
DISSENY D’UN ADAPTADOR D’IPS PER A NOCS
TOLERANTS A FALLES

Memòria del projecte de final de carrera corresponent

als estudis d’Enginyeria Superior en Informàtica pre-

sentat per Francesc Vila Garcia i dirigit per Eleni Ka-

nellou i Carles Ferrer.

Bellaterra, Setembre de 2009

El firmant, Carles Ferrer , professor del Microelectrònica

i Sistemes Electrònics de la Universitat Autònoma de

Barcelona

CERTIFICA:

Que la present memòria ha sigut realitzada sota la seva di-

recció per Francesc Vila Garcia

Bellaterra, Setembre de 2009

Firmat: Carles Ferrer

II

Índice general

1. Introducción 1

1.1. Motivación y objetivos . 1

1.2. Pasos seguidos y estructura de la memoria 5

2. Estado del arte 7

3. Descripción del entorno 9

3.1. GRLIB . 9

3.1.1. LEON3 . 10

3.1.2. AMBA . 11

3.1.3. Otros componentes . 12

3.1.4. Red . 13

3.1.5. Protocolo . 15

4. Planificación 19

5. Interfaz de red 23

5.1. Descripción del funcionamiento 23

III

5.1.1. Envı́o de datos . 25

5.1.2. Recepción de datos . 25

5.1.3. Resumen . 26

5.2. Descripción de los módulos principales 26

5.2.1. Unidad de control . 28

Comportamiento del envı́o 28

Comportamiento de la recepción 30

5.2.2. Buffer de recepción . 30

5.2.3. Packetizer . 30

5.2.4. Wormhole-splitter . 31

5.2.5. Wormhole-joiner . 32

5.3. Diseño del driver . 32

5.3.1. Objetivos del driver . 32

5.3.2. Descripción de las funciones 33

Enviar paquete . 33

Recibir paquete . 34

6. Simulación del diseño 35

6.1. Pruebas funcionales . 35

6.1.1. Unidad de control . 35

6.1.2. Buffer de recepción . 37

6.1.3. Packetizer . 37

6.1.4. Wormhole splitter . 38

IV

6.1.5. Wormhole joiner . 39

7. Conclusiones 41

8. Lista de acrónimos 43

Bibliografı́a 44

V

VI

Índice de figuras

1.1. Ejemplo de un diagrama de un SoC. 2

3.1. Los dos tipos de bus AMBA conectados por el bridge. 12

3.2. Pantalla de make xgrlib. Vemos los botones de acceso a las herra-

mientas de simulación, sı́ntesis, y place and route. 14

3.3. Pantallas de make xconfig. Podemos ver la pantalla de configura-

ción (arriba a la izquierda) y las opciones del procesador y del bus

AMBA. 15

3.4. Vemos la estructura de directorios de la GRLIB y la copia del

diseño base para la placa Digilent XUP para crear el proyecto NI. 16

3.5. Estructura de un bloque básico. El elemento que será unido por

los routers. 17

3.6. Topologı́a ejemplo de una red. Los bloques están descritos en la

figura 3.5. 17

4.1. Diagrama de GANTT con la planificación prevista del proyecto. 21

5.1. Ejemplo de mapa de memoria para una red de N nodos. 24

5.2. Diagrama con los módulos de la NI. La lı́nea gruesa es el camino de

datos, y la fina las señales de control. 27

VII

5.3. Diagrama de estados del funcionamiento de la unidad de control. 28

5.4. Formato de las opciones en la comunicación con la interfaz 29

5.5. Formato del paquete que se envı́a por la red. 31

6.1. Waveform de la unidad de control durante el envı́o. 36

6.2. Waveform de la unidad de control durante la recepción. 36

6.3. Waveform del buffer de recepción. 37

6.4. Waveform del packetizer. 38

6.5. Waveform del módulo wormhole splitter. 39

6.6. Waveform del módulo wormhole joiner. 40

VIII

Índice de cuadros

5.1. Resumen de las operaciones de la interfaz según los valores de señales

del bus AMBA. 26

6.1. Tabla con los valores del paquete. Para el formato, ver la figura 5.5. . . 38

IX

X

Listings

6.1. Código del testbench automatizado 39

XI

Capı́tulo 1

Introducción

1.1. Motivación y objetivos

Durante los últimos años, muchas aplicaciones en distintos ámbitos se im-

plementan usando sistemas empotrados. Reproductores MP3, PDAs y teléfonos

móviles son claros ejemplos de estas aplicaciones. Estos dispositivos implemen-

tan, cada vez más, una gran variedad de aplicaciones y protocolos para comuni-

carse entre sı́, ya sean protocolos de acceso a internet, reproductores de video o

videojuegos en 3D; aumentando ası́ tanto su funcionalidad cómo su complejidad.

Para el diseño y posterior implementación de estos dispositivos, tenemos dis-

tintas maneras de afrontar este problema. Entre muchas soluciones, tenemos los

System-On-Chips (SoCs), los Multi-Procesor System-On-Chips (MPSoCs) (Sis-

temas SoC con múltiples procesadores) y las Network-On-Chips (NoCs). Nos

centramos en estos tres diseños porqué un SoC supone una reducción en el tiem-

po de desarrollo y un decremento en los costes de producción. Además estas tres

metodologı́as están relacionadas. Un MPSoC, cómo su propio nombre indica; es

un SoC con más de un procesador, y un NoC es un sistema MPSoC cambiando la

capa de comunicación entre los elementos.

Los sistemas SoC suelen tener un procesador, memoria y varios periféricos

1

2 CAPÍTULO 1. INTRODUCCIÓN

e interfaces con el exterior (ethernet, wifi, USB entre otros), todo conectado al-

rededor de un bus. Cómo podemos observar en la figura 1.1, tendremos un sis-

tema formado por un microprocesador (el ARM), interfaces para interactuar con

el exterior (puertos serie, USB, conversor analógico-digital, bus CAN) y distin-

tos periféricos cómo timers, y reguladores de voltaje, interconectado por el bus

AMBA.

Figura 1.1: Ejemplo de un diagrama de un SoC.

Podemos ver que con estos componentes ya tenemos un sistema completo, que

puede cumplir diversas funciones de un modo sencillo. Dependiendo del programa

que se cargue en memoria y de los periféricos e IPs que le conectemos, podemos

conseguir desde un reproductor de video a un teléfono móvil o un reproductor

MP3.

Dada la evolución de la tecnologı́a, cada vez conseguimos una densidad de

integración mayor y podemos integrar más componentes en un mismo chip. Al in-

sertar más procesadores, microcontroladores o Digital Signal Procesors (DSPs) al

1.1. MOTIVACIÓN Y OBJETIVOS 3

sistema obtenemos los MPSoC. Siguiendo este diseño, obtendremos las ventajas

que nos ofrece un sistema SoC, y además tendremos varias unidades de proceso.

Todos los componentes del MPSoC están interconectados por un bus del sis-

tema compartido, y se deberá controlar el acceso a este. Por lo tanto, para poder

hacerlo necesitamos un sistema de arbitraje, dónde decidiremos el componente

que accede al bus. Este tipo de acceso puede suponer un cuello de botella, ya que

no todos los componentes se podrán conectar con los otros a la vez. Además nos

encontramos delante de una situación poco escalable. Otro problema que nos en-

contramos es que a la vez que se añaden componentes, aumenta la complejidad

del sistema de arbitraje, cosa que nos puede penalizar en rendimiento y/o área.

Para solucionar estos inconvenientes de los MPSoC, encontramos las NoC, que

nos proporcionan un enfoque distinto a la comunicación entre los distintos com-

ponentes de un MPSoC.

Las NoC aplican la teorı́a de comunicación de las redes convencionales a la

comunicación dentro de un mismo circuito. Por lo tanto, se cambian las comuni-

caciones usando un bus compartido y un sistema de arbitraje a una red distribuida

formada por enlaces punto a punto. La red está formada por los componentes (no-

dos) conectados con routers, permitiendo ası́ la comunicación de todos los nodos

con el resto.

Aún usando la teorı́a de redes, al ser una red montada en un mismo circuito,

no será necesario implementar todas las caracterı́sticas de una red convencional, a

la vez que también tendremos que contemplar e implementar casos que no se dan

en estas. Por ejemplo, un detalle que diferencia las redes de ordenadores conven-

cionales con las NoCs es que la topologı́a será fija, es decir, que no variará en el

tiempo.

Con este nuevo paradigma conseguimos aumentar la escalabilidad del sistema

y aumentar la densidad de integración. Pasaremos de buses largos a enlaces punto

a punto más cortos. El problema que tienen los buses, es que ocupan mucho es-

pacio, y es muy difı́cil disminuir la distancia entre las pistas que lo componen, ya

que existe riesgo de interferencias. Usando los enlaces de las NoC, conseguiremos

4 CAPÍTULO 1. INTRODUCCIÓN

reducir el tamaño de las conexiones teniendo enlaces más cortos y más estrechos,

es decir, menos pistas; y nos deshacemos del cuello de botella que supone tener

un bus compartido. Podremos explotar el paralelismo en las conexiones entre los

componentes porqué los enlaces pueden operar simultáneamente.

Por las razones anteriores, es interesante aplicar el paradigma de las NoC en

el diseño de sistemas multiprocesador, ya que ofrece varias ventajas respecto a los

sistemas con bus compartido, convirtiéndolo en una opción para el futuro diseño

de este tipo de sistemas.

El estudio realizado en este trabajo detalla una manera de conseguir el paso

de las arquitecturas MPSoC a arquitecturas NoC, de la forma más directa posible,

es decir, que sea posible pasar de un sistema MPSoC existente a una NoC susti-

tuyendo sólo la capa de comunicaciones. Para que esto sea posible, se creará una

interfaz que actuará cómo adaptador entre los procesadores y la red.

Esta interfaz será la encargada de convertir entre el protocolo del bus usado

para el MPSoC, que será el protocolo que ya utilizan todos los componentes; y el

protocolo usado en la red. De este modo, la interfaz actuará cómo un adaptador

entre los procesadores y la red. Con esto, conseguiremos que para los distintos

procesadores que integran el sistema, el hecho de estar conectados por una red

sea transparente. Éstos actuarán cómo si estuvieran conectados a un bus, y será la

interfaz la encargada de hacer los cambios necesarios. Ası́ conseguiremos que

no sean necesarias modificaciones en los IP cores que formen nuestro sistema

multiprocesador.

Además de la interfaz necesitamos un componente software. Esta parte será una

librerı́a con varias funciones que presentará al programa un modo de acceder a la

red, a modo de driver1 de la interfaz. Con este conjunto de funciones se facili-

tará la conversión del programa que se ejecuta en los procesadores para poder

comunicarse en red. Es importante tener en cuenta que la interfaz sólo nos permi-

te conectar los procesadores a la red sin realizar ningún cambio en el componente

1Librerı́a que controla un periférico, en este caso serán un conjunto de funciones para poder
comunicarnos usando la interfaz.

1.2. PASOS SEGUIDOS Y ESTRUCTURA DE LA MEMORIA 5

hardware del sistema. El software que se ejecuta sı́ que tiene que estar preparado

para conectarse a la red usando nuestro driver.

Cómo veremos más adelante, el trabajo se centrará en hacer una interfaz que

sea capaz de convertir del protocolo del bus AMBA al protocolo de la red. Usare-

mos la GRLIB, que es una librerı́a de IP cores (entre otros contiene el procesador

LEON3) para el diseño de sistemas SoC y MPSoC.

Con la interfaz no será necesario ningún cambio en el diseño del LEON3, ya

que se comunicará usando el bus AMBA, y sólo se tendrá que usar nuestro driver

para poder programar un software capaz de aprovechar la red.

Ası́ pues, tendremos varios bloques formados por el LEON3, una RAM y

nuestra interfaz; conectados a través de una serie de routers formando una NoC.

1.2. Pasos seguidos y estructura de la memoria

Los pasos que vamos a seguir para conseguir la interfaz son los siguientes:

Estudiar el estado del arte centrándonos en el trabajo realizado en NoCs y

especialmente interfaces.

Estudiar varios procesadores (con sus entornos)

Diseñar la interfaz

Simular la interfaz

Implementar un driver

Para poder lograr el objetivo de este trabajo, primero hemos hecho un estu-

dio del “estado del arte”. Con dicho estudio pretendemos conseguir una idea de

los progresos que se han hecho hasta el momento en el campo de las NoC, con

especial atención en el diseño de las interfaces para la red. Además, sumando la

6 CAPÍTULO 1. INTRODUCCIÓN

investigación que hemos realizado sobre distintos procesadores, y de los entornos

de desarrollo a los que están asociados; nos permitirá acotar y estudiar deteni-

damente las investigaciones realizadas sobre NoCs con el entorno escogido. Este

estudio lo veremos con más detalle en el capı́tulo 2 de la memoria.

Al mismo tiempo que realizamos el estudio anterior, también estudiaremos los

distintos procesadores que tenemos disponibles para la realización del proyecto.

Ya que los procesadores suelen tener un entorno asociado para el diseño de SoC

y/o MPSoC, también tomaremos en cuenta dicho entorno. Junto al paso anterior,

ya que están ı́ntimamente relacionados; obtendremos una base sobre la que cons-

truiremos nuestro diseño.

En el capı́tulo 3 de la memoria, describiremos el entorno del proyecto. Expli-

caremos con detalles las herramientas y dispositivos usados en la realización de la

interfaz.

Una vez descrito el estado del arte y el entorno de trabajo, en el capı́tulo 4

veremos la planificación del proyecto. Explicaremos los pasos que realizaremos y

el tiempo invertido en cada paso.

En el capı́tulo 5, dedicado al diseño de la interfaz vamos a entrar en detalle so-

bre el funcionamiento de la misma. Veremos que funcionalidades aporta y cómo

se han conseguido, además de ver el porqué se han tomado distintas decisiones

de diseño. Una vez explicado esto, introduciremos el driver realizado para la in-

terfaz, empezando por el modo de programar y de acceder a nuestro dispositivo y

explicando las funciones que podemos realizar con él.

El último paso dedicado al diseño de la interfaz, explicado en el capı́tulo 6 de

la memoria; contiene las pruebas hechas al diseño. En este capı́tulo explicaremos

los resultados de la simulación de nuestro diseño, y presentaremos programas de

test, que pondrán a prueba nuestra interfaz. Con esto conseguiremos validar el

funcionamiento del core y del driver diseñados para la interfaz.

Capı́tulo 2

Estado del arte

Existen varios artı́culos que exploran la construcción de NoCs. Algunos, cómo

Henrique C. Freitas et al. [2]; realizan un estudio del rendimiento de los sistemas

NoC frente a sistemas MPSoC, cambiando distintos parámetros, cómo el número

de procesadores a conectar o el número de buses del sistema. En él se muestra que

las soluciones basadas en NoC son más escalables que un MPSoC, montando un

sistema con varios procesadores Microblaze tanto en red (formando la NoC) cómo

con el bus OPB (formando un MPSoC). En [5], Li Ping Sun et al. también reali-

zan un estudio sobre el rendimiento de sistemas NoC, pero, al contrario que [2],

sigue una arquitectura hı́brida, es decir, los procesadores disponen de su propia

memoria, y no comparten la misma que está conectada por una red.

Otros estudios, cómo el realizado por Slobodan Lukovic et al. en [3]; descri-

ben una metodologı́a para el diseño de NoCs usando también el Microblaze de

Xillinx. En este artı́culo se describen los componentes que forman la red y las

Network Interfaces que conectan entre sı́ los procesadores y los bloques de me-

moria, aunque la importancia del artı́culo reside en la modificación del flujo de

diseño del EDK1 de Xillinx para añadir la posibilidad de crear NoCs.

Nos encontramos que hay muchos más artı́culos sobre distintos diseños de

1EDK es el Embedded Development Kit. Es un grupo de herramientas de Xillinx para el diseño
de sistemas empotrados. También contiene un conjunto de IP cores.

7

8 CAPÍTULO 2. ESTADO DEL ARTE

NoCs que artı́culos centrados en la interfaz, aunque sea una parte importante que

nos permite poder adaptar las IP existentes a una arquitectura en red. Aún ası́, nos

encontramos con artı́culos cómo el de M.D. van de Burgwal [6] que se centra en

el estudio de una interfaz, Hydra. El uso de esta interfaz es para adaptar a una red

un procesador configurable, el Montium TP. Sanjay Pratap Singh, en [4]; describe

una interfaz genérica. Lo consigue añadiendo una capa totalmente independiente

entre el procesador y dicha interfaz. De este modo consigue que el control sobre

la interfaz no cambie, y se pueda adaptar a cualquier IP core sólo cambiando la

capa más cercana al core.

En [6], Andrei Rădulescu et al., presentan el diseño de una interfaz que des-

acopla la comunicación de la computación. Es decir, actúa en el la capa de trans-

porte del nivel OSI, que es la primera capa dónde los servicios que proporciona la

interfaz son independientes de la implementación de la red. Proponen un diseño

modular, con una parte común (el kernel de la NI) que es extensible a través de

módulos (shells). Estos módulos le proporcionan funcionalidades extra (cómo por

ejemplo, implementación de varios protocolos de bus).

En resumen, los diversos estudios realizados sobre las interfaces de red, pro-

ponen un diseño que adapta los IP cores existentes, permitiendo su conexión en

red. Las interfaces coinciden en que no se tenga que cambiar el diseño de los

componentes a conectar, ocultando la implementación de la red.

Capı́tulo 3

Descripción del entorno

3.1. GRLIB

La GRLIB es una librerı́a de IP cores, especialmente diseñada para el desarro-

llo y construcción de sistemas SoC.

Un IP core es una unidad de código, celda o diseño de chip que es reutilizable.

Por lo tanto, una librerı́a de IP cores es un conjunto de unidades, con una relación

entre sı́.

En concreto, la GRLIB se compone de un procesador (el LEON3) y de varios

componentes, por ejemplo, controladores para distintos tipos de memoria; comu-

nicados usando un mismo bus, el bus AMBA.

Ya que todos los componentes que la forman están centrados para comunicarse

con este bus, nos aseguramos la interoperabilidad entre todos los componentes y

su fácil interconexión. Cómo veremos más adelante, el bus nos proporcionará una

manera sencilla de añadir nuevos elementos al sistema (ya sean de la misma li-

brerı́a o creados por nosotros mismos) porqué el árbitro asigna automáticamente

recursos a los componentes conectados y permite su control desde el procesador.

Por lo tanto, podemos considerar que disponemos de un bus Plug & Play.

9

10 CAPÍTULO 3. DESCRIPCIÓN DEL ENTORNO

Todos los componentes de la GRLIB están diseñados para poder ser sinteti-

zados en una gran variedad de FPGAs de distintos fabricantes. Esta caracterı́stica

nos quita una restricción importante sobre el hardware que tenemos que usar. La

FPGA que usaremos será la VirtexII-Pro de Xillinx integrada en un kit de diseño

de Digilent. En concreto es el kit Digilent XUP. Usar el kit nos da flexibilidad

porqué integra, además de la FPGA; varios conectores, posibilidad de conectar

memoria externa y conectores de expansión para conectarlo a distintas placas,

convirtiéndolo en una solución ideal de prototipaje. Este kit tiene un precio espe-

cial para instituciones académicas, reduciendo el coste total de los materiales del

proyecto.

Por último, el flujo de diseño en este entorno es intuitivo, ya que proporciona

una interfaz única para la simulación y posterior sı́ntesis del proyecto. Esta inter-

faz se compone de una serie de scripts y Makefiles que se gestionan a través de

una interfaz gráfica que nos permitirá configurar los componentes que queremos

del sistema. Esta interfaz es independiente de la FPGA que se utilice. La GRLIB

contiene varios diseños de ejemplo. Son sistemas multiprocesador parametriza-

bles y se pueden cambiar el número de procesadores, periféricos y memoria con

los mencionados scripts cómo veremos más adelante. Hemos modificado este sis-

tema por uno con un solo procesador y la interfaz de red.

3.1.1. LEON3

El procesador utilizado para la elaboración de este proyecto es el LEON3. Este

procesador nos lo proporciona la GRLIB en forma de IP core, por lo tanto, cumple

con las caracterı́sticas de todos los componentes de la librerı́a. Está desarrollado

por GAISLER, la misma compañı́a que distribuye la GRLIB.

El LEON es una implementación de la versión V8 de la arquitectura Sparc.

Fue diseñada por Sun Microsystems en 1986. El Sparc V8 es un procesador pura-

mente big endian, e implementa un conjunto de instrucciones Reduced Instruction

Set Computer (RISC).

3.1. GRLIB 11

El LEON3, es un procesador con licencia GPL, por lo tanto de código abierto.

Tiene dos versiones, el LEON3 que es gratis y el LEON3FT, que no lo es. La dife-

rencia es que el LEON3FT tiene varios cambios para ser un procesador tolerante

a fallos, cómo códigos de corrección de errores en registros y cache que no tienen

penalización de tiempo respecto al LEON3.

El LEON3FT, por su tolerancia a fallos, es un procesador que se usa en apli-

caciones aeroespaciales. La versión 2 de este procesador fue diseñada por encargo

por la agencia espacial europea. La versión no tolerante a fallos, se usa, por ejem-

plo; en aplicaciones multimedia (unas 70 compañı́as lo usaban en el 2008).

Este procesador tiene un gran rendimiento cómo se puede ver en la Tabla 5

de [1], dónde se hace una comparativa de los tiempos de proceso para un mismo

programa de distintos procesadores, quedando en segundo lugar el LEON3 (y en

primer lugar el LEON2). El procesador es totalmente configurable con los scripts

de la GRLIB.

3.1.2. AMBA

El AMBA es el estándar de facto para las comunicaciones entre los distintos

componentes de un SoC. Por esto facilita una metodologı́a de reutilización de

los distintos componentes (nos ofrece un estándar y compatibilidad con distintos

componentes de varios fabricantes). En la GRLIB es el bus que conecta todos los

IP cores que la componen, por ejemplo, el LEON, la memoria y nuestra interfaz.

La especificación está pensada para facilitar la interconexión de varios proce-

sadores, convirtiéndolo en un candidato perfecto para el diseño de sistemas SoC o

MPSoC. En el proyecto usamos la versión 2 de la especificación, que dispone de

dos protocolos que cubren las necesidades, tanto de los componentes que requie-

ren una alta tasa de transferencia cómo los que no requieren tanto ancho de banda.

Los protocolos (no los protocolos, los buses) están conectados por un adaptador

(bridge) Podemos ver en la figura 3.1, que los dos buses se pueden comunicar a

través del bridge. Los protocolos del bus son:

12 CAPÍTULO 3. DESCRIPCIÓN DEL ENTORNO

El Advanced High-performance Bus (AHB): Es la parte del bus dónde se

conectan los componentes del sistema que necesitan una tasa de transfe-

rencia más alta. En este bus conectaremos el procesador, la memoria y la

interfaz de red.

El Advanced Peripherial Bus (APB): Es dónde se conectan los periféricos

que no requieren tanto ancho de banda, cómo controladores de teclado o

puertos serie. En nuestro diseño conectaremos la DSU (Debugging Support

Unit) que nos proporciona acceso a la E/S estándar desde el programa y un

timer para el polling.

AHB-APB
Bridge

AHB Bus

APB Bus

Figura 3.1: Los dos tipos de bus AMBA conectados por el bridge.

3.1.3. Otros componentes

Para completar el entorno de diseño, los distribuidores de la GRLIB, además

de la librerı́a nos ofrecen varias herramientas más:

BCC: Un compilador cruzado para facilitar el desarrollo de programas para el

sistema. Con él vamos a poder programar en un lenguaje de más alto nivel

que el ensamblador los distintos programas de test para la interfaz y la red.

TSIM: Un simulador del procesador que nos permitirá probar el código de un

modo más rápido que sintetizando el diseño en una FPGA o cargando el

programa en el Modelsim (el simulador de VHDL). Cómo inconveniente es

3.1. GRLIB 13

que no podemos añadir nuestra interfaz (sólo emula el LEON3) pero nos

servirá para ver el comportamiento de nuestro programa.

GRMON: Un monitor de debug, que se comunica con la DSU de nuestro sistema

y nos permite el debugging del sistema ya sintetizado en la FPGA. Con esta

herramienta podremos observar el comportamiento más realista del sistema,

ya que se ejecuta sobre la FPGA. Gracias al GRMON, se podrá obtener una

funcionalidad cómo con el TSIM, pero con nuestra interfaz ya añadida al

sistema.

ENTORNO GRÁFICO: La GRLIB nos proporciona un entorno gráfico de con-

figuración para los distintos componentes. Se puede acceder a él de dos

modos distintos: make xgrlib y make xconfig. Desde la ventana del primer

comando podemos lanzar los comandos de simulación, sı́ntesis y place and

route. También podemos escoger el programa que se lanzará para cada tarea

y lanzar la ventana de configuración. El segundo comando nos lanza la con-

figuración del diseño. Desde ésta podremos escoger los componentes que

queremos que tenga nuestro sistema y configurar el procesador para adap-

tarlo a nuestras necesidades. Podemos ver las interfaces en la figura 3.2 y

3.3.

Para empezar un nuevo diseño con la GRLIB, después de extraerla, haremos

una copia de uno de los diseños que vienen con la librerı́a. Luego, ya podremos

empezar a incluir nuestros ficheros en el sistema, añadiendo nuestro código y edi-

tando el top del sistema (y el Makefile para añadir nuestro dispositivo). Podemos

ver la estructura básica de directorios de la GRLIB y la creación de un proyecto

nuevo llamado NI en la figura 3.4

3.1.4. Red

La red para la que está pensada la interfaz unirá varios procesadores conecta-

dos mediante routers. No se conectarán sólo los procesadores, si no que mediante

14 CAPÍTULO 3. DESCRIPCIÓN DEL ENTORNO

Figura 3.2: Pantalla de make xgrlib. Vemos los botones de acceso a las herramien-
tas de simulación, sı́ntesis, y place and route.

la interfaz se unirán unos bloques compuestos por procesador, memoria y nuestra

interfaz (entre otros componentes) cómo se puede ver en la figura 3.5.

La función de los componentes se describe a continuación (en orden de dere-

cha a izquierda y de arriba a abajo):

LEON3: Es el procesador del sistema. Se encargará de ejecutar el programa que

corresponda al bloque.

Memoria: Es dónde se guardará el programa que tiene que ejecutar el bloque.

Interfaz: Es la encargada de adaptar las comunicaciones entre el procesador (bus

AMBA) y la red. Es el objetivo de este trabajo.

Árbitro AMBA: Es el componente que se encargará de controlar el acceso al

3.1. GRLIB 15

Figura 3.3: Pantallas de make xconfig. Podemos ver la pantalla de configuración
(arriba a la izquierda) y las opciones del procesador y del bus AMBA.

bus para que todos los componentes se puedan comunicar entre sı́. Nos lo

proporciona la GRLIB.

AHB-APB bridge: Cómo hemos visto anteriormente, el bridge se encargará de

comunicar los dos buses (el AHB y el APB). También nos lo proporciona la

GRLIB.

Timer: Con éste podremos fijar un intervalo de polling para comprobar si ya

hemos recibido algún paquete. Forma parte de la GRLIB.

Como vemos, cada bloque contiene un procesador y una memoria, por lo tanto,

la red tendrá una topologı́a hı́brida, es decir; los procesadores se conectan a las

memorias usando un bus (como un SoC) pero los bloques se conectarán entre

sı́ por una red (ver la figura 3.6)

3.1.5. Protocolo

La red usará una técnica de switching llamada wormhole switching. En esta

técnica, los paquetes se dividen en varios trozos más pequeños llamados flits1

para su transmisión por la red. Tendremos entonces, tres tipos de flits:
1Flit es un acrónimo de FLow control biTS.

16 CAPÍTULO 3. DESCRIPCIÓN DEL ENTORNO

Figura 3.4: Vemos la estructura de directorios de la GRLIB y la copia del diseño
base para la placa Digilent XUP para crear el proyecto NI.

El header flit es el primer flit que se transmite, y contiene información sobre

la ruta que debe seguir el paquete. Es decir, contiene la dirección de destino

de éste. Su función es reservar el camino por dónde pasarán el resto de flits.

Los body flit son los siguientes flits que se envı́an después del header flit.

Pueden ser un número variable dependiendo del tamaño del paquete a trans-

mitir. En nuestro caso es un número fijo, ya que todos los paquetes tienen el

mismo tamaño.

El tail flit es el último flit que se manda, y su función es la de ir liberando

los recursos reservados por el header flit. De este modo, el camino seguido

quedará libre otra vez

Ası́ nos encontramos que un mismo paquete estará repartido por varios swit-

ches al largo de su recorrido por la red. De hecho, de aquı́ viene el nombre de

3.1. GRLIB 17

AHB-APB
Bridge

LEON3 Memória

Timer

Interfaz

APB

AHB

RED

Árbitro
AMBA

BLOQUE
BÁSICO

Figura 3.5: Estructura de un bloque básico. El elemento que será unido por los
routers.

BLOQUE1 BLOQUE2

BLOQUE3 BLOQUE4

Figura 3.6: Topologı́a ejemplo de una red. Los bloques están descritos en la figura
3.5.

esta técnica, ya que al estar repartido de este modo crea una imagen parecida a un

gusano (worm).

18 CAPÍTULO 3. DESCRIPCIÓN DEL ENTORNO

Capı́tulo 4

Planificación

Podemos ver en la figura 4.1, un diagrama de GANTT con la planificación

del proyecto.

Hemos dividido el proyecto en las siguientes tareas:

1. Estudio de procesadores: Dedicaremos un tiempo estudiando distintos pro-

cesadores para usarlos cómo elemento para conectar con nuestra interfaz.

Dedicaremos unos 10 dı́as a esta tarea.

2. Estudio del estado del arte: En esta tarea dedicaremos otros 20 dı́as en estu-

diar artı́culos que se han hecho sobre interfaces de red para NoCs.

3. Familiarización GRLIB: Dedicaremos un par de semanas en familiarizarnos

en el entorno de diseño del proyecto. En nuestro caso es la GRLIB.

4. Desarrollo de la interfaz: Será la parte del trabajo que nos lleve más tiempo.

La podremos dividir en:

a) Envı́o de paquetes: Dedicaremos la mitad del tiempo de diseño en rea-

lizar la parte de envı́o de la interfaz.

b) Recepción de paquetes: Dedicaremos la otra mitad del tiempo en di-

señar la recepción de paquetes de la interfaz.

19

20 CAPÍTULO 4. PLANIFICACIÓN

c) Driver: Durante el diseño de la interfaz, dedicaremos tiempo en el di-

seño del controlador de la interfaz.

5. Test: Dedicaremos un mes y medio en realizar los tests al diseño de la inter-

faz.

6. Memoria: Dedicaremos un mes en la redacción de la memoria.

21

Fi
gu

ra
4.

1:
D

ia
gr

am
a

de
G

A
N

T
T

co
n

la
pl

an
ifi

ca
ci

ón
pr

ev
is

ta
de

lp
ro

ye
ct

o.

22 CAPÍTULO 4. PLANIFICACIÓN

Capı́tulo 5

Interfaz de red

En este capı́tulo discutiremos el diseño de la interfaz de red. Esta interfaz

servirá de adaptador entre el procesador y la red. De este modo conseguiremos que

para el procesador el acceso a la red sea transparente ya que la interfaz ocultará los

detalles.

5.1. Descripción del funcionamiento

Para que la interfaz pueda ocultar los detalles de la red al procesador, esta

tendrá dos partes diferenciadas. Una parte que actuará cómo un periférico más del

bus Advanced Microcontroller Bus Architecture (AMBA) y que será la encargada

de comunicarse con el LEON, y otra parte encargada de comunicarse con el switch

al que está conectada. Entonces, la interfaz hará una conversión del protocolo del

bus al de la red, y viceversa.

Antes de empezar a explicar cómo funciona la interfaz, vamos a explicar cómo

funciona el bus AMBA.

La interfaz está conectada a la parte Advanced High-performance Bus (AHB)

del bus, y el acceso se realiza accediendo a un mapa de memoria. Cada disposi-

tivo conectado al bus mapea una cantidad de memoria, y entonces, cada vez que

23

24 CAPÍTULO 5. INTERFAZ DE RED

PROCESADOR 1

PROCESADOR 2

PROCESADOR N

 Comienzo de la red (BASE)

 BASE + 0

 BASE + 1

 BASE + N

Figura 5.1: Ejemplo de mapa de memoria para una red de N nodos.

desde el procesador accedemos a una de esas posiciones, nos comunicamos con

la interfaz directamente. Al acceder a una posición podremos leer o escribir en

ella. Por lo tanto, si la interfaz tiene mapeados desde la dirección 0x70000000

a la 0x70010000 y escribimos en la dirección 0x70000FFF, el árbitro del bus

se encargará de activar la interfaz y transmitirle el dato que hemos escrito. Para

hacer esto, activará la señal de selección de la interfaz (hsel), la señal de escritura

(hwrite) y dejará la dirección y los datos en haddr y hwdata respectivamente.

Entonces, y teniendo en cuenta que la red es fija y no varı́a al largo del tiempo,

podremos mapear todos los procesadores conectados en memoria. Para comuni-

carnos, sólo tendremos que acceder a la posición de memoria que corresponda.

Podemos ver un mapa de memoria de ejemplo en la figura 5.1.

Cómo se puede observar en el mapa de memória, los procesadores están ma-

peados desde la dirección BASE a la dirección BASE + N. Teniendo en cuenta que

la dirección BASE será conocida por el programa, las direcciónes de las interfaces

serán 0, 1, 2, ..., N .

Este sistema tampoco consumirá mucha memoria, ya que cada procesador co-

nectado sólo necesita una palabra de memoria (4 bytes). Vemos que si, por ejem-

plo, queremos crear una red de 100 procesadores, mapearı́amos sólo 400 bytes

(no llegamos a 1 KByte, y la memoria puede ser del órden de MBytes).

Una vez visto el sistema de comunicación del procesador con la interfaz, pa-

5.1. DESCRIPCIÓN DEL FUNCIONAMIENTO 25

saremos a ver la descripción de las dos operaciones básicas que podremos realizar

con la interfaz: enviar y recibir datos.

5.1.1. Envı́o de datos

Nuestra interfaz, siguiendo con las operaciones del bus AMBA; podrá enviar

datos en dos ocasiones: cuando quiera enviar un dato a otro procesador, o cuando

quiera escribirlo.

En los dos casos, el procedimiento es el mismo, aunque cambian las opciones

del paquete que se envı́a.

Para enviar un dato se deberán seguir dos pasos:

1. Escribir en la dirección mapeada del dispositivo con el cual nos queremos

comunicar las opciones necesarias (lectura/escritura o si el paquete es una

ráfaga o es único).

2. Escribir en la misma dirección de memória el dato a enviar (en el caso que

estemos enviando algo) o 0 en cualquier otro caso.

Cómo resultado la interfaz enviará un paquete al procesador correspondiente

con el dato que enviemos y la indicación de escritura o un paquete vacı́o con la

opción de lectura. Dependerá del otro procesador el procesar el paquete y realizar

las operaciones necesarias.

5.1.2. Recepción de datos

La interfaz dispone de un búfer de recepción de datos para cada nodo de la

red. Cuando la interfaz recibe datos, los coloca en el búfer correspondiente depen-

diendo del origen. Esto es posible, porqué la red es estática, y en todo momento

sabemos el número de procesadores que están conectados.

26 CAPÍTULO 5. INTERFAZ DE RED

El procesador, entonces, realiza un polling cada cierto tiempo (dictado por el

timer que tenemos incorporado en el sistema) para comprobar si hay datos nuevos

disponibles.

En el caso que no haya datos disponibles, no se hace nada, pero si hay algún

dato disponible, el procesador lo leerá y hará lo que sea necesario para tratarlo.

Para hacer el polling, el procesador leerá de la posición de memória del no-

do del cual quiera comprobar si hay algun paquete disponible. En caso de que

esté disponible (se indicará con un bit de control en la palabra que se lea), lo

podrá obtener leyendo otra vez de esa misma posición.

5.1.3. Resumen

Al largo de este capı́tulo veremos con más detalle los procesos de escritura y de

lectura. Cómo resumen, veremos que existe una correspondencia directa entre las

dos operaciones que podemos realizar en el bus AMBA (lectura o activar hread y

escritura o activar hwrite) con los dos procesos que hemos descrito anteriormente.

Esta correspondencia se muestra en la tabla 5.1

Señal AMBA Operación
hread Recepción de datos de la red.
hwrite Envı́o de datos. Puede ser tanto una escritura (envı́o de un dato

a otro procesador), cómo una lectura (solicitud de un dato a
otro procesador).

Cuadro 5.1: Resumen de las operaciones de la interfaz según los valores de señales del
bus AMBA.

5.2. Descripción de los módulos principales

En esta sección se van a describir con un poco más de detalle la función de

los módulos principales de nuestra interfaz. En la figura 5.2 podremos ver un

esquema con todos los módulos de la interfaz y cómo están conectados.

5.2. DESCRIPCIÓN DE LOS MÓDULOS PRINCIPALES 27

T
yp

e
G

en
er

at
or

P
ac

ke
tiz

er

C
ou

nt
er

N
I

C
on

tr
ol

W
or

m
ho

le
S

pl
itt

er

W
or

m
ho

le
Jo

in
er

Q
ue

ue

P
ro

ce
sa

do
r

In
te

rf
az

In
te

rf
az

R
ed

Fi
gu

ra
5.

2:
D

ia
gr

am
a

co
n

lo
s

m
ód

ul
os

de
la

N
I.

L
a

lı́n
ea

gr
ue

sa
es

el
ca

m
in

o
de

da
to

s,
y

la
fin

a
la

s
se

ña
le

s
de

co
nt

ro
l.

28 CAPÍTULO 5. INTERFAZ DE RED

5.2.1. Unidad de control

La unidad de control es la que realiza tódo el trabajo para sincronizar los

componentes y adaptarse tanto al protocolo del bus AMBA cómo al protocolo de

la red. En la figura 5.3 podemos ver un diagrama de estados del comportamiento

de esta unidad.

Figura 5.3: Diagrama de estados del funcionamiento de la unidad de control.

Este diagrama está simplificado, pero se puede observar que está partido. Des-

de el nodo INIT (el nodo inicial en el cual espera que lleguen las peticiones) salen

dos caminos. El camino de la parte de arriba de la figura (PACK1 - PACK2 -

WAIT) es el que se sigue cuando se mandan los paquetes, y el camino de abajo

(POLL1 - POLL2) es el que se sigue cuando se reciben.

Comportamiento del envı́o

Cómo hemos visto, un envı́o se corresponde a una o dos escrituras en la direc-

ción de memória correspondiente al procesador con el cual nos queremos comu-

nicar.

5.2. DESCRIPCIÓN DE LOS MÓDULOS PRINCIPALES 29

Primero de todo se escriben las opciones del envı́o, y después, en la misma

dirección de memória se escriben los datos (si es necesario). El formato de la

palabra para las opciones tendrá el formato descrito en le figura 5.4.

31 0123415

PALABRA DE MEMÓRIA

CONTROL

 Enviar/Recibir

 Principio

 Fin

 Único

 Datos disponibles

NÚMERO DE SECUENCIA

Figura 5.4: Formato de las opciones en la comunicación con la interfaz

El significado de los últimos bits es el siguiente:

Enviar/Recibir indica si el paquete que se tiene que enviar es una solucitud de

lectura o de escritura al procesador correspondiente. Si tiene el valor 0,

será de lectura, y en otro caso, de escritura.

Principio indica si es el principio de una ráfaga de varios paquetes.

Fin indica si es el fin de una ráfaga.

Único indica que el paquete es único.

Datos disponibles es un campo que se usa en la recepción de paquetes. Se discu-

tirá en el siguiente apartado.

Número de secuencia contiene el número de secuencia del paquete.

No podremos tener activos a la vez los bits de principio, fin o único.

Una vez hayamos escrito esta palabra de control, en el caso de que sea una

transferencia de escritura, es decir, que querramos enviar un dato, tendremos que

escribir el dato a enviar en la misma dirección de memoria.

Se ha escogido este sistema para evitar que el procesador se quede bloqueado

en el caso que se desee recibir un dato y este no esté disponible. Una vez hecha la

30 CAPÍTULO 5. INTERFAZ DE RED

petición de un dato a otro nodo de la red, el procesador podrá seguir ejecutando

su programa. Ya recibirá el paquete cuando se ejecute la rutina de polling.

Comportamiento de la recepción

Gracias al timer que hemos incorporado a nuestro sistema, podremos ejecutar

una rutina de polling a la interfaz, para comprobar si tenemos algún paquete que

espera en la cola de recepción.

Para poder comprobar si existen paquetes en la cola, lo haremos leyendo de la

posición de memória. Entonces, la interfaz nos retornará la palabra de control (ver

figura 5.4. Si el bit número cuatro está activo, tendremos un paquete disponible

para la lectura. En este caso, podremos leerlo de esa misma posición de memória.

Al igual que con el envı́o de datos, se ha decidido este sistema para que el

procesador no se quede bloqueado esperando datos que aún no han llegado.

5.2.2. Buffer de recepción

Estos buffers almacenan los paquetes que van llegando de la red para que el

procesador los vaya cogiendo durante el proceso de polling.

Es una cola circular, dónde los paquetes se ponen en el órden del que llegan.

Al guardar los paquetes, lo hacemos de la manera más equitativa posible. Ya

que tenemos una cola para cada procesador de la red, no nos encontraremos en el

caso que un procesador envı́e muchos paquetes y no tengamos lugar para ellos.

5.2.3. Packetizer

Este módulo es el encargado de crear los paquetes para su posterior envı́o por

la red. Podemos observar el formato de paquete en la figura 5.5.

Podemos ver una descripción de los campos a continuación:

5.2. DESCRIPCIÓN DE LOS MÓDULOS PRINCIPALES 31

0 15 16 3123 24

Dirección origen Dirección destino

Número secuencia Tamaño

Datos

Tipo

Figura 5.5: Formato del paquete que se envı́a por la red.

Dirección de origen contendrá la dirección de origen del paquete. Esta dirección

será fija para cada interfaz de la red. Esto es ası́ porqué la red será estática.

Dirección de destino contendrá la información sobre el destino del paquete. Se

obtendrá del campo haddr del bus AMBA. No se envia el campo directa-

mente, ya que no tenemos porqué tener mapeada la interfaz en el mismo

lugar en todos los procesadores. Por lo tanto, se va a enviar el offset desde

la dirección base (ver el mapa de memória en la figura 5.1).

Número de secuencia contendrá el número de paquete para poder ordenar los

paquetes en caso de que se envı́e una ráfaga. El número se obtiene de un

contador que se incrementa para cada paquete que se envı́a.

Tamaño contiene el tamaño de la sección de datos del paquete. En el caso de una

solicitud de lectura, tendrá el valor 0.

Tipo contiene el tipo del paquete. En este campo indicaremos si es una solicitud

de lectura de un dato o una de escritura.

Datos contendrá los datos del paquete que se envı́a.

5.2.4. Wormhole-splitter

Cómo hemos comentado en el capı́tulo anterior, la red usa una técnica de

wormhole switching. Con este módulo, dividimos cada paquete creado en diversos

flits.

32 CAPÍTULO 5. INTERFAZ DE RED

Este módulo ya se encarga de poner las etiquetas necesarias a los flits. El

primero llevará los flags de inicio, el último llevará el flag de último y el resto no

llevaran ningún flag.

5.2.5. Wormhole-joiner

Es el módulo contrario al wormhole splitter. Cuando llegan flits de la red este

módulo se encarga de ensamblarlos.

Por las caracterı́sticas de la red, podemos suponer que cuando llega un flit,

estos van a llegar en órden. También podemos suponer que no nos van a llegar

flits correspondientes a otros paquetes.

5.3. Diseño del driver

En este apartado veremos el diseño del controlador de la interfaz de red. Se

compondrá de un conjunto de funciones que facilitarán el acceso a la red desde

los programas que carguemos en el procesador.

5.3.1. Objetivos del driver

El driver será el encargado de controlar la interfaz desde un programa para el

procesador LEON. Por lo tanto, tendrá las siguientes funciones:

Inicializar la interfaz, para que esta pueda enviar y recibir paquetes.

Proporcionar una función para enviar datos al resto de procesadores.

Instalar la rutina de polling para comprobar las colas de recepción de la

interfaz.

5.3. DISEÑO DEL DRIVER 33

Proporcionar una función para poder recuperar los paquetes que han llega-

do.

5.3.2. Descripción de las funciones

Enviar paquete

La función que envı́a un paquete tiene el siguiente prototipo:

int enviar paquete (int destino, int flags, void data)

El destino es el identificador del procesador al que queremos enviar los

datos.

Los flags nos indican el tipo de paquete a enviar. Para aplicar varios tendre-

mos que hacer una OR entre ellos. Las distintas opciones son las siguientes:

• SOL LECTURA para enviar una solicitud de lectura al otro procesa-

dor.

• SOL ESCRITURA para enviar una solicitud de escritura al otro pro-

cesador.

• PKT UNICO indica que sólo se enviará un paquete.

• PKT INICIO RAFAGA indica que vamos a empezar a enviar un con-

junto de paquetes.

• PKT FIN RAFAGA indica que hemos acabado de enviar la ráfaga de

paquetes.

data contiene los datos a enviar. Tiene un tamaño fijo de 4 bytes.

Es importante notar que no podremos tener activos a la vez los flags de lectura

y de escritura.

Las opciones de ráfaga se usan para la ordenación de los paquetes en el des-

tino. Si el paquete es único se envı́a directamente, pero si es parte de una ráfaga, al

34 CAPÍTULO 5. INTERFAZ DE RED

leer retornamos también el número de secuencia, para que el programa los pueda

reordenar.

Recibir paquete

La función de recibir un paquete tendrá el siguiente prototipo:

int recibir paquete (int destino, int* n seq, void* data)

El parámetro destino cumple con la misma función que el de la función de

enviar paquete. El resto de parámetros son:

n seq es una variable que la función actualiza con el número de secuencia

del paquete.

data es la variable que después de llamar a la función contiene los datos del

paquete. Esta función será la que se llamará en la rutina de polling con las

distintas direcciones de los procesadores de la red.

Capı́tulo 6

Simulación del diseño

En este capı́tulo veremos las pruebas realizadas sobre la interfaz para compro-

bar que el diseño es correcto. Se han realizado pruebas funcionales simulando las

unidades que forman el sistema. De este modo conseguiremos validar el diseño

de la interfaz.

6.1. Pruebas funcionales

Estas pruebas son las que demuestran que los componentes funcionan correc-

tamente. Vamos a mostrar la simulación de los componentes:

6.1.1. Unidad de control

Hemos dividido las pruebas del diseño en dos partes: el envı́o y la recepción

de paquetes.

Podemos ver el comportamiento del envı́o en la figura 6.1.

Primero vemos la parte marcada en rojo. Es lo que provoca la transición al

estado de PACK1. Cuando se activa, también se activan hready y enable register,

35

36 CAPÍTULO 6. SIMULACIÓN DEL DISEÑO

Figura 6.1: Waveform de la unidad de control durante el envı́o.

que activará un registro para guardar la palabra de control. Entonces, también

incrementamos el número de secuencia activando la señal inc (marcado en azul).

Al recibir el segundo hwrite, significa que estamos enviando los datos, por

lo tanto activamos la señal start flit que nos empezará a dividir el paquete para

mandarlo por la red.

Cuando hemos acabado de partir el paquete, se activará la señal ack y volve-

remos al estado inicial, preparados para enviar o recibir más paquetes.

En la figura 6.2 podemos ver el comportamiento de la unidad de control cuan-

do se lee un paquete de la cola.

Figura 6.2: Waveform de la unidad de control durante la recepción.

Si nos fijamos en la parte señalada en rojo, cuando intentamos leer y available

vale 0, volvemos al estado inicial (ya que no hay ningún paquete disponible). Al

poner available a 1, si hacemos un hread para leer el paquete, pasamos por los

6.1. PRUEBAS FUNCIONALES 37

dos estados (POLL1 y POLL2) dónde enviamos los datos al procesador. Luego

volvemos al estado inicial.

6.1.2. Buffer de recepción

Podemos ver el comportamiento del buffer de recepción en la figura 6.3.

Figura 6.3: Waveform del buffer de recepción.

Hemos realizado las siguientes acciones:

1. Insertar un paquete con datos 0x0123FF23 y número de secuencia 0x0001

2. Insertar un paquete con datos 0xFF23FF23 y número de secuencia 0x0002.

En la salida del módulo aún tenemos el primer paquete, ya que es una es-

tructura FIFO.

3. Al leer el paquete, eliminamos el primero y sólo nos queda 0xFF23FF23.

4. Aquı́ leemos el último paquete. Vemos que available está a 0 y nos indica

que no tenemos más paquetes disponibles en esta cola.

6.1.3. Packetizer

Para comprobar este módulo, vamos a comprobar la creación de un paquete

con las caracterı́sticas mostradas en la tabla 6.1.

Según la figura 5.5 el paquete resultante deberá ser:

38 CAPÍTULO 6. SIMULACIÓN DEL DISEÑO

Dirección origen 1 (0000000000000001)
Dirección destino 3 (0000000000000011)

Número de secuencia 10 (0000000001010)
Tamaño 1 (00000001)

Tipo Escritura + Único (00001100)
Datos 01010100100111001111011010011101

Cuadro 6.1: Tabla con los valores del paquete. Para el formato, ver la figura 5.5.

0000 0000 0000 0001 0000 0000 0000 0011

0000 0000 0000 1010 0000 0001 0000 1100

0101 0100 1001 1100 1111 0110 1001 1101

Que en hexadecimal es:

0x10003000A010C549CF69D

Comprobamos en la figura 6.4 la salida de nuestro módulo.

Figura 6.4: Waveform del packetizer.

La parte señalada en amarillo nos muestra el paquete una vez ya ensamblado.

6.1.4. Wormhole splitter

Si cogemos el paquete anterior y lo dividimos en flits veremos el comporta-

miento del módulo wormhole-splitter. Lo podemos ver en la figura 6.5.

6.1. PRUEBAS FUNCIONALES 39

Figura 6.5: Waveform del módulo wormhole splitter.

La parte marcada en rojo es el start flit, la parte marcada en amarillo son los

diversos middle flits y la parte en azul es el end flit. Podemos ver, también, que

cuando envı́a los flits, si la señal ready que proviene del router al que estará co-

nectado está a 0, es decir, que no está preparado para recibir flits, el módulo se

espera hasta que esté disponible, y que cuando acaba, avisa que ya se ha mandado

(señal done) y un ciclo después desactiva la señal ncon, encargada de pedir una

conexión al router dónde está conectada la interfaz.

6.1.5. Wormhole joiner

Para el testeo de este módulo, se ha procedido a conectarlo justo después del

wormhole splitter.

De este modo, si generamos los flits de un paquete y luego los unimos con el

módulo, el paquete que deberemos obtener será el mismo.

Para comprobar el funcionamiento, hemos creado un testbench automatizado,

que envı́a el paquete, lo divide en flits, y luego reconstruye el paquete. Una vez

hecho esto, lo comparamos con el paquete original para ver si es igual. La parte

relevante del código del testbench lo encontramos en el listado 6.1.

Listing 6.1: Código del testbench automatizado

1 wait f o r 600 ns ;

2 a s s e r t pk t1 = p a c k e t o u t

3 r ep or t ” T e s t f a i l e d ”

4 s e v e r i t y f a i l u r e ;

5 a s s e r t pk t1 /= p a c k e t o u t

40 CAPÍTULO 6. SIMULACIÓN DEL DISEÑO

6 r ep or t ” T e s t s u c c e e d e d ”

7 s e v e r i t y f a i l u r e ;

Al ejecutar el código, comprobamos si los paquetes son iguales. Si no lo son,

imprimimos “Test failed”. Luego para acabar el programa, si los dos paquetes son

iguales, imprimimos “Test succeeded”.

Podemos ver en la figura 6.6 que los dos paquetes son iguales:

Figura 6.6: Waveform del módulo wormhole joiner.

El paquete marcado en rojo es el paquete que mandamos, y el marcado con

azul es el paquete reconstruido.

Capı́tulo 7

Conclusiones

En este capı́tulo expondremos las conclusiones a las que hemos llegado des-

pués de la realización de este proyecto.

En este proyecto hemos estudiado distintos enfoques a la implantación de una

interfaz para NoCs.

En nuestro caso, hemos diseñado una interfaz simple, capaz de adaptar un

procesador (el LEON3) al protocolo usado en una NoC. Se ha diseñado la interfaz

para intentar que sea lo más transparente posible, de este modo, el procesador se

comunica con otro del mismo modo que si estuviera usando el bus AMBA, sólo

cambia el código del programa ejecutado en el procesador.

Durante la implementación, hemos descartado opciones cómo métodos que

aseguran fiabilidad punto a punto, dejando esta tarea al programador de las apli-

caciones para el LEON. Ası́, la interfaz sólo actúa de adaptador entre el bus y la

NoC.

A lo largo de la construcción de la interfaz, hemos visto varias mejoras apli-

cables al diseño, aunque añadirı́amos complejidad a esta. Por ejemplo, podrı́amos

añadir fiabilidad en las comunicaciones punto a punto, para liberar al programa

de esta tarea. También podrı́amos incluir la posibilidad de enviar más datos en

un mismo paquete, aprovechando más el ancho de banda de la red y aumentando

41

42 CAPÍTULO 7. CONCLUSIONES

el throughput. Otra mejora más que podrı́amos incluir es cambiar el proceso de

polling por interrupciones. Cada vez que llegue un paquete, en lugar de esperar a

que se compruebe si hay alguno disponible, se lanzarı́a una interrupción para que

el procesador la procese.

Para concluir, es importante resaltar la importancia del estudio de las interfa-

ces de red, ya que es una parte fundamental del sistema. Si podemos conseguir que

las comunicaciones sean independientes del diseño de los módulos que forman la

red (procesadores por ejemplo), conseguiremos adaptar los IP cores existentes al

paradigma de las NoC. Al hacer que las interfaces oculten los detalles de imple-

mentación de la red, conseguimos desacoplar el diseño de los IP cores y de la red,

con lo que los podremos diseñar al mismo tiempo, reduciendo el tiempo necesario

para construir un sistema.

Capı́tulo 8

Lista de acrónimos

SoC System-On-Chip

MPSoC Multi-Procesor System-On-Chip

NoC Network-On-Chip

DSP Digital Signal Procesor

RISC Reduced Instruction Set Computer

AMBA Advanced Microcontroller Bus Architecture

AHB Advanced High-performance Bus

APB Advanced Peripherial Bus

43

44 CAPÍTULO 8. LISTA DE ACRÓNIMOS

Bibliografı́a

[1] Sergio De Florio, Eberhard Gill, Simone D’Amico, and Andreas Grillenber-

ger. Performance comparison of microprocessors for space-based navigation

applications.

[2] H. C. Freitas, D. M. Colombo, F. L. Kastensmidt, and P. O. A. Navaux. Eva-

luating network-on-chip for homogeneous embedded multiprocessors in fp-

gas, 2007. ID: 1.

[3] Slobodan Lukovic and Leandro Fiorin. An automated design flow for noc-

based mpsocs on fpga. Rapid System Prototyping, IEEE International Works-

hop on, 2008.

[4] Sanjay Pratap Singh, Shilpa Bhoj, Dheera Balasubramanian, Tanvi Nagda,

Dinesh Bhatia, and Poras Balsara. Generic Network Interfaces for Plug and

Play NoC Based Architecture, volume 3985/2006 of Reconfigurable Compu-

ting: Architectures and Applications, pages 287–298. Springer Berlin / Hei-

delberg, 2006.

[5] Li Ping Sun, El Mostapha Aboulhamid, and J. P David. Network on chip

using a reconfigurable platform, 2003. ID: 1.

[6] M.D. van de Burgwal, G.J.M. Smit, G.K. Rauwerda, and P.M. Heysters. Hy-

dra: an energy-efficient and reconfigurable network interface.

45

Firmat: Francesc Vila Garcia

Bellaterra, Setembre de 2009

46

Resum

L’aparició d’un nou paradigma per al disseny de sistemes multiprocessador,

les NoC; requereixen una manera d’adaptar els IP cores ja existents i permetre

la seva connexió en xarxa. Aquest projecte presenta un disseny d’una interfı́cie

que aconsegueix adaptar un IP core existent, el LEON3; del protocol del bus AM-

BA al protocol de la xarxa. D’aquesta manera i basant-nos en idees d’interfı́cies

discutides en l’estat de l’art, aconseguim desacoblar el processador del disseny i

topologia de la xarxa.

Resumen

La aparición de un nuevo paradigma para el diseño de sistemas multiprocesa-

dor, las NoC; requieren un modo para adaptar los IP cores existentes y permitir

su conexión en red. En este proyecto se presenta el diseño de una interfaz que

consigue adaptar un IP core existente, el LEON3; del protocolo del bus AMBA

al protocolo de la red. De este modo, y basándonos en algunas ideas de interfaces

discutidas en el estado del arte, conseguimos desacoplar el procesador del diseño

y topologı́a de la red.

Abstract

The emergence of a new paradigm for the multiprocessor systems design, the

NoC; requires a way to adapt existing IP cores to this new communication back-

bone, in order to be able to connect them to a network. In this project, we present

an interface design that achieves to adapt an existing IP core, the LEON3 pro-

cessor; from the AMBA bus to the network protocol. In this way and taking into

account some ideas from the designs discussed in the state of art, we can decouple

the processor design from the network design and topology.

