ANEXO 1:

CODIGO VERSION SERIE

* Funcidon multiplealign : encargada de leer el fichero que contiene las secuencias,
guardarlas en memoria y posteriormente irle pasando un par de secuencias a la funcion
alinear, que es la encargada de realizar un alineamiento de 2 secuencias basandose en el
algoritmo Needleman-Wunsch

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <omp.h>
#include "alinear.c"
#include "sample.h"

void EliminarMemoria (char *memo)

{

free (memo) ;

void FAlignmentSerie (char *memo, int tamany, int mida)
{

int 1,3

int sl,s2;

float s;

char *seqgl, *seqg2, *inicio;

for (i=0; i < (tamany*tamany); i++)
{

sl = i/tamany;
i%tamany;

)
N
Il

inicio = memo;

if(*inicio !'= '\n"')
{

segql = memo + ((mida+1l)*sl) + j;

seqg2 = memo + ((mida+1l)*s2) + J;
G+
inicio++;

}

alinear (seql, seq?2);
}

int main (int argc, char** argv)

{

FILE *reg = NULL;

int mida,nseqgs, t,numthreads;
int i=0;

char *p;

struct timespec tl,t2;

numthreads = atoi(argv[1l]);
reqg = fopen(argv[2], "r");

fscanf (reg, "%$d", &nseqgs) ;
fseek(reg, 1, SEEK CUR);

fscanf (reg, "%d", &mida) ;

fseek(reg,1l,SEEK CUR);
mida= mida +2;

char buffer[mida]; char *memo;

memo = malloc (sizeof (char) * (mida+1l) *nseqgs) ;
Sample Init (0, 0);

while (fgets (buffer,mida, reg) !=NULL)

{

memcpy (memo+ ((mida+1l) *i) ,buffer,mida) ;
i++;
}

FAlignmentSerie (memo, nsegs,mida) ;

Sample End();

EliminarMemoria (memo) ;

* Funcion alinear : recibe 2 secuencias como parametros y realiza un alineamiento de éstas
2 secuencias basandose en el algoritmo de alineamiento de secuencias Needleman-
Wunsch

#include <stdio.h>
#include <string.h>
#include <time.h>
#include <stdlib.h>
#include <math.h>
#include "sample.h"

#define MAX2 (A, B) (((A) > (B)) ? (A) : (B))
#define MATCHING(A,B) (((A) == (B)) 2 (2) : (-1))
#define gap -2

int Tactual= 0;
int Talinear= 0;
int *matriu= NULL;
char *alin= NULL;

void alinear (char *sl, char *s2)

{
int 1,37
int N,M;
int match, opciol,opcio2,opcio3;

struct timespec tl,t2;
//Paso 1 : Inicializaciédn

N=strlen(sl)-1;
M=strlen(s2)-1

’

if(((N+1)*(M+1l)) > Tactual)

{
int incremento = floor (((N+1)* (M+1))*0.5);
int vmalloc = (((M+1)*(N+1)) + incremento);
Tactual = ((N+1)* (M+1)) + incremento ;
free(matriu);
matriu = malloc (sizeof (int) * vmalloc);

for (3j=0 ; J<N+1 ; Jj++)

matriul[j]=0;

for (i=0 ; i<M+1 ; 1i++)

matriul[i* (N+1)] = 0O;

//Paso 2 : Calculo de la Matriz de Needleman-Wunsch

Sample ON() ;
int ¢, c¢2, s2char, matchl, match2, rl,r2,r3,resultatl, resultat2;
for (i=1;i<M+1;i++) {

c= (i-1)*(N+1);
c2 = 1*(N+1);
s2char = s2[1i-171;

rl = matriu(c];
r2 matriulc2];

for (j=1;J<N+1;J=3+2) {

r3 = matriulc+ JjI;
matchl MATCHING (s1[j-1],s2char);
match?2 = MATCHING(sl[]j],s2char);

opciol = rl + matchl;

opcio2 = r2 + gap;

opcio3 = r3 + gap;

resultatl = MAX2 (opcio2, MAX2 (opciol,opcio3));

rl = matriulc + j+1];

opciol = r3 + match2;

opcio2 = resultatl + gap;

opcio3 = rl + gap;

r2 = MAX2 (opcio2, MAXZ2 (opciol,opcio3));

matriulc2 + j] = resultatl;
matriulc2 + j+1] = r2;

}

Sample OFF();

// Paso 3: Traceback

int x,vy;

int puntuacio,puntuaciod,puntuaciou,puntuaciol, pos;
x=M;

y=N;

if ((M+N) > Talinear)
{

int incremento2 =
int vmalloc2 = ((2
Talinear= (N+M) +
free(alin);

alin = malloc (sizeof (char) * vmalloc2);

floor ((2 * (M+N))*0.5);
* (M+N)) + incremento?2):;
incremento?2;

}

pos= 0;
for (i=0;i<2;i++) {

for (3j=0; J<M+N; j++) {
alin[i* (M+N) + jI1=" "';
}

while(y > 0 && x > 0)
{

puntuacio = matriu[x* (N+1) + y];
puntuaciod = matriul ((x-1)* (N+1)) + y-11;
puntuaciou = matriu [((x-1)*(N+1)) + vyI;
puntuaciol = matriu [(x*(N+1)) + y-1];

if (puntuacio == puntuaciod + MATCHING(sl[y-1],s2[x-1])

{

alin[O0* (M+N) +
alin[1* (M+N) +

pos] = slly-11;
pos] = s2[x-1];

X==;
N
pos++;
}
else if (puntuacio == puntuaciol + gap)

{

alin[0* (M+N) +
alin[1* (M+N) +
y—=7

pos++;

else if (puntuacio

{

alin[0* (M+N)
alin[1* (M+N)
X==;

pos++;

+
+

}

if(y > 0 && matriu[x* (N+1)
{
while(y > 0)
{
alin[0* (M+N)
alin[1* (M+N)
y==i
pos++;

+
+

if(x > 0 && matriu[x* (N+1)

while (x > 0)

{
alin[0* (M+N)
alin[1* (M+N)
X==;
pos++;

+
+

}

int contador=0;
FILE *f;

f=fopen ("output.txt", "a+");

fprintf (£, "\n");

pos] = slly-11;
pos] = '-';

== puntuaciou + gap)

pos] = '=-';
pos] = s2[x-1];

+ yl==0)

pos] = slly-11;

pos] = '-';

+ yl==0)

pos] = '=-';

pos] = s2[x-1]1;;

fwrite(alin, sizeof (char)* (N+M),2,f);

fprintf (£, "\n");
fclose (f);

)

ANEXO 2:

CODIGO VERSION PARALELA
VARIANTE LARGE-GRAINED

« Funcién multiplealign : encargada de leer el fichero que contiene las secuencias,
guardarlas en memoria y posteriormente irle pasando un par de secuencias a la funcion
alinear, que es la encargada de realizar un alineamiento de 2 secuencias basandose en el
algoritmo Needleman-Wunsch. Se paraleliza el bucle encargado de pasar las secuencias a
la funcion alinear para que cada thread alinee secuencias diferentes.

#include
#include
#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<string.h>
<omp.h>
"alinear.c"
"sample.h"

void EliminarMemoria (char *memo)

{

free (memo) ;

}

void FAlignmentParalel (char *memo, int tamany, int mida)

{

int 1,3
float s;
char *seqgl, *seqg2, *inicio;

Sample ON() ;

#pragma omp parallel for default (shared) private (i)
for

{

}

(i=0; i < (tamany*tamany); i++)

int sl = i/tamany;
int s2 i%tamany;

j = 0;
inicio = memo;

if (*inicio != '\n"')

{

seql memo + ((mida+1l)*sl) + j;
seg2 = memo + ((mida+l)*s2) + j;
J++;
inicio++;

}

alinear (seql, seqg2);

Sample OFF();

int main(int argc, char** argv)

{

FILE *reg = NULL;

int mida,nseqgs, t,numthreads;
int 1=0;

char *p;

struct timespec tl,t2;

schedule (static)

numthreads = atoi(argv[l]);
reg = fopen(argv[2], "r");

fscanf (reg, "%d", &nseqgs) ;
fseek(reg,1,SEEK CUR);

fscanf (reg, "%d", &mida) ;
fseek (reg, 1, SEEK CUR);

mida= mida +2;

char buffer[midal;
char *memo;

memo = malloc (sizeof (char) * (mida+1l) *nseqgs) ;

Sample Init (0,0);

while (fgets (buffer,mida, reqg) !=NULL)

{ memcpy (memo+ ((mida+1l) *i) ,buffer,mida) ;
i++;

}

omp set num_ threads (numthreads) ;
FAlignmentParalel (memo,nseqgs,mida) ;

Sample End();

EliminarMemoria (memo) ;

* Funcion alinear : recibe 2 secuencias como parametros y realiza un alineamiento de éstas
2 secuencias basandose en el algoritmo de alineamiento de secuencias Needleman-
Wunsch.

#include <stdio.h>
#include <string.h>
#include <time.h>
#include <stdlib.h>
#include <math.h>
#include "sample.h"

#define MAX2 (A, B) (((A) > (B)) ? (A) : (B))
#define MATCHING(A,B) (((A) == (B)) 2 (2) : (-1))
#define gap -2

int Tactual= 0;
int Talinear= 0;
int *matriu= NULL;
char *alin= NULL;

#pragma omp threadprivate (Tactual,Talinear,matriu,alin)

void alinear (char *sl, char *s2)
{
int 1,3;
int N, M;
int match, opciol,opcio2,opcio3;
struct timespec tl,t2;

//Paso 1 : Inicializacidn

N=strlen(sl)-1;
M=strlen(s2)-1

’

if(((N+1)* (M+1)) > Tactual)

{
int incremento = floor (((N+1)* (M+1))*0.5);
int vmalloc = (((M+1)* (N+1)) + incremento);
Tactual = ((N+1)* (M+1)) + incremento ;
free (matriu);
matriu = malloc (sizeof(int) * wvmalloc):;

for (3=0 ; J<N+1 ; JF++)

matriul[j]=0;

for (i=0 ; i<M+1 ; i++)

matriuli* (N+1)] = 0;

//Paso 2 : Calculo de la Matriz de Needleman-Wunsch
Sample ON() ;

int ¢, c¢2, s2char, matchl, match2, rl,r2,r3,resultatl, resultat2;
for (i=1;i<M+1;i++) {

c= (i-1)* (N+1);
c2 = 1*(N+1);
s2char = s2[1i-17];

rl
r2

matriulc];
matriulc2];

for (j=1;J<N+1;J=3+2) {

r3 = matriulc+ JjI;
matchl = MATCHING(sl[j-1],s2char);
match2 = MATCHING(sl[]j],s2char);

opciol = rl + matchl;

opcio2 = r2 + gap;

opcio3 = r3 + gap;

resultatl = MAX2 (opcio2, MAX2 (opciol,opcio3));

rl = matriulc + j+1];

opciol = r3 + match2;

opcio2 = resultatl + gap;

opcio3 = rl + gap;

r2 = MAX2 (opcio2, MAX2 (opciol,opcio3));

matriulc2 + j] = resultatl;
matriulc2 + j+1] = r2;

}

}
Sample OFF();

// Paso 3: Traceback

int x,y;

int puntuacio,puntuaciod,puntuaciou,puntuaciol, pos;
x=M;

y=N;

if ((M+N) > Talinear)
{

int incremento2 =
int vmalloc2 = ((2
Talinear= (N+M) +
free(alin);

alin = malloc (sizeof(char) * vmalloc2);

floor ((2 * (M+N))*0.5);
* (M+N)) + incremento?2);
incremento?2;

}

pos= 0;
for (1i=0;1i<2;1i++) {

for (J=0; J<M+N; j++) {

alin[i* (M+N) + J]1=" "';

while(y > 0 && x > 0)
{

puntuacio = matriul[x* (N+1) + y];

puntuaciod = matriu[((x 1)*(N+1)) + y-11;

puntuaciou = matriu [((x-1)*(N+1)) + vyv];

puntuaciol = matriu [(x*(N+1)) + y-11;

if (puntuacio == puntuaciod + MATCHING(sl[y-1],s2[x-1])

{

alin[0* (M+N) + pos] = sl[y-11;
alin[1l* (M+N) + pos] = s2[x-1];

X==7
Y=—7
pos++;
}
else if (puntuacio == puntuaciol + gap)
{
alin[0* (M+N) + pos] = sl[y-11;
alin[1* (M+N) + pos] = '-';
y-=s
pos++;
}
else if (puntuacio == puntuaciou + gap)
{
alin[0* (M+N) + pos] = '-';
alin[1* (M+N) + pos] = s2[x-1];
X==;
pos++;

f(y > 0 && matriu[x* (N+1) + y]==0)

while (y > 0)

{
alin[0* (M+N)
alin[1* (M+N)
Y—=7
pos++;

pos] = sl[y-1];

+
+ pos] = '-";

}

if(x > 0 && matriu[x* (N+1) + y]==0)
{
while (x > 0)

{

alin[0* (M+N) + pos] = '-';
alin[1* (M+N) + pos] = s2[x-11;;
X==;
pos++;
}
}
int contador=0;
FILE *f;
f=fopen ("output.txt","a+");

fprintf (£, "\n")
fwrite(alin,sizeof(char)*(N+M),2,f);
fprintf (£, "\n");

fclose (f);

)

ANEXO 3:

CODIGO VERSION PARALELA
VARIANTE FINE-GRAINED

« Funcién multiplealign : encargada de leer el fichero que contiene las secuencias,
guardarlas en memoria y posteriormente irle pasando un par de secuencias a la funcion
alinear, que es la encargada de realizar un alineamiento de 2 secuencias basandose en el
algoritmo Needleman-Wunsch.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <omp.h>
#include "alinear.c"
#include "sample.h"

void EliminarMemoria (char *memo)

{

free (memo) ;

void FAlignment (char *memo, int tamany, int mida, int numthreads,int T)
{

int 1,37

int sl,s2;

float s;

char *seqgl, *seqg2, *inicio;

for (i=0; i < (tamany*tamany); i++)
{

sl = i/tamany;
= i%tamany;

0]
N
|

inicio = memo;
if(*inicio != '"\n")

segql = memo + ((mida+1l)*sl) + j;

seqg2 = memo + ((mida+l)*s2) + J;
J++;
inicio++;

}

alinear (seql, seg2,numthreads, T);

}

int main(int argc, char** argv)

{

FILE *reg = NULL;

int mida,nsegs, t,numthreads;
int i=0;

int T=0;

char *p;

struct timespec tl,t2;

numthreads = oi (
reg = fopen/(argv[2
T = atoi(argv[3]);

(11)7
rl)-

argv
I

fscanf (reg, "%$d", &nseqgs) ;

fseek(reg,1l,SEEK CUR);
fscanf (reg, "%d", &mida) ;
fseek(reg,1,SEEK CUR);

mida= mida +2;

char buffer[midal;
char *memo;

memo = malloc (sizeof (char)* (mida+1l) *nseqgs) ;
Sample Init (0, 0);
while (fgets (buffer,mida, reg) !=NULL)

{

memcpy (memo+ ((mida+1) *i) ,buffer,mida) ;
i++;

}

FAlignment (memo, nseqgs,mida, numthreads, T) ;

Sample End();

EliminarMemoria (memo) ;

« Funcioén alinear : recibe 2 secuencias como parametros y realiza un alineamiento de éstas
2 secuencias basandose en el algoritmo de alineamiento de secuencias Needleman-
Wunsch.

#include <stdio.h>
#include <string.h>
#include <time.h>
#include <stdlib.h>
#include <math.h>

#include "sample.h"

#define MAX2 (A, B) (((A) > (B)) ? (A) (B))
#define MIN(A, B) (((A) > (B)) ? (B) (A))
#define MATCHING (A,B) (((A) == (B)) 2 (2) : (-1))

#define gap -2

int Tactual= 0;
int Talinear= 0;
int *matriu= NULL;
char *alin= NULL;

void alinear (char *sl, char *s2, int numthreads, int T)
{

int i,73,k;

int N,M;

int match;

struct timespec tl,t2;

//Paso 1 : Inicializacién

N=strlen(sl)-1;
M=strlen(s2)-1

’

if(((N+1)* (M+1)) > Tactual)

{
int incremento = floor (((N+1)* (M+1))*0.5);
int vmalloc = (((M+1)*(N+1)) + incremento);
Tactual = ((N+1)* (M+1)) + incremento ;
free(matriu);
matriu = malloc (sizeof(int) * wvmalloc):;

for (3=0 ; J<N+1 ; J++)

matriul[j]=0;

for (i=0 ; i<M+1 ; i++)

matriul[i* (N+1)] = 0O;

#pragma omp parallel
{
omp set num_ threads (numthreads) ;

}
//Paso 2 : Calculo de la Matriz de Needleman-Wunsch

int particion;

int flag = 0;

int tparticion;
float numerador = N;
float denominador = numthreads;

float resultat = numerador / denominador;
particion=(int)ceil (resultat);

tparticion = particion * 4;

if (tparticion > 64) flag=1;

if (flag ==0)
{
while((64 % tparticion) !'=0)
{
particion++;
tparticion = particion * 4;
}
}
else
{
while((tparticion % 64) !=0)

{
particion ++;
tparticion = particion * 4;

Sample ON() ;

for(k = 2; k <= (numthreads+ (M/T))*T; k=k+T)
{
int lsup = MIN(k-1,M-(T-1));
int linf = MAX2 (1, k-(T* (numthreads-1)+1));

fpragma omp parallel for default (shared) private (i)
schedule (static)

for(i = lsup; i >= linf; 1i=1i-T)

{

int opciol,opcio2,opcio3;

int j;

int ¢, ¢2, s2char, matchl, match2, rl,r2,r3,resultatl,
resultat2;

for(j=0; j < T;j++)

{
c= (i-1)*(N+1)+(N+1)*7j;
c2 = 1i*(N+1)+ (N+1)*7;
s2char = s2[(i-1)+31;

int p = particion *((k-1i)/T)+1;
int pfinal = MIN(ptparticion,N);

rl=matriul[p+tc-1];
r2=matriul[p+tc2-1];

for (;p<pfinal;p=p+2)
{

r3 = matriulp+c];

matchl MATCHING (sl [p-1],s2char);

match2 = MATCHING(sl[p],s2char);

opciol = rl + matchl;

opcio2 = r2 + gap;

opcio3 = r3 + gap;

resultatl = MAX2 (opciol, MAX2 (opcio2,opcio3));

rl = matriu[p+tc +11];
opciol = r3 + match2;
opcio2 = resultatl + gap;
opcio3 = rl + gap;

r2 = MAX2 (opciol, MAX2 (opcio2,opcio3));

matriul[p+c2] = resultatl;
matriul[p+tc2+1l] = r2;
}
}
}
}
Sample OFF () ;
// Paso 3: Traceback
int x,vy;
int puntuacio,puntuaciod,puntuaciou,puntuaciol, pos;
x=M;
y=N;

if ((M+N) > Talinear)

{
int incremento2 =
int vmalloc2 = ((2
Talinear= (N+M) +
free(alin);
alin = malloc (sizeof(char) * wvmalloc2);

floor ((2 * (M+N))*0.5);
* (M+N)) + incremento?2):;
incremento?2;

pos= 0;

for (i=0;i<2;i++) {
for (J=0; J<M+N; j++) {
alin[i* (M+N) + jl=" "';
}

while(y > 0 && x > 0)
{

puntuacio = matriul[x* (N+1) + y];
puntuaciod = matriul ((x-1)*(N+1)) + y-11;
puntuaciou = matriu [((x-1)*(N+1)) + vy];
puntuaciol = matriu [(x*(N+1)) + y-11];

if (puntuacio == puntuaciod + MATCHING(sl[y-11,s2[x-11])
{

alin[0* (M+N) + pos] = sl[y-1];

alin[1* (M+N) + pos] = s2[x-1];

X==;
y——7
pos++;

}

else if (puntuacio == puntuaciol + gap)

{
alin[0* (M+N) + pos] = sl[y-11;

alin[1l* (M+N) + pos] = '-';
Y=—7
pos++;
}
else if (puntuacio == puntuaciou + gap)
{
alin[0* (M+N) + pos] = '-=-';
alin[1* (M+N) + pos] = s2[x-1];
X==7
pos++;

}

if(y > 0 && matriu[x*(N+1) + y]==0)
{

while(y > 0)

{

alin[0* (M+N) + pos] = sl[y-1];
alin[1* (M+N) + pos] = '-';
y-=i

pos++;

if(x > 0 && matriu[x* (N+1) + y]==0)

while(x > 0)
{

alin[0* (M+N) + pos] = '-';
alin[1* (M+N) + pos] = s2([x-11;;
X==;

pos++;

}

int contador=0;

FILE *f;

f=fopen ("output.txt","a+");
fprintf (£, "\n");
fwrite(alin, sizeof (char)* (N+M),2,f);
fprintf (£, "\n");

fclose (f);

)

