
ANEXO 1:

CÓDIGO VERSIÓN SERIE

• Función multiplealign : encargada de leer el fichero que contiene las secuencias,
guardarlas en memoria y posteriormente irle pasando un par de secuencias a la función
alinear, que es la encargada de realizar un alineamiento de 2 secuencias basándose en el
algoritmo Needleman-Wunsch

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <omp.h>
#include "alinear.c"
#include "sample.h"

void EliminarMemoria(char *memo)
{

free(memo);
}

void FAlignmentSerie(char *memo, int tamany, int mida)
{

int i,j;
int s1,s2;
float s;
char *seq1, *seq2, *inicio;

for (i=0; i < (tamany*tamany); i++)
{

s1 = i/tamany;
s2 = i%tamany;

j = 0;
inicio = memo;

if(*inicio != '\n')
{

seq1 = memo + ((mida+1)*s1) + j;
seq2 = memo + ((mida+1)*s2) + j;
j++;
inicio++;

}
alinear(seq1,seq2);

}
}

int main(int argc, char** argv)
{

FILE *reg = NULL;
int mida,nseqs,t,numthreads;
int i=0;
char *p;
struct timespec t1,t2;

numthreads = atoi(argv[1]);
reg = fopen(argv[2], "r");

fscanf(reg,"%d",&nseqs);
fseek(reg,1,SEEK_CUR);

fscanf(reg,"%d",&mida);

fseek(reg,1,SEEK_CUR);
mida= mida +2;

char buffer[mida]; char *memo;

memo = malloc(sizeof(char)*(mida+1)*nseqs);

 Sample_Init(0, 0);

while(fgets(buffer,mida,reg)!=NULL)
{

memcpy(memo+((mida+1)*i),buffer,mida);
i++;

}

FAlignmentSerie(memo,nseqs,mida);

 Sample_End();

EliminarMemoria(memo);
}

• Función alinear : recibe 2 secuencias como parámetros y realiza un alineamiento de éstas
2 secuencias basándose en el algoritmo de alineamiento de secuencias Needleman-
Wunsch

#include <stdio.h>
#include <string.h>
#include <time.h>
#include <stdlib.h>
#include <math.h>
#include "sample.h"

#define MAX2(A, B) (((A) > (B)) ? (A) : (B))
#define MATCHING(A,B) (((A) == (B)) ? (2) : (-1))
#define gap -2

int Tactual= 0;
int Talinear= 0;
int *matriu= NULL;
char *alin= NULL;

void alinear(char *s1, char *s2)
{

int i,j;
int N,M;
int match, opcio1,opcio2,opcio3;

struct timespec t1,t2;

//Paso 1 : Inicialización

N=strlen(s1)-1;
M=strlen(s2)-1;

if(((N+1)*(M+1)) > Tactual)
{

int incremento = floor(((N+1)*(M+1))*0.5);
int vmalloc = (((M+1)*(N+1)) + incremento);
Tactual = ((N+1)*(M+1)) + incremento ;
free(matriu);
matriu = malloc (sizeof(int) * vmalloc);

}

for (j=0 ; j<N+1 ; j++)
{

matriu[j]=0;
}

for (i=0 ; i<M+1 ; i++)
{

matriu[i*(N+1)] = 0;
}

//Paso 2 : Calculo de la Matriz de Needleman-Wunsch

 Sample_ON();

int c, c2, s2char, match1, match2, r1,r2,r3,resultat1, resultat2;
for(i=1;i<M+1;i++){

c= (i-1)*(N+1);
c2 = i*(N+1);
s2char = s2[i-1];

r1 = matriu[c];
r2 = matriu[c2];

for(j=1;j<N+1;j=j+2){

r3 = matriu[c+ j];
match1 = MATCHING(s1[j-1],s2char);
match2 = MATCHING(s1[j],s2char);

opcio1 = r1 + match1;
opcio2 = r2 + gap;
opcio3 = r3 + gap;
resultat1 = MAX2(opcio2, MAX2(opcio1,opcio3));

r1 = matriu[c + j+1];
opcio1 = r3 + match2;
opcio2 = resultat1 + gap;
opcio3 = r1 + gap;
r2 = MAX2 (opcio2, MAX2(opcio1,opcio3));

matriu[c2 + j] = resultat1;
matriu[c2 + j+1] = r2;

}
}

 Sample_OFF();

// Paso 3: Traceback

int x,y;
int puntuacio,puntuaciod,puntuaciou,puntuaciol,pos;
x=M;
y=N;

if((M+N) > Talinear)
{

int incremento2 = floor((2 * (M+N))*0.5);
int vmalloc2 = ((2* (M+N)) + incremento2);
Talinear= (N+M) + incremento2;
free(alin);
alin = malloc (sizeof(char) * vmalloc2);

}

pos= 0;
for(i=0;i<2;i++){

for(j=0;j<M+N;j++){

alin[i*(M+N) + j]=' ';

}

while(y > 0 && x > 0)
{

puntuacio = matriu[x*(N+1) + y];
puntuaciod = matriu[((x-1)*(N+1)) + y-1];
puntuaciou = matriu [((x-1)*(N+1)) + y];
puntuaciol = matriu [(x*(N+1)) + y-1];

if (puntuacio == puntuaciod + MATCHING(s1[y-1],s2[x-1]))
{

alin[0*(M+N) + pos] = s1[y-1];
alin[1*(M+N) + pos] = s2[x-1];
x--;
y--;
pos++;

}
else if (puntuacio == puntuaciol + gap)
{

alin[0*(M+N) + pos] = s1[y-1];
alin[1*(M+N) + pos] = '-';
y--;
pos++;

}

else if (puntuacio == puntuaciou + gap)
{

alin[0*(M+N) + pos] = '-';
alin[1*(M+N) + pos] = s2[x-1];
x--;
pos++;

}

}

if(y > 0 && matriu[x*(N+1) + y]==0)
{

while(y > 0)
{

alin[0*(M+N) + pos] = s1[y-1];
alin[1*(M+N) + pos] = '-';
y--;
pos++;

}
}

if(x > 0 && matriu[x*(N+1) + y]==0)
{

while(x > 0)
{

alin[0*(M+N) + pos] = '-';
alin[1*(M+N) + pos] = s2[x-1];;
x--;
pos++;

}
}

int contador=0;
FILE *f;
f=fopen("output.txt","a+");
fprintf(f,"\n");
fwrite(alin,sizeof(char)*(N+M),2,f);
fprintf(f,"\n");
fclose(f);

}

ANEXO 2:

CÓDIGO VERSIÓN PARALELA
VARIANTE LARGE-GRAINED

• Función multiplealign : encargada de leer el fichero que contiene las secuencias,
guardarlas en memoria y posteriormente irle pasando un par de secuencias a la función
alinear, que es la encargada de realizar un alineamiento de 2 secuencias basándose en el
algoritmo Needleman-Wunsch. Se paraleliza el bucle encargado de pasar las secuencias a
la función alinear para que cada thread alinee secuencias diferentes.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <omp.h>
#include "alinear.c"
#include "sample.h"

void EliminarMemoria(char *memo)
{

free(memo);
}

void FAlignmentParalel(char *memo, int tamany, int mida)
{

int i,j;
float s;
char *seq1, *seq2, *inicio;

Sample_ON();

#pragma omp parallel for default (shared) private(i) schedule(static)
for (i=0; i < (tamany*tamany); i++)
{

int s1 = i/tamany;
int s2 = i%tamany;

j = 0;
inicio = memo;

if(*inicio != '\n')
{

seq1 = memo + ((mida+1)*s1) + j;
seq2 = memo + ((mida+1)*s2) + j;
j++;
inicio++;

}
alinear(seq1,seq2);

}
Sample_OFF();

}

int main(int argc, char** argv)
{

FILE *reg = NULL;
int mida,nseqs,t,numthreads;
int i=0;
char *p;
struct timespec t1,t2;

numthreads = atoi(argv[1]);
reg = fopen(argv[2], "r");

fscanf(reg,"%d",&nseqs);
fseek(reg,1,SEEK_CUR);

fscanf(reg,"%d",&mida);
fseek(reg,1,SEEK_CUR);
mida= mida +2;

char buffer[mida];
char *memo;

memo = malloc(sizeof(char)*(mida+1)*nseqs);

Sample_Init(0,0);

while(fgets(buffer,mida,reg)!=NULL)
{

memcpy(memo+((mida+1)*i),buffer,mida);
i++;

}

omp_set_num_threads(numthreads);
FAlignmentParalel(memo,nseqs,mida);

Sample_End();

EliminarMemoria(memo);
}

• Función alinear : recibe 2 secuencias como parámetros y realiza un alineamiento de éstas
2 secuencias basándose en el algoritmo de alineamiento de secuencias Needleman-
Wunsch.

#include <stdio.h>
#include <string.h>
#include <time.h>
#include <stdlib.h>
#include <math.h>
#include "sample.h"

#define MAX2(A, B) (((A) > (B)) ? (A) : (B))
#define MATCHING(A,B) (((A) == (B)) ? (2) : (-1))
#define gap -2

int Tactual= 0;
int Talinear= 0;
int *matriu= NULL;
char *alin= NULL;

#pragma omp threadprivate(Tactual,Talinear,matriu,alin)

void alinear(char *s1, char *s2)
{

int i,j;
int N,M;
int match, opcio1,opcio2,opcio3;

struct timespec t1,t2;

//Paso 1 : Inicialización

N=strlen(s1)-1;
M=strlen(s2)-1;

if(((N+1)*(M+1)) > Tactual)
{

int incremento = floor(((N+1)*(M+1))*0.5);
int vmalloc = (((M+1)*(N+1)) + incremento);

Tactual = ((N+1)*(M+1)) + incremento ;
free(matriu);
matriu = malloc (sizeof(int) * vmalloc);

}

for (j=0 ; j<N+1 ; j++)
{

matriu[j]=0;

}

for (i=0 ; i<M+1 ; i++)
{

matriu[i*(N+1)] = 0;

}

//Paso 2 : Calculo de la Matriz de Needleman-Wunsch

Sample_ON();

int c, c2, s2char, match1, match2, r1,r2,r3,resultat1, resultat2;
for(i=1;i<M+1;i++){

c= (i-1)*(N+1);
c2 = i*(N+1);
s2char = s2[i-1];

r1 = matriu[c];
r2 = matriu[c2];

for(j=1;j<N+1;j=j+2){

r3 = matriu[c+ j];
match1 = MATCHING(s1[j-1],s2char);
match2 = MATCHING(s1[j],s2char);

opcio1 = r1 + match1;
opcio2 = r2 + gap;
opcio3 = r3 + gap;
resultat1 = MAX2(opcio2, MAX2(opcio1,opcio3));

r1 = matriu[c + j+1];
opcio1 = r3 + match2;
opcio2 = resultat1 + gap;
opcio3 = r1 + gap;
r2 = MAX2 (opcio2, MAX2(opcio1,opcio3));

matriu[c2 + j] = resultat1;
matriu[c2 + j+1] = r2;

}
}
Sample_OFF();

// Paso 3: Traceback

int x,y;
int puntuacio,puntuaciod,puntuaciou,puntuaciol,pos;
x=M;
y=N;

if((M+N) > Talinear)
{

int incremento2 = floor((2 * (M+N))*0.5);
int vmalloc2 = ((2* (M+N)) + incremento2);
Talinear= (N+M) + incremento2;
free(alin);
alin = malloc (sizeof(char) * vmalloc2);

}

pos= 0;
for(i=0;i<2;i++){

for(j=0;j<M+N;j++){

alin[i*(M+N) + j]=' ';
}

}

while(y > 0 && x > 0)
{

puntuacio = matriu[x*(N+1) + y];
puntuaciod = matriu[((x-1)*(N+1)) + y-1];
puntuaciou = matriu [((x-1)*(N+1)) + y];
puntuaciol = matriu [(x*(N+1)) + y-1];

if (puntuacio == puntuaciod + MATCHING(s1[y-1],s2[x-1]))
{

alin[0*(M+N) + pos] = s1[y-1];
alin[1*(M+N) + pos] = s2[x-1];
x--;
y--;
pos++;

}
else if (puntuacio == puntuaciol + gap)
{

alin[0*(M+N) + pos] = s1[y-1];
alin[1*(M+N) + pos] = '-';
y--;
pos++;

}
else if (puntuacio == puntuaciou + gap)
{

alin[0*(M+N) + pos] = '-';
alin[1*(M+N) + pos] = s2[x-1];
x--;
pos++;

}

}

if(y > 0 && matriu[x*(N+1) + y]==0)
{

while(y > 0)
{

alin[0*(M+N) + pos] = s1[y-1];
alin[1*(M+N) + pos] = '-';
y--;
pos++;

}
}

if(x > 0 && matriu[x*(N+1) + y]==0)
{

while(x > 0)
{

alin[0*(M+N) + pos] = '-';
alin[1*(M+N) + pos] = s2[x-1];;
x--;
pos++;

}
}

int contador=0;
FILE *f;
f=fopen("output.txt","a+");
fprintf(f,"\n");
fwrite(alin,sizeof(char)*(N+M),2,f);
fprintf(f,"\n");
fclose(f);

}

ANEXO 3:

CÓDIGO VERSIÓN PARALELA
VARIANTE FINE-GRAINED

• Función multiplealign : encargada de leer el fichero que contiene las secuencias,
guardarlas en memoria y posteriormente irle pasando un par de secuencias a la función
alinear, que es la encargada de realizar un alineamiento de 2 secuencias basándose en el
algoritmo Needleman-Wunsch.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <omp.h>
#include "alinear.c"
#include "sample.h"

void EliminarMemoria(char *memo)
{

free(memo);
}

void FAlignment(char *memo, int tamany, int mida, int numthreads,int T)
{

int i,j;
int s1,s2;
float s;
char *seq1, *seq2, *inicio;

for (i=0; i < (tamany*tamany); i++)
{

s1 = i/tamany;
s2 = i%tamany;

j = 0;
inicio = memo;

if(*inicio != '\n')
{

seq1 = memo + ((mida+1)*s1) + j;
seq2 = memo + ((mida+1)*s2) + j;
j++;
inicio++;

}

alinear(seq1,seq2,numthreads,T);

}

}

int main(int argc, char** argv)
{

FILE *reg = NULL;
int mida,nseqs,t,numthreads;
int i=0;
int T=0;
char *p;
struct timespec t1,t2;

numthreads = atoi(argv[1]);
reg = fopen(argv[2], "r");
T = atoi(argv[3]);

fscanf(reg,"%d",&nseqs);

fseek(reg,1,SEEK_CUR);

fscanf(reg,"%d",&mida);
fseek(reg,1,SEEK_CUR);
mida= mida +2;

char buffer[mida];
char *memo;

memo = malloc(sizeof(char)*(mida+1)*nseqs);

 Sample_Init(0, 0);

while(fgets(buffer,mida,reg)!=NULL)
{

memcpy(memo+((mida+1)*i),buffer,mida);
i++;

}

FAlignment(memo,nseqs,mida,numthreads,T);

 Sample_End();

EliminarMemoria(memo);
}

• Función alinear : recibe 2 secuencias como parámetros y realiza un alineamiento de éstas
2 secuencias basándose en el algoritmo de alineamiento de secuencias Needleman-
Wunsch.

#include <stdio.h>
#include <string.h>
#include <time.h>
#include <stdlib.h>
#include <math.h>

#include "sample.h"

#define MAX2(A, B) (((A) > (B)) ? (A) : (B))
#define MIN(A, B) (((A) > (B)) ? (B) : (A))
#define MATCHING(A,B) (((A) == (B)) ? (2) : (-1))
#define gap -2

int Tactual= 0;
int Talinear= 0;
int *matriu= NULL;
char *alin= NULL;

void alinear(char *s1, char *s2, int numthreads, int T)
{

int i,j,k;
int N,M;
int match;

struct timespec t1,t2;

//Paso 1 : Inicialización

N=strlen(s1)-1;
M=strlen(s2)-1;

if(((N+1)*(M+1)) > Tactual)
{

int incremento = floor(((N+1)*(M+1))*0.5);
int vmalloc = (((M+1)*(N+1)) + incremento);
Tactual = ((N+1)*(M+1)) + incremento ;
free(matriu);
matriu = malloc (sizeof(int) * vmalloc);

}

for (j=0 ; j<N+1 ; j++)
{

matriu[j]=0;

}

for (i=0 ; i<M+1 ; i++)
{

matriu[i*(N+1)] = 0;

}

#pragma omp parallel
 {
 omp_set_num_threads(numthreads);
 }

//Paso 2 : Calculo de la Matriz de Needleman-Wunsch

int particion;
int flag = 0;
int tparticion;
float numerador = N;
float denominador = numthreads;
float resultat = numerador / denominador;
particion=(int)ceil(resultat);
tparticion = particion * 4;

if(tparticion > 64) flag=1;

if(flag ==0)
{

while((64 % tparticion)!=0)
{

particion++;
tparticion = particion * 4;

}
}
else
{

while((tparticion % 64) !=0)
{

particion ++;
tparticion = particion * 4;

}
}

Sample_ON();

for(k = 2; k <= (numthreads+(M/T))*T; k=k+T)
 {

int lsup = MIN(k-1,M-(T-1));
int linf = MAX2(1,k-(T*(numthreads-1)+1));

#pragma omp parallel for default (shared) private(i)
schedule(static)

 for(i = lsup; i >= linf; i=i-T)
{

int opcio1,opcio2,opcio3;
int j;
int c, c2, s2char, match1, match2, r1,r2,r3,resultat1,
resultat2;

for(j=0; j < T;j++)
{

c= (i-1)*(N+1)+(N+1)*j;
c2 = i*(N+1)+(N+1)*j;
s2char = s2[(i-1)+j];

int p = particion *((k-i)/T)+1;
int pfinal = MIN(p+particion,N);

r1=matriu[p+c-1];
r2=matriu[p+c2-1];

for(;p<pfinal;p=p+2)
{

r3 = matriu[p+c];
match1 = MATCHING(s1[p-1],s2char);
match2 = MATCHING(s1[p],s2char);
opcio1 = r1 + match1;
opcio2 = r2 + gap;
opcio3 = r3 + gap;
resultat1 = MAX2(opcio1, MAX2(opcio2,opcio3));

r1 = matriu[p+c +1];
opcio1 = r3 + match2;
opcio2 = resultat1 + gap;
opcio3 = r1 + gap;

r2 = MAX2 (opcio1, MAX2(opcio2,opcio3));

matriu[p+c2] = resultat1;
matriu[p+c2+1] = r2;

}
}

}
}

 Sample_OFF();

// Paso 3: Traceback

int x,y;
int puntuacio,puntuaciod,puntuaciou,puntuaciol,pos;
x=M;
y=N;

if((M+N) > Talinear)
{

int incremento2 = floor((2 * (M+N))*0.5);
int vmalloc2 = ((2* (M+N)) + incremento2);
Talinear= (N+M) + incremento2;
free(alin);
alin = malloc (sizeof(char) * vmalloc2);

}

pos= 0;

for(i=0;i<2;i++){

for(j=0;j<M+N;j++){

alin[i*(M+N) + j]=' ';

}
}

while(y > 0 && x > 0)
{

puntuacio = matriu[x*(N+1) + y];
puntuaciod = matriu[((x-1)*(N+1)) + y-1];
puntuaciou = matriu [((x-1)*(N+1)) + y];
puntuaciol = matriu [(x*(N+1)) + y-1];

if (puntuacio == puntuaciod + MATCHING(s1[y-1],s2[x-1]))
{

alin[0*(M+N) + pos] = s1[y-1];
alin[1*(M+N) + pos] = s2[x-1];
x--;
y--;
pos++;

}
else if (puntuacio == puntuaciol + gap)
{

alin[0*(M+N) + pos] = s1[y-1];
alin[1*(M+N) + pos] = '-';
y--;
pos++;

}
else if (puntuacio == puntuaciou + gap)
{

alin[0*(M+N) + pos] = '-';
alin[1*(M+N) + pos] = s2[x-1];
x--;
pos++;

}

}

if(y > 0 && matriu[x*(N+1) + y]==0)
{

while(y > 0)
{

alin[0*(M+N) + pos] = s1[y-1];
alin[1*(M+N) + pos] = '-';
y--;
pos++;

}
}

if(x > 0 && matriu[x*(N+1) + y]==0)
{

while(x > 0)
{

alin[0*(M+N) + pos] = '-';
alin[1*(M+N) + pos] = s2[x-1];;
x--;
pos++;

}
}

int contador=0;
FILE *f;
f=fopen("output.txt","a+");
fprintf(f,"\n");
fwrite(alin,sizeof(char)*(N+M),2,f);
fprintf(f,"\n");
fclose(f);

}

