Universitat
£ Autonoma
de Barcelona

1202 - MODELADO Y SIMULACION DE SISTEMAS BIOLOGICOS

Memoria del Projecte Fi de Carrera
d'Enginyeria en Informatica
realitzat per

Antonio Cruz Vazquez

I dirigit per

Diego Javier Mostaccio Mancini
Bellaterra, 22 de juny de 2009

Universitat
" Autonoma e t S @

de Barcelona Escola Técnica Superior d’Enginyeria

El sotasignat, Diego Javier Mostaccio Mancini

Professor/a de 1'Escola Tecnica Superior d'Enginyeria de la UAB,
CERTIFICA:

Que el treball a qué correspon aquesta memoria ha estat realitzat sota la seva
direcci6 per en Antonio Cruz Vazquez

I per tal que consti firma la present.

Signat: Diego Javier Mostaccio Mancini

Bellaterra, 22 de juny de 2009

L. INEEOAUCCION .o, 4

1.1 I\ 071 T 1) | T 4
1.1.1 Caracteristicas de los sistemas bioldogicos orientados al individuo.................. 4
1.1.2 Simulador del comportamiento de un banco de peces (fish schools)............... 5
1.2 ODJELIVOS ceuvvrierrnnicssanesssanssssarsssssnsssssssssssssssssssssssssssasssssssssssassssssssssssssssssssssnsssssnsssssnssss 8
1.3 Organizacion de 1a memoria del Proyectoeceeecseccsenseenseecenssecssececssecsnee 10
2. Viabilidad y planificacion..............ccoocooeeees 12
2.1 Finalidad del Proyectoceiceeiciceinisninssnnicssnncsssanssssssssssssssssssssssssssssssssssssssnss 12
2.2 Propuesta de Proyecto.... e eceeciseicsseicsssnecssssecsssnesssssessseessssnesssssesssssssssssssses 12
2.3 Recursos materiales y plataforma de desarrollocoeeeeevercrcnrcssercssnnrcssnnsenes 13
24 Planificacion de tareascoeeeneicieinninnsninsennseisssnnnssiessssssissssssssossssssssssssessns 14
25 Estudio del estado del arte.........ucuueecseeiseiiseeisenssnensnnnsnensenssnesssecsssecssessssesssecsnns 15
2.6 FiSh SCROOIS ...cuueiiniiiiniiiiiiiiiiiiitiinnnnicnnnicnnnicsnticsntesssessssnsssssnessssnessssnessssnessnns 17
2.7 ADALISIS A€ FIESZO0 ceuvrrrveriiruninssrnrnssnisssanisssansssssnsssssnsssssessssssssssssssssssssssssssssssssnsssssnss 23
2.8 Viabilidad del Proyecto ... cceicisseecsseecsseicssnnccssseesssseesssnesssssessssnsssssscsssssssnss 24
3. Analisis funcional y requerimientos...........cccoveercc 25
3.1 ReQUETTMICNTOS ..ceviiieiireriiisissnnicssssnnricsssssnessssssssssssssssesss 25
3.2 Analisis funcionalceeenieiniinniinnenniecniineinnenniicniisisiesiesiisesessseesee 26
3.2.1 Analisis de consideraciones a tener en cuenta con el espacio de simulacion 27
3.2.2 Analisis de consideraciones a tener en cuenta con los pecesccceeeervueresenes 28
3.23 Adaptacion del modelo original fish schools de dos dimensiones al de tres
QIMENSIONES c.uueeirneeireirneiiseensensstecssenssescssessssnsssnssssssssnsssnssssesssassssesssassssessssssssssssassssesssssssansss 28
3.24 Detalle de las posibilidades de configuracion del simuladorc..ccccevueeennes 30
33 Criterios en la parametrizacion de l1a sSimulacion...........ccoveeeecvercncercscnrcssnnncsenns 33
34 Herramientas practicas a UtiliZarcoeececveecciveninssercnssencsssencssencsssesesssessssssssssnns 33
3.5 Estudios de los casos de uso del SIStemacceeereesseecsensseenseecssnecsaenssacsssecsnecsanes 34
3.6 Diagrama de DIOQUES......eeiccrvverieciisnriccsssnnnecssssnnresssssssscssssssssssssssssesssssssssssssssssssssss 35
A, DISEIIO....coccoooeeeoeceesees s 36
4.1 Estructura modular.........iiieeiniinininninnnninneinnniineisiiseisisessisssssssess 36
4.2 EStructuras de datosS.......ceeeeeiiineeeciinnnneccsisnnnccsssnsencsssseescssssssssssssssescsssssssssssssses 38
4.3 Diagrama de ClaseS.......eicvvueicisrinisnisssnnisssnnisssanssssssesssssssssssssssssssssssssssssssssssssnsssses 40
5. IMPIEMENTACION.......ooooooooeeeeeeeeese e 42
5.1 WA N £ 01 411 1111 TN 42

5.2 Implementacion de las reacciones de 10S PeCeS.....c.ccceevvvrecscnrcssercssnrcssercssnsncsenes 45

B. PIUEBDAS. ...t 48
6.1 Pruebas de verificacion del SiStemac.cecveeeveiiceinseniseinsinssnnnsecsseiesnesssnsssnesans 50
6.1.1 Verificacion del modulado de 1as reaccionesccceeeveercrcnnrcssnercssnercssnnscsanns 50
(L7 2] 0110 01 50
6.1.1.2 Orientacion paralelaeninrnnnininensinsisensessisnsssssssssssssssssssssssssssssssss 51
0.1.1.3 ALFACCION..c.uceierieireninnnsnnsnsisnsssssssnsss 52
0.1.1.4 BUSQUEA.....ccceririenenninansenisnnsassssssnsssssssssssssssssssssssssssssssssssssnssssssssssssssssssssssss 53
6.1.1.5 Caso en el que un pez esté siendo tapado por otro............ccceeevcercnnncee 54
6.1.2 Comprobacion del comportamiento emergente de la interaccion de las
FCACCIOMIES ueeeerneresirrresssnnesssnecsssnecssnecsssnessssnessssnessssssssssesssssesssssessssssssssssssssssssssssssssesssssnssssanes 55
6.1.3 Experimentos adiciOnalescoeeeeveicssnecssnnicssnnicsssnissssnessssncssssncssssssssssscssssses 61

6.1.3.1 Pruebas de porcentaje de actuacion de cada una de las reacciones
e 1 TeTu L0 IR 1 O 1 | O 61

6.1.3.2 Pruebas de comportamiento, segin disposicion inicial de los peces 63

6.1.3.3 Pruebas de cambio de cOnfiguracion...........c.ceeeveerveesessnsnnsessesnssssssssssassese 70
6.2 Pruebas a nivel de SOftWATecccvvueiieiivrericcsssnniicssssnniecsssnsecssssassecsssssssessssssasssnnnes 77
7. Conclusionesy lineas de futuro.........cccoecoccercc 79
7.1 Conclusiones Y reSultadoscceeiecnccsniccsssnnicssssssrecss 79
7.2 Posibles trabajos fUturoscceeiciveicnseicnsnicisnicssnnissssnsssssnessssnesssssesssssssssssssanes 80
= {01 [0 o] = 1 - U 81
Anexo 1: Detalle de las clases utilizadas............cccocccv 85
1. Detalle de los métodos y principales atributos.........ccceevueecrvueicssnrccssercsssercssnercssnencnes 86
2. Algoritmo basado en las llamadas a los mdédulos principalesccceceervueicscnnccsnnne 95
Anexo 2: Manual de USUANIO.............creeesieessssseessseessn 98
D I 1] 7 1 11 N 929
2. CONFIGUIACION cuccuveieecriieisricsaesinssecsnneseessesssessesssecssessssssesssssssssseessssssessasssessasssssssssssess 99
R TR D) 1T U1 N 108

1.Introduccioén

El objetivo de este capitulo de introduccién es dar una vision global del proyecto,
tanto a nivel particular como en lo que hace referencia al campo sobre el que va a

tratar.

1.1 Motivacion

La motivacion principal de este proyecto ha sido la de la investigacion y desarrollo en
un campo que nunca antes habia tratado, como es el de los sistemas bioldgicos

utilizando modelos orientados al individuo.

Dentro de dicho campo, me resulta atractivo el poder simular el comportamiento que
tienen los peces a la hora de desplazarse y ver como los resultados obtenidos son los

mismos que los que se pueden encontrar en el mundo real (segun [1]y [2]).

Como conclusion de mis motivaciones, decir que siempre he considerado muy
interesante el mundo de la bioinformatica y este proyecto me da la oportunidad de

desarrollar un simulador basado en ese campo.

1.1.1 Caracteristicas de los sistemas biolégicos orientados al
individuo

El presente proyecto tiene como tematica principal los sistemas bioldgicos utilizando
modelos orientados al individuo. Dichos sistemas, se basan en el comportamiento de

cada uno de sus individuos.

Asi pues, las dos principales caracteristicas de los modelos orientados al individuo
son que tienen en cuenta el comportamiento de individuo y que el comportamiento
del grupo esta basado en las interacciones entre los individuos que forman el

sistema.

Estos sistemas se diferencia de los orientados al grupo, en que estos ultimos se

basan en el comportamiento grupal de los elementos.

Entrando un poco mas en detalle a lo que hace referencia a los sistemas biolégicos
orientados al individuo, se pueden ver estos como un sistema en el que el
comportamiento de cada uno de los individuos que lo forman, provoca que se llegue

a un cierto estado grupal.

Dentro de estos casos, se podria ver como el comportamiento unitario de un grupo
de personas provoca un cierto comportamiento en las decisiones de donde colocar

las salidas de emergencia de un edificio.

También se pueden usar estos sistemas para observar y simular el mundo animal.
Por ejemplo se podria ver como un conjunto de individuos de la misma especie
acaban formando un grupo cohesionado gracias al comportamiento individualizado

de cada uno de sus miembros.

Este proyecto precisamente se va a basar en el estudio, simulacion y forma de
implementar el algoritmo de un conjunto de animales, concretamente en el de los

peces.

1.1.2 Simulador del comportamiento de un banco de peces (fish
schools)

En este punto se va a describir en lineas generales el funcionamiento del simulador

de fish schools.

El proyecto consistira en realizar un simulador en tres dimensiones de fish schools
que reproduzca el movimiento real de los peces. Se podra ver como a partir del
comportamiento unitario de cada uno de los peces, se llega a conseguir un cierto

estado grupal.

Este comportamiento de agrupacién de los peces tiene como finalidad el protegerse
del ataque de sus enemigos. Partiendo de esta idea, el simulador debera
comportarse de la misma manera que los peces lo hacen. Para ello, habra que
basarse en un estudio realizado por Huth y Wissel [1] y [2] en el que dan las bases
del comportamiento de los peces y de la manera en la que acaban agrupandose

formando los consiguientes bancos de peces.

En dicho estudio se puede ver como los peces se identifican por su posicion y
orientacion. También se va a poder extraer de ese estudio, que los peces se
caracterizan por tener 4 tipos de comportamiento (en cuanto a su movilidad) y que

en base a ellos logran formar grupos muy cohesionados.

Dichos comportamientos se basan en la distancia a la que estan los peces vecinos
respecto a un determinado pez. Segun dicha distancia van a existir los

comportamientos de repulsion, de orientacion paralela, de atraccion y de busqueda.

El comportamiento de repulsién aparece cuando hay el riesgo de que un pez choque
con otro debido a que se encuentran muy cerca el uno del otro. En este caso, el pez

cambiara su direccion a una que sea perpendicular a la del pez vecino.

En el caso de que la distancia entre un pez y su vecino sea pequefia (pero no tanto
como para que choquen), aparecera la orientacién paralela. Esta reaccion supone

que el pez cambie su direccion igualandola a la que tiene su vecino.

Si la distancia entre el pez y el vecino ya es algo mayor (pero dentro del campo de
vision del pez), aparecera el comportamiento de atraccidon. Se trata de una reaccién
en la que el pez se acerca a su vecino haciendo que su direccion apunte a la

posicion que ocupa el vecino.

El ultimo comportamiento sera el de busqueda, que se dara cuando no existan
vecinos lo suficientemente cerca del pez o estos estén en su angulo muerto de
vision. Debido a que el pez no aprecia vecinos dentro de su campo visual, hara un

cambio de direccion para intentar encontrarlos.

Como consecuencia de que todos los peces tendran que comparar sus posiciones
con las del resto de vecinos para saber cuales de ellos influenciaran finalmente en
su movimiento, habra n*n-1 comparaciones por cada iteracion, que lo podemos

considerar como un n?y por tanto un algoritmo de orden cuadratico.

A partir de la informacion extraida de la documentacion de referencia, se deberan
analizar los diferentes comportamientos de los peces y ver de que manera se puede
llegar a pasar de su base teodrica a la simulacion final en un ordenador. Para ello, se

debera dividir el trabajo en varias fases.

La primera de ellas consistira en traducir la informaciéon existente en Ia
documentacion de referencia, a su correspondiente representacion matematica.
Para ello, habra que adaptar las explicaciones que aparecen para el modelo en dos

dimensiones al correspondiente modelo en tres dimensiones.

Una vez desarrollada la representacion matematica del modelo en tres dimensiones,
se pasara a la fase correspondiente con implementaciéon del modelo matematico.
Seguidamente se realizara la tercera y ultima fase consistente en el desarrollo e

implementacion en si del simulador.

Lo primero sera definir el espacio de simulacion y las caracteristicas de los peces.
Se establecera un espacio representado en tres dimensiones, cuyo tamafo sera

limitado pero que podra ser configurado.

Los peces estaran definidos mediante su identificador, posicién y direccion
(velocidad). El numero de peces también sera acotado pero podra ser configurado.
De igual manera, se podran configurar otros elementos como por ejemplo el numero

de iteraciones, o el numero de peces.

Debido a que la complejidad del algoritmo es cuadratica, se decide pensar alguna
manera que permita acelerar el tiempo de ejecucion. Una vez analizadas las
distintas posibilidades, se decide permitir que se pueda dividir el espacio total de
simulacién en partes (mediante configuracion). De esta manera, la complejidad sigue

siendo cuadratica pero con un numero menor de elementos a tratar.

Aparte de las opciones de configuracion ya comentadas, también se podra
establecer la manera en la que se distribuyan inicialmente los peces, permitiendo asi

simular varios escenarios.

Una vez definidas la base del simulador y las diferentes opciones de configuracion
del simulador, se realizara la implementacion en lenguaje C++. Dicha
implementacion estara formada por una parte inicial que consistira en la

configuracion del simulador, a partir de la lectura del fichero encargado de ello.

Seguidamente y en funcion del método de inicializacién de los peces que se haya
escogido, se realizara la consiguiente creacién y colocacion de los mismos en los

lugares determinados del espacio de simulacioén.

Una vez colocados los peces, se pasara a lo que es en si el motor de la simulacion,
consistente en la comparacion de cada uno de los peces con el resto y la
consiguiente determinacién de las nuevas posiciones y direcciones de los peces en

funcién de las reacciones que se produzcan.

Para cada iteracién, se escribiran los resultados de las posiciones y de las
direcciones de los peces en varios ficheros. También existira un fichero de
estadisticas en donde quedara recogido el grado de homogeneidad de las

direcciones y el grado de cohesion del grupo.

Finalmente, esos ficheros generados serviran para representar graficamente la

simulacioén realizada (mediante otro proceso independiente de este proyecto).

1.2 Objetivos

El objetivo principal sera el de obtener un simulador con el que obtengamos los
mismos resultados que los aparecidos en la documentacién de Huth y Wissel ([1] y

[2]) sobre el estudio de los movimientos de los peces.

Para ello, se deberan realizar varios pasos que permitan pasar del estudio de una
bibliografia sobre el tema, al desarrollo del simulador. Ademas, habra que marcar

objetivos parciales para cada una de las fases del proyecto.

El primero de ellos consistira en la lectura de los trabajos existentes [1] y [2] sobre el
comportamiento de los peces. Sera importante entender el funcionamiento y la base
tedrica de sus estudios para posteriormente poderla poner en practica. También se
debera buscar otra documentacion que pueda servir de ayuda para la realizacién del

proyecto.

En este punto, el objetivo a marcar va a ser el asimilar correctamente toda la base

tedrica que posteriormente habra que acabar implementando.

El segundo paso sera el desarrollo del modelo matematico. Una vez leida y
analizada con detenimiento la documentacion de referencia, se deberan traducir los
conceptos tedricos en formulas matematicas con las que representar el modelo,
teniendo en cuenta ademas, que deben ser formulas a utilizar en un espacio

tridimensional.

En esta caso, el objetivo a marcar van a ser corroborar que las representaciones
matematicas son equivalentes a las expresiones aparecidas en la documentaciéon de

referencia [1] y [2].

Una vez establecido el modelo matematico, se debera realizar la implementacion del
mismo. Para ello, habra que adaptar las férmulas de un formato tedrico, a la
representacion definitiva que sera la que se debera usar en la implementaciéon del

simulador.

En este caso, el objetivo a marcar sera nuevamente comprobar que las formulas
implementadas se corresponden con la realidad, es decir que a partir de dichas

férmulas se obtienen los resultados mostrados en la documentacion de referencia [1]
y [2].

Finalmente se realizara la implementacion del simulador, empezando primero por su
analisis y desarrollo. Dentro de la parte de implementacion se integrara el sistema
matematico implementado previamente y que servird como elemento fundamental

en el correcto funcionamiento del simulador.

Una vez realizada la implementacion, habra que comprobar que los resultados
obtenidos con el simulador son los mismos que los que se esperaban inicialmente,

es decir los aparecidos en la documentacion de referencia [1] y [2].

1.3 Organizacion de la memoria del proyecto

La memoria estara organizada en 7 puntos mas la bibliografia y los anexos que

apareceran al final de la misma.

El primero de los puntos sera precisamente este, que servira de introduccién a la
misma y en donde apareceran las caracteristicas de los sistemas bioldgicos
orientados al individuo, tanto a nivel general como particularizando con el fish schools.

También apareceran las motivaciones y objetivos a cumplir en el proyecto.

A continuacion aparecera la viabilidad y la planificacion del proyecto, que serviran
para realizar un estudio previo de si se puede llevar a cabo la realizacién del mismo.
En este capitulo habra también un apartado dedicado al “fish schools” para explicar
sus caracteristicas. Otros apartados que integran este capitulo son el estudio del

estado arte y en analisis de riesgos.

El siguiente punto sera el correspondiente al analisis funcional y a los requerimientos
del proyecto. Aqui se hara la descripcion de la funcionalidad del programa, asi como
de las consideraciones a tener en cuenta para la realizacion del simulador. Como

parte final del capitulo aparecera el diagrama de bloques del simulador.

A continuacion se llegara al disefio. Aqui habra que realizar un estudio de cémo llevar

a cabo el desarrollo. Los apartados que apareceran en este capitulo seran los

10

correspondientes a las estructuras de datos, la comunicacion entre mddulos y el

diagrama de clases del simulador.

La implementacién sera el siguiente punto, y sera el lugar en el que se detallara la
manera en la que se ha realizado el desarrollo del simulador. Aqui se describira el

algoritmo implementado.

En el sexto punto apareceran las pruebas a las que se sometera el simulador una vez
finalizado. Habra una primera prueba con la que comparar si los resultados del
simulador se corresponden con los aparecidos en la documentacion de referencia. A
parte de dicha prueba, existiran otras para verificar el correcto funcionamiento del

simulador.

Las conclusiones del proyecto seran el séptimo y ultimo punto y nos van a servir para
descrobir los objetivos conseguidos. Ademas se indicaran otros posibles trabajos
futuros o variaciones que se podrian desarrollar a partir de la realizacion de este

proyecto.

Finalmente la memoria terminara con la bibliografia utilizada para la realizaciéon de

este proyecto, ademas de un apartado extra con los anexos.

11

2.Viabilidad y planificacion

En este segundo capitulo se van a tratar aspectos previos al proyecto como son por

ejemplo el estudio de viabilidad o la planificacién de las tareas.

2.1 Finalidad del proyecto

La finalidad del proyecto es el desarrollo de un simulador de sistemas biolégicos

utilizando modelos orientados al individuo.

Gracias a este tipo de proyecto se podra observar el comportamiento de los
diferentes sistemas bioldégicos de una manera rapida y sin la necesidad de
experimentar directamente con ellos. Todos los calculos se realizaran en una
computadora lo suficientemente potente como para simular los diferentes

movimientos posibles que pueden desarrollar las especies en estudio.

Los beneficios que se podran obtener una vez conocido y simulado el comportamiento
del modelo a estudiar sera el determinar con antelacion que pasos o acciones realizar

para conseguir que la especie que se vaya a tratar actue de una manera u otra.

Desde otro punto de vista, el proyecto también va a servir para analizar si los

resultados obtenidos con el simulador se ajustan a los existentes en el mundo real.

2.2 Propuesta de proyecto

El presente trabajo se basa en la representacion en tres dimensiones de las
caracteristicas del movimiento de los peces en un momento dado. Estas
caracteristicas del movimiento vendran dadas por la direccion que tome el pez y ésta

a su vez vendra determinada por las reacciones provocadas por los vecinos.

12

Cada uno de los pasos de la simulacién marcaran el movimiento y por tanto nuevas
posiciones de los peces. Respecto a las caracteristicas fisicas (tamafio y velocidad)

de los peces, estas seran igual para todos.

Habra 3 tipos de comportamientos, atraccion, orientacion paralela y repulsion. Cada
uno de estos comportamientos vendran determinados por la distancia y angulo en la
que se encuentren sus peces vecinos. Ademas de esos 3 tipos de comportamiento,
existird un cuarto (busqueda) que se dara cuando no hayan vecinos cerca o bien no

los pueda ver porque estan en su angulo muerto de visién.

La simulacion consistira en seleccionar 4 vecinos de cada pez (segun Huth y Wissel
[11 vy [2]) y calcular la reaccion del pez para cada uno de sus vecinos. A partir de
esos calculos y del peso en que cada uno de sus vecinos repercuta sobre el pez en

cuestion, se obtendra la nueva posicion del pez.

Este proyecto sélo se encargara de realizar los calculos de las posiciones de los

peces pero no de la muestra de estos por pantalla.

2.3 Recursos materiales y plataforma de desarrollo

Para realizar el proyecto se dispondra de un PC convencional que dadas sus
limitaciones, no permitira hacer simulaciones con un gran numero de individuos, ya
que el tiempo empleado para ello seria demasiado grande. Hay que tener en cuenta
que la complejidad del algoritmo del modelo es cuadratica (O(n?)), donde n es el

numero de peces de la simulacion.
Como lenguaje de programacion, se utilizara el lenguaje C++, ya que se trata de un
lenguaje propicio para trabajar con los peces como si fueran objetos, ademas de ser

bastante accesible y conocido.

El sistema operativo sobre el que se desarrollara y ejecutara el simulador sera

Windows, debido a que es el mas difundido y usado en el mundo.

13

Como documentacion cientifica de referencia sobre el comportamiento de los peces
y que servira de base para desarrollar tanto el modelo como el simulador, se

dispondra de los trabajos realizados por Andreas Huth y Christian Wissel [1] y [2].

Finalmente se dispondra de internet para realizar las investigaciones y consultas

necesarias para el desarrollo del proyecto.

2.4 Planificacion de tareas

FASES TAREAS PERIODOS

1 Investigacion inicial y lectura de documentacién 01-11-08 al
30-11-08

1.1 Lectura de documentacion de referencia de los autores

Huth y Wissel

2 Estudio de viabilidad del proyecto 01-12-08 al
12-12-08

2.1 Definir la finalidad, propuesta y objetivos del proyecto.

También se indicara una primera planificacion, asi como la
metodologia o el analisis de riesgos.

3 Profundizacion en la investigacion y pre-analisis de 13-12-08 al
como desarrollar el proyecto 07-01-09
3.1 Asimilacion de la documentacion de referencia, asi como

busqueda de nueva documentacion relacionada con el
proyecto y que pueda servir de ayuda para el desarrollo del

mismo
3.2 Aumentar conocimientos en los lenguajes de programacion
a utilizar en el proyecto (C++)
4 Analisis funcional y requerimientos para el desarrollo 08-01-09 al
del proyecto 16-01-09
4.1 Definir detalladamente la funcionalidad del programa una

vez finalizado, estudio de los casos de uso del sistema y
diagramas de funcionamiento/bloques

4.2 Establecer el modelo matematico (formulas y calculos) que
implementaremos posteriormente en el desarrollo del
simulador
5 Disefio del proyecto 17-01-09 al
06-02-09
5.1 Definir el plan de implementacién a realizar, asi como la
estructura modular
5.2 Realizacién del algoritmo, poniendo los pasos a seguir

para la realizacion del desarrollo del simulador. Realizaciéon
del diagrama de flujo, indicando de forma grafica, los
pasos del algoritmo. Realizacion del pseudocdédigo del
simulador, que posteriormente pasaremos al lenguaje de
programacion a utilizar para el desarrollo del mismo.

14

7.1

7.2

8.1

8.2

9.1

Implementacion del proyecto 07-02-09 al
20-03-09

Definir la implementacidn, la interfase de usuario, asi como

el prototipo de la primera version.

Desarrollo del simulador en lenguaje C++.

Evaluacién del proyecto 21-03-09 al
17-04-09

Definir el plan de pruebas a realizar, la metodologia de las

mismas asi como los resultados esperados

Realizar las pruebas establecidas consistiendo en primer
lugar en pruebas unitarias para posteriormente realizar
pruebas globales. Realizaremos finalmente varias
simulaciones variando el numero de elementos e
iteraciones. Las herramientas a utilizar seran el simulador
en si realizado en C++.

Anélisis de resultados del proyecto 18-04-09 al
08-05-09

Definiremos la funcionalidad, los resultados de las pruebas

asi como la realizacion del esquema definitivo de la

memoria

En esta fase, analizaremos los resultados obtenidos en las

pruebas finales realizadas en la fase anterior, que nos

serviran para determinar el comportamiento final del

simulador. Terminaremos de dejar listo las version

definitiva del simulador.

Finalizacion del proyecto 09-05-09 al
30-06-09

Repaso, revision y finalizacién de las tarea que pudieran

quedar pendiente, asi como preparacién mas exhaustiva

de la presentacién del proyecto

2.5 Estudio del estado del arte

Este apartado se va a dividir en 2 partes, correspondientes al nivel de detalle.

Primero se empezara tratando los diferentes tipos de simuladores existentes a nivel

general, para luego terminar con los simuladores biolégicos.

En primer lugar habrd que nombrar algunos de los diferentes tipos de simuladores

existentes actualmente, asi como algunos de sus productos:

Simulador de carreras: Se puede conducir un automaévil, motocicleta, camion,
etc. Ejemplos: rFactor, GTR, GT Legends.
Simulador de vuelo o de aviones: Permite dominar el mundo de la aviacion y

pilotar aviones, helicépteros... Ejemplo: Microsoft Flight Simulator, X-Plane

15

e Simulador de trenes: Permite controlar un tren. Ejemplo: Microsoft Train
Simulator, Trainz , BVE Trainsim .

e Simulador de redes: Permite simular redes. Ejemplo: Omnet++, ns2.

e Simulador biolégico: Permite simular elementos vivos, como plantas,

animales, personas, etc...

Dentro de estos, se pueden encontrar aquellos simuladores que permiten realizar
diagndsticos clinicos sobre pacientes virtuales o bien para practicar casos muy
complejos, preparando al médico para cuando se encuentre con una situacion
real. Un ejemplo de este seria el simulador clinico “Mediteca” A estos

simuladores se les conoce particularmente como simuladores quirurgicos.

A continuacion se abordaran los simuladores biologicos, poniendo ejemplos de

diferentes trabajos que tratan este tipo de simuladores.

Como se podra comprobar la mayoria de los simuladores biolégicos estan basados
en el campo de la medicina. Gracias a ellos, se esta consiguiendo un mayor
aprendizaje de aquellas situaciones complejas que se pudieran producir o bien como
medida de aprendizaje de situaciones reales pero sin la existencia de riesgo sobre el

paciente.

Algunos ejemplos de este tipo de simuladores los podemos encontrar a

continuacion:

e Simuladores para la ensenanza de la cirugia endoscoépica en México: [16].
e Desarrollo de modelos biolégicos inanimados en urologia, con los que se
pueda lograr un método de ensefanza que permita desplegar las

destrezas quirurgicas: [17].

Como ejemplo del desarrollo e interés que estan suscitando los simuladores
bioldgicos (sobre todo en el campo de la salud), se mostraran a continuacion los
diferentes simuladores desarrollados en la facultad de ciencias de la salud de la

Universidad de Carabobo (Venezuela): [18].

16

Dentro de la lista de proyectos aparecidos, se podrian destacar el denominado
"simBio", simulador de sistemas biologicos tales como células cardiacas, células
epiteliales, y las células B pancreaticas. Esta escrito en Java, usa XML y puede

resolver ecuaciones diferenciales ordinarias: [19].

Seguidamente se encuentra un trabajo que ya es mas propio de la simulacion
biolégica. Se trata de un automata celular que simula el crecimiento de varias

especies de plantas en un terreno: [20].

También cabe destacar la presencia de simuladores y utilidades para la ingenieria

quimica e ingenieria medioambiental: [21].

Otra vertiente relacionada serian los juegos de simulacion bioldgica, en donde el
jugador controla ecosistemas donde los organismos pueden evolucionar o bien en
los que el jugador toma el papel del animal como si fuera un juego de rol. Algunos de

estos juegos serian el "SimLife", el "Darwinbots" o el "Wildlife Tycoon".

2.6 Fish schools

Se define como fish schools el modelo que describe el comportamiento de un banco
de peces tomando como base el movimiento de cada individuo y la interaccién con

el resto del sistema [3].

La caracteristica mas relevante del conjunto de fish schools es su alto grado de
cohesién en los movimientos grupales y que esta cohesion la tienen sin la presencia
de un lider. Estudios relacionados sobre el tema [1] y [2], llegaron a la conclusion
qgue el movimiento conjunto de los peces viene determinado por la eleccién individual
de cada uno de ellos, y que esta depende de la localizacion fisica en la que se

encuentren sus vecinos.

17

A continuacion se enunciaran las caracteristicas que determinan los movimientos de

los peces en funcidén de sus vecinos.

En primer lugar, se tendran en cuenta los peces vecinos que influenciaran en la
decision del pez. Dicha eleccion vendra dada por aquellos que se encuentren a una

distancia proxima y cuya posicion sea visible para el pez en cuestion.

Si existen mas de 4 peces que cumplen las condiciones de cercania y grado de
vision, el pez escogera aquellos 4 vecinos que o0 bien estén mas préximos o bien
estén mas en frente a su posicion (segun los estudios realizados, parece ser que
esta segunda opcion es la que genera una mayor aproximacion a la realidad). La
prioridad por frontalidad se basa en que primero se escogen aquellos peces que
estan por delante y mas enfrente, para luego escoger los que estan detras y mas
alejados del centro. Para la opcion del calculo por distancia, se escogeran primero
los peces que estén mas cerca, independientemente de si estan por delante o por
detras.

A continuacidn, se mostrara la relacion de distancias y angulos sobre los que el pez
determinara cuales son sus vecinos y que por tanto acabaran influenciando en su

movimiento (figura 3.1).

-II'II II

I'._

h

“E-‘\.

NUAT
\R;.:"?fffngu

la

mierto

]

/
[Repulzidn (0-r13
[0. paralela (r1-r2)
[| Mraceion (r2-r2)

[Biisqueda (>r3)

Figura 3.1: Rangos de los tipos de comportamiento

Como se puede apreciar en la figura 3.1, existira un circulo (el mayor de todos) que

marcara la zona de influencia del pez, tanto en distancia como en angulo de vision.

18

Dentro del mayor de los circulos habra otros 2 internos que serviran para dividir la

zona de influencia del pez en 3 partes.

Teniendo en cuenta que el pez esta situado justo en el centro del circulo, se tendra
como primera zona aquella que esta situada a una menor distancia que el radio r1
(tamafo del radio correspondiente a la mitad de un pez) y por tanto muy préxima al
pez. Esta area es el llamada de repulsion ya que ante la gran proximidad de un pez
vecino, el pez tiende a apartarse para no colisionar. Para ello, el pez realizara un
giro que le permita estar perpendicular a la direccion del vecino con el que podria

colisionar.

La siguiente zona en distancia, sera la formada entre el radio r1 y el r2 (tamafo del
radio correspondiente al doble del tamafo de un pez). Esta area es llamada de
orientacion paralela, ya que el pez tiende a ponerse en una posicion paralela al pez
vecino que esta localizado en esa zona. Asi pues, el pez toma el mismo angulo que

Ssu vecino.

La ultima zona de influencia y por tanto la mas alejada, sera la formada entre el radio
r2 y el radio r3 (tamafio del radio correspondiente a 5 veces el tamafo del pez). Esta
area es llamada de atraccion, ya que el pez tiende a acercarse a su vecino. Por

tanto el pez cambiara su direccion para ir en busca de su vecino.

Finalmente estara la reaccion de busqueda que se encuentra situada mas alla del
radio r3 y que se dara cuando el pez no perciba vecinos a su alrededor o bien
porque estan demasiado lejos o bien porque se encuentran en su angulo muerto de
vision (situado justo detras y con un angulo de 30 grados). En este caso, el pez lo
que hara sera modificar su actual direccion con la intencion de localizar a otros

peces.

En funcion de las influencias de los vecinos de cada uno de los peces, se obtendra
la nueva reaccion del pez y consecuentemente su nueva direccién y posicion. El
calculo final de la direccion vendra dado como la media de las direcciones

resultantes de las reacciones habidas con los diferentes vecinos.

19

Seguidamente se va a mostrar como es el modelo 2D del fish schools.

Cada pez estara representado por dos valores, uno que indicara su posicion y otro

que mostrara su orientacion.

La posicion vendra representada por los valores de las coordenadas X e Y, mientras
que la orientacion correspondera con el angulo que marque la direccion que tiene el

pez en ese momento.

A continuacion se mostrara como se calculan las diferentes reacciones para el

modelo en dos dimensiones ([1] y [2]).

En primer lugar se indicara la nomenclatura utilizada en las férmulas:
V¢4, X% Orientacion y posicion del pez.

2 X4 Orientacion y posicién de su vecino.

Y seguidamente se pasara a analizar las reacciones:

e Repulsién:
Para evitar que un pez colisione con otro, realiza un giro que le permita estar
perpendicular respecto a la direccion de su vecino. Esto se traduce en realizar
un giro que situe su orientacion con un angulo de 90 grados respecto a la
orientacion del pez con el que pude chocar. De las posibles opciones para
conseguir su objetivo, el pez escogera aquella que le suponga dar un menor

giro.

Por tanto, la reaccion de repulsion se transformara en un angulo de rotacion

Bi; determinado por:

Pii=min {£ (V3, V3 £90°

20

En la figura 3.1 se puede apreciar la reaccién de repulsion entre el pez i y su

vecino j dando como resultado la nueva direccidn g;; para el pez i.

Figura 3.1: Reaccidn de repulsion para el modelo en dos dimensiones [2]

e Orientacion paralela:
En el caso de que exista algun vecino que esté a una cierta distancia proxima
al pez, éste pasara a desplazarse en la misma direccidén que lo hace su

vecino.
Asi pues el pez girara el siguiente angulo (8;)):

Bi= £ (V3. V9

En la figura 3.2 aparece el pez i, su vecino j y el angulo (f;;) resultante de la

accion de orientacion paralela.

Q) ,

Figura 3.2: Reaccién de orientacién paralela para el modelo en dos dimensiones [2]

e Atraccion:
Cuando un pez esta alejado del resto del grupo, este tiende a desplazarse

hacia el grupo.

De esta manera, el nuevo angulo sera el resultado de la diferencia de posicion

entre su vecino y el propio pez (f;)):

Bii= £ (V8 X- X))

21

En la figura 3.3 se puede apreciar la reaccion de atraccion entre el pez iy su

vecino j. Como consecuencia de dicha reaccion, se producira el cambio de

direccion g;; para el pezi.

Figura 3.3: Reaccion de atraccion para el modelo en dos dimensiones [2]

e Busqueda:
Si finalmente el vecino esta demasiado lejos o en el angulo muerto, el pez al
no percibir ningun vecino realizara una accion de busqueda para intentar

encontrar a algun vecino.
Asi pues, el pez realizara un giro con un angulo aleatorio (f;):
Bi; = Aleatorio ([-180°, 180°])
En lineas generales, el calculo de la reaccidn final del pez vendra determinada por la

media de los angulos de giro provocados por los diferentes vecinos, segun la

reaccion aplicada para cada uno de ellos.

En el ejemplo de la figura 3.4 se puede ver el caso en que un pez (i) tiene dos
vecinos (j=1 y j=2) y como la reaccion final se calcularia como la media de los

angulos provocados por los dos vecinos.

Figura 3.4: Calculo de la reaccion final del pez para el modelo en dos dimensiones [2]

22

Para poder caracterizar a los fish schools, se dispondra de tres indices:

e Polarizacién (polarization): Promedio de la desviacién de los peces respecto
al movimiento del grupo. A menor valor, mayor homogeneidad en las
direcciones de los peces.

e Extension (expanse): Grado de cercania de los peces al centro de masas.
Indica cuanto de cerca estan todos los peces entre si. A menor valor, menor
distancia respecto al centro de masas y por tanto mayor cohesion.

e NND (Nearest Neighbor Distance): Promedio de las distancias respecto al

vecino mas cercano. Nos sirve para calcular el grado de cohesién en el grupo.

2.7 Analisis de riesgo

En este apartado, se van a tratar los posibles imprevistos que pudieran aparecer, asi

como las medidas a adoptar para hacerles frente.

El principal riesgo serian los imprevistos que se podrian tener al desarrollar el
proyecto en un lenguaje concreto de programacion, ya que podria darse el caso de
tener problemas para conseguir algunos de los objetivos marcados debido a sus

limitaciones y caracteristicas.

Para evitar este riesgo, se procedera a realizar un estudio de todas los posibles
elementos a necesitar para realizar la implementacion, para posteriormente
comprobar si el lenguaje en cuestién las tiene. En caso de que las tenga, se
procedera normalmente con la implementacién en ese lenguaje. Si por el contrario
dicho lenguaje tuviera ciertas limitaciones, se deberia realizar el estudio de ver que

lenguaje ofrece las herramientas que se necesitan para la realizacion del proyecto.

Otro riesgo que se podria presentar, seria el de que por algun motivo inesperado no
se consiguieran los resultados esperados, retrasando con ello la planificaciéon
establecida. Para este caso, la solucion consistiria en comprobar paso por paso
donde puede estar el error, intentando en lo posible una vez solucionado el

problema, volver a los tiempos planificados en un principio.

23

Finalmente se tendran que contemplar los riesgos informaticos como pueden ser la
pérdida fortuita de datos, que en este caso podria ser el codigo fuente del simulador.
Para minimizar el impacto de los mismos, se procedera a realizar copias peridédicas de

la informacion en diferentes dispositivos de almacenamiento.

2.8 Viabilidad del proyecto

En este punto se desglosara la viabilidad del proyecto. Para ello, se procede a su
division en 3 puntos, segun esta sea a nivel de recursos, de tiempo o de

conocimientos disponibles:

1. Viabilidad dependiente del tiempo disponible: Segun la planificacién existente
para la realizacion de este proyecto (2.4), se puede afirmar que se dispone
del suficiente tiempo como para llevarlo a cabo. En principio se iria realizando
y siguiendo de manera progresiva para detectar posibles dificultades a tiempo
y para que de esta manera, se pueda disponer de cierto margen al final para

acabar lo que pudiera quedar pendiente.

2. Viabilidad dependiente de los recursos cientificos y de investigacion
disponibles: Se dispone de la documentacién necesaria para el desarrollo del
proyecto. Concretamente se trata de unos trabajos realizados por dos
cientificos en los que se muestra de manera cientifica y matematica el
desplazamiento de los peces [1] ¥ [2]. A partir de esta documentacidon y con la
consiguiente investigacion, se podria llevar a cabo el desarrollo tedrico del

proyecto.

3. Viabilidad dependiente de los recursos hardware-software disponibles:
Finalmente, en lo que se refiere al hardware, se dispondra de un PC con el
que realizar el proyecto. Dicho PC se utilizara para llevar a cabo el desarrollo,
las pruebas y la ejecucion del mismo. Para la parte del software, se usara el

lenguaje de programacién C++.

Una vez analizados los 3 aspectos, podemos concluir afirmando que el proyecto es

considerado viable.

24

3. Andlisis funcional y requerimientos

En este capitulo se mostraran los requerimientos, asi como las consideraciones

generales a tener en cuenta para el desarrollo del proyecto.

3.1 Requerimientos

Los requerimientos del simulador son los siguientes:

e Realizar un simulador biolégico orientado al individuo que simule el movimiento
de los peces.

e Los resultados obtenidos con el simulador deberan ser los mismos que los
existentes en la documentacion de referencia [1] y [2].

e Se configuraran elementos del simulador como por ejemplo el numero de
iteraciones del simulador, el numero de peces o las dimensiones del espacio de
simulacién. También se podra establecer la manera en la que los peces se
distribuiran inicialmente por el elemento de configuracién. Se usara un fichero
para indicar dicha configuracion.

e El espacio de simulacién sera en tres dimensiones y el tamafio del mismo sera
finito.

e El simulador estara compuesto por un conjunto limitado de peces.

e Los atributos de los peces seran su posicion y su direccidn, que estaran
representados mediante vectores. El vector correspondiente a la direccion estara
normalizado para poder ser visualizado con un entorno grafico.

e El comportamiento de los peces sera el definido en la documentacion [1] y [2].

e El modelo original de representacion sera en dos dimensiones [1] y [2] y tendra
que ser por tanto transformado a tres dimensiones.

e Se generaran tantas iteraciones como se deseen.

e Para cada una de las iteraciones del simulador, se escribiran en un conjunto de
ficheros los resultados de las posiciones y velocidades de los peces. También se

iran guardando las estadisticas del simulador (polarizacién y grado de cohesion).

25

3.2 Analisis funcional

En la realizacion del analisis funcional se van a tener en cuenta tanto los
requerimientos establecidos, como posibles mejoras que puedan servir de valor

agregado para el proyecto.

Asi pues, se va a desarrollar un simulador de fish schools basado en el
comportamiento unitario que tienen los peces al desplazarse. Para ello, se dispondra
de un espacio de simulacion y de un conjunto de peces con las caracteristicas
indicadas en los requerimientos. Los detalles a tener en cuenta del espacio de
simulaciéon apareceran en el punto 3.2.1, mientras que las correspondientes a los

peces se encontraran en el punto 3.2.2.

El simulador podra configurarse para poder realizar la simulacion de varios
escenarios. Los detalles de configuracién del simulador seran tratados en el punto
3.2.4.

Los peces van a tener 2 atributos con los que se podran controlar sus movimientos.
El primero de ellos sera la posicion y servira para saber el lugar que ocupa el pez. El
segundo atributo sera el correspondiente a la direccion, con el que se podra saber la
orientacién que lleva el pez. En funcién de dichos valores y de los que tengan los
vecinos de alrededor, se podran calcular las nuevas posiciones y direcciones de los

peces.

Las caracteristicas de los movimientos que tendran, seran las mismas que las
indicadas en la documentacién de referencia [1] y [2]. Se tendra que tener en cuenta
que segun los requerimientos, el modelo a desarrollar sera en tres dimensiones,
mientras que el modelo original aparecido en la documentacion de referencia [1] y [2]
esta en dos dimensiones. Por tanto, sera necesario realizar un estudio de como
realizar la transformacion del modelo 2D al 3D. Dicha transformacién se encuentra

detallada en el punto 3.2.3.

Una vez calculados los nuevos valores de los peces, se deberan escribir en

diferentes ficheros para que posteriormente puedan ser visualizados en un entorno

26

grafico (independiente a este proyecto). Habra un fichero de posiciones, uno de

velocidades (direcciones) y uno de estadisticas para cada iteracion.

3.2.1 Analisis de consideraciones a tener en cuenta con el espacio
de simulacidn

Debido a que las dimensiones del espacio van a ser finitas, se va a tener que decidir

que acciones tomar cuando los peces lleguen a esos limites.

Se han analizado varias opciones, como por ejemplo que si un pez sale de los
limites de alguno de los tres planos, aparezca por el lado contrario del mismo plano,
pero al final se ha decidido que cuando un pez alcance algunos de los limites del

espacio de simulacion se produzca un efecto de reflexion en su direccion.

Otro aspecto importante a tener en cuenta va a ser como conseguir buenos tiempos
de ejecucion. Para ello, se va a partir de la situacién basica del simulador

consistente en un unico espacio en donde estan distribuidos todos los peces.

El hecho de que haya un unico espacio, implica que no se sepa la distancia a la que
se encuentra un vecino de un determinado pez y por tanto se tenga que comparar
cada pez con cada uno de los vecinos, para determinar cuales de estos intervienen
en la reaccion final del pez. Este tratamiento supondria una complejidad de orden
cuadratico (O(n?)). Como consecuencia, se analiza si podria existir algun tipo de

variante para reducir el tiempo de ejecucion.

Partiendo de esa idea inicial, se penséd en realizar algun cambio en la estructura
interna que hiciera que el simulador fuera mas rapido. Esa modificacion pasaba por
dividir el espacio de simulacion en subgrupos para que asi el numero de
comprobaciones entre peces se redujera a solo aquellos que ocupan la misma zona,

junto a aquellos otros que estuviesen en cuadrantes limitrofes.

De esta manera, solo se estaran haciendo comparaciones con los vecinos que

realmente si pueden afectar a la reaccion final (ya que se encuentran cerca del pez),

27

consiguiendo ademas que el orden cuadratico sea en funcion del numero de
elementos que componen cada uno de las particiones y por tanto que el tiempo de

ejecucion sea menor.

3.2.2 Analisis de consideraciones a tener en cuenta con los peces

En este subapartado se van a analizar la manera en que se guardaran las
posiciones de los peces. Hay que tener en cuenta que la representacion final de las
mismas se realizara mediante numeros naturales (un pez estara en una posicion
concreta, no podra estar parte si y parte no), pero en cambio internamente si que se

debera pensar la forma en la que tratar los valores.

Se ha escogido finalmente el guardar las posiciones internamente en formato
decimal para no perder la precisidn en los calculos y consecuentemente reflejar de
una manera mas real la posicion actual del pez. La manera en la que se pasara del
valor interno decimal al valor entero de representacion final sera mediante el

redondeo del mismo.

Otra consideracion a tener en cuenta en el simulador sera el trato que se le de a los
peces que se encuentren tapados por otros. En este caso se ha decido que si un
pez esta tapado por otro, no se tenga en cuenta. Asi, si mas de un vecino se
encuentra en exactamente el mismo angulo de vision de un determinado pez, solo

se escogera aquel que esté a una distancia menor de este.
3.2.3 Adaptacion del modelo original fish schools de dos
dimensiones al de tres dimensiones

En este punto se tratara la manera de adaptar el modelo en 2 dimensiones visto en

el apartado 2.6 (fish schools) al de 3 dimensiones.
Para el cado del modelo en 3D (al igual que en el caso del 2D) se seguiran teniendo

como atributos del pez la posicidn y la orientacion, pero en esta ocasion se hara de

diferente manera el tratamiento de los mismos.

28

Para el caso de la posicidon, se utilizara un vector de tres coordenadas (Xx,y,z)

mientas que para el caso de la orientacion se usara un vector tridimensional en

donde estara guardada la orientacion que va a tener el pez (también llamado vector

director).

Seguidamente se mostrara el funcionamiento de las reacciones para el modelo en

tres dimensiones.

Repulsion:

Para la version en 3D también se tendra que buscar la direccion perpendicular
al vecino para que el pez no choque, pero en este caso sera algo bastante
mas complicado que para 2D, ya que aparece un tercer plano a tratar
(coordenada Z). Esta tercera coordenada implicara tener multiples direcciones
perpendiculares, por lo que se debera encontrar un vector director cuyo nuevo

valor sea ademas aquel que suponga el menor giro posible para el pez.

Orientacién paralela:
En este caso, al igual que en la versidn 2D, el pez adquirira la direccién que
lleve el vecino. Esto supondra que el vector director del pez pase a contener

los mismos valores que el del vecino.

Atraccion:

Como en el caso del método de dos dimensiones, se debera calcular la nueva
direcciéon como la diferencia de posiciones entre el vecino y el pez. Por tanto,
la nueva direccidon del vector director sera la diferencia entre el contenido del

vector de posiciones del vecino y el vector de posiciones del pez.

Busqueda:
Para este ultimo caso, también se debera buscar una nueva direccion con lo
que el vector director pasara a tener unos nuevos valores que seran

totalmente aleatorios.

Para realizar el calculo de la reaccion final del pez en tres dimensiones, se debera

sumar (y posteriormente normalizar) el contenido de los vectores directores

resultantes para cada una de las reacciones provocadas por los vecinos.

29

Una vez que se tenga la nueva direccion, se calculara consiguiente la posicion que

acabara ocupando el pez.

3.2.4 Detalle de las posibilidades de configuracién del simulador

En este punto se detallaran los elementos del simulador que podran ser

configurados:

Numero de peces: Se indicara el numero de peces con los que se realizara la
simulacién. Hay que tener en cuenta que a mayor numero de peces el tiempo
de proceso sera mayor (ya que la complejidad es cuadratica y por tanto el
crecimiento de tiempo también sera notorio), aunque se dispondra de una
simulacién mas rica en cuanto a resultados. Si por el contrario utilizamos

pocos peces, el resultado sera justo lo contrario.

Resolucién del espacio de simulacién: Se indicaran las dimensiones y por
tanto las coordenadas de las posiciones por las que podran moverse los
peces. Debido a que es una simulacién en tres dimensiones, se debera

indicar el valor para las tres coordenadas. Deberan ser valores entre 1 y n.

Numero de iteraciones: Numero de pasos de simulacidn que se quieren
simular. Evidentemente, con un mayor numero de iteraciones y por tanto de
tiempo, se podra ver como progresivamente los peces tienden a juntarse. Si
por el contrario, se lanza el proceso con pocas iteraciones, es posible que los
resultados sean confusos por no dar tiempo a que los peces se encuentren
entre si para acabar juntdndose finalmente entre ellos. En todo caso, lo que si
que se podran observar seran patrones de comportamiento de los peces que

lleven a la cohesion del grupo.

Disposicién inicial de los peces: Se podra elegir la manera en que los peces
se situen inicialmente tanto en posicion como para ciertos casos en velocidad
(direccion).
Las maneras posibles seran las siguientes:

e Distribucion aleatoria en cualquier posicion: Los peces se colocaran

aleatoriamente distribuidos a lo largo del espacio de simulacion que se

30

ha dimensionado anteriormente. La velocidad (direccidon) también se
calculara de forma aleatoria.

Distribucion agrupada en una determinada zona segun porcentaje
sobre el espacio total: Este método se utilizara para que el grupo de
peces se limite a una cierta zona, delimitado por el porcentaje a ocupar
respecto el total. Para ello se determinara el porcentaje que se quiere
ocupar sobre el total de la dimensién y la localizacion que tendra dentro
del espacio de simulacion. De esta manera por ejemplo, se podran
tener concentrados a todos los peces alrededor del centro del espacio
de simulacibn o en una esquina y ver en esos casOS COmo se
comportan. Tanto el calculo concreto de la posicion como la velocidad
se calcularan aleatoriamente, pero siempre teniendo en cuenta la
configuracion establecida. Los valores del porcentaje y de la situacion
se indicaran en el fichero de configuracion del simulador.

Distribucidn agrupada en una determinada zona segun separacion
entre peces: Este método se utilizara para que el grupo de peces se
limite a una cierta zona siguiendo ademas una distribucion en la que la
separacion entre peces sea una concreta. Para ello se determinara la
separacion que se quiere que haya entre cada pez y la localizacion que
tendra dentro del espacio de simulacion. De esta manera se podra
obligar a que inicialmente exista una cierta reaccion entre los peces
que desemboque posteriormente en un determinado comportamiento
del grupo. Tanto la posicibn como la velocidad se calcularan
aleatoriamente, pero siempre teniendo en cuenta la configuracion
establecida. Los valores de la separacion entre peces y de la situacion
se indicaran en el fichero de configuracion.

Determinada por fichero de entrada: Se utilizara esta opcion para
aquellos casos en los que no se quiere que se calculen posiciones ni
velocidades aleatoriamente, sino que lo que se quiere es ver el
comportamiento del simulador para una determinada situacion inicial.
El fichero de entrada sera un fichero de texto en donde se indicara en
su primera linea el dimensionado del modelo a cargar, mientras que en

las siguientes se indicara tanto la posicién como la velocidad de cada

31

uno de los peces. El nombre y directorio del fichero a cargar se

informaran mediante el fichero de configuracion del simulador.

Numero de vecinos: Se indicara el numero de vecinos que el pez tenga en
cuenta para determinar su reaccién. Por defecto el valor sera 4, ya que es el

propicio y correcto (segun los estudios de Huth y Wissel [1] y [2]).

Método de eleccion de vecinos: A la hora de escoger los vecinos que se
tendran en cuenta para el calculo de la reaccion, se podra hacer de dos
manera distintas. En principio y por defecto se tendra en cuenta la prioridad
de la frontalidad, es decir la de escoger aquellos vecinos que estén mas en
frente de un determinado pez. La otra opcion de la que se dispone es la de
que se haga la eleccion mediante la prioridad de distancia, es decir de

escoger aquellos vecinos que estén mas cerca de un determinado pez.

Dimensionado de los radios de actuacién y del angulo muerto: Se podran
configurar tanto el tamano de los radios de actuacion como del angulo
muerto. En un principio y por defecto seran de 0,5 para la repulsion, 2 para la
orientacion paralela y 5 para la atraccion. En el caso del angulo muerto sera
de 30.

Tamano de los peces: Se indicara el tamafo que tendran los peces. En un

principio el valor sera de 3.

Particién del espacio: Se podra indicar como se quiere que internamente se
distribuyan los peces para conseguir mejorar el tiempo de ejecucion del
simulador. Inicialmente y por defecto habra un unico espacio en donde
estaran todos los peces distribuidos. Para casos en los que haya muchos
peces y el espacio de simulacion sea grande se deberan hacer particiones del
espacio para que el tiempo de ejecucidon no sea demasiado elevado, tal y
como ha quedado explicado en el apartado 3.2.1. Para realizar las
particiones, se tendra que indicar el numero de partes en las que se quiere
dividir el espacio de simulaciéon. Se tendra que hacer para cada una de las
dimensiones del espacio (x, y, z). De esta manera, cada una de las
particiones actuara de forma mas o menos independiente con lo que se

conseguiran mejores tiempos de ejecucion.

32

3.3 Criterios en la parametrizacion de la simulacién

Los criterios a tener en cuenta vendran dados por la velocidad y por la complejidad

de la simulacion.

Si se quiere realizar la simulacién con un gran numero de peces, sera necesario un
ordenador bastante potente para que el tiempo de simulacidon no sea demasiado

elevado (debido a la complejidad cuadratica de la simulacion).

En todo caso, el hecho de tener un equipo potente permitira realizar los calculos de

una manera mas rapida y por tanto acelerar el tiempo de la simulacién.

Si por el contrario, se dispone de un equipo no demasiado potente, se tendran que
hacer simulaciones con pocos elementos, o bien esperar bastante rato a que
termine. En esta caso, la velocidad también se resentira ya que sera mayor el tiempo

que tardara el simulador en realizar los calculos.

3.4 Herramientas practicas a utilizar

Para la realizacion del proyecto se va a utilizar una herramienta que va a servir para

la obtencidn de los resultados de las pruebas mediante un fichero de video.

La herramienta consistira en un script en unix que genere una imagen (fichero de
tipo .png) con la representacién de la posicién de los peces (marcados como puntos)
sobre el plano cartesiano tridimensional para cada una de las iteraciones (mediante
la herramienta “gnuplot”). Es decir, si se tiene una simulacién en la que hay 100
iteraciones, el script en unix generara 100 imagenes de tipo .png mostrando la
distribucion de los peces sobre el plano para cada una de esas iteraciones. Una vez
que el script ha creado esas imagenes, las convertira a tipo video (mediante la
herramienta mencoder), generando un fichero .avi en donde se podra ver la

simulacidon como si fuera una animacion.

33

3.5 Estudios de los casos de uso del sistema

El hecho de que el propédsito del proyecto sea orientado a temas de investigacion
mas que al uso del mismo por agentes externos, hace que la interaccion entre el
usuario (actor) y el sistema se limite a la configuracion de la simulacién. En todo
caso, sera importante dicha configuracién porque de ella dependera el buen

funcionamiento del simulador.
Asi pues, el unico caso de uso del sistema sera la parametrizacién inicial por parte
del usuario de los valores que se vayan a emplear para la ejecucién de la

simulacion.

Una vez introducidos esos valores, el programa funcionara autonomamente

realizando la simulacién, sin la necesidad de interaccidn con el usuario.

34

3.6 Diagrama de blogques

Parametrizacién del simulador

Posicionamiento inicial de los peces

A 4

Busqueda de los vecinos que rodean a
cada uno de los peces

A 4

Determinacion del tipo de reaccion
provocada por cada uno de sus vecinos

A 4

Célculo de la nueva posicion y
velocidad de los peces, en funcion de
las reacciones de sus vecinos

A 4

Escribir la nueva posicion y direccion
al fichero correspondiente para cada
uno de los peces. Escribir estadisticas.

35

4. Disefio

En este capitulo se indicaran todas los detalles correspondientes al disefio del

simulador. Entre ellos, apareceran las estructuras de datos utilizadas y la estructura

modular.

4.1 Estructura modular

La estructura modular se podra dividir en 3 partes:

1. Inicializador del simulador:

Creacioén de la matriz que servira como divisor en partes del espacio
de simulacion: Se creara una estructura estatica tridimensional para
particionar el espacio de simulacion en un determinado numero de
partes y de esta manera poder minimizar el tiempo necesario para
el calculo de vecinos de un determinado pez.

Calculo de las posiciones iniciales (aleatorias / condicionadas):
Modulo encargado de calcular las posiciones y direcciones iniciales
de todos los peces. Podran ser o bien aleatorias (escogiéndose
también que porcentaje de distribucion y en que posicion del
espacio), o bien siguiendo algun patrén para comprobar como actua
el simulador.

Posicionamiento en el cubo correspondiente del espacio de
simulacién segun la posicidon en la que se encuentre el pez: Se
crearan elementos tipo “pez” que seran referenciados por la

posicion de la matriz que les correspondan.

2. Simulador:

Obtencién de los vecinos de un determinado pez: A partir de cada
una de las listas y para cada uno de los peces, calculara la distancia
y seleccionara los peces que sean vecinos (en principio hasta 4)

segun la prioridad elegida (en principio de frontalidad). EI modulo

36

devolvera una lista con la identificacion de los 4 vecinos
seleccionados.

Obtener la reaccién para cada uno de los vecinos: Segun la
posicion que ocupe cada uno de los peces vecinos, se obtendra una
reaccion asociada a ese pez que se traducira en una nueva
velocidad (direccidn) para el pez origen.

Calculo de la reaccidn final del pez: A partir de todas las
afectaciones de los diferentes vecinos, se calcularan los nuevos
valores de direccion y posicion, teniendo en cuenta que seran

férmulas para tratar coordenadas en tres dimensiones.

3. Comunes:

Calculo y gestion del cuadrante (cubo) de localizacion de cada pez:
A partir de la posicidon que ocupe el pez y de la definicion de la
matriz, se calculara la posicion que le correspondera dentro de la
misma. A continuacidn, se gestionara la lista de peces por zona,
eliminando el pez de la zona que ocupe y afadiéndolo en la nueva
(siempre y cuando haya un cambio de zona del pez).

Calculo del grado de cohesion y del grado de direccion: Se
calculara el grado de cohesién del fish schools, para determinar lo
juntos 0 no que estan los peces entre si y el grado de similitud de
sus direcciones (polarizacion).

Envio a fichero de los nuevos valores (direccion, posicion e
identificador del pez) y grado de cohesidén (extensién/expanse) y
polarizacion: Se enviaran a los correspondientes ficheros los datos

de los peces y las estadisticas de la simulacién para cada iteracién.

La comunicacién entre modulos sera mediante envio y recepcion de parametros.
Cada uno de los modulos enviara los parametros para un determinado pez vy el
resultado del calculo sera devuelto para que en funcion de este, se actue de una
manera u otra. Se trabajara normalmente con listas, que seran enviadas y devueltas

por los médulos una vez realizadas las operaciones correspondientes.

37

4.2 Estructuras de datos

La estructura general se fundamenta en tener un vector de listas dinamicas y que
estas a su vez tengan elementos de tipo “pez’. Este tipo de estructura esta
destinada a que se pueda dividir el espacio en tantas partes como se quieran y de
esta forma, agilizar el tiempo de ejecucion. Cada una de las posiciones del vector
representara a cada una de las particiones en las que se ha dividido el espacio de

simulacion (se indiciara en el fichero de configuracion).

Una vez definido el vector (con un tamarfo igual al numero de particiones), seran
referenciadas de cada una de sus posiciones las listas dinamicas de elementos de
tipo pez que indicaran que peces estan asociados a una parte concreta del espacio

de simulacion.

Es decir, todos los peces que estén en la misma lista dinamica de una determinada
posicion del vector seran peces que compartan la misma particion (ya que estan
proximos entre si) y que se tendran que tener en cuenta para ver si son vecinos. A
parte de estos posibles vecinos, también se tendra que buscar en cuadrantes

colindantes por si algun otro pez pudiera ser candidato a vecino.

El hecho de particionar el espacio de simulacion, supondra que se tenga que
comparar cada uno de los peces con menos vecinos de alrededor ya que solo se

fijaran en los que estén préximos a el.

Si no se realiza ningun tipo de particidon, es decir que se trata todo el espacio de
simulacién de forma unitaria, existira una unica posicion de vector y en esa posicion

estara la lista con todos los peces.
En la figura 4.1 se muestra un vector de 5 posiciones (serian 5 particiones del

espacio) y de cada una de las posiciones es referenciada la lista de peces que

tendra tantos elementos como peces haya en cada particion.

38

Figura 4.1: Esquema de la estructura de datos del simulador

Para llevar a cabo la estructura de los datos, se pasara a describir a continuacion las

clases de que esta compuesto el simulador.

Se dispondra de la clase pez (se llamara pez) que contendra la informacion de
todos los peces. Cada elemento de tipo pez contendra su posicion, velocidad e

identificador, asi como otros atributos auxiliares.

La segunda clase definira la lista que se ha visto anteriormente, y tendra el nombre
de “lista”. Esta clase se encargara de gestionar las listas de peces que se creen. La

lista que se defina en esta clase sera de elementos de tipo pez.

La tercera clase definira lo que sera el vector (clase llamada vectora), y gestionara el

vector de particiones y los punteros de las listas.

Finalmente se dispondra de 2 clases secundarias que serviran por un lado para
generar numeros aleatorios (gen_numeros) y una segunda para controlar si un pez
gue ocupa una nueva posicion ya esta siendo ocupada por otro pez. Esta segunda
sera principalmente una lista en donde se afiadiran las posiciones de los peces para
que cuando se vaya a recolocar otro se controle si ya habia sido ocupada esa

posicion.

39

4.3 Diagrama de clases

Lista

listaok : list<pez *>
iterator it : list<pez *>::iterator

Pez

id : int
posicion[3] : float
direccion[3] : float

velocidad : float
direccion_nueval3] : float
tratado : bool
*sig : pez

pez()
~pez()
escribir_fichero(ofstream &,ofstream &) : void
posiciones() : float *
direcciones() : float *
obtener_velocidad() : float
obtener_id() : id
marcar_tratado() : void
obtener_tratado() : bool
quitar_tratado() : void
poner_direccion(float,float,float) : void
poner_direccion_nueva(float,float,float) : void
poner_velocidad_nueva(float) : void
poner_posicion_nueva(float,float,float) : void
reemplazar_direcciones() : void

lista()
~lista()
meter_alfinal (float,float,float,float,float,float
JSfloat,int) : pez *
borrar_peces (list<pez *>::iterato) : list<pez
*>::iterator
meter_direccion (pez *) : void
obtener_estadisticas (float *) : float *
distancia_euclidiana(pez *,pez *) : float
distancia_vertical(pez *,pez *) : float *
vecinos_distancia(int) : void
vecinos_frontal(int) : void
vecinos_radios_reacciones(int,float,float) :
float *
cono(pez *,pez *,int) : bool
angulo(pez *,pez *) : float *
quitar_tapan() : void
obtener_nueva_direccion(int) : int
repulsion(pez *,pez *) : float *
orientacion_paralela(pez *) : float *
atraccion(pez *,pez *) : float*
busqueda(int,int,int) : float *
vecinos_radios_busqueda(int,int,int) : float *
calcular_velocidad() : float
actualizacion_direccion(pez *) : void
calcular_nueva_posicion(pez *,int,int,int) :
float *
marcar_como_tratado(pez *) : void
quitar_como_tratadb(pez *) : void
preguntar_tratado(pez *) : bool
informar_nuevos_valores(float *,float) : void
nuevos_valores_pez(pez * float *,float) : void
mirar_posicion0(float,float,float) : bool

escribir_fichero_lista(ofstream &,ofstream &) :

void

40

Vectora

gen_numeros

numero_peces : int
tamanyo_x : int
tamanyo_y : int
tamanyo_z : iny

myvector : vector<lista *>
itv : vector<lista *>::iterator
vec_x_up : vector<lista *>
vec_x_down : vector<lista *>
vec_y_up : vector<lista *>
vec_y_down : vector<lista *>
vec_z_up : vector<lista *>
vec_z_down : vector<lista *>
vec_posicionx : vector<posici_clase *>
vec_posiciony : vector<posici_clase =
vec_posicionz : vector<posici_clase *>

gen_numeros()
~gen_numeros()
obtener_numero_x(int,int) : int
obtener_numero_y(int,int) : int
obtener_numero_z(int,int) : int
obtener_numeros_rad() : int*
obtener_numero_rads_x(int,int,int,int) : int
obtener_numero_rads_y(int,int,int,int) : int
obtener_numero_rads_z(int,int,int,int) : int

posici_clase

posiciones_v : list<int>

posici_clase()
~posici_clase()
meter_direccion (int) : void

vectora()
~vectora()
meter_valores (unsigned int,lista *) : void
meter_vecinos_xup (unsigned int,lista *) : void
meter_vecinos_xdown (unsigned int,lista *) : void
meter_vecinos_yup (unsigned int,lista *) : void
meter_vecinos_ydown (unsigned int,lista *) : void
meter_vecinos_zup (unsigned int,lista *) : void
meter_vecinos_zdown (unsigned int,lista *) : void
asignar_tamanyo (unsigned int) : void
obtener_estadisticas (float *,int) : float*
posicion_vector_null(int) : bol
posicion_vector_vecinos_null_xup(int) : bool
posicion_vector_vecinos_null_xdown(int) : bool
posicion_vector_vecinos_null_yup(int) : bool
posicion_vector_vecinos_null_ydown(int) : bool
posicion_vector_vecinos_null_zup(int) : bool
posicion_vector_vecinos null_zdown(int) : bool
obtener_direccion_lista (int) : lista *
posicion_del_vector(float,float,float,float,float,float) : int
posicion_origen_vector(int &,int &,int &,int,int,int) : void
obtener_direccion_lista_xup (int) : lista *
obtener_direccion_lista xdown (int) : lista *
obtener_direccion_lista_yup (int) : lista *
obtener_direccion_lista_ydown (int) : lista *
obtener_direccion_lista_zup (int) : lista *
obtener_direccion_lista_zdown (int) : lista *
inicializar_direccion_lista_xup (int) : void
inicializar_direccion_lista_xdown (int) : void
inicializar_direccion_lista_yup (int) : void
inicializar_direccion_lista_ydown (int) : void
inicializar_direccion_lista_zup (int) : void
inicializar_direccion_lista_zdown (int) : void
inicializar_vectores_posx (int) void
inicializar_vectores_posy (int) : void
inicializar_vectores_posz (int) : void
vecinos(int,float,float,float,float,int,int,int,int,int,int,float,int,int) : float*
vecinos_1 (lista
*,int,float,float,float,float,int,int,int,int,int,int,float,int,unsigneiht,int) :
float*
simulacion (int,int,int,int,int,int,float,float) : void
simulacion_lista (lista *,int,int,int,int,int,int,float,int) : void
simulacion_lista_vecinos (lista *,int,int,int,int,int,int,int,float) : void
dev_posicion_vector(float,float,floatnt,int,int,int,int,int,float) : int
reorganizar_estructura(int,in t,int,int,int,int,float,int,lista * list<pez
*>:iterator) : list<pez *>::iterator
vecinos_simulacion(int,int,int,int,int,int,int,list<pez *>::iterator,float)
void
borrar_listas_vecinas(nt) : void
posicion_libre(float &,float &,float &,int,int,int,int,int,int,float,int) : int
escribir_fichero(ofstream &,ofstream &,ofstream &,float *) : void
dev_cuadrante(float,float,float,int &,int &,int &,int,int,int,int,int,int) :
void
mirar_posicion1(foat,float,float,unsigned int) : bool

41

5.Implementaciéon

En este capitulo se mostrara la manera en la que se han implementado las

reacciones de los peces y el algoritmo del simulador.

5.1 Algoritmo

La implementaciéon del simulador comienza con la carga de un fichero de

configuracion del cual se lee linea a linea y segun el orden de esta, se guarda el

contenido en la variable correspondiente.

A continuacion, se inicializaran el generador de numeros aleatorios y las estructuras

dependientes del tamafo del espacio de simulacion sobre las que se moveran los

peces.

En funcién del método de colocacién de los peces inicialmente (definido en el fichero

de simulacion), se pasaran a realizar unas acciones u otras:

Para el caso de definir las posiciones de los peces a partir de un fichero,
se realizara un bucle que ira leyendo las posiciones y velocidades de los
peces definidos en el fichero. Se iran introduciendo los peces en las listas
en su correspondiente posicidn segun el lugar que ocupen en el espacio
de simulacién.

Para el caso de definir las posiciones de los peces de forma aleatoria tanto
para todo el espacio de simulacién como en parte de el, se deberan crear
tantos elementos de tipo “pez” como se haya indicado en el fichero de
configuracion. Para ello se crearan elementos de tipo “pez” con sus
posiciones y velocidades aleatorias, que seguidamente seran incluidos en
las listas en su correspondiente posicién.

Para el caso de definir las posiciones de los peces de forma aleatoria pero
separadas por un determinado espacio, se configurara lo que sera la

definicion de las posiciones que ocuparan los peces para que entre ellos

42

esté el espacio definido en el fichero de configuracion. Una vez
configurado, se crearan los peces y se les daran las posiciones que les
correspondan segun la definicidén anterior. A medida que se vayan creando
los elementos de tipo “pez”, se iran introduciendo en las listas en su
correspondiente posicidon segun el lugar que ocupen del espacio de

simulacion.

Para los 3 métodos, se realizara finalmente la accién de guardar en unas
listas los peces que puedan ser vecinos de otros peces que estén situados

en cuadrantes colindantes.

Si no ha habido ningun problema en la creacién de peces anterior, se pasara a

realizar el célculo de las reacciones de los peces con sus respectivos vecinos y que

supondran los cambio en sus velocidades. Para ello se realizara lo siguiente:

Para cada posicién del vector y para cada elemento de la lista se buscaran
los vecinos de cada uno de los peces que conforman dicha lista. Primero
se miraran los vecinos que pudieran estar en particiones contiguas y luego
los peces que ocupen su misma posicidn del vector (es decir su mismo
cuadrante). Una vez que se tienen todos, se quitaran los vecinos que
estan en el angulo muerto del pez. A continuacion, se tendran que coger
aquellos peces cuya distancia esté dentro del radio de accion. De todos
ellos, se quitaran los que estan tapados. Con el resto y en funcion del
método de prioridad (frontal o por distancia), se debera calcular cuales de
ellos son los mas prioritarios, teniendo en cuenta el numero de vecinos a
escoger, que en principio sera de 4.

Una vez escogidos los vecinos, se calcularan las reacciones para cada
uno de ellos en funcion de la posicion que ocupen sus vecinos. Asi pues,
habra reaccién de repulsion, de orientacién paralela o de atraccion. El
resultado de cada una de ellas se normalizara y se sumara para dar la
nueva velocidad del pez. En el caso de que no haya peces cerca, la
reaccion del pez sera la de busqueda. Dicha reaccion supondra el calculo

aleatorio de un nuevo vector de velocidades. Finalmente se pasaran las

43

nuevas velocidades de los peces a sus correspondientes atributos de la
clase “pez”.
Otra funcionalidad que se aprovechara para calcular seran las estadisticas

finales de grado de misma direccion y de cohesion.

A continuacién se acabaran de hacer calculos con los datos obtenidos que seran

mostrados posteriormente en las estadisticas.

Seguidamente se escribiran las nuevas posiciones y direcciones (velocidades) junto

con el identificador de los peces en los ficheros correspondientes. También se

escribira la primera linea del fichero de estadisticas con los primeros valores

obtenidos.

En este punto comenzaria en si el simulador, formado por un bucle que se repetira

tantas veces como se haya indicado en el fichero de configuracion. Para cada

iteracion se realizaran las siguientes acciones:

Para cada posicién del vector y para cada elemento de la lista se
reemplazara la nueva direccién del pez (velocidad) por la antigua, se
calculara la nueva posicién del pez (a partir de su nueva velocidad)
teniendo en cuenta que no este ocupada previamente, se informara a los
atributos del pez de su nueva posicion y finalmente se reorganizara la
estructura, moviendo los elementos pez (en el caso en que corresponda)
de la lista de la posicién del vector en la que estaban a la nueva posicion
(en caso de que su posicion suponga cambio de particion) y marcando
como tratado a ese pez para no volver a calcular su posicion. Si no hay
particiones en la configuracién inicial, no supondra ningun cambio en la
estructura.

A continuacion, se inicializaran los vectores de vecinos.

También se inicializaran los indicadores de peces tratados, para que en la
nueva iteracion se recalcule todo de nuevo. Finalmente se guardaran las
posiciones que se van ocupando por los peces, para que posteriores

peces no ocupen la misma posicion.

44

e Seguidamente se pasara de nuevo al célculo de las reacciones de los
peces con sus respectivos vecinos, de la misma manera que se ha
indicado anteriormente.

e Como Uultimo paso, se enviaran al fichero los nuevos valores de las

posiciones, de las direcciones y de las estadisticas.

5.2 Implementacién de las reacciones de los peces

A continuacion se describira la implementacion a llevar a cabo de las féormulas

correspondientes a las reacciones de los peces.

Para la implementacion en 3D se utilizaran dos vectores con los que se definiran la

posiciéon y la direccion del pez.

Se tendra que tener en cuenta que el hecho de trabajar en un espacio tridimensional
hara que la representacion de los radios mediante circunferencias en el sistema de 2
dimensiones pasen a ser esferas para el modelo en 3 dimensiones.

Consecuentemente, el angulo muerto pasara a estar representado como un cono.

Seguidamente se va a mencionar la nomenclatura de las variables que apareceran

en las férmulas:
P. (x., i,) : Vector de posiciones del pez.

Vi, (v, Vs v,) : Vector de velocidades / direcciones del pez (vector director).

Para el caso de los vectores de los vecinos seran P,y V;,.

V,; : Vector que representa la reaccion del pez i-ésimo sobre el vecino j-ésimo.

45

Y a continuacion el detalle para cada una de las reacciones:

Repulsion
El pez debera tener una direccién perpendicular al vecino, con la realizacion del

menor giro posible.

Para conseguir el vector perpendicular a v;, se deberan poner los vectores v;y Vv; en

el origen del sistema de coordenadas. A continuacion sera necesario encontrar el

plano que contiene el origen de coordenadas y es perpendicular a Vvj y una vez

encontrado el plano, buscar el vector v;; que permita que el angulo de rotacion sea el

minimo.

Como consecuencia, se van a obtener 3 valores (X;;yi;Z;) que van a ser la relacion

de perpendicularidad entre el pez y el vecino para cada una de las tres coordenadas.

De esta manera, los nuevos valores del vector de velocidad del pez seran los

correspondientes a las variables x;;, y;;, y Z; obtenidas de la siguiente formula:

VoV VoV VY
Vi = Vi~ 3 3 Y;
' v, T+ 'l':__ + V.
)) V. 'L'_1th + TJ-'.' 1 v, + 'l__l V.)
Ty i 2 0 L2 “J
Ve EV VD

Orientacion paralela

El pez origen cambiara las coordenadas de su vector de velocidad por las de su

vecino.

46

Asi pues, el vector v;; que representa la reaccion del pez i-ésimo sobre el vecino j-

€simo pasara a tener la direccion que lleve el vecino j-ésimo:

— —
Vij = Vi
Atraccion

El pez origen cambiara las coordenadas de su vector de velocidad por las de la

diferencia entre la posicidén de su vecino y la suya, siendo P, y P, las posiciones del

vecino j-énesimo y del pez i-ésimo. Consecuentemente el vector v;; que representa

la reaccion del pez i-ésimo sobre el vecino j-ésimo pasara a tener como nueva
direccion, la diferencia entre los valores del vector de posiciones del vecino respecto

a los valores del vector de posiciones del pez:
— — —
Vii=Pj - P

Busgueda

El pez origen cambiara las coordenadas de su vector de velocidad por otras que se

obtendran de maneara aleatoria.

Reaccion Final

La reaccion final del pez vendra dada por el sumatorio de los Vv; obtenidos

anteriormente segun la reaccion dada por los vecinos. Asi pues, se realizara la suma
de los valores obtenidos en los vectores que representan las reacciones de los

peces i-ésimos sobre los vecinos j-€simos:

—

- 4
Iﬁ;f — Z ij i
=1

47

6. Pruebas

En este punto se van a realizar un conjunto de pruebas con el fin de comprobar el

comportamiento del simulador.

Las pruebas se dividiran en dos partes. La primera consistira en verificar el correcto

funcionamiento del sistema, mientras que la segunda seran pruebas a nivel de

software.

Dentro de las pruebas de verificacion del sistema se van a encontrar tres tipos:

e Verificar que el resultado del modulado de cada reaccién es correcto:

(0}

o O O O

Repulsion

Orientacion paralela

Atraccion

Busqueda

Comportamiento correcto de los vecinos tapados (para todas las

reacciones)

e Comprobar que el comportamiento emergente de la interaccion de las

reacciones es correcto:

o

Comprobar que los resultados obtenidos con el simulador sean los

mismos que los aparecidos en la documentacion de referencia [1] y [2].

e Experimentos adicionales que demuestren robustez del sistema y facilidades

para los usuarios.

(0]

Pruebas de porcentaje de actuacion de cada una de las reacciones
respecto al total.
Pruebas generales de comportamiento, segun disposicion inicial de los
peces:
= Distribucion aleatoria a través de todo el espacio de simulacién.
= Distribucion aleatoria en el centro del espacio de simulacién por
porcentaje.
= Distribucion aleatoria en una esquina del espacio de simulacion

por porcentaje.

48

= Distribucion aleatoria en el centro del espacio de simulacién por
distancia entre peces.

= Distribucion aleatoria en un lado del espacio de simulacion por
distancia entre peces.

0 Pruebas de cambio de configuracion:

= Aumentar al doble y reducir a la mitad el tamafio de los radios
(respecto a los valores por defecto).

= Aumentar al doble y reducir a la mitad el numero de vecinos a
escoger (respecto a los valores por defecto).

= Cambiar el método de eleccion de vecinos a prioridad por

distancia (en lugar de prioridad por frontalidad).

En cuanto a las pruebas a nivel de software, se realizara una comparativa de
tiempos de ejecucion del simulador, en funcion del nUmero de particiones en las que

se divida el espacio de configuracion.

Hay que tener en cuenta, que los indicadores que apareceran en las graficas

representan lo siguiente:

e P (xy,2z) =V (x,y,2): Vector de posicion y velocidad para un determinado pez.
El vector de posicion muestra la posicion del pez expresado en tres
dimensiones (x,y,z). El vector de velocidad, indica la direccion/sentido sobre
el plano que tiene el pez (x,y,z).

e En cuanto a la polarizacion (polarization) y a la extension (expanse)
representan el grado de homogeneidad y cohesién del grupo (tal y como se

define en el apartado “fish schools” del capitulo 2).

49

6.1 Pruebas de verificacion del sistema

6.1.1 Verificacion del modulado de las reacciones

6.1.1.1 Repulsion

En esta prueba se va a verificar el correcto funcionamiento de la reaccion de

repulsion.

Para ello se va a partir de una situacion inicial con dos peces que se encuentran a
una distancia menor a r1. Teniendo en cuenta que el tamafio del pez es de 3 y el
valor de r1 es 0.5 se puede comprobar que la distancia entre ambos peces es menor
de 1.5.

Las siguientes 2 graficas mostraran la situacion inicial y la que queda una vez
producida la reaccién de repulsidon. Se podra comprobar como ha influido la reaccion

de repulsion en los valores tanto del vector de posiciones como de velocidades:

+ P(3B55)-V{010) + P24.265)-V{0700.700)
+ P(26.265)-V{-0700700) + P125265)-V(-1.00)

50

Comprobando los resultados obtenidos se puede ver que ambos peces han tomado
correctamente una direccion perpendicular respecto a la que tenia su vecino. De

esta manera ambos evitaran chocar con su respectivo vecino.

6.1.1.2 Orientacién paralela

En esta prueba se va a verificar el correcto funcionamiento de la reaccién de

orientacion paralela.

Para ello se va a partir de una situacion inicial con dos peces que se encuentran a
una distancia entre r1 y r2. Teniendo en cuenta que el tamano del pez es de 3 y el
valor de r1 es 0.5 y de r2 es de 2, se puede comprobar que la distancia entre ambos

peces esta entre 1.5y 6.

Con las siguientes 2 graficas se va a mostrar la situacion inicial y la situacién que
queda una vez producida la reacciéon de orientacién paralela. También se podra
comprobar como ha influido la reaccion de orientacion paralela en los valores tanto

del vector de posiciones como del vector de velocidades:

+ PIB25E)-V{010) + P(22285)-V[D700700)

+ P{7T265)-V{-0700700) +PRTATE-V(010)

51

Viendo los resultados obtenidos, se puede apreciar que ambos peces han copiado
correctamente la velocidad que tenia su respectivo vecino para orientarse en la

misma direccion.

6.1.1.3 Atraccion

En esta prueba se va a verificar el correcto funcionamiento de la reaccién de

atraccion.

Para ello se va a partir de una situacion inicial con dos peces que se encuentran a
una distancia entre r2 y r3. Teniendo en cuenta que el tamano del pez es de 3 y el
valor de r2 es 2 y de r3 es de 5, se puede comprobar que la distancia entre ambos
peces esta entre 6y 15.

En las proximas 2 graficas se mostrara la situacion inicial y la situacion que queda una
vez producida la reaccion de atraccion. Ademas se podra apreciar como ha influido la
reaccion de atraccion en los valores tanto del vector de posiciones como del vector de

velocidades:

+ P1255)-V{0.10) + P(22255)-V(0990.110)

+ P0265)-V{-0700700) + P(29255)-V [090110)

52

A partir de los resultados mostrados en las graficas, se puede ver que las nuevas
direcciones de ambos peces son correctamente el resultado de las diferencias de

posicion entre ellos. De esta manera, ambos peces tienden a acercarse.

6.1.1.4 Busqueda

En esta prueba se va a verificar el correcto funcionamiento de la reaccién de

busqueda.

Para ello se va a partir de una situacion inicial con dos peces que se encuentran a
una distancia superior a r3. Teniendo en cuenta que el tamafo del pez es de 3 y el
valor de r3 es de 5, se puede comprobar que la distancia entre ambos peces es
superior a 15.

En las siguientes 2 graficas se va a mostrar la situacién inicial y la situaciéon que

queda una vez producida la reaccion de busqueda.

Se podra comprobar también como ha influido la reacciéon de busqueda en los

valores tanto del vector de posiciones como del vector de velocidades:

+ P5255)-V{010) + P15245)-V(-030,088.0.35)
+ P(35.265)-V{-0700700) + P(35255)-V(-0460.88001)

53

A continuacién se van a analizar los resultados obtenidos. Como se puede ver, las
nuevas direcciones de ambos peces son correctamente nuevos valores aleatorios que
se corresponden con un cambio en la direccion que llevaba el pez en busca de

vecinos en otras direcciones.

6.1.1.5 Caso en el que un pez esté siendo tapado por otro

En esta prueba se va a verificar el correcto funcionamiento de los casos en los que

existen vecinos tapados y por tanto no han de tenerse en cuenta.

Para ello se va a partir de una situacion inicial con tres peces que se encuentran a
una distancia tal, que su reaccion sera la de orientacién paralela. La prueba consiste
en ver que direccion cogera el pez origen, si solo tiene en cuenta la del pez que ve,

o también coge la del pez que esta tapado.

En las siguientes 2 graficas se van a mostrar la situacion inicial y la situacion que

queda una vez producida la reaccién de orientacion paralela.

Se podra comprobar si ha influenciado o no el pez tapado:

+ P448)-V{0.10) + P(2528)-V 100
+ PUBBE)-VI1.00) + P(B2TH)-VDT00T00)

+ PUBBE)- V{00 + POTI8E)-V(010)

54

A continuacién se van a analizar los resultados obtenidos. Se tomara como pez de
referencia el que tiene como posicion inicial la (24,24,6). Se puede ver que tiene dos
peces vecinos, pero que uno de ellos esta en el mismo angulo de vision y por detras,
con lo que esta tapado. En la primera iteracion se puede observar como solo ha
tenido en cuenta el pez que ve, ya que ha copiado sélo su direccion (-1,0,0), con lo

que se puede considerar la prueba es correcta.

6.1.2 Comprobacién del comportamiento emergente de la
interaccion de las reacciones

Comprobacion de los resultados obtenidos con el simulador respeto a
los aparecidos en la documentacion de referencia ([1] v [2])

Esta prueba va a servir para validar si los resultados del simulador se corresponden
con los aparecidos en la documentacidn y por tanto dar como correcto el

funcionamiento del mismo.

Lo que se pretende es verificar como los peces tienden a agruparse. Para ello, se
partird de dos grupos independientes de peces que se encuentran a una distancia
proxima entre ellos y que mediante el conjunto de reacciones propias de los peces
acabaran haciendo que los dos grupos se vayan acercando entre ellos hasta

finalmente acabar unidos.
En un principio se realizara la simulaciéon (mostrando las graficas de los resultados
obtenidos) y posteriormente se incluira el grafico aparecido en la documentacion [1] y

[2]. De esta manera se podran comparar ambos resultados.

Los datos de la simulacion son:

0 21 peces, 100x100x1 de resolucion y 60 iteraciones

55

En el siguiente conjunto de graficas se muestra la evolucién de la simulacion desde la

posicion inicial hasta la iteracion 60:

lteracicn. 0 Polarizacion 0.01564

Bytensidn 10 50963

teracion. 1 Polarizacion. 0.02136

Eutenzion 10 44690

teracién 2 Polarizacian 002418

Bxtensian: 1040738

feracion 3 Polarizacion 002280

Extension: 10.38489

feracién 4 Polarizacidn 0 02685

Extensian: 10.39189

feracion 5 Polarizacion 0 02685

Extension: 10.39189

56

feracion: &

Polarizacidn 0.02660
Extensicn: 1038847

feracion: 7 Polarizacidn: 0.02592
Extension 10.39523

baiacacnl
Tha ot

feracion: 8

Polarizacidn 0.02289
Extensicn: 1035292

feracion 9 Polarizacion. 002524
Extension. 10.38576

baiacacnl
Tha ot

feracian: 10

Polarizacidn 0.02289
Extensicn: 1035292

feracion: 11 Polarizacidn: 0.02096
Extension: 10.30891

baiacacnl
Tha ot

57

feracian 12

Polarizacidn 0.00584
Extensicn: 10 26485

feracion: 13 Polarizacidn: 0.01976
Extension. 10.30467

baiacacnl
Tha ot

feracian 14

Polarizacidn 0.01328
Extensicn: 10.29995

feracion: 15 Polarizacidn: 0.00884
Extension 10.26485

baiacacnl
Tha ot

feracién: 16

Polarizacign, 0.00848
Extensicn: 8.99379

teracion: 17 Polarizacion: 0.00783
Extension: 10.19890

Fatacacl
Tho oo

58

feracién: 18

Polarizacign, 0.00703
Extensicn: 1012937

feracion: 19 Polarizacion: 0.00767
Extension: 1006093

Fatacacl
Tho oo

feracian: 20

Polarizacign 0.00781
Extension: 9.72543

feracion: 24 Polarizacign: 0.00743
Extension 953982

baiacacnl
Tha ot

feracian: 32

Polarizacidn, 0.00637
Extension: 9.23216

feracion: 40 Polarizacidn: 0.01259
Extension: 879983

baiacacnl
Tha ot

59

feracién: 50 Polarizacign, 0.00622 feracion: 60 Polarizacidn: 0.00826

Extensian: 841031 Extension: 847150

Fatacacl
Fatacacl
Tho oo

Analizando los resultados se puede comprobar como se partido de una posicion inicial
en la que dos grupos separados tienen sus direcciones propicias para que finalmente
acaben juntandose. Pocas iteraciones posteriores se pude comprobar como dichos
grupos se juntan en uno unico tendiendo todo el grupo a continuar en la misma

direccién que traian ambos grupos. Por tanto se puede considerar como correcto el
resultado de la prueba.

A continuacién se mostrara la grafica (figura 6.1) de los resultados aparecidos en la
documentacion de referencia para esta prueba. Se puede apreciar la evolucion de la
simulacion mediante los 3 pasos existentes (a, b y c):

VNG
N W ’,/, ’
A SN .
) o
P
s
b) -
“
\\\ rid L4
4
\‘6 iy
ré
c)
LY
b
N
[
M,
] ‘h“
(]

Figura 6.1: Simulacion de la union de dos grupos de peces

60

Comparando los resultados del simulador con los de la documentacion, se puede
llegar a la conclusién de que el funcionamiento del simulador es correcto ya que se
obtienen los mismos resultados que los existentes en la documentacion de

referencia.

6.1.3 Experimentos adicionales

6.1.3.1 Pruebas de porcentaje de actuaciéon de cada una de las
reacciones respecto al total

Partiendo de una simulacion con una distribucion como la que aparece en la figura
6.2a (1000 peces, 500x500x20 de resolucion), se podra ver la evoluciéon del grado
de actuacion de las reacciones a lo largo de la ejecucién de la simulacion hasta

llegar al final de la misma (figura 6.2b).

Iteracian: 0 feracian: 3500

Figura 6.2a: Distribucion inicial de los peces Figura 6.2b: Distribucidn final de los peces

61

El resultado para cada una de las iteraciones es el siguiente:

Numero de Repulsion Orientacion Atraccion Busqueda

Iteracién [%0] Paralela [%)] [%0] [%0]

0,106 82,185
0 80,376
75,751

70,862

64,975

54,949

51,326

46,314

43,186

37,851

35,262

11,061

10,099

6,390
5,159

4,154

3,094
6,535
4,300
2,500
11,525

6,750

62

Una vez obtenidos los resultados, se puede comprobar como inicialmente y debido a
la gran separacion entre peces, el mayor porcentaje de actuacion es el de atraccion.A
medida que los peces se van uniendo, el mayor porcentaje pasa a ser el de
orientacién paralela ya que este esta presente en distancias mas pequenas entre
peces. Finalmente, en el momento en el que el grupo pasa a estar muy cohesionado,
las reacciones que mas se dan son la de orientacidn paralela y la de repulsion, debido

a la pequena distancia existente entre peces.

6.1.3.2 Pruebas de comportamiento, segun disposicion inicial de los
peces

Distribucion aleatoria a través de todo el espacio de simulacion

En esta prueba se va a verificar el correcto comportamiento para un caso genérico de
simulacién en la que la distribucidon de los peces inicial sea aleatoria y distribuida por

todo el espacio de simulacion.

Los datos de la simulacion son:
o0 1000 peces, 500x500x20 de resolucion y 3500 iteraciones

En el siguiente conjunto de graficas se va a mostrar la evolucion de la simulacion

desde la posicién inicial hasta la iteracién 3500:

feracién 0 Polarizacian 130439 teracion 1000 Polarizacion 1 21664
R Extengion 20543107 Extension: 217 64827

63

teracién: 2000 Polarizacign, 098548 teracion: 3500 Polarizacidn: 0.37255
Extensidn: 142 66507 Extension: 7.03539

Analizando los resultados obtenidos, se puede comprobar que se ha pasado de una
situacién inicial en la que los peces estaban completamente repartidos por todo el
espacio de simulacion (extension/expanse: 205) a una situacion después de 3500
iteraciones en la que todos los peces estan juntos (extensién/expanse: 7). En las
iteraciones intermedias se puede ver como los peces se van juntando en grupos hasta
que finalmente queda un unico grupo con todos ellos. Por tanto, se puede considerar

como correcto el resultado de la prueba.

Distribucion aleatoria en el centro del espacio de simulacién por
porcentaje

En esta prueba se va a verificar el correcto comportamiento para un caso genérico de
simulacién en la que la distribucién de los peces este agrupada en un espacio del

10% sobre el total y que esté situada en el centro.

Los datos de la simulacion son:
o0 1000 peces, 1000x1000x40 de resolucion y 4500 iteraciones
o Porcentaje 10 (Distribucién de los puntos del 10% del espacio), Posicidén

50x50x50 (La posicion sera en el centro).

64

Con el siguiente conjunto de graficas se mostrara la evolucion de la simulacion desde

la posicion inicial hasta la iteracion 4500:

lteracicn. 0 Polarizacion 1.32032
Bytensidn 40 82588

Polarizacion. 0.39853
Eutenzion 126 29510

lteracion: 1000

teracién 2000 Polarizacian 039717

Extensian: 87 77536

teracion 3500 Polarizacion 039166

Extension: 52 35837

teracién 4500 Polarizacian 029940

Extensian: 9.75789

65

Viendo los resultados de la prueba, se puede comprobar que en la posicion inicial los
peces estaban agrupados en el centro. Después de algunas iteraciones, ese grupo se
ha ido separando hasta quedar 2 grupos. En dichos grupos ha existido una fuerte
cohesion y se han ido moviendo hasta casi juntarse entre ellos. Como se puede
comprobar, finalmente en la iteracion 4500 se acaba formando un unico grupo, dando
un grado de polarizacion bastante bajo (0.29) con lo que se puede considerar como
correcto el resultado de la prueba.

Distribucién aleatoria en una esquina del espacio de simulacion por
porcentaje

En esta prueba se va a verificar el correcto comportamiento para un caso genérico de
simulacién en la que la distribucién de los peces este agrupada en un espacio del

10% sobre el total y que esté situada en una esquina.

Los datos de la simulacion son:
o0 1000 peces, 1000x1000x40 de resolucion y 3500 iteraciones
o Porcentaje 10 (Distribucion de los puntos del 10% del total del espacio),

Posicion 5x5x5 (La posicidn sera en una esquina).

Mediante el siguiente conjunto de graficas se va a mostrar la evolucion de la

simulacién desde la posicion inicial hasta la iteracion 3500:

feracién 0 Polarizacign. 1.29699 teracion: 1000 Polarizacidn: 0.31684

Extensicn: 40 35466 Extenzion: 8.84743

66

feracicn: 2000 Polarizacidn 0.31657 fteracion: 3500 Polarizacidn: 0.39137
Extension: §.37624 Extension 7.31020

A continuaciéon se van a analizar los resultados obtenidos. Como se puede
comprobar, en la posicion inicial los peces estaban agrupados en una esquina,
aunque sus direcciones eran bastante desiguales entre ellos (Polarizacion: 1,29). El
hecho de producirse una reflexion de las direcciones de los peces en la esquina y por
tanto igualar las direcciones, permite que pocas iteraciones después exista una
cohesion bastante fuerte (en la iteracion 1000 la polarizacion ha bajado a 0.31 y la
extension a 8.84). En el resto de iteraciones hasta la final, se consigue que el grupo
siga totalmente junto. Por tanto se puede considerar como correcto el resultado de la

prueba.

Distribucion aleatoria en el centro del espacio de simulacién por
distancia entre peces

En esta prueba se va a verificar el correcto comportamiento para un caso genérico de
simulacién en la que la distribucion de los peces este agrupada con una distancia

entre peces de valor 2 y que esté situada en el centro.

Los datos de la simulacion son:
o0 1000 peces, 1000x1000x40 de resolucion y 3500 iteraciones
o Distancia entre peces de valor 2 (Distancia entre un pez y otro consecutivo),

Posicion 50x50x50 (La posicion sera en el centro).

67

En el siguiente conjunto de graficas mostrara la evolucion de la simulacién desde la

posicion inicial hasta la iteracion 3500:

feracién 0 Polarizacian 1231619 teracion 1000 Polarizacion 038432
Extensian: 9.94987 Extension: 7 58498

teracién 2000 Polarizacian 033310 teracion 3500 Polarizacion 0 36673
Extensidn: 889186 Extension: 8.08308

Analizando los resultados obtenidos se puede comprobar que en la posicion inicial los
peces estaban agrupados en el centro, aunque sus direcciones eran bastante
desiguales entre ellos (Polarizacion: 1,31). El hecho de que la distancia entre peces
sea de 2, provoca que haya una reaccion de orientacion paralela y por tanto igualar
sus direcciones. Esto permite que pocas iteraciones después exista una cohesion
bastante fuerte (en la iteracion 1000 la polarizaciéon ha bajado a 0.38 y la extensién a

7.58). En el resto de iteraciones hasta la final, se consigue que el grupo siga

68

totalmente junto, por lo que el resultado de la prueba se puede considerar como

satisfactorio.

Distribuciéon aleatoria en un lado del espacio de simulacion por distancia
entre peces

En esta prueba se va a verificar el correcto comportamiento para un caso genérico de
simulacién en la que la distribucion de los peces este agrupada con una distancia

entre peces de valor 2 y que esté a un lado del espacio de simulacion.

Los datos de la simulacion son:
o0 1000 peces, 1000x1000x40 de resolucion y 3500 iteraciones
o Distancia entre peces de valor 2 (Distancia entre un pez y otro consecutivo),

Posicion 25x25x25 (La posicion sera en un lado).

Mediante el siguiente conjunto de graficas se mostrara la evolucién de la simulacion

desde la posicion inicial hasta la iteracion 3500:

feracién 0 Polarizacian 1231619 teracion 1000 Polarizacion 027313
Extensian: 9.94987 Extension: 9.25264

69

feracicn: 2000 Polarizacidn 0.36841 fteracion: 3500 Polarizacidn: 0.30891
Extension: 761323 Extension. 9.37878

Viendo los resultados de la prueba se puede comprobar que en la posicion inicial
estaban los peces agrupados en un lado, aunque sus direcciones eran bastante
desiguales entre ellos (Polarizacion: 1,31). El hecho de que la distancia entre peces
sea de 2, provoca que haya una reaccion de orientacion paralela y por tanto igualar
sus direcciones. Esto permite que pocas iteraciones después aparezca una cohesion
bastante fuerte (en la iteracién 1000 la polarizacion ha bajado a 0.27 y la extension a
9.25). En el resto de iteraciones hasta la final, se consigue que el grupo siga
totalmente junto. Por tanto se puede considerar el resultado de la prueba como

satisfactorio.

6.1.3.3 Pruebas de cambio de configuracion

Aumentar al doble y reducir a la mitad el tamafio de los radios

En esta prueba se va a comprobar que implicaciones tiene cambiar el tamafo de los
radios de accidén de los peces. Para ello, se van a realizar dos simulaciones, una
aumentado al doble el tamafio de los 3 radios y una segunda reduciéndolos a la mitad

(respecto a los tamafos originales).

70

Los datos de la 2 simulaciones son:

0 1000 peces, 500x500x20 de resolucién y 3500 iteraciones (20000 para el

caso de la mitad)

o La distribucion de los peces sera aleatoria en todo el espacio de simulacion.

En el siguiente conjunto de graficas se va a mostrar la evolucion de la simulacién

desde la posicion inicial hasta la iteracién 3500 para el caso de que los radios sean

el doble de lo que lo son habitualmente:

lteracicn. 0 Polarizacion 1.30439
XA Extension: 20545107

lteracion: 1000

Polarizacion. 0.89235
Eutenzion 122 17735

lteracién. 2000 Polarizacion 0.54408
Bytension 7609118

lteracion: 3500

Polarizacion. 0.55233
Eutenzion 10 29321

71

Mediante el siguiente conjunto de graficas se mostrara la evolucion de la simulacion
desde la posicion inicial hasta la iteracidon 20000 para el caso de que los radios sean

la mitad de lo que lo son habitualmente:

feracién 0 Polarizacign: 1.30439 teracion: 1000 Polarizacidn: 0.98704
+¢+£+ + Extension 20545107 Extension: 195.85622

teracién: 2000 Polarizacign; 1.00942 teracion: 3500 Polarizacidn: 0.77934
Extensicn: 211.14828 Extension: 141.82060

feracién: 20000 Polarizacidn, 123278
Bxtension: 2101140

72

Como se puede observar, para el caso de la simulacion con el doble de radio se
obtienen bastante buenos resultados, en cambio para la simulacion en la que el
tamafo del radio es la mitad de lo estandar, los resultados son bastante peores.
Después de las 3500 iteraciones se puede comprobar que existen bastantes peces
sueltos y en cambio para el caso del doble de radio, se puede observar que se

consigue llegar a tener un unico grupo.

Habra que esperar hasta llegar a la iteracién 20000 (en el caso de la mitad del radio)
para que los resultados lleguen a ser algo mejores. Como conclusion se podria decir
que el hecho de que los radios sean tan pequefos, hace que se tarde mas en
producir las reacciones de orientacion paralela y sobre todo de atraccion y en cambio
la que predomina es la de busqueda. Ademas, el hecho de que el tamafo de los
radios no sea el que se establece como correcto, hace que los resultados que se

obtengan no sean los esperados.

Aumentar al doble y reducir a la mitad el niUmero de vecinos a escoger

En esta prueba se va a comprobar que implicaciones tiene cambiar el numero de
vecinos a escoger para el calculo de la reaccion final de los peces. Para ello, se
realizaran dos simulaciones, una aumentado al doble el numero de vecinos y una

segunda reduciéndolo a la mitad (respecto a los tamanos originales).

Los datos de la 2 simulaciones son:
o0 1000 peces, 500x500x20 de resolucion y 3500 iteraciones

o0 La distribucion de los peces sera aleatoria en todo el espacio de simulacion.

73

En las siguientes graficas se mostrara la evolucion de la simulacion desde la posicion
inicial hasta la iteracion 3500 para el caso de que el numero de vecinos sea el doble

de lo que lo son habitualmente:

feracian 0 Polarizacidn: 1.30439 fteracion: 1000 Polarizacidn: 1.01264
+¢+£+ + Extension 20543107 Extension: 223 00558

feracicn: 2000 Polarizacidn, 1.15948 fteracion: 3500 Polarizacidn: 0.97957
Extension: 169.01826 Extension 98 22385

74

Mediante el siguiente conjunto de graficas se va a mostrar la evolucion de la
simulacion desde la posicion inicial hasta la iteracidon 3500 para el caso de que el

numero de vecinos sea la mitad de lo que lo son habitualmente:

feracién 0 Polarizacian 130439 teracion 1000 Polarizacion 0 99760

+1+£+ + Extension: 20545107 Extension: 219.19223

teracién 2000 Polarizacidr 0 70080 teracion 3500 Polarizacion 0 68327
Extensidn: 14976266 Extension: 77 55337

Viendo el resultado de las pruebas, se puede apreciar que en ambos casos no se
consigue llegar a resultados demasiado buenos. En todo caso, parece que para el
caso de la mitad de peces se obtienen mejores resultados que para el caso de

cuando es el doble.

75

Cambiar el método de eleccion de vecinos a prioridad por distancia (en

lugar de prioridad por frontalidad)

En esta prueba se va a comprobar como se comporta la eleccién de vecinos por el

criterio de la prioridad por distancia.

Los datos de la simulaciones son:
0 1000 peces, 500x500x20 de resolucion y 3500 iteraciones

o La distribucion de los peces sera aleatoria en todo el espacio de simulacion.

En el siguiente conjunto de graficas se va a mostrar la evolucion de la simulacion

desde la posicidn inicial hasta la iteracion 3500:

feracién 0 Polarizacign: 1.30439 teracion: 1000 Polarizacidn; 1.31097
+¢+£+ + Extension 20545107 Extension: 23443132
+ £ +i+
+Jr + Wx@_”}
e
Y zﬁ %

¥ +
+ +“‘+:+:¢ ++tr+
+ #

e ++++ﬁ§ HE R

teracién: 2000 Polarizacign 129018 teracion: 3500 Polarizacidn 1.18020
Eutensicn: 24014175 % Extension: 212 94357

76

Al comprobar los resultados obtenidos se podria decir que son mas bien malos si se

comparan con los que proporciona el criterio de eleccién por frontalidad.

6.2 Pruebas a nivel de software

Comparativa de tiempos de ejecucion en funcion del numero de
particiones

En esta prueba se va a comprobar la diferencia de velocidad en la ejecucion del
simulador para el caso de que se particione el espacio de simulacion respecto a que
no se haga. Para ello, se realizaran 14 simulaciones, una primera con una unica

particion (la utilizada por defecto) y el resto con un niumero concreto de particiones.
Los datos de las 14 simulaciones son:
o 10000 peces, 1000x1000x100 de resolucién y 100 iteraciones

o0 La distribucion de los peces sera aleatoria en todo el espacio de simulacion.

En la siguiente tabla se mostraran los tiempos de ejecucion para cada simulacion:

Num. prueba| Simulacion | Tiempo (seg.)
1 1x1x1 1663
2 2x2x2 361
3 3x3x3 199
4 4x4x4 139
5 5x5x5 103
6 6Xx6x6 82
7 7XTXT 70
8 8x8x8 65
9 9x9x9 65
10 10x10x10 63
11 15x15x15 61
12 20x20x20 60
13 25x25x25 61
14 30x30x30 63

7

A continuacion se podra ver una grafica con la evolucién del tiempo de ejecucion

respecto al numero de particiones del espacio de simulacion:

1750
1500 |\
1250 |
1000 |
750 -
500 |
250

A ———

123 45 6 7 8 910111213 14
Num. prueba

Tiempo (seg.)

Figura 6.3: Gréafica comparativa del tiempo de ejecucion respecto al nUmero de particiones

Por tanto, se deduce que claramente el hecho de particionar mejora notablemente el
tiempo de ejecucién del simulador y que en este caso a mayor numero de particiones,

mejores resultados.

78

7.Conclusiones y lineas de futuro

En este ultimo punto, apareceran las conclusiones del proyecto, asi como las lineas

de futuro y modificaciones que se podrian hacer a partir de este proyecto.

7.1 Conclusiones y resultados

Como conclusion, se puede decir que se ha cumplido satisfactoriamente con los
objetivos marcados para este proyecto. Ademas, se ha conseguido llegar al objetivo

cumpliendo con la planificacién establecida inicialmente.

Se ha conseguido desarrollar un simulador que reproduce de manera bastante fiel,
el sistema de desplazamiento que tienen los peces y que tiene como caracteristica

el hecho de hacerlo de forma cohesionada y desde el modelado del individuo.

A nivel detallado, los resultados concretos de este trabajo son:

e Se han adquirido conocimientos en el campo de los sistemas biolégicos
orientados al individuo y mas concretamente en el ambito de los peces (fish
schools).

e Se ha desarrollado un simulador de fish schools que consigue simular el
comportamiento de los peces al desplazarse.

e Se ha podido verificar que con el simulador se han obtenido los mismos
resultados que los que aparecen en la investigacion realizada por Huth y
Wissel [1] y [2], segun se ha demostrado en la parte de pruebas de este
documento.

e Se han adquirido nuevos conocimientos en el lenguaje usado para el
desarrollo del simulador (C++), como por ejemplo con las clases ya
implementadas en el lenguaje para trabajar con listas y vectores.

e Se ha aumentado el conocimientos en el campo de la trigonometria y de los
vectores, debido a la necesidad de realizar bastantes calculos con vectores y

elementos trigonométricos para el desarrollo del simulador.

79

7.2

Posibles trabajos futuros

En este segundo apartado se van a tratar los posibles proyectos futuros que se

podrian desarrollan en base al trabajo realizado.

Se podria hacer una version del mismo simulador pero para el entorno UNIX o

incluso el desarrollo en algun otro lenguaje.

Un proyecto interesante seria adaptar el actual simulador para que pudiese ser
ejecutado de manera distribuida usando varios ordenadores. De esta manera,
se conseguiria realizar gran cantidad de calculos de una manera bastante mas

rapida de lo que se hace normalmente con un unico ordenador.

Se tendria que tener en cuenta el como dividir el espacio total de simulacion en

los diferentes equipos y la comunicacién entre ellos.

Otra opcién seria la de desarrollar otros proyectos relacionados con los
sistemas bioldégicos orientados al individuo. Por ejemplo, y siguiendo con la
linea del presente trabajo, se podrian simular el comportamiento de otros
animales como pueden ser los pajaros. A partir de documentacion relacionada
con el comportamiento de los pajaros, se deberia realizar el mismo

procedimiento que se ha llevado a cabo para la realizacion de este proyecto.

Siguiendo con la misma linea pero basado en las personas, se podrian
desarrollar simuladores que a partir del analisis del comportamiento de un
cierto grupo de individuos, permitieran tomar decisiones que precisamente
ayudaran a las personas. Como ejemplo, se podria mencionar el caso de
donde poner las salidas de emergencia de un edificio, en funcion del

comportamiento que toman los individuos cuando se produce un incendio.

80

Bibliografia

[1] The Simulation of the Movement of Fish Schools (Andreas Huth y Christian Wissel,
1992)

[2] The simulation of fish schools in comparison with experimental data (Andreas Huth
y Christian Wissel, 1994)

[3] La ciencia (e ingenieria) computacional, 18 de mayo de 2009

http://www.cytedgrid.org/documentos/un _modelo de colaboracion cientifica.pdf

[4] ¢ Qué es un banco de peces?, 25 de mayo de 2009,
http://www.laprensa.com.ni/archivo/2006/febrero/11/cabito/conocimiento/

[5] Definicion de vectores, 12 de abril de 2009,

http://tochtli.fisica.uson.mx/electro/vectores/definici%C3%B3n de vectores.htm

[6] Geometria Analitica,

http://concurso.cnice.mec.es/cnice2006/material098/geometria/geoweb/geoana2.htm

[7] Ministerio de Educacién, Politica Social y Deporte, GEOMETRIA METRICA, 15 de
abril de 2009,

http://descartes.cnice.mec.es/materiales didacticos/Geometria metrica d3/distrec1.ht

m

[8] Ministerio de Educacion, Politica Social y Deporte, GEOMETRIA METRICA, 15 de
abril de 2009,
http://www.arandurape.edu.py/Ministerio de espana/Descartes/Bach CNST 2/Geom

etria metrica d3/distrec.htm

81

http://www.cytedgrid.org/documentos/un_modelo_de_colaboracion_cientifica.pdf
http://www.laprensa.com.ni/archivo/2006/febrero/11/cabito/conocimiento/
http://tochtli.fisica.uson.mx/electro/vectores/definici%C3%B3n_de_vectores.htm
http://concurso.cnice.mec.es/cnice2006/material098/geometria/geoweb/geoana2.htm
http://descartes.cnice.mec.es/materiales_didacticos/Geometria_metrica_d3/distrec1.htm
http://descartes.cnice.mec.es/materiales_didacticos/Geometria_metrica_d3/distrec1.htm
http://www.arandurape.edu.py/Ministerio_de_espana/Descartes/Bach_CNST_2/Geometria_metrica_d3/distrec.htm
http://www.arandurape.edu.py/Ministerio_de_espana/Descartes/Bach_CNST_2/Geometria_metrica_d3/distrec.htm

[9] Calculo superior, 26 de abril de 2009
http://www.cidse.itcr.ac.cr/cursos-linea/Algebra-Lineal/algebra-vectorial-geova-

walter/node3.html

[10] Distancias y angulos, 12 de abril de 2009,
http://thales.cica.es/rd/Recursos/rd99/ed99-0543-
04/Distancia.html#3.%20Distancia%20entre%20puntos,%20rectas %20y

[11] Geometria del triangulo, 8 de abril de 2009,

http://www.juntadeandalucia.es/averroes/iesarroyo/matematicas/materiales/3eso/geo

metria/teoriatriangulo/trianqulo.htm

[12] VITUTOR, Distancia entre rectas y planos, 12 de abril de 2009,

http://www.vitutor.com/analitica/distancias/distancias.html

[13] Resolucion de problemas,10 de abril de 2009,

http://www.lopezdearenas.com/trigonometria/problemas.htm

[14] cplusplus.com,20 de marzo de 2009,

http://www.cplusplus.com/

[15] Curso de C++, 25 de marzo de 2009,

http://www.conclase.net/c/curso/index.php?cap=903e

[16] http://www.medigraphic.com/pdfs/h-gea/gg-2006/gg063i.pdf

[17] http://www.imbiomed.com.mx/1/1/articulos.php?method=showDetail&id _articulo

=45672&id seccion=38&id ejemplar=4625&id revista=8

[18] http://www.investigacion.fcs.uc.edu.ve/simuladores.htm

[19] http://www.sim-bio.org/index.html

82

http://www.cidse.itcr.ac.cr/cursos-linea/Algebra-Lineal/algebra-vectorial-geova-walter/node3.html
http://www.cidse.itcr.ac.cr/cursos-linea/Algebra-Lineal/algebra-vectorial-geova-walter/node3.html
http://thales.cica.es/rd/Recursos/rd99/ed99-0543-04/Distancia.html#3.%20Distancia%20entre%20puntos,%20rectas%20y
http://thales.cica.es/rd/Recursos/rd99/ed99-0543-04/Distancia.html#3.%20Distancia%20entre%20puntos,%20rectas%20y
http://www.juntadeandalucia.es/averroes/iesarroyo/matematicas/materiales/3eso/geometria/teoriatriangulo/triangulo.htm
http://www.juntadeandalucia.es/averroes/iesarroyo/matematicas/materiales/3eso/geometria/teoriatriangulo/triangulo.htm
http://www.vitutor.com/analitica/distancias/distancias.html
http://www.lopezdearenas.com/trigonometria/problemas.htm
http://www.cplusplus.com/
http://www.conclase.net/c/curso/index.php?cap=903e
http://www.medigraphic.com/pdfs/h-gea/gg-2006/gg063i.pdf
http://www.imbiomed.com.mx/1/1/articulos.php?method=showDetail&id_articulo=45672&id_seccion=38&id_ejemplar=4625&id_revista=8
http://www.imbiomed.com.mx/1/1/articulos.php?method=showDetail&id_articulo=45672&id_seccion=38&id_ejemplar=4625&id_revista=8
http://www.investigacion.fcs.uc.edu.ve/simuladores.htm
http://www.sim-bio.org/index.html

[20] http://recursos.cnice.mec.es/biosfera/blog/2006/06/proyecto-siveace-un-

simulador-biolgico.html

[21] http://www.ellaboratorio.8k.com/computador.htm

83

http://recursos.cnice.mec.es/biosfera/blog/2006/06/proyecto-siveace-un-simulador-biolgico.html
http://recursos.cnice.mec.es/biosfera/blog/2006/06/proyecto-siveace-un-simulador-biolgico.html
http://www.ellaboratorio.8k.com/computador.htm

84

Anexo 1: Detalle de las clases utilizadas

85

1. Detalle de los métodos y principales atributos

Clase PEZ

Atributos principales:

int id: Identificador del pez.
float posicion[3]: Posicién que ocupa el pez.

float direccion[3]: Direccion (velocidad) del pez.

Métodos:

Pez: Constructor de la clase. Se crea el elemento pez con sus atributos de
posicion y velocidad.

escribir_fichero: Escribe en los ficheros de posiciones y velocidades
(direcciones) fichero de estadisticas los valores correspondientes a cada pez
y para cada iteracion.

posiciones: Obtiene la posicién de un determinado pez.

direcciones: Obtiene la direccion (velocidad) de un determinado pez.
obtener_velocidad: Obtiene la velocidad (rapidez de movimiento) de un
determinado pez.

obtener_id: Obtiene el identificador del pez.

marcar_tratado: Pone el flag de tratado a un determinado pez para indicar
que ya se ha actualizado sus nuevas posiciones y velocidades.
obtener_tratado: Obtiene el flag de si el pez ha sido actualizado o no.
quitar_tratado: Pone a “false” el flag de tratado para un determinado pez.
poner_direccion: Pone la nueva direccion (velocidad) para un determinado
pez.

poner_direccion_nueva: Pone la nueva direccion (velocidad) temporal que
posteriormente reemplazara a la direccion (velocidad) definitiva para un
determinado pez.

poner_velocidad_nueva: Pone la nueva velocidad (rapidez de movimiento)
temporal que posteriormente reemplazara a la velocidad definitiva para un

determinado pez.

86

poner_posicion_nueva: Pone la nueva posicion temporal que posteriormente
reemplazara a la posicion definitiva para un determinado pez.
reemplazar_direcciones: Pone como direccion (velocidad) actual la que
figuraba como temporal para un determinado pez.

~pez: Destructor de la clase pez.

Clase LISTA

Atributos principales:

list<pez *> listaok: Lista de elementos de tipo pez que sera parte de la base
de la estructura de almacenamiento.

list<pez *>::iterator it: Puntero a la lista de elementos de tipo pez.

Métodos:

Lista: Constructor de la clase lista.

meter_alfinal: Crea y mete al final de la lista un elemento de tipo pez.
borrar_peces: Borra un determinado pez de la lista actual, que previamente lo
habremos copiado a su nueva posicion de la lista.

meter_direccion: Pone la direccion del pez al final de la lista.
obtener_estadisticas: Calcula las estadisticas de grado de misma direccion y
de extension de los peces (separacion entre ellos).

distancia_euclidiana: Calcula la distancia euclidiana entre dos peces.
distancia_vertical: Calcula la distancia a la que esta un pez respecto a la
posicion frontal de otro.

vecinos_distancia: Calcula los vecinos definitivos que se van a escoger en
funcién de la prioridad de distancia entre un pez y el resto.

vecinos_frontal: Calcula los vecinos definitivos que se van a escoger en
funcién de la prioridad de frontalidad entre un pez y el resto.
vecinos_radios_reacciones: Calcula que reaccion tendra el pez en funcién de
la posicion de sus vecinos.

cono: Determina que pez esta respecto a otro en el cono de angulo muerto.
angulo: Calcula el angulo (expresado en valores vectoriales) de un pez

respecto a otro y que nos servira para saber si algun pez tapa a otro.

87

quitar_tapan: Quita de la lista de vecinos aquellos que son tapados por otros
para no tenerlos en cuenta.

obtener_nueva_direccién: Obtiene una nueva direccion aleatoria para los
elementos de la lista (peces) en el caso de que tengan una reaccion de
busqueda.

Repulsion: Calcula la nueva direccion (velocidad) que tendra el pez para el
caso de repulsion.

orientacion_paralela: Calcula la nueva direccién (velocidad) que tendra el pez
para el caso de orientacion paralela.

atraccion: Calcula la nueva direccidon (velocidad) que tendra el pez para el
caso de atraccion.

busqueda: Calcula la nueva direccién (velocidad) que tendra el pez para el
caso de busqueda.

vecinos_radios busqueda: Método que llama al método busca para calcular
la nueva direccion en caso de que el pez necesite buscar a otros peces.
calcular_velocidad: Calcula la nueva velocidad (rapidez de movimiento).
actualizacion_direccion: Matodo que llama a reemplazar_direcciones para
poner como direccion (velocidad) final la que era temporal.
calcular_nueva_posicion: Calcula la nueva posicién de cada uno de los peces
en funcion de la nueva direccién (velocidad).

marcar_como_tratado: Marca el flag de tratado para un determinado pez para
saber que pez ya se ha recalculado su nueva posicion en la lista.
quitar_como_tratado: Inicializa el flag de tratado cada vez que acabemos una
iteracion.

preguntar_tratado: Llama al método de la clase pez para saber si un pez ya
ha sido tratado.

informar_nuevos_valores: Método que actualiza la nueva direccion y
velocidad.

nuevos_valores_pez: Método llamado desde informar_nuevos_valores para
actualizar la direccion y la velocidad.

mirar_posicion0: Comprueba si una posicion esta ya ocupada previamente en

el proceso de distribucion inicial de los peces.

88

escribir_fichero_lista: Llama al método escribir_fichero de la clase pez para
enviar a fichero las posiciones y velocidades(direcciones) de cada pez.

~lista: Destructor de la clase lista.

Clase VECTORA

Atributos principales:

vector<lista *> myvector: Vector de elementos de tipo lista que sera parte de
la base de la estructura de almacenamiento.

vector<lista *>::iterator itv: Puntero al vector de elementos de tipo lista.

Métodos:

vectora: Constructor de la clase vectora.

meter_valores: Método para asignar una lista a una posicion del vector
(correspondiente a un cuadrante), pasandole el apuntador de la lista.
meter_vecinos_xup: Método para asignar una lista a una posicién del vector
de vecinos (correspondiente a un cuadrante) que ocupan la parte superior de
la coordenada X.

meter_vecinos_xdown: Método para asignar una lista a una posicién del
vector de vecinos (correspondiente a un cuadrante) que ocupan la parte
inferior de la coordenada X.

meter_vecinos_yup: Método para asignar una lista a una posicion del vector
de vecinos (correspondiente a un cuadrante) que ocupan la parte superior de
la coordenada Y.

meter_vecinos_ydown: Método para asignar una lista a una posicion del
vector de vecinos (correspondiente a un cuadrante) que ocupan la parte
inferior de la coordenada Y.

meter_vecinos_zup: Método para asignar una lista a una posicion del vector
de vecinos (correspondiente a un cuadrante) que ocupan la parte superior de
la coordenada Z.

meter_vecinos_zdown: Método para asignar una lista a una posicién del
vector de vecinos (correspondiente a un cuadrante) que ocupan la parte

inferior de la coordenada Z.

89

asignar_tamanyo: Asigna tamano a las posiciones de vectores de vecinos,
correspondiente al total de particion.

obtener_estadisticas: Método que calcula las estadisticas de grado de
similitud de direccion y de distancia entre peces a nivel de vector, es decir, el
proceso recorre el vector de posiciones, para acceder a las listas y
posteriormente a los atributos de los peces.

posicion_vector_null: Devuelve si una posicion del vector esta vacia.
posicion_vector_vecinos_null_xup: Devuelve si una posicion del vector de
vecinos de X superior esta vacia.

posicion_vector_vecinos_null_xdown: Devuelve si una posicion del vector de
vecinos de X inferior esta vacia.

posicion_vector_vecinos_null_yup: Devuelve si una posicion del vector de
vecinos de Y superior esta vacia.

posicion_vector_vecinos_null_ydown: Devuelve si una posicion del vector de
vecinos de X inferior esta vacia.

posicion_vector_vecinos_null_zup: Devuelve si una posicion del vector de
vecinos de Z superior esta vacia.

posicion_vector_vecinos_null_zdown: Devuelve si una posicion del vector de
vecinos de Z inferior esta vacia.

obtener_direccion_lista: Devuelve la direccion del puntero de la lista que se
encuentra en una determinada posicion del vector.

posicion_del_vector: Método que calcula la posicidn final del vector a partir a
partir de las coordenadas X,Y y Z de lo que seria la matriz.
posicion_origen_vector: Método que calcula las coordenadas X,Y y Z de la
matriz, a partir de una posicion del vector dada.

obtener_direccion_lista_xup: Devuelve la direccion del puntero de la lista que
se encuentra en una determinada posicion del vector de vecinos de X
superior.

obtener_direccion_lista_xdown: Devuelve la direccion del puntero de la lista
que se encuentra en una determinada posicidén del vector de vecinos de X

inferior.

90

obtener_direccion_lista_yup: Devuelve la direccidén del puntero de la lista que
se encuentra en una determinada posicion del vector de vecinos de Y
superior.

obtener_direccion_lista_ydown: Devuelve la direccién del puntero de la lista
gue se encuentra en una determinada posicién del vector de vecinos de Y
superior.

obtener_direccion_lista_zup: Devuelve la direccion del puntero de la lista que
se encuentra en una determinada posicion del vector de vecinos de Z
superior.

obtener_direccion_lista_zdown: Devuelve la direccion del puntero de la lista
qgue se encuentra en una determinada posicién del vector de vecinos de Z
inferior.

inicializar_direccion_lista_xup: Inicializa la posicion del vector de la lista que
se encontraba en una determinada posicion del vector de vecinos de X
superior.

inicializar_direccion_lista_xdown: Inicializa la posicion del vector de la lista
que se encontraba en una determinada posicién del vector de vecinos de X
inferior.

inicializar_direccion_lista_yup: Inicializa la posicion del vector de la lista que
se encontraba en una determinada posicion del vector de vecinos de Y
superior.

inicializar_direccion_lista_ydown: Inicializa la posicion del vector de la lista
que se encontraba en una determinada posicién del vector de vecinos de Y
inferior.

inicializar_direccion_lista_zup: Inicializa la posicion del vector de la lista que
se encontraba en una determinada posicion del vector de vecinos de Z
superior.

inicializar_direccion_lista_zdown: Inicializa la posicion del vector de la lista
que se encontraba en una determinada posicién del vector de vecinos de Z
inferior.

inicializar_vectores_posx: Inicializa el vector correspondiente de controlar que

no se sitien mas de un pez en la misma posicion, para la coordenada X.

91

inicializar_vectores_posy: Inicializa el vector correspondiente de controlar que
no se sitlen mas de un pez en la misma posicion, para la coordenada Y.
inicializar_vectores_posz: Inicializa el vector correspondiente de controlar que
no se sitlen mas de un pez en la misma posicion, para la coordenada Z.
vecinos: Método inicial del calculo de reacciones del pez a partir de la
situacion de sus vecinos y que lo hace a partir de llamar al método vecinos_1.
También hace calculos que apareceran posteriormente en las estadisticas.
vecinos_1: Método principal que calcula las nuevas direcciones (velocidades)
de cada pez, basandose en los vecinos del mismo cuadrante, asi como los
que pudiera haber en otros cuadrantes. Una vez pre-seleccionados los
vecinos, llama a otras funciones que eligen los vecinos definitivos y calculan
la reaccidn final en funcion de la situacién de cada pez vecino.

Simulacion: Método principal de las simulaciones, encargado de calcular las
nuevas posiciones a partir de las velocidades calculadas anteriormente,
reorganizar la estructura de datos moviendo los peces a las listas
correspondientes segun su nueva posicion y finalmente se encargara también
de limpiar las listas de vecinos de la anterior iteracion.

simulacion_lista: Método llamado desde Simulacion y que se encarga de la
actualizacion de las nuevas posiciones y de reestructurar la organizacion de
peces, moviendo los mismos a la lista de la posicidén del vector que le
corresponda segun sus nuevas coordenadas.

simulacion_lista_vecinos: Método que limpia las listas de vecinas anteriores
para ser usadas nuevamente en la nueva iteraciéon. También controla que las
nuevas posiciones que se acaban de calcular no estén repetidas mediante
una lista de posiciones.

dev_posicion_vector: Obtiene la posicion del vector concreta que ocuparia un
pez con unas coordenadas de posicion concretas.

reorganizar_estructura: Método que reposiciona a los peces segun su nueva
posicion. En funcién de sus nuevas coordenadas y en el caso de que
supongan un cambio de cuadrante, el método borra el pez que cuelga de la
lista de la posicion concreta del vector, para afiadirse a la lista que cuelga de

la posicion del vector correspondiente a las nuevas coordenadas del pez.

92

vecinos_simulacion: Método que controla que las nuevas posiciones de los
peces no sean solapadas por otro pez. Esto se realiza mediante la creacién
de una lista en donde se iran afadiendo las nuevas coordenadas de los
peces, para que posteriores peces no ocupen esas mismas posiciones.
borrar_listas_vecinas: Método para borrar el contenido de las listas de
vecinos, para que en la siguiente iteracion se recalculen de nuevo.
posicion_libre: Método para comprobar si la nueva posicion de un pez esta
ocupada y en caso de estarlo, busca una contigua a la misma.
escribir_fichero: Proceso encargado de escribir en fichero los valores de
estadisticas de grado de similitud de direccion y de separacion entre peces.
dev_cuadrante: Devuelve el cuadrante al que le pertenece un pez segun la
definicion original del numero de partes en las que dividimos el espacio de
simulacién y segun las coordenadas de posicion que tenga el pez.
mirar_posicion1: Comprueba si una posicion esta ya ocupada en el proceso
de calculo de nuevos posiciones en las diversas iteraciones que se vayan
produciendo para cada uno de los peces.

~vectora: Destructor de la clase vectora

Clase POSICI CLASE

Atributos principales:

list<int> posiciones_v: Lista de enteros para guardar las coordenadas de las
posiciones.

Métodos:

posici_clase: Constructor de la clase posici_clase.
meter_direccion: Método para introducir elementos en la lista de posiciones
ocupadas y asi detectar solape de posiciones en el espacio de simulacion.

~posici_clase: destructor de la clase posici_clase.

93

Clase GEN NUMEROS

Atributos principales:

int numero_peces: Numero de peces de la simulacién.
int tamanyo_x,tamanyo_y,tamanyo_z: Dimensiones del espacio de

simulacion.

Métodos:

gen_numeros: Constructor de la clase gen_numeros que nos servira para
generar la semilla de generacion de numeros aleatorios.

obtener_numero_x: Obtiene un valor aleatorio para la coordenada X de la
posicion del pez.

obtener_numero_y: Obtiene un valor aleatorio para la coordenada Y de la
posicion del pez.

obtener_numero_z: Obtiene un valor aleatorio para la coordenada Z de la
posicion del pez.

obtener_numeros_rad: Obtiene la configuracion de las posiciones iniciales de
los peces en el caso de que se use el método de inicializacion mediante
separacion en distancia entre ellos.

obtener_numero_rads_x: Obtiene un valor aleatorio para la coordenada X de
la posicion del pez en el caso de que el método de inicializacion de peces sea
mediante separacion en distancia entre ellos.

obtener_numero_rads_y: Obtiene un valor aleatorio para la coordenada Y de
la posicion del pez en el caso de que el método de inicializacion de peces sea
mediante separacion en distancia entre ellos.

obtener_numero_rads_z: Obtiene un valor aleatorio para la coordenada Z de
la posicion del pez en el caso de que el método de inicializacion de peces sea
mediante separacion en distancia entre ellos.

~gen_numeros: destructor de la clase gen_numeros

94

2. Algoritmo basado en las llamadas a los médulos principales

En este apartado se va a detallar a que modulos se llama a lo largo de los pasos que

constituye el algoritmo. Hay que tener en cuenta, las siguiente nomenclaturas:

P->: Método de la clase PEZ

L->: Método de la clase LISTA

V->: Método de la clase VECTORA

G->: Método de la clase GEN_NUMEROS

Lectura del fichero de configuracién

Segun el método de inicializacion de los peces definido en la
configuracion, hacer las correspondientes acciones:

Para el caso de definir las posiciones de los peces a partir de
un fichero no tendra ninguna funcién especial, sino que
comparte las comunes para los 4 métodos.

Para el caso de definir las posiciones de los peces de forma
aleatoria tanto para todo el espacio de simulacion como en
parte de el:

G->obtener_numero_x

G->obtener_numero_y

G->obtener_numero_z

V->posicion_libre

L->obtener_nueva_direccion

Para el caso de definir las posiciones de los peces de forma
aleatoria pero separadas por un determinado espacio:
G->obtener_numeros_rad
G-> obtener_numero_rads_x
G-> obtener_numero_rads_y
G-> obtener_numero _rads z

Funciones comunes para todos los tipos de inicializacion:
V->posicion_libre
V->posicion_vector_null
V->meter_valores
L->meter_alfinal
V->obtener_direccion_lista
V->dev_cuadrante
V->posicion_vector_vecinos_null_xup
V->meter_vecinos_xup

95

V->obtener_direccion_lista_xup
V->posicion_vector_vecinos_null_xdown
V->meter_vecinos_xdown
V->obtener_direccion_lista xdown
V->posicion_vector_vecinos_null_yup
V->meter_vecinos_yup
V->obtener_direccion_lista_yup
V->posicion_vector_vecinos_null_ydown
V->meter_vecinos_ydown
V->obtener_direccion_lista_ydown
V->posicion_vector_vecinos_null_zup
V->meter_vecinos_zup
V->obtener_direccion_lista_zup
V->posicion_vector_vecinos_null_zdown
V->meter_vecinos_zdown
V->obtener_direccion_lista_zdown
L->meter_direccion

V->vecinos
V->obtener_estadisticas
V->escribir_fichero

Repetir tantas veces como iteraciones se quieran hacer
V->simulacion
V->vecinos
V->obtener_estadisticas
V->escribir_fichero

V->simulacion

Para cada posicion del vector:
V->simulacion_lista
V->borrar_listas_vecinas
V->simulacion_lista_vecinos

V->simulacion lista

Para cada posicion de la lista:
L-> actualizacion_direccién
L->calcular_nueva_posicion
V->posicion_libre
V->poner_posicion_nueva
V->reorganizar_estructura

V->borrar_listas _vecinas
V->inicializar_direccion_lista_xup
V-> inicializar_direccion_lista_xdown
V-> inicializar_direccion_lista_yup
V-> inicializar_direccion_lista_ydown
V-> inicializar_direccion_lista_zup
V-> inicializar_direccion_lista_zdown

96

V->simulacion lista vecinos
Para cada posicion de la lista:
L->quitar_como_tratado
V->vecinos_simulacion

V->vecinos
Para cada posicion del vector:
V->vecinos_1

V->vecinos 1
Para cada vecino:
L-> distancia_euclidiana
L->cono
L->meter_direccion
L->quitar_tapan
L-> vecinos_frontal / L-> vecinos_distancia
L-> vecinos_radios_reacciones / L->vecinos_radios_busqueda
L-> calcular_velocidad
L->informar_nuevos_valores

L->vecinos frontal
L-> distancia_vertical

L-> vecinos distancia
L-> distancia_euclidiana

L-> vecinos radios reacciones
L-> distancia_euclidiana
L-> repulsion
L-> orientacion_paralela
L-> atraccion

L->vecinos radios busgueda
L-> busqueda

V->obtener_estadisticas
Para cada posicion del vector:
L->obtener_estadisticas

V->escribir_fichero
Para cada posicion del vector:
L-> escribir_fichero_lista

L-> escribir_fichero lista
Para cada posicion de la lista:
P-> escribir_fichero

97

Anexo 2: Manual de usuario

98

Con este manual se va a poder instalar, configurar y ejecutar el simulador.

1. Instalacion

Lo primero a indicar en este manual de usuario van a ser los elementos que forman
este simulador. Por un lado estara el simulador en si (ejecutable) y por otro lado

habra un fichero de configuracion.

Ambos ficheros deben estar en la misma carpeta, cuyo nombre es indiferente para el

correcto funcionamiento del simulador.

El fichero ejecutable tendra como nombre “simufish.exe” y necesitara
obligatoriamente de la presencia del fichero de configuracion, ya que de este leera
los parametros sobre los que ejecutar el simulador. EI nombre del fichero de

configuracion tendra el nombre de “simufish.cfg”

2. Configuracion

A continuaciéon se detallara el contenido del fichero de configuraciéon, que
dependiendo de los valores que tenga hara que se defina la manera en la que se

ejecute la simulacion.

Entre otras cosas, se podra establecer la configuracién de la distribucion de los

peces inicialmente, el numero de iteraciones o por ejemplo el numero de peces.

También se podran definir elementos mas internos de la configuracion como son la
distancia entre radios (que en principio no deberia modificar si se quieren obtener los
resultados esperados) o el numero de vecinos a tener en cuenta en la reaccion final

del pez.

99

Una vez visto la utilidad del fichero de configuracién, se pasara a mostrar un ejemplo

del mismo:

numero_peces: 1000
numero_iteraciones: 350
resolucion: 500 500 20
particion: 1 1 1
numero_vecinos: 4
tipo_vecinos: 0

tamano_pez: 3

radios: 0.52 5
angulo_muerto: 30
metodo_colocacion: 0
porcentaje_colocacion: 10 10 10
separacion_peces: 2
lugar_colocacion: 50 50 50
direct_salida: C:\Simufish\out\

fich_entrada: C:\fichero_in\fichero1.txt

Hay que tener en cuenta que todos los parametros tienen que aparecer en el fichero
(la definicion del parametro) y en el orden en que aparecen en el fichero de

configuracion del ejemplo.

A continuacion se realizara la explicacion de todos los parametros que incluye:

e numero_peces: Indica el numero de peces que va a tener el simulador. Debera

ser un numero entero mayor que 0. Se ha de informa obligatoriamente.

e numero_iteraciones: Mediante este parametro se informara del numero de
iteraciones que se van a producir en la simulacion. Si no se quiere que haya
iteraciones y por tanto mostrar solo la posicion inicial, se debera poner un 0. Si
por el contrario se quiere hacer la simulacion normalmente, habra que poner un

numero entero mayor que 0. Se ha de informa obligatoriamente.

100

resolucion: La resolucién indicara la extension que tendra el espacio de
simulacién sobre el que se moveran los peces. Al tratarse de un espacio en 3
dimensiones, se debera indicar el tamafio para las tres planos (x, y, z). Se
deberan indicar en el fichero separados con un espacio y en el orden anterior.
Asi pues, en el fichero de ejemplo se puede ver que la resolucion sera de 500
para la coordenada ‘x’, 500 para la coordenada ‘y’ y 20 para coordenada ‘Z’. Para
las tres coordenadas deberan ser valores enteros mayores que 0 y deberan ser

informados obligatoriamente.

particion: Se indicara el numero de partes en las que se quiere particionar el
espacio de simulacion (definido con el anterior parametro). Si se quiere tratar el
espacio de simulacién como un todo y de forma unica, se debera definir el valor 1
para los tres planos (x, y, z). Si por el contrario se quiere dividir el espacio en
varias partes se debera indicar en cuantas se desea hacer para cada uno de los
planos. Asi por ejemplo, si se pone el valor “3 2 1” indicaria que se quiere dividir
el espacio de simulacidén en 3 partes para el plano ‘X', en 2 partes para el plano
‘v’ dejarlo en una parte para el plano ‘Z’. Para las tres coordenadas deberan ser

valores enteros mayores que 0 y deberan estar informados obligatoriamente.

numero_vecinos: Mediante este parametro podremos definir el numero de
vecinos que queremos que se tengan en cuenta para la reaccion final del pez. En
principio el valor deberia ser de 4 (que se corresponde con el valor que mas se
ajusta a la forma de actuar de los peces), pero podria variarse para ver el nuevo
comportamiento del simulador. Debera ser un numero entero mayor que 0. Se

ha de informa obligatoriamente.

tipo_vecinos: Se informara la manera en la que escoger la prioridad a la hora de
seleccionar a los vecinos. Habra dos posibles valores, 0 para el caso de la
prioridad frontal y 1 para el caso de la prioridad por distancia. Por tanto, si existe
un mayor numero de posibles vecinos de los indicados en el anterior parametro
(numero_vecinos), el simulador se quedara con aquellos que o bien estén mas
en frente del pez origen (valor 0, prioridad frontal) o bien estén a una distancia
menor del pez origen (valor 1, prioridad por distancia). Por defecto y como valor
que mas se aproxima al comportamiento de los peces, habra que poner como

método el de la prioridad frontal, o lo que es lo mismo “tipo_vecinos: 0”. Por

101

tanto, los dos valores posibles con los que el simulador funcione correctamente

seran el “0” y el “1”. Se ha de informar obligatoriamente.

tamano_pez: Mediante este parametro se indicara el tamafo del pez (expresado
como longitud y en la misma magnitud que el resto de parametros). En principio,
un valor con el que se van a conseguir buenos resultados es el de 3. Debera ser

un numero entero mayor que 0. Se ha de informa obligatoriamente.

radios: Mediante este parametro se definira el tamafio de los radios que a su vez
implicara que se seleccione un determinado tipo de reaccion. Asi pues, habra
tres diferentes radios con tres diferentes tipos de reacciones. El primero de ellos
sera el r1 y marcara la distancia en la que un pez tiene una reaccion de repulsion
respecto a sus vecinos. El segundo radio sera el r2 y marcara la distancia en la
que un pez tiene una reaccion de orientacion paralela respecto a sus vecinos.
Finalmente estara el tercer radio r3 que servira tanto para delimitar a los vecinos
de un pez como para marcar la distancia en la que un pez tiene una reaccion de
atraccion. Los tres valores por defecto y que en principio no deberian tocarse (ya
que supone el comportamiento normal de los peces) serian 0.5 para r1, 2 para r2
y 5 para r3. Solo sera necesario modificar estos valores si se quiere probar el
comportamiento del simulador en diferentes circunstancias a las normales. Se
debera separar cada valor del radio mediante un espacio y el orden sera de r1, r2

y r3. Debera ser un numero mayor que 0. Se ha de informa obligatoriamente.

angulo_muerto: Mediante este parametro se definira el valor que tendra el angulo
muerto de visién del pez. Dicho angulo se encuentra localizado justo detras de
donde se encuentra el pez y corresponderia a la zona en la que el pez no puede
ver lo que hay. En principio, el valor por defecto y que no deberia tocarse (ya que
supone el comportamiento normal de los peces) es de 30 (es decir 30 grados).
Solo se modificara este valor si se quiere probar el comportamiento del simulador
en diferentes circunstancias a las normales. Debera ser un numero mayor que 0.

Se ha de informa obligatoriamente.

metodo_colocacion: Se indicara la manera en que inicialmente se colocaran los

peces sobre el espacio de simulacion.

102

Habra 4 diferentes posibilidades que seran:

Posicionamiento aleatorio distribuido por todo el especio de simulacion:
Este tipo de inicializacion se basara en el hecho de que todos los peces
estaran distribuidos a lo largo de todo el espacio de simulacién. Sera la
opcion mas genérica de inicializacién y en principio la que se usara por
defecto.

Un ejemplo de este tipo de inicializacion seria el siguiente:

Figura anex.1: Distribucidn inicial aleatoria

Posicionamiento aleatorio distribuido en un determinado porcentaje sobre
el total del espacio de simulacion y situado en una zona concreta de ese
espacio: En este caso, el propdsito de este tipo de inicializacion es
concentrar los peces en una determinada zona, en lugar de que estén
distribuidos por todo el espacio de simulacion.

Para ello, habra que basarse en dos variables (parametros):

0 porcentaje_colocacion: Marca que porcentaje del espacio de
simulacion estara ocupado por peces o lo que es lo mismo, servira
para indicar si se quiere que los peces estén juntos o separados
entre si. Estara compuesto por 3 valores que representaran el
porcentaje para los coordenadas ‘X, 'y’ y ‘Z’. Asi por ejemplo, si este
parametro tiene el valor “50 50 50" querra decir que todos los peces
estaran agrupados ocupando la mitad del espacio de simulacion,
mientras que si tienen el valor del fichero del ejemplo (10 10 10”)

querra decir que los peces estaran distribuidos a lo largo del 10%

103

del espacio de simulacion y que consecuentemente estaran muy
juntos entre si. Para las tres coordenadas deberan ser valores
enteros mayores que 0 y deberan ser informados obligatoriamente.
o0 lugar_colocacion: Indica el lugar en el que se situara el grupo de
peces respecto al total del espacio de simulacion. Se definira para
las tres coordenadas, asi por ejemplo si se quiere que los peces
estén situados en el centro del espacio de simulacion se debera
poner “50 50 50” (o lo que es lo mismo, que estén repartidos
alrededor de la posicion que representa el 50% del espacio de
simulaciéon para las tres coordenadas). Para las tres coordenadas
deberan ser valores enteros mayores que 0 y deberan ser

informados obligatoriamente.

Este tipo de inicializacion servira para probar como se comporta la
simulacién en casos particulares de posicionamiento y distribucion de los
peces.

Unos ejemplos de este tipo de inicializacion serian los siguientes:

Figura anex.2: Distribucidn inicial aleatoria por porcentaje en el centro

104

Figura anex.3: Distribucidn inicial aleatoria por porcentaje en una esquina

Posicionamiento aleatorio distribuido en funcién de la distancia entre
peces y situado en una zona concreta del espacio de simulacion: Para
este tipo de inicializacién, los peces se distribuiran en el espacio de
simulacién en funcion de la distancia que se quiere que haya entre ellos.
La finalidad sera provocar inicialmente una determinada reaccion de los
peces en funcion precisamente de esa distancia que se va a indicar en el
siguiente parametro:

0 separacion_peces: Distancia entre un pez y su vecino mas préximo.
Asi pues, si como en el ejemplo se informa con el valor 2, indicara
que entre un pez y su vecino existe una distancia de 2 posiciones.
Segun lo explicado en la memoria, esa distancia de 2 implicara que
haya una accion de orientacion paralela y que por tanto los peces
tiendan a juntarse. Sera un valor entero mayor que 0 y debera estar

informado obligatoriamente.

Ademas de la separacion entre peces, también se debera indicar el

lugar en el que se quiere situar al conjunto de los peces:

o0 lugar_colocacion: Este parametro actuara de la misma manera que
lo hace en el tipo de inicializacion anterior (posicionamiento
aleatorio distribuido en un determinado porcentaje sobre el total del
espacio de simulacion y situado en una zona concreta del espacio

de simulacién), es decir, se indicara la posicién en la que se

105

colocaran los peces mediante 3 coordenadas. Sus valores deberan
ser enteros mayores que 0 vy deberan ser informados

obligatoriamente.

Este tipo de inicializacion servira para probar como se comporta la
simulacidén en casos particulares de posicionamiento y distribucion de los
peces, partiendo de una reaccion inicial provocada por la distancia
existente entre ellos.

Un ejemplo de este tipo de inicializacion serian los siguientes:

Figura anex.4: Distribucidn inicial aleatoria por separacion entre peces en centro

Figura anex.5: Distribucion inicial aleatoria por separacion entre peces en esquina

e Posicionamiento a partir de la definicion de los peces mediante fichero de

entrada: Gracias a este tipo de parametrizacion, se podra definir el

106

conjunto de peces que van a aparecer en la simulacién, indicando su
posiciéon y orientacion inicial. Al indicar este tipo de inicializacién, se
debera informar el nombre del fichero del que se leeran los datos de los
peces a simular:

o fich_entrada: Se indicara la ruta y nombre del fichero que contendra
la definicion de los peces a cargar en el simulador. Solo se tendra
en cuenta este valor para el caso en el que el método de colocacion
sea 3 (situacién inicial de peces leida de fichero). Por tanto, este
parametro sera solo obligatorio en el caso de que se tenga
“metodo_colocacion: 3" y opcional para el resto de métodos de
colocacion. Se debera poner la ruta entera (ej.
C:\fichero_in\fichero1.txt).

Un ejemplo de fichero de entrada con la definicion de dos peces

seria el siguiente:

1021
111010
1021-110

La primera fila del fichero indicara el tamano del espacio de
simulacion definido en el fichero (para las coordenadas X, 'y’ y ‘Z).
Asi por ejemplo, para el caso de “10 2 1”7, querra decir que habra 10
posiciones de tamafo para la coordenada ‘X', 2 para la 'y’ y una
Unica para la ‘Z’. Estos valores se extraeran de la definicion de los
peces que aparecen en las lineas posteriores del fichero. De esta
manera, desde la linea 2 hasta el final del fichero se definiran los
peces. Las tres primeras posiciones, indicaran la posicién del pez,
mientras que las tres ultimas haran referencia a la direccion del
mismo. Para el caso del primer pez, se puede ver que la posicion
esla (11 1), mientras que la direccidén es la (0 1 0). Si se observa la
posicion que ocupara el segundo pez (10 2 1) se podra calcular el
tamano del espacio de simulacion que se acabara informando en la

primera linea del fichero (10-1+1) (2-1+1) (1-1+1) = (10 2 1).

107

Una vez visto los 4 tipos, se pasara a definir los valores a poner para
seleccionar cada uno de ellos: 0: Posicionamiento aleatorio distribuido por
todo el especio de simulacién, 1: Posicionamiento aleatorio distribuido en un
determinado porcentaje sobre el total del espacio de simulacién y situado en
una zona concreta del espacio de simulaciéon, 2. Posicionamiento aleatorio
distribuido en funcion de la distancia entre peces y situado en una zona
concreta del espacio de simulacion y 3: Posicionamiento a partir de la

definicion de los peces mediante fichero de entrada.

Se ha de informar obligatoriamente.

e direct_salida: Este parametro indicara el directorio en donde se generaran los
ficheros de posiciones, de velocidades y el de estadisticas. Debera estar
informado obligatoriamente y acabado con el caracter de barra invertida “\”. (ej.
C:\Simufish\out\).

3. Ejecucion

Una vez que ya se tiene el fichero de configuracion preparado, se pasara a la
ejecucion del simulador, que consistira en hacer doble clic en el fichero

“simufish.exe”.

108

109

Signat: Antonio Cruz Vazquez

Bellaterra, 22 de juny de 2009

110

En la presente memoria se ha recogido de forma escrita el conjunto de fases que se
han llevado a cabo en la realizacion del proyecto consistente en un simulador de
sistemas bioldgicos utilizando modelos orientados al individuo. Concretamente, el
sistema bioldgico representado ha consistido en el movimiento y comportamiento de

cohesién que poseen los peces.

En la present memoria s'ha recollit de forma escrita el conjunt de fases que s'han
portat a terme en la realitzacié del projecte consistent en un simulador de sistemes
biologics utilitzant models orientats a l'individu. Concretament, el sistema biologic
representat ha consistit en el moviment i comportament de cohesié que posseixen els

peixos.

In this report has been written the phases that have been done at the project
realization consisting of a simulator of biological systems using the individual-
oriented models. Specifically, the biological system represented has consisted in the

movement and cohesion behavior that fishes have.

	Memoria.doc
	1202 - Modelado y simulación de sistemas biológicos
	1. Introducción
	1.1 Motivación
	1.1.1 Características de los sistemas biológicos orientados al individuo
	1.1.2 Simulador del comportamiento de un banco de peces (fish schools)
	1.2 Objetivos
	1.3 Organización de la memoria del proyecto

	2. Viabilidad y planificación
	2.1 Finalidad del proyecto
	2.2 Propuesta de proyecto
	2.3 Recursos materiales y plataforma de desarrollo
	2.4 Planificación de tareas
	2.5 Estudio del estado del arte
	2.6 Fish schools
	2.7 Análisis de riesgo
	2.8 Viabilidad del proyecto

	3. Análisis funcional y requerimientos
	3.1 Requerimientos
	3.2 Análisis funcional
	3.2.1 Análisis de consideraciones a tener en cuenta con el espacio de simulación
	3.2.2 Análisis de consideraciones a tener en cuenta con los peces
	3.2.3 Adaptación del modelo original fish schools de dos dimensiones al de tres dimensiones
	3.2.4 Detalle de las posibilidades de configuración del simulador
	3.3 Criterios en la parametrización de la simulación
	3.4 Herramientas prácticas a utilizar
	3.5 Estudios de los casos de uso del sistema
	3.6 Diagrama de bloques

	4. Diseño
	4.1 Estructura modular
	4.2 Estructuras de datos
	4.3 Diagrama de clases

	5. Implementación
	5.1 Algoritmo
	5.2 Implementación de las reacciones de los peces
	Repulsión
	Orientación paralela
	Atracción
	Búsqueda
	Reacción Final

	6. Pruebas
	6.1 Pruebas de verificación del sistema
	6.1.1 Verificación del modulado de las reacciones
	6.1.1.1 Repulsión
	6.1.1.2 Orientación paralela
	6.1.1.3 Atracción
	6.1.1.4 Búsqueda
	6.1.1.5 Caso en el que un pez esté siendo tapado por otro
	6.1.2 Comprobación del comportamiento emergente de la interacción de las reacciones
	6.1.3 Experimentos adicionales
	6.1.3.1 Pruebas de porcentaje de actuación de cada una de las reacciones respecto al total
	6.1.3.2 Pruebas de comportamiento, según disposición inicial de los peces
	6.1.3.3 Pruebas de cambio de configuración
	6.2 Pruebas a nivel de software

	7. Conclusiones y líneas de futuro
	7.1 Conclusiones y resultados
	7.2 Posibles trabajos futuros

	Bibliografía
	Anexo 1: Detalle de las clases utilizadas
	1. Detalle de los métodos y principales atributos
	Clase PEZ
	Clase LISTA
	Clase VECTORA
	Clase POSICI_CLASE
	Clase GEN_NUMEROS

	2. Algoritmo basado en las llamadas a los módulos principales
	V->simulacion
	V->simulacion_lista
	V->borrar_listas_vecinas
	V->simulacion_lista_vecinos
	V->vecinos
	V->vecinos_1
	L-> vecinos_frontal
	L-> vecinos_distancia
	L-> vecinos_radios_reacciones
	L->vecinos_radios_busqueda
	V->obtener_estadisticas
	V->escribir_fichero
	L-> escribir_fichero_lista

	Anexo 2: Manual de usuario
	1. Instalación
	2. Configuración
	3. Ejecución

	Contraportada.doc

