
PLATAFORMA AUTOMATIZADA
DE DETECCIÓN DEMALWARE

núm. 1363

Memoria del proyecto de Ingeniería Superior en Informática.

Presentado por Ferran Pichel Llaquet

codirigido por Miguel Ángel Domínguez

y dirigido por Marc Moreno Berengué.

El firmante, Marc Moreno Berengué, profesor del Depar-

tamento de Microelectrónica y Sistemas Electrónicos de la

Universidad Autónoma de Barcelona.

CERTIFICA:

Que la presente memoria ha sido realizada bajo su dirección

por Ferran Pichel Llaquet.

Bellaterra, 16 de Septiembre de 2009

Firmante: Marc Moreno Berengué

Bellaterra, 16 de Septiembre de 2009

II

El firmante, Miguel Ángel Domínguez de la empresa

Internet Security Auditors, S.L..

CERTIFICA:

Que el proyecto correspondiente a la presente memoria ha

sido realizado bajo su dirección mediante convenio firmado

con laUniversidad Autónoma de Barcelona.

Asimismo, la empresa tiene conocimiento y aprueba el

contenido que se detalla en esta memoria.

Y para que así conste, firma el presente documento.

Firmante: Miguel Ángel Domínguez

Bellaterra, 16 de Septiembre de 2009

III

Dedicado a Ángel Puigventós y Mario Ballano por crear

las bases que han permitido el desarrollo de este proyecto.

IV

Agradecimientos

Agradezco a todo el equipo deInternet Security Auditors, S.L. por brindarme la

oportunidad de planificar, diseñar y desarrollar todo el proyecto. Con esta responsabi-

lidad he podido aprender a llevar a cabo las tareas de forma autónoma y encontrar las

soluciones a todos los problemas detectados antes y durantela implementación, además

de aprender a realizar proyectos de software complejos comoel descrito en el presente

texto.

Agradecer de forma especial a Ángel Puigventós, Nuria Colinas y Juan Galiana las

aportaciones en ideas y estrategias para afrontar algunos de los problemas de planificación

e implementación. Además de sugerir multitud de funcionalidades adicionales que no

se encontraban en el diseño inicial, gracias a sus aportaciones continuas a lo largo del

desarrollo se ha logrado un diseño fácilmente modificable y escalable con el que se ha

permitido adaptar rápidamente las nuevas característicasde las que debía disponer.

V

VI

Índice general

1. Introducción 1

1.1. Contexto Actual . 1

1.2. Motivaciones del Proyecto .. 2

1.3. Objetivos . 3

1.4. Conceptos . 4

1.4.1. HoneyClient . 4

1.4.2. Crawling . 5

1.4.3. XML . 5

1.4.4. Virtualización . 6

1.4.5. Sniffer . 6

1.5. Contenido de la Memoria . 7

2. Metodología de trabajo y entorno de diseño 9

2.1. Metodología de trabajo .9

2.1.1. Planificación . 10

2.2. Entorno de diseño . 11

2.2.1. Python . 11

2.2.2. MySQL . 12

2.2.3. Linux . 12

2.2.4. VMware . 13

2.2.5. Qemu . 14

2.2.6. Software de Crawling . 15

2.2.7. Sistema de Detección - HoneyClient 15

2.2.8. Sistema de Antivirus . 19

3. Diseño e Implementación 21

3.1. Arquitectura General .21

3.2. Base de Datos . 23

3.2.1. Análisis de las Funcionalidades 23

VII

3.2.2. Diseño . 24

3.3. Gestor de Crawling . 25

3.3.1. Análisis de las Funcionalidades 26

3.3.2. Diseño . 26

3.3.3. Implementación . 30

3.4. Gestor de HoneyClient . 30

3.4.1. Análisis de las Funcionalidades 31

3.4.2. Diseño . 31

3.4.3. Implementación . 34

3.5. Alertas . 35

3.5.1. Análisis de las Funcionalidades 35

3.5.2. Diseño . 35

3.5.3. Implementación . 37

3.6. Gestor General . 37

3.6.1. Análisis de las Funcionalidades 38

3.6.2. Diseño . 38

3.6.3. Implementación . 42

4. Pruebas y resultados 43

4.1. Entorno de verificación .43

4.2. Descripción de las pruebas .. 44

4.2.1. Pruebas de Gestor de Crawling 44

4.3. Pruebas del gestor del Analizador 47

4.4. Pruebas del gestor principal 51

4.5. Resumen de los resultados y valoraciones generales delconjunto 54

5. Conclusiones 57

5.1. Experiencia Personal .57

5.2. Evolución Futura . 58

Bibliografía 59

VIII

Índice de figuras

1.1. Ejemplo de códigoXML . 6

1.2. Ejemplo de petición utilizandoXML . 6

1.3. Ejemplo de almacenaje de información utilizandoXML 7

2.1. Estructura del Sistema de Detección bajo entorno Linux. 16

2.2. Ejemplo de comunicación entre el Agente y el Servidor. 18

3.1. Esquema de la comunicación entre los diferentes módulos.. 22

3.2. Diseño esquematizado de la base de datos. 24

3.3. Diseño esquematizado del gestor de crawlers. 26

3.4. Diseño de clases del gestor de crawlers. 28

3.5. Diseño del gestor de HoneyClients. 33

3.6. Diseño del sistema de alertas. 36

3.7. Diagrama general de la aplicación(simplificado) 40

4.1. Informe final que se enviará al cliente.. 51

IX

Capítulo 1

Introducción

En este capítulo se presentan las motivaciones que han llevado a la realización del

proyecto, el contexto sobre el que se sitúa y los objetivos que se deben cumplir para su

éxito.

1.1. Contexto Actual

La seguridad en Internet ha ido evolucionando durante los últimos años. A principios

de este siglo y finales del pasado la seguridad en los servidores era altamente deficiente,

por ello eran objetivo de ataques de distinta índole. El objetivo podía ser muy variado,

tanto la información que éste contenía como la auto-propaganda del propio atacante, entre

otras.

Con la evolución de las nuevas tecnologías y su asentamientocomo plataforma prin-

cipal de acceso a la información, tanto gobiernos como entidades se han preocupado en

mayor medida del problema que suponía una seguridad tan deficiente. Llevando a cabo

notables medidas de protección para evitar muchos de los ataques ya conocidos.

En consecuencia, los atacantes han modificado su objetivo y lo que antes eran intrusio-

nes a servidores de grandes entidades se han convertido en infecciones masivas a usuarios.

Muchos de ellos, aunque familiarizados con las nuevas tecnologías, desconocen aspectos

de la seguridad digital como pueden ser la comunicación entre cliente y servidor cifra-

da, jerarquía de certificados... o incluso la propia estructura de la red. Este hecho les da

una gran ventaja a los atacantes, que intentan aprovechar cualquier descuido para infectar

el entorno del usuario y robar información sensible. Precisamente a raíz de este desco-

1

2 CAPÍTULO 1. INTRODUCCIÓN

nocimiento existe un notable número de usuarios que pulsarán sobre el botónAceptara

cualquier aviso de seguridad sin pensárselo dos veces, o ni si quiera una.

Existen multitud de ataques que se utilizan actualmente para conseguir acceder al

sistema del usuario y obtener así las credenciales para acceder a la banca electrónica

u otros servicios sensibles. Aunque también son utilizadospor grandes entidades para

recabar información acerca de los hábitos de consumo de la población y otro tipo de

datos que puedan ayudar a mantener una dinámica de negocio más eficiente en un futuro.

El más común de los ataques, y que crece en número cada año, es la utilización de

software malicioso (ing:Malware1).

Debido a la naturaleza dinámica que forma actualmente el entorno Web de la red, pue-

de ocurrir que una infección se realice únicamente durante un corto periodo de tiempo,

o que dependa de otros aspectos y sólo infecte bajo unas condiciones predefinidas: una

versión concreta del navegador o de cualquier otro software, la utilización de alguna libre-

ría concreta. Además, los ataques son infinitamente variados y complejos, de manera que

realizar una detección basada en trazas o heurísticas, que es como lo hacen actualmente

los antivirus, no es posible.

Para detectar de forma eficaz esta clase de ataques deMalware se debe realizar un

análisis continuo de la aplicación Web y comprobar que no se producen anomalías Rea-

lizar este trabajo de forma manual es algo totalmente desaconsejable, para ello existen

aplicaciones que de forma automática se conectan a una página especificada y analizan

todas los eventos que se llevan a cabo en el sistema durante lacarga y una vez visualizada

la página. Al terminar, se muestran los resultados.

1.2. Motivaciones del Proyecto

Este proyecto nace de las nuevas necesidad detectadas durante el último año en la ac-

tual Plataforma de Detección deMalware. Su cometido es realizar un análisis deMalware

de un portal web facilitado por el cliente. El proceso se realiza en dos fases principales,

las cuales son ejecutadas por distinto software específico para cada acción:

1def: Software creado para realizar acciones maliciosas en un sistema. Primero infecta al usuario y se
instala de forma clandestina en el sistema para obtener información, ésta dependerá de los intereses del
autor del software, o simplemente mantener el acceso al sistema infectado. Algunos son virus, troyanos,
puertas traseras...

1.3. OBJETIVOS 3

Fase de Crawling: Proceso mediante el cual se obtiene el listado deURLs2 que forman

el dominio a analizar.

Fase de Analizador: Tomando como objeto a analizar las URLs recolectadas en la fa-

se anterior, se lanza el sistema analizador oHoneyClientpara cada una de ellas

interpretando y almacenando los resultados obtenidos.

Algunos aspectos clave del diseño como la escalabilidad delsoftware, gestión centraliza-

da de errores,logsdetallados de las acciones realizadas, inclusión de variosclientes en el

mismo sistema o facilidad de manipulación de datos, no se tuvieron en cuenta en su pri-

mera versión y suponen un coste importante de tiempo en supervisión y mantenimiento

básico de muchos aspectos automatizables. Éstas son deficiencias que este proyecto debe

cubrir en su totalidad de una forma eficiente y robusta.

Adicionalmente se incorporarán algunas mejoras funcionales, centralizando varios as-

pectos del análisis en el mismo gestor, relacionando resultados de Antivirus, Analizador y

Crawlerde forma coherente y cohesionada, se evita así generar resultados independientes

y tener que relacionarlos manualmente por marcas de tiempo uotros métodos.

1.3. Objetivos

El proyecto consiste en el desarrollo de un software capaz degestionar la ejecución

de los diferentes procesos deCrawling y HoneyClient, recopilando los resultados de for-

ma coherente y almacenarlos en una base de datos. Adicionalmente deberá ser capaz de

responder de forma eficaz ante el mayor número de contratiempos posibles y reaccio-

nar correctamente en el proceso habitual de análisis. Como puede ser enviar alertas a los

clientes en caso de detectarMalwareen alguno de los recursos.

El software debe ser capaz de gestionar el análisis de variosdominios, además de

cubrir todas y cada una de las deficiencias detectadas en la versión actual del sistema.

Adicionalmente se deberán añadir funcionalidades y modificar el diseño para permitir

centralizar la información en un mismo contenedor, como unabase de datos, y relacionada

2def: Proviene del inglés:Uniform Resource Locationque significa Localizador Uniforme de Recurso
y corresponde a la cadena de caracteres que forma la dirección con la que se accede a un recurso web
concreto. La sintaxis es la siguiente:

protocolo://máquina/directorio/archivo

4 CAPÍTULO 1. INTRODUCCIÓN

entre sí de forma coherente aunque las fuentes de información sean diferentes:crawler,

antivirus,honeyclient.

El diseño deberá ser escalable y permitir implementar futuras mejoras y ampliaciones

de forma cómoda. ésta máxima debe aplicarse tanto al software desarrollado en Python

como la base de datos que sustentará toda la información.

1.4. Conceptos

En este apartado se presentan algunos conceptos importantes para la comprensión de

este texto.

1.4.1. HoneyClient

HoneyClientes un software destinado a detectar y recolectar las acciones que se rea-

lizan en un sistema cliente cuando se accede a algúnsite3 remoto. La esencia de su com-

portamiento ha sido heredada de sus antecesores, losHoneyPots4. Lo que éstos realizan

a nivel de servidor, elHoneyClientlo hace en el sistema del cliente. Hay algún que otro

proyecto por la red destinado a esta clase de software, en la bibliografía se indican algunos

de éstos.

Existen varias categorías, tantoHoneyClientscomoHoneyPots:

Alta-Interactividad: Se utiliza un sistema real en el que se instala un agente que

controla todos los eventos que se producen en el sistema y losreporta de un modo

seguro con el fin de ser analizados.

Baja-Interactividad: Se emula únicamente un servicio/cliente concreto en lugar de

todo el sistema, programando a conciencia el error para controlar el origen de la ex-

plotación. De forma análoga a los deAlta-Interactividadse reportan los resultados

para su posterior estudio.

3def: Sinónimo de página web
4def: Servidores señuelo utilizados para estudiar el comportamiento de un atacante. Se configuran para

que parezcan servidores reales, incluso con datos falsos para ofrecer mayor realismo al atacante, que se
ha convertido en presa. Sin embargo, todas las acciones son registradas para un posterior estudio y rea-
lizar planes de prevención de intrusiones a servidores en producción que pueden llevar a consecuencias
desastrosas.

1.4. CONCEPTOS 5

La solución más eficaz es la utilización de unHoneyClientde Alta-Interactividad, éste

se trata realmente de un entorno real, consiguiendo un entorno más adecuado para que el

código malicioso realice sus acciones. Además, es posible detectar ataques que afectan a

otras aplicaciones y no únicamente al navegador, éstas pueden ser reproductores multime-

dia, flash, visualizadores de ficheros PDFs... Incluso ataques desconocidos o0-day’s5, ya

que al no tratarse de un sistema pre-diseñado para un error concreto, el código malicioso

tendrá acceso a todo el sistema.

1.4.2. Crawling

Se denominaCrawling a la acción de acceder de forma recursiva a todos los enlaces

de una página Web con el fin de obtener los nombres de cada uno delos recursos a los

que se puede acceder desde la misma.

La plataforma deberá gestionar la ejecución de un proceso decrawling con el fin de

obtener todos los recursos que componen cada uno de los portales web a analizar. La

gestión de estos procesos y sus resultados deberá realizarse correctamente.

1.4.3. XML

Se trata de un metalenguaje extensible de etiquetas desarrollado por elWorld Wide

Web Consortium(W3C). Las siglas vienen del inglésExtensible Markup Languageque

significa: Lenguaje de Marcas Extensible. El aspecto y estructura que define es el utilizado

por muchos lenguajes extendidos como por ejemploHTML6.

XML únicamente define las características sintácticas del lenguaje, es decir, su estruc-

tura, pero no es propiamente uno, como sí lo es en cambioHTML.

Un pequeño ejemplo de códigoXML se encuentra en laFigura-1.1.

Se puede observar la utilización de etiquetas y atributos para definir el elemento. Este

formato es muy versátil, y se puede utilizar tanto para almacenar datos como implementar

protocolos de comunicación. En laFigura-1.2y Figura-1.3se pueden observar ejemplos

de utilización deXML en los ámbitos expuestos.

5def: Programas que aprovechan vulnerabilidades aun no conocidas o que acaban de ver la luz con
cualquier finalidad, la que su creador prefiera.

6def: Las siglas provienen del inglésHyperText Markup Languageque significa Lenguaje de Marcas de
Hipertexto

6 CAPÍTULO 1. INTRODUCCIÓN

<parent>
<child1 attr1="value1">

optional txt field
</child1>

</parent>

Figura 1.1:Ejemplo de códigoXML

<client>
<operation name="suma">

<var name="variable1" valor="2" />
<var name="variable2" valor="3" />

</operation>
</client>

Figura 1.2:Ejemplo de petición utilizandoXML

El único inconveniente de este formato es el notable incremente del tamaño ocupado

por la información debido a los nombres de atributo y etiquetas. Haciendo que la comu-

nicación entre un cliente y servidor sea más pesada, y ocupando mas espacio en el disco

cuando se almacena la información utilizando este formato,a diferencia de, por ejemplo,

una base de datos, cuya función es minimizar el espacio ocupado.

1.4.4. Virtualización

Permite utilizar varios sistemas operativos en una sola máquina de forma simultánea.

Esta clase de software emula una máquina entera, incluyendomemoria RAM, disco duro,

dispositivos externos... Con lo que es posible instalar cualquier sistema operativo en ella y

conseguir emular cualquier entorno de usuario, afrontandola infección desde un espectro

más amplio y detectando mayor número de software malicioso.

1.4.5. Sniffer

Software destinado a la recolección de los datos que se transmiten por la red. Con el

fin de analizarlos y, en medida de lo posible, comprenderlos.

Existen multitud de herramientas que realizan esta funcionalidad, sin embargo, en el

proyecto se ha implementado un objeto que realiza esta funcionalidad. Para ello se ha

utilizado un módulo de Python con el fin de integrarlo en el software y comunicarse de

forma más cómoda con el resto de la plataforma.

1.5. CONTENIDO DE LA MEMORIA 7

<network range="192.168.0.0/24">
<host addr="192.168.0.2" state="up">

<services total="2">
<service name="telnet" port="23" banner="Telnet server" />
<service name="http" port="80" banner="Apache" />

</services>
</host>

</network>

Figura 1.3:Ejemplo de almacenaje de información utilizandoXML

1.5. Contenido de la Memoria

La memoria se ha estructurado en cinco grandes bloques, el primero es en el que se

encuentran estas lineas. Su cometido es el de introducir el tema del proyecto y familiarizar

al lector con los conceptos que se utilizan y desarrollan posteriormente en el trabajo.

Después se encuentra el capítulo en el que se expone el planning del proyecto y se

describen las herramientas utilizadas, se presenta también una tabla en la que se puede

observar de forma desglosada todo el proyecto estructuradopor fases y la dedicación en

cada una de ellas.

El cuerpo del trabajo corresponde al siguiente capítulo, enel que se explica y comenta

todo el proceso llevado a cabo para el diseño de todo el proyecto y su posterior imple-

mentación, obviando detalles de la base de datos por cuestiones de confidencialidad y

seguridad en la aplicación. Ya que podrían realizarse ataques complejos con el fin de al-

terar la información que ésta contiene o provocar errores enla plataforma u otro software

que utilize la base de datos.

En el capítulo de pruebas se exponen algunos de los tests realizados al software y

su resultado. Comentando además el motivo por el que se han realizado cada una de las

pruebas.

El último apartado corresponde a las conclusiones a las que se ha llegado una vez

finalizado el proyecto, exponiendo una valoración personaly unas lineas de aplicaciones

o servicios futuros que se pretenden desarrollar sobre la plataforma.

8 CAPÍTULO 1. INTRODUCCIÓN

Capítulo 2

Metodología de trabajo y entorno de

diseño

En este capítulo se describe la metodología de trabajo realizada para el diseño e im-

plementación de la plataforma.

2.1. Metodología de trabajo

El trabajo se ha desarrollado de forma individual, tanto la implementación como el di-

seño han sido hechos por un único individuo, al igual que la planificación. DesdeInternet

Security Auditors, S.L. se ha controlado el cumplimiento del planning y los resultados

obtenidos en cada uno de los hitos correspondientes. Ademásde facilitar un acceso có-

modo para desarrollar, permitiendo utilizar remotamente el entorno.

Todo el proceso se ha llevado a cabo en horas extra-laborales, estableciendo una media

de 4 horas diarias durante 5 días a la semana.

Se empezó diseñando en un inicio la arquitectura general de la plataforma y las fun-

cionalidades que debía requerir. Después se han ido detallando cada uno de los módulos

a medida que se abordaba su diseño e implementación, al mismotiempo se iban aña-

diendo funcionalidades no enumeradas al inicio, ocasionando algún que otro retraso en el

cumplimiento del planning inicial.

9

10 CAPÍTULO 2. METODOLOGÍA DE TRABAJO Y ENTORNO DE DISEÑO

2.1.1. Planificación

Seguidamente se presenta la planificación en formato de tabla ya que su desarrollo

ha sido secuencial y no tiene mucho sentido mostrar el diagrama de Gantt. Cada día

corresponde a 4 horas de trabajo, y la documentación se ha idorealizando a medida que

avanzaba el proyecto, dejando para la última fase el agruparla y darle formato.

Plataforma automatizada 173,38 días? 12/01/09 09:00 10/09/09 12:00

Preparación 3,63 días 12/01/09 09:00 15/01/09 16:00

Análisis del software HoneyClient 2 días 12/01/09 09:00 13/01/09 19:00

Gestión de Riesgos 0,5 días 15/01/09 10:00 15/01/09 16:00

Módulo 1 crawling/BD 42 días 10/03/09 09:00 07/05/09 09:00

Análisis 0,5 días 10/03/09 09:00 11/03/09 10:00

Diseño 1 día 11/03/09 10:00 12/03/09 10:00

Adaptación DB 1 día 11/03/09 10:00 12/03/09 10:00

Implementación 2,5 días 12/03/09 15:00 23/03/09 11:00

Test 2 días 23/03/09 11:00 30/03/09 12:00

Validación 1 día 30/03/09 12:00 31/03/09 12:00

Corrección 1 día 01/04/09 09:00 03/04/09 11:00

Documentación 2,5 días 03/04/09 11:00 08/04/09 12:00

Creación Entorno y Máquinas Virtuales 3 días 10/04/09 09:00 21/04/09 12:00

Gestión General de Errores 0,5 días 22/04/09 09:00 23/04/09 10:00

Módulo 2 HoneyClient/BD 18,13 días 25/05/09 09:00 18/06/09 10:00

Análisis 1 día 25/05/09 09:00 27/05/09 11:00

Diseño 1 día 27/05/09 11:00 01/06/09 10:00

Adaptación BD 0,5 días 01/06/09 10:00 02/06/09 11:00

Implementación 1,5 días 02/06/09 11:00 08/06/09 11:00

Test 1 día 08/06/09 11:00 11/06/09 10:00

Validación 1 día 11/06/09 10:00 12/06/09 10:00

Corrección 0,5 días 12/06/09 10:00 15/06/09 11:00

Documentación 1 día 15/06/09 11:00 18/06/09 10:00

Módulo 3 Gestión de Alertas 16 días 18/06/09 10:00 10/07/09 10:00

Análisis 1,5 días 18/06/09 10:00 24/06/09 10:00

Diseño 0 días 24/06/09 10:00 24/06/09 10:00

Adaptación BD 0,5 días 24/06/09 10:00 25/06/09 11:00

Implementación 1,5 días 25/06/09 11:00 01/07/09 11:00

Test 1 día 01/07/09 11:00 06/07/09 10:00

Validación 0 días 06/07/09 10:00 06/07/09 10:00

Corrección 0,5 días 06/07/09 10:00 07/07/09 11:00

Documentación 1 día 07/07/09 11:00 10/07/09 10:00

Módulo 4 Gestión Central 20 días 10/07/09 10:00 07/08/09 10:00

Análisis 0,5 días 10/07/09 10:00 13/07/09 11:00

Diseño 2 días 13/07/09 11:00 20/07/09 12:00

Adaptación BD 0,5 días 21/07/09 09:00 22/07/09 10:00

Implementación 1,5 días 22/07/09 10:00 28/07/09 10:00

Test 1 día 28/07/09 10:00 30/07/09 12:00

Validación 0 días 30/07/09 12:00 30/07/09 12:00

Corrección 1 día 31/07/09 09:00 04/08/09 11:00

Documentación 1 día 04/08/09 11:00 07/08/09 10:00

Módulo 5 Puesta a Punto 14,25 días 07/08/09 10:00 27/08/09 12:00

Análisis. Revisar funcionalidades e interacción entre módulos 0,5 días 07/08/09 10:00 10/08/09 11:00

Implementación mejoras detectadas 1 día 10/08/09 11:00 13/08/09 10:00

Redefinir listas de inclusión exclusión 1 día 13/08/09 10:00 17/08/09 12:00

Test 1 día 18/08/09 09:00 20/08/09 11:00

2.2. ENTORNO DE DISEÑO 11

Validación 0 días 20/08/09 11:00 20/08/09 11:00

Corrección 1 día 20/08/09 11:00 25/08/09 10:00

Documentación 1 día 25/08/09 10:00 27/08/09 12:00

PRUEBAS DE ACEPTACIóN 5 días 27/08/09 12:00 03/09/09 12:00

Finalizar documentación 6 días 04/09/09 12:00 10/09/09 12:00

En la tabla se puede observar la división de las tareas en los módulos que componen

la aplicación. Exceptuando el módulo dePuesta a Punto, el cual sirve para preparar la

plataforma con el fin de que funcione en el entorno de producción, realizando pruebas

sobre los dominios reales y el comportamiento ante contratiempos.

La base de datos se ha ido completando a medida que avanzaban los módulos fun-

cionales, añadiendo los datos necesarios para cada uno de ellos manteniendo siempre el

esquema principal de distribución de los datos.

Es importante señalar que la última fase se alargó algo más delo esperado debido

a contratiempos que no permitían la dedicación deseada y unamala estimación de la

duración de las pruebas. Aunque se ha cumplido de forma bastante satisfactoria. Al ser un

producto que evoluciona con el tiempo, se pretende seguir implementando mejoras en un

futuro, por lo que aun no está finalizado por completo. Únicamente se ha implementado

una base sólida sobre la que elaborar mejoras que es capaz de funcionar tal y como lo

hace la plataforma actual pero de forma mucho más robusta y automatizada.

2.2. Entorno de diseño

En esta sección se describen algunas de las herramientas utilizadas y el entorno de

trabajo sobre el que se ha desarrollo del proyecto.

2.2.1. Python

Lenguaje de programación interpretado, de alto nivel y muy versátil. La versión utili-

zada ha sido la 2.6. En el paquete base ya se incorporan muchosmódulos que aportan infi-

nidad de funcionalidades al lenguaje, permitiendo programar cualquier tipo de aplicación

en pocas lineas. En caso de requerir alguna funcionalidad adicional se puede descargar de

la red un módulo de forma gratuita o programar uno propio.

Al tratarse de un lenguaje interpretado permite explorar deforma cómoda las caracte-

rísticas del lenguaje. Sin embargo, tiene el problema de quehay errores de programación

12 CAPÍTULO 2. METODOLOGÍA DE TRABAJO Y ENTORNO DE DISEÑO

que no se producen hasta que se ejecuta explícitamente la sentencia errónea.

El diseño del producto se ha enmarcada en el paradigma de la orientación a objetos,

y Python proporciona una comodidad más que suficiente para plasmar el diseño de clases

del papel al código, incluso soporta herencia múltiple de manera correcta sin provocar

errores y sin necesidad deInterficiesa diferencia de Java. Además libera memoria auto-

máticamente mediante unos recolectares autónomos de basura que detectan los objetos

que ya no son referenciados en el software.

2.2.2. MySQL

MySQL es un Sistema Gestor de Base de Datos (SGDB) gratuito que se puede des-

cargar directamente desde su página web. Además se encuentra accesible en muchas dis-

tribuciones Linux en el repositorio propio de software.

Proporciona una cómoda instalación y posterior configuración. Se incluyen infinidad

de herramientas que facilitan todo el proceso para iniciar un servidor en cualquier siste-

ma y migrar los datos entre diferentes servidores. Además, su rendimiento es más que

suficiente para la cantidad de datos que se deberán manejar enel proyecto.

MySQL puede utilizar varios motores de almacenaje distintos, en la implementación

se ha utilizadoInnoDBya que permite hacer uso deForeign Keys1, muy necesarias para

asignar una relación fuerte entre identificadores de diferentes entidades o tablas, aportan-

do cohesión a los datos.

2.2.3. Linux

La plataforma debe integrarse lo mejor posible con el sistema operativo. Interactuando

directamente con las herramientas del sistema. Linux es el nombre que recibe el núcleo del

sistema okernel, éste, conjuntamente con el operativo que incorpora muchasherramientas

GNU2 recibe el nombre deGNU/Linux. Existen varias distribuciones de éste núcleo en

las que se implementa conjuntamente con sistema similar aUnix.

Además de por su filosofía abierta y libre, los sistemas GNU/Linux se caracterizan

por permitir un control total al usuario administrador, quepuede configurar y modificar

1def: Permiten establecer relaciones de claves primarias entretablas diferentes.
2def: El proyectoGNU fue iniciado por Richard Stallman con el objetivo de crear unsistema operativo

completamente libre: el sistemaGNU.

2.2. ENTORNO DE DISEÑO 13

cualquier parte del sistema sin infligir ninguna ley.

Permite una configuración sencilla de los servidores más extendidos además de una

ayuda más que notable incorporada en el sistema base por si aparecen dudas durante el

desarrollo o configuración. En la ejecución del proyecto ha sido extremadamente útil para

la instalación de los servidores y software necesario para el desarrollo de la plataforma

gracias también a su repositorio de aplicaciones que agilizan mucho la búsqueda de he-

rramientason-line.

Su sistema delogs, llamadosyslog, permite a las aplicaciones enviar cadenas de texto

que se mostrarán y tratarán del mismo modo que lo haría con cualquier otro servicio del

sistema. Bastará únicamente con modificar una linea del fichero de configuración en la

que se especifica el nombre del archivo delog que se desea crear y algunos parámetros

más.

GNU/Linuxpermite un control total utilizando como interfaz la propiaterminal, desde

la que se puede ejecutar cualquier acción sobre el sistema. Esta característica facilita en

gran medida el acceso remoto al sistema para el desarrollo del proyecto. Además, para la

escritura del código se ha utilizada el editorVIM3, el cual se ejecuta bajo un entorno de

terminal por lo que se ha podido desarrollar el grueso del proyecto de forma remota.

2.2.4. VMware

Software de virtualización que permite crear diferentes máquinas virtuales en un mis-

mo sistema. En la web oficial4 se encuentra todo un abanico de aplicaciones destinados a

la virtualización. Existen tanto versiones gratuitas comode pago y cada una de ellas tiene

sus funciones.

Seguidamente se presenta un listado de algunos de los productos juntamente con las

funcionalidades que permiten:

3web: Página oficial del editorVIM: http://www.vim.org/
4web: Suite VMware - http://www.vmware.com

14 CAPÍTULO 2. METODOLOGÍA DE TRABAJO Y ENTORNO DE DISEÑO

Producto Descripción

VMware Server Permite alojar múltiples máquinas virtuales y garantizar

el acceso a ellas remotamente mediante una autenticación

basada en credenciales (usuario/contraseñoa). Es la herra-

mienta perfecta para centralizar todas las máquinas virtua-

les.

VMware Player Permite ejecutar una máquina virtual previamente creada.

La única restricción es precisamente ésta, no se permi-

ten crear máquinas virtuales utilizandoVMware Player, en

cambio, sí contiene todas las funcionalidades para ejecutar

e interactuar con el escritorio virtual.

VMware Workstation Uno de los productos más completos de VMware, permite

realizar todas las funciones descritas y además el sistema ha

sido optimizado para una ejecución más rápida y eficiente.

Consecuentemente la interacción con el sistema es mucho

más fluida que el resto. Como inconveniente se encuentra el

hecho de que se trata de un software de pago, a diferencia

de los dos primeros.

Para el desarrollo del proyecto se ha utilizadoVMware Servery Qemucomo pro-

veedores de escritorios virtuales. De esta manera, el sistema analizador puede utilizar

multitud de sistemas sin complicaciones. Para poseer un espectro de sistemas víctima lo

más amplio posible, se deberá crear el mayor número de máquinas virtuales con diferentes

sistemas operativos y versiones de navegador y complementos.

2.2.5. Qemu

Qemues otro software de virtualización gratuito. Se puede descargar de su página

oficial5 para múltiples plataformas La razón de utilizar dos software de virtualización

diferentes radica en la problemática de que existe softwaremalicioso capaz de detectar un

entorno de virtualización, en cuyo caso no se ejecutan para no ser detectados.

Al proveer a la plataforma de dos entornos de virtualizacióndiferentes se consigue

proporcionar una alternativa que puede no ser detectada porel software y, consecuente-

mente, éste será detectado de forma habitual.

5web: Qemu - http://www.qemu.org/

2.2. ENTORNO DE DISEÑO 15

2.2.6. Software de Crawling

Existen múltiples herramientas decrawling que realizan la detección de recursos de

un dominio. La plataforma generalmente utiliza un sistema externo para el análisis, pero

también existen scripts concretos para algunos dominios debido a su complejidad.

Se deberá disponer de ambos crawler en el sistema y la plataforma deberá gestionar

todos los resultados de forma homogenia y correctamente. Centralizando los resultados

de ambos y almacenando la información en un único formato para una mayor comodidad

en la consulta y modificación.

Un ejemplo de software destinado al proceso decrawling y que se encuentra dispo-

nible en toda distribución Linux esWget6 y puede conseguirse de su página oficial. Éste

programa permite descargarse todo tipo de ficheros de cualquier Web, incluso tiene la

funcionalidad de ejecutarse en modo recursivo y navegar porla totalidad del portal.

2.2.7. Sistema de Detección - HoneyClient

El sistema de detección de eventos que se utiliza en la actualidad consta de dos partes

diferenciadas: un agente encargado de detectar cualquier evento del sistema de la máquina

virtual y un gestor para controlar todo el proceso e ir enviando las URLs a analizar al

agente.

En base a una lista de URLs facilitada, este software se encarga de navegar por las

direcciones de la lista y analizar el sistema durante el proceso. Además guarda un log con

la información retornada, almacenando también las eventosdetectados asociados a una

dirección concreta.

Estructura

El diagrama que se puede observar en laFigura-2.1muestra la estructura del sistema

de detección.

Se comprende la estructura anidada de la arquitectura necesaria para el funcionamien-

to del sistema. Se requiere un sistema operativo, Linux por ejemplo, con un servidor de

virtualización instalado correctamente para que el analizador pueda utilizarlo.

6web: Página oficial deWget-http://www.gnu.org/software/wget/

16 CAPÍTULO 2. METODOLOGÍA DE TRABAJO Y ENTORNO DE DISEÑO

Servidor
vmware/qemu

MÁQUINA
VIRTUAL

Agente
del

Analizador

Sistema
Linux

Servidor
del

Analizador

Comunicación en XML

Figura 2.1:Estructura del Sistema de Detección bajo entorno Linux

Listas de Inclusión y Exclusión

El agente instalado en la máquina virtual detecta todos los eventos del sistema ge-

nerando una lista de eventos de gran magnitud. Para evitar problemas relacionados con

demasiada densidad de información, se realiza un filtrado deresultados.

Debido al gran número de acciones que se llevan a cabo en un sistema operativo, el

software se abastece de tres listas de inclusión/exclusión: una destinada a los eventos rela-

cionados con procesos, otra con el registro y finalmente la última destinada a los ficheros.

De esta manera se permite especificar qué eventos no se deseannotificar y cuales si, el

reconocimiento de las acciones se basa en el uso de expresiones regulares que pueden ser

de inclusión o exclusión. Se debe tener en cuenta que la listade inclusión tiene preferen-

cia en el proceso de filtrado. Éstas listas son enviadas al cliente cada vez que la máquina

virtual es inicializada, ambas acciones las realiza el servidor.

Funcionamiento

Actualmente el sistema se ejecuta un total de 24 veces al día,es decir, realiza 24 ciclos

diarios. Cuando un cliente facilita un dominio para incorporárlo al sistema de análisis se

le asigna una prioridad para indicar la cantidad de procesosdiarios a realizar:

2.2. ENTORNO DE DISEÑO 17

Prioridad Ciclos diarios

1 24

2 12

3 8

4 6

Cuando finalizan los 24 ciclos diarios, se envía un informe alcliente con los resulta-

dos, indicando si se ha detectado malware en alguno de los dominios y especificando los

ciclos realizados.

Cada ciclo, después del proceso decrawlingse inicia elHoneyClient, el servidor carga

un conjunto deURLs de un fichero y seguidamente inicia la máquina virtual especificada

en la configuración asegurándose que el agente allí instalado responde correctamente. Al

confirmar el estado, el gestor envía las listas de exclusión einclusión.

El gestor se encarga de dividir lasURLs especificadas en bloques de cantidad persona-

lizable, cinco actualmente, y transferirlas al agente. Adicionalmente gestiona la ejecución

de la máquina virtual y la reinicia en caso de detectar anomalías o eventos no filtrados.

Una vez el agente ha sido inicializado se le envía el bloque dedirecciones a analizar,

y éste se encarga de ejecutar las diferentes instancias del navegador y cargar la dirección

correspondiente a cada uno de ellos. El agente detecta todasy cada una de las acciones

que ocurren en el sistema auditado, filtrando mediante las listas de inclusión/exclusión los

eventos y retornando el resultado al servidor.

Mientras, el servidor controla el comportamiento del agente, comprobando su estado

mediante peticionesPing. Cuando el gestor recibe el resultado de un bloque de direccio-

nes se prosigue con el siguiente. Este proceso se repite hasta que se finaliza la lista de

URLs especificada.

El canal de comunicación se establece utilizando la arquitectura cliente/servidor, sien-

do el agente el cliente y servidor el gestor. La comunicaciónse transmite por la red creada

entre la máquina virtual y el servidor, utilizando en todo momentoXML para los mensajes.

Protocolo

El diagrama de laFigura-2.2muestra de forma simplificada la comunicación entre el

agente y el Servidor. Existen más operaciones, pero lo habitual es que se realice esa clase

de comunicación con alguna variación.

18 CAPÍTULO 2. METODOLOGÍA DE TRABAJO Y ENTORNO DE DISEÑO

Agente
del

Analizador

Servidor
del

Analizador

Envío de direcciones Web -

- Recepción y confirmación

Ping -

- Pong

- Eventos detectados

- Resultado de la carga

Figura 2.2:Ejemplo de comunicación entre el Agente y el Servidor

La flecha coloreada en rojo indica un evento de sistema no excluido por las listas de

exclusión o incluido por las de inclusión. Cuando el sistemadetecta un evento de este tipo

significa que ha podido haber una acción maliciosa, y se prosigue a identificar la causa.

El proceso es el siguiente:

1. Se reinicia la máquina virtual a su estado inicial mediante una imágen del disco

previamente creada.

2. Se envían las listas de exclusión/inclusión.

3. Condicional:

a) Si únicamente se analizaba una dirección, se marca como maliciosa y finaliza

el proceso.

b) Si se analizaba un grupo deURLs, se subdivide en dos grupos.

4. Se manda uno de los grupos al Agente para que lo analice

5. Condicional:

a) En caso de detectar algún evento en el sistema, se vuelve al primer paso.

b) Si no se detecta ningún evento, se envía el grupo restante alAgente para que

lo analice y se repite el proceso.

Deficiencias

Desgraciadamente, existen deficiencias en el proceso seguido por este software. Según

el procedimiento descrito, si existe una acción maliciosa,se espera que ésta sea repetida

2.2. ENTORNO DE DISEÑO 19

en cada una de las siguientes iteraciones de carga de la página para poder discernir que

dirección la ha provocado exactamente. Sin embargo, esto noocurre siempre. Existen

multitud de circunstancias por las que el ataque únicamentese realizará una vez, y cuando

se vayan dividiendo las URLs en subgrupos para dar con la causante el evento no se repita,

en consecuencia, el servidor no almacena la información de la infección. Como resultado,

no aparecerá esa acción maliciosa en el log del analizador y pasará desapercibida.

Otro punto negro del sistema es que en alguna ocasión ha dejado de funcionar sin

causa aparente, o incluso rara vez el gestor puede llegar a enviar infinidad de peticiones

Ping sin recibir respuesta alguna. Este último problema provocaque en el momento de

ver los resultados, no estén finalizados, además de impedir la ejecución continua.

2.2.8. Sistema de Antivirus

El software Antivirus utilizado es totalmente independiente al resto de programas. La

función del antivirus es capturar todo el tráfico de la red e iranalizando utilizando trazas y

heurísticas los paquetes enviados y recibidos en busca de virus. En caso de detectar algún

código vírico, se genera una entrada en el fichero delog.

Debido al funcionamiento independiente del software antivirus, será necesario sincro-

nizar las detecciones de código malicioso con el sistema de detección de eventos. Así se

podrán asociar con exactitud los eventos maliciosos detectados por elHoneyClientcon el

código vírico identificado por el antivirus.

20 CAPÍTULO 2. METODOLOGÍA DE TRABAJO Y ENTORNO DE DISEÑO

Capítulo 3

Diseño e Implementación

En este capítulo se describe el diseño e implementación del proyecto. Comentando de

forma sintetizada los procedimientos llevados a cabo. Se obvian algunos detalles irrele-

vantes para la comprensión del proyecto por motivos de confidencialidad.

3.1. Arquitectura General

Para entender mejor la funcionalidad de cada uno de los diferentes módulos y cómo

interactuarán entre ellos, se presenta en laFigura-3.1un diagrama con un esquema que

describe el comportamiento general de la aplicación.

A continuación se definen los pasos enumerados en el diagrama.

1. El gestor recoge los datos iniciales de la base de datos.

2. El objeto de la base de datos retorna varias listas de dominios, una por cliente.

3. El gestor envía todos los dominios al gestor decrawling.

4. El gestor decrawling inicia el proceso decrawlingpara cada uno de ellos de forma

eficiente y controlando cada uno de los procesos. Para ello crea varios nodos a los

que envía la información referente al dominio.

5. El nodo decrawling termina su ejecución y envía el objeto que almacena los resul-

tados al gestor decrawlers.

6. El gestor va recopilando los datos del gestor decrawlershasta que éste termina.

21

22 CAPÍTULO 3. DISEÑO E IMPLEMENTACIÓN

crw1

crw2

crwN

Gestor de
crawling

Gestor de
analizador

analizador

Base de
datos

Gestor
central

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9) (10)

(11)

(12)

Dominio

Dominio
Resultado
crawling

Dominio
Resultado
analizador

Dominio

Resultado
analizador

Resultado
crawling

Dominio

Resultado
crawling

Dominio

Figura 3.1:Esquema de la comunicación entre los diferentes módulos.

7. El gestor almacena los resultados delcrawlerde cada uno de los dominios a medida

que éstos finalizan.

8. El gestor inicia el proceso de análisis. Para ello envía los dominios al gestor del

analizador.

9. El gestor analizador carga un nodo deHoneyClienty le facilita los dominios.

10. El módulo analizador (HoneyClient) lanza el proceso y retorna los dominios termi-

nados a medida que van finalizando su análisis.

11. El gestor del analizador recolecta los resultados de losdominios y los envía al gestor

central.

12. El gestor central almacena los resultados en la base de datos y cuando todos los

dominios terminan se recopila un nuevo ciclo de análisis.

Todo este procedimiento es el que se sigue en cada ciclo del sistema. Cuando final-

mente se completan los 24 ciclos diarios, se envía el informeresumen al cliente.

3.2. BASE DE DATOS 23

3.2. Base de Datos

En este apartado se presentan las características generales de la base de datos diseñada

e implementada para soportar los datos del software.

3.2.1. Análisis de las Funcionalidades

La base de datos necesaria para el desarrollo del proyecto debe cumplir una serie de

requisitos con el fin de proporcionar las funcionalidades requeridas y la escalabilidad pro-

puesta. Se trata del núcleo de la aplicación y dónde quedará constancia de todo lo sucedido

en el proceso de análisis y las alertas enviadas - además delsyslog-. La información debe

estructurarse de forma correcta para evitar consultas excesivamente complejas.

La base de datos debe permitir una cómoda gestión de los datosnecesarios para esta

plataforma. Las relaciones tiene que ser robustas para evitar que datos incoherentes se

queden aislados.

Al tratarse de un producto destinado a trabajar de forma dinámica, con borrados e

inserciones continuas, se deberá minimizar el tamaño de lastablas destinadas a almacenar

la información más volátil. De esta manera se optimiza el tiempo de ejecución de las

sentencias.

Por otra parte todos los datos referentes a clientes, dominios, usuarios, alertas, resul-

tados, filtros personalizados deHoneyClient, configuración decrawler.... es decir, todos

los datos, han de almacenarse coherentemente y de forma relacionada entre si.

La naturaleza de los datos a almacenar sugiere una estructura de árbol, tomando co-

mo raíz el cliente. Éste estará relacionado con todos los dominios que le correspondan,

además tendrá unos filtros de eventos propios y una lista de direcciones de correos elec-

trónicos correspondientes a los destinatarios a los que notificar en caso de detectar alguna

alerta durante el análisis.

Se diferencian dos grandes bloques, en uno se almacena la información referente a

la configuración de la plataforma, dominios, máquinas virtuales... y en el otro se orga-

nizarán los resultados obtenidos para consultarlos posteriormente, este segundo módulo

será mucho mas estático que el primero, ya que estos datos no deben ser modificados, en

principio.

24 CAPÍTULO 3. DISEÑO E IMPLEMENTACIÓN

3.2.2. Diseño

En laFigura-3.2se puede observar el diagrama esquematizado para comprender mejor

la estructura de la base de datos diseñada, aunque faltan elementos y detalles, se entiende

la división por bloques de los datos.

No se ha realizado un esquema más detallado por cuestiones tanto de claridad como

legibilidad al ser un tamaño considerable.

Dominio

Usuario
de Acceso

Usuario
Receptor de Alerta

Log General Ciclo

Log del
Analizador

Log del
Crawler

Cliente

Urls

Urls
Raiz

Credenciales de
acceso

Opciones configurables
del software

Preferencias del
cliente Máquinas Virtuales

Figura 3.2:Diseño esquematizado de la base de datos

De la figura se desprenden algunas de las características deldiseño. Cada cliente podrá

configurar sus propias preferencias del software modificando los parámetros que serán

cargados durante la ejecución. En estas preferencias se incluyen básicamente los filtros a

aplicar a los eventos de registro, procesos y .sistema de ficheros.

Los clientes podrán facilitar además una lista de destinatarios de correo electrónico (o

otros medios en un futuro) a los que enviar las alertas e informes de resultados. Por otra

parte están los usuarios de acceso a la aplicación. Estos se utilizarán como credenciales

en las consultas y deberán asociarse con los datos del cliente al que representan.

Cada cliente sera dueño de tantos dominios como requiera. Permitiendo configurar

para cada uno de ellos las opciones delcrawler (en caso de requerirlas), el módulo de

crawlinga utilizar, la periodicidad de escaneo, puerto, nombre... Ytal y como se observa

en el diagrama, cada uno de ellos estará formado por varios recursos. Algunos de éstos,

los llamados raíces, proporcionan el punto de entrada para analizar el portal, se utilizarán

además en el módulo decrawling para detectar modificaciones significativas en la web e

inicializar el proceso. Además, pueden configurarse portales estáticos sobre los que no se

3.3. GESTOR DE CRAWLING 25

realizarácrawling, únicamente se analizarán los recursos raíz, que este caso serán todos

los que forman el portal. Adicionalmente, si el dominio tiene autenticación, se pueden

especificar las credenciales en la tablaCredenciales de acceso, actualmente se permite

únicamente la autenticaciónBasic, en un futuro se deberá añadir autenticación mediante

formularios.

Como ya se ha comentado anteriormente, el funcionamiento del software es mediante

ciclos. Actualmente se realizan un total de 24 ciclos diarios, uno cada hora. Dependiendo

de la periodicidad del dominio, se analizará: 24, 12, 8 o 6 veces. Para poder relacionar

los ciclos con los resultados de cada proceso se ha creado la relación que se observa en el

diagrama entre la entidadLog Generaly Ciclo.

Nótese que existen varias entidades destinadas a almacenarinformación de resultados.

En elLog Generalse almacenarán las marcas de tiempo que delimitarán la duración del

crawler, juntamente con el analizador. En elLog del Crawlerel tiempo de inicio y fin del

proceso decrawling. Lo mismo ocurre en el gestor del analizador, donde únicamente se

almacenan las marcas de tiempo de dicho proceso junto con losresultados del análisis.

Finalmente en la tablaCiclo se establecen los tiempos de inicio y fin de todo un ciclo en

el que se analizan multitud de dominios.

Mantener un control de tiempo tan detallado permite mejorarel rendimiento, optimi-

zando el orden de los dominios en base a la duración estimada del proceso, tomando como

muestra los resultados previos.

De manera independiente al resto de la información se almacena también en la base

de datos la configuración de las máquinas virtuales y las opciones del software. Éstas con-

figuraciones podrán modificarse cuando sea necesario, añadiendo más máquinas virtuales

para ampliar el espectro de infección.

Todos los datos se relacionan mediante identificadores numéricos que se generan au-

tomáticamente. Cada dominio y cliente mantienen así una relación inequívoca con sus

componentes y resultados.

3.3. Gestor de Crawling

En este apartado se describe el procedimiento llevado a cabopara el diseño y posterior

implementación del módulo destinado a la gestión de los procesos decrawling.

26 CAPÍTULO 3. DISEÑO E IMPLEMENTACIÓN

3.3.1. Análisis de las Funcionalidades

Este módulo debe permitir lanzar varias instancias decrawling, gestionándolas de

forma autónoma y transfiriendo los resultados al gestor principal.

Gestor Principal

Gestor de
Crawlers

Crawler1 Crawler2 CrawlerN

Figura 3.3:Diseño esquematizado del gestor de crawlers

Actualmente, la gran mayoría de dominios utiliza una aplicación externa decrawling

cuyos resultados deberán gestionarse minuciosamente desde la plataforma. Adicional-

mente, existen dominios que requieren funcionalidades específicas y cuyoscrawlingsse

procesan utilizando pequeños scripts creados específicamente para este fin.

Debido a estas funcionalidades la aplicación deberá ser capaz de gestionar ambos tipos

decrawlersy permitir añadir tantos como sean necesarios en un futuro. Tanto en forma

de módulo Python como mediante pequeños scripts individuales para cada dominio.

Los resultados retornados deberán organizarse de forma correcta y permitir una con-

sulta rápida y precisa de los mismos. En laFigura-3.3se observa un diagrama esquema-

tizado de la arquitectura del gestor decrawlers.

3.3.2. Diseño

Para permitir una gestión independiente de los diferentes componentes del proceso

de crawling como son el gestor y cada una de las instancias que se ejecutande forma

concurrente, se ha optado por la utilización deThreads1 para cada uno de ellos.

Con el fin de optimizar el tiempo de ejecución se ha diseñado unpequeño algoritmo

que, en base a los último diez tiempos de duración del crawling, permite una ejecución

continua y los dominios más grandes nunca llegan a colapsar la cola de ejecución.

1def: Traducido como hilo de ejecución, permite a un mismo proceso realizar múltiples tareas concu-
rrentemente y mantener un control preciso sobre cada una de ellas.

3.3. GESTOR DE CRAWLING 27

Principalmente se trata de ordenar de mayor a menor losN dominios según su tiempo

de crawling. Seguidamente se calcula la media de todos los tiempos. Se añadenN-4domi-

nios con una duración más larga y las4 posiciones restantes se eligen del otro extremo de

la cola, con lo que su duración es la mínima. Cuando uncrawling finaliza se comprueba

si la duración ha sido mayor que el tiempo medio, en ese caso seescoge el dominio del

inicio de la lista - mayor duración -, en caso contrario el delfinal - menor duración - y así

para cada proceso decrawlingfinalizado.

Diagrama

En el diagrama expuesto en laFigura-3.4 se muestran únicamente los objetos que

afectan de forma directa al gestor de crawlers y su gestión. Se ha marcado en rojo el

gestor principal y en amarillo el de crawlers. Se observa también la arquitectura en árbol

ya comentada.

Para permitir una compatibilidad total con las futuras ampliaciones se han desarrolla-

do clases abstractas que facilitarán una integración más cómoda y completa. En estas cla-

ses se declaran los métodos que posteriormente deberían serdefinidos en dichos módulos.

De lo contrario se lanzará una excepción y la ampliación no funcionará correctamente.

En el gráfico también se ha hecho referencia al uso deThreads, gracias a la librería

utilizada que proporciona el propio núcleo de Python,threading.Thread. Se apreció tam-

bién el uso de herencias para optimizar el proceso de implementación, minimizando el

número de lineas programadas al reaprovechar el código.

Resultados de Crawler

El gestor decrawling únicamente recibirá un tipo de objetos, que serán los resulta-

dos delcrawler. Independientemente del módulo utilizado para el proceso,el gestor debe

recibir la información estructurada siguiendo una pauta para poder tratarla de forma ge-

nérica.

Se ha diseñado un objeto para almacenar los resultados, de manera que será indepen-

diente delcrawler utilizado. Dicho objeto puede observarse de forma simplificada en la

Figura-3.4, únicamente se muestran los métodos más utilizados.

Los datos almacenados tienen un formato de array con un mínimo de tres posiciones,

donde se almacena:

28 CAPÍTULO 3. DISEÑO E IMPLEMENTACIÓN

Domain

+static

+priority

+name

+port

+size

+get_roots()

+get_urls()

+get_crawler_results()

+get_size()

+update()

+is_static()

+get_credentials()

+get_protocol()

+get_analizer_results()

CrawlerSoftware

-parse()

-check_path()

-conf()

Crawler_Manager

+add(domain)

+get_done()

+get_active()

+get_todo()

Crawler

+load_default_options()

+run()

+get_results()

+send_signal()

+terminate()

+check_conn()

+del_cache()

+set_proxy(proxy)

+del_proxy()

Manager

+domains: listDomain

+clients: listClient

db_mysql

db

+log_crawler(domain)

+get_domains()

+get_clients()

+log_analizer()

+update_domain()

Client

+get_id()

+get_name()

Log

+enableDebug()

+disableDebug()

+msg_error()

+msg_warning()

+msg_debug()

Log

Log

Log

Crawler Results

+get_times()

+get_code()

+filter_results(idx,index)

+used_cache()

+add_patern(patternName,reExp,idx)

+get(patternName)

threading.Thread

Proxy

+name

+ip

+port

+get_id()

+get_name()

CrawlerScripts

+scripts_path

+check_path()

Figura 3.4:Diseño de clases del gestor de crawlers

3.3. GESTOR DE CRAWLING 29

[longitud , recurso , <, opcionales >]

La longitud del recurso se indica en primer lugar, seguido dela URL o dirección. Fi-

nalmente se facilitan los datos opcionales que pueda proporcionar el sistema decrawling

y que pueden utilizarse, por ejemplo, para filtrar los resultados.

A continuación se presenta un ejemplo de contenido para estos campos:

[230 , ’http://www.dominio.com/recurso1.html’ , 200 , ’new’]

[340 , ’http://www.dominio.com/recurso2.html’ , 300 , ’error’]

[279 , ’http://www.dominio.com/recurso2.html’ , 300 , ’no-modified’]

Seguidamente se describen los métodos presentados en el esquema:

get_times(): Retorna una lista con las marcas de tiempo de inicio y fin del proceso.

add_pattern(patternName,regExp,idx=0): Añade un patrón de clasificación de

los resultados. Para ello se especifica en los parámetros el nombre del patrón, la

expresión regular a cumplir y la posición delarray que se evaluará.

Una muestra de uso destinada al filtrado de los resultados expuestos en el ejemplo

presentado sería:

add_pattern(’new’,’^new$’, 3)

add_pattern(’errors’,’^error$’,3)

add_pattern(’untouched’,’^no-modified$’)

En este caso se han creado tres patrones de filtrado. Para obtenerlos bastará con

llamar al siguiente método.

get(patternName): Este método retorna los resultados que sean acordes con el pa-

trón especificado. Siguiendo con el ejemplo propuesto, en este caso existirán los

siguientes:

• ’new’ - nuevos recursos.

• ’errors’ - recursos con errores de carga: 404 (Not Found), 403 (Forbidden) ...

• ’untouched’- recursos que no han cambiado desde la última ejecución del

crawler.

get_code(): Retorna el código con el que ha finalizado la ejecución delcrawler, 0

en caso de éxito y negativo en caso contrario.

30 CAPÍTULO 3. DISEÑO E IMPLEMENTACIÓN

filter_results(regExp,index=0): Retorna los resultados filtrados mediante una ex-

presión regular facilitada en los parámetros. Permite realizar búsquedas sin necesi-

dad de crear un patrón para ello.

cache_used(): DevuelveTruesi el proceso decrawling se ha realizado utilizando

cache yFalseen caso contrario.

Este diseño permite mucha flexibilidad de uso, el funcionamiento del filtrado de re-

sultados puede ser configurado de cualquier manera y por lo tanto facilitará la integración

con todo tipo de módulos y software decrawling futuro.

3.3.3. Implementación

La implementación del diseño ha sido finalizada con éxito utilizando código Python.

Para ejecución de binarios externos se ha utilizado el módulo subprocess2, el cual es

proporcionado por el propio núcleo del paquete del lenguaje.

Como curiosidad a destacar, el módulosubprocessno permite esperas temporales, es

decir, ejecutar un binario y esperar un máximo de N segundos,para ello se ha tenido que

modificar dicho módulo añadiendo el parámetrotimeoutal métodocall. Esto es necesario

para evitar que los scripts de crawling no se queden ejecutándose de forma indefinida. Las

modificaciones realizadas permiten la ejecución de un código como el siguiente:

try:

subprocess.call([’cmd’,’args’],timeout=N)

except:

Acciones a realizar si el proceso se retrasa

En el código expuesto,N corresponde a los segundos que se desean esperar como

máximo. Y el código contenido en el bloqueexceptse ejecutará únicamente cuando la

llamada al subproceso necesite más tiempo del especificado en el parámetrotimeout.

3.4. Gestor de HoneyClient

En este apartado se describe el procedimiento llevado a cabopara el diseño y posterior

implementación del módulo destinado a la gestión de HoneyClients.

2def: Módulo de Python que brinda varias funcionalidades para laejecución de binarios externos.

3.4. GESTOR DE HONEYCLIENT 31

3.4.1. Análisis de las Funcionalidades

Las funcionalidades que debe realizar este módulo son muy variadas. En cuanto a la

ejecución del softwareHoneyClient, se deberá mantener al detalle la comunicación entre

el servidor y el cliente. Detectando cualquier posible error de dicho software y actuando

en consecuencia.

Los eventos se deberán detectar en tiempo de ejecución para mantener un sistema de

alertas más preciso y eficaz. Se deberá sincronizar la ejecución con el proceso de Antivirus

para saber queURLs se están visitando y conocer así las que intentan acceder a código

vírico. Discriminando en mayor medida estas alertas para nodesbordar al que recibe los

avisos.

Todo este proceso debe hacerse de forma automática sin ningún tipo de intervención

humana.

3.4.2. Diseño

Este módulo ha sido el más laborioso de diseñar y probar. Debido a la complejidad de

controlar de forma precisa la ejecución del software de análisis con el fin de evitar posibles

interrupciones del servicio. Al tratarse de un proceso externo, el gestor únicamente lo

lanza y controla su comportamiento.

Para poder llevar un control minucioso sobre la ejecución del analizador, se ha dise-

ñado un sistema desniffingde manera que se captura todo el tráfico entre el cliente y el

servidor. Analizándolo en tiempo real y almacenando los datos incluso antes de que la

ejecución termine, a medida que van apareciendo.

Se han diseñado varios objetos que funcionan mediante eventos y uno de ellos es

precisamente elsniffer. Éste objeto es unsniffer genérico que permite aplicar diferentes

filtros y adjuntar otro objeto en él. Cuando un paquete es capturado se llama al méto-

do updatedel objeto adjuntado, en este casoAnalizer Sniffer. Éste servirá para procesar

los datos y transformarlos a objetosXML. Del mismo modo,Analizer Sniffermantiene

objetos asociados a los que enviará los datos una vez procesados, dependiendo de si el

destinatario es el cliente o el servidor se llamará aupdate_cliento update_server, per-

mitiendo un mejor control del protocolo utilizado. El mismosistema se ha utilizado para

gestionar la información proveniente del Antivirus, el cual notifica mediante el método

notifyal updatedel objeto asociado cuando se detecta un virus circulando por la red.

32 CAPÍTULO 3. DISEÑO E IMPLEMENTACIÓN

Se ha decidido independizar la gestión del proceso externo,Analizer Api, de la in-

terpretación del protocolo,Analizer Protocol. De esta manera se gana comodidad al im-

plementar y desarrollar modificaciones o correcciones en lagestión del protocolo y/o

ejecución. Al tratarse de un software externo, es probable que en un futuro su protocolo

varíe, con este diseño se deberá modificar únicamente uno de los objetos.

Diagrama

En la Figura-3.5se puede observar el diagrama de clases diseñado para el gestor y

sus componentes, en rasgos generales es similar al gestor decrawling, con sus nodos

analizadores y el gestor. No se muestran los objetos ni métodos necesarios para la gestión

de alertas, se ha preferido dedicar una sección entera a estesubmódulo por cuestiones de

legibilidad y claridad del diagrama. Por el mismo motivo, sehan coloreado de color verde

los objetos y clases que heredan dethreading.Thready eliminado los métodos que ya han

aparecido en figuras anteriores, de esta manera se presenta el diagrama de forma mucho

más clara e intuitiva.

Las relaciones que se observan en lineas discontinuas corresponden a la comunica-

ción basada en eventos ya comentada, nótese que únicamente aparecen en funciones tipo

update/notify.

Resultados del Analizador

Para cada dominio se almacenan los resultados de cada una de sus URLs, de esta

manera se consigue poder reanudar la ejecución en caso de error del software o sistema.

Bastará con reiniciar la ejecución y analizar únicamente las URLspara las que no existe

resultado aun.

Recordando el algoritmo utilizado por el software cuando sedetectan acciones ma-

liciosas, es posible que aparezcanfalsos positivoscuando una acción no se repite en los

siguientes análisis. Gracias a la utilización del sniffer se podrá interceptar dicho evento.

Para diferenciar los posibles falsos positivos del malwareconfirmado se ha creado el

métodois_confirmed_malware, al que se puede preguntar si unaURL es maliciosa o no.

Ésta diferenciación deberá tenerse en cuenta también en el proceso de envío de alertas.

El objeto contenedor de estos resultados también indica cuando ha finalizado el aná-

lisis de un dominio. La razón es que el software aun no ha cesado su ejecución cuando el

3.4. GESTOR DE HONEYCLIENT 33

Sniffer

+notify()

Analizer Sniffer

+update()

+notify()

+get_results()

+process_xml()

Analizer Manager

+get_results()

+add_domain(domain)

+terminate()

+add_vmachine(vmachine)

+use_vmachine(vmachine)

+is_empty()

+get_done()

client

threading.Thread
Log

Manager

Resultados Analizador

+add_result(XMLElement)

+is_confirmed_malware(url)

+is_done()

+get_all()

Analizer Api

+update(data)

+send_signal(signal)

+is_done()

+get_exit_code()

+get_running()

Analizer Protocol

+decode()

+get_active_urls()

+update_server(data)

+update_client(data)

VMachine

+use()

+free()

+get_port()

+get_path()

+get_addr()

AV Guard

+attach(obj)

+detach(obj)

+notify()

Log

Domain

+size

+get_analizer_results()

+get_abs_urls()

db_mysql

db

Figura 3.5:Diseño del gestor de HoneyClients

34 CAPÍTULO 3. DISEÑO E IMPLEMENTACIÓN

dominio ha finalizado, a diferencia delcrawlingen el que si lo hacía.

A continuación se definen los métodos expuestos:

add_result(XMLElement): Añade a los resultados el elementoXML facilitado.

is_confirmed_malware(url): Retorna True si laURL en cuestión ha sido la única

analizada cuando se ha producido el evento del sistema.

is_done(): RetornaTruesi los resultados ya están completos yFalseen caso con-

trario.

get_all(): Retorna todos los resultados almacenados en el objeto comoun hashde

listas, donde cadaURLfinalizada corresponde a una clave.

3.4.3. Implementación

La implementación se ha finalizado exitosamente. Para interpretar correctamente el

protocolo se ha utilizado un módulo llamadoxml.etree.ElementTree, el cual permite la

construcción de objetosXML, proporcionando comodidad para tratar y consultar la infor-

mación.

Éste es proporcionado por el propio núcleo del sistema y permite una cómoda con-

sulta de los datos mediante métodos intuitivos y sencillos de utilizar. El objetoAnalizer

Snifferse encarga de ensamblar los fragmentos recolectados por elsniffery construir un

objetoXML utilizando la librería. Finalmente se envían los datos alAnalizer Protocolpara

interpretarlos.

Para la función desnifferse ha utilizado el módulopcapde Python, éste no era facili-

tado por el propio núcleo del lenguaje y se ha descargado del paquetepython-libpcapde

Debian3.

En un inicio el software parecía permanecer a la espera hastaque aparecía un nuevo

paquete, pausando así toda la ejecución del sistema. La solución fue llamar al siguiente

método:

pcapObject.setnonblock(1)

3def: Distribución de Linux, su web es: www.debian.com

3.5. ALERTAS 35

Esta opción permite seguir ejecutando la aplicación aunqueno lleguen paquetes ya

que deshabilita el bloqueo.

Otra de las deficiencias detectadas consistía en el envío infinito de peticionesPingdel

servidor al cliente sin ser respondidas. Este caso lo detecta directamente el objetoAnalizer

Api, mediante un sistema de control de los tiempos de respuesta entre cliente y servidor,

acto seguido reinicia el proceso facilitando únicamente las URLs que aun no han sido

analizadas, optimizando así el tiempo de ejecución.

3.5. Alertas

El sistema de alertas está muy ligado al gestor deHoneyClients, aunque al ser una

funcionalidad diferente se comenta en una sección a parte.

3.5.1. Análisis de las Funcionalidades

El objetivo de las alerta es permitir conocer al cliente y al administrador del siste-

ma cualquier tipo de acciones maliciosas detectadas en el portal lo antes posible y sin

intermediarios.

Debido al procedimiento seguido por el software a la hora de concretar laURL au-

tora de las acciones maliciosas, se deberá diferenciar entre los resultados que puedan ser

Falsos Positivos, acciones detectadas cuando se analizan multitud de recursos, y los que

realmente puedan serPosible Malware, acciones detectadas cuando únicamente se analiza

unaURL.

Las alertas deberán enviarse a los destinatarios, éstos dependerán del dominio al que

pertenezca laURL que genere la alerta.

3.5.2. Diseño

El resultado ha sido un diseño modular, en el que hay un gestorde alertas del que

heredaAnalizer Protocoly permite la funcionalidad de envío de correos electrónicos.

Cuando se detecta un evento en el Analizador, éste rápidamente genera una instancia de

alerta. éstas instancias son nodos independientes, los cuales esperan un tiempo prudencial,

y envían la alerta.

36 CAPÍTULO 3. DISEÑO E IMPLEMENTACIÓN

Cada nodo espera un tiempo prudencial para reconocer cuandose trata de eventos

que posiblemente seránFalso Positivoo bienPosible Malware. Por la naturaleza del pro-

ceso del software utilizado, puede ocurrir que las accionesmaliciosas se lleven a cabo

únicamente al analizar múltiplesURLs y no posteriormente al concretar la causante.

Cuando se genera un evento en múltiplesURLs, suponiendo 5, se generan tantas aler-

tas como direcciones se estén analizando, 5 alertas en este caso. Cuando el software detec-

ta eventos en el sistema, divide los recursos analizados en dos grupos y repite el proceso

para cada uno de ellos. En caso de no aparecer ningún evento demalwarecon el primer

grupo. Las 5 alertas se mantienen aun a la espera. Seguidamente se procesa el siguiente

grupo. Si en este caso sí se detectamalware, se generan tantas alertas comoURLs tenga

el grupo y el gestor elimina las 5 anteriores. Si no se hubieradetectadomalwareen este

último análisis, las 5 alertas seguirían activas y se enviarían al destinatario comoPosible

Falso Positivo. Siguiendo con el procedimiento, cuando finalmente se registraran eventos

en una únicaURL, se eliminarían todas alertas anteriores y se generaría un único nodo,

en este caso se trataría de unPosible Malware.

Diagrama

threading.Thread

Domain

+get_receivers()

Mail Agent

+set_subject()

+set_data()

+set_dst_addr(address)

+set_dst_name(address)

Analizer Protocol

+decode()

+get_active_urls()

+update_server(data)

+update_client(data)

Alert

+alert_malware()

+alert_resume()

+update_senders()

Send Alert

+get_url()

+abort()

Receivers

+get_mail()

+get_alert_type()

+add_sent_alert(alert)

+get_alerts()

Manager

+domains: listDomain

+clients: listClient

Figura 3.6:Diseño del sistema de alertas

En laFigura-3.6se puede observar el diagrama de clases del diseño propuestoe im-

plementado. Como en el resto de éstos se ha marcado de color verde la herencia dethrea-

ding.Thread.

3.6. GESTOR GENERAL 37

El gestor principal mantiene una lista de todos los receptores de la base de datos y los

distribuye por los dominios que se deben analizar. De esta manera cada dominio mantiene

una lista con los receptores que tiene asignados para las alertas generadas y facilita la

consulta de la información necesaria para el envío de correos.

Adicionalmente, cada receptor mantiene una lista con las alertas que le han sido en-

viadas, el gestor principal se encarga de ir almacenando estos datos en la base de datos

automáticamente a medida que avanza la ejecución y se ejecutan las iteraciones del bucle

principal.

3.5.3. Implementación

La implementación ha finalizado correctamente y se ha respetado el diseño expuesto.

Para el envío de correos se ha utilizado el módulosmtplib4. incluido en el propio núcleo

del sistema Python. Para que el lector se haga una idea de la comodidad que ofrecen

los módulos al interactuar con servicios comunes, seguidamente se presenta una porción

de código que permite enviar un correo electrónico utilizando una comunicación cifrada

medianteTLS5.

s = smtplib.SMTP(server_ip,port)

s.starttls()

s.login(user,password)

s.sendmail(mail_orig,mail_dest,data)

s.close()

Tan simple como eso.

3.6. Gestor General

En esta sección se describe el proceso llevado a cabo para el diseño del gestor general

de la aplicación.

4def: Módulo de Python que facilita la interacción con los servidores de envío de correo electrónico.
5def: Sus siglas provienen del inglésTransport Layer Securityque significa Seguridad de la Capa de

Transporte y se trata de un protocolo criptográfico que proporciona comunicaciones seguras por una red.

38 CAPÍTULO 3. DISEÑO E IMPLEMENTACIÓN

3.6.1. Análisis de las Funcionalidades

El gestor principal deberá asegurarse que la ejecución transcurre con toda normalidad.

Inicializando en cada ciclo los datos de todas las partes. Con el fin de distribuir correcta-

mente los dominios por el conjunto de máquinas virtuales utilizables, se deberá diseñar

un algoritmo que realice dicha distribución correctamenteantes de comenzar la ejecución

de los ciclos.

El funcionamiento básico del sistema se basa en la realización de 24 ciclos diarios,

ejecutándose cada uno de ellos en una máquina virtual específica. Y eliminando laca-

chede algunos dominios al azar en cada uno de estos ciclos. Toda esta gestión deberá

realizarse en este módulo.

Actualmente se envía al cliente un informe diario con el resultado del análisis, éste

informe deberá generarse también automáticamente cuando finalicen los ciclos diarios.

Detallando errores de conexión y/o qué acciones maliciosasse han llevado a cabo en el

sistema durante el análisis.

3.6.2. Diseño

Para mantener un control exacto del proceso que se lleva a cabo en cada instante se ha

diseñado una máquina de estados con un total de 5.

Inicio Crawling : Se inicializan todas las variables. Si se trata del primer ciclo se

calcula la distribución de dominios entre las máquinas virtuales. Seguidamente se

cargan los dominios a analizar y se ordenan. Finalmente arranca el proceso decra-

wling.

Actualizar Crawling : Se actualiza el estado del gestor decrawlersy se espera a

que finalicen. Almacenando los resultados de cada dominio a medida que se com-

pleta el proceso.

Inicio Analizador : Se arranca el analizador, inicializando las variables necesarias

para el control del mismo: máquina virtual,sniffer, analizer_api...

Actualizar Analizador : Se actualizan los datos del gestor del analizador, cono-

ciendo los recursos que se procesan en cada instante, los dominios que han ido

finalizando, el estado en el que lo han hecho...

3.6. GESTOR GENERAL 39

Report: Si se han realizado todos los ciclos se recopilan los datos almacenados y

se genera el informe que se enviará a los destinatarios, cliente. En caso contrario se

sigue con el siguiente ciclo.

Además de estos estados perfectamente diferenciados, en cada iteración se actualiza la

información referente a las alertas. El núcleo de la aplicación también funciona con unth-

read independiente, de esta manera se permite utilizarlo desde el intérprete cómodamente

ya que no realiza una función bloqueante. Se permite así arrancar toda la plataforma y

realizar llamadas en tiempo real a cada uno de los objetos delsistema, empezando por el

gestor general.

Diagrama

En laFigura-3.7se muestra el diagrama del diseño del gestor principal, en elque se

engloban los demás bloques descritos anteriormente. En este diagrama únicamente se han

mostrado algunas de las clases que componen la aplicación por cuestiones de espacio y

legibilidad.

Se han marcado con recuadros los objetos pertenecientes a cada uno de los grandes

gestores,crawlingy analizador. También se han mostrado los métodos creados enel ges-

tor principal para una consulta del estado en tiempo real.

Algoritmo de distribución

El algoritmo de distribución sigue los pasos siguientes:

1. Se calcula el total de Máquinas Virtuales disponibles.

2. Se calcula las veces que se ejecutara el conjunto de máquinas virtuales durante los

24 ciclos, en caso de no ser exacto se adapta añadiendo al finalla máquina virtual

del inicio, por ejemplo.

3. Para cada prioridad:

a) Se calcula el total de ciclos que deberán realizarse.

b) Se calcula las veces que aparecerá en cada ciclo de máquinasvirtuales, en

caso de resultar un valor decimal se calcula también el residuo.

40 CAPÍTULO 3. DISEÑO E IMPLEMENTACIÓN

Manager

+get_current_cicle()

+get_crawler_manager()

+get_analizer_manager()

db

Analizer Manager

+get_results()

+add_domain(domain)

+terminate()

+add_vmachine(vmachine)

+use_vmachine(vmachine)

+is_empty()

+get_done()

Crawlers Manager

+add(domain)

+get_done()

+get_active()

+get_todo()

Domain

+static

+priority

+name

+port

+size

+get_crawler_results()

+get_analizer_results()

+get_receivers()

Crawler Results

+get_times()

+get_code()

+filter_results(idx,index)

+used_cache()

+add_patern(patternName,reExp,idx)

+get(patternName)

Receivers

+get_mail()

+get_alert_type()

+add_sent_alerts(alert)

+get_alerts()

AV Guard

+attach(obj)

+detach(obj)

+notify()

Analizer Api

+update(data)

+send_signal(signal)

+is_done()

+get_exit_code()

+get_running()

Analizer Protocol

+decode()

+get_active_urls()

+update_server(data)

+update_client(data)

Alert

+alert_malware()

+alert_resume()

+update_senders()

db_mysql

Sniffer

+notify()

Analizer Sniffer

+update()

+notify()

+get_results()

+process_xml()

CrawlerSoftware

-parse()

-check_path()

-conf()

CrawlerScripts

+scripts_path

+check_path()

Proxy

+name

+ip

+port

+get_name()

Analizer Results

+add_result(XMLElement)

+is_confirmed_malware(url)

+is_done()

+get_all()

Figura 3.7:Diagrama general de la aplicación(simplificado)

3.6. GESTOR GENERAL 41

c) Se distribuye de forma uniforme entre los ciclos de las máquinas virtuales

tantas veces como se haya calculado.

d) En caso de haber un residuo, éste se distribuye por cualquier ciclo que no esté

ocupado por esta prioridad, tomando preferencia aquellos que contengan una

máquina virtual aun no ha asignada a la prioridad.

Se debe tener en cuenta que no se asignarán las prioridades deforma consecutiva, ya

que un buen servicio de vigilancia debe hacerse distribuidoen el tiempo, o de lo contrario

se agotan los análisis en pocas horas y el dominio se mantieneuna importante parte del

día vulnerable a ataques y sin revisar.

A continuación se muestra una distribución retornada por este algoritmo:

TotalCiclos = 24

MaquinasVirtuales = [’A’, ’B’, ’C’, ’D’ ’E’, ’A’]

prioridad: 1: 6 veces por cada grupo de MaquinasVirtuales

prioridad: 2: 3 veces por cada grupo de MaquinasVirtuales

prioridad: 3: 2 veces por cada grupo de MaquinasVirtuales

prioridad: 4: 1 vez por cada grupo de MaquinasVirtuales

Ciclo: Prioridades de los dominios a analizar

’0’: [1, 2, 3, 4],

’1’: [1],

’2’: [1, 2, 4],

’3’: [1, 3],

’4’: [1, 2],

’5’: [1],

’6’: [1],

’7’: [1, 2, 3, 4],

’8’: [1],

’9’: [1, 2],

’10’: [1, 3],

’11’: [1, 2],

’12’: [1, 2],

’13’: [1],

’14’: [1, 2, 3, 4],

’15’: [1],

’16’: [1, 2],

’17’: [1, 3],

’18’: [1, 3]

’19’: [1, 2],

’20’: [1],

’21’: [1, 2, 3, 4],

42 CAPÍTULO 3. DISEÑO E IMPLEMENTACIÓN

’22’: [1],

’23’: [1, 2, 4],

Prioridades: MaquinasVirtuales sobre las que se ejecuta

’2’: [’A’, ’C’, ’E’, ’B’, ’D’, ’A’, ’C’, ’E’, ’A’, ’D’, ’A’, ’B’]

’3’: [’A’, ’D’, ’B’, ’E’, ’C’, ’A’, ’D’, ’A’]

’4’: [’A’, ’B’, ’C’, ’D’, ’E’, ’A’]}

La distribución expuesta combina correctamente todas las prioridades con el conjunto

de máquinas virtuales disponibles. Además, la distribución en el total de ciclos también ha

resultado bien, el espacio que existe entre ellos corresponde al adecuado para la prioridad

(p.e.prioridad 3 no se ejecuta 8 veces seguidas, si no que se distribuye entre el total).

3.6.3. Implementación

La implementación se ha realizado correctamente, respetando en todo momento el di-

seño expuesto y se han añadido las funcionalidades requeridas. Los métodos de consulta

de los distintos gestores y el ciclo actual permite navegar por la totalidad de los datos. Bas-

tará con ejecutar el interprete de Python una vez inicializada la plataforma para controlar

en todo momento el estado de ésta.

Capítulo 4

Pruebas y resultados

En este capítulo se describe el conjunto de pruebas realizadas sobre la plataforma y

sus resultados.

4.1. Entorno de verificación

Para el desarrollo de las pruebas,Internet Security Auditors, S.L. ha facilitado un

entorno con las características siguientes:

Sistema Operativo Linux con kernel 2.6.

Servidor MySQL instalado y funcionando.

Acceso a la red.

Acceso remoto al entorno.

Entorno de honeyclient instalado.

Máquinas virtuales accesibles.

Software de crawling instalado .

Cuenta de correo para utilizarla como origen en las alertas.

43

44 CAPÍTULO 4. PRUEBAS Y RESULTADOS

4.2. Descripción de las pruebas

Debido al considerable tamaño de la plataforma, las pruebasse han ido realizando en

cada uno de los módulos por separado y finalmente al unirlos sehan hecho algunas más

para comprobar el funcionamiento del conjunto.

4.2.1. Pruebas de Gestor de Crawling

Se han realizado múltiples pruebas con el fin de asegurarse que el gestor decrawling

era robusto y no dejaba de funcionar ante cualquier adversidad. Al mismo tiempo que se

ha comprobado la gestión correcta de todos los datos y la transmisión, al gestor principal,

de los resultados.

Prueba: Se han añadido varios scripts decrawling incorrectos para comprobar el

correcto funcionamiento del submódulo destinado a gestionar los scripts.

Resultado: Como resultado, se muestra un mensaje por el sistema delogs de la

aplicación y devuelve un número negativo como código de finalización. Conse-

cuentemente, queda constancia en la base de datos y en el registro del sistema, tal y

como se muestra a continuación.

Sep 1 17:03:42 host [warning]: (script) Could not find script at:

/scripts/script_www.dom1.com. Aborting!

Prueba: Se han añadido dominios inexistentes o con problemas de conexión para

comprobar el resultado devuelto por el gestor y el módulo decrawling.

Resultado:El resultado ha sido satisfactorio ya que permite diferenciar entre erro-

res de resolución de nombres y errores de conexión. Devolviendo en ambos casos

un valor negativo de distinta magnitud.

En el siguiente ejemplo de sentenciaslog se observa el mensaje descriptivo del

error que ha ocurrido y, en caso de ser un valor sin descripción se muestra el valor

de retorno.

4.2. DESCRIPCIÓN DE LAS PRUEBAS 45

Sep 9 20:43:13 host [warning]: (crawler) could not connect to

domain "www.dominio1.com" at port 80

Sep 9 22:00:49 host [warning]: (crawler) could not resolve

domain "www.dominio2.com"

Sep 9 22:01:40 host [warning]: (crawler) error on domain

"www.dominio3.com" returned: -9

Prueba: Se ha lanzado la señalkill 1 desde el sistema operativo a los procesos de

crawling lanzados desde el gestor con el fin de que este hecho fuera almacenado en

la base de datos y en el log del sistema.

Resultado:Como resultado, el módulo de crawler devuelve el valor de la señal que

se le ha enviado desde el sistema operativo. La información se almacena en la base

de datos y en loslogsdel sistema.

Sep 9 23:18:32 host [warning]: (crawler) error on domain

"www.dominio1.com" returned: -9

Sep 9 23:18:33 host [debug]: (db_mysql) logging crawler:

www.dominio1.com

Prueba: Se ha comprobado que el uso delproxyse realice correctamente, añadien-

do uno y especificando su utilización en el gestor de crawlers.

Resultado:Como resultado el gestor indica a cada nodo decrawlingque lanza que

debe aplicar elproxyen la conexión. És el nodo el que se encarga de configurarlo

en elscript o software externo decrawling.

Prueba: Se ha comprobado que se utilicen correctamente las credenciales nece-

sarias para el acceso al dominio. Para ello se han añadido varios que requerían

autenticaciónBasic.

1def: El comandokill sirve para matar un proceso, al que se le envía la señal especificada por el valor
valor del parámetro, -9 en el caso del ejemplo.

46 CAPÍTULO 4. PRUEBAS Y RESULTADOS

Resultado:El dominio mantiene almacenadas las credenciales que el gestor le ha

asignado. Consecuentemente, el nodo decrawling es capaz de utilizarlos en sus

peticiones. Como resultado se accede a los recursos especificando la siguiente sin-

taxis:

http://usuario:password@www.dominio.com/dir/recurso.html

Prueba: Se han añadido dominios estáticos, es decir, que no requieren el proceso

decrawling, con el fin de comprobar si se lanzaría el procedimiento.

Resultado:El resultado ha sido el esperado y al detectar que se trata de un dominio
estático el gestor lo retorna sin crear ningún nodo decrawlingadicional y mandando
el siguiente mensaje al sistema delogs:

Sep 11 00:16:27 host [debug]: (crawler_manager) Static

domain: "www.dominio2.com" crawling aborted!

Prueba: Se ha intentado configurar un dominio con un módulo decrawling inexis-

tente para comprobar que el gestor detectara el error.

Resultado: Como resultado se muestra una sentencia en ellog del sistema con el
siguiente aspecto:

Sep 11 00:16:27 host [debug]: (crawler_manager) crawler

’crawler_inexistente’ not supported! [www.dominio1.com]

En la linea se observa tanto el dominio afectada como elcrawler especificado en

la configuración, de esta manera tanto la corrección como la detección del error se

convierten en un proceso trivial.

Prueba: Se ha comprobado que se genere una linea en ellog cuando el tamaño de

un recurso raíz varíe para avisar de modificaciones sobre el dominio.

Resultado:El resultado ha sido el esperado y al detectar la variación del tamaño se
genera la siguiente linea en la que se muestra el dominio y la raíz que ha variado:

Sep 9 15:41:26 host [error]: (domain) root "/mapa" size

mismatch at ’www.dominio.com’

Todos los sucesos inesperados que han ocurrido durante las pruebas, tanto provocados

4.3. PRUEBAS DEL GESTOR DEL ANALIZADOR 47

como circunstanciales se han almacenado correctamente, o en la base de datos o en el

sistema delogsdel mismo modo que se ha observado en las pruebas realizadas.

4.3. Pruebas del gestor del Analizador

Las pruebas a este gestor han sido algo más complejas, ya que algunos de los errores

que se pretenden subsanar se producen muy raras veces y son muy difíciles de reproducir.

Prueba: Se han verificado los controles implementados en el gestor que evitarán

iniciarlo sin una correcta configuración previa para evitarposibles errores.

Resultado:Como resultado la aplicación devuelve un mensaje de error tanto en el
stdoutcomo en el sistema de logs. Consecuentemente el administrador percibe que
algo no funciona como debe y puede actuar en consecuencia. Por ejemplo:

Sep 3 17:29:21 host [error]: (analizer_manager) no VMachines

assigned to analizer manager, aborting!

Prueba: Se ha verificado que el procesamiento de los mensajesXML enviados en-

tre cliente y servidor se realice adecuadamente. Para ello se han comprobado los

resultados devueltos por el módulosniffercon el debug del softwareHoneyClienty

comprobar así que la reconstrucción era correcta.

Resultado: Como resultado se ha detectado que en algunos casos el proceso de

transformar los datos a objetosXML en Python producían retrasos importantes en

la interpretación del protocolo. Por esta razón se han ignorado algunos mensajes

carentes de información útil para el control de eventos, como puede ser el envío de

las listas de exclusión e inclusión. Realizada esta pequeñamodificación el resultado

es totalmente satisfactorio y se permite un control total del protocolo seguido.

Prueba: Se ha provocado el error descrito en la sección de deficiencias del softwa-

re HoneyClient2. El objetivo era comprobar que se detectaba correctamente por la

plataforma y se reiniciaba el proceso en el punto que estaba cuando ocurrió el error.

Resultado: El resultado es totalmente satisfactorio, la plataforma detecta justo el

instante en el que se produce el error y actúa en consecuenciasin problema alguno

durante el proceso de recuperación.

2def: El servidor permanece indefinidamente enviando peticiones Ping sin recibir ningún tipo de res-
puesta y sin realizar ninguna acción, bloqueando así la ejecución

48 CAPÍTULO 4. PRUEBAS Y RESULTADOS

A continuación se presenta el log que se imprime cuando ocurre se produce este

error:

Sep 11 00:16:27 host [debug]: (analizer_results) www.d1.com: 2/2

Sep 11 00:16:27 host [debug]: (analizer_results) www.d2.com: 5/13

Sep 11 00:16:27 host [debug]: (analizer_results) www.d2.com: 6/13

Sep 11 00:16:27 host [debug]: (analizer_results) www.d2.com: 7/13

Sep 11 00:16:27 host [debug]: (analizer_results) www.d2.com: 8/13

Sep 11 00:16:27 host [debug]: (analizer_api) scan FINISHED malicious: 0

Sep 11 00:16:27 host [debug]: (db_mysql) logging analizer: www.d1.com

Sep 11 00:16:27 host [debug]: (analizer_api) scan request

Sep 11 00:16:27 host [debug]: (analizer_api) type: start

Sep 11 00:16:27 host [debug]: (analizer_api) scan request validated

Sep 11 00:17:33 host [warning]: (analizer_api) ping response is taking so

long or client innactivity! analizer should be rebooted!

Sep 11 00:17:38 host [warning]: (analizer_api) proccess killed!

Sep 11 00:18:10 host [debug]: (analizer_api) domain www.d1.com

analizer_results is done (skipped)

Sep 11 00:18:11 host [debug]: (analizer_api) domain www.d2.com

analizer_results is done (added)

Sep 11 00:18:11 host [debug]: (analizer_api) urls to analize: 5

Sep 11 00:18:11 host [debug]: (analizer_api) ’current_state’ error,

something happened. State ’2’ should be ’0’ or ’3’

Sep 11 00:18:30 host [debug]: (analizer_api) scan request id: 2024961154

Sep 11 00:18:30 host [debug]: (analizer_api) type: start

Sep 11 00:18:31 host [debug]: (analizer_api) scan request validated,

id: 2024961154

Sep 11 00:19:23 host [debug]: (analizer_api) type: finish

Sep 11 00:19:24 host [debug]: (analizer_results) www.d2.com: 9/13

Sep 11 00:19:24 host [debug]: (analizer_results) www.d2.com: 10/13

Se observa claramente el funcionamiento. Después de procesar los resultados de

www.d1.comy www.d2.com, el gestor almacena los datos referentes awww.d1.com

que ya ha terminado. Seguidamente el analizador se bloquea por el fallo ya descri-

to y el gestor procede a reiniciar el software. Cuando vuelvea cargar lasURLs a

analizar, no agrega las que ya han sido analizadas anteriormente, en consecuencia

la recuperación no supone una gran pérdida de tiempo de análisis.

Prueba: Se han generado a conciencia algunos eventos maliciosos en el sistema pa-

ra comprobar que elsniffercapturaba correctamente todos los eventos y el proceso

de envío de alarmas se comportaba como debía.

Resultado:Como resultado se reciben multitud de correos electrónicosen los que

se indica correctamente si se trata de unPosible Falso Positivoo unPosible Malwa-

re. En ambos casos se detallan a la perfección las acciones realizadas sobre el siste-

ma.

4.3. PRUEBAS DEL GESTOR DEL ANALIZADOR 49

A continuación se muestran los datos que se envían en estos correos, se presentan

sin el formato adecuado únicamente para entender el tipo de datos que se recogen:

Subject: Posible Falso Positivo en ’www.dominio.net’

The next url: "http://www.dominio.net:80/dir/SConsNoticia?ID_IDIOMA=ca

&ope=1&clau=NO01056&total=14&member=6" may be infected! Domain:

www.dominio.net

Resultado Analizador:

malicious: 0

program: internet explorer

time: 7/9/2009 17:2:3.341

visited: 1

Traza retornada:

processId: 2672

process: C:\Archivos de programa\Real\RealPlayer\realplay.exe

object: HKCU\Software\Microsoft\Internet Explorer\Main\FullScreen

time: 7/9/2009 16:55:17.999

action: SetValueKey

type: registry

processId: 2672

process: C:\Archivos de programa\Real\RealPlayer\realplay.exe

object: HKCU\Software\Microsoft\Internet Explorer\Main\Window_Placement

time: 7/9/2009 16:55:17.999

action: SetValueKey

type: registry

processId: 2672

process: C:\Archivos de programa\Real\RealPlayer\realplay.exe

object: C:\Documents and Settings\Administrador\Datos de programa\

Real\RealPlayer\browserrecord.swf

time: 7/9/2009 16:55:18.827

action: Write

type: file

En el mensaje de correo expuesto se observa el nivel de detalle que se obtiene del

softwareHoneyClienty como és correctamente procesado y asociado con el domi-

nio al que pertenece mediante la plataforma automatizada. En este caso se trata de

unPosible Falso Positivo, si fuera unPosible Malware, se modificaría elsubjectdel

correo, pero el aspecto seguirá siendo el mismo.

Prueba: Se ha comprobado que el sistema de alertas reaccione de formadiferente

para los usuarios que desean recibir una alerta por cada recurso infectado en tiempo

real, o una alerta global del dominio una vez finalizado.

50 CAPÍTULO 4. PRUEBAS Y RESULTADOS

Resultado: La plataforma se comporta como debe y envía correctamente elresu-

men de acciones detectadas en un dominio y para cada recurso,dependiendo de cual

sea el caso del receptor. Seguidamente se muestra el correo resumen del domínio:

Subject:Resumen Resultados www.dominio.net

Resultado Crawler:

new: 10

untouched: 2

exit code: 0

Resultado Analizador:

urls: 10

time: 73 sec

posibleMalware: 0 urls

posibleVirii: 0 urls

posibleBlackListDomains: 0 urls

falsesPositives: 5

TotalSentAlerts: 5

Traza retornada:

URL: "/directorio/index.php?lang=es"

processId: 2672

process: C:\Archivos de programa\Real\RealPlayer\realplay.exe

object: HKCU\Software\Microsoft\Internet Explorer\Main\FullScreen

time: 7/9/2009 16:55:17.999

[..]

Prueba: Se ha comprobado que la asignación deURLs procesadas por el analizador

sea correspondida con los dominios analizados de forma correcta.

Resultado: Cuando la plataforma detecta una petición de análisis para varios re-

cursos, el módulo del analizador asocia esasURLs al dominio al que pertenecen, en

caso de no ser posible dicha asociación se muestra un mensajede error en el sistema

de logscomo el siguiente:

Sep 9 19:46:16 host [warning]: (analizer_api) unknown domain for url:

http://www.dominio.net:80/dir2/AriaMat?ID=ca&term=La%20pura

4.4. PRUEBAS DEL GESTOR PRINCIPAL 51

4.4. Pruebas del gestor principal

Después de comprobar el correcto funcionamiento de todos los módulos anteriores, le

toca el turno a al gestor principal. Seguidamente se describen las pruebas realizadas y los

resultados obtenidos.

Figura 4.1:Informe final que se enviará al cliente.

52 CAPÍTULO 4. PRUEBAS Y RESULTADOS

Prueba: Se ha comprobado la correcta finalización de los gestores decrawling y

analizador. Para ello se ha realizado una modificación en el código que muestra el

contenido de cada uno de estos justo antes de empezar el siguiente proceso.

Resultado:El resultado ha sido satisfactorio, los objetos se encuentran totalmente

vacíos cuando finalizan su ejecución, con lo que no se producen fugas de memoria

ocupada.

Prueba: Se han añadido los dominios de producción para comprobar el correcto

análisis de todos ellos y la gestión de los resultados.

Resultado: El proceso funciona a la perfección, realizando primero elcrawling a

los dominios y ejecutando el analizador posteriormente. Los resultados se obtienen

en tiempo real y se almacenan cuando termina la ejecución de cada uno de los

dominios.

Sep 17 16:34:45 host [info]: (main_manager) ciclo: 8

Sep 17 16:34:47 host [debug]: (db_mysql) logging crawler: www.test.com

Sep 17 16:34:50 host [debug]: (analizer_api) domain www.test.com (added)

Sep 17 16:34:50 host [debug]: (analizer_api) urls to analize: 10

Sep 17 16:35:30 host [debug]: (analizer_api) scan request id: 3608943

Sep 17 16:35:30 host [debug]: (analizer_api) type: start

Sep 17 16:35:30 host [debug]: (analizer_api) scan request validated, id: 3608943

Sep 17 16:36:10 host [debug]: (analizer_api) scan FINISHED malicious: 0

Sep 17 16:36:10 host [debug]: (analizer_results) www.test.com: 1/10

[..]

Sep 17 16:36:46 host [debug]: (analizer_results) www.test.com: 10/10

Sep 17 16:36:46 host [debug]: (analizer_api) scan FINISHED malicious: 0

Sep 17 16:36:47 host [debug]: (db_mysql) logging analizer: www.test.com

Sep 17 16:36:48 host [debug]: (analizer_manager) killing completed analizer!

Sep 17 16:36:50 host [info]: (main_manager) ciclo: 9

Prueba: Se ha comprobado la sincronización de las alertas enviadas con la base de

datos con el fin de mantener la información relacionada a cuando y qué alertas se

han enviado.

Resultado:La plataforma almacena todos los datos correctamente en cada iteración

del gestor principal. El cual espera un segundo entre cada una de ellas.

Prueba: Se ha comprobado la generación correcta de los datos necesarios para

generar el informe, aunque los ciclos ejecutados sean variables, además de verificar

una correcta construcción y posterior envío del mismo.

4.4. PRUEBAS DEL GESTOR PRINCIPAL 53

Resultado:Cuando llega la hora límite o se terminan los ciclos a realizar, se genera

en la base de datos una marca que relaciona los últimos cicloscon el informe que se

deberá generar para el cliente. De esta manera quedan segmentados los resultados

dependiendo del informe al que pertenezcan.

Los informes generados que se envían tiene el aspecto mostrado en laFigura-4.1.

Los nombres de los dominios han sido modificados por cuestiones de confiden-

cialidad exceptuandowww.test.com. El recurso listado no corresponde al dominio

www.test.com, pero para realizar las pruebas se ha creado un dominio cuyasraíces

son páginas conmalwareo en las que se cargan variosplug-ins.

En este caso, todos los eventos que se pueden ver en el informeson inofensivos,

ya que se trata de el proceso de carga delplug-in deAdobe Readerpara lectura de

PDFs. El siguiente paso sería filtrar estos resultados para que no aparezcan en el

siguiente informe.

Prueba: Se ha comprobado que los filtros añadidos en la configuración filtren real-

mente los eventos detectados del sistema y estos no aparezcan en el informe.

Resultado:Cuando se recolectan los datos para el informe, se cargan también los

filtros existentes y se utilizan al mostrar los resultados. De esta manera nunca apa-

recen en el informe final, sin embargo, siguen almacenados enla base de datos por

si fueran necesarios

Prueba: Se ha comprobado que la plataforma pueda ejecutarse de formaindefinida

con totalidad autonomía.

Resultado:El resultado ha sido totalmente satisfactorio ya que la plataforma se ha

ejecutado ininterrumpidamente durante varios días, recuperándose automáticamen-

te de cada error ya detectado en la versión anterior

Prueba: Se ha comprobado que la plataforma no bloquee el sistema al consumir

todos sus recursos. Para ello se ha visualizado la carga de memoria y CPU del

proceso.

54 CAPÍTULO 4. PRUEBAS Y RESULTADOS

Resultado:Mediante el comando detop3 se ha listado el proceso en cuestión y este
ha sido el resultado:

PID USER PR NI VIRT RES SHR S %CPU %MEM

22461 user1 15 0 149m 62m 50m S 60 1.2

Se observa una carga de memoria de un 1.2 % lo que no supone nadaimportante.

En cuanto a la carga de laCPU, en cambio, si que es notablemente mayor, sin

embargo, no supone ningún problema para seguir utilizando el sistema de forma

habitual, partiendo de la base que se trata de un servidor dedicado y no un sistema

de escritorio. Se puede decir que el resultado es bastante bueno teniendo en cuenta

la gran cantidad de operaciones internas que realiza y la densidad de datos con las

que se trabaja.

4.5. Resumen de los resultados y valoraciones generales

del conjunto

Por las pruebas que se han realizado hasta el momento, la plataforma se comporta tal

y como se esperaba. Aunque no se trate del software perfecto,lo cierto es que realiza

su función correctamente y supone una gran mejora sobre la plataforma anterior. Se ha

conseguido solucionar la totalidad de las deficiencias, y encaso de que algún error no

controlado ocurriera, el mensaje generado en el sistema delogsfacilitará en gran medida

la búsqueda del fallo y su arreglo.

La automatización implementada tiene en cuenta todos los problemas posibles que

puedan surgir en el software gestionado,crawling y analizador, o, almenos, los que han

sido detectados hasta la fecha. Además de haber reducido notablemente la intervención

humana en toda la gestión de este sistema.

Los algoritmos utilizados para distribuir las máquinas virtuales entre los diferentes

dominios de manera que todos sean ejecutados en cada una de ellas es más eficiente que

el anterior. Ya que podía ocurrir que no se ejecutara un dominio por todas las máquinas

virtuales.

La integración de todos los datos en la base de datos ha supuesto una gran comodidad

3def: Muestra los procesos del sistema y algunos detalles sobre su ejecución.

4.5. RESUMEN DE LOS RESULTADOS Y VALORACIONES GENERALES DELCONJUNTO55

en cuanto a la consulta de los resultados. Se mantiene un control milimétrico de los dife-

rentes procesos a los que se somete un dominio durante el análisis, así como un histórico

de los ciclos e informes que se han realizado. Además se permite el acceso a la infor-

mación desde infinidad de tecnologías, por ejemplo, para añadir un dominio al proceso

se podrá utilizar una aplicación en lugar de conectarse al servidor por sshy configurar

infinidad de ficheros como se hacía en la versión anterior. Se podrán realizarbackupsre-

motos fácilmente, enviar los datos delsysloga sistemas del cliente... En definitiva, muchas

posibilidades de acceso totalmente independientes entre si.

En resumen, la centralización de todo lo que conlleva un análisis de este tipo en una
única plataforma era algo necesario y esta solución así lo hace. Además permite el control
en tiempo real de forma remota gracias al intérprete de Python, por ejemplo, para lanzar
toda la plataforma de forma habitual bastará con el siguiente código:

$ python

Python 2.6.1 (r261:67515, Mar 12 2009, 23:47:00)

[GCC 4.1.3 20080704 (prerelease) (Debian 4.1.2-25)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> from main_manager import *

>>> hc = main_manager()

>>> hc.start()

>>>

Después ya se permite utilizar el objetohcpara consultar los datos como el ciclo por el
que va actualmente o que máquina virtual se está utilizando,su nombre... Se tiene acceso
a toda la aplicación:

>>> hc.cicle

20

>>> vm = filter(lambda x: x.in_use() == True, hc.vms)

[<vmachine.vmachine instance at 0x8499f2c>]

>>> vm.name

’IE6-WinXP’

>>>

Gracias a esta interfaz no ha sido necesario implementar un terminal de control inter-

activo para el administrador, Python lo ha proporcionado.

56 CAPÍTULO 4. PRUEBAS Y RESULTADOS

Capítulo 5

Conclusiones

El proyecto ha resultado tal y como se esperaba. Ha concluidocomo una base sólida

sobre la que el servicio de detección demalwarese ejecutará de forma automatizada en

un entorno de producción que ya es lo que se esperaba.

El control minucioso de toda acción realizada por el software de detección ha per-

mitido subsanar todas las deficiencias detectadas en la versión anterior del producto. El

diseño realizado facilita la manipulación de los puntos conflictivos de forma cómoda y

sin necesidad de reescribir multitud de código en diferentes ficheros y lenguajes.

La información recopilada por esta plataforma ayuda a un seguimiento preciso de

todas las acciones ocurridas y el momento en el que se han producido. Además el hecho

de centralizar toda la información en una base de datos permite implementar multitud

de aplicaciones de consulta cómodamente, ya que únicamentedeberán comunicarse con

la base de datos de manera independiente a como lo hace la plataforma desarrollada en

Python.

Aunque no aparezca en la memoria por cuestiones de confidencialidad, se han docu-

mentado también unas guías de uso interno para los administradores de la plataforma. De

manera que se les permita actuar cuando se requieran modificaciones o ampliaciones con

la información adecuada y precisa que se necesita.

5.1. Experiencia Personal

Ha sido una experiencia muy grata el poder contar con al confianza deInternet Se-

curity Auditors, S.L. para el desarrollo de un producto que facilitará notablemente el

57

58 CAPÍTULO 5. CONCLUSIONES

funcionamiento del servicio ofrecido.

Ha sido muy enriquecedor el poder planificar, diseñar e implementar el producto de

forma individual, ya que ha sido todo un reto el cuadrar fechas y encontrar soluciones a

todos los problemas y necesidades requeridos por el proyecto, algunos detectados desde el

inicio y otros desarrollados sobre la marcha. Es importantedecir que han habido desvia-

ciones del planning inicial por diferentes motivos, algunos personales, otros académicos

y otros, errores de planificación debidos a mi inexperienciapara planificar un proyecto

de tal magnitud en tiempo. Por ejemplo, las pruebas sobre el módulo analizador llevaron

bastante más tiempo del supuesto en un inicio. En este punto tengo que añadir que la

empresa me ha dado total libertad de dimensionamiento, con lo que podía retrasarme sin

problema si era necesario.

Me alegra haber elegido el lenguaje Python como herramientapara implementar la

plataforma, ya que, aun sin haberlo utilizado nunca antes, ha facilitado mucho el desa-

rrollo de varias soluciones y funcionalidades requeridas gracias al sistema de módulos.

Además, la facilidad de programación ha permitido plagiar ala perfección el diseño de

clases realizado a mano directamente al código.

5.2. Evolución Futura

Gracias a esta nueva plataforma, se permitirá realizar ampliaciones de forma más có-

moda que anteriormente. El manejo de la información se debe llevar a cabo mediante una

aplicación web que interactuará de forma directa con la basede datos. Dejando la infor-

mación necesaria para que el software de la plataforma implementado en Python recoja

los datos y los utilice en las posteriores ejecuciones.

Cuando el producto se encuentre en producción se pondrá en funcionamiento una

página web sobre la que se podrán consultar todos los datos entiempo real y navegar por

el historial de ciclos realizados. Conociendo en cada uno deellos como ha transcurrido el

proceso de crawling y analizador y el código de finalización de los mismos.

En un futuro, no se descarta desarrollar aplicaciones orientadas a la navegación me-

diante dispositivos móviles, utilizando para ello tanto aplicaciones implementadas para el

propio sistema operativo del dispositivo o bien una web diseñada para tal fin.

Bibliografía

[1] Documentación oficial de Python, Septiembre 2009.

<http://docs.python.org/>

[2] Documentación oficial de MySQL, Abril 2009 -en inglés.

<http://dev.mysql.com/doc/>

[3] Manuales del sistema Linux, Septiembre 2009.

<http://linuxmanpages.com/>

[4] Software de virtualización VMWare, 2009 -en inglés.

<http://www.vmware.com/>

[5] Página con multitud de información sobreHoneyPots, 2009 -en inglés.

<http://www.honeypots.net/>

[6] Página oficial de proyectosHoneyNet, 2009en inglés.

<https://projects.honeynet.org/>

[7] Página oficial de MITRE, ProyectoHoneyClient- en inglés.

<http://www.honeyclient.org/>

[8] Software de virtualizaciónQemu, 2009 -en inglés.

<http://www.qemu.org/>

[9] Software de crawlingGNU/Wget, 2 de Julio de 2007 -en inglés.

<http://www.gnu.org/software/wget/>

[10] Software de crawlingHTTrack, 2009 -en inglés.

<http://www.httrack.com/>

59

Firmante: Ferran Pichel Llaquet

Bellaterra, 16 de Septiembre de 2009

60

Resum

Es descriu el disseny i posterior implementació de la nova plataforma d’automatització

del servei ofert per Internet Security Auditors, S.L. destinada a l’anàlisi de dominis d’Internet

amb la finalitat de detectar possibles infecciones que afectin a usuaris de la web. El siste-

ma actual conté algunes deficiències, de manera que aquest text presenta una nova versió,

la qual aporta millores molt significatives com ara una gestió més òptima, o un disseny re-

novat i escalable de la informació i els diferents processos. Així mateix es dota al sistema

d’un control d’errors centralitzat, amb enviament d’alàrmes en temps real, i una agrupació

i centralització dels resultats.

Resumen

Se describe el diseño e implementación de la nueva plataforma de automatización del

servicio ofrecido por Internet Security Auditors, S.L. destinado a analizar dominios de

Internet con el fin de detectar posibles infecciones que afecten a los usuarios de la web.

El sistema actual tiene algunas carencias, de manera que este texto presenta una nueva

versión, que aporta mejoras muy significativas como son una gestión más óptima, con

un diseño renovado y escalable de la información y los diferentes procesos. Asimismo se

dota al sistema de un control de errores centralizado, con envío de alarmas en tiempo real,

y una agrupación y centralización de los resultados.

Abstract

This paper describes the design and implementation of the new automatic platform

service offered by Internet Security Auditors, SL. It is designed to analyze Internet do-

mains in order to detect possible infections that could affect the user’s system while brow-

sing the web. The current system has some shortcomings and this paper presents a new

version which provides significant improvements such as optimal management, with a

renewed design in the management of the information and processes. It also gives the

system a centralised error handling, with a real-time alarmdelivery, and results in grou-

ping and pooling.

