n

Universitat Autonoma de Barcelona

etse)

DISSENY D’UN ADAPTADOR D’IPS PER A NOCS
TOLERANTS A FALLES

Memoria del projecte de final de carrera corresponent
als estudis d’Enginyeria Superior en Informatica pre-
sentat per Francesc Vila Garcia 1 dirigit per Eleni Ka-

nellou i Carles Ferrer.

Bellaterra, Setembre de 2009

El firmant, Carles Ferrer , professor del Microelectronica
1 Sistemes Electronics de la Universitat Autonoma de
Barcelona

CERTIFICA:

Que la present memoria ha sigut realitzada sota la seva di-

reccid per Francesc Vila Garcia

Bellaterra, Setembre de 2009

Firmat: Carles Ferrer

II

indice general

1. Introduccion

1.1. Motivacién y objetivos

1.2. Pasos seguidos y estructurade lamemoria

2. Estado del arte

3. Descripcion del entorno

31. GRLIB
3.1.1. LEON3
3.1.2. AMBA

3.1.3. Otros componentes . . .
314. Red

3.1.5. Protocolo

4. Planificacion

5. Interfaz de red

5.1. Descripcién del funcionamiento

111

10

11

12

13

15

19

23

5.1.1. Enviodedatos 25

5.1.2. Recepciéndedatos, 25
5.13. Resumen 26

5.2. Descripcion de los médulos principales 26
5.2.1. Unidaddecontrol 28
Comportamientodelenvio 28
Comportamiento de larecepcion 30

5.2.2. Bufferderecepcion 30
5.23. Packetizer 30
5.2.4. Wormhole-splitter 31
5.2.5. Wormhole-joiner 32

5.3. Disefiodeldriver 32
5.3.1. Objetivosdeldriver 32
5.3.2. Descripcion de las funciones L. 33
Enviarpaquete 33
Recibirpaquete 34

6. Simulacion del diseiio 35
6.1. Pruebas funcionales 35
6.1.1. Unidaddecontrol 35
6.1.2. Bufferderecepciéon 37
6.1.3. Packetizer 37
6.1.4. Wormhole splitter 38

6.1.5. Wormbhole joiner

7. Conclusiones

8. Lista de acrénimos

Bibliografia

43

44

VI

indice de figuras

1.1.

3.1.

3.2

3.3.

3.4.

3.5.

3.6.

4.1.

5.1

5.2.

Ejemplo de un diagramadeun SoC.

Los dos tipos de bus AMBA conectados por el bridge.

Pantalla de make xgrlib. Vemos los botones de acceso a las herra-

mientas de simulacion, sintesis, y place and route.

Pantallas de make xconfig. Podemos ver la pantalla de configura-
cion (arriba a la izquierda) y las opciones del procesador y del bus
AMBA. . . e

Vemos la estructura de directorios de la GRLIB y la copia del

disefio base para la placa Digilent XUP para crear el proyecto NI.

Estructura de un bloque basico. El elemento que serd unido por

los routers.
Topologia ejemplo de una red. Los bloques estan descritos en la
figura3.5.o

Diagrama de GANTT con la planificacién prevista del proyecto.

Ejemplo de mapa de memoria paraunared de N nodos.

Diagrama con los médulos de la NI. La linea gruesa es el camino de

datos, y la fina las seflales de control.

VII

16

17

21

5.3.

54.

5.5.

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

Diagrama de estados del funcionamiento de la unidad de control. 28
Formato de las opciones en la comunicacién con la interfaz 29
Formato del paquete que se enviaporlared. 31
Waveform de la unidad de control durante el envio. 36
Waveform de la unidad de control durante la recepcién. 36
Waveform del buffer de recepcion. L. 37
Waveform del packetizer. 38
Waveform del médulo wormhole splitter. 39
Waveform del médulo wormhole joiner. 40

VIII

Indice de cuadros

5.1. Resumen de las operaciones de la interfaz segin los valores de sefiales

delbus AMBA., 26

6.1. Tabla con los valores del paquete. Para el formato, ver la figura 5.5. . . 38

IX

Listings

6.1. Cddigo del testbench automatizado

XI

Capitulo 1

Introduccion

1.1. Motivacion y objetivos

Durante los ultimos afios, muchas aplicaciones en distintos 4mbitos se im-
plementan usando sistemas empotrados. Reproductores MP3, PDAs y teléfonos
moviles son claros ejemplos de estas aplicaciones. Estos dispositivos implemen-
tan, cada vez mads, una gran variedad de aplicaciones y protocolos para comuni-
carse entre si, ya sean protocolos de acceso a internet, reproductores de video o

videojuegos en 3D; aumentando asi tanto su funcionalidad cémo su complejidad.

Para el disefo y posterior implementacion de estos dispositivos, tenemos dis-
tintas maneras de afrontar este problema. Entre muchas soluciones, tenemos los
System-On-Chips (SoCs), los Multi-Procesor System-On-Chips (MPSoCs) (Sis-
temas SoC con multiples procesadores) y las Network-On-Chips (NoCs). Nos
centramos en estos tres diseios porqué un SoC supone una reduccién en el tiem-
po de desarrollo y un decremento en los costes de produccién. Ademads estas tres
metodologias estin relacionadas. Un MPSoC, como su propio nombre indica; es
un SoC con mas de un procesador, y un NoC es un sistema MPSoC cambiando la

capa de comunicacion entre los elementos.

Los sistemas SoC suelen tener un procesador, memoria y varios periféricos

2 CAPITULO 1. INTRODUCCION

e interfaces con el exterior (ethernet, wifi, USB entre otros), todo conectado al-
rededor de un bus. Cémo podemos observar en la figura 1.1, tendremos un sis-
tema formado por un microprocesador (el ARM), interfaces para interactuar con
el exterior (puertos serie, USB, conversor analdgico-digital, bus CAN) y distin-
tos periféricos como timers, y reguladores de voltaje, interconectado por el bus
AMBA.

B | JTAG | R ARM) .| Voltage
Scan Processor Regulator | |
Swstem Controller
FLL
o i
+ =] il RC Osc
Resct Cirl
Erownout Delect
Fower On Reset
Prog. Int. Timer Pl
‘Watchdog Timer I
+ Real Time Timer Peripheral Tlash
Debug Unit /M |D:1t:1 C:mho]]erl Progammerl i
FID Cirl. oy
<I: Appheation-specihe
Logic ¢ i
-+ Ethernet MAC + |+ > CAN >
-+ USARTO-1 + >+ > USE Device -+
i+ SP1 + >+ > PWM Ctrl +>
-+ Two Wire Interface [>+ »| Synchro Serial Ctrl -
-+ ADCO-T + >+ »| Timer/Counter (-2 -

Figura 1.1: Ejemplo de un diagrama de un SoC.

Podemos ver que con estos componentes ya tenemos un sistema completo, que
puede cumplir diversas funciones de un modo sencillo. Dependiendo del programa
que se cargue en memoria y de los periféricos e IPs que le conectemos, podemos
conseguir desde un reproductor de video a un teléfono mévil o un reproductor
MP3.

Dada la evolucion de la tecnologia, cada vez conseguimos una densidad de
integracién mayor y podemos integrar mas componentes en un mismo chip. Al in-

sertar mas procesadores, microcontroladores o Digital Signal Procesors (DSPs) al

1.1. MOTIVACION Y OBJETIVOS 3

sistema obtenemos los MPSoC. Siguiendo este disefio, obtendremos las ventajas

que nos ofrece un sistema SoC, y ademas tendremos varias unidades de proceso.

Todos los componentes del MPSoC estan interconectados por un bus del sis-
tema compartido, y se deberd controlar el acceso a este. Por lo tanto, para poder
hacerlo necesitamos un sistema de arbitraje, donde decidiremos el componente
que accede al bus. Este tipo de acceso puede suponer un cuello de botella, ya que
no todos los componentes se podran conectar con los otros a la vez. Ademds nos
encontramos delante de una situacién poco escalable. Otro problema que nos en-
contramos es que a la vez que se afladen componentes, aumenta la complejidad
del sistema de arbitraje, cosa que nos puede penalizar en rendimiento y/o area.
Para solucionar estos inconvenientes de los MPSoC, encontramos las NoC, que
nos proporcionan un enfoque distinto a la comunicacion entre los distintos com-

ponentes de un MPSoC.

Las NoC aplican la teoria de comunicacion de las redes convencionales a la
comunicacion dentro de un mismo circuito. Por lo tanto, se cambian las comuni-
caciones usando un bus compartido y un sistema de arbitraje a una red distribuida
formada por enlaces punto a punto. La red estd formada por los componentes (no-
dos) conectados con routers, permitiendo asi la comunicacion de todos los nodos

con el resto.

Aun usando la teoria de redes, al ser una red montada en un mismo circuito,
no serd necesario implementar todas las caracteristicas de una red convencional, a
la vez que también tendremos que contemplar e implementar casos que no se dan
en estas. Por ejemplo, un detalle que diferencia las redes de ordenadores conven-
cionales con las NoCs es que la topologia sera fija, es decir, que no variara en el

tiempo.

Con este nuevo paradigma conseguimos aumentar la escalabilidad del sistema
y aumentar la densidad de integracion. Pasaremos de buses largos a enlaces punto
a punto mds cortos. El problema que tienen los buses, es que ocupan mucho es-
pacio, y es muy dificil disminuir la distancia entre las pistas que lo componen, ya

que existe riesgo de interferencias. Usando los enlaces de las NoC, conseguiremos

4 CAPITULO 1. INTRODUCCION

reducir el tamano de las conexiones teniendo enlaces mas cortos y mds estrechos,
es decir, menos pistas; y nos deshacemos del cuello de botella que supone tener
un bus compartido. Podremos explotar el paralelismo en las conexiones entre los

componentes porqué los enlaces pueden operar simultineamente.

Por las razones anteriores, es interesante aplicar el paradigma de las NoC en
el disefio de sistemas multiprocesador, ya que ofrece varias ventajas respecto a los
sistemas con bus compartido, convirtiéndolo en una opcién para el futuro disefio

de este tipo de sistemas.

El estudio realizado en este trabajo detalla una manera de conseguir el paso
de las arquitecturas MPSoC a arquitecturas NoC, de la forma mds directa posible,
es decir, que sea posible pasar de un sistema MPSoC existente a una NoC susti-
tuyendo s6lo la capa de comunicaciones. Para que esto sea posible, se creard una

interfaz que actuard cémo adaptador entre los procesadores y la red.

Esta interfaz serd la encargada de convertir entre el protocolo del bus usado
para el MPSoC, que seré el protocolo que ya utilizan todos los componentes; y el
protocolo usado en la red. De este modo, la interfaz actuard como un adaptador
entre los procesadores y la red. Con esto, conseguiremos que para los distintos
procesadores que integran el sistema, el hecho de estar conectados por una red
sea transparente. Estos actuaran cémo si estuvieran conectados a un bus, y serd la
interfaz la encargada de hacer los cambios necesarios. Asi conseguiremos que
no sean necesarias modificaciones en los IP cores que formen nuestro sistema

multiprocesador.

Ademas de la interfaz necesitamos un componente software. Esta parte serd una
libreria con varias funciones que presentard al programa un modo de acceder a la
red, a modo de driver! de la interfaz. Con este conjunto de funciones se facili-
tard la conversion del programa que se ejecuta en los procesadores para poder
comunicarse en red. Es importante tener en cuenta que la interfaz s6lo nos permi-

te conectar los procesadores a la red sin realizar ningin cambio en el componente

ILibreria que controla un periférico, en este caso serdan un conjunto de funciones para poder
comunicarnos usando la interfaz.

1.2. PASOS SEGUIDOS Y ESTRUCTURA DE LA MEMORIA 5

hardware del sistema. El software que se ejecuta si que tiene que estar preparado

para conectarse a la red usando nuestro driver.

Coémo veremos mds adelante, el trabajo se centrard en hacer una interfaz que
sea capaz de convertir del protocolo del bus AMBA al protocolo de la red. Usare-
mos la GRLIB, que es una libreria de IP cores (entre otros contiene el procesador
LEON3) para el disefio de sistemas SoC y MPSoC.

Con la interfaz no serd necesario ningin cambio en el disefio del LEON3, ya
que se comunicard usando el bus AMBA, y s6lo se tendrd que usar nuestro driver

para poder programar un software capaz de aprovechar la red.

Asi pues, tendremos varios bloques formados por el LEON3, una RAM y

nuestra interfaz; conectados a través de una serie de routers formando una NoC.

1.2. Pasos seguidos y estructura de la memoria

Los pasos que vamos a seguir para conseguir la interfaz son los siguientes:

Estudiar el estado del arte centrdndonos en el trabajo realizado en NoCs y

especialmente interfaces.

Estudiar varios procesadores (con sus entornos)

Disefiar la interfaz

Simular la interfaz

Implementar un driver

Para poder lograr el objetivo de este trabajo, primero hemos hecho un estu-
dio del “estado del arte”. Con dicho estudio pretendemos conseguir una idea de
los progresos que se han hecho hasta el momento en el campo de las NoC, con

especial atencién en el disefio de las interfaces para la red. Ademads, sumando la

6 CAPITULO 1. INTRODUCCION

investigacion que hemos realizado sobre distintos procesadores, y de los entornos
de desarrollo a los que estdn asociados; nos permitird acotar y estudiar deteni-
damente las investigaciones realizadas sobre NoCs con el entorno escogido. Este

estudio lo veremos con mds detalle en el capitulo 2 de la memoria.

Al mismo tiempo que realizamos el estudio anterior, también estudiaremos los
distintos procesadores que tenemos disponibles para la realizacion del proyecto.
Ya que los procesadores suelen tener un entorno asociado para el disefio de SoC
y/o MPSoC, también tomaremos en cuenta dicho entorno. Junto al paso anterior,
ya que estan intimamente relacionados; obtendremos una base sobre la que cons-

truiremos nuestro disefio.

En el capitulo 3 de la memoria, describiremos el entorno del proyecto. Expli-
caremos con detalles las herramientas y dispositivos usados en la realizacion de la

interfaz.

Una vez descrito el estado del arte y el entorno de trabajo, en el capitulo 4
veremos la planificacion del proyecto. Explicaremos los pasos que realizaremos y

el tiempo invertido en cada paso.

En el capitulo 5, dedicado al disefio de la interfaz vamos a entrar en detalle so-
bre el funcionamiento de la misma. Veremos que funcionalidades aporta y cémo
se han conseguido, ademas de ver el porqué se han tomado distintas decisiones
de disefio. Una vez explicado esto, introduciremos el driver realizado para la in-
terfaz, empezando por el modo de programar y de acceder a nuestro dispositivo y

explicando las funciones que podemos realizar con él.

El dltimo paso dedicado al disefio de la interfaz, explicado en el capitulo 6 de
la memoria; contiene las pruebas hechas al disefio. En este capitulo explicaremos
los resultados de la simulacién de nuestro disefo, y presentaremos programas de
test, que pondran a prueba nuestra interfaz. Con esto conseguiremos validar el

funcionamiento del core y del driver diseiados para la interfaz.

Capitulo 2

Estado del arte

Existen varios articulos que exploran la construcciéon de NoCs. Algunos, como
Henrique C. Freitas et al. [2]; realizan un estudio del rendimiento de los sistemas
NoC frente a sistemas MPSoC, cambiando distintos pardmetros, cémo el nimero
de procesadores a conectar o el numero de buses del sistema. En €l se muestra que
las soluciones basadas en NoC son mads escalables que un MPSoC, montando un
sistema con varios procesadores Microblaze tanto en red (formando la NoC) co6mo
con el bus OPB (formando un MPSoC). En [5], Li Ping Sun et al. también reali-
zan un estudio sobre el rendimiento de sistemas NoC, pero, al contrario que [2],
sigue una arquitectura hibrida, es decir, los procesadores disponen de su propia

memoria, y no comparten la misma que estd conectada por una red.

Otros estudios, cémo el realizado por Slobodan Lukovic et al. en [3]; descri-
ben una metodologia para el disefio de NoCs usando también el Microblaze de
Xillinx. En este articulo se describen los componentes que forman la red y las
Network Interfaces que conectan entre si los procesadores y los bloques de me-
moria, aunque la importancia del articulo reside en la modificacién del flujo de

disefio del EDK! de Xillinx para afiadir la posibilidad de crear NoCs.

Nos encontramos que hay muchos mads articulos sobre distintos disefios de

'EDK es el Embedded Development Kit. Es un grupo de herramientas de Xillinx para el disefio
de sistemas empotrados. También contiene un conjunto de IP cores.

7

8 CAPITULO 2. ESTADO DEL ARTE

NoCs que articulos centrados en la interfaz, aunque sea una parte importante que
nos permite poder adaptar las IP existentes a una arquitectura en red. Atn asi, nos
encontramos con articulos como el de M.D. van de Burgwal [6] que se centra en
el estudio de una interfaz, Hydra. El uso de esta interfaz es para adaptar a una red
un procesador configurable, el Montium TP. Sanjay Pratap Singh, en [4]; describe
una interfaz genérica. Lo consigue afiadiendo una capa totalmente independiente
entre el procesador y dicha interfaz. De este modo consigue que el control sobre
la interfaz no cambie, y se pueda adaptar a cualquier IP core sélo cambiando la

capa mads cercana al core.

En [6], Andrei Radulescu et al., presentan el disefio de una interfaz que des-
acopla la comunicacion de la computacion. Es decir, actiia en el la capa de trans-
porte del nivel OSI, que es la primera capa dénde los servicios que proporciona la
interfaz son independientes de la implementacién de la red. Proponen un disefio
modular, con una parte comun (el kernel de la NI) que es extensible a través de
modulos (shells). Estos médulos le proporcionan funcionalidades extra (como por

ejemplo, implementacién de varios protocolos de bus).

En resumen, los diversos estudios realizados sobre las interfaces de red, pro-
ponen un disefio que adapta los IP cores existentes, permitiendo su conexién en
red. Las interfaces coinciden en que no se tenga que cambiar el disefio de los

componentes a conectar, ocultando la implementacion de la red.

Capitulo 3

Descripcion del entorno

3.1. GRLIB

La GRLIB es una libreria de IP cores, especialmente disefiada para el desarro-

llo y construccién de sistemas SoC.

Un [P core es una unidad de cédigo, celda o disefio de chip que es reutilizable.
Por lo tanto, una libreria de IP cores es un conjunto de unidades, con una relacion

entre si.

En concreto, la GRLIB se compone de un procesador (el LEON3) y de varios
componentes, por ejemplo, controladores para distintos tipos de memoria; comu-

nicados usando un mismo bus, el bus AMBA.

Ya que todos los componentes que la forman estdn centrados para comunicarse
con este bus, nos aseguramos la interoperabilidad entre todos los componentes y
su fécil interconexién. Cémo veremos mads adelante, el bus nos proporcionard una
manera sencilla de afadir nuevos elementos al sistema (ya sean de la misma li-
breria o creados por nosotros mismos) porqué el drbitro asigna automaticamente
recursos a los componentes conectados y permite su control desde el procesador.

Por lo tanto, podemos considerar que disponemos de un bus Plug & Play.

9

10 CAPITULO 3. DESCRIPCION DEL ENTORNO

Todos los componentes de la GRLIB estan disefiados para poder ser sinteti-
zados en una gran variedad de FPGAs de distintos fabricantes. Esta caracteristica
nos quita una restriccién importante sobre el hardware que tenemos que usar. La
FPGA que usaremos serd la VirtexII-Pro de Xillinx integrada en un kit de disefio
de Digilent. En concreto es el kit Digilent XUP. Usar el kit nos da flexibilidad
porqué integra, ademas de la FPGA; varios conectores, posibilidad de conectar
memoria externa y conectores de expansion para conectarlo a distintas placas,
convirtiéndolo en una solucién ideal de prototipaje. Este kit tiene un precio espe-
cial para instituciones académicas, reduciendo el coste total de los materiales del

proyecto.

Por ultimo, el flujo de disefio en este entorno es intuitivo, ya que proporciona
una interfaz Unica para la simulacién y posterior sintesis del proyecto. Esta inter-
faz se compone de una serie de scripts y Makefiles que se gestionan a través de
una interfaz grafica que nos permitird configurar los componentes que queremos
del sistema. Esta interfaz es independiente de la FPGA que se utilice. La GRLIB
contiene varios disefios de ejemplo. Son sistemas multiprocesador parametriza-
bles y se pueden cambiar el nimero de procesadores, periféricos y memoria con
los mencionados scripts como veremos mds adelante. Hemos modificado este sis-

tema por uno con un solo procesador y la interfaz de red.

3.1.1. LEON3

El procesador utilizado para la elaboracion de este proyecto es el LEON3. Este
procesador nos lo proporciona la GRLIB en forma de IP core, por lo tanto, cumple
con las caracteristicas de todos los componentes de la libreria. Est4 desarrollado

por GAISLER, la misma compaiiia que distribuye la GRLIB.

El LEON es una implementacion de la version V8 de la arquitectura Sparc.
Fue disefada por Sun Microsystems en 1986. El Sparc V8 es un procesador pura-
mente big endian, e implementa un conjunto de instrucciones Reduced Instruction
Set Computer (RISC).

3.1. GRLIB 11

EI LEON3, es un procesador con licencia GPL, por lo tanto de c6digo abierto.
Tiene dos versiones, el LEON3 que es gratis y el LEON3FT, que no lo es. La dife-
rencia es que el LEON3FT tiene varios cambios para ser un procesador tolerante
a fallos, como codigos de correccidn de errores en registros y cache que no tienen

penalizacion de tiempo respecto al LEON3.

El LEON3FT, por su tolerancia a fallos, es un procesador que se usa en apli-
caciones aeroespaciales. La version 2 de este procesador fue disefiada por encargo
por la agencia espacial europea. La version no tolerante a fallos, se usa, por ejem-

plo; en aplicaciones multimedia (unas 70 compaiiias lo usaban en el 2008).

Este procesador tiene un gran rendimiento como se puede ver en la Tabla 5
de [1], donde se hace una comparativa de los tiempos de proceso para un mismo
programa de distintos procesadores, quedando en segundo lugar el LEON3 (y en
primer lugar el LEON2). El procesador es totalmente configurable con los scripts
de la GRLIB.

3.1.2. AMBA

El AMBA es el estandar de facto para las comunicaciones entre los distintos
componentes de un SoC. Por esto facilita una metodologia de reutilizacion de
los distintos componentes (nos ofrece un estdndar y compatibilidad con distintos
componentes de varios fabricantes). En la GRLIB es el bus que conecta todos los

IP cores que la componen, por ejemplo, el LEON, la memoria y nuestra interfaz.

La especificacion estd pensada para facilitar la interconexion de varios proce-
sadores, convirtiéndolo en un candidato perfecto para el disefio de sistemas SoC o
MPSoC. En el proyecto usamos la version 2 de la especificacion, que dispone de
dos protocolos que cubren las necesidades, tanto de los componentes que requie-
ren una alta tasa de transferencia cémo los que no requieren tanto ancho de banda.
Los protocolos (no los protocolos, los buses) estdn conectados por un adaptador
(bridge) Podemos ver en la figura 3.1, que los dos buses se pueden comunicar a

través del bridge. Los protocolos del bus son:

12 CAPITULO 3. DESCRIPCION DEL ENTORNO

= El Advanced High-performance Bus (AHB): Es la parte del bus donde se
conectan los componentes del sistema que necesitan una tasa de transfe-
rencia mds alta. En este bus conectaremos el procesador, la memoria y la

interfaz de red.

= El Advanced Peripherial Bus (APB): Es donde se conectan los periféricos
que no requieren tanto ancho de banda, como controladores de teclado o
puertos serie. En nuestro disefio conectaremos la DSU (Debugging Support
Unit) que nos proporciona acceso a la E/S estandar desde el programa y un

timer para el polling.

AHB Bus

AHB-APB
Bridge

APB Bus

Figura 3.1: Los dos tipos de bus AMBA conectados por el bridge.

3.1.3. Otros componentes

Para completar el entorno de disefio, los distribuidores de la GRLIB, ademas

de la libreria nos ofrecen varias herramientas mas:

BCC: Un compilador cruzado para facilitar el desarrollo de programas para el
sistema. Con €l vamos a poder programar en un lenguaje de mas alto nivel

que el ensamblador los distintos programas de test para la interfaz y la red.

TSIM: Un simulador del procesador que nos permitird probar el codigo de un
modo mads rdpido que sintetizando el disefio en una FPGA o cargando el

programa en el Modelsim (el simulador de VHDL). Cémo inconveniente es

3.1. GRLIB 13

que no podemos afadir nuestra interfaz (s6lo emula el LEON3) pero nos

servird para ver el comportamiento de nuestro programa.

GRMON: Un monitor de debug, que se comunica con la DSU de nuestro sistema
y nos permite el debugging del sistema ya sintetizado en la FPGA. Con esta
herramienta podremos observar el comportamiento mas realista del sistema,
ya que se ejecuta sobre la FPGA. Gracias al GRMON, se podra obtener una
funcionalidad cémo con el TSIM, pero con nuestra interfaz ya afadida al

sistema.

ENTORNO GRAFICO: La GRLIB nos proporciona un entorno grafico de con-
figuracion para los distintos componentes. Se puede acceder a él de dos
modos distintos: make xgrlib y make xconfig. Desde la ventana del primer
comando podemos lanzar los comandos de simulacion, sintesis y place and
route. También podemos escoger el programa que se lanzara para cada tarea
y lanzar la ventana de configuracién. El segundo comando nos lanza la con-
figuracion del diseno. Desde ésta podremos escoger los componentes que
queremos que tenga nuestro sistema y configurar el procesador para adap-

tarlo a nuestras necesidades. Podemos ver las interfaces en la figura 3.2y
3.3.

Para empezar un nuevo diseiio con la GRLIB, después de extraerla, haremos
una copia de uno de los disefios que vienen con la libreria. Luego, ya podremos
empezar a incluir nuestros ficheros en el sistema, afiadiendo nuestro cédigo y edi-
tando el top del sistema (y el Makefile para afiadir nuestro dispositivo). Podemos
ver la estructura bésica de directorios de la GRLIB y la creacién de un proyecto

nuevo llamado NI en la figura 3.4

3.14. Red

La red para la que estd pensada la interfaz unira varios procesadores conecta-

dos mediante routers. No se conectaran sélo los procesadores, si no que mediante

14 CAPITULO 3. DESCRIPCION DEL ENTORNO

74 GRLIE Implementation Tool == | =
File

Simulation prag prom | weanfig

rd adelsim ‘ Run | [Batch Clean Build clean al scripts
diztclean Guit
Synthesiz

Synplify ‘ Run | [Batch Clean Project: |Ieon3mp

Tech: | wirtexZp

Place & route

None ‘ Fun | Batch Clean Device: [xc2vpa0-f836-7

Board: |digilent-Hup-HcEvp

Console

m

Figura 3.2: Pantalla de make xgrlib. Vemos los botones de acceso a las herramien-
tas de simulacion, sintesis, y place and route.

la interfaz se unirdn unos bloques compuestos por procesador, memoria y nuestra
interfaz (entre otros componentes) como se puede ver en la figura 3.5.
La funcion de los componentes se describe a continuacion (en orden de dere-
cha a izquierda y de arriba a abajo):
LEON3: Es el procesador del sistema. Se encargara de ejecutar el programa que
corresponda al bloque.

Memoria: Es donde se guardara el programa que tiene que ejecutar el bloque.

Interfaz: Es laencargada de adaptar las comunicaciones entre el procesador (bus
AMBA) y la red. Es el objetivo de este trabajo.

Arbitro AMBA: Es el componente que se encargard de controlar el acceso al

3.1. GRLIB 15

4 LEON3MP Design Configuration = |[B[22 | | 7 AMBA configuration [-E-]
Syrithesis Debug Link Save and Exic 5MEA configuration
Clock generation | Peripherais Quitwithout Saving
Processor VHOL Debugging Load Corfiguration fiom File 0 DV mer
AMBA configuraton! Store Corfiguration t File @ | C n | Roundobin arbite
— — &y | n | AHB spliransaction suppor
74 Processor FFF 10 area start acress [hadeh(31:20]
T 500 AHE/APB bridge addiess (hadd (31201
© y | & n | Enable AMEA AHE montor
@ y | C n | Enable LEDN3 SPARCYE Pro: €y [€ n][FepartaHB arors
1 Number of processors €y [€ n | Repon 4HE warings
Integer unit
Floating-point urit

Cache system

MU

Debug Support Unit

Fault-tolerance

WHDL debug selings

Main Menu MNest Prev

Figura 3.3: Pantallas de make xconfig. Podemos ver la pantalla de configuracion
(arriba a la izquierda) y las opciones del procesador y del bus AMBA.

bus para que todos los componentes se puedan comunicar entre si. Nos lo

proporciona la GRLIB.

AHB-APB bridge: Cémo hemos visto anteriormente, el bridge se encargard de
comunicar los dos buses (el AHB y el APB). También nos lo proporciona la
GRLIB.

Timer: Con éste podremos fijar un intervalo de polling para comprobar si ya

hemos recibido algtin paquete. Forma parte de 1a GRLIB.

Como vemos, cada bloque contiene un procesador y una memoria, por lo tanto,
la red tendrd una topologia hibrida, es decir; los procesadores se conectan a las
memorias usando un bus (como un SoC) pero los bloques se conectardn entre

si por una red (ver la figura 3.6)

3.1.5. Protocolo

La red usard una técnica de switching llamada wormhole switching. En esta
técnica, los paquetes se dividen en varios trozos mas pequefios llamados flits!

para su transmision por la red. Tendremos entonces, tres tipos de flits:

IFlit es un acrénimo de FLow control biTS.

16 CAPITULO 3. DESCRIPCION DEL ENTORNO

E: -/grlib-gpl-10.21-b3848/designs EI@

Makefile

Figura 3.4: Vemos la estructura de directorios de la GRLIB y la copia del disefio
base para la placa Digilent XUP para crear el proyecto NI.

» El header flit es el primer flit que se transmite, y contiene informacion sobre
la ruta que debe seguir el paquete. Es decir, contiene la direccion de destino

de éste. Su funcidn es reservar el camino por donde pasaran el resto de flits.

= Los body flit son los siguientes flits que se envian después del header flit.
Pueden ser un ndmero variable dependiendo del tamafio del paquete a trans-
mitir. En nuestro caso es un nimero fijo, ya que todos los paquetes tienen el

mismo tamano.

» El tail flit es el dltimo flit que se manda, y su funcion es la de ir liberando
los recursos reservados por el header flit. De este modo, el camino seguido

quedarad libre otra vez

Asi nos encontramos que un mismo paquete estara repartido por varios swit-

ches al largo de su recorrido por la red. De hecho, de aqui viene el nombre de

3.1. GRLIB 17

]
i BLOQUE :
! BAsICO :
H — :
. - :

:

(:

H

LEON3 Memoéria Interfaz <:> RED '

:

H

H

AHB | | | :
. :

| | l

:

) :

Arbitro AHB-APB N H

. Timer H

AMBA Bridge H

H

H

:

APB | | | :

:

:

:

:
.. H

Figura 3.5: Estructura de un bloque bésico. El elemento que serd unido por los
routers.

BLOQUE1 BLOQUE?

BLOQUES |g—) >< «— > X «—>»| BLoQuEs

Figura 3.6: Topologia ejemplo de una red. Los bloques estin descritos en la figura
3.5.

esta técnica, ya que al estar repartido de este modo crea una imagen parecida a un

gusano (worm).

18

CAPITULO 3. DESCRIPCION DEL ENTORNO

Capitulo 4
Planificacion

Podemos ver en la figura 4.1, un diagrama de GANTT con la planificacion

del proyecto.

Hemos dividido el proyecto en las siguientes tareas:

1. Estudio de procesadores: Dedicaremos un tiempo estudiando distintos pro-
cesadores para usarlos como elemento para conectar con nuestra interfaz.

Dedicaremos unos 10 dias a esta tarea.

2. Estudio del estado del arte: En esta tarea dedicaremos otros 20 dias en estu-

diar articulos que se han hecho sobre interfaces de red para NoCs.

3. Familiarizacién GRLIB: Dedicaremos un par de semanas en familiarizarnos

en el entorno de disefio del proyecto. En nuestro caso es la GRLIB.

4. Desarrollo de la interfaz: Ser4 la parte del trabajo que nos lleve més tiempo.

La podremos dividir en:

a) Envio de paquetes: Dedicaremos la mitad del tiempo de disefio en rea-

lizar la parte de envio de la interfaz.

b) Recepcion de paquetes: Dedicaremos la otra mitad del tiempo en di-

sefar la recepcion de paquetes de la interfaz.

19

20 CAPITULO 4. PLANIFICACION

c) Driver: Durante el disefio de la interfaz, dedicaremos tiempo en el di-

sefio del controlador de la interfaz.

5. Test: Dedicaremos un mes y medio en realizar los tests al disefio de la inter-

faz.

6. Memoria: Dedicaremos un mes en la redaccion de la memoria.

21

*0103401d 1op ®1s1A01d UoIoROYIURId B] UOD [INVD 9P PweIdelq [4 eIndL]

O,

BUOWSP B
=RLG

BANOE S

sayanbed ap uoindaoay T%
sajanbed 3p oAUl |y

TEJJBJUI B| Bp 0|0LESE] b

EITHD UNIOEZLIBILES ¢

Bl [3p OPEIS3 0IPMISI T

S2J0pES2004d OIpPNIs3 |

50y, ;

E‘% ey

§
1INV 9p ewebeq

BQQ’D,{E

22

CAPITULO 4. PLANIFICACION

Capitulo 5
Interfaz de red

En este capitulo discutiremos el disefio de la interfaz de red. Esta interfaz
servird de adaptador entre el procesador y la red. De este modo conseguiremos que
para el procesador el acceso a la red sea transparente ya que la interfaz ocultara los
detalles.

5.1. Descripcion del funcionamiento

Para que la interfaz pueda ocultar los detalles de la red al procesador, esta
tendré dos partes diferenciadas. Una parte que actuard como un periférico mas del
bus Advanced Microcontroller Bus Architecture (AMBA) y que sera la encargada
de comunicarse con el LEON, y otra parte encargada de comunicarse con el switch
al que esta conectada. Entonces, la interfaz hara una conversion del protocolo del

bus al de la red, y viceversa.

Antes de empezar a explicar como funciona la interfaz, vamos a explicar como
funciona el bus AMBA.

La interfaz estd conectada a la parte Advanced High-performance Bus (AHB)
del bus, y el acceso se realiza accediendo a un mapa de memoria. Cada disposi-

tivo conectado al bus mapea una cantidad de memoria, y entonces, cada vez que

23

24 CAPITULO 5. INTERFAZ DE RED

<_ Comienzo de la red (BASE)

PROCESADOR 1 ‘_ BASE +0

PROCESADOR 2 €——BASE+1

PROCESADOR N €———BASE+N

/\/

Figura 5.1: Ejemplo de mapa de memoria para una red de N nodos.

desde el procesador accedemos a una de esas posiciones, nos comunicamos con
la interfaz directamente. Al acceder a una posicién podremos leer o escribir en
ella. Por lo tanto, si la interfaz tiene mapeados desde la direcciéon 0x70000000
ala0x70010000 y escribimos en la direccion 0x70000FFF, el arbitro del bus
se encargard de activar la interfaz y transmitirle el dato que hemos escrito. Para
hacer esto, activara la sefial de seleccion de la interfaz (hsel), la sefial de escritura

(hwrite) y dejara la direccién y los datos en haddr y hwdata respectivamente.

Entonces, y teniendo en cuenta que la red es fija y no varia al largo del tiempo,
podremos mapear todos los procesadores conectados en memoria. Para comuni-
carnos, solo tendremos que acceder a la posicién de memoria que corresponda.

Podemos ver un mapa de memoria de ejemplo en la figura 5.1.

Coémo se puede observar en el mapa de memdria, los procesadores estdn ma-
peados desde la direccion BASE a la direccion BASE + N. Teniendo en cuenta que
la direccion BASE sera conocida por el programa, las direcciones de las interfaces
seran 0, 1,2, ..., V.

Este sistema tampoco consumird mucha memoria, ya que cada procesador co-
nectado s6lo necesita una palabra de memoria (4 bytes). Vemos que si, por ejem-
plo, queremos crear una red de 100 procesadores, mapeariamos s6lo 400 bytes

(no llegamos a 1 KByte, y la memoria puede ser del 6rden de MBytes).

Una vez visto el sistema de comunicacion del procesador con la interfaz, pa-

5.1. DESCRIPCION DEL FUNCIONAMIENTO 25

saremos a ver la descripcion de las dos operaciones basicas que podremos realizar

con la interfaz: enviar y recibir datos.

5.1.1. Envio de datos

Nuestra interfaz, siguiendo con las operaciones del bus AMBA; podra enviar
datos en dos ocasiones: cuando quiera enviar un dato a otro procesador, o cuando

quiera escribirlo.

En los dos casos, el procedimiento es el mismo, aunque cambian las opciones

del paquete que se envia.

Para enviar un dato se deberan seguir dos pasos:

1. Escribir en la direccién mapeada del dispositivo con el cual nos queremos
comunicar las opciones necesarias (lectura/escritura o si el paquete es una

rafaga o es Unico).

2. Escribir en la misma direccién de memoria el dato a enviar (en el caso que

estemos enviando algo) o 0 en cualquier otro caso.

Coémo resultado la interfaz enviard un paquete al procesador correspondiente
con el dato que enviemos y la indicacion de escritura o un paquete vacio con la
opcidn de lectura. Dependera del otro procesador el procesar el paquete y realizar

las operaciones necesarias.

5.1.2. Recepcion de datos

La interfaz dispone de un bufer de recepcion de datos para cada nodo de la
red. Cuando la interfaz recibe datos, los coloca en el buifer correspondiente depen-
diendo del origen. Esto es posible, porqué la red es estdtica, y en todo momento

sabemos el nimero de procesadores que estdn conectados.

26 CAPITULO 5. INTERFAZ DE RED

El procesador, entonces, realiza un polling cada cierto tiempo (dictado por el
timer que tenemos incorporado en el sistema) para comprobar si hay datos nuevos

disponibles.

En el caso que no haya datos disponibles, no se hace nada, pero si hay algtin

dato disponible, el procesador lo leerd y hard lo que sea necesario para tratarlo.

Para hacer el polling, el procesador leera de la posicion de memoria del no-
do del cual quiera comprobar si hay algun paquete disponible. En caso de que
esté disponible (se indicard con un bit de control en la palabra que se lea), lo

podra obtener leyendo otra vez de esa misma posicion.

5.1.3. Resumen

Al largo de este capitulo veremos con mas detalle los procesos de escritura y de
lectura. COmo resumen, veremos que existe una correspondencia directa entre las
dos operaciones que podemos realizar en el bus AMBA (lectura o activar hread y
escritura o activar hwrite) con los dos procesos que hemos descrito anteriormente.

Esta correspondencia se muestra en la tabla 5.1

Senal AMBA | Operacion

hread Recepcidn de datos de la red.

hwrite Envio de datos. Puede ser tanto una escritura (envio de un dato
a otro procesador), cdmo una lectura (solicitud de un dato a
otro procesador).

Cuadro 5.1: Resumen de las operaciones de la interfaz segiin los valores de sefiales del
bus AMBA.

5.2. Descripcion de los modulos principales

En esta seccion se van a describir con un poco mds de detalle la funcién de
los moédulos principales de nuestra interfaz. En la figura 5.2 podremos ver un

esquema con todos los médulos de la interfaz y cémo estdn conectados.

27

z

5.2. DESCRIPCION DE LOS MODULOS PRINCIPALES

s

"[O1U0D OP SA[RUIS SB[BUY B[A ‘SOJBP 9P OUIWEI [d SO BSINIS Baul| & [N B] 9P SO[NPOW SO[U0d BWRISRI(] :7°C BINSI]

anand

I8N0y

L 3

pay

[3

|onuod
IN

adAL

Zepa|

Zepa|

Jopesasold

28 CAPITULO 5. INTERFAZ DE RED

5.2.1. Unidad de control

La unidad de control es la que realiza tdédo el trabajo para sincronizar los
componentes y adaptarse tanto al protocolo del bus AMBA cémo al protocolo de

la red. En la figura 5.3 podemos ver un diagrama de estados del comportamiento

hw rite @

ack WAIT

de esta unidad.

resetn

hread

lavaliable
e hread

Figura 5.3: Diagrama de estados del funcionamiento de la unidad de control.

Este diagrama estd simplificado, pero se puede observar que esta partido. Des-
de el nodo INIT (el nodo inicial en el cual espera que lleguen las peticiones) salen
dos caminos. El camino de la parte de arriba de la figura (PACK1 - PACK2 -
WAIT) es el que se sigue cuando se mandan los paquetes, y el camino de abajo

(POLLT1 - POLL2) es el que se sigue cuando se reciben.

Comportamiento del envio

Como hemos visto, un envio se corresponde a una o dos escrituras en la direc-
cién de memoria correspondiente al procesador con el cual nos queremos comu-

nicar.

5.2. DESCRIPCION DE LOS MODULOS PRINCIPALES 29

Primero de todo se escriben las opciones del envio, y después, en la misma
direccién de memoria se escriben los datos (si es necesario). El formato de la

palabra para las opciones tendra el formato descrito en le figura 5.4.

PALABRA DE MEMORIA

CONTROL

NUMERO DE SECUENCIA
Enviar/Recibir
Principio

Unico

Datos disponibles

Figura 5.4: Formato de las opciones en la comunicacion con la interfaz

El significado de los tltimos bits es el siguiente:

Enviar/Recibir indica si el paquete que se tiene que enviar es una solucitud de
lectura o de escritura al procesador correspondiente. Si tiene el valor O,

serd de lectura, y en otro caso, de escritura.
Principio indica si es el principio de una rafaga de varios paquetes.
Fin indica si es el fin de una réfaga.
Unico indica que el paquete es unico.

Datos disponibles es un campo que se usa en la recepcién de paquetes. Se discu-

tird en el siguiente apartado.

Numero de secuencia contiene el nimero de secuencia del paquete.

No podremos tener activos a la vez los bits de principio, fin o tinico.

Una vez hayamos escrito esta palabra de control, en el caso de que sea una
transferencia de escritura, es decir, que querramos enviar un dato, tendremos que

escribir el dato a enviar en la misma direccion de memoria.

Se ha escogido este sistema para evitar que el procesador se quede bloqueado

en el caso que se desee recibir un dato y este no esté disponible. Una vez hecha la

30 CAPITULO 5. INTERFAZ DE RED

peticion de un dato a otro nodo de la red, el procesador podré seguir ejecutando

su programa. Ya recibira el paquete cuando se ejecute la rutina de polling.

Comportamiento de la recepcion

Gracias al timer que hemos incorporado a nuestro sistema, podremos ejecutar
una rutina de polling a la interfaz, para comprobar si tenemos algliin paquete que

espera en la cola de recepcion.

Para poder comprobar si existen paquetes en la cola, lo haremos leyendo de la
posicion de memoria. Entonces, la interfaz nos retornard la palabra de control (ver
figura 5.4. Si el bit nimero cuatro estd activo, tendremos un paquete disponible

para la lectura. En este caso, podremos leerlo de esa misma posicién de memdria.

Al igual que con el envio de datos, se ha decidido este sistema para que el

procesador no se quede bloqueado esperando datos que atn no han llegado.

5.2.2. Buffer de recepcion

Estos buffers almacenan los paquetes que van llegando de la red para que el
procesador los vaya cogiendo durante el proceso de polling.

Es una cola circular, donde los paquetes se ponen en el 6rden del que llegan.

Al guardar los paquetes, lo hacemos de la manera mds equitativa posible. Ya
que tenemos una cola para cada procesador de la red, no nos encontraremos en el

caso que un procesador envie muchos paquetes y no tengamos lugar para ellos.

5.2.3. Packetizer

Este mddulo es el encargado de crear los paquetes para su posterior envio por

la red. Podemos observar el formato de paquete en la figura 5.5.

Podemos ver una descripcion de los campos a continuacion:

5.2. DESCRIPCION DE LOS MODULOS PRINCIPALES 31

0 15 16 23 24 31

Direccién origen Direcci6n destino

Numero secuencia Tamafio Tipo

Datos

Figura 5.5: Formato del paquete que se envia por la red.

Direccion de origen contendrd la direccion de origen del paquete. Esta direccion

serd fija para cada interfaz de la red. Esto es asi porqué la red sera estatica.

Direccion de destino contendra la informacion sobre el destino del paquete. Se
obtendrd del campo haddr del bus AMBA. No se envia el campo directa-
mente, ya que no tenemos porqué tener mapeada la interfaz en el mismo
lugar en todos los procesadores. Por lo tanto, se va a enviar el offset desde

la direccion base (ver el mapa de memoria en la figura 5.1).

Niumero de secuencia contendrd el nimero de paquete para poder ordenar los
paquetes en caso de que se envie una rafaga. El nimero se obtiene de un

contador que se incrementa para cada paquete que se envia.

Tamafo contiene el tamafo de la seccidn de datos del paquete. En el caso de una

solicitud de lectura, tendra el valor O.

Tipo contiene el tipo del paquete. En este campo indicaremos si es una solicitud

de lectura de un dato o una de escritura.

Datos contendra los datos del paquete que se envia.

5.2.4. Wormbhole-splitter

Coémo hemos comentado en el capitulo anterior, la red usa una técnica de

wormhole switching. Con este médulo, dividimos cada paquete creado en diversos

flits.

32 CAPITULO 5. INTERFAZ DE RED

Este mddulo ya se encarga de poner las etiquetas necesarias a los flits. El
primero llevara los flags de inicio, el altimo llevaré el flag de dltimo y el resto no

llevaran ningun flag.

5.2.5. 'Wormbhole-joiner

Es el médulo contrario al wormhole splitter. Cuando llegan flits de la red este

modulo se encarga de ensamblarlos.

Por las caracteristicas de la red, podemos suponer que cuando llega un flit,
estos van a llegar en 6rden. También podemos suponer que no nos van a llegar

flits correspondientes a otros paquetes.

5.3. Diseno del driver

En este apartado veremos el disefio del controlador de la interfaz de red. Se
compondra de un conjunto de funciones que facilitardn el acceso a la red desde

los programas que carguemos en el procesador.

5.3.1. Objetivos del driver

El driver sera el encargado de controlar la interfaz desde un programa para el

procesador LEON. Por lo tanto, tendra las siguientes funciones:

» [nicializar la interfaz, para que esta pueda enviar y recibir paquetes.
= Proporcionar una funcion para enviar datos al resto de procesadores.

= Instalar la rutina de polling para comprobar las colas de recepcion de la

interfaz.

5.3. DISENO DEL DRIVER 33

= Proporcionar una funcién para poder recuperar los paquetes que han llega-
do.

5.3.2. Descripcion de las funciones
Enviar paquete

La funcion que envia un paquete tiene el siguiente prototipo:

int enviar_paquete (int destino, int flags, void data)

= El destino es el identificador del procesador al que queremos enviar los

datos.

= Los flags nos indican el tipo de paquete a enviar. Para aplicar varios tendre-

mos que hacer una OR entre ellos. Las distintas opciones son las siguientes:
e SOL_LECTURA para enviar una solicitud de lectura al otro procesa-
dor.

e SOL_ESCRITURA para enviar una solicitud de escritura al otro pro-

cesador.
e PKT_UNICO indica que sélo se enviard un paquete.

o PKT_INICIO_RAFAGA indica que vamos a empezar a enviar un con-

junto de paquetes.

e PKT_FIN_RAFAGA indica que hemos acabado de enviar la rafaga de

paquetes.
= data contiene los datos a enviar. Tiene un tamaiio fijo de 4 bytes.
Es importante notar que no podremos tener activos a la vez los flags de lectura
y de escritura.

Las opciones de rafaga se usan para la ordenacién de los paquetes en el des-

tino. Si el paquete es tnico se envia directamente, pero si es parte de una rafaga, al

34 CAPITULO 5. INTERFAZ DE RED

leer retornamos también el nimero de secuencia, para que el programa los pueda

reordenar.

Recibir paquete

La funcion de recibir un paquete tendrd el siguiente prototipo:

int recibir_paquete (int destino, intx n_seq, voidx data)

El parametro destino cumple con la misma funcioén que el de la funcién de

enviar paquete. El resto de pardmetros son:

= n_seq es una variable que la funcién actualiza con el nimero de secuencia

del paquete.

= data es la variable que después de llamar a la funcién contiene los datos del
paquete. Esta funcion serd la que se llamard en la rutina de polling con las

distintas direcciones de los procesadores de la red.

Capitulo 6
Simulacion del diseno

En este capitulo veremos las pruebas realizadas sobre la interfaz para compro-
bar que el disefio es correcto. Se han realizado pruebas funcionales simulando las
unidades que forman el sistema. De este modo conseguiremos validar el disefio

de la interfaz.

6.1. Pruebas funcionales

Estas pruebas son las que demuestran que los componentes funcionan correc-

tamente. Vamos a mostrar la simulacién de los componentes:

6.1.1. Unidad de control

Hemos dividido las pruebas del disefio en dos partes: el envio y la recepcién

de paquetes.
Podemos ver el comportamiento del envio en la figura 6.1.

Primero vemos la parte marcada en rojo. Es lo que provoca la transicion al

estado de PACK . Cuando se activa, también se activan hready y enable_register,

35

36 CAPITULO 6. SIMULACION DEL DISENO

4 [state_test/dk
4 [state_testfresetn
4 [state_test/hsel
4 [state_test/hwrite
4 [state_test/hread
4 [state_testfack
“ [state_test/available
4

4

4

4

4

4

[state_testfhready
...testfenable_regis. ..
Jstate_testfinc
Jstate_test/start_fiit
...testfenable_state
...testfsend_data
— Estados
<4 ..testfiofourr_state
<4 ..testfiojnext_state

Figura 6.1: Waveform de la unidad de control durante el envio.

que activard un registro para guardar la palabra de control. Entonces, también

incrementamos el nimero de secuencia activando la sefial inc (marcado en azul).

Al recibir el segundo hwrite, significa que estamos enviando los datos, por
lo tanto activamos la sefal start _flit que nos empezaré a dividir el paquete para

mandarlo por la red.

Cuando hemos acabado de partir el paquete, se activard la sefial ack y volve-

remos al estado inicial, preparados para enviar o recibir mas paquetes.

En la figura 6.2 podemos ver el comportamiento de la unidad de control cuan-

do se lee un paquete de la cola.

Jstate_testjresetn
Jstate_test/hsel
Jetate_testrite
Jetate_test/read
Jstate_test/ack
Jetate_test/available
Jetate_test/hready
...testfenable_regs. ..
Jetate_testfinc
Jstate_test/start_fit

stateini | Jstate polll State ini
+-testiofnext_state state i | Jiat... fstate i sta

Figura 6.2: Waveform de la unidad de control durante la recepcion.

Si nos fijamos en la parte sefialada en rojo, cuando intentamos leer y available
vale 0, volvemos al estado inicial (ya que no hay ningtin paquete disponible). Al

poner available a 1, si hacemos un hread para leer el paquete, pasamos por los

6.1. PRUEBAS FUNCIONALES 37

dos estados (POLL1 y POLL2) donde enviamos los datos al procesador. Luego

volvemos al estado inicial.

6.1.2. Buffer de recepcion

Podemos ver el comportamiento del buffer de recepcién en la figura 6.3.

+ 4 buff_testfval_in
P /buff_testfval_out
P /ouff_testfseq_in
§ /ouff_testjseq_out

Figura 6.3: Waveform del buffer de recepcion.

Hemos realizado las siguientes acciones:

1. Insertar un paquete con datos Ox0123FF23 y numero de secuencia 0x0001

2. Insertar un paquete con datos OxFF23FF23 y nimero de secuencia 0x0002.
En la salida del médulo atin tenemos el primer paquete, ya que es una es-
tructura FIFO.

3. Al leer el paquete, eliminamos el primero y s6lo nos queda OxFF23FF23.

4. Aqui leemos el ultimo paquete. Vemos que available estd a 0 y nos indica

que no tenemos mds paquetes disponibles en esta cola.

6.1.3. Packetizer

Para comprobar este médulo, vamos a comprobar la creacion de un paquete

con las caracteristicas mostradas en la tabla 6.1.

Segun la figura 5.5 el paquete resultante debera ser:

38 CAPITULO 6. SIMULACION DEL DISENO

Direccion origen | 1 (0000000000000001)
Direccion destino | 3 (0000000000000011)
Nuamero de secuencia | 10 (0000000001010)
Tamarfio | 1 (00000001)
Tipo | Escritura + Unico (00001100)
Datos | 01010100100111001111011010011101

Cuadro 6.1: Tabla con los valores del paquete. Para el formato, ver la figura 5.5.

0000 0000 0000 0001 0000 0000 0000 0011

0000 0000 0000 1010 0000 0001 0000 1100

0101 0100 1001 1100 1111 0110 1001 1101

Que en hexadecimal es:

0210003000A010C549C F'69D

Comprobamos en la figura 6.4 la salida de nuestro médulo.

[packetizer_testfslv...
fpacketizer_test/shv...

fpadketizer_test/pk...

Ipacketizer_test/pk...
fpacketizer_test/m_... |0000000000001010 |17 01010
fpacketizer_test/pkt |00010003000A0100 [500 000AQ 100549CFE9D

0.00 ns|
Figura 6.4: Waveform del packetizer.

La parte sefialada en amarillo nos muestra el paquete una vez ya ensamblado.

6.1.4. Wormbhole splitter

Si cogemos el paquete anterior y lo dividimos en flits veremos el comporta-

miento del mdédulo wormhole-splitter. Lo podemos ver en la figura 6.5.

N B~ W N =

6.1. PRUEBAS FUNCIONALES 39

1
0
1
0

0

10
00010003001
50

Figura 6.5: Waveform del médulo wormhole splitter.

La parte marcada en rojo es el start flit, la parte marcada en amarillo son los
diversos middle flits y la parte en azul es el end flit. Podemos ver, también, que
cuando envia los flits, si la sefial ready que proviene del router al que estard co-
nectado estd a 0, es decir, que no estd preparado para recibir flits, el médulo se
espera hasta que esté disponible, y que cuando acaba, avisa que ya se ha mandado
(sefial done) y un ciclo después desactiva la sefial ncon, encargada de pedir una

conexion al router donde esta conectada la interfaz.

6.1.5. Wormbhole joiner

Para el testeo de este mdodulo, se ha procedido a conectarlo justo después del

wormhole splitter.

De este modo, si generamos los flits de un paquete y luego los unimos con el

mobdulo, el paquete que deberemos obtener serd el mismo.

Para comprobar el funcionamiento, hemos creado un testbench automatizado,
que envia el paquete, lo divide en flits, y luego reconstruye el paquete. Una vez
hecho esto, lo comparamos con el paquete original para ver si es igual. La parte

relevante del cédigo del testbench lo encontramos en el listado 6.1.

Listing 6.1: Codigo del festbench automatizado

wait for 600 ns;

assert pktl = packet_out
report “Test_failed”
severity failure;

assert pktl /= packet_out

40 CAPITULO 6. SIMULACION DEL DISENO

6 report "Test_succeeded”

7 severity failure;

Al ejecutar el codigo, comprobamos si los paquetes son iguales. Si no lo son,
imprimimos “Test failed”. Luego para acabar el programa, si los dos paquetes son

iguales, imprimimos “Test succeeded”.

Podemos ver en la figura 6.6 que los dos paquetes son iguales:

=
+ ; fwhj_test/packet_out | 0001000300040 10C TSR EREEEE RN 3000A0 10C549CFE3D

+ w‘ Jwhij_test/pkt1 00010003000A010C

803 ns D rs

Figura 6.6: Waveform del médulo wormhole joiner.

El paquete marcado en rojo es el paquete que mandamos, y el marcado con

azul es el paquete reconstruido.

Capitulo 7
Conclusiones

En este capitulo expondremos las conclusiones a las que hemos llegado des-

pués de la realizacion de este proyecto.

En este proyecto hemos estudiado distintos enfoques a la implantacién de una

interfaz para NoCs.

En nuestro caso, hemos disefiado una interfaz simple, capaz de adaptar un
procesador (el LEON3) al protocolo usado en una NoC. Se ha disefiado la interfaz
para intentar que sea lo mds transparente posible, de este modo, el procesador se
comunica con otro del mismo modo que si estuviera usando el bus AMBA, sélo

cambia el codigo del programa ejecutado en el procesador.

Durante la implementacion, hemos descartado opciones como métodos que
aseguran fiabilidad punto a punto, dejando esta tarea al programador de las apli-
caciones para el LEON. Asi, la interfaz sélo actia de adaptador entre el bus y la
NoC.

A lo largo de la construccion de la interfaz, hemos visto varias mejoras apli-
cables al disefio, aunque afiadiriamos complejidad a esta. Por ejemplo, podriamos
afadir fiabilidad en las comunicaciones punto a punto, para liberar al programa
de esta tarea. También podriamos incluir la posibilidad de enviar mas datos en

un mismo paquete, aprovechando mas el ancho de banda de la red y aumentando

41

42 CAPITULO 7. CONCLUSIONES

el throughput. Otra mejora mas que podriamos incluir es cambiar el proceso de
polling por interrupciones. Cada vez que llegue un paquete, en lugar de esperar a
que se compruebe si hay alguno disponible, se lanzaria una interrupcién para que

el procesador la procese.

Para concluir, es importante resaltar la importancia del estudio de las interfa-
ces de red, ya que es una parte fundamental del sistema. Si podemos conseguir que
las comunicaciones sean independientes del disefio de los mddulos que forman la
red (procesadores por ejemplo), conseguiremos adaptar los IP cores existentes al
paradigma de las NoC. Al hacer que las interfaces oculten los detalles de imple-
mentacion de la red, conseguimos desacoplar el disefio de los IP cores y de la red,
con lo que los podremos disefiar al mismo tiempo, reduciendo el tiempo necesario

para construir un sistema.

Capitulo 8

Lista de acronimos

SoC System-On-Chip

MPSoC Multi-Procesor System-On-Chip

NoC Network-On-Chip

DSP Digital Signal Procesor

RISC Reduced Instruction Set Computer

AMBA Advanced Microcontroller Bus Architecture
AHB Advanced High-performance Bus

APB Advanced Peripherial Bus

43

44

CAPITULO 8. LISTA DE ACRONIMOS

Bibliografia

[1]

[3]

[5]

[6]

Sergio De Florio, Eberhard Gill, Simone D’ Amico, and Andreas Grillenber-
ger. Performance comparison of microprocessors for space-based navigation

applications.

H. C. Freitas, D. M. Colombo, F. L. Kastensmidt, and P. O. A. Navaux. Eva-
luating network-on-chip for homogeneous embedded multiprocessors in fp-
gas, 2007. ID: 1.

Slobodan Lukovic and Leandro Fiorin. An automated design flow for noc-
based mpsocs on fpga. Rapid System Prototyping, IEEE International Works-
hop on, 2008.

Sanjay Pratap Singh, Shilpa Bhoj, Dheera Balasubramanian, Tanvi Nagda,
Dinesh Bhatia, and Poras Balsara. Generic Network Interfaces for Plug and
Play NoC Based Architecture, volume 3985/2006 of Reconfigurable Compu-
ting: Architectures and Applications, pages 287-298. Springer Berlin / Hei-
delberg, 2006.

Li Ping Sun, El Mostapha Aboulhamid, and J. P David. Network on chip
using a reconfigurable platform, 2003. ID: 1.

M.D. van de Burgwal, G.J.M. Smit, G.K. Rauwerda, and P.M. Heysters. Hy-

dra: an energy-efficient and reconfigurable network interface.

45

Firmat: Francesc Vila Garcia
Bellaterra, Setembre de 2009

46

Resum

L’aparicié d’un nou paradigma per al disseny de sistemes multiprocessador,
les NoC; requereixen una manera d’adaptar els IP cores ja existents i permetre
la seva connexié en xarxa. Aquest projecte presenta un disseny d’una interficie
que aconsegueix adaptar un IP core existent, el LEON3; del protocol del bus AM-
BA al protocol de la xarxa. D’aquesta manera i basant-nos en idees d’interficies
discutides en I’estat de I’art, aconseguim desacoblar el processador del disseny i

topologia de la xarxa.

Resumen

La aparicion de un nuevo paradigma para el disefio de sistemas multiprocesa-
dor, las NoC; requieren un modo para adaptar los IP cores existentes y permitir
su conexion en red. En este proyecto se presenta el disefio de una interfaz que
consigue adaptar un IP core existente, el LEON3; del protocolo del bus AMBA
al protocolo de la red. De este modo, y basdndonos en algunas ideas de interfaces
discutidas en el estado del arte, conseguimos desacoplar el procesador del diseiio

y topologia de la red.

Abstract

The emergence of a new paradigm for the multiprocessor systems design, the
NoC; requires a way to adapt existing IP cores to this new communication back-
bone, in order to be able to connect them to a network. In this project, we present
an interface design that achieves to adapt an existing IP core, the LEON3 pro-
cessor; from the AMBA bus to the network protocol. In this way and taking into
account some ideas from the designs discussed in the state of art, we can decouple

the processor design from the network design and topology.

