteriophages P. With Mat 1ab we will
get some graphs which can help us to understand and analyze the affect of P on attached bacteria S and
free bacteria S population. As we are interested in stationary solutions of our model in the sense of their
behavior with respect to the x variable, we ignore the time derivatives in our model i.e. we assume all the
time derivatives to be equal to zero. However the time dependence is important and it can be taken under
consideration for any future work on this model e.g. for addressing the stability of the steady states, etc.

We begin our work by making the time derivatives zero in (3.1), (3.2) and (3.3) i.e. by making

%—f =0, %—f = 0 and % = 0 in the above model, we have the following system of ODE’s:
ds S _
_— = 1 —_—— — P — .4
Vda: <a< U) K )S AS 4 uS, (3.4)
S \ = _
0=« 1—5 —RP ) S+ S —uS, 3.5)
dpP _

From (3.5) which does not contain any derivative we can get an explicit formula for S in terms of .S
and P, which can be seen as follows:
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Sl

As S cannot be negative so we will consider only the positive part of the above parabola. i.e.

alS (z)

P @)+ (1 ) [ RP @)+ () 4420

S (z) = =G (S(x),P(x)).

2L

U

(3.7

Nevertheless, notice that for S(0) = 0,5 = 0 is always a solution. Hence for any non negative

constant P, (0,0, P) is a (trivial) solution of the system of ODE’s (3.4) - (3.6), i.e. a trivial stationary
solution of our model of PDE’S (3.1) - (3.3).

By substituting the value of S from (3.7) in (3.4) and (3.6), we get the following system of equations.

”diz:(f) = F(S(z),P(z)), (3.8)
yd];f) = H(S(z),P(z))), (3.9)
where
F(S,P) = <a <1—5> —/-;P>S—>\S+MG(S,P), (3.10)
H (S, P) = (b—1) (kS + G (S, P))P. 3.11)

We now consider the system of equations (3.8) and (3.9) as our model for the analysis purpose with
initial conditions S(0) = 0 and P(0) = P, where Py > 0 is a constant, they are derived from the
imposed boundary conditions in the original model.

We now investigate the above system in the following two different cases:

3.1 In the absence of free phages P

We first consider that the organism is not treated with bacteriophages P, i.e. P(0) = Py where Py = 0,
following graphs show how the bacteria infect the organism in this case and on which parameters the
infections depend.

Figure 3.1 below is a result of the case when there is no interaction of bacteriophages P with bacteria
S and S, as the influx Py = 0. This clearly shows that the organism is not yet cured from bacterial
infection, it can be seen through the increase in bacterial populations S and S in figure 3.1. We can also
understand the process of attachment and detachment of bacteria from the wall of the intestine in this
figure 3.1, which we have assumed in our model . The free bacteria population .S starts at 0, this satisfies
our initial condition S(0) = 0, then as they move along the intestine, the attached bacteria population S
on the wall keep on adding in free bacteria population S because they keep on detaching from the wall
as the food passes through the intestine and the free bacteria population keep on attaching at the wall.
From the results of figure 3.1 we can see that free bacteria population S is greater than attached bacteria
population S, this clearly indicates that the detachment rate was higher than attachment as 11 > A, also the
free bacteria population is larger than it was expected as the carrying capacity U = 8, and the population
of S is less than expected as the carrying capacity U = 10 which is also the result of the case p > .
We can also see that at length = 800, both populations start showing stationary behavior, which gives
the amount of attached bacteria population S which will remain inside the organism and amount of free
bacteria population S that will move down the intestine and will leave the organism at the end of the
intestine i.e. at z = L.
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Graph of Sbar and 3 in absence of free phages P
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Figure 3.1: In this plot ;1 > X where Py = 0,U = 10,U = 8,k = & = 0.01,a = 0.03, ¢ = 0.02, A\ = 0.01,b =
10,v = 5.

Graph of Sbar and 3 in absence of free phages P
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Figure 3.2: In this plot ;1 < A where Py = 0,U = 4,U = 10,k = & = 0.01,a = 0.03, x = 0.01, A = 0.02,b =
10,v = 5.

In this figure 3.2, we have considered that © < A that is; the attachment rate is higher than the
detachment rate, also U < U that is; the carrying capacity of attached bacteria population S is less
than the carrying capacity of free bacteria population S, which can be clearly seen in figure 3.2. Due
to high attachment rate A the population of attached bacteria is increased than its carrying capacity
U whereas because of low detachment rate y the population of free bacteria is less than its carrying

capacity U.Therefore less bacteria will leave the organism and their large population will remain inside
the organism.
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3.2 In the presence of free phages P

We now give a constant amount of dose of bacteriophages P to the organism, i.e. we now impose the
initial condition P(0) = Py > 0, where P is equal to Py millions individuals per ml of solution. We
want to see how this dose Py works on bacteria populations S and S. Below are some graphs which can
help us to understand the situation;

Graph of Sbar and 5 in presence of free phages P
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Figure 3.3: In this plot Py = 0.1 where U = 4,U = 10,k = £ = 0.01,a = 0.03, 2 = 0.02, A = 0.01,b =
10,v = 5.

Graph of Sbar and 5 in presence of free phages P
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Figure 3.4: In this plot Py = 0.1 where U = 4,U = 10,x = & = 0.01,a = 0.03,x = 0.02,\ = 0.01,b =
10,v = 5.

Figure 3.4 is a close look of figure 3.3, it is a result of the case when we consider a constant intake
of bacteriophages P in the organism. We see in the plot that due to the infections of attached bacteria
population S and free bacteria population S by free phages P, both populations don’t grow and increase,
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they show a decreasing behavior along the intestine which can be observed by their negative slope. Also
we can see that they decline before reaching their carrying capacity. As we have given a very small dose
of free phages P so the infections of bacteria and viruses (bacteriophages) are very few in the beginning
of the intestine, but once where the phages P start replicating their population grow very quickly and
the number of infections increases, this can be seen through their rapid growth after they reach x = 50
in the intestine. Also both bacteria populations start to decline as attached bacteria population S reaches
2 = 100 and free bacteria population S reaches x = 200 in the intestine, because of infections and
eventually in the middle of intestine at x = 250 all the bacteria are finished and only a certain amount of
free phage population P move down the intestine and leave the organism, this can be seen in figure 3.3.

Graph of Shar and S in presence of free phages P
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Figure 3.5: In this plot Py = 0.5 where U = 4,U = 10,k = £ = 0.01,a = 0.03, 2 = 0.02, A = 0.01,b =
10,v = 5.
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Figure 3.6: In this plot Py = 0.5 where U = 4,U = 10,k = & = 0.01, = 0.03, 2 = 0.02, A = 0.01,b =
10,v = 5.

Figure 3.6 is a close look of figure 3.5, in this we consider a constant intake P, of bacteriophages
P, which is larger than the previous one i.e. Py = 0.5, to the organism. We see a clear effect of high
dose of free phages P in the plot as both bacteria populations S and S die more quickly than in the



14

previous case, see figure 3.4, as we have given a large dose of phages P and the infections of bacteria
and viruses (bacteriophages) are large so the phages P starts replicating from the beginning of intestine
and their population grow very quickly and the infections keep on increasing, this can be seen through
their rapid growth from the start. We can see the influence of high phage population P on attached
bacteria population S, it is lesser than the previous case from the beginning of intestine. Also both
bacteria populations start declining as attached bacteria population S reaches x = 150 and free bacteria
population S reaches = = 200 in the intestine, because of infections and eventually in the middle of the
intestine at x = 350 all the bacteria are finished and only a certain amount of phage population P move

CHAPTER 3. MODEL ANALYSIS

down the intestine and leave the organism, this can be seen in figure 3.5.

Figure 3.7: In this plot Py = 0.9 where U = 4,U = 10,k = £ = 0.01,a = 0.03, 2 = 0.02,\ = 0.01,b =

10,v = 5.

Figure 3.8: In this plot Py = 0.9 where U = 4,U =

10,v = 5.
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Figure 3.8 is a close look of figure 3.7, in this we consider a constant intake P of bacteriophages
P, which is even larger than the previous one i.e. Py = 0.9, in the organism. We see a clear effect of
high dose of free phages P in the plot as both bacteria populations S and S are very less now than the
previous cases, see figure 3.8, as we have given a very high dose of phages P, the infections of bacteria
by viruses (bacteriophages) are very large so the phages P start replicating from the beginning of the
intestine and their population grow very quickly and the infections keep on increasing, this can be seen
through their rapid growth after P reaches x = 35. Also both bacteria populations start declining as
attached bacteria population S reaches x = 150 and free bacteria population S reaches = 250 because
of high infections and eventually near the end of intestine z = 350 all the bacteria are finished and only a
certain amount of phage population P move down the intestine and leave the organism, this can be seen
in figure 3.3.

Graph of Sbar and 5 in presence of free phages P
T
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Figure 3.9: In this plot Py > 1 where U = 4,U = 10,x = & = 0.01,a = 0.03, x = 0.02, A = 0.01,b = 10,v =
5.

In this figure 3.9 we see a result of even more larger dose than all the above cases, i.e. Py > 1, this
is very high such that it has treated or infected the bacteria very quickly so all the bacteria are finished or
killed and we cannot see any bacteria in the intestine, also the phage population is constant, it’s because
there are no bacteria in the intestine so they cannot infect them and thus cannot replicate and grow.

From the above analysis we can conclude that a small dose of P can work the same as the large doses
of phages P, however less efficiently, but it is enough to kill the bacteria.
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Chapter 4

Constant Stationary Solutions of the
Model

4.1 In the absence of free phages P

We now consider our system of ODE’s (3.8) and (3.9), and study it analytically to look for the equilibrium
points of it first in the case when there are no phages i.e. P = 0. This assumption satisfies equation

(3.9) thus by putting dflgf) = 01in (3.8), we are left with the following algebraic expression:
_ S _
F(S,O)ZZF(S)Z<a<1—U>>S—/\S+uG(S):O, (4.1)
where
~(n =)+ (o) 1928
G (S,0) =G (S) = 5
U

We begin with our initial guess S = 0 and see if it is an equilibrium of (4.1), which could mean that
all the bacteria finish or the organism is recovered at equilibrium from bacterial infection without the
treatment of bacteriophages P . Thus by putting S = 0 in (4.1), we get the following:

F(O)_U_(M_O;)oj_|u_a|a

U

which implies that
0 ifu>a

plo—w g - 4.2)

The above function shows that S = 0 is an equilibrium point of our system (3.8) and (3.9) for P = 0
only when p > «. This result shows that when there are no phages P the bacterial infection S can only
finish by itself or the organism can become safe from it only when the detachment rate y of S is greater
or equal to its growth rate c, this allow the attach bacteria population S to detach quickly and add into
free bacteria population .S and leave the organism rather than to produce quickly and infect the organism.
Whereas in the other case when ;1 < «, the attached bacteria population S grow more than to detached
from the wall therefore the organism remains infected therefore S = 0 is not an equilibrium point of our
system (3.8) and (3.9) in this case.

We now further investigate (4.1) and look for its nonzero equilibrium points first in the case when
1 < a. For this purpose we use Maple to get our required result which can be seen as follows, where
S=z,a=a =L p=mU=v,U=uw

17
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> a = 0.03;

>m = 0.02;

> L = 0.01;

> u 4;

> v = 10;

> C := 2x(a*x"2/u-(a-L) *x) *a/v;
0.00004500000000 x - 0.0001200000000 x
> 7 := mxsqrt ((m—a) "2+4d*xaxL*x/v);

0.02 (0.0001 + 0.0001200000000 x)

> Y := m% (m—-a);
-0.0002

> Final := C+Y-7Z;
0.00004500000000 x - 0.0001200000000 x = 0.0002
- 0.02 (0.0001 + 0.0001200000000 x)

> solve (Final, Xx);
5.648090637

Which implies that (4.1) has a unique positive equilibrium point when ¢ < a which is (S, P) =
(5.648090637,0). We will now verify our result through Matlab by plotting the following graphs.

Graph of Shar and 3 in absence of free phages P
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Figure 4.1: In this plot 1 < a where Py = 0,U = 10,U = 4,a = 0.03, x = 0.02, A = 0.01,v = 5. We can see
the stationary solution (S, P) = (5.648090637, 0) in the phase portrait.

Now considering the other case when i > «, finding the solution through Maple as follows:

>a = 0.02;
>m = 0.03;
> L = 0.01;
> u = 4;
> v = 10;
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> solve (Final, Xx);
0., 5.593076209

Thus in this case when 1 > « we have two equilibrium points i.e. (S, P) = (0, 0), which verifies the
previous results for this case, and (5, P) = (5.593076209, 0), We can see only the zero solution through
Matlab in this case in the following figure 4.2 as it can only show one solution at a time, which is the
first one.

Graph of Shar and 3 in absence of free phages P
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Figure 4.2: In this plot > o where Py = 0,U = 4,U = 10, = 0.02, u = 0.03, A = 0.01,v = 5.

Now we consider the case when 1 = «, and find the solutions through Matlab as follows:

> a = 0.02;

>m = 0.02;

> L = 0.01;

> u = 4;

> v = 10;

> solve(Final, x);

0., 5.734920049

In this case when 1 = a we also get two equilibrium points i.e. (S, P) = (0,0), which verifies the
previous results for this case, and (S, P) = (5.734920049, 0), we can only see the zero solution through
Matlab as the above figure 4.2 in this case.

We can conclude from the above results that in the case when there are no phages P = 0, we
have different equilibrium points for different cases which depend on the parameters of our system (3.8)
and (3.9). They are, (S1, P) = (0,0), (S2, P) = (5.734920049, 0), (S3, P) = (5.593076209,0) and
(S4, P) = (5.648090637,0), where Sa, S3, Sy refer to a single equilibrium point of the system when
there are no phages and they are different because we get them by considering three different possibilities
of parameters. We have observed that these equilibrium points are constant stationary solutions of our
model of equations (3.1) - (3.3).
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4.2 In the presence of free phages P

Now we will look for the equilibrium points of our system of ODE’s (3.8) and (3.9) in presence of free
phages P i.e. P > 0. From the previous case we know (.S, P) = (0,0) is an equilibrium of our system
when i > «. We will now first look for the equilibrium of the type (S, P) = (0, P) for any constant
P > 0, this type of equilibrium tells us that how much phage population P is enough or required to kill
all the bacteria populations S and S within the organism. Hence for finding them we put S = 0 in (3.8)
and (3.9) and get the following:

F(0,P) =: F(P) = uG (P), (4.3)
H(0,P)=:H(P)=(b—1)G(P)&P, (4.4)
where
_ ~(RP+p—a)+\/(RP + p— a)®
G (0,P) = G (P) = o ,
U
that is
F(P) :M(a—u—/ﬁP)2—5|/<;P—|—u—a|’
U
and

B(P) = (b-1) ((a—u—ﬁpgz\ﬂp+u—a>m

U

which implies that

0 if u>a
_ . a— [
F(P)= _0_7P ifu<a NP> - 7 4.5)
'u(a ,ug RP) ifu<oz/\P<OéE’u
U
and
if P=0
0 if p>a
i (P) = 0 ifu<a/\P2agM : (4.6)
(b—l)(W)nP ifu<aAP<Ol
L U
therefore
_ _ 0 ifu=>a
F(P)=H(P) = — . 4.7
(P) (P) 0 ifp<anps Tt 4.7
K

The above function in (4.7) show us that equations (4.3) and (4.4) are both always satisfied for any point
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(S,P) = (0, P) when 1 > «, this implies that if the growth rate « is less than the detachment rate y
then the production of attached bacteria S is less than their detachment rate from the wall, therefore their
large population detach from the wall and add in to free bacteria population .S and eventually move down
the intestine or wash out. We can say that they all vanish from the intestine of the organism. We have
observed the same behavior also when they are both equal i.e 1 = a. We see that the phage population
P is not increased and they show a constant behavior, it’s because when p+ > « all the bacteria vanish
and the phages don’t get the chance to infect them or the infections are so small and they don’t have
any influence on their population growth, so they don’t replicate and don’t grow, this agrees with the
previous result in this section. On the other hand when p < « the growth rate of S is larger than the
detachment rate which implies that more attached bacteria S are produced than detached and less become
free S and move down the intestine, also because of large number of infections in this case, as bacteria
population do not vanish and phages P replicate very quickly, the phage population P increases very
much. Therefore (4.7) tells us that in this case all the bacteria will finish eventually when the phage

@l The equations (4.3) and (4.4) are both satisfied for

K
these points (S, P) = (0, Ps) = (0, L;'u) and (S, P) = (0, ;) for any P; such that P; > P, always,
therefore these points are the required equilibrium points of our system (3.8) and (3.9) in this case. We
observe that they are the constant stationary solutions of our model of equations (3.1) - (3.3). Now we
look at the following plots from Matlab to verify the above results.

population will increase and reach P >

Graph of Sbar and 3 in presence of free phages P
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Figure 4.3: In this plot 1 > «, where Py = 0.1,U = 4,U = 10,k = & = 0.01,a = 0.02,x = 0.03,\ =
0.01,b = 10, v = 5. This shows us that when p > « all the bacteria population vanish, as they leave
the organism, therefore phage population P remain constant because they cannot infect the bacteria
and cannot replicate and grow.
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Graph of Shar and S in presence of free phages
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Figure 4.4: In this plot u < «, where Py = 0.1,U = 4,U = 10,k = & = 0.01,a = 0.03, 1 = 0.02,\ =
0.01,b = 10,v = 5. Here we can see that both bacteria populations S and S don’t grow and start
decreasing as phage population increases and it kills all the bacteria, this can be seen as attached
bacteria population S and free bacteria population S are both zero in the end of the intestine. The
phage population become constant when all the bacteria die as no infections can happen any more and
the phages P cannot replicate and their population don’t grow thus tend towards its constant stationary
points P > a—gﬂ, which is the constant stationary solution of model (3.1) - (3.3). It can be seen in
the phase portrait above.

The equations (4.3) and (4.4) are further solved with Maple by using fsolve function which solves
non linear simultaneous equations. We want to find out the equilibrium points when .S #
0 i.e. the phages P reach their stationary state before killing all the bacteria. We find out that the above
given are the only stationary solutions of our model when P # 0. Which is understood as the phages P
cannot stop growing and become constant if the infections are happening and the replication process is
continued. In figure 4.5 we can see the phase portrait showing different solutions tending towards the
constant stationary states of our model for different values of P.
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Chapter 5

Stability Analysis of the Constant
Stationary Solutions

In this section we will discuss the stability of the equilibrium points of system (3.8) and (3.9) found in
the previous section, they are observed to be the constant stationary solutions of our model of equations
(3.1) - (3.3). We will analyze them to see their behavior with respect to the = variable. To claim our
results we need to know some preliminary definitions and results from chapters 2 and 3 of [4].

5.1 Preliminary definitions

Definition 5.1 A linear system & = Ax is said to be simple if the matrix A is non-singular, (i.e. det
A # 0 and A has non-zero eigenvalues). The only solution to Ax = 0 is then x = 0 and the system has
a single isolated fixed point at the origin of the phase portrait.

Definition 5.2 A linear system & = Ax is non-simple if A is singular (i.e. det A = 0 and at least one of
the eigenvalues of A is zero). It follows that there are non-trivial solutions to Ax = 0 and the system has
fixed points other than x = 0. For linear systems in the plane, there are only two possibilities: either the
rank of A is one; or A is null. In the first case there is a line of fixed points passing through the origin,
in the second, every point in the plane is a fixed point.

Definition 5.3 A fixed point at the origin of a non-linear system 3y = Y (y), y € S C R2, is said to be
simple if its linearized system is simple. This definition can be used even when the fixed points of interest
is not at the origin by introducing local coordinates discussed below.

Definition 5.4 A fixed point of a non-linear system is said to be non-simple if the corresponding lin-
earized system is non-simple. Such linear systems contain a straight line, or possibly a whole plane of
fixed points.

23
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5.2 Linearization at a fixed point
Suppose the system ¢ = Y (y) can be written in the form

Y1 =a¥1+bY2+91 (Y1,Y2), v2 = c¥1+d¥Y2+92 (¥1,Y2), (5.1)
1
where {91(1/741,1/2)} —Qasr = (912 +y22) 2 — 0. The linear system

Y1 =a¥1+bYs, Yo =cY;+d¥ys (5.2)

is said to be the linearization(or linearized system) of (5.1) at the origin. The components of the linear
vector field in (5.2) are said to form the linear part of Y.

We can also obtain the linearizations by utilizing Taylor expansions. If the functions X; (z1,22) (i = 1,2)
are continuously differentiable in some neighborhood of the point (£, 1) then for each ¢

0Xi 0 Xi
Xi (71,72) = X (§,n) + (21 =§) (&n) + (x2—n) (€,n) + Ri(z1,22) . (5.3)
8x1 8x2
The remainder functions R; (1, 2) satisfy
Lim,—o [w} — 0, (5.4)

1
where r = {(x — £)2+ (y — 17)2}2. If (&,7n) is a fixed point of & = X (z), then X; (&,n) =
0 (i = 1,2) and on introducing local coordinates y;,y2, where y; = z1 — &, y2 = xo — 1 are the
Cartesian coordinates for the phase plane with their origin at (z1, z2) = (£, ), we obtain

. 0X1 0X1

=Y I (&.n) + Y2 o (&,m) + R1 (V1 +€,Y2+1), (5.5)

i 0X 00X

Yo = Y1 o (€,1) + Y2 =2 (€,1) + Ra (Y1 +€,Y2 +1). (5.6)
8x1 axg

Equation (5.4) ensures that (5.5) and (5.6) are in the form (5.1) with 91 (Y1, %2) = R1 (Y1 +&, Y2 +n) (i = 1,2)
and the linearization at (£, ) is given by

__8X1 6X1 8)@ aXb

= b= , c= , d= , 5.7
@ 8$1’ 0x9 ¢ 0x1 O 6D
all evaluated at (£, 7). Thus in matrix form the linearization is y = Ay, where
A= [ ¢ Z } (5.8)
“ @)=

Theorem 5.1 This theorem relates the phase portrait of a non-linear system in the neighborhood of a
fixed point to that of its linearization.

Let the non-linear system y = Y (y) have a simple fixed point at y = 0. Then in neighborhood of
the origin the phase portraits of the system and its linearization are qualitatively equivalent provided the
linearized system is not a center(i.e. when the phase portrait consists of continuum of concentric circles).

We will use this definition when the fixed point of interest is not at the origin. We can do this by
introducing local coordinates as discussed earlier.
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5.3 Eigenvalues and Stability

Consider a linear system @ = Ax, where A is the coefficient matrix. The eigenvalues of matrix A are the
values of \ for which
pa(N) = A2 —tr(A)X + det(A) = 0. (5.9)

Here tr(A) is the trace of A and det(A) is its determinant. Thus the eigenvalues of A are

A1 = % (tr (A) + \/K> and N2 = % (tr (A) — \/E> (5.10)
with
A = (tr (A))? —4det (A). (5.11)

It determines the nature of the eigenvalues which are real distinct if (A > 0), real equal if (A = 0)
and complex if (A < 0). We can also know about the szability at fixed point (£, 7) as follows:

(1) : For A > 0 we get real distinct eigenvalues and , if we have

a: (tr(A) < 0,det(A) > 0) then both eigenvalues are negative (A1 < 0,y < 0) and (§,7) is a
stable node.

b: (tr(A) > 0,det(A) > 0) then both eigenvalues are positive (A\; > 0, A2 > 0) and (£, 7) is an
unstable node.

c: (det(A) < 0) then both eigenvalues are equal with opposite signs (A > 0, A\ < 0) and (§,7) is a
saddle point.

(2) For A = 0 we get repeated real eigenvalues (A = A2 = Ao # 0). Thus we get degenerate or
improper node (£, n) which is stable when \g < 0 and it is unstable when A > 0.

(3) For A < 0 we get complex eigenvalues. Let \; = a + i3 and Ay = o — i3 be these eigenvalues,
then we have

a: (tr(A) = 0, = 0) then we get pure imaginary roots and the fixed point is called a centre i.e. the
phase portrait consists of continuum of concentric circles.

b: (tr(A) = 0,a # 0) then the fixed point is said to be a focus or we get spiral point, which is
stable if « < 0 and unstable if alpha > 0 i.e. the phase portrait consists of an artracting(ow < 0) or
repelling(« > 0)spiral. The parameter 3 > 0 determines the angular speed of description of the spiral.
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5.4 Stability analysis of the constant stationary solutions of the model

In order to find out the stability of equilibrium points found in previous section, we begin by linearizing
our system, which is a non-linear system of equations (3.8) and (3.9), where

F(S,P)= <a <1—5> —/<;P>S—)\S—|—MG(S,P), (5.12)

H(S,P)=(b—1) (kS + &G (S, P))P, (5.13)

and

G (S, P) = = vl (5.14)

=P+ () [P+ (0 ) 4935

We apply the results from (5.7) and (5.8) and find the matrix A by derivating the above functions
F (S,P), H (S, P) and evaluating A at constant stationary solutions(fixed points) of our model (3.1) -
(3.3), as follows:

a:a—F:(a—/\—FcP)—2aS+ pA ;
(RP+p—a)” +——=
U
b:gi —ms+”2“U (“P+“*:) —1,
(0% \/(EP+M—OZ) _}_46%\5
c—gl;[—(b 1) " +r| P,
\/(/%P +u—a)? +40AS
U
_OH kP

d (b—1) kS + | (RP+p—a)

=== -1 —l—\/(RP—i—,u—a)2+

where a, b, ¢, d are the entries of matrix A as in (5.8). Now we evaluate A at equilibrium points of the
system (3.8) - (3.9) and find out the eigenvalues of A and check the stability of our constant stationary
solutions of our model of equations (3.1) - (3.3) with respect to x variable. Below are the equilibrium
points of the system (3.8) - (3.9) found in previous section.

1:(S,P)=(0,0) when (> «).

A A
2 :(S,P) = (5,0), where S = 5.734920049 when (¢ = «), 5.593076209 when (1 > «),
5.648090637 when (1 < ).

3:(S,P)=(0,P,) = (0, =) when ;1 < av.

K

4:(S,P)=(0,P;), where P; > Ps, when i < «.

4a S _

kP
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We now find the linearization matrix A and its eigenvalues with the help of Matlab on above points
and make a stability analysis on them to observe their behavior with respect to = variable as follows:

e Ajat(S,P)=(0,0)

0.0400 —0.0667

A= 0 0.0003

(5.15)

The eigenvalues of Ay are Ay = 0.0400 and A2 = 0.0003, which are both real and positive which
implies that (S, P) = (0,0) or the origin is an unstable node for ;1 < «. For ;1 > « the eigenvalues are
A1 = 0.0400 and Ao = 0, which also shows that the origin is an unstable node. However for ;1 = o we
cannot linearize the system because the matrix A is undefined for this case.

e Ayat (S, P) = (5.734920049,0)

~0.0380 —0.1073
Ag = 0 0.5163 (5.16)

The eigenvalues of As are A\; = —0.0380 and Ay = 0.5163, which are both real with opposite signs
which implies that (S, P) = (5.734920049, 0) is a saddle point for i = «. However for the other two
cases 1 > « and for u < «, we get the same result i.e. a saddle point.

e Azat (9, P) = (5593076209, 0)

—0.0331 —0.0591

As = 0 0.5035

(5.17)

The eigenvalues of A3 are A\; = —0.0331 and A2 = 0.5035, which are both real with opposite signs
which implies that (S, P) = (5.593076209, 0) is a saddle point for ;z > «. However for the other two
cases i < o and for y = o, we get the same result i.e. a saddle point.

e Ajat(S,P) = (5.648090637,0)

—0.0575 —0.1210

Ag = 0 0.5088

(5.18)

The eigenvalues of A4 are A\; = —0.0575 and Ay = 0.5088, which are both real with opposite signs
which implies that (.S, P) = (5.648090637,0) is a saddle point for ;x < . However for the other two
cases 1 > « and for u = «, we get the same result i.e. a saddle point.

o Asat (S, P)=(0,P,) = (0, L)

K

For this point matrix A become undefined as the derivatives do not exist at this point. Hence we
cannot linearize the system at this point.
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° AG at (S, P) = (O;Pz), where -F)’L Z Ps

For this we first consider P; = 2, whereas P; = 1 we get,

(5.19)

Ay — { 0.0200 0 ]

0.3600 0

The eigenvalues of Ag are Ay = —0.0000 and A2 = 0.0200, which shows that this equilibrium point
is non simple as matrix Ag is singular. Hence we cannot linearize the system at this point.

e Now we check for P, = 4

thus we have;

(5.20)

A — [ —0.0133 0 ]

0.4800 O

The eigenvalues of A7 are \; = 0 and Ay = —0.0133, which again show that this equilibrium point
is also non simple as matrix A7 is singular hence linearization of the system is not possible.

e Now we check for some larger value i.e. P; = 10

we get,
—0.0778 0

As =1 10000 —0.0000

(5.21)
The eigenvalues of Ag are A\; = —0.0000 and A2 = —0.0778, thus this is also a non simple equilib-
rium point.
Thus we can say that the system posses a continuum of equilibrium since all the points including

(S,P) = (0,% = ) and when P is greater than this are non simple. Thus our model (3.1) - (3.3) also

contain a continuum of constant stationary points i.e. (S, Py) = (0, ¢ = £y and (S, P) = (0, P;), where
P; > P; which are all non simple.




Chapter 6

Model Parameter Analysis

In this chapter we will study the parameters used in our model and will analyze how they can affect the
model i.e. how sensitive is the dynamics of infections to them.

6.1 Parameter description

The description of the parameters used in the model can be seen in the following table:

Notation Meaning Units
« Bacterial growth rate T min=!
K Adsorption constant for .S and P min~tml.indiv—1
K Adsorption constant for S and P min~'ml.indiv—!
A Wall detachment rate min 1
W Wall attachment rate min !
U Carrying Capacity for S indiv
U Carrying capacity for S indiv
v Velocity of S and P in 1 spacial dimension x cm.min !
b Burst Size of viruses P -

Table 6.1: Parameter and their description

29
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6.2 Analysis w.r.t 1 and o

Following is the table for different values of 1 and . One can find their analysis in chapter 4 for the
following values.

Parameter‘u<oz‘u:a‘u>a‘

a 0.03 | 0.01 0.02
K 0.01 | 0.01 0.01
R 0.01 0.01 0.01
A 0.01 | 0.01 0.01
1 0.02 | 0.01 0.03
U 10 10 10
U 10 10 10
v 5 5 5
b 10 10 10

Table 6.2: Different values of ; and «.
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6.3 Analysis w.I.t x and K

We will now analyze our model for different values of x and % and will see how it behaves. Following

’ Parameter \ K<<k \ Large k = k | Small Kk = k& | Very Small kK = K K>>K

o 0.03 0.03 0.03 0.03 0.03

A 0.01 0.01 0.01 0.01 0.01

7 0.02 0.02 0.02 0.02 0.02

K 0.000000097 0.1 0.00097 0.000097 0.01

R 0.01 0.1 0.00097 0.000097 0.000000097
U 10 10 10 10 10

U 10 10 10 10 10

v 5 5 5 5 5

b 10 10 10 10 10

Table 6.3: Different values of x and k.

graphs shows how the model behaves for different values of x and < given in above table 6.3 with u < «
and Fy = 0.1.

Graph of Sbar and 3 in presence of free phages P
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Figure 6.1: For k << & population of viruses P increasing, free bacteria S increasing and attached bacteria S
dying.

As x and K are the transmission or absorption coefficients, in figure 6.1 we can see that for very
small x there are very less infections of viruses P and free bacteria S therefore they succeed to grow
and increase and are not finished whereas the attached bacteria S are dying gradually because of large &
i.e. because of large number of infections of viruses P and attached bacteria S, thus the population of
viruses P also increases due to their large production during infections.
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Graph of Sbar and 3 in presence of free phages P
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Figure 6.2: For large x = & bacteria S and S die and finished, and population of viruses P remain constant.

Figure 6.2 shows that due to large « and & the number of infections of viruses P with attached and
free bacteria (5, S) is very large, therefore all the bacteria are dead and finished. As there are no more
bacteria so no more infections can happen and the population of viruses (phages) P remains constant
because of their constant influx.
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Figure 6.3: For small x = & population of viruses P increasing whereas bacteria S and S decreasing gradually .

This Figure 6.3 shows the case when both x and & are equal but are comparatively smaller than the
above values of x and k i.e. number of infections is smaller than the above case. This can be clearly
seen in this figure 6.3 as less infections allow the attached and free bacteria to grow to some extent but
then because of replication process the population of viruses grow very well and both bacteria population
begin to decline along the intestine.
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Graph of Sbar and 3 in presence of free phages P
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Figure 6.4: For smaller = & population of bacteria S and S increasing whereas population of viruses P growing
very slowly.

This figure 6.4 shows a very interesting case of very small x and % this means that the number of
infections is very small. The above figure 6.4 clearly shows that in this situation both bacteria population
(S, S) keep growing and then become stationary however due to very less infections the virus population
P grow very slowly as the replication rate is very very small.
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Figure 6.5: For k >> & population of viruses P increasing, bacteria S dying and S remaining.

The above figure 6.5 shows the case when x >> k i.e. The number of infections of viruses P and
free bacteria S is very large however the number of infections of viruses P and attached bacteria S is
very very small. This can be clearly seen in the figure 6.5 as attached bacteria population S increase in
the beginning of intestine but due to small number of infections it do not die completely but decreases
a little . We can also see that the population of S is first increased and then decreased to zero, this is
because the attached bacteria S population is not dying completely and they keep on detaching from the
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wall and keep on adding in free bacteria population hence increasing their number but as the number of
infection of viruses P and free bacteria S is very large therefore S will die completely as they reach the
end of intestine.
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6.4 Analysis w.r.t burst size b

We will show here what happens when the burst size b is very small or very large; where Py = 0.1, the
values of b can be seen in the following table and below are the figures accordingly:

Parameter | Very small b | Small b | Normal b | Large b | Very large b

a 0.03 0.03 0.03 0.03 0.03
A 0.01 0.01 0.01 0.01 0.01
m 0.02 0.02 0.02 0.02 0.02
K 0.01 0.01 0.01 0.01 0.01
R 0.01 0.01 0.01 0.01 0.01
U 8 8 8 8 8
U 10 10 10 10 10
v 5 5 5 5 5
b 1 3 20 50 100

Table 6.4: Different values of b.
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Figure 6.6: For b = 1 the population of phages P do not grow and remain constant which show that replication
of P is very very small, so their population don’t effect the bacteria populations .S and S even if any
infections happen, so both bacteria populations grow and tend towards their constant stationary states.
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Graph of Sbar and 5 in presence of free phages P
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Figure 6.7: For b = 3 we see that the population of phages P start growing slowly and we can also see how it
starts infecting the bacteria population S and S as both bacteria population begin to decline as they
move along the intestine. But as the burst size is small phages P will not succeed to kill all the bacteria

populations.
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Figure 6.8: For b = 20 the population of phages P replicate and grow and infect both bacteria population S and S
and kill all the bacteria successfully at x = 200 in the intestine.
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Graph of Sbar and 3 in presence of free phages P
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Figure 6.9: This figure is a maximize view of figure 6.8 for b = 20.
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Figure 6.10: For b = 50 we see that because of large production of phages P through high replication rate b the
infection rate is high too, therefore both bacteria populations S and S could not succeed to sustain
their growth and die very soon in the intestine at z = 100.
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Graph of Sbar and 5 in presence of free phages P
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Figure 6.11: This figure is a maximize view of figure 6.10 for b = 50.
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Figure 6.12: For b = 100 we can see that because of very large production of phages P as replication rate b is
very high, the infection rate is very high too, therefore both bacteria populations S and .S could not
succeed to sustain their growth and die very soon in the intestine at x = 35.
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Graph of Sbar and 3 in presence of free phages P
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Figure 6.13: This figure is a maximize view of figure 6.12 for b = 100.

From the above we can conclude that the higher is the burst size the sooner bacteria die.
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6.5 Analysis w.r.t velocity v

We will now investigate our model by changing the velocity(with which the food is passing through the
intestine of the organism), as free phages P and free bacteria S pass through the intestine with food so
they are moving with same velocity, so we will see how the phages P infect and kill the bacteria by
moving with different velocities in the intestine. Below can be seen the different values of v in the table,
and the figures for these values.

Parameter | Very small v | Small v | Normal v | Large v | Very large v

« 0.03 0.03 0.03 0.03 0.03
A 0.01 0.01 0.01 0.01 0.01
W 0.01 0.01 0.01 0.01 0.01
K 0.01 0.01 0.01 0.01 0.01
I 0.01 0.01 0.01 0.01 0.01
U 8 8 8 8 8
U 10 10 10 10 10
v 1 3 6 10 15
b 10 10 10 10 10
Table 6.5: Different values of v.
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Figure 6.14: In this plot v = 1, it shows that when P and S are moving with very slow speed then the chances of
infections of P with .S and S are high, as can be seen in this figure, because of high infections all the
bacteria are killed at « = 60.
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Graph of Sbar and 3 in presence of free phages P
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Figure 6.15: In this plot ¥ = 3, it shows that when P and S are moving with slow speed then the chances of
infections of P with S and S are high but less than before, as can be seen in this figure, because of
high infections here all the bacteria are killed at x = 160. This is different from 6.14, because now
P and S are moving a bit fast than before.
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Figure 6.16: In this plot v = 6, it shows that now P and S are moving with high speed than before so the chances
of infections of P with S and S are less than before, as can be seen in this figure, because of less
infections the bacteria population succeed to grow but after phage population increased they all are
killed at x = 320, which is almost the end of intestine.
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Graph of Sbar and 5 in presence of free phages P
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Figure 6.17: In this plot v = 10, it shows that now P and S are moving with higher speed than before so the
chances of infections of P with S and S are now very less than before, as can be seen in this figure,
because of less infections both bacteria population succeed to sustain but after phage population
increased only S are all killed at the end of the intestine x = 400, and S bacteria population are not
all killed so the left bacteria .S move down the intestine with free phages P and leave the organism.
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Figure 6.18: In this plot v = 15, it shows that now P and S are moving with very high speed through the intestine
and now the chances of infections of P with S and S are very very very less, as can be seen in this
figure, because of few infections both bacteria population succeed to sustain and none of them is
killed completely so the organism will stay infected with S and S and they move down the intestine
along with P and leave the organism.

From the above analysis we conclude that small v can cause high infections of bacteria and phages
whereas large v can prevent them from infections with phages.



Chapter 7

Conclusions

Intestinal infections in chickens are not dangerous for chickens but they are a big threat to the well being
of other animals as well as they have the potential to cause damage to human health through their food.
Thus these infections and their treatment is very important to study and understand.

This work was aimed to study the dynamics of these infections and their treatment within a single
host. We study that how these infections can be treated by bacteriophages. We present a mathemati-
cal model which describes the interaction of bacteria, infecting the organism within the intestine, and
bacteriophages within the intestine of a single chicken. In our model we consider two types of bacteria
infecting the the organism and two type of phages for the treatment of these infections. Ones attached
to the wall of the intestine and the others are the free ones in the intestine which can move down the
intestine in one spacial dimension x. We consider two different cases. Firstly when the organism is not
treated with phages and secondly when the organism is given a dose of phages to see how the treatment
works. We derive the conditions in which the organism can stay infected and in which the infections
can finish them self and in the presence of phages. We also discuss the stability of the infections and
the phages which remain inside the organism in different cases and conditions. We also observe the
sensitivity of the dynamics on different parameters like adsorption constants s and k, burst size b and the
velocity v. We come up with the following conclusions:

e The detachment rate y and the attachment rate A have a strong influence on the dynamics of
bacterial infection in intestine. We observed that if p > A it is more likely that the organism
become infection free without any treatment of bacteriophages P.

e Similar is the case with the growth rate . When the detachment rate p is larger than the growth
rate of attached bacteria S then the organism become infection free without any treatment of bac-
teriophages P.

e When the infection is treated with different amount of dose of bacteriophages it is observed that
a small dose of bacteriophages is sufficient to kill all the bacteria in the intestine and to make the
organism infection free.

e We observe that the bacterial infection show a constant stationary behavior in the intestine. We
investigate that in the absence of phages P, the infection finish completely only when p > «
otherwise they tend towards a constant stationary state which shows that the organism remain in-
fected with attached bacteria population .S as well as a constant amount of free bacteria population
S leaves the organism which can later infect the other living beings and create an illness in them.
The stability analysis with respect to « variable shows that none of these constant stationary states
are stable.

e When we treat the organism with bacteriophages we observe that they also posses a constant
stationary behavior in the intestine. They keep on increasing until they finish all the bacteria in the
intestine and then they become constant and do not grow. This behavior validates the fact that the
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phages cannot grow or replicate in the absence of their specific bacteria. It is also observed that
if we provide the organism with the dose of bacteriophages which is comparable to their recorded
constant stationary state then the bacteria finishes completely immediately. We study that our
model posses a continuum of such constant stationary points.

The adsorption constants « and & have a great influence on the dynamics of interaction of bacterio-
phages and bacteria infecting the intestine. We observe that when the adsorption rate is very high
i.e. both of these constants are large then the bacteria finishes completely immediately. However
when they are small the interaction of bacteria and phages is also less, so the organism remains
infected.

The burst size b which is also the reproduction rate of phages is also of vital importance. It is
observed that when the burst size is small the phages fail to kill all the bacteria.

The velocity v through which free phages P and free bacteria S move down in the intestine with
food also needs attention. We observe that when the food pases through the intestine slowly then
the interaction of bacteria and phages is higher so the infection reduction rate is higher. However
if it passes quickly the chances of their interaction become very less.



Chapter 8

Matlab Codes

8.1 Eigenvalues

global alpha lamda mu kbar Ubar U k b v
alpha = 0.03;
lamda = 0.01;

Ubar=10;

mu = 0.02;

k = 0.01;

kbar = 0.01;

5=0;

P = 200;

U= 4;

v = 5;

b = 10;

Al=[ ((alpha-lamda-k*P) - (2+xalpha*S/U) + (muxlamda/sqgrt ( (kbar+*P+mu—-alpha) "2
+ (4*xalphaxlamdaxS/Ubar)))) (-k*S+ (kbar*xmuxUbar/ (2+alpha)) *

( (kbar+*P+mu—-alpha)/ (sqrt ( (kbar«*P+mu—alpha) "2

(
+ (4xalphaxlamda*S/Ubar))-1))); ((b-1) x (k+kbar*lamda/sqgrt ( (kbar*P+mu-alpha) "2
+ (4*alphaxlamdaxS/Ubar))) *P) ((b—1) % (k+xS+ ( (kbar+Ubar/2+alpha) *x (~kbar+P+ (kbar*P+
*x ( (kbar+P/sqrt ( (kbar«P+mu—alpha) *2
+ (4+xalphaxlamda*xS/Ubar)))—-1) +sqgrt ( (kbar+«P+mu-alpha) "2+ (4xalpha*lamda*S/Ubar)))
Al
El=eig (Al);
El

8.2 Solutions of Model

data.file
global alpha lamda mu kbar Ubar U k b v X
X=500;

alpha = 0.03;
lamda = 0.01;

Ubar=10;
mu = 0.02;
k = 0.01;
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kbar = 0.01;
%$P0= (alpha—-mu) /kbar;
PO = 0.1;

S0=[0,PO0];

U= 4;

v = 5;

b =10
prog.file

function [y]l=prog(x,S)

CHAPTER 8. MATLAB CODES

global alpha mu Sbar Ubar kbar k b v lamda U

Sbar = (- (kbar*S(2)+ mu-alpha)+ sqgrt ((kbarxS(2)+ mu-alpha) .”2
+ 4% (alpha/Ubar)+lamda.*S(1)))/ (2% (alpha/Ubar)) ;
y = zeros(2,1);
y(1l) = (1/v)+*(alphax (1-S(1)/U).*S(1)-k*S(2).+S(1l)-lamdaxS (1)+ muxSbar);
y(2) = (1/v)*(b-1)* (kxS (1l)+kbar*Sbar) .*S(2);
solve.file
[x,S] = oded5('prog’,[0,X],S50);
Sbar = (- (kbarxS(:,2)+ mu-alpha)+ sqgrt ((kbarxS(:,2)+ mu-alpha) .”"2

+ 4% (alpha/Ubar) «xlamdaxS(:,1)))/ (2% (alpha/Ubar)) ;
subplot (2,1,1) % breaks the figure into a 2-by-1 matrix;

plot (x, Sbar, "b—-");
hold on

% selects top half
plot(x, S(:,1),’'r");

hold on

plot(x, S(:,2), "k:");

$hold on
Splot (x,S(:,3),’'b")
hold off

o\°

legend (' Sbar(x)’,’S(x)’",'"P(x)");

$title (' Graph of Sbar,

S and P for different velocities v’),

title(’ Graph of Sbar and S in presence of free phages P’),

%$title (' Graph of Sbar’)

subplot (2,1,2) % selects bottom half

plot(S(:,1), S(:,2))

% plots second versus first component of u

title ('Phase portrait of S and P’), xlabel(’'S’), ylabel('P’);

8.3 Numerical solutions of model

prog.file

function [y] = progl(S)

global alpha mu Ubar kbar k b lamda U

%$Sbar = (- (kbarxS(2)+ mu-alpha)+ sqgrt ((kbar*S(2)+ mu-alpha).

+ 4% (alpha/Ubar)+lamda.*S(1)))/ (2% (alpha/Ubar));

xlabel ("x");
xlabel ("x")

14
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y = [(alpha* (1-S(1)/U).*S(1)-k*S(2).+xS(1l)-lamda*S(1)+ mu= ( (- (kbar*S(2)+ mu-alp
+ sqgrt ((kbarxS(2)+ mu-alpha) .”2 + 4% (alpha/Ubar)*lamda.*S(1)))/ (2% (alpha/Ubar)
(b=1) x (kxS (1) +tkbar* ( (- (kbarxS(2) + mu-alpha)+ sqgrt ((kbarxS(2)+ mu-alpha) .”2
+ 4% (alpha/Ubar)+xlamda.*S(1)))/ (2% (alpha/Ubar)))) .xS(2)1;

solve.file
S0 = [0,1]; % Initial guess
Options = optimset ('Display’,’iter’);

[S,fval] = fsolve(@progl, S0, Options);
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