
 
 
 

 
 

 
 
 
 
 
 
 

1202 - MODELADO Y SIMULACIÓN DE SISTEMAS BIOLÓGICOS 

 
 
 
 
 
 
 
 
 
 

 
Memòria del Projecte Fi de Carrera 
d'Enginyeria en Informàtica 
realitzat per 
Antonio Cruz Vázquez 
i dirigit per 
Diego Javier Mostaccio Mancini 
Bellaterra, 22 de juny de 2009 

 
 

 



 

 

  
Escola Tècnica Superior d’Enginyeria 

 

 

 

 

El sotasignat, Diego Javier Mostaccio Mancini 

Professor/a de l'Escola Tècnica Superior d'Enginyeria de la UAB, 

 

CERTIFICA: 

  

Que el treball a què correspon aquesta memòria ha estat realitzat sota la seva 
direcció per en Antonio Cruz Vázquez 

 

I per tal que consti firma la present. 

 

 

 

Signat: Diego Javier Mostaccio Mancini 

Bellaterra, 22 de juny de 2009 

   

 1



 

1. Introducción........................................................................................................ 4 

1.1 Motivación................................................................................................................. 4 

1.1.1 Características de los sistemas biológicos orientados al individuo .................. 4 

1.1.2 Simulador del comportamiento de un banco de peces (fish schools)............... 5 

1.2 Objetivos ................................................................................................................... 8 

1.3 Organización de la memoria del proyecto ........................................................... 10 

2. Viabilidad y planificación...................................................................... 12 

2.1 Finalidad del proyecto ........................................................................................... 12 

2.2 Propuesta de proyecto............................................................................................ 12 

2.3 Recursos materiales y plataforma de desarrollo ................................................. 13 

2.4 Planificación de tareas ........................................................................................... 14 

2.5 Estudio del estado del arte..................................................................................... 15 

2.6 Fish schools ............................................................................................................. 17 

2.7 Análisis de riesgo .................................................................................................... 23 

2.8 Viabilidad del proyecto.......................................................................................... 24 

3. Análisis funcional y requerimientos ............................................. 25 

3.1 Requerimientos....................................................................................................... 25 

3.2 Análisis funcional ................................................................................................... 26 

3.2.1 Análisis de consideraciones a tener en cuenta con el espacio de simulación 27 

3.2.2 Análisis de consideraciones a tener en cuenta con los peces .......................... 28 

3.2.3 Adaptación del modelo original fish schools de dos dimensiones al de tres 
dimensiones ......................................................................................................................... 28 

3.2.4 Detalle de las posibilidades de configuración del simulador .......................... 30 

3.3 Criterios en la parametrización de la simulación................................................ 33 

3.4 Herramientas prácticas a utilizar ......................................................................... 33 

3.5 Estudios de los casos de uso del sistema ............................................................... 34 

3.6 Diagrama de bloques.............................................................................................. 35 

4. Diseño..................................................................................................................... 36 

4.1 Estructura modular................................................................................................ 36 

4.2 Estructuras de datos............................................................................................... 38 

4.3 Diagrama de clases ................................................................................................. 40 

5. Implementación.............................................................................................. 42 

5.1 Algoritmo ................................................................................................................ 42 

 2



5.2 Implementación de las reacciones de los peces.................................................... 45 

6. Pruebas.................................................................................................................. 48 

6.1 Pruebas de verificación del sistema ...................................................................... 50 

6.1.1 Verificación del modulado de las reacciones ................................................... 50 

6.1.1.1 Repulsión ........................................................................................................... 50 

6.1.1.2 Orientación paralela ....................................................................................... 51 

6.1.1.3 Atracción............................................................................................................ 52 

6.1.1.4 Búsqueda............................................................................................................ 53 

6.1.1.5 Caso en el que un pez esté siendo tapado por otro................................... 54 

6.1.2 Comprobación del comportamiento emergente de la interacción de las 
reacciones ............................................................................................................................ 55 

6.1.3 Experimentos adicionales .................................................................................. 61 

6.1.3.1 Pruebas de porcentaje de actuación de cada una de las reacciones 
respecto al total................................................................................................................. 61 

6.1.3.2 Pruebas de comportamiento, según disposición inicial de los peces .... 63 

6.1.3.3 Pruebas de cambio de configuración........................................................... 70 

6.2 Pruebas a nivel de software ................................................................................... 77 

7. Conclusiones y líneas de futuro........................................................ 79 

7.1 Conclusiones y resultados...................................................................................... 79 

7.2 Posibles trabajos futuros ....................................................................................... 80 

Bibliografía.................................................................................................................... 81 

Anexo 1: Detalle de las clases utilizadas ............................................... 85 

1. Detalle de los métodos y principales atributos......................................................... 86 

2. Algoritmo basado en las llamadas a los módulos principales ................................ 95 

Anexo 2: Manual de usuario........................................................................... 98 

1. Instalación ................................................................................................................... 99 

2. Configuración ............................................................................................................. 99 

3. Ejecución ................................................................................................................... 108 

 3



 

1. Introducción 
 
El objetivo de este capitulo de introducción es dar una visión global del proyecto, 

tanto a nivel particular como en lo que hace referencia al  campo sobre el que va a 

tratar.  

  
 

1.1 Motivación 
 
La motivación principal de este proyecto ha sido la de la investigación y desarrollo en 

un campo que nunca antes había tratado, como es el de los sistemas biológicos 

utilizando modelos orientados al individuo. 

 

Dentro de dicho campo, me resulta atractivo el poder simular el comportamiento que 

tienen los peces a la hora de desplazarse y ver como los resultados obtenidos son los 

mismos que los que se pueden encontrar en el mundo real (según [1] y [2]). 

 

Como conclusión de mis motivaciones, decir que siempre he considerado muy 

interesante el mundo de la bioinformática y este proyecto me da la oportunidad de 

desarrollar un simulador basado en ese campo. 

 
 

1.1.1 Características de los sistemas biológicos orientados al 
individuo 

 

El presente proyecto tiene como temática principal los sistemas biológicos utilizando 

modelos orientados al individuo. Dichos sistemas, se basan en el comportamiento de 

cada uno de sus individuos. 

 

Así pues, las dos principales características de los modelos orientados al individuo 

son que tienen en cuenta el comportamiento de individuo y que el comportamiento 

del grupo esta basado en las interacciones entre los individuos que forman el 

sistema. 

 4



 

Estos sistemas se diferencia de los orientados al grupo, en que estos últimos se 

basan en el comportamiento grupal de los elementos. 

 

Entrando un poco más en detalle a lo que hace referencia a los sistemas biológicos 

orientados al individuo, se pueden ver estos como un sistema en el que el 

comportamiento de cada uno de los individuos que lo forman, provoca que se llegue 

a un cierto estado grupal.  

 

Dentro de estos casos, se podría ver como el comportamiento unitario de un grupo 

de personas provoca un cierto comportamiento en las decisiones de donde colocar 

las salidas de emergencia de un edificio. 

 

También se pueden usar estos sistemas para observar y simular el mundo animal. 

Por ejemplo se podría ver como un conjunto de individuos de la misma especie 

acaban formando un grupo cohesionado gracias al comportamiento individualizado 

de cada uno de sus miembros.  

 

Este proyecto precisamente se va a basar en el estudio, simulación y forma de 

implementar el algoritmo de un conjunto de animales, concretamente en el de los 

peces.  

 
 

1.1.2 Simulador del comportamiento de un banco de peces (fish 
schools) 

 
En este punto se va a describir en líneas generales el funcionamiento del simulador 

de fish schools. 

 

El proyecto consistirá en realizar un simulador en tres dimensiones de fish schools 

que reproduzca el movimiento real de los peces. Se podrá ver como a partir del 

comportamiento unitario de cada uno de los peces, se llega a conseguir un cierto 

estado grupal. 

 

 5



Este comportamiento de agrupación de los peces tiene como finalidad el protegerse 

del ataque de sus enemigos. Partiendo de esta idea, el simulador deberá 

comportarse de la misma manera que los peces lo hacen. Para ello, habrá que 

basarse en un estudio realizado por Huth y Wissel [1] y [2] en el que dan las bases 

del comportamiento de los peces y de la manera en la que acaban agrupándose 

formando los consiguientes bancos de peces. 

 

En dicho estudio se puede ver como los peces se identifican por su posición y 

orientación. También se va a poder extraer de ese estudio, que los peces se 

caracterizan por tener 4 tipos de comportamiento (en cuanto a su movilidad) y que 

en base a ellos logran formar grupos muy cohesionados.  

 

Dichos comportamientos se basan en la distancia a la que están los peces vecinos 

respecto a un determinado pez. Según dicha distancia van a existir los  

comportamientos de repulsión, de orientación paralela, de atracción y de búsqueda. 

 

El comportamiento de repulsión aparece cuando hay el riesgo de que un pez choque 

con otro debido a que se encuentran muy cerca el uno del otro.  En este caso, el pez 

cambiará su dirección a una que sea perpendicular a la del pez vecino. 

 

En el caso de que la distancia entre un pez y su vecino sea pequeña (pero no tanto 

como para que choquen), aparecerá la orientación paralela. Esta reacción supone 

que el pez cambie su dirección igualándola a la que tiene su vecino.  

 

Si la distancia entre el pez y el vecino ya es algo mayor (pero dentro del campo de 

visión del pez), aparecerá el comportamiento de atracción. Se trata de una reacción 

en la que el pez se acerca a su vecino haciendo que su dirección apunte a la 

posición que ocupa el vecino. 

 

El último comportamiento será el de búsqueda, que se dará cuando no existan 

vecinos lo suficientemente cerca del pez o estos estén en su ángulo muerto de 

visión. Debido a que el pez no aprecia vecinos dentro de su campo visual, hará un 

cambio de dirección para intentar encontrarlos.  

 

 6



Como consecuencia de que todos los peces tendrán que comparar sus posiciones 

con las del resto de vecinos para saber cuales de ellos influenciarán finalmente en 

su movimiento, habrá n*n-1 comparaciones por cada iteración, que lo podemos 

considerar como un n² y por tanto un algoritmo de orden cuadrático. 

 

A partir de la información extraída de la documentación de referencia, se deberán 

analizar los diferentes comportamientos de los peces y ver de que manera se puede 

llegar a pasar de su base teórica a la simulación final en un ordenador. Para ello, se 

deberá dividir el trabajo en varias fases.  

 

La primera de ellas consistirá en traducir la información existente en la 

documentación de referencia, a su correspondiente representación matemática. 

Para ello, habrá que adaptar las explicaciones que aparecen para el modelo en dos 

dimensiones al correspondiente modelo en tres dimensiones. 

 

Una vez desarrollada la representación matemática del modelo en tres dimensiones, 

se pasará a la fase correspondiente con implementación del modelo matemático. 

Seguidamente se realizará la tercera y última fase consistente en el desarrollo e 

implementación en si del simulador. 

 

Lo primero será definir el espacio de simulación y las características de los peces. 

Se establecerá un espacio representado en tres dimensiones, cuyo tamaño será 

limitado pero que podrá ser configurado.  

 

Los peces estarán definidos mediante su identificador, posición y dirección 

(velocidad). El número de peces también será acotado pero podrá ser configurado. 

De igual manera, se podrán configurar otros elementos como por ejemplo el número 

de iteraciones, o el número de peces. 

 

Debido a que la complejidad del algoritmo es cuadrática, se decide pensar alguna 

manera que permita acelerar el tiempo de ejecución. Una vez analizadas las 

distintas posibilidades, se decide permitir que se pueda dividir el espacio total de 

simulación en partes (mediante configuración). De esta manera, la complejidad sigue 

siendo cuadrática pero con un número menor de elementos a tratar. 

 7



 

Aparte de las opciones de configuración ya comentadas, también se podrá 

establecer la manera en la que se distribuyan inicialmente los peces, permitiendo así 

simular varios escenarios. 

 

Una vez definidas la base del simulador y las diferentes opciones de configuración 

del simulador, se realizará la implementación en lenguaje C++. Dicha 

implementación estará formada por una parte inicial que consistirá en la 

configuración del simulador, a partir de la lectura del fichero encargado de ello. 

 

Seguidamente y en función del método de inicialización de los peces que se haya 

escogido, se realizará la consiguiente creación y colocación de los mismos en los 

lugares determinados del espacio de simulación. 

 

Una vez colocados los peces, se pasará a lo que es en si el motor de la simulación, 

consistente en la comparación de cada uno de los peces con el resto y la 

consiguiente determinación de las nuevas posiciones y direcciones de los peces en 

función de las reacciones que se produzcan. 

 

Para cada iteración, se escribirán los resultados de las posiciones y de las 

direcciones de los peces en varios ficheros. También existirá un fichero de 

estadísticas en donde quedará recogido el grado de homogeneidad de las 

direcciones y el grado de cohesión del grupo. 

 

Finalmente, esos ficheros generados servirán para representar gráficamente la 

simulación realizada (mediante otro proceso independiente de este proyecto). 

 
 

1.2 Objetivos 
 

El objetivo principal será el de obtener un simulador con el que obtengamos los 

mismos resultados que los aparecidos en la documentación de Huth y Wissel ([1] y 

[2]) sobre el estudio de los movimientos de los peces. 

 

 8



Para ello, se deberán realizar varios pasos que permitan pasar del estudio de una 

bibliografía sobre el tema, al desarrollo del simulador. Además, habrá que marcar 

objetivos parciales para cada una de las fases del proyecto. 

 

El primero de ellos consistirá en la lectura de los trabajos existentes [1] y [2] sobre el 

comportamiento de los peces. Será importante entender el funcionamiento y la base 

teórica de sus estudios para posteriormente poderla poner en práctica. También se 

deberá buscar otra documentación que pueda servir de ayuda para la realización del 

proyecto.  

 

En este punto, el objetivo a marcar va a ser el asimilar correctamente toda la base 

teórica que posteriormente habrá que acabar implementando.  

 

El segundo paso será el desarrollo del modelo matemático. Una vez leída y 

analizada con detenimiento la documentación de referencia, se deberán traducir los 

conceptos teóricos en fórmulas matemáticas con las que representar el modelo, 

teniendo en cuenta además, que deben ser fórmulas a utilizar en un espacio 

tridimensional. 

 

En esta caso, el objetivo a marcar van a ser corroborar que las representaciones 

matemáticas son equivalentes a las expresiones aparecidas en la documentación de 

referencia [1] y [2]. 

 

Una vez establecido el modelo matemático, se deberá realizar la implementación del 

mismo. Para ello, habrá que adaptar las fórmulas de un formato teórico, a la 

representación definitiva que será la que se deberá usar en la implementación  del 

simulador. 

 

En este caso, el objetivo a marcar será nuevamente comprobar que las fórmulas 

implementadas se corresponden con la realidad, es decir que a partir de dichas 

fórmulas se obtienen los resultados mostrados en la documentación de referencia [1] 

y [2]. 

 

 9



Finalmente se realizará la implementación del simulador, empezando primero por su 

análisis y desarrollo. Dentro de la parte de implementación se integrará el sistema 

matemático implementado previamente y que servirá como elemento fundamental 

en el correcto funcionamiento del simulador. 

 

Una vez realizada la implementación, habrá que comprobar que los resultados 

obtenidos con el simulador son los mismos que los que se esperaban inicialmente, 

es decir los aparecidos en la documentación de referencia [1] y [2]. 

 
 

1.3 Organización de la memoria del proyecto 
 

La memoria estará organizada en 7 puntos más la bibliografía y los anexos que 

aparecerán al final de la misma.  

 

El primero de los puntos será precisamente este, que servirá de introducción a la 

misma y en donde aparecerán las características de los sistemas biológicos 

orientados al individuo, tanto a nivel general como particularizando con el fish schools. 

También aparecerán las motivaciones y objetivos a cumplir en el proyecto. 

 

A continuación aparecerá la viabilidad y la planificación del proyecto, que servirán 

para realizar un estudio previo de si se puede llevar a cabo la realización del mismo. 

En este capitulo habrá también un apartado dedicado al  “fish schools” para explicar 

sus características. Otros apartados que integran este capitulo son el estudio del 

estado arte y en análisis de riesgos. 

 

El siguiente punto será el correspondiente al análisis funcional y a los requerimientos 

del proyecto. Aquí se hará la descripción de la funcionalidad del programa, así como 

de las consideraciones a tener en cuenta para la realización del simulador. Como 

parte final del capitulo aparecerá el diagrama de bloques del simulador. 

 

A continuación se llegará al diseño. Aquí habrá que realizar un estudio de cómo llevar 

a cabo el desarrollo. Los apartados que aparecerán en este capitulo serán los 

 10



correspondientes a las estructuras de datos, la comunicación entre módulos y el 

diagrama de clases del simulador. 

 

La implementación será el siguiente punto, y será el lugar en el que se detallará la 

manera en la que se ha realizado el desarrollo del simulador. Aquí se describirá el 

algoritmo implementado. 

 

En el sexto punto aparecerán las pruebas a las que se someterá el simulador una vez 

finalizado. Habrá una primera prueba con la que comparar si los resultados del 

simulador se corresponden con los aparecidos en la documentación de referencia. A 

parte de dicha prueba, existirán otras para verificar el correcto funcionamiento del 

simulador. 

 

Las conclusiones del proyecto serán el séptimo y último punto y nos van a servir para 

descrobir los objetivos conseguidos. Además se indicarán otros posibles trabajos 

futuros o variaciones que se podrían desarrollar a partir de la realización de este 

proyecto. 

 

Finalmente la memoria terminará con la bibliografía utilizada para la realización de 

este proyecto, además de un apartado extra con los anexos. 

 11



 

2. Viabilidad y planificación 
 
En este segundo capitulo se van a tratar aspectos previos al proyecto como son por 

ejemplo el estudio de viabilidad o la planificación de las tareas. 

 
 

2.1 Finalidad del proyecto 
 
La finalidad del proyecto es el desarrollo de un simulador de sistemas biológicos 

utilizando modelos orientados al individuo.  

 

Gracias a este tipo de proyecto se podrá observar el comportamiento de los 

diferentes sistemas biológicos de una manera rápida y sin la necesidad de 

experimentar directamente con ellos. Todos los cálculos se realizarán en una 

computadora lo suficientemente potente como para simular los diferentes 

movimientos posibles que pueden desarrollar las especies en estudio.  

 

Los beneficios que se podrán obtener una vez conocido y simulado el comportamiento 

del modelo a estudiar será el determinar con antelación que pasos o acciones realizar 

para conseguir que la especie que se vaya a tratar actúe de una manera u otra.  

 

Desde otro punto de vista, el proyecto también va a servir para analizar si los 

resultados obtenidos con el simulador se ajustan a los existentes en el mundo real. 

 
 

2.2 Propuesta de proyecto 
 
El presente trabajo se basa en la representación en tres dimensiones de las 

características del movimiento de los peces en un momento dado. Estas  

características del movimiento vendrán dadas por la dirección que tome el pez y ésta 

a su vez vendrá determinada por las reacciones provocadas por los vecinos. 

 

 12



Cada uno de los pasos de la simulación marcarán el movimiento y por tanto nuevas 

posiciones de los peces. Respecto a las características físicas (tamaño y velocidad) 

de los peces,  estas serán igual para todos. 

 

Habrá 3 tipos de comportamientos, atracción, orientación paralela y repulsión. Cada 

uno de estos comportamientos vendrán determinados por la distancia y ángulo en la 

que se encuentren sus peces vecinos. Además de esos 3 tipos de comportamiento, 

existirá un cuarto (búsqueda) que se dará cuando no hayan vecinos cerca o bien no 

los pueda ver porque están en su ángulo muerto de visión.  

 

La simulación consistirá en seleccionar 4 vecinos de cada pez (según Huth y Wissel 

[1] y [2]) y calcular la reacción del pez para cada uno de sus vecinos. A partir de 

esos cálculos y del peso en que cada uno de sus vecinos repercuta sobre el pez en 

cuestión, se obtendrá la nueva posición del pez.  

 

Este proyecto sólo se encargará de realizar los cálculos de las posiciones de los 

peces pero no de la muestra de estos por pantalla.  

 
 

2.3 Recursos materiales y plataforma de desarrollo 
 
Para realizar el proyecto se dispondrá de un PC convencional que dadas sus 

limitaciones, no permitirá hacer simulaciones con un gran número de individuos, ya 

que el tiempo empleado para ello sería demasiado grande. Hay que tener en cuenta 

que la complejidad del algoritmo del modelo es cuadrática (O(n2)), donde n es el 

número de peces de la simulación. 

 

Como lenguaje de programación, se utilizará el lenguaje C++, ya que se trata de un 

lenguaje propicio para trabajar con los peces como si fueran objetos, además de ser 

bastante accesible y conocido.  

 

El sistema operativo sobre el que se desarrollará y ejecutará el simulador será 

Windows, debido a que es el más difundido y usado en el mundo.   

 13



Como documentación científica de referencia sobre el comportamiento de los peces 

y que servirá de base para desarrollar tanto el modelo como el simulador, se 

dispondrá de los trabajos realizados por Andreas Huth y Christian Wissel [1] y [2]. 

 
Finalmente se dispondrá de internet para realizar las investigaciones y consultas 

necesarias para el desarrollo del proyecto.  

 
 

2.4 Planificación de tareas 
 
 

FASES TAREAS PERIODOS 
1 Investigación inicial y lectura de documentación 01-11-08 al 

30-11-08 
1.1 Lectura de documentación de referencia de los autores 

Huth y Wissel 
 

2 Estudio de viabilidad del proyecto 01-12-08 al 
12-12-08 

2.1 Definir la finalidad, propuesta y objetivos del proyecto. 
También se indicará una primera planificación, así como la 
metodología o el análisis de riesgos. 

 

3 Profundización en la investigación y pre-análisis de 
cómo desarrollar el proyecto 

13-12-08 al 
07-01-09 

3.1 Asimilación de la documentación de referencia, así como 
búsqueda de nueva documentación relacionada con el 
proyecto y que pueda servir de ayuda para el desarrollo del 
mismo 

 

3.2 Aumentar conocimientos en los lenguajes de programación 
a utilizar en el proyecto (C++) 

 

4 Análisis funcional y requerimientos para el desarrollo 
del proyecto 

08-01-09 al 
16-01-09 

4.1 Definir detalladamente la funcionalidad del programa una 
vez finalizado, estudio de los casos de uso del sistema y 
diagramas de funcionamiento/bloques 

 

4.2 Establecer el modelo matemático (fórmulas y cálculos) que 
implementaremos posteriormente en el desarrollo del 
simulador 

 

5 Diseño del proyecto 17-01-09 al 
06-02-09 

5.1 Definir el plan de implementación a realizar, así como la 
estructura modular 

 

5.2 Realización del algoritmo, poniendo los pasos a seguir 
para la realización del desarrollo del simulador. Realización 
del diagrama de flujo, indicando de forma gráfica, los 
pasos del algoritmo. Realización del pseudocódigo del 
simulador, que posteriormente pasaremos al lenguaje de 
programación a utilizar para el desarrollo del mismo. 

 

 14



6 Implementación del proyecto 07-02-09 al 
20-03-09 

6.1 Definir la implementación, la interfase de usuario, así como 
el prototipo de la primera versión. 

 

6.2 Desarrollo del simulador en lenguaje C++.   
7 Evaluación del proyecto 21-03-09 al 

17-04-09 
7.1 Definir el plan de pruebas a realizar, la metodología de las 

mismas así como los resultados esperados 
 

7.2 Realizar las pruebas establecidas consistiendo en primer 
lugar en pruebas unitarias para posteriormente realizar 
pruebas globales. Realizaremos finalmente varias 
simulaciones variando el número de elementos e 
iteraciones. Las herramientas a utilizar serán el simulador 
en si realizado en C++. 

 

8 Análisis de resultados del proyecto 18-04-09 al 
08-05-09 

8.1 Definiremos la funcionalidad, los resultados de las pruebas 
así como la realización del esquema definitivo de la 
memoria  

 

8.2 En esta fase, analizaremos los resultados obtenidos en las 
pruebas finales realizadas en la fase anterior, que nos 
servirán para determinar el comportamiento final del 
simulador. Terminaremos de dejar listo las versión 
definitiva del simulador. 

 

9 Finalización del proyecto 09-05-09 al 
30-06-09 

9.1 Repaso, revisión y finalización de las tarea que pudieran 
quedar pendiente, así como preparación más exhaustiva 
de la presentación del proyecto 

 

 
 

2.5 Estudio del estado del arte 
 
Este apartado se va a dividir en 2 partes, correspondientes al nivel de detalle. 

Primero se empezará tratando los diferentes tipos de simuladores existentes a nivel 

general, para luego terminar con los simuladores biológicos. 

 

En primer lugar habrá que nombrar algunos de los diferentes tipos de simuladores 

existentes actualmente, así como algunos de sus productos: 
 

• Simulador de carreras: Se puede conducir un automóvil, motocicleta, camión, 

etc. Ejemplos: rFactor, GTR, GT Legends.  

• Simulador de vuelo o de aviones: Permite dominar el mundo de la aviación y 

pilotar aviones, helicópteros... Ejemplo: Microsoft Flight Simulator, X-Plane  

 15



• Simulador de trenes: Permite controlar un tren. Ejemplo: Microsoft Train 

Simulator, Trainz , BVE Trainsim .  

• Simulador de redes: Permite simular redes. Ejemplo: Omnet++, ns2.  

• Simulador biológico: Permite simular elementos vivos, como plantas, 

animales, personas, etc... 

 

Dentro de estos, se pueden encontrar aquellos simuladores que permiten realizar 

diagnósticos clínicos sobre pacientes virtuales o bien para practicar casos muy 

complejos, preparando al médico para cuando se encuentre con una situación 

real. Un ejemplo de este sería el simulador clínico “Mediteca”. A estos 

simuladores se les conoce particularmente como simuladores quirúrgicos. 

 

A continuación se abordarán los simuladores biológicos, poniendo ejemplos de 

diferentes trabajos que tratan este tipo de simuladores. 

 

Como se podrá comprobar la mayoría de los simuladores biológicos están basados 

en el campo de la medicina. Gracias a ellos, se está consiguiendo un mayor 

aprendizaje de aquellas situaciones complejas que se pudieran producir o bien como 

medida de aprendizaje de situaciones reales pero sin la existencia de riesgo sobre el 

paciente. 

 

Algunos ejemplos de este tipo de simuladores los podemos encontrar a 

continuación: 
 

• Simuladores para la enseñanza de la cirugía endoscópica en México: [16]. 

• Desarrollo de modelos biológicos inanimados en urología, con los que se 

pueda lograr un método de enseñanza que permita desplegar las  

destrezas quirúrgicas: [17]. 

 

Como ejemplo del desarrollo e interés que están suscitando los simuladores 

biológicos (sobre todo en el campo de la salud), se mostrarán a continuación los 

diferentes simuladores desarrollados en la facultad de ciencias de la salud de la 

Universidad de Carabobo (Venezuela): [18]. 

 

 16



Dentro de la lista de proyectos aparecidos, se podrían destacar el denominado 

"simBio", simulador de sistemas biológicos tales como células cardíacas, células 

epiteliales, y las células β pancreáticas. Está escrito en Java, usa XML y puede 

resolver ecuaciones diferenciales ordinarias: [19]. 

 

Seguidamente se encuentra un trabajo que ya es más propio de la simulación 

biológica. Se trata de un autómata celular que simula el crecimiento de varias 

especies de plantas en un terreno: [20].  

 

También cabe destacar la presencia de simuladores y utilidades para la ingeniería 

química e ingeniería medioambiental: [21]. 

 

Otra vertiente relacionada serían los juegos de simulación biológica, en donde el 

jugador controla ecosistemas donde los organismos pueden evolucionar o bien en 

los que el jugador toma el papel del animal como si fuera un juego de rol. Algunos de 

estos juegos serían el "SimLife", el "Darwinbots" o el "Wildlife Tycoon".   

 
 

2.6 Fish schools 
 
Se define como fish schools el modelo que describe el comportamiento de un banco 

de peces tomando como base el movimiento de cada individuo y la interacción con 

el resto del sistema [3]. 

 
La característica más relevante del conjunto de fish schools es su alto grado de 

cohesión en los movimientos grupales y que esta cohesión la tienen sin la presencia 

de un líder. Estudios relacionados sobre el tema [1] y [2], llegaron a la conclusión 

que el movimiento conjunto de los peces viene determinado por la elección individual 

de cada uno de ellos, y que esta depende de la localización física en la que se 

encuentren sus vecinos. 

 17



A continuación se enunciarán las características que determinan los movimientos de 

los peces en función de sus vecinos. 

 

En primer lugar, se tendrán en cuenta los peces vecinos que influenciarán en la 

decisión del pez. Dicha elección vendrá dada por aquellos que se encuentren a una 

distancia próxima y cuya posición sea visible para el pez en cuestión.   

 

Si existen más de 4 peces que cumplen las condiciones de cercanía y grado de 

visión, el pez escogerá aquellos 4 vecinos que o bien estén más próximos o bien 

estén más en frente a su posición (según los estudios realizados, parece ser que 

esta segunda opción es la que genera una mayor aproximación a la realidad). La 

prioridad por frontalidad se basa en que primero se escogen aquellos peces que 

están por delante y más enfrente, para luego escoger los que están detrás y más 

alejados del centro. Para la opción del cálculo por distancia, se escogerán primero 

los peces que estén más cerca, independientemente de si están por delante o por 

detrás.  

 

A continuación, se mostrará la relación de distancias y ángulos sobre los que el pez 

determinará cuales son sus vecinos y que por tanto acabarán influenciando en su 

movimiento (figura 3.1). 

 

 
Figura 3.1: Rangos de los tipos de comportamiento  

 

Como se puede apreciar en la figura 3.1, existirá un circulo (el mayor de todos) que 

marcará la zona de influencia del pez, tanto en distancia como en ángulo de visión. 

 

 18



Dentro del mayor de los círculos habrá otros 2 internos que servirán para dividir la 

zona de influencia del pez en 3 partes.      

 

Teniendo en cuenta que el pez está situado justo en el centro del circulo, se tendrá 

como primera zona aquella que está situada a una menor distancia que el radio r1 

(tamaño del radio correspondiente a la mitad de un pez) y por tanto muy próxima al 

pez. Esta área es el llamada de repulsión ya que ante la gran proximidad de un pez 

vecino, el pez tiende a apartarse para no colisionar. Para ello, el pez realizará un 

giro que le permita estar perpendicular a la dirección del vecino con el que podría 

colisionar. 

 

La siguiente zona en distancia, será la formada entre el radio r1 y el r2 (tamaño del 

radio correspondiente al doble del tamaño de un pez). Esta área es llamada de 

orientación paralela, ya que el pez tiende a ponerse en una posición paralela al pez 

vecino que esta localizado en esa zona. Así pues, el pez toma el mismo ángulo que 

su vecino. 

 

La última zona de influencia y por tanto la más alejada, será la formada entre el radio 

r2 y el radio r3 (tamaño del radio correspondiente a 5 veces el tamaño del pez). Esta 

área es llamada de atracción, ya que el pez tiende a acercarse a su vecino. Por 

tanto el pez cambiará su dirección para ir en busca de su vecino. 

 

Finalmente estará la reacción de búsqueda que se encuentra situada más allá del 

radio r3 y que se dará cuando el pez no perciba vecinos a su alrededor o bien 

porque están demasiado lejos o bien porque se encuentran en su ángulo muerto de 

visión (situado justo detrás y con un ángulo de 30 grados). En este caso, el pez lo 

que hará será modificar su actual dirección con la intención de localizar a otros 

peces.   

 

En función de las influencias de los vecinos de cada uno de los peces, se obtendrá 

la nueva reacción del pez y consecuentemente su nueva dirección y posición. El 

cálculo final de la dirección vendrá dado como la media de las direcciones 

resultantes de las reacciones habidas con los diferentes vecinos. 

 

 19



Seguidamente se va a mostrar como es el modelo 2D del fish schools. 

 

Cada pez estará representado por dos valores, uno que indicará su posición y otro 

que mostrará su orientación.  

 

La posición vendrá representada por los valores de las coordenadas X e Y, mientras 

que la orientación corresponderá con el ángulo que marque la dirección que tiene el 

pez en ese momento. 

 

A continuación se mostrará como se calculan las diferentes reacciones para el 

modelo en dos dimensiones ([1] y [2]). 

 

En primer lugar se indicará la nomenclatura utilizada en las fórmulas: 
 

ν°i, x°i: Orientación y posición del pez. 

ν°j, x°j: Orientación y posición de su vecino. 

 

Y seguidamente se pasará a analizar las reacciones: 
 

• Repulsión: 

Para evitar que un pez colisione con otro, realiza un giro que le permita estar 

perpendicular respecto a la dirección de su vecino. Esto se traduce en realizar 

un giro que sitúe su orientación con un ángulo de 90 grados respecto a la 

orientación del pez con el que pude chocar. De las posibles opciones para  

conseguir su objetivo, el pez escogerá aquella que le suponga dar un menor 

giro.  

 

Por tanto, la reacción de repulsión se transformará en un ángulo de rotación  

β i j determinado por: 
 

β i j  = min {∠ (ν°i,, ν°j) ± 90°} 

 

 

 

 20



En la figura 3.1 se puede apreciar la reacción de repulsión entre el pez i y su 

vecino j dando como resultado la nueva dirección β i j para el pez i. 

 

 
Figura 3.1: Reacción de repulsión para el modelo en dos dimensiones [2] 

 

• Orientación paralela: 

En el caso de que exista algún vecino que esté a una cierta distancia próxima 

al pez, éste pasará a desplazarse en la misma dirección que lo hace su 

vecino. 

 

 Así pues el pez girará el siguiente ángulo (β i j): 
 

β i j  = ∠ (ν°i,, ν°j) 

 

En la figura 3.2 aparece el pez i, su vecino j y el ángulo (β i j) resultante de la 

acción de orientación paralela. 

 

 
Figura 3.2: Reacción de orientación paralela para el modelo en dos dimensiones [2] 

 

• Atracción: 

Cuando un pez está alejado del resto del grupo, este tiende a desplazarse 

hacia el grupo. 

 

De esta manera, el nuevo ángulo será el resultado de la diferencia de posición 

entre su vecino y el propio pez (β i j):  
 

β i j  = ∠ (ν°i,, xj - xi ) 

 21



En la figura 3.3 se puede apreciar la reacción de atracción entre el pez i y su 

vecino j. Como consecuencia de dicha reacción, se producirá el cambio de 

dirección β i j para el pez i. 

 

 
Figura 3.3: Reacción de atracción para el modelo en dos dimensiones [2] 

 

• Búsqueda: 

Si finalmente el vecino está demasiado lejos o en el ángulo muerto, el pez al 

no percibir ningún vecino realizará una acción de búsqueda para intentar 

encontrar a algún vecino.  

 

Así pues, el pez realizará un giro con un ángulo aleatorio (β i j): 
 

β i j  = Aleatorio ([-180° , 180°]) 

 

En líneas generales, el cálculo de la reacción final del pez vendrá determinada por la 

media de los ángulos de giro provocados por los diferentes vecinos, según la 

reacción aplicada para cada uno de ellos.  

 

En el ejemplo de la figura 3.4 se puede ver el caso en que un pez (i) tiene dos 

vecinos (j=1 y j=2) y como la reacción final se calcularía como la media de los 

ángulos provocados por los dos vecinos.  
 

 
Figura 3.4: Cálculo de la reacción final del pez para el modelo en dos dimensiones [2] 

 22



Para poder caracterizar a los fish schools, se dispondrá de tres índices: 
 

• Polarización (polarization): Promedio de la desviación de los peces respecto 

al movimiento del grupo. A menor valor, mayor homogeneidad en las 

direcciones de los peces. 

• Extensión (expanse): Grado de cercanía de los peces al centro de masas. 

Indica cuanto de cerca están todos los peces entre si. A menor valor, menor 

distancia respecto al centro de masas y  por tanto mayor cohesión. 

• NND (Nearest Neighbor Distance): Promedio de las distancias respecto al 

vecino más cercano. Nos sirve para calcular el grado de cohesión en el grupo. 

 
 

2.7 Análisis de riesgo 
 
En este apartado, se van a tratar los posibles imprevistos que pudieran aparecer, así 

como las medidas a adoptar para hacerles frente. 

 

El principal riesgo serían los imprevistos que se podrían tener al desarrollar el 

proyecto en un lenguaje concreto de programación, ya que podría darse el caso de 

tener problemas para conseguir algunos de los objetivos marcados debido a sus 

limitaciones y características.   

 

Para evitar este riesgo, se procederá a realizar un estudio de todas los posibles 

elementos a necesitar para realizar la implementación, para posteriormente 

comprobar si el lenguaje en cuestión las tiene. En caso de que las tenga, se 

procederá normalmente con la implementación en ese lenguaje. Si por el contrario 

dicho lenguaje tuviera ciertas limitaciones, se debería realizar el estudio de ver que  

lenguaje ofrece las herramientas que se necesitan para la realización del proyecto.  

 

Otro riesgo que se podría presentar, sería el de que por algún motivo inesperado no 

se consiguieran los resultados esperados, retrasando con ello la planificación 

establecida. Para este caso, la solución consistiría en comprobar paso por paso 

donde puede estar el error, intentando en lo posible una vez solucionado el 

problema, volver a los tiempos planificados en un principio. 

 

 23



Finalmente se tendrán que contemplar los riesgos informáticos como pueden ser la 

pérdida fortuita de datos, que en este caso podría ser el código fuente del simulador. 

Para minimizar el impacto de los mismos, se procederá a realizar copias periódicas de 

la información en diferentes dispositivos de almacenamiento.  

 
 

2.8 Viabilidad del proyecto 
 
En este punto se desglosará la viabilidad del proyecto. Para ello, se procede a su 

división en 3 puntos, según esta sea a nivel de recursos, de tiempo o de 

conocimientos disponibles: 
 

1. Viabilidad dependiente del tiempo disponible: Según la planificación existente 

para la realización de este proyecto (2.4), se puede afirmar que se dispone 

del suficiente tiempo como para llevarlo a cabo. En principio se iría realizando 

y siguiendo de manera progresiva para detectar posibles dificultades a tiempo 

y para que de esta manera, se pueda disponer de cierto margen al final para 

acabar lo que pudiera quedar pendiente.  
 

2. Viabilidad dependiente de los recursos científicos y de investigación 

disponibles: Se dispone de la documentación necesaria para el desarrollo del 

proyecto. Concretamente se trata de unos trabajos realizados por dos 

científicos en los que se muestra de manera científica y matemática el 

desplazamiento de los peces [1] y [2]. A partir de esta documentación y con la 

consiguiente investigación, se podría llevar a cabo el desarrollo teórico del 

proyecto. 
 

3. Viabilidad dependiente de los recursos hardware-software disponibles: 

Finalmente, en lo que se refiere al hardware, se dispondrá de un PC con el 

que realizar el proyecto. Dicho PC se utilizará para llevar a cabo el desarrollo, 

las pruebas y la ejecución del mismo. Para la parte del software, se usará el 

lenguaje de programación C++. 

 

Una vez analizados los 3 aspectos, podemos concluir afirmando que el proyecto es 

considerado viable. 

 

 24



 

3. Análisis funcional y requerimientos 
 
En este capitulo se mostrarán los requerimientos, así como las consideraciones 

generales a tener en cuenta para el desarrollo del proyecto. 

 
 

3.1 Requerimientos 
 

Los requerimientos del simulador son los siguientes: 
 

• Realizar un simulador biológico orientado al individuo que simule el movimiento 

de los peces.  

• Los resultados obtenidos con el simulador deberán ser los mismos que los 

existentes en la documentación de referencia [1] y [2]. 

• Se configurarán elementos del simulador como por ejemplo el número de 

iteraciones del simulador, el número de peces o las dimensiones del espacio de 

simulación. También se podrá establecer la manera en la que los peces se 

distribuirán inicialmente por el elemento de configuración. Se usará un fichero 

para indicar dicha configuración. 

• El espacio de simulación será en tres dimensiones y el tamaño del mismo será 

finito. 

• El simulador estará compuesto por un conjunto limitado de peces. 

• Los atributos de los peces serán su posición y su dirección, que estarán 

representados mediante vectores. El vector correspondiente a la dirección estará  

normalizado para poder ser visualizado con un entorno gráfico. 

• El comportamiento de los peces será el definido en la documentación [1] y [2]. 

• El modelo original de representación será en dos dimensiones [1] y [2] y tendrá 

que ser por tanto transformado a tres dimensiones. 

• Se generarán tantas iteraciones como se deseen. 

• Para cada una de las iteraciones del simulador, se escribirán en un conjunto de 

ficheros los resultados de las posiciones y velocidades de los peces. También se 

irán guardando las estadísticas del simulador (polarización y grado de cohesión). 

 

 25



3.2 Análisis funcional 
 

En la realización del análisis funcional se van a tener en cuenta tanto los 

requerimientos establecidos, como posibles mejoras que puedan servir de valor 

agregado para el proyecto. 

 

Así pues, se va a desarrollar un simulador de fish schools basado en el 

comportamiento unitario que tienen los peces al desplazarse. Para ello, se dispondrá 

de un espacio de simulación y de un conjunto de peces con las características 

indicadas en los requerimientos. Los detalles a tener en cuenta del espacio de 

simulación aparecerán en el punto 3.2.1, mientras que las correspondientes a los 

peces se encontrarán en el punto 3.2.2. 

 

El simulador podrá configurarse para poder realizar la simulación de varios 

escenarios. Los detalles de configuración del simulador serán tratados en el punto 

3.2.4. 

 

Los peces van a tener 2 atributos con los que se podrán controlar sus movimientos. 

El primero de ellos será la posición y servirá para saber el lugar que ocupa el pez. El 

segundo atributo será el correspondiente a la dirección, con el que se podrá saber la 

orientación que lleva el pez. En función de dichos valores y de los que tengan los 

vecinos de alrededor, se podrán calcular las nuevas posiciones y direcciones de los 

peces.  

 

Las características de los movimientos que tendrán, serán las mismas que las 

indicadas en la documentación de referencia [1] y [2].  Se tendrá que tener en cuenta 

que según los requerimientos, el modelo a desarrollar será en tres dimensiones, 

mientras que el modelo original aparecido en la documentación de referencia [1] y [2] 

está en dos dimensiones. Por tanto, será necesario realizar un estudio de cómo 

realizar la transformación del modelo 2D al 3D. Dicha transformación se encuentra 

detallada en el punto 3.2.3.  

 

Una vez calculados los nuevos valores de los peces, se deberán escribir en 

diferentes ficheros para que posteriormente puedan ser visualizados en un entorno 

 26



grafico (independiente a este proyecto). Habrá un fichero de posiciones, uno de 

velocidades (direcciones) y uno de estadísticas para cada iteración.  

 
 

3.2.1 Análisis de consideraciones a tener en cuenta con el espacio 
de simulación 

 

Debido a que las dimensiones del espacio van a ser finitas, se va a tener que decidir 

que acciones tomar cuando los peces lleguen a esos limites.  

 

Se han analizado varias opciones, como por ejemplo que si un pez sale de los 

limites de alguno de los tres planos, aparezca por el lado contrario del mismo plano, 

pero al final se ha decidido que cuando un pez alcance algunos de los limites del 

espacio de simulación se produzca un efecto de reflexión en su dirección.  

 

Otro aspecto importante a tener en cuenta va a ser como conseguir buenos tiempos 

de ejecución. Para ello, se va a partir de la situación básica del simulador 

consistente en un único espacio en donde están distribuidos todos los peces.  

 

El hecho de que haya un único espacio, implica que no se sepa la distancia a la que 

se encuentra un vecino de un determinado pez y por tanto se tenga que comparar 

cada pez con cada uno de los vecinos, para determinar cuales de estos intervienen 

en la reacción final del pez. Este tratamiento supondría una complejidad de orden 

cuadrático (O(n2)). Como consecuencia, se analiza si podría existir algún tipo de 

variante para reducir el tiempo de ejecución. 

 

Partiendo de esa idea inicial, se pensó en realizar algún cambio en la estructura 

interna que hiciera que el simulador fuera más rápido. Esa modificación pasaba por 

dividir el espacio de simulación en subgrupos para que así el número de 

comprobaciones entre peces se redujera a solo aquellos que ocupan la misma zona, 

junto a aquellos otros que estuviesen en cuadrantes limítrofes.   

 

De esta manera, sólo se estarán haciendo comparaciones con los vecinos que 

realmente si pueden afectar a la reacción final (ya que se encuentran cerca del pez), 

 27



consiguiendo además que el orden cuadrático sea en función del número de 

elementos que componen cada uno de las particiones y por tanto que el tiempo de 

ejecución sea menor. 

 
 

3.2.2 Análisis de consideraciones a tener en cuenta con los peces 
 

En este subapartado se van a analizar la manera en que se guardarán las 

posiciones de los peces. Hay que tener en cuenta que la representación final de las 

mismas se realizará mediante números naturales (un pez estará en una posición 

concreta, no podrá estar parte si y parte no), pero en cambio internamente si que se 

deberá pensar la forma en la que tratar los valores.   

 

Se ha escogido finalmente el guardar las posiciones internamente en formato 

decimal para no perder la precisión en los cálculos y consecuentemente reflejar de 

una manera más real la posición actual del pez. La manera en la que se pasará del 

valor interno decimal al valor entero de representación final será mediante el 

redondeo del mismo.    

 
Otra consideración a tener en cuenta en el simulador será el trato que se le de a los 

peces que se encuentren tapados por otros. En este caso se ha decido que si un 

pez esta tapado por otro, no se tenga en cuenta. Así, si más de un vecino se 

encuentra en exactamente el mismo ángulo de visión de un determinado pez, sólo 

se escogerá aquel que esté a una distancia menor de este. 

 
 

3.2.3 Adaptación del modelo original fish schools de dos 
dimensiones al de tres dimensiones 

 

En este punto se tratará la manera de adaptar el modelo en 2 dimensiones visto en 

el apartado 2.6 (fish schools) al de 3 dimensiones. 

 

Para el cado del modelo en 3D (al igual que en el caso del 2D) se seguirán teniendo 

como atributos del pez la posición y la orientación, pero en esta ocasión se hará de 

diferente manera el tratamiento de los mismos. 

 28



Para el caso de la posición, se utilizará un vector de tres coordenadas (x,y,z) 

mientas que para el caso de la orientación se usará un vector tridimensional en 

donde estará guardada la orientación que va a tener el pez (también llamado vector 

director). 

 

Seguidamente se mostrará el funcionamiento de las reacciones para el modelo en 

tres dimensiones. 

 

• Repulsión: 

Para la versión en 3D también se tendrá que buscar la dirección perpendicular 

al vecino para que el pez no choque, pero en este caso será algo bastante 

más complicado que para 2D, ya que aparece un tercer plano a tratar 

(coordenada Z). Esta tercera coordenada implicará tener múltiples direcciones 

perpendiculares, por lo que se deberá encontrar un vector director cuyo nuevo 

valor sea además aquel que suponga el menor giro posible para el pez. 
 

• Orientación paralela: 

En este caso, al igual que en la versión 2D, el pez adquirirá la dirección que 

lleve el vecino. Esto supondrá que el vector director del pez pase a contener 

los mismos valores que el del vecino. 
 

• Atracción: 

Como en el caso del método de dos dimensiones, se deberá calcular la nueva 

dirección como la diferencia de posiciones entre el vecino y el pez. Por tanto, 

la nueva dirección del vector director será la diferencia entre el contenido del 

vector de posiciones del vecino y el vector de posiciones del pez. 
 

• Búsqueda: 

Para este último caso, también se deberá buscar una nueva dirección con lo 

que el vector director pasará a tener unos nuevos valores que serán 

totalmente aleatorios. 

 

Para realizar el cálculo de la reacción final del pez en tres dimensiones, se deberá 

sumar (y posteriormente normalizar) el contenido de los vectores directores 

resultantes para cada una de las reacciones provocadas por los vecinos.   

 29



Una vez que se tenga la nueva dirección, se calculará consiguiente la posición que 

acabará ocupando el pez. 

 
 

3.2.4 Detalle de las posibilidades de configuración del simulador 
 
En este punto se detallarán los elementos del simulador que podrán ser 

configurados: 
 

• Número de peces: Se indicará el número de peces con los que se realizará la 

simulación. Hay que tener en cuenta que a mayor número de peces el tiempo 

de proceso será mayor (ya que la complejidad es cuadrática y por tanto el 

crecimiento de tiempo también será notorio), aunque se dispondrá de una 

simulación más rica en cuanto a resultados. Si por el contrario utilizamos 

pocos peces, el resultado será justo lo contrario. 
 

• Resolución del espacio de simulación: Se indicarán las dimensiones y por 

tanto las coordenadas de las posiciones por las que podrán moverse los 

peces. Debido a que es una simulación en tres dimensiones, se deberá 

indicar el valor para las tres coordenadas. Deberán ser valores entre 1 y n. 
 

• Número de iteraciones: Número de pasos de simulación que se quieren 

simular. Evidentemente, con un mayor número de iteraciones y por tanto de 

tiempo, se podrá ver como progresivamente los peces tienden a juntarse.  Si 

por el contrario, se lanza el proceso con pocas iteraciones, es posible que los 

resultados sean confusos por no dar tiempo a que los peces se encuentren 

entre si para acabar juntándose finalmente entre ellos. En todo caso, lo que si 

que se podrán observar serán patrones de comportamiento de los peces que 

lleven a la cohesión del grupo. 
 

• Disposición inicial de los peces: Se podrá elegir la manera en que los peces 

se sitúen inicialmente tanto en posición como para ciertos casos en velocidad 

(dirección). 

Las maneras posibles serán las siguientes: 

• Distribución aleatoria en cualquier posición: Los peces se colocarán 

aleatoriamente distribuidos a lo largo del espacio de simulación que se 

 30



ha dimensionado anteriormente. La velocidad (dirección) también se 

calculará de forma aleatoria. 

• Distribución agrupada en una determinada zona según porcentaje 

sobre el espacio total: Este método se utilizará para que el grupo de 

peces se limite a una cierta zona, delimitado por el porcentaje a ocupar 

respecto el total. Para ello se determinará el porcentaje que se quiere 

ocupar sobre el total de la dimensión y la localización que tendrá dentro 

del espacio de simulación. De esta manera por ejemplo, se podrán 

tener concentrados a todos los peces alrededor del centro del espacio 

de simulación o en una esquina y ver en esos casos como se 

comportan. Tanto el cálculo concreto de la posición como la velocidad 

se calcularán aleatoriamente, pero siempre teniendo en cuenta la 

configuración establecida. Los valores del porcentaje y de la situación 

se indicarán en el fichero de configuración del simulador. 

• Distribución agrupada en una determinada zona según separación 

entre peces: Este método se utilizará para que el grupo de peces se 

limite a una cierta zona siguiendo además una distribución en la que la 

separación entre peces sea una concreta. Para ello se determinará la 

separación que se quiere que haya entre cada pez y la localización que 

tendrá dentro del espacio de simulación. De esta manera se podrá 

obligar a que inicialmente exista una cierta reacción entre los peces 

que desemboque posteriormente en un determinado comportamiento 

del grupo. Tanto la posición como la velocidad se calcularán 

aleatoriamente, pero siempre teniendo en cuenta la configuración 

establecida. Los valores de la separación entre peces y de la situación 

se indicarán en el fichero de configuración. 

• Determinada por fichero de entrada: Se utilizará esta opción para 

aquellos casos en los que no se quiere que se calculen posiciones ni 

velocidades aleatoriamente, sino que lo que se quiere es ver el 

comportamiento del simulador para una determinada situación inicial. 

El fichero de entrada será un fichero de texto en donde se indicará en 

su primera línea el dimensionado del modelo a cargar, mientras que en 

las siguientes se indicará tanto la posición como la velocidad de cada 

 31



uno de los peces. El nombre y directorio del fichero a cargar se 

informarán mediante el fichero de configuración del simulador.  
 

• Número de vecinos: Se indicará el número de vecinos que el pez tenga en 

cuenta para determinar su reacción. Por defecto el valor será 4, ya que es el 

propicio y correcto (según los estudios de Huth y Wissel [1] y [2]). 
 

• Método de elección de vecinos: A la hora de escoger los vecinos que se 

tendrán en cuenta para el cálculo de la reacción, se podrá hacer de dos 

manera distintas. En principio y por defecto se tendrá en cuenta la prioridad 

de la frontalidad, es decir la de escoger aquellos vecinos que estén más en 

frente de un determinado pez. La otra opción de la que se dispone es la de 

que se haga la elección mediante la prioridad de distancia, es decir de 

escoger aquellos vecinos que estén más cerca de un determinado pez.  
 

• Dimensionado de los radios de actuación y del ángulo muerto: Se podrán 

configurar tanto el tamaño de los radios de actuación como del ángulo 

muerto. En un principio y por defecto serán de 0,5 para la repulsión, 2 para la 

orientación paralela y 5 para la atracción. En el caso del ángulo muerto será 

de 30. 
 

• Tamaño de los peces: Se indicará el tamaño que tendrán los peces. En un 

principio el valor será de 3. 
 

• Partición del espacio: Se podrá indicar como se quiere que internamente se 

distribuyan los peces para conseguir mejorar el tiempo de ejecución del 

simulador. Inicialmente y por defecto habrá un único espacio en donde 

estarán todos los peces distribuidos. Para casos en los que haya muchos 

peces y el espacio de simulación sea grande se deberán hacer particiones del 

espacio para que el tiempo de ejecución no sea demasiado elevado, tal y 

como ha quedado explicado en el apartado 3.2.1. Para realizar las 

particiones, se tendrá que indicar el número de partes en las que se quiere 

dividir el espacio de simulación. Se tendrá que hacer para cada una de las 

dimensiones del espacio (x, y, z). De esta manera, cada una de las 

particiones actuará de forma más o menos independiente con lo que se 

conseguirán mejores tiempos de ejecución. 

 32



3.3 Criterios en la parametrización de la simulación 
 

Los criterios a tener en cuenta vendrán dados por la velocidad y por la complejidad 

de la simulación. 

 

Si se quiere realizar la simulación con un gran número de peces, será necesario un 

ordenador bastante potente para que el tiempo de simulación no sea demasiado 

elevado (debido a la complejidad cuadrática de la simulación). 

 

En todo caso, el hecho de tener un equipo potente permitirá realizar los cálculos de 

una manera más rápida y por tanto acelerar el tiempo de la simulación. 

 

Si por el contrario, se dispone de un equipo no demasiado potente, se tendrán que 

hacer simulaciones con pocos elementos, o bien esperar bastante rato a que 

termine. En esta caso, la velocidad también se resentirá ya que será mayor el tiempo 

que tardará el simulador en realizar los cálculos. 

 
 

3.4 Herramientas prácticas a utilizar 
 
Para la realización del proyecto se va a utilizar una herramienta que va a servir para 

la obtención de los resultados de las pruebas mediante un fichero de video. 

 

La herramienta consistirá en un script en unix que genere una imagen (fichero de 

tipo .png) con la representación de la posición de los peces (marcados como puntos) 

sobre el plano cartesiano tridimensional para cada una de las iteraciones (mediante 

la herramienta “gnuplot”). Es decir, si se tiene una simulación en la que hay 100 

iteraciones, el script en unix generará 100 imágenes de tipo .png mostrando la 

distribución de los peces sobre el plano para cada una de esas iteraciones. Una vez 

que el script ha creado esas imágenes, las convertirá a tipo video (mediante la 

herramienta mencoder), generando un fichero .avi en donde se podrá ver la 

simulación como si fuera una animación.  

 
 

 33



3.5 Estudios de los casos de uso del sistema 
 
El hecho de que el propósito del proyecto sea orientado a temas de investigación 

más que al uso del mismo por agentes externos, hace que la interacción entre el 

usuario (actor) y el sistema se limite a la configuración de la simulación. En todo 

caso, será importante dicha configuración porque de ella dependerá el buen 

funcionamiento del simulador. 

 

Así pues, el único caso de uso del sistema será la parametrización inicial por parte 

del usuario de los valores que se vayan a emplear para la ejecución de la 

simulación. 

 

Una vez introducidos esos valores, el programa funcionará autónomamente 

realizando la simulación, sin la necesidad de interacción con el usuario. 

 

 34



 

3.6 Diagrama de bloques 
 
 
 

 

 
Parametrización del simulador 

 
Posicionamiento inicial de los peces 

Búsqueda de los vecinos que rodean a 
cada uno de los peces 

Determinación del tipo de reacción 
provocada por cada uno de sus vecinos 

Cálculo de la nueva posición y 
velocidad de los peces, en función de 

las reacciones de sus vecinos 

Escribir la nueva posición y dirección 
al fichero correspondiente para cada 

uno de los peces. Escribir estadísticas. 

 

 

 
 
 
 

 

 

 
 

 
 
 
 
 
 
 

 

 

 35



 

4. Diseño 
 
En este capitulo se indicarán todas los detalles correspondientes al diseño del 

simulador. Entre ellos, aparecerán las estructuras de datos utilizadas y la estructura 

modular. 

 
 

4.1 Estructura modular 
 
La estructura modular se podrá dividir en 3 partes: 
 

1. Inicializador del simulador: 

• Creación de la matriz que servirá como divisor en partes del espacio 

de simulación: Se creará una estructura estática tridimensional para 

particionar el espacio de simulación en un determinado número de 

partes y de esta manera poder minimizar el tiempo necesario para 

el cálculo de vecinos de un determinado pez. 

• Cálculo de las posiciones iniciales (aleatorias / condicionadas): 

Módulo encargado de calcular las posiciones y direcciones iniciales 

de todos los peces. Podrán ser o bien aleatorias (escogiéndose 

también que porcentaje de distribución y en que posición del 

espacio), o bien siguiendo algún patrón para comprobar como actúa 

el simulador.  

• Posicionamiento en el cubo correspondiente del espacio de 

simulación según la posición en la que se encuentre el pez: Se 

crearán elementos tipo “pez” que serán referenciados por la 

posición de la matriz que les correspondan. 
 

2. Simulador: 

• Obtención de los vecinos de un determinado pez: A partir de cada 

una de las listas y para cada uno de los peces, calculará la distancia 

y seleccionará los peces que sean vecinos (en principio hasta 4) 

según la prioridad elegida (en principio de frontalidad). El módulo 

 36



devolverá una lista con la identificación de los 4 vecinos 

seleccionados. 

• Obtener la reacción para cada uno de los vecinos: Según la 

posición que ocupe cada uno de los peces vecinos, se obtendrá una 

reacción asociada a ese pez que se traducirá en una nueva 

velocidad (dirección) para el pez origen. 

• Cálculo de la reacción final del pez: A partir de todas las 

afectaciones de los diferentes vecinos, se calcularán los nuevos 

valores de dirección y posición, teniendo en cuenta que serán 

fórmulas para tratar coordenadas en tres dimensiones. 
 

3. Comunes: 

• Cálculo y gestión del cuadrante (cubo) de localización de cada pez: 

A partir de la posición que ocupe el pez y de la definición de la 

matriz, se calculará la posición que le corresponderá dentro de la 

misma. A continuación, se gestionará la lista de peces por zona, 

eliminando el pez de la zona que ocupe y añadiéndolo en la nueva 

(siempre y cuando haya un cambio de zona del pez). 

• Cálculo del grado de cohesión y del grado de dirección: Se 

calculará el grado de cohesión del fish schools, para determinar lo 

juntos o no que están los peces entre si y el grado de similitud de 

sus direcciónes (polarización).   

• Envío a fichero de los nuevos valores (dirección, posición e 

identificador del pez) y grado de cohesión (extensión/expanse) y 

polarización: Se enviarán a los correspondientes ficheros los datos 

de los peces y las estadísticas de la simulación para cada iteración. 

 
 
La comunicación entre módulos será mediante envío y recepción de parámetros. 

Cada uno de los módulos enviará los parámetros para un determinado pez y el 

resultado del cálculo será devuelto para que en función de este, se actúe de una 

manera u otra. Se trabajará normalmente con listas, que serán enviadas y devueltas 

por los módulos una vez realizadas las operaciones correspondientes. 

 
 

 37



4.2 Estructuras de datos 
 

La estructura general se fundamenta en tener un vector de listas dinámicas y que 

estas a su vez tengan elementos de tipo “pez”. Este tipo de estructura está 

destinada a que se pueda dividir el espacio en tantas partes como se quieran y de 

esta forma, agilizar el tiempo de ejecución. Cada una de las posiciones del vector 

representará a cada una de las particiones en las que se ha dividido el espacio de 

simulación (se indiciará en el fichero de configuración).  

 

Una vez definido el vector (con un tamaño igual al número de particiones), serán 

referenciadas de cada una de sus posiciones las listas dinámicas de elementos de 

tipo pez que indicaran que peces están asociados a una parte concreta del espacio 

de simulación.  

 

Es decir, todos los peces que estén en la misma lista dinámica de una determinada 

posición del vector serán peces que compartan la misma partición (ya que están 

próximos entre si) y que se tendrán que tener en cuenta para ver si son vecinos. A 

parte de estos posibles vecinos, también se tendrá que buscar en cuadrantes 

colindantes por si algún otro pez pudiera ser candidato a vecino. 

 

El hecho de particionar el espacio de simulación, supondrá que se tenga que 

comparar cada uno de los peces con menos vecinos de alrededor ya que solo se 

fijarán en los que estén próximos a el. 

 

Si no se realiza ningún tipo de partición, es decir que se trata todo el espacio de 

simulación de forma unitaria, existirá una única posición de vector y en esa posición 

estará la lista con todos los peces. 

 

En la figura 4.1 se muestra un vector de 5 posiciones (serían 5 particiones del 

espacio) y de cada una de las posiciones es referenciada la lista de peces que 

tendrá tantos elementos como peces haya en cada partición.  

 

 

 

 38



 

 

 

 

 

 

 

 
Figura 4.1: Esquema de la estructura de datos del simulador 

 
 
 

Para llevar a cabo la estructura de los datos, se pasará a describir a continuación las 

clases de que está compuesto el simulador. 

 

Se dispondrá de la clase pez  (se llamará pez) que contendrá la información de 

todos los peces. Cada elemento de tipo pez contendrá su posición, velocidad e 

identificador, así como otros atributos auxiliares. 

 

La segunda clase definirá la lista que se ha visto anteriormente, y tendrá el nombre 

de “lista”. Esta clase se encargará de gestionar las listas de peces que se creen. La 

lista que se defina en esta clase será de elementos de tipo pez. 

 

La tercera clase definirá lo que será el vector (clase llamada vectora), y gestionará el 

vector de particiones y los punteros de las listas. 

 

Finalmente se dispondrá de 2 clases secundarias que servirán por un lado para 

generar números aleatorios (gen_numeros) y una segunda para controlar si un pez 

que ocupa una nueva posición ya está siendo ocupada por otro pez. Esta segunda 

será principalmente una lista en donde se añadirán las posiciones de los peces para 

que cuando se vaya a recolocar otro se controle si ya había sido ocupada esa 

posición. 

 

 

 

 39



4.3 Diagrama de clases 
 
 
 

 

Pez   

id : int   
posicion[3] : float    
direccion[3] : float   
velocidad : float   

direccion_nueva[3] : float   
tratado : bool    

*sig : pez     
pez()   

~pez()   
escribir_fichero(ofstream &,ofstream &) : void

posiciones() : float *   
direcciones() : float *   

ob tener_velocidad() : float   
obtener_id() : id   

marcar_tratado() : void   
obtener_tratado() : bool   
quitar_tratado() : void   

poner_direccion(float,float,float) : void
poner_direccion_nueva(float,float,float) : void

poner_velocidad_nueva(float) : void 
poner_posicio n_nueva(float,float,float) : void

reemplazar_direcciones() : void   

Lista   

listaok : list<pez *>   
iterator it : list<pez *>::iterator   

lista()   
~lista()   

meter_alfinal (float,float,float,float,float,float 
,float,int) : pez *   

borrar_peces (list<pez *>::iterato r) : list<pez 
*>::iterator   

meter_direccion (pez *) : void   
obtener_estadisticas (float *) : float *   

distancia_euclidiana(pez *,pez *) : float
distancia_vertical(pez *,pez *) : float * 

vecinos_distancia(int) : void   
vecinos_frontal(int) : void   

vecinos_radios_reacciones(int,float,float) :  
float *   

cono(pez *,pez *,int) : bool   
angulo(pez *,pez *) : float *   

quitar_tapan() : void   
obtener_nueva_direccion(int) : int   

repulsion(pez *,pez *) : float *   
orientacion_paralela(pez *) : float *   

atraccion(pez *,pez *) : float  *   
busqueda(int,int,int) : float *   

vecinos_radios_busqueda(int,int,int) : float *
calcular_velocidad() : float   

actualizacion_direccion(pez *) : void   
calcular_nueva_posicion(pez *,int,int,int) :   

float *   
marcar_como_tratado(pez *) : void   
quitar_como_tratad o(pez *) : void   

preguntar_tratado(pez *) : bool   
informar_nuevos_valores(float *,float) : void
nuevos_valores_pez(pez *,float *,float) : void

mirar_posicion0(float,float,float) : bool 
escribir_fichero_lista(ofstream &,ofstream &) : 

void   

1

 

 40



   

    Vectora  
 myvector : vector<lista *>    itv : vector<lista *  >::iterator    vec_x_up : vector<lista *>     vec_x_down : vector<lista *>     vec_y_up : vector<lista *>    vec_y_down : vector<lista *>     vec_z_up : vector<lista *>     vec_z_down : vector<lista *>     vec_posicionx : vector<posici_clase *>     vec_posiciony : vector<posici_clase *   >     vec_posicionz : vector<posici_clase *>     
 vectora()  ~vectora()  meter_valores (unsigned int,lista *) : void     meter_vecinos_xup (unsigned int,lista *) : void     meter_vecinos_xdown (unsigned int,lista *) : void     meter_vecinos_yup (unsigned int,lista *) : void     met er_vecinos_ydown (unsigned int,lista *) : void     meter_vecinos_zup (unsigned int,lista *) : void     meter_vecinos_zdown (unsigned int,lista *) : void     asignar_tamanyo (unsigned int) : void     obtener_estadisticas (float *,int) : float*     posicion_vector_nul l(int) : b  ool     posicion_vector_vecinos_null_xup(int) : bool     posicion_vector_vecinos_null_xdown(int) : bool     posicion_vector_vecinos_null_yup(int) : bool     posicion_vector_vecinos_null_ydown(int) : bool     posicion_vector_vecinos_null_zup(int) : bool     posicion_vector_vecinos  _null_zdown(int) : bool     obtener_direccion_lista (int) : lista *     posicion_del_vector(float,float,float,float,float,float) : int     posicion_origen_vector(int &,int &,int &,int,int,int) : void     obtener_direccion_lista_xup (int) : lista *     obtener_direccion_lista_  xdown (int) : lista *     obtener_direccion_lista_yup (int) : lista *     obtener_direccion_lista_ydown (int) : lista *     obtener_direccion_lista_zup (int) : lista *     obtener_direccion_lista_zdown (int) : lista *     inicializar_direccion_lista_xup (int) : void     inicializ ar_direccion_lista_xdown (int) : void     inicializar_direccion_lista_yup (int) : void     inicializar_direccion_lista_ydown (int) : void     inicializar_direccion_lista_zup (int) : void     inicializar_direccion_lista_zdown (int) : void     inicializar_vectores_posx (int) :    void     inicializar_vectores_posy (int) : void     inicializar_vectores_posz (int) : void     vecinos(int,float,float,float,float,int,int,int,int,int,int,float,int,int) : float*    vecinos_1 (lista  

*,int,float,float,float,float,int,int,int,int,int,int,float,int,unsigned    int,int) :    
float*  simulacion (int,int,int,int,int,int,float,float) : void     simulacion_lista (lista *,int,int,int,int,int,int,float,int) : void     simulacion_lista_vecinos (lista *,int,int,int,int,int,int,int,float) : void     dev_posicion_vector(float,float,float  ,int,int,int,int,int,int,float) : int     reorganizar_estructura(int,in t,int,int,int,int,float,int,lista *,list<pez    

*>::iterator) : list<pez *>::iterator     vecinos_simulacion(int,int,int,int,int,int,int,list<pez *>::iterator,float) :   
void  borrar_listas_vecinas(i  nt) : void     posicion_libre(float &,float &,float &,int,int,int,int,int,int,float,int) : int     escribir_fichero(ofstream &,ofstream &,ofstream &,float *) : void     dev_cuadrante(float,float,float,int &,int &,int &,int,int,int,int,int,int) :    
void  mirar_posicion1(f  loat,float,float,unsigned int) : bool     

gen_numeros     
   numero_peces : int     tamanyo_x : int     tamanyo_y : int     tamanyo_z : iny     
 gen_numeros()     ~gen_numeros()     obtener_numero_x(int,int) : int     obtener_numero_y(int,int) : int     obtener_numero_z(int,int) : int     obtener_numeros_rad() : int*     obtener_numero_rads_x(int,int,int,int) : int     obtener_numero_rads_y(int,int,int,int) : int     obtener_numero_rads_z(int,int,int,int) : int     
 

posici_clase     
   posi   ciones_v : list<int>     
 posici_clase()     ~posici_clase()     meter_direccion (int) : void     

1

 41



 

5. Implementación 
 
En este capitulo se mostrará la manera en la que se han implementado las 

reacciones de los peces y el algoritmo del simulador. 

 
 

5.1 Algoritmo 
 
La implementación del simulador comienza con la carga de un fichero de 

configuración del cual se lee línea a línea y según el orden de esta, se guarda el 

contenido en la variable correspondiente. 

 

A continuación, se inicializarán el generador de números aleatorios y las estructuras 

dependientes del tamaño del espacio de simulación sobre las que se moverán los 

peces. 

 

En función del método de colocación de los peces inicialmente (definido en el fichero 

de simulación), se pasarán a realizar unas acciones u otras: 
 

• Para el caso de definir las posiciones de los peces a partir de un fichero, 

se realizará un bucle que ira leyendo las posiciones y velocidades de los 

peces definidos en el fichero. Se irán introduciendo los peces en las listas 

en su correspondiente posición según el lugar que ocupen en el espacio 

de simulación.  

• Para el caso de definir las posiciones de los peces de forma aleatoria tanto 

para todo el espacio de simulación como en parte de el, se deberán crear 

tantos elementos de tipo “pez” como se haya indicado en el fichero de 

configuración. Para ello se crearán elementos de tipo “pez” con sus 

posiciones y velocidades aleatorias, que seguidamente serán incluidos en 

las listas en su correspondiente posición.  

• Para el caso de definir las posiciones de los peces de forma aleatoria pero 

separadas por un determinado espacio, se configurará lo que será la 

definición de las posiciones que ocuparan los peces para que entre ellos 

 42



esté el espacio definido en el fichero de configuración. Una vez 

configurado, se crearán los peces y se les darán las posiciones que les 

correspondan según la definición anterior. A medida que se vayan creando 

los elementos de tipo “pez”, se irán introduciendo en las listas en su 

correspondiente posición según el lugar que ocupen del espacio de 

simulación.  

 

Para los 3 métodos, se realizará finalmente la acción de guardar en unas 

listas los peces que puedan ser vecinos de otros peces que estén situados 

en cuadrantes colindantes. 

 

Si no ha habido ningún problema en la creación de peces anterior, se pasará a 

realizar el cálculo de las reacciones de los peces con sus respectivos vecinos y que 

supondrán los cambio en sus velocidades. Para ello se realizará lo siguiente: 
 

• Para cada posición del vector y para cada elemento de la lista se buscarán 

los vecinos de cada uno de los peces que conforman dicha lista. Primero 

se mirarán los vecinos que pudieran estar en particiones contiguas y luego 

los peces que ocupen su misma posición del vector (es decir su mismo 

cuadrante). Una vez que se tienen todos, se quitarán los vecinos que 

están en el ángulo muerto del pez. A continuación, se tendrán que coger 

aquellos peces cuya distancia esté dentro del radio de acción. De todos 

ellos, se quitarán los que están tapados. Con el resto y en función del 

método de prioridad (frontal o por distancia), se deberá calcular cuales de 

ellos son los más prioritarios, teniendo en cuenta el número de vecinos a 

escoger, que en principio será de 4. 

• Una vez escogidos los vecinos, se calcularán las reacciones para cada 

uno de ellos en función de la posición que ocupen sus vecinos. Así pues, 

habrá reacción de repulsión, de orientación paralela o de atracción. El 

resultado de cada una de ellas se normalizará y se sumará para dar la 

nueva velocidad del pez. En el caso de que no haya peces cerca, la 

reacción del pez será la de búsqueda. Dicha reacción supondrá el cálculo 

aleatorio de un nuevo vector de velocidades. Finalmente se pasarán las 

 43



nuevas velocidades de los peces a sus correspondientes atributos de la 

clase “pez”. 

• Otra funcionalidad que se aprovechará para calcular serán las estadísticas 

finales de grado de misma dirección y de cohesión. 

 

A continuación se acabarán de hacer cálculos con los datos obtenidos que serán 

mostrados posteriormente en las estadísticas.  

 

Seguidamente se escribirán las nuevas posiciones y direcciones (velocidades) junto 

con el identificador de los peces en los ficheros correspondientes. También se 

escribirá la primera línea del fichero de estadísticas con los primeros valores 

obtenidos. 

 

En este punto comenzaría en si el simulador, formado por un bucle que se repetirá 

tantas veces como se haya indicado en el fichero de configuración. Para cada 

iteración se realizarán las siguientes acciones: 
 

• Para cada posición del vector y para cada elemento de la lista se 

reemplazará la nueva dirección del pez (velocidad) por la antigua, se 

calculará la nueva posición del pez (a partir de su nueva velocidad) 

teniendo en cuenta que no este ocupada previamente, se informará a los 

atributos del pez de su nueva posición y finalmente se reorganizará la 

estructura, moviendo los elementos pez (en el caso en que corresponda)  

de la lista de la posición del vector en la que estaban a la nueva posición 

(en caso de que su posición suponga cambio de partición) y marcando 

como tratado a ese pez para no volver a calcular su posición. Si no hay 

particiones en la configuración inicial, no supondrá ningún cambio en la 

estructura. 

• A continuación, se inicializarán los vectores de vecinos. 

• También se inicializarán los indicadores de peces tratados, para que en la 

nueva iteración se recalcule todo de nuevo. Finalmente se guardarán las 

posiciones que se van ocupando por los peces, para que posteriores 

peces no ocupen la misma posición.  

 44



• Seguidamente se pasará de nuevo al cálculo de las reacciones de los 

peces con sus respectivos vecinos, de la misma manera que se ha 

indicado anteriormente. 

• Como último paso, se enviarán al fichero los nuevos valores de las 

posiciones, de las direcciones y de las estadísticas. 

 
 

5.2 Implementación de las reacciones de los peces 
 
 
A continuación se describirá la implementación a llevar a cabo de las fórmulas 

correspondientes a las reacciones de los peces. 

 

Para la implementación en 3D se utilizarán dos vectores con los que se definirán la 

posición y la dirección del pez. 

 

Se tendrá que tener en cuenta que el hecho de trabajar en un espacio tridimensional 

hará que la representación de los radios mediante circunferencias en el sistema de 2 

dimensiones pasen a ser esferas para el modelo en 3 dimensiones. 

Consecuentemente, el ángulo muerto pasará a estar representado como un cono.  

 

Seguidamente se va a mencionar la nomenclatura de las variables que aparecerán 

en las fórmulas: 

  
     Pi (xi, yi, zi) : Vector de posiciones del pez.  
 
     νi (νx, νy, νz) : Vector de velocidades / direcciones del pez (vector director).  
 
 

Para el caso de los vectores de los vecinos serán Pj y νj. 
 

    νi j : Vector que representa la reacción del pez i-ésimo sobre el vecino j-ésimo.  
 
 
 
 
 

 45



   Y a continuación el detalle para cada una de las reacciones:   
 
 
Repulsión 
 
El pez deberá tener una dirección perpendicular al vecino, con la realización del 

menor giro posible. 

 

Para conseguir el vector perpendicular a νj, se deberán poner los vectores νj y νi en 

el origen del sistema de coordenadas. A continuación será necesario encontrar el 

plano que contiene el origen de coordenadas y es perpendicular a νj y una vez 

encontrado el plano, buscar el vector νi j que permita que el ángulo de rotación sea el 

mínimo.  

 

Como consecuencia, se van a obtener 3 valores (xi j,yi j,zi j) que van a ser la relación 

de perpendicularidad entre el pez y el vecino para cada una de las tres coordenadas. 

 

De esta manera, los nuevos valores del vector de velocidad del pez serán los 

correspondientes a las variables xi j, yi j y  y zi j obtenidas de la siguiente fórmula: 

 

 
 

 
 
Orientación paralela 
 
El pez origen cambiará las coordenadas de su vector de velocidad por las de su 

vecino.  

 

 46



Así pues, el vector νi j que representa la reacción del pez i-ésimo sobre el vecino j-

ésimo pasará a tener la dirección que lleve el vecino j-ésimo: 

 
                                                                     →          → 

Vij = Vj 
 
 
Atracción 
 

El pez origen cambiará las coordenadas de su vector de velocidad por las de la 

diferencia entre la posición de su vecino y la suya, siendo Pj y Pi las posiciones del 

vecino j-énesimo y del pez i-ésimo. Consecuentemente el vector νi j que representa 

la reacción del pez i-ésimo sobre el vecino j-ésimo pasará a tener como nueva 

dirección, la diferencia entre los valores del vector de posiciones del vecino respecto 

a los valores del vector de posiciones del pez: 

 
                                                               →          →       → 

Vij = Pj  -  Pi 
 

 
Búsqueda 
 
El pez origen cambiará las coordenadas de su vector de velocidad por otras que se 

obtendrán de maneara aleatoria. 

                                                                                  
 
 
Reacción Final 
 
La reacción final del pez vendrá dada por el sumatorio de los νij obtenidos 

anteriormente según la reacción dada por los vecinos. Así pues, se realizará la suma 

de los valores obtenidos en los vectores que representan las reacciones de los 

peces i-ésimos sobre los vecinos j-ésimos: 

 

 

 47



6. Pruebas 
 
En este punto se van a realizar un conjunto de pruebas con el fin de comprobar el 

comportamiento del simulador.  

 

Las pruebas se dividirán en dos partes. La primera consistirá en verificar el correcto 

funcionamiento del sistema, mientras que la segunda serán pruebas a nivel de 

software. 

  

Dentro de las pruebas de verificación del sistema se van a encontrar tres tipos: 
 

• Verificar que el resultado del modulado de cada reacción es correcto: 

o Repulsión 

o Orientación paralela 

o Atracción 

o Búsqueda 

o Comportamiento correcto de los vecinos tapados (para todas las 

reacciones) 

• Comprobar que el comportamiento emergente de la interacción de las 

reacciones es correcto: 

o Comprobar que los resultados obtenidos con el simulador sean los 

mismos que los aparecidos en la documentación de referencia [1] y [2]. 

• Experimentos adicionales que demuestren robustez del sistema y facilidades 

para los usuarios. 

o Pruebas de porcentaje de actuación de cada una de las reacciones 

respecto al total. 

o Pruebas generales de comportamiento, según disposición inicial de los 

peces: 

 Distribución aleatoria a través de todo el espacio de simulación. 

 Distribución aleatoria en el centro del espacio de simulación por 

porcentaje. 

 Distribución aleatoria en una esquina del espacio de simulación 

por porcentaje. 

 48



 Distribución aleatoria en el centro del espacio de simulación por 

distancia entre peces. 

 Distribución aleatoria en un lado del espacio de simulación por 

distancia entre peces. 

o Pruebas de cambio de configuración: 

 Aumentar al doble y reducir a la mitad el tamaño de los radios 

(respecto a los valores por defecto).  

 Aumentar al doble y reducir a la mitad el número de vecinos a 

escoger (respecto a los valores por defecto). 

 Cambiar el método de elección de vecinos a prioridad por 

distancia (en lugar de prioridad por frontalidad). 

 

En cuanto a las pruebas a nivel de software, se realizará una comparativa de 

tiempos de ejecución del simulador, en función del número de particiones en las que 

se divida el espacio de configuración. 

 

Hay que tener en cuenta, que los indicadores que aparecerán en las gráficas 

representan lo siguiente: 
 

• P (x,y,z) – V (x,y,z): Vector de posición y velocidad para un determinado pez. 

El vector de posición muestra la posición del pez expresado en tres 

dimensiones (x,y,z). El vector de velocidad, indica la dirección/sentido sobre 

el plano que tiene el pez (x,y,z). 

• En cuanto a la polarización (polarization) y a la extensión (expanse) 

representan el grado de homogeneidad y cohesión del grupo (tal y como se 

define en el apartado “fish schools” del capitulo 2). 

 49



 

6.1 Pruebas de verificación del sistema 
 
 

6.1.1 Verificación del modulado de las reacciones 
 
 

6.1.1.1 Repulsión 
 
En esta prueba se va a verificar el correcto funcionamiento de la reacción de 

repulsión.  

 

Para ello se va a partir de una situación inicial con dos peces que se encuentran a 

una distancia menor a r1. Teniendo en cuenta que el tamaño del pez es de 3 y el 

valor de r1 es 0.5 se puede comprobar que la distancia entre ambos peces es menor 

de 1.5.  

 

Las siguientes 2 gráficas mostrarán la situación inicial y la que queda una vez 

producida la reacción de repulsión. Se podrá comprobar como ha influido la reacción 

de repulsión en los valores tanto del vector de posiciones como de velocidades: 
 

 
 

 50



Comprobando los resultados obtenidos se puede ver que ambos peces han tomado 

correctamente una dirección perpendicular respecto a la que tenía su vecino. De 

esta manera ambos evitarán chocar con su respectivo vecino.  

 
 

6.1.1.2 Orientación paralela 
 
En esta prueba se va a verificar el correcto funcionamiento de la reacción de 

orientación paralela.  

 

Para ello se va a partir de una situación inicial con dos peces que se encuentran a 

una distancia entre r1 y r2. Teniendo en cuenta que el tamaño del pez es de 3 y el 

valor de r1 es 0.5 y de r2 es de 2, se puede comprobar que la distancia entre ambos 

peces esta entre  1.5 y 6.  

 

Con las siguientes 2 gráficas se va a mostrar la situación inicial y la situación que 

queda una vez producida la reacción de orientación paralela. También se podrá 

comprobar como ha influido la reacción de orientación paralela en los valores tanto 

del vector de posiciones como del vector de velocidades: 
 

 
 
 

 51



Viendo los resultados obtenidos, se puede apreciar que ambos peces han copiado 

correctamente la velocidad que tenía su respectivo vecino para orientarse en la 

misma dirección.  

 
 

6.1.1.3 Atracción 
 
En esta prueba se va a verificar el correcto funcionamiento de la reacción de 

atracción.  

 

Para ello se va a partir de una situación inicial con dos peces que se encuentran a 

una distancia entre r2 y r3. Teniendo en cuenta que el tamaño del pez es de 3 y el 

valor de r2 es 2 y de r3 es de 5, se puede comprobar que la distancia entre ambos 

peces esta entre  6 y 15.  

 

En las próximas 2 gráficas se mostrará la situación inicial y la situación que queda una 

vez producida la reacción de atracción. Además se podrá apreciar como ha influido la 

reacción de atracción en los valores tanto del vector de posiciones como del vector de 

velocidades: 
 

 
 
 

 52



A partir de los resultados mostrados en las gráficas, se puede ver que las nuevas 

direcciones de ambos peces son correctamente el resultado de las diferencias de 

posición entre ellos.  De esta manera, ambos peces tienden a acercarse. 

 
 

6.1.1.4 Búsqueda 
 
En esta prueba se va a verificar el correcto funcionamiento de la reacción de 

búsqueda.  

 

Para ello se va a partir de una situación inicial con dos peces que se encuentran a 

una distancia superior a r3. Teniendo en cuenta que el tamaño del pez es de 3 y el 

valor de r3 es de 5, se puede comprobar que la distancia entre ambos peces es 

superior a 15.  

 

En las siguientes 2 gráficas se va a mostrar la situación inicial y la situación que 

queda una vez producida la reacción de búsqueda.  

 

Se podrá comprobar también como ha influido la reacción de búsqueda en los 

valores tanto del vector de posiciones como del vector de velocidades: 
 

 
 

 53



A continuación se van a analizar los resultados obtenidos. Como se puede ver, las 

nuevas direcciones de ambos peces son correctamente nuevos valores aleatorios que 

se corresponden con un cambio en la dirección que llevaba el pez en busca de 

vecinos en otras direcciones. 

 
 

6.1.1.5 Caso en el que un pez esté siendo tapado por otro 
 
En esta prueba se va a verificar el correcto funcionamiento de los casos en los que 

existen vecinos tapados y por tanto no han de tenerse en cuenta.  

 

Para ello se va a partir de una situación inicial con tres peces que se encuentran a 

una distancia tal, que su reacción será la de orientación paralela. La prueba consiste 

en ver que dirección cogerá el pez origen, si solo tiene en cuenta la del pez que ve, 

o también coge la del pez que esta tapado.  

 

En las siguientes 2 gráficas se van a mostrar la situación inicial y la situación que 

queda una vez producida la reacción de orientación paralela.  

 

Se podrá comprobar si ha influenciado o no el pez tapado: 
 

 
 
 

 54



A continuación se van a analizar los resultados obtenidos. Se tomará como pez de 

referencia el que tiene como posición inicial la (24,24,6). Se puede ver que tiene dos 

peces vecinos, pero que uno de ellos está en el mismo ángulo de visión y por detrás, 

con lo que está tapado. En la primera iteración se puede observar como sólo ha 

tenido en cuenta el pez que ve, ya que ha copiado sólo su dirección (-1,0,0), con lo 

que se  puede considerar la prueba es correcta. 

 
 

6.1.2 Comprobación del comportamiento emergente de la 
interacción de las reacciones 

 
 
Comprobación de los resultados obtenidos con el simulador respeto a 
los aparecidos en la documentación de referencia ([1] y [2])
 
Esta prueba va a servir para validar si los resultados del simulador se corresponden 

con los aparecidos en la documentación y por tanto dar como correcto el 

funcionamiento del mismo. 

 

Lo que se pretende es verificar como los peces tienden a agruparse. Para ello, se 

partirá de dos grupos independientes de peces que se encuentran a una distancia 

próxima entre ellos y que mediante el conjunto de reacciones propias de los peces 

acabarán haciendo que los dos grupos se vayan acercando entre ellos hasta 

finalmente acabar unidos. 

 

En un principio se realizará la simulación (mostrando las graficas de los resultados 

obtenidos) y posteriormente se incluirá el gráfico aparecido en la documentación [1] y 

[2]. De esta manera se podrán comparar ambos resultados. 

 

Los datos de la simulación son: 

o 21 peces,  100x100x1 de resolución y 60 iteraciones 
 

 

 

 

 

 55



En el siguiente conjunto de gráficas se muestra la evolución de la simulación desde la 

posición inicial hasta la iteración 60: 
 

 

 56



 57



 

 

 

 

 58



 

 
 

 

 59



 

 
 

Analizando los resultados se puede comprobar como se partió de una posición inicial 

en la que dos grupos separados tienen sus direcciones propicias para que finalmente 

acaben juntándose. Pocas iteraciones posteriores se pude comprobar como dichos 

grupos se juntan en uno único tendiendo todo el grupo a continuar en la misma 

dirección que traían ambos grupos. Por tanto se puede considerar como correcto el 

resultado de la prueba.  

 
A continuación se mostrará la gráfica (figura 6.1) de los resultados aparecidos en la 

documentación de referencia para esta prueba. Se puede apreciar la evolución de la 

simulación mediante los 3 pasos existentes (a, b y c): 

 

 
 

Figura 6.1: Simulación de la unión de dos grupos de peces 
 

 60



Comparando los resultados del simulador con los de la documentación, se puede 

llegar a la conclusión de que el funcionamiento del simulador es correcto ya que se 

obtienen los mismos resultados que los existentes en la documentación de 

referencia. 

 
 

6.1.3 Experimentos adicionales 
 
 

6.1.3.1 Pruebas de porcentaje de actuación de cada una de las 
reacciones respecto al total 

 
 
Partiendo de una simulación con una distribución como la que aparece en la figura 

6.2a (1000 peces, 500x500x20 de resolución), se podrá ver la evolución del grado 

de actuación de las reacciones a lo largo de la ejecución de la simulación hasta 

llegar al final de la misma (figura 6.2b).  

 

  
     Figura 6.2a: Distribución inicial de los peces   Figura 6.2b: Distribución final de los peces  

 
 

 

 

 

 

 

 61



El resultado para cada una de las iteraciones es el siguiente:  
 

Número de 
Iteración 

Repulsión 
[%] 

Orientación 
Paralela [%] 

Atracción 
[%] 

Búsqueda 
[%] 

 

0 0,106 8,855 82,185 8,855 
 

1 0 12,777 80,376 6,847 
 

2 0,091 17,425 75,751 6,733 
 

3 0,174 22,125 70,862 6,838 
 

4 0,168 28,943 64,975 5,914 
 

5 0,367 38,452 54,949 6,232 
 

6 0,435 41,512 51,326 6,727 
 

7 0,463 47,974 46,314 5,249 
 

8 0,604 50,396 43,186 5,814 
 

9 0,517 56,056 37,851 5,576 
 
 

10 0,910 58,806 35,262 5,022 
 

25 4,855 80,450 11,061 3,633 
 

50 5,559 82,712 10,099 1,630 
 
 

75 6,090 86,346 6,390 1,174 
 
 

100 7,886 86,180 5,159 0,775 
 
 

250 16,794 78,874 4,154 0,178 
 

500 23,597 73,233 3,094 0,075 
 

750 23,886 69,554 6,535 0,025 
 

1000 29,325 66,375 4,300 0 
 

2000 26,175 71,325 2,500 0 
 

3000 28,400 60,075 11,525 0 
 

3500 25,150 68,100 6,750 0 

 62



Una vez obtenidos los resultados, se puede comprobar como inicialmente y debido a 

la gran separación entre peces, el mayor porcentaje de actuación es el de atracción.A 

medida que los peces se van uniendo, el mayor porcentaje pasa a ser el de 

orientación paralela ya que este está presente en distancias más pequeñas entre 

peces. Finalmente, en el momento en el que el grupo pasa a estar muy cohesionado, 

las reacciones que más se dan son la de orientación paralela y la de repulsión, debido 

a la pequeña distancia existente entre peces.  

 

6.1.3.2 Pruebas de comportamiento, según disposición inicial de los 
peces 

 
Distribución aleatoria a través de todo el espacio de simulación 
 
En esta prueba se va a verificar el correcto comportamiento para un caso genérico de 

simulación en la que la distribución de los peces inicial sea aleatoria y distribuida por 

todo el espacio de simulación.  

 

Los datos de la simulación son: 

o 1000 peces,  500x500x20 de resolución y 3500 iteraciones 

 

En el siguiente conjunto de gráficas se va a mostrar la evolución de la simulación 

desde la posición inicial hasta la iteración 3500:  
 

 
 
 
 

 

 

 
 

 

 

 
 

 

 63



 
 

 

 
 

Analizando los resultados obtenidos, se puede comprobar que se ha pasado de una 

situación inicial en la que los peces estaban completamente repartidos por todo el 

espacio de simulación (extensión/expanse: 205) a una situación después de 3500 

iteraciones en la que todos los peces están juntos (extensión/expanse: 7). En las 

iteraciones intermedias se puede ver como los peces se van juntando en grupos hasta 

que finalmente queda un único grupo con todos ellos. Por tanto, se puede considerar 

como correcto el resultado de la prueba. 

 
 
 
Distribución aleatoria en el centro del espacio de simulación por 
porcentaje 
 
En esta prueba se va a verificar el correcto comportamiento para un caso genérico de 

simulación en la que la distribución de los peces este agrupada en un espacio del 

10% sobre el total y que esté situada en el centro.  

 

Los datos de la simulación son: 

o 1000 peces,  1000x1000x40 de resolución y 4500 iteraciones 

o Porcentaje 10 (Distribución de los puntos del 10% del espacio), Posición  

50x50x50 (La posición será en el centro).  

 

 

 

 64



Con el siguiente conjunto de gráficas se mostrará la evolución de la simulación desde 

la posición inicial hasta la iteración 4500: 
 

 

  

 

 65



Viendo los resultados de la prueba, se puede comprobar que en la posición inicial los 

peces estaban agrupados en el centro. Después de algunas iteraciones, ese grupo se 

ha ido separando hasta quedar 2 grupos. En dichos grupos ha existido una fuerte 

cohesión y se han ido moviendo hasta casi juntarse entre ellos. Como se puede 

comprobar, finalmente en la iteración 4500 se acaba formando un único grupo, dando 

un grado de polarización bastante bajo (0.29) con lo que se puede considerar como 

correcto el resultado de la prueba.  

 
 
 
Distribución aleatoria en una esquina del espacio de simulación por 
porcentaje 
 
En esta prueba se va a verificar el correcto comportamiento para un caso genérico de 

simulación en la que la distribución de los peces este agrupada en un espacio del 

10% sobre el total y que esté situada en una esquina.  

 

Los datos de la simulación son: 

o 1000 peces,  1000x1000x40 de resolución y 3500 iteraciones 

o Porcentaje 10 (Distribución de los puntos del 10% del total del espacio), 

Posición  5x5x5 (La posición será en una esquina).  

 

Mediante el siguiente conjunto de gráficas se va a mostrar la evolución de la 

simulación desde la posición inicial hasta la iteración 3500: 
 

 
 
 

 66



 

  
 
A continuación se van a analizar los resultados obtenidos. Como se puede 

comprobar, en la posición inicial los peces estaban agrupados en una esquina, 

aunque sus direcciones eran bastante desiguales entre ellos (Polarización: 1,29). El 

hecho de producirse una reflexión de las direcciones de los peces en la esquina y por 

tanto igualar las direcciones, permite que pocas iteraciones después exista una 

cohesión bastante fuerte (en la iteración 1000 la polarización ha bajado a 0.31 y la 

extensión a 8.84). En el resto de iteraciones hasta la final, se consigue que el grupo 

siga totalmente junto. Por tanto se puede considerar como correcto el resultado de la 

prueba. 

 

 

Distribución aleatoria en el centro del espacio de simulación por 
distancia entre peces 
 
En esta prueba se va a verificar el correcto comportamiento para un caso genérico de 

simulación en la que la distribución de los peces este agrupada con una distancia 

entre peces de valor 2 y que esté situada en el centro.  

 

Los datos de la simulación son: 

o 1000 peces,  1000x1000x40 de resolución y 3500 iteraciones 

o Distancia entre peces de valor 2 (Distancia entre un pez y otro consecutivo), 

Posición  50x50x50 (La posición será en el centro).  

 

 67



 

En el siguiente conjunto de gráficas mostrará la evolución de la simulación desde la 

posición inicial hasta la iteración 3500: 
 

  
 
 
Analizando los resultados obtenidos se puede comprobar que en la posición inicial los 

peces estaban agrupados en el centro, aunque sus direcciones eran bastante 

desiguales entre ellos (Polarización: 1,31). El hecho de que la distancia entre peces 

sea de 2, provoca que haya una reacción de orientación paralela y por tanto igualar 

sus direcciones. Esto permite que pocas iteraciones después exista una cohesión 

bastante fuerte (en la iteración 1000 la polarización ha bajado a 0.38 y la extensión a 

7.58). En el resto de iteraciones hasta la final, se consigue que el grupo siga 

 68



totalmente junto, por lo que el resultado de la prueba se puede considerar como 

satisfactorio.  

 
 
 
Distribución aleatoria en un lado del espacio de simulación por distancia 
entre peces 
 
En esta prueba se va a verificar el correcto comportamiento para un caso genérico de 

simulación en la que la distribución de los peces este agrupada con una distancia 

entre peces de valor 2 y que esté a un lado del espacio de simulación.  

 

Los datos de la simulación son: 

o 1000 peces,  1000x1000x40 de resolución y 3500 iteraciones 

o Distancia entre peces de valor 2 (Distancia entre un pez y otro consecutivo), 

Posición  25x25x25 (La posición será en un lado).  

 

Mediante el siguiente conjunto de gráficas se mostrará la evolución de la simulación 

desde la posición inicial hasta la iteración 3500: 
 

 
 

 

 

 

 

 69



 
 

 

  
 
Viendo los resultados de la prueba se puede comprobar que en la posición inicial 

estaban los peces agrupados en un lado, aunque sus direcciones eran bastante 

desiguales entre ellos (Polarización: 1,31). El hecho de que la distancia entre peces 

sea de 2, provoca que haya una reacción de orientación paralela y por tanto igualar 

sus direcciones. Esto permite que pocas iteraciones después aparezca una cohesión 

bastante fuerte (en la iteración 1000 la polarización ha bajado a 0.27 y la extensión a 

9.25). En el resto de iteraciones hasta la final, se consigue que el grupo siga 

totalmente junto. Por tanto se puede considerar el resultado de la prueba como 

satisfactorio. 

 
 

6.1.3.3 Pruebas de cambio de configuración 
 
 
Aumentar al doble y reducir a la mitad el tamaño de los radios 
 
En esta prueba se va a comprobar que implicaciones tiene cambiar el tamaño de los 

radios de acción de los peces. Para ello, se van a realizar dos simulaciones, una 

aumentado al doble el tamaño de los 3 radios y una segunda reduciéndolos a la mitad 

(respecto a los tamaños originales).  

 
 

 70



Los datos de la 2 simulaciones son: 

o 1000 peces,  500x500x20 de resolución y 3500 iteraciones (20000 para el 

caso de la mitad) 

o La distribución de los peces será aleatoria en todo el espacio de simulación. 

 

En el siguiente conjunto de gráficas se va a mostrar la evolución de la simulación 

desde la posición inicial hasta la iteración 3500 para el caso de que los radios sean 

el doble de lo que lo son habitualmente:  
 
 

  
 

 71



Mediante el siguiente conjunto de gráficas se mostrará la evolución de la simulación 

desde la posición inicial hasta la iteración 20000 para el caso de que los radios sean 

la mitad de lo que lo son habitualmente: 

 

 72



Como se puede observar, para el caso de la simulación con el doble de radio se 

obtienen bastante buenos resultados, en cambio para la simulación en la que el 

tamaño del radio es la mitad de lo estándar, los resultados son bastante peores. 

Después de las 3500 iteraciones se puede comprobar que existen bastantes peces 

sueltos y en cambio para el caso del doble de radio, se puede observar que se 

consigue llegar a tener un único grupo.  

 

Habrá que esperar hasta llegar a la iteración 20000 (en el caso de la mitad del radio) 

para que los resultados lleguen a ser algo mejores. Como conclusión se podría decir 

que el hecho de que los radios sean tan pequeños, hace que se tarde más en 

producir las reacciones de orientación paralela y sobre todo de atracción y en cambio 

la que predomina es la de búsqueda. Además, el hecho de que el tamaño de los 

radios no sea el que se establece como correcto, hace que los resultados que se 

obtengan no sean los esperados. 

 
 
Aumentar al doble y reducir a la mitad el número de vecinos a escoger 
 
En esta prueba se va a comprobar que implicaciones tiene cambiar el número de 

vecinos a escoger para el cálculo de la reacción final de los peces. Para ello, se 

realizarán dos simulaciones, una aumentado al doble el número de vecinos y una 

segunda reduciéndolo a la mitad (respecto a los tamaños originales). 

 
Los datos de la 2 simulaciones son: 

o 1000 peces,  500x500x20 de resolución y 3500 iteraciones 

o La distribución de los peces será aleatoria en todo el espacio de simulación. 

 73



 

En las siguientes gráficas se mostrará la evolución de la simulación desde la posición 

inicial hasta la iteración 3500 para el caso de que el número de vecinos sea el doble 

de lo que lo son habitualmente: 
 
 

  
 

 74



Mediante el siguiente conjunto de gráficas se va a mostrar la evolución de la 

simulación desde la posición inicial hasta la iteración 3500 para el caso de que el 

número de vecinos sea la mitad de lo que lo son habitualmente:  
 

  
 
Viendo el resultado de las pruebas, se puede apreciar que en ambos casos no se 

consigue llegar a resultados demasiado buenos. En todo caso, parece que para el 

caso de la mitad de peces se obtienen mejores resultados que para el caso de 

cuando es el doble.  

 

 

 

 

 

 75



Cambiar el método de elección de vecinos a prioridad por distancia (en 
lugar de prioridad por frontalidad) 
 
En esta prueba se va a comprobar como se comporta la elección de vecinos por el 

criterio de la prioridad por distancia.   

 

Los datos de la simulaciones son: 

o 1000 peces,  500x500x20 de resolución y 3500 iteraciones 

o La distribución de los peces será aleatoria en todo el espacio de simulación. 

 
En el siguiente conjunto de gráficas se va a mostrar la evolución de la simulación 

desde la posición inicial hasta la iteración 3500: 
 

 

  

 76



Al comprobar los resultados obtenidos se podría decir que son más bien malos si se 

comparan con los que proporciona el criterio de elección por frontalidad. 

 

6.2 Pruebas a nivel de software 
 
 
Comparativa de tiempos de ejecución en función del número de 
particiones 
 
En esta prueba se va a comprobar la diferencia de velocidad en la ejecución del 

simulador para el caso de que se particione el espacio de simulación respecto a que 

no se haga. Para ello, se realizarán 14 simulaciones, una primera con una única 

partición (la utilizada por defecto) y el resto con un número concreto de particiones.  

 

Los datos de las 14 simulaciones son: 

o 10000 peces,  1000x1000x100 de resolución y 100 iteraciones 

o La distribución de los peces será aleatoria en todo el espacio de simulación. 

 

En la siguiente tabla se mostrarán los tiempos de ejecución para cada simulación: 
 

Núm. prueba Simulación Tiempo (seg.)

1 1x1x1 1663 

2 2x2x2 361 

3 3x3x3 199 

4 4x4x4 139 

5 5x5x5 103 

6 6x6x6 82 

7 7x7x7 70 

8 8x8x8 65 

9 9x9x9 65 

10 10x10x10 63 

11 15x15x15 61 

12 20x20x20 60 

13 25x25x25 61 

14 30x30x30 63 

 77



A continuación se podrá ver una gráfica con la evolución del tiempo de ejecución 

respecto al número de particiones del espacio de simulación: 
 

0
250
500
750

1000
1250
1500
1750

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Núm. prueba

Ti
em

po
 (s

eg
.)

 
Figura 6.3: Gráfica comparativa del tiempo de ejecución respecto al número de particiones 

 

Por tanto, se deduce que claramente el hecho de particionar mejora notablemente el 

tiempo de ejecución del simulador y que en este caso a mayor número de particiones, 

mejores resultados. 

 78



 

7. Conclusiones y líneas de futuro 
 
En este último punto, aparecerán las conclusiones del proyecto, así como las líneas 

de futuro y modificaciones que se podrían hacer a partir de este proyecto. 

 
 

7.1 Conclusiones y resultados 
 
Como conclusión, se puede decir que se ha cumplido satisfactoriamente con los 

objetivos marcados para este proyecto. Además, se ha conseguido llegar al objetivo 

cumpliendo con la planificación establecida inicialmente.  

 

Se ha conseguido desarrollar un simulador que reproduce de manera bastante fiel, 

el sistema de desplazamiento que tienen los peces y que tiene como característica 

el hecho de hacerlo de forma cohesionada y desde el modelado del individuo. 

 

A nivel detallado, los resultados concretos de este trabajo son: 

• Se han adquirido conocimientos en el campo de los sistemas biológicos 

orientados al individuo y más concretamente en el ámbito de los peces (fish 

schools). 

• Se ha desarrollado un simulador de fish schools que consigue simular el 

comportamiento de los peces al desplazarse. 

• Se ha podido verificar que con el simulador se han obtenido los mismos 

resultados que los que aparecen en la investigación realizada por Huth y 

Wissel [1] y [2], según se ha demostrado en la parte de pruebas de este 

documento. 

• Se han adquirido nuevos conocimientos en el lenguaje usado para el 

desarrollo del simulador (C++), como por ejemplo con las clases ya 

implementadas en el lenguaje para trabajar con listas y vectores. 

• Se ha aumentado el conocimientos en el campo de la trigonometría y de los 

vectores, debido a la necesidad de realizar bastantes cálculos con vectores y 

elementos trigonométricos para el desarrollo del simulador.  

 

 79



 

7.2 Posibles trabajos futuros 
 
En este segundo apartado se van a tratar los posibles proyectos futuros que se 

podrían desarrollan en base al trabajo realizado. 

 

• Se podría hacer una versión del mismo simulador pero para el entorno UNIX o 

incluso el desarrollo en algún otro lenguaje. 

 

• Un proyecto interesante sería adaptar el actual simulador para que pudiese ser 

ejecutado de manera distribuida usando varios ordenadores. De esta manera, 

se conseguiría realizar gran cantidad de cálculos de una manera bastante más 

rápida de lo que se hace normalmente con un único ordenador. 

 

Se tendría que tener en cuenta el como dividir el espacio total de simulación en 

los diferentes equipos y la comunicación entre ellos. 

 

• Otra opción sería la de desarrollar otros proyectos relacionados con los 

sistemas biológicos orientados al individuo. Por ejemplo, y siguiendo con la 

línea del presente trabajo, se podrían simular el comportamiento de otros 

animales como pueden ser los pájaros. A partir de documentación relacionada 

con el comportamiento de los pájaros, se debería realizar el mismo 

procedimiento que se ha llevado a cabo para la realización de este proyecto. 

 

Siguiendo con la misma línea pero basado en las personas, se podrían 

desarrollar simuladores que a partir del análisis del comportamiento de un 

cierto grupo de individuos, permitieran tomar decisiones que precisamente 

ayudaran a las personas. Como ejemplo, se podría mencionar el caso de 

donde poner las salidas de emergencia de un edificio, en función del 

comportamiento que toman los individuos cuando se produce un incendio. 

 80



 

Bibliografía 
 
 
[1] The Simulation of the Movement of Fish Schools (Andreas Huth y Christian Wissel, 

1992)  

 

[2] The simulation of fish schools in comparison with experimental data (Andreas Huth 

y Christian Wissel, 1994) 

 

[3] La ciencia (e ingeniería) computacional, 18 de mayo de 2009 

http://www.cytedgrid.org/documentos/un_modelo_de_colaboracion_cientifica.pdf

 

[4] ¿Qué es un banco de peces?, 25 de mayo de 2009, 

http://www.laprensa.com.ni/archivo/2006/febrero/11/cabito/conocimiento/

 

[5] Definición de vectores, 12 de abril de 2009, 

http://tochtli.fisica.uson.mx/electro/vectores/definici%C3%B3n_de_vectores.htm

 

[6] Geometría Analítica, 

http://concurso.cnice.mec.es/cnice2006/material098/geometria/geoweb/geoana2.htm

 

[7] Ministerio de Educación, Política Social y Deporte, GEOMETRÍA MÉTRICA, 15 de 

abril de 2009, 

http://descartes.cnice.mec.es/materiales_didacticos/Geometria_metrica_d3/distrec1.ht

m

 

[8] Ministerio de Educación, Política Social y Deporte, GEOMETRÍA MÉTRICA, 15 de 

abril de 2009, 

http://www.arandurape.edu.py/Ministerio_de_espana/Descartes/Bach_CNST_2/Geom

etria_metrica_d3/distrec.htm

 

 

 

 81

http://www.cytedgrid.org/documentos/un_modelo_de_colaboracion_cientifica.pdf
http://www.laprensa.com.ni/archivo/2006/febrero/11/cabito/conocimiento/
http://tochtli.fisica.uson.mx/electro/vectores/definici%C3%B3n_de_vectores.htm
http://concurso.cnice.mec.es/cnice2006/material098/geometria/geoweb/geoana2.htm
http://descartes.cnice.mec.es/materiales_didacticos/Geometria_metrica_d3/distrec1.htm
http://descartes.cnice.mec.es/materiales_didacticos/Geometria_metrica_d3/distrec1.htm
http://www.arandurape.edu.py/Ministerio_de_espana/Descartes/Bach_CNST_2/Geometria_metrica_d3/distrec.htm
http://www.arandurape.edu.py/Ministerio_de_espana/Descartes/Bach_CNST_2/Geometria_metrica_d3/distrec.htm


[9] Cálculo superior, 26 de abril de 2009 

http://www.cidse.itcr.ac.cr/cursos-linea/Algebra-Lineal/algebra-vectorial-geova-

walter/node3.html

 

[10] Distancias y ángulos, 12 de abril de 2009, 

http://thales.cica.es/rd/Recursos/rd99/ed99-0543-

04/Distancia.html#3.%20Distancia%20entre%20puntos,%20rectas%20y

 

[11] Geometría del triángulo, 8 de abril de 2009, 

http://www.juntadeandalucia.es/averroes/iesarroyo/matematicas/materiales/3eso/geo

metria/teoriatriangulo/triangulo.htm

 

[12] VITUTOR, Distancia entre rectas y planos, 12 de abril de 2009, 

http://www.vitutor.com/analitica/distancias/distancias.html

 

[13] Resolución de problemas,10 de abril de 2009, 

http://www.lopezdearenas.com/trigonometria/problemas.htm

 

[14] cplusplus.com,20 de marzo de 2009,  

http://www.cplusplus.com/

 

[15] Curso de C++, 25 de marzo de 2009, 

http://www.conclase.net/c/curso/index.php?cap=903e

 

[16] http://www.medigraphic.com/pdfs/h-gea/gg-2006/gg063i.pdf

 

[17] http://www.imbiomed.com.mx/1/1/articulos.php?method=showDetail&id_articulo

=45672&id_seccion=38&id_ejemplar=4625&id_revista=8

 

[18] http://www.investigacion.fcs.uc.edu.ve/simuladores.htm

 

[19] http://www.sim-bio.org/index.html

 

 

 82

http://www.cidse.itcr.ac.cr/cursos-linea/Algebra-Lineal/algebra-vectorial-geova-walter/node3.html
http://www.cidse.itcr.ac.cr/cursos-linea/Algebra-Lineal/algebra-vectorial-geova-walter/node3.html
http://thales.cica.es/rd/Recursos/rd99/ed99-0543-04/Distancia.html#3.%20Distancia%20entre%20puntos,%20rectas%20y
http://thales.cica.es/rd/Recursos/rd99/ed99-0543-04/Distancia.html#3.%20Distancia%20entre%20puntos,%20rectas%20y
http://www.juntadeandalucia.es/averroes/iesarroyo/matematicas/materiales/3eso/geometria/teoriatriangulo/triangulo.htm
http://www.juntadeandalucia.es/averroes/iesarroyo/matematicas/materiales/3eso/geometria/teoriatriangulo/triangulo.htm
http://www.vitutor.com/analitica/distancias/distancias.html
http://www.lopezdearenas.com/trigonometria/problemas.htm
http://www.cplusplus.com/
http://www.conclase.net/c/curso/index.php?cap=903e
http://www.medigraphic.com/pdfs/h-gea/gg-2006/gg063i.pdf
http://www.imbiomed.com.mx/1/1/articulos.php?method=showDetail&id_articulo=45672&id_seccion=38&id_ejemplar=4625&id_revista=8
http://www.imbiomed.com.mx/1/1/articulos.php?method=showDetail&id_articulo=45672&id_seccion=38&id_ejemplar=4625&id_revista=8
http://www.investigacion.fcs.uc.edu.ve/simuladores.htm
http://www.sim-bio.org/index.html


[20] http://recursos.cnice.mec.es/biosfera/blog/2006/06/proyecto-siveace-un-

simulador-biolgico.html

 

[21] http://www.ellaboratorio.8k.com/computador.htm

 83

http://recursos.cnice.mec.es/biosfera/blog/2006/06/proyecto-siveace-un-simulador-biolgico.html
http://recursos.cnice.mec.es/biosfera/blog/2006/06/proyecto-siveace-un-simulador-biolgico.html
http://www.ellaboratorio.8k.com/computador.htm


 
 
 

 84



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Anexo 1: Detalle de las clases utilizadas 

 85



 

1. Detalle de los métodos y principales atributos 
 
 
Clase PEZ 
 
Atributos principales: 

• int id: Identificador del pez. 

• float posicion[3]: Posición que ocupa el pez. 

• float direccion[3]: Dirección (velocidad) del pez. 

 

Métodos: 

• Pez: Constructor de la clase. Se crea el elemento pez con sus atributos de 

posición y velocidad. 

• escribir_fichero: Escribe en los ficheros de posiciones y velocidades 

(direcciones) fichero de estadísticas los valores correspondientes a cada pez 

y para cada iteración. 

• posiciones: Obtiene la posición de un determinado pez. 

• direcciones: Obtiene la dirección (velocidad) de un determinado pez. 

• obtener_velocidad: Obtiene la velocidad (rapidez de movimiento) de un 

determinado pez. 

• obtener_id: Obtiene el identificador del pez. 

• marcar_tratado: Pone el flag de tratado a un determinado pez para indicar 

que ya se ha actualizado sus nuevas posiciones y velocidades. 

• obtener_tratado: Obtiene el flag de si el pez ha sido actualizado o no. 

• quitar_tratado: Pone a “false” el flag de tratado para un determinado pez. 

• poner_dirección: Pone la nueva dirección (velocidad) para un determinado 

pez. 

• poner_dirección_nueva: Pone la nueva dirección (velocidad) temporal que 

posteriormente reemplazará a la dirección (velocidad) definitiva para un 

determinado pez.  

• poner_velocidad_nueva: Pone la nueva velocidad (rapidez de movimiento) 

temporal que posteriormente reemplazará a la velocidad definitiva para un 

determinado pez. 

 86



• poner_posicion_nueva: Pone la nueva posición temporal que posteriormente 

reemplazará a la posición definitiva para un determinado pez. 

• reemplazar_direcciones: Pone como dirección (velocidad) actual la que 

figuraba como temporal para un determinado pez. 

• ~pez: Destructor de la clase pez. 

 
 
Clase LISTA 
 
Atributos principales: 

• list<pez *> listaok: Lista de elementos de tipo pez que será parte de la base 

de la estructura de almacenamiento. 

• list<pez *>::iterator it: Puntero a la lista de elementos de tipo pez. 

 

Métodos: 

• Lista: Constructor de la clase lista. 

• meter_alfinal: Crea y mete al final de la lista un elemento de tipo pez. 

• borrar_peces: Borra un determinado pez de la lista actual, que previamente lo 

habremos copiado a su nueva posición de la lista. 

• meter_dirección: Pone la dirección del pez al final de la lista. 

• obtener_estadísticas: Calcula las estadísticas de grado de misma dirección y 

de extensión de los peces (separación entre ellos). 

• distancia_euclidiana: Calcula la distancia euclidiana entre dos peces. 

• distancia_vertical: Calcula la distancia a la que esta un pez respecto a la 

posición frontal de otro. 

• vecinos_distancia: Calcula los vecinos definitivos que se van a escoger en 

función de la prioridad de distancia entre un pez y el resto. 

• vecinos_frontal: Calcula los vecinos definitivos que se van a escoger en 

función de la prioridad de frontalidad entre un pez y el resto. 

• vecinos_radios_reacciones: Calcula que reacción tendrá el pez en función de 

la posición de sus vecinos. 

• cono: Determina que pez esta respecto a otro en el cono de ángulo muerto. 

• angulo: Calcula el ángulo (expresado en valores vectoriales) de un pez 

respecto a otro y que nos servirá para saber si algún pez tapa a otro. 

 87



• quitar_tapan: Quita de la lista de vecinos aquellos que son tapados por otros 

para no tenerlos en cuenta. 

• obtener_nueva_dirección: Obtiene una nueva dirección aleatoria para los 

elementos de la lista (peces) en el caso de que tengan una reacción de 

búsqueda. 

• Repulsión: Calcula la nueva dirección (velocidad) que tendrá el pez para el 

caso de repulsión. 

• orientacion_paralela: Calcula la nueva dirección (velocidad) que tendrá el pez 

para el caso de orientación paralela. 

• atracción: Calcula la nueva dirección (velocidad) que tendrá el pez para el 

caso de atracción. 

• búsqueda: Calcula la nueva dirección (velocidad) que tendrá el pez para el 

caso de busqueda. 

• vecinos_radios_búsqueda: Método que llama al método busca para calcular 

la nueva dirección en caso de que el pez necesite buscar a otros peces. 

• calcular_velocidad: Calcula la nueva velocidad (rapidez de movimiento). 

• actualizacion_dirección: Mátodo que llama a reemplazar_direcciones para 

poner como dirección (velocidad) final la que era temporal. 

• calcular_nueva_posicion: Calcula la nueva posición de cada uno de los peces 

en función de la nueva dirección (velocidad). 

• marcar_como_tratado: Marca el flag de tratado para un determinado pez para 

saber que pez ya se ha recalculado su nueva posición en la lista. 

• quitar_como_tratado: Inicializa el flag de tratado cada vez que acabemos una 

iteración. 

• preguntar_tratado: Llama al método de la clase pez para saber si un pez ya 

ha sido tratado. 

• informar_nuevos_valores: Método que actualiza la nueva dirección y 

velocidad. 

• nuevos_valores_pez: Método llamado desde informar_nuevos_valores para 

actualizar la dirección y la velocidad. 

• mirar_posicion0: Comprueba si una posición esta ya ocupada previamente en 

el proceso de distribución inicial de los peces. 

 88



• escribir_fichero_lista: Llama al método escribir_fichero de la clase pez para 

enviar a fichero las posiciones y velocidades(direcciones) de cada pez. 

• ~lista: Destructor de la clase lista. 

 

 

Clase VECTORA 
 
Atributos principales: 

• vector<lista *> myvector: Vector de elementos de tipo lista que será parte de 

la base de la estructura de almacenamiento. 

• vector<lista *>::iterator itv: Puntero al vector de elementos de tipo lista. 

 
 
Métodos: 

• vectora: Constructor de la clase vectora. 

• meter_valores: Método para asignar una lista a una posición del vector 

(correspondiente a un cuadrante), pasándole el apuntador de la lista. 

• meter_vecinos_xup: Método para asignar una lista a una posición del vector 

de vecinos (correspondiente a un cuadrante) que ocupan la parte superior de 

la coordenada X. 

• meter_vecinos_xdown: Método para asignar una lista a una posición del 

vector de vecinos (correspondiente a un cuadrante) que ocupan la parte 

inferior de la coordenada X. 

• meter_vecinos_yup: Método para asignar una lista a una posición del vector 

de vecinos (correspondiente a un cuadrante) que ocupan la parte superior de 

la coordenada Y. 

• meter_vecinos_ydown: Método para asignar una lista a una posición del 

vector de vecinos (correspondiente a un cuadrante) que ocupan la parte 

inferior de la coordenada Y. 

• meter_vecinos_zup: Método para asignar una lista a una posición del vector 

de vecinos (correspondiente a un cuadrante) que ocupan la parte superior de 

la coordenada Z. 

• meter_vecinos_zdown: Método para asignar una lista a una posición del 

vector de vecinos (correspondiente a un cuadrante) que ocupan la parte 

inferior de la coordenada Z. 

 89



• asignar_tamanyo: Asigna tamaño a las posiciones de vectores de vecinos, 

correspondiente al total de partición. 

• obtener_estadísticas: Método que calcula las estadísticas de grado de 

similitud de dirección y de distancia entre peces a nivel de vector, es decir, el 

proceso recorre el vector de posiciones, para acceder a las listas y 

posteriormente a los atributos de los peces.  

• posicion_vector_null: Devuelve si una posición del vector está vacía. 

• posicion_vector_vecinos_null_xup: Devuelve si una posición del vector de 

vecinos de X superior está vacía.  

• posicion_vector_vecinos_null_xdown: Devuelve si una posición del vector de 

vecinos de X inferior está vacía. 

• posicion_vector_vecinos_null_yup: Devuelve si una posición del vector de 

vecinos de Y superior está vacía. 

• posicion_vector_vecinos_null_ydown: Devuelve si una posición del vector de 

vecinos de X inferior está vacía. 

• posicion_vector_vecinos_null_zup: Devuelve si una posición del vector de 

vecinos de Z superior está vacía. 

• posicion_vector_vecinos_null_zdown: Devuelve si una posición del vector de 

vecinos de Z inferior está vacía.  

• obtener_direccion_lista: Devuelve la dirección del puntero de la lista que se 

encuentra en una determinada posición del vector.  

• posicion_del_vector: Método que calcula la posición final del vector a partir a 

partir de las coordenadas X,Y y Z de lo que sería la matriz. 

• posicion_origen_vector: Método que calcula las coordenadas X,Y y Z de la 

matriz, a partir de una posición del vector dada.  

• obtener_direccion_lista_xup: Devuelve la dirección del puntero de la lista que 

se encuentra en una determinada posición del vector de vecinos de X 

superior. 

• obtener_direccion_lista_xdown: Devuelve la dirección del puntero de la lista 

que se encuentra en una determinada posición del vector de vecinos de X 

inferior. 

 90



• obtener_direccion_lista_yup: Devuelve la dirección del puntero de la lista que 

se encuentra en una determinada posición del vector de vecinos de Y 

superior.  

• obtener_direccion_lista_ydown: Devuelve la dirección del puntero de la lista 

que se encuentra en una determinada posición del vector de vecinos de Y 

superior.  

• obtener_direccion_lista_zup: Devuelve la dirección del puntero de la lista que 

se encuentra en una determinada posición del vector de vecinos de Z 

superior. 

• obtener_direccion_lista_zdown: Devuelve la dirección del puntero de la lista 

que se encuentra en una determinada posición del vector de vecinos de Z 

inferior. 

• inicializar_direccion_lista_xup: Inicializa la posición del vector de la lista que 

se encontraba en una determinada posición del vector de vecinos de X 

superior.  

• inicializar_direccion_lista_xdown: Inicializa la posición del vector de la lista 

que se encontraba en una determinada posición del vector de vecinos de X 

inferior.  

• inicializar_direccion_lista_yup: Inicializa la posición del vector de la lista que 

se encontraba en una determinada posición del vector de vecinos de Y 

superior.   

• inicializar_direccion_lista_ydown: Inicializa la posición del vector de la lista 

que se encontraba en una determinada posición del vector de vecinos de Y 

inferior.   

• inicializar_direccion_lista_zup: Inicializa la posición del vector de la lista que 

se encontraba en una determinada posición del vector de vecinos de Z 

superior.   

• inicializar_direccion_lista_zdown: Inicializa la posición del vector de la lista 

que se encontraba en una determinada posición del vector de vecinos de Z 

inferior.   

• inicializar_vectores_posx: Inicializa el vector correspondiente de controlar que 

no se sitúen más de un pez en la misma posición, para la coordenada X. 

 91



• inicializar_vectores_posy: Inicializa el vector correspondiente de controlar que 

no se sitúen más de un pez en la misma posición, para la coordenada Y.  

• inicializar_vectores_posz: Inicializa el vector correspondiente de controlar que 

no se sitúen más de un pez en la misma posición, para la coordenada Z.  

• vecinos: Método inicial del cálculo de reacciones del pez a partir de la 

situación de sus vecinos y que lo hace a partir de llamar al método vecinos_1. 

También hace cálculos que aparecerán posteriormente en las estadísticas. 

• vecinos_1:  Método principal que calcula las nuevas direcciones (velocidades) 

de cada pez, basándose en los vecinos del mismo cuadrante, así como los 

que pudiera haber en otros cuadrantes. Una vez pre-seleccionados los 

vecinos, llama a otras funciones que eligen los vecinos definitivos y calculan 

la reacción final en función de la situación de cada pez vecino.  

• Simulacion: Método principal de las simulaciones, encargado de calcular las 

nuevas posiciones a partir de las velocidades calculadas anteriormente, 

reorganizar la estructura de datos moviendo los peces a las listas 

correspondientes según su nueva posición y finalmente se encargará también 

de limpiar las listas de vecinos de la anterior iteración. 

• simulacion_lista: Método llamado desde Simulacion y que se encarga de la 

actualización de las nuevas posiciones y de reestructurar la organización de 

peces,  moviendo los mismos a la lista de la posición del vector que le 

corresponda según sus nuevas coordenadas. 

• simulacion_lista_vecinos: Método que limpia las listas de vecinas anteriores 

para ser usadas nuevamente en la nueva iteración. También controla que las 

nuevas posiciones que se acaban de calcular no estén repetidas mediante 

una lista de posiciones.  

• dev_posicion_vector: Obtiene la posición del vector concreta que ocuparía un 

pez con unas coordenadas de posición concretas. 

• reorganizar_estructura: Método que reposiciona a los peces según su nueva 

posición. En función de sus nuevas coordenadas y en el caso de que 

supongan un cambio de cuadrante, el método borra el pez que cuelga de la 

lista de la posición concreta del vector, para añadirse a la lista que cuelga de 

la posición del vector correspondiente a las nuevas coordenadas del pez. 

 92



• vecinos_simulacion: Método que controla que las nuevas posiciones de los 

peces no sean solapadas por otro pez. Esto se realiza mediante la creación 

de una lista en donde se irán añadiendo las nuevas coordenadas de los 

peces, para que posteriores peces no ocupen esas mismas posiciones.  

• borrar_listas_vecinas: Método para borrar el contenido de las listas de 

vecinos, para que en la siguiente iteración se recalculen de nuevo. 

• posicion_libre: Método para comprobar si la nueva posición de un pez está 

ocupada y en caso de estarlo, busca una contigua a la misma. 

• escribir_fichero: Proceso encargado de escribir en fichero los valores de 

estadísticas de grado de similitud de dirección y de separación entre peces. 

• dev_cuadrante: Devuelve el cuadrante al que le pertenece un pez según la 

definición original del numero de partes en las que dividimos el espacio de 

simulación y según las coordenadas de posición que tenga el pez. 

• mirar_posicion1: Comprueba si una posición esta ya ocupada en el proceso 

de calculo de nuevos posiciones en las diversas iteraciones que se vayan 

produciendo para cada uno de los peces. 

• ~vectora: Destructor de la clase vectora 

 
 
 
Clase POSICI_CLASE 
 
Atributos principales: 

• list<int> posiciones_v: Lista de enteros para guardar las coordenadas de las 
posiciones. 

 
 
Métodos: 

• posici_clase: Constructor de la clase posici_clase. 

• meter_dirección: Método para introducir elementos en la lista de posiciones 

ocupadas y así detectar solape de posiciones en el espacio de simulación.  

• ~posici_clase: destructor de la clase posici_clase. 

 
 
 
 
 

 93



 
Clase GEN_NUMEROS 
 
Atributos principales: 

• int numero_peces: Número de peces de la simulación. 

• int tamanyo_x,tamanyo_y,tamanyo_z: Dimensiones del espacio de 

simulación. 

 
 
Métodos: 

• gen_numeros: Constructor de la clase gen_numeros que nos servirá para 

generar la semilla de generación de números aleatorios. 

• obtener_numero_x: Obtiene un valor aleatorio para la coordenada X de la 

posición del pez. 

• obtener_numero_y: Obtiene un valor aleatorio para la coordenada Y de la 

posición del pez. 

• obtener_numero_z: Obtiene un valor aleatorio para la coordenada Z de la 

posición del pez. 

• obtener_numeros_rad: Obtiene la configuración de las posiciones iniciales de 

los peces en el caso de que se use el método de inicialización mediante 

separación en distancia entre ellos.  

• obtener_numero_rads_x: Obtiene un valor aleatorio para la coordenada X de 

la posición del pez en el caso de que el método de inicialización de peces sea 

mediante separación en distancia entre ellos. 

• obtener_numero_rads_y: Obtiene un valor aleatorio para la coordenada Y de 

la posición del pez en el caso de que el método de inicialización de peces sea 

mediante separación en distancia entre ellos. 

• obtener_numero_rads_z: Obtiene un valor aleatorio para la coordenada Z de 

la posición del pez en el caso de que el método de inicialización de peces sea 

mediante separación en distancia entre ellos. 

• ~gen_numeros: destructor de la clase gen_numeros 

 
 
 
 

 94



 

2. Algoritmo basado en las llamadas a los módulos principales 
 
 
En este apartado se va a detallar a que módulos se llama a lo largo de los pasos que 

constituye el algoritmo. Hay que tener en cuenta, las siguiente nomenclaturas: 

 
• P->: Método de la clase PEZ 
• L->: Método de la clase LISTA 
• V->: Método de la clase VECTORA 
• G->: Método de la clase GEN_NUMEROS 

   
 

• Lectura del fichero de configuración 
 

• Según el método de inicialización de los peces definido en la 
configuración, hacer las correspondientes acciones: 

 
• Para el caso de definir las posiciones de los peces a partir de 

un fichero no tendrá ninguna función especial, sino que 
comparte las comunes para los 4 métodos. 

 
• Para el caso de definir las posiciones de los peces de forma 

aleatoria tanto para todo el espacio de simulación como en 
parte de el: 

G->obtener_numero_x 
G->obtener_numero_y 
G->obtener_numero_z 
V->posicion_libre 
L->obtener_nueva_dirección 

 
• Para el caso de definir las posiciones de los peces de forma 

aleatoria pero separadas por un determinado espacio: 
G->obtener_numeros_rad 
G-> obtener_numero_rads_x 
G-> obtener_numero_rads_y 
G-> obtener_numero_rads_z 

 
• Funciones comunes para todos los tipos de inicialización: 

V->posicion_libre 
V->posicion_vector_null 
V->meter_valores 
L->meter_alfinal 
V->obtener_direccion_lista 
V->dev_cuadrante 
V->posicion_vector_vecinos_null_xup 
V->meter_vecinos_xup 

 95



V->obtener_direccion_lista_xup 
V->posicion_vector_vecinos_null_xdown 
V->meter_vecinos_xdown 
V->obtener_direccion_lista_xdown 
V->posicion_vector_vecinos_null_yup 
V->meter_vecinos_yup 
V->obtener_direccion_lista_yup 
V->posicion_vector_vecinos_null_ydown 
V->meter_vecinos_ydown 
V->obtener_direccion_lista_ydown 
V->posicion_vector_vecinos_null_zup 
V->meter_vecinos_zup 
V->obtener_direccion_lista_zup 
V->posicion_vector_vecinos_null_zdown 
V->meter_vecinos_zdown 
V->obtener_direccion_lista_zdown 
L->meter_dirección 

 
V->vecinos 
V->obtener_estadisticas 
V->escribir_fichero 

 
Repetir tantas veces como iteraciones se quieran hacer 
 V->simulación 
 V->vecinos 
 V->obtener_estadísticas 
 V->escribir_fichero 
 
 
V->simulacion 
Para cada posición del vector:  

V->simulacion_lista 
V->borrar_listas_vecinas 
V->simulacion_lista_vecinos 

 
V->simulacion_lista 
Para cada posición de la lista: 
 L-> actualizacion_dirección 

L->calcular_nueva_posicion  
V->posicion_libre 
V->poner_posicion_nueva 
V->reorganizar_estructura 
 

V->borrar_listas_vecinas 
V->inicializar_direccion_lista_xup 
V-> inicializar_direccion_lista_xdown 
V-> inicializar_direccion_lista_yup 
V-> inicializar_direccion_lista_ydown 
V-> inicializar_direccion_lista_zup 
V-> inicializar_direccion_lista_zdown 

 96



 
V->simulacion_lista_vecinos 
Para cada posición de la lista: 
 L->quitar_como_tratado 

V->vecinos_simulacion 
 
 
V->vecinos 
Para cada posición del vector:  

V->vecinos_1 
 

V->vecinos_1 
Para cada vecino:  

L-> distancia_euclidiana 
L->cono 
L->meter_dirección 
L->quitar_tapan 
L-> vecinos_frontal / L-> vecinos_distancia 
L-> vecinos_radios_reacciones / L->vecinos_radios_busqueda 
L-> calcular_velocidad 
L->informar_nuevos_valores 

 
L-> vecinos_frontal 
 L-> distancia_vertical 
 
L-> vecinos_distancia 
 L-> distancia_euclidiana 
 
L-> vecinos_radios_reacciones 
 L-> distancia_euclidiana 
 L-> repulsión 
 L-> orientacion_paralela 
 L-> atraccion 

 
L->vecinos_radios_busqueda 

L-> busqueda 
 

V->obtener_estadisticas 
Para cada posición del vector: 

L->obtener_estadísticas 
 
V->escribir_fichero 
Para cada posición del vector: 

L-> escribir_fichero_lista 
 

L-> escribir_fichero_lista 
Para cada posición de la lista: 

P-> escribir_fichero 
 

 97



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Anexo 2: Manual de usuario 
 
 

 98



Con este manual se va a poder instalar, configurar y ejecutar el simulador.  

 

 

1. Instalación 
 

Lo primero a indicar en este manual de usuario van a ser los elementos que forman 

este simulador. Por un lado estará el simulador en si (ejecutable) y por otro lado 

habrá un fichero de configuración.  

 

Ambos ficheros deben estar en la misma carpeta, cuyo nombre es indiferente para el 

correcto funcionamiento del simulador. 

 

El fichero ejecutable tendrá como nombre “simufish.exe” y necesitará 

obligatoriamente de la presencia del fichero de configuración, ya que de este leerá 

los parámetros sobre los que ejecutar el simulador. El nombre del fichero de 

configuración tendrá el nombre de “simufish.cfg” 

 
 

2. Configuración 
 

A continuación se detallará el contenido del fichero de configuración, que 

dependiendo de los valores que tenga hará que se defina la manera en la que se 

ejecute la simulación.   

 

Entre otras cosas, se podrá establecer la configuración de la distribución de los 

peces inicialmente, el número de iteraciones o por ejemplo el número de peces. 

 

También se podrán definir elementos más internos de la configuración como son la 

distancia entre radios (que en principio no debería modificar si se quieren obtener los 

resultados esperados) o el número de vecinos a tener en cuenta en la reacción final 

del pez. 

 

 99



Una vez visto la utilidad del fichero de configuración, se pasará a mostrar un ejemplo 

del mismo:  
 

numero_peces: 1000 

numero_iteraciones: 350  

resolucion: 500 500 20 

particion: 1 1 1 

numero_vecinos: 4  

tipo_vecinos: 0 

tamano_pez: 3 

radios: 0.5 2 5 

angulo_muerto: 30 

metodo_colocacion: 0 

porcentaje_colocacion: 10 10 10 

separacion_peces: 2 

lugar_colocacion: 50 50 50 

direct_salida: C:\Simufish\out\ 

fich_entrada: C:\fichero_in\fichero1.txt 

 

Hay que tener en cuenta que todos los parámetros tienen que aparecer en el fichero 

(la definición del parámetro) y en el orden en que aparecen en el fichero de 

configuración del ejemplo. 

 

A continuación se realizará la explicación de todos los parámetros que incluye: 
 

• numero_peces: Indica el número de peces que va a tener el simulador. Deberá 

ser un número entero  mayor que 0. Se ha de informa obligatoriamente. 
 

• numero_iteraciones: Mediante este parámetro se informará del número de 

iteraciones que se van a producir en la simulación. Si no se quiere que haya 

iteraciones y por tanto mostrar solo la posición inicial, se deberá poner un 0. Si 

por el contrario se quiere hacer la simulación normalmente, habrá que poner un 

número entero mayor que 0. Se ha de informa obligatoriamente. 

 

 100



• resolución: La resolución indicará la extensión que tendrá el espacio de 

simulación sobre el que se moverán los peces. Al tratarse de un espacio en 3 

dimensiones, se deberá indicar el tamaño para las tres planos (x, y, z). Se 

deberán indicar en el fichero separados con un espacio y en el orden anterior. 

Así pues, en el fichero de ejemplo se puede ver que la resolución será de 500 

para la coordenada ‘x’, 500 para la coordenada ‘y’ y 20 para coordenada ‘z’. Para 

las tres coordenadas deberán ser valores enteros mayores que 0 y deberán ser 

informados obligatoriamente. 
 

• particion: Se indicará el número de partes en las que se quiere particionar el 

espacio de simulación (definido con el anterior parámetro). Si se quiere tratar el 

espacio de simulación como un todo y de forma única, se deberá definir el valor 1 

para los tres planos (x, y, z). Si por el contrario se quiere dividir el espacio en 

varias partes se deberá indicar en cuantas se desea hacer para cada uno de los 

planos. Así por ejemplo, si se pone el valor “3 2 1” indicaría que se quiere dividir 

el espacio de simulación en 3 partes para el plano ‘x’, en 2 partes para el plano 

‘y’ dejarlo en una parte para el plano ‘z’.  Para las tres coordenadas deberán ser 

valores enteros mayores que 0 y deberán estar informados obligatoriamente. 
 

• numero_vecinos: Mediante este parámetro podremos definir el número de 

vecinos que queremos que se tengan en cuenta para la reacción final del pez. En 

principio el valor debería ser de 4 (que se corresponde con el valor que más se 

ajusta a la forma de actuar de los peces), pero podría variarse para ver el nuevo 

comportamiento del simulador. Deberá ser un número entero  mayor que 0. Se 

ha de informa obligatoriamente. 
 

• tipo_vecinos: Se informará la manera en la que escoger la prioridad a la hora de 

seleccionar a los vecinos. Habrá dos posibles valores, 0 para el caso de la 

prioridad frontal y 1 para el caso de la prioridad por distancia. Por tanto, si existe 

un mayor número de posibles vecinos de los indicados en el anterior parámetro 

(numero_vecinos), el simulador se quedará con aquellos que o bien estén más 

en frente del pez origen (valor 0, prioridad frontal) o bien estén a una distancia 

menor del pez origen (valor 1, prioridad por distancia). Por defecto y como valor 

que más se aproxima al comportamiento de los peces, habrá que poner como 

método el de la prioridad frontal, o lo que es lo mismo “tipo_vecinos: 0”. Por 

 101



tanto, los dos valores posibles con los que el simulador funcione correctamente 

serán el “0” y el “1”. Se ha de informar obligatoriamente. 
 

• tamano_pez: Mediante este parámetro se indicará el tamaño del pez (expresado 

como longitud y en la misma magnitud que el resto de parámetros). En principio, 

un valor con el que se van a conseguir buenos resultados es el de 3. Deberá ser 

un número entero  mayor que 0. Se ha de informa obligatoriamente. 
 

• radios: Mediante este parámetro se definirá el tamaño de los radios que a su vez 

implicará que se seleccione un determinado tipo de reacción. Así pues, habrá 

tres diferentes radios con tres diferentes tipos de reacciones. El primero de ellos 

será el r1 y marcará la distancia en la que un pez tiene una reacción de repulsión 

respecto a sus vecinos.  El segundo radio será el r2 y marcará la distancia en la 

que un pez tiene una reacción de orientación paralela respecto a sus vecinos. 

Finalmente estará el tercer radio r3 que servirá tanto para delimitar a los vecinos 

de un pez como para marcar la distancia en la que un pez tiene una reacción de 

atracción. Los tres valores por defecto y que en principio no deberían tocarse (ya 

que supone el comportamiento normal de los peces) serían 0.5 para r1, 2 para r2 

y 5 para r3. Sólo será necesario modificar estos valores si se quiere probar el 

comportamiento del simulador en diferentes circunstancias a las normales. Se 

deberá separar cada valor del radio mediante un espacio y el orden será de r1, r2 

y r3. Deberá ser un número  mayor que 0. Se ha de informa obligatoriamente. 
 

• angulo_muerto: Mediante este parámetro se definirá el valor que tendrá el ángulo 

muerto de visión del pez. Dicho ángulo se encuentra localizado justo detrás de 

donde se encuentra el pez y correspondería a la zona en la que el pez no puede 

ver lo que hay. En principio, el valor por defecto y que no debería tocarse (ya que 

supone el comportamiento normal de los peces) es de 30 (es decir 30 grados). 

Sólo se modificará este valor si se quiere probar el comportamiento del simulador 

en diferentes circunstancias a las normales. Deberá ser un número  mayor que 0. 

Se ha de informa obligatoriamente. 
 

• metodo_colocacion: Se indicará la manera en que inicialmente se colocarán los 

peces sobre el espacio de simulación. 

 

 

 102



Habrá 4 diferentes posibilidades que serán: 

• Posicionamiento aleatorio distribuido por todo el especio de simulación: 

Este tipo de inicialización se basará en el hecho de que todos los peces 

estarán distribuidos a lo largo de todo el espacio de simulación. Será la 

opción más genérica de inicialización y en principio la que se usará por 

defecto. 

Un ejemplo de este tipo de inicialización sería el siguiente: 
 

 
    Figura anex.1: Distribución inicial aleatoria 

 

• Posicionamiento aleatorio distribuido en un determinado porcentaje sobre 

el total del espacio de simulación y situado en una zona concreta de ese 

espacio: En este caso, el propósito de este tipo de inicialización es 

concentrar los peces en una determinada zona, en lugar de que estén 

distribuidos por todo el espacio de simulación.  

Para ello, habrá que basarse en dos variables (parámetros): 

o porcentaje_colocacion: Marca que porcentaje del espacio de 

simulación estará ocupado por peces o lo que es lo mismo, servirá 

para indicar si se quiere que los peces estén juntos o separados 

entre sí. Estará compuesto por 3 valores que representarán el 

porcentaje para los coordenadas ‘x’, ‘y’ y ‘z’. Así por ejemplo, si este 

parámetro tiene el valor “50 50 50” querrá decir que todos los peces 

estarán agrupados ocupando la mitad del espacio de simulación, 

mientras que si tienen el valor del fichero del ejemplo (“10 10 10”) 

querrá decir que los peces estarán distribuidos a lo largo del 10% 

 103



del espacio de simulación y que consecuentemente estarán muy 

juntos entre sí. Para las tres coordenadas deberán ser valores 

enteros mayores que 0 y deberán ser informados obligatoriamente. 

o lugar_colocacion: Indica el lugar en el que se situará el grupo de 

peces respecto al total del espacio de simulación. Se definirá para 

las tres coordenadas, así por ejemplo si se quiere que los peces 

estén situados en el centro del espacio de simulación se deberá 

poner “50 50 50” (o lo que es lo mismo, que estén repartidos 

alrededor de la posición que representa el 50% del espacio de 

simulación para las tres coordenadas). Para las tres coordenadas 

deberán ser valores enteros mayores que 0 y deberán ser 

informados obligatoriamente. 

 

Este tipo de inicialización servirá para probar como se comporta la 

simulación en casos particulares de posicionamiento y distribución de los 

peces. 

Unos ejemplos de este tipo de inicialización serían los siguientes: 
 

 
Figura anex.2: Distribución inicial aleatoria por porcentaje en el centro 

 

 

 

 

 

 

 

 

 

 

 

 

 

 104



 

 
                        Figura anex.3: Distribución inicial aleatoria por porcentaje en una esquina 

 

• Posicionamiento aleatorio distribuido en función de la distancia entre 

peces y situado en una zona concreta del espacio de simulación: Para 

este tipo de inicialización, los peces se distribuirán en el espacio de 

simulación en función de la distancia que se quiere que haya entre ellos. 

La finalidad será  provocar inicialmente una determinada reacción de los 

peces en función precisamente de esa distancia que se va a indicar en el 

siguiente parámetro: 

o separacion_peces: Distancia entre un pez y su vecino más próximo. 

Así pues, si como en el ejemplo se informa con el valor ‘2’, indicará 

que entre un pez y su vecino existe una distancia de 2 posiciones. 

Según lo explicado en la memoria, esa distancia de 2 implicará que 

haya una acción de orientación paralela y que por tanto los peces 

tiendan a juntarse. Será un valor entero mayor que 0 y deberá estar 

informado obligatoriamente. 

 

Además de la separación entre peces, también se deberá indicar el 

lugar en el que se quiere situar al conjunto de los peces: 

o lugar_colocacion: Este parámetro actuará de la misma manera que 

lo hace en el tipo de inicialización anterior (posicionamiento 

aleatorio distribuido en un determinado porcentaje sobre el total del 

espacio de simulación y situado en una zona concreta del espacio 

de simulación), es decir, se indicará la posición en la que se 

 105



colocarán los peces mediante 3 coordenadas. Sus valores deberán 

ser enteros mayores que 0 y deberán ser informados 

obligatoriamente. 

 

Este tipo de inicialización servirá para probar como se comporta la 

simulación en casos particulares de posicionamiento y distribución de los 

peces, partiendo de una reacción inicial provocada por la distancia 

existente entre ellos. 

Un ejemplo de este tipo de inicialización serían los siguientes: 
 

 
Figura anex.4: Distribución inicial aleatoria por separación entre peces en centro 

 

 
Figura anex.5: Distribución inicial aleatoria por separación entre peces en esquina 

 

 

• Posicionamiento a partir de la definición de los peces mediante fichero de 

entrada: Gracias a este tipo de parametrización, se podrá definir el 

 106



conjunto de peces que van a aparecer en la simulación, indicando su 

posición y orientación inicial. Al indicar este tipo de inicialización, se 

deberá informar el nombre del fichero del que se leerán los datos de los 

peces a simular: 

o fich_entrada: Se indicará la ruta y nombre del fichero que contendrá 

la definición de los peces a cargar en el simulador. Sólo se tendrá 

en cuenta este valor para el caso en el que el método de colocación 

sea 3 (situación inicial de peces leída de fichero). Por tanto, este 

parámetro será solo obligatorio en el caso de que se tenga 

“metodo_colocacion: 3” y opcional para el resto de métodos de 

colocación. Se deberá poner la ruta entera (ej. 

C:\fichero_in\fichero1.txt). 

 

Un ejemplo de fichero de entrada con la definición de dos peces 

sería el siguiente: 
 

10 2 1 

1 1 1 0 1 0 

10 2 1 -1 1 0 

 

La primera fila del fichero indicará el tamaño del espacio de 

simulación definido en el fichero (para las coordenadas ‘x’, ‘y’ y ‘z’). 

Así por ejemplo, para el caso de “10 2 1”, querrá decir que habrá 10 

posiciones de tamaño para la coordenada ‘x’, 2 para la ‘y’ y una 

única para la ‘z’. Estos valores se extraerán de la definición de los 

peces que aparecen en las líneas posteriores del fichero. De esta 

manera, desde la línea 2 hasta el final del fichero se definirán los 

peces. Las tres primeras posiciones, indicarán la posición del pez, 

mientras que las tres ultimas harán referencia a la dirección del 

mismo. Para el caso del primer pez, se puede ver que la posición 

es la (1 1 1), mientras que la dirección es la (0 1 0). Si se observa la 

posición que ocupará el segundo pez (10 2 1) se podrá calcular el 

tamaño del espacio de simulación que se acabará informando en la 

primera línea del fichero (10-1+1) (2-1+1) (1-1+1) = (10 2 1). 

 107



 

Una vez visto los 4 tipos, se pasará a definir los valores a poner para 

seleccionar cada uno de ellos: 0: Posicionamiento aleatorio distribuido por 

todo el especio de simulación, 1: Posicionamiento aleatorio distribuido en un 

determinado porcentaje sobre el total del espacio de simulación y situado en 

una zona concreta del espacio de simulación, 2:  Posicionamiento aleatorio 

distribuido en función de la distancia entre peces y situado en una zona 

concreta del espacio de simulación y 3: Posicionamiento a partir de la 

definición de los peces mediante fichero de entrada. 

 

Se ha de informar obligatoriamente. 

 

• direct_salida: Este parámetro indicará el directorio en donde se generarán los 

ficheros de posiciones, de velocidades y el de estadísticas. Deberá estar 

informado obligatoriamente y acabado con el carácter de barra invertida “\”. (ej. 

C:\Simufish\out\). 

 

 

3. Ejecución 
 

Una vez que ya se tiene el fichero de configuración preparado, se pasará a la 

ejecución del simulador, que consistirá en hacer doble clic en el fichero 

“simufish.exe”.  

 108



 

 

 109



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Signat: Antonio Cruz Vázquez 
 

Bellaterra, 22 de juny de 2009 
 

 110



En la presente memoria se ha recogido de forma escrita el conjunto de fases que se 

han llevado a cabo en la realización del proyecto consistente en un simulador de 

sistemas biológicos utilizando modelos orientados al individuo.  Concretamente, el 

sistema biológico representado ha consistido en el movimiento y comportamiento de 

cohesión que poseen los peces. 

 

 
En la present memòria s'ha recollit de forma escrita el conjunt de fases que s'han 

portat a terme en la realització del projecte consistent en un simulador de sistemes 

biològics utilitzant models orientats a l'individu. Concretament, el sistema biològic 

representat ha consistit en el moviment i comportament de cohesió que posseïxen els 

peixos. 
 

 
In this report has been written the phases that have been done at the project 

realization consisting of a simulator of biological systems using the individual-

oriented models. Specifically, the biological system represented has consisted in the 

movement and cohesion behavior that fishes have. 
 


	Memoria.doc
	1202 - Modelado y simulación de sistemas biológicos
	1. Introducción
	1.1 Motivación
	1.1.1 Características de los sistemas biológicos orientados al individuo
	1.1.2 Simulador del comportamiento de un banco de peces (fish schools)
	1.2 Objetivos
	1.3 Organización de la memoria del proyecto

	2. Viabilidad y planificación
	2.1 Finalidad del proyecto
	2.2 Propuesta de proyecto
	2.3 Recursos materiales y plataforma de desarrollo
	2.4 Planificación de tareas
	2.5 Estudio del estado del arte
	2.6 Fish schools
	2.7 Análisis de riesgo
	2.8 Viabilidad del proyecto

	3. Análisis funcional y requerimientos
	3.1 Requerimientos
	3.2 Análisis funcional
	3.2.1 Análisis de consideraciones a tener en cuenta con el espacio de simulación
	3.2.2 Análisis de consideraciones a tener en cuenta con los peces
	3.2.3 Adaptación del modelo original fish schools de dos dimensiones al de tres dimensiones
	3.2.4 Detalle de las posibilidades de configuración del simulador
	3.3 Criterios en la parametrización de la simulación
	3.4 Herramientas prácticas a utilizar
	3.5 Estudios de los casos de uso del sistema
	3.6 Diagrama de bloques

	4. Diseño
	4.1 Estructura modular
	4.2 Estructuras de datos
	4.3 Diagrama de clases

	5. Implementación
	5.1 Algoritmo
	5.2 Implementación de las reacciones de los peces
	Repulsión
	Orientación paralela
	Atracción
	Búsqueda
	Reacción Final





	6. Pruebas
	6.1 Pruebas de verificación del sistema
	6.1.1 Verificación del modulado de las reacciones
	6.1.1.1 Repulsión
	6.1.1.2 Orientación paralela
	6.1.1.3 Atracción
	6.1.1.4 Búsqueda
	6.1.1.5 Caso en el que un pez esté siendo tapado por otro
	6.1.2 Comprobación del comportamiento emergente de la interacción de las reacciones
	6.1.3 Experimentos adicionales
	6.1.3.1 Pruebas de porcentaje de actuación de cada una de las reacciones respecto al total
	6.1.3.2 Pruebas de comportamiento, según disposición inicial de los peces
	6.1.3.3 Pruebas de cambio de configuración
	6.2 Pruebas a nivel de software

	7. Conclusiones y líneas de futuro
	7.1 Conclusiones y resultados
	7.2 Posibles trabajos futuros

	Bibliografía
	Anexo 1: Detalle de las clases utilizadas
	1. Detalle de los métodos y principales atributos
	Clase PEZ
	Clase LISTA
	Clase VECTORA
	Clase POSICI_CLASE
	Clase GEN_NUMEROS

	2. Algoritmo basado en las llamadas a los módulos principales
	V->simulacion
	V->simulacion_lista
	V->borrar_listas_vecinas
	V->simulacion_lista_vecinos
	V->vecinos
	V->vecinos_1
	L-> vecinos_frontal
	L-> vecinos_distancia
	L-> vecinos_radios_reacciones
	L->vecinos_radios_busqueda
	V->obtener_estadisticas
	V->escribir_fichero
	L-> escribir_fichero_lista


	Anexo 2: Manual de usuario
	1. Instalación
	2. Configuración
	3. Ejecución


	Contraportada.doc

