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1.Introduccion

Cada vez encontramos mas aplicaciones automatizadas que requieren de un control
de movimiento o estabilidad para poder llevar a cabo su tarea. Por ejemplo, si queremos
enviar un satélite al espacio debemos controlar, de forma muy precisa, su movimiento
hasta el espacio. Para ello se utilizan sistemas de medida inercial formados por
diferentes componentes como una unidad de medida inercial, también conocida como

MU',

La unidad de medida inercial es el componente principal de estos sistemas de guia
inerciales. Trabaja gracias a unos sensores especificos tales como acelerometros y
giroscopos debidamente colocados en una placa, que proporcionan al usuario datos
como la aceleracion y rotacion, en los tres ejes de coordenadas, que sufra dicha placa.
Normalmente viene acompafiada de un receptor GPS” para tener mas exactitud en las
medidas y del cual extraen la posicidén inicial para asi poder calcular el recorrido

efectuado.

Estas se utilizan en mayor medida para guiar un objeto, ya sea un avién no tripulado o
UAV? 0 hasta incluso un robot. Todos éstos tienen en comin que necesitan de un
sistema de guia inercial para poder llevar a cabo su funcion. También son muy
utilizadas en lanzaderas y satélites, ya que conociendo su movimiento pueden corregir

su ruta y asi guiarse automaticamente sin necesidad de intervencion humana.

Actualmente se estan utilizando en sistemas de posicionamiento global para tener mas
exactitud que la proporcionada por el GPS, aunque el precio de los receptores aumenta

considerablemente.

Este trabajo tiene como finalidad la adquisicion de datos de una unidad de medida
inercial, también conocida como IMU a través de una FPGA®, la cual se encargara de
recibir y procesar los datos de la IMU y con la cual el usuario podra definir la

sensibilidad y la frecuencia de trabajo de la misma. Veremos como programar la unidad

1 Inertial Measurement Unit (Unidad de Medida Inercial).

2 Global Positioning System (Sistema de Posicionamiento Global).
3 Unmanned Aerial Vehicle (Vehiculo Aéreo no Tripulado).

4 Field Programmable Gate Array.
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de medida inercial y como se comunicard con la FPGA para obtener la mayor

frecuencia de trabajo posible y aprovechar al maximo su rendimiento.

También estudiaremos el filtro de Kalman, necesario para corregir el bias producido
por los girdscopos, el cudl se implementara en Matlab y en Visual Basic, donde se

evaluara su rendimiento en tiempo real.

1.1  Descripcion de la Situacién a Tratar

Este trabajo forma parte de un proyecto de investigacion del departamento de
Microelectronica y Sistemas Electronicos de la UAB, mostrado en parte en la Figura 1,
en el que se combina una unidad de media inercial con un sistema GPS para la mejora
del posicionamiento proporcionado por éste, que nos ofrece un error considerable de 13
metros horizontales aproximadamente® y una baja frecuencia de refresco de 1 Hz.
Aunque actualmente hay receptores GPS a mayor frecuencia, la mayoria de los
receptores comerciales leen datos una vez por segundo. Para corregir este error se utiliza
un filtro de navegacion, llamado filtro de Kalman, debido a la facilidad para integrar
sensores con diferente ancho de banda. A grosso modo, el uso de este filtro necesita
informacion de la posicidn, velocidad y attitude obtenida de la IMU a través de la
mecanizacion, para combinarla con los valores reales obtenidos del GPS. De esta forma
se minimiza el error, y los datos a la salida se actualizan a la frecuencia de la unidad de
medida inercial, que como veremos es mucho mayor que la del GPS (del orden de 100 —

250 Hz tipicamente).

Figura 1. Arquitectura general de la integracién GPS/INS.

> Informacion extraida de Integracion GPS/INS: Conceptos y Experimentos.
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Este trabajo se centra en la parte del proyecto referida al sistema de navegacion
inercial, que incluye la lectura de los datos de la IMU con la FPGA y la correccion del
angulo proporcionado por los girdscopos a través del filtro de Kalman, tal y como

tenemos representado en la Figura 2.

Figura 2. Arquitectura general de la integraciéon GPS/INS con correccién de angulo (IMU)

mediante el filtro de Kalman.

1.2 Objetivos

El objetivo principal de este trabajo es realizar la lectura de aceleracion y velocidad
angular de la unidad de medida inercial (IMU) con la FPGA en tiempo real, ademas de
realizar la correccion del error (bias) de los angulos pitch y roll mediante el filtro de

Kalman.

Los datos obtenidos deben ser coherentes con la realidad y lo mas exactos posible,
ademas de poder obtener una frecuencia de funcionamiento suficientemente elevada
para aplicaciones UAV (Figura 3). La facil configuracion de sensibilidad y frecuencia
de trabajo de la unidad también es util si el usuario desea cambiar la aplicacion o

estudiar un movimiento mas 0 menos preciso.

Para llevar a cabo este objetivo estudiaremos primero el método de trabajo de la
unidad de medida inercial y la programaremos para enviar los datos a la FPGA a la

mayor frecuencia posible. Se debe crear la IP de recepcion y transmision en la FPGA

11



para su sincronizacion con la IMU y programarla para poder configurar la sensibilidad y

la frecuencia de la IMU mediante los switches.

Figura 3. Vehiculo Aéreo no Tripulado (UAV).

En Matlab se estudiara el filtro de Kalman y su funcionamiento, para después
implementarlo en Visual Basic junto a una aplicacion que permitird ver el

comportamiento de la IMU en tiempo real.

Finalmente se comprobara que los resultados obtenidos con la correccion del error y

la lectura de la IMU son correctos para su posterior aplicacion en el sistema GPS/INS.
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2.Fundamentos Teodricos

2.1 Unidad de Medida Inercial

Una unidad de medida inercial o IMU es un componente electrénico basado en
sensores de aceleracion y velocidad angular (acelerémetros y girdscopos
respectivamente) la cual nos reporta el movimiento y orientacion (Figura 4) que sufre
dicha unidad. Es el componente principal de sistemas de guia inercial usados en

vehiculos aéreos, espaciales, marinos y aplicaciones robdticas.

Figura 4. Orientacion proporcionada por una IMU.

2.1.1. Componentes de una IMU

Cualquier unidad de medida inercial estd compuesta como minimo por un
acelerometro y un girdscopo para captar una aceleracion y una velocidad angular en
concreto. Generalmente, es interesante que las IMUs capten la aceleracion y la
velocidad angular en los tres ejes de coordenadas para conocer el movimiento exacto

del componente.
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También podemos encontrar unidades que incorporan un microprocesador que se
encarga de recoger los datos de dichos sensores y enviarlos de forma ordenada al

usuario mediante el protocolo de comunicacion incorporado en la IMU.
A continuacion se detallaran los componentes nombrados:

e Acelerometro: instrumento capaz de medir aceleracion en uno, dos o tres ejes.
Existen varios tipos de acelerometros, dependiendo de su fabricacion y
funcionamiento. Las IMUs incorporan acelerometros integrados en silicio,
utilizando la tecnologia llamada MEMS®, debido a la necesidad de reducir el
tamafo total de la unidad. La mayoria de éstos son capacitivos, y calculan la
aceleracion mediante el voltaje obtenido entre dos placas una de las cuales varia
su posicion dependiendo del movimiento del acelerometro. Se caracterizan por
ser muy precisos en situaciones estables y tener un gran error en situaciones

vibratorias 0 movimientos muy inestables.

e Giroscopo: dispositivo que mide la orientacion, basandose en los principios de
la conservacion del momento angular. Las unidades de medida inercial utilizan
girdscopos MEMS, es decir, integrados y de tamaiio reducido. La salida de dicho
sensor es un voltaje, la variacion del cual nos indica en grados por segundo
(V/°/s) la velocidad angular sufrida por el sensor. Se caracterizan por tener un

error constante y lineal llamado bias el cual debemos tener en cuenta.

e Microprocesador: algunas unidades de medida inercial, como ya hemos
comentado, incorporan un microprocesador. Este es programable, pero su
principal funcidn es recoger los datos entregados por los sensores, procesarlos
segin desee el usuario, y enviarlos. En el microprocesador se define la
frecuencia de trabajo de la unidad, que serd el tiempo comprendido desde que
recoge el dato del primer sensor hasta que envia al usuario el dato procesado del

ultimo sensor.

La mayoria de los microprocesadores incorporan un conversor analogico-digital,

para asi convertir el voltaje dado por el sensor en una muestra. El tiempo de

% Microelectromechanical Systems (Sistemas Microelectromecanicos).
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conversion influye en la frecuencia de trabajo de la unidad, como veremos mas

adelante.

e Protocolo de comunicacion: los protocolos de comunicacion aldmbricos tipicos
en las IMUs son el UART, el RS-232 o el USB’. Algunas unidades incluyen

protocolos inalambricos, siendo los més utilizados ZigBee y Bluetooth.

e Magnetometro: algunas unidades de medida inercial incluyen también sensores
magnetometros. Estos dispositivos miden la fuerza i/o direccién de los campos
magnéticos que los afectan respecto el campo magnético terrestre. Aunque cabe
la posibilidad de que se vean afectados por variacion de otros campos

magnéticos en algunas zonas.

2.1.2. Caracterizacion de una IMU

Los diferentes tipos de unidades de medida inercial que podemos encontrar en el
mercado se caracterizan generalmente por el tipo de sensores de que estan compuestas.
Estos sensores, la frecuencia de trabajo, que puede interesar mayor o menor
dependiendo de la aplicacion para la que esté destinada la unidad, y el protocolo de

comunicacion son los que definen una IMU mejor que otra.

Los sensores de que se componen las unidades de medida inercial se definen
principalmente por su rango de trabajo (maxima medida que soporta el sensor), su
sensibilidad (relacion entre la variacion de la magnitud de salida y la de entrada) y su
ancho de banda de respuesta (frecuencia de funcionamiento del sensor). Para el caso de
los acelerometros, el rango de trabajo se mide con la gravedad estandar, aceleracion de
g = 9.80665 m/s>. Podemos encontrar IMUs con un rango de 1.5g, 2g, 4g, etc.
Dependiendo de este rango, obtenemos una sensibilidad u otra, ya que el nivel de
voltaje maximo que podemos obtener viene definido por la alimentacion del sensor.

Entonces, para mayor rango, menor sensibilidad.

En los girdscopos, el rango de medida se mide en °/s, ya que obtenemos una
velocidad angular, y la sensibilidad en mV/°/s. Valores tipicos de rango que podemos

encontrar son £ 200 °/s, = 300 °/s, + 500 °/s, etc.

" Universal Serial Bus (Bus Universal en Serie).
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En el caso de que la IMU tenga magnetometros, el rango se mide en gauss = 1

maxwell / cm”.

La frecuencia de trabajo de la unidad de medida inercial viene definida por el reloj
que use el microprocesador para enviar los datos al usuario y por la frecuencia de
conversion del conversor analdgico-digital. También influye la velocidad de
transmision, que depende del protocolo que utilicemos y de cémo lo definamos. Esta
velocidad se mide en baudios o bits por segundo y son valores tipicos 38400 bps, 57600

bps, 115200 bps, etc.

2.2 Filtro de Kalman

El filtro de Kalman es la técnica de andlisis por excelencia en medidas de inercia y se
usa principalmente para obtener la posicion y orientacion de lecturas inerciales. Este
filtro proporciona robustez y exactitud al sistema de medida. De esta forma, podemos

utilizar sensores de mas bajo precio, aunque conlleve mas error.

En esta seccion no detallaremos los algoritmos del filtro de Kalman, ya que es un
sistema matematicamente muy complejo, pero si comentaremos sus principios. Se

puede encontrar informacion sobre el filtro de Kalman en [3].

El filtro de Kalman (KF) se basa en un algoritmo predictivo recursivo que utiliza el
método de minimos cuadrados. Esta solucion permite calcular un estimador lineal,
insesgado y optimo del estado de un proceso en cada momento del tiempo con base en
la informacion disponible en el instante de tiempo previo y actualizar dichas
estimaciones. Se puede dividir en dos etapas tal y como nos muestra la Figura 5. La
primera es la etapa de prediccion o prondstico, donde se tiene el estado actual del
sistema (posiblemente con error) y un mapeo de la progresion del sistema a medida que
avanza el tiempo. En esta etapa se predice el siguiente posible estado del sistema. La
segunda es la etapa de correccion, donde se combina el valor real medido con la

prediccion de la primera etapa para obtener un nuevo estado del sistema mas exacto.
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Figura 5. Ciclo del filtro de Kalman.

Lo que hace al filtro tan interesante es su habilidad para predecir el estado de un
sistema en el pasado, presente y futuro, aun cuando la naturaleza precisa del sistema
modelado es desconocida. En la practica, las variables estado individuales de un sistema
dindmico no pueden ser exactamente determinadas por una medicion directa. Dado esto,
su medicion se realiza por medio de procesos estocésticos que involucran algin grado

de incertidumbre en la medicion.

El filtro de Kalman tiene como objetivo resolver el problema general de estimar el
estado de un proceso controlado en tiempo discreto, el cual es dominado por

una ecuacion lineal en diferencia estocastica de la siguiente forma:
= + +
Con una medida , que es:
= +
Las variable y  representan el error del proceso y de la medida respectivamente.

Se asume que son independientes entre ellas, que son ruido blanco y con distribucion de

probabilidad normal:
() (©)
() ©)

En la préctica, las matrices de covarianza de la perturbacion del proceso, Q, y de la
perturbacion de la medida, R, podrian cambiar en el tiempo, pero por simplicidad se

asumen constantes.
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La matriz A se asume de una dimension nxn y relaciona el estado en el periodo
previo k-1 con el estado actual £. La matriz H, de dimensiones mxn, relaciona el estado
con la medicidon Z;. Estas matrices pueden cambiar con el tiempo, pero también se

asumen constantes por simplicidad.

Ya tenemos definido el proceso a ser estimado. Ahora debemos aplicar el algoritmo
del filtro de Kalman. La primera etapa, de prediccion, pronostica las estimaciones del

estado y la covarianza.

= +

QO representa la covarianza de la perturbacion aleatoria del proceso que trata de

estimar el estado.

En la segunda etapa, de correccion, encontramos la ganancia de Kalman Kj,
seleccionada de tal forma que minimice la covarianza del error de la nueva estimacion
del estado. Luego se mide realmente el proceso para obtener Z; y entonces generar una
nueva estimacion del estado , que incorpora la nueva observacion. El paso final es
obtener una nueva estimacion de la covarianza del error. El algoritmo descrito para la

segunda etapa es el siguiente:

Después de cada par de actualizaciones, tanto del tiempo como de la medida, el
proceso es repetido tomando como punto de partida las nuevas estimaciones del estado
y de la covarianza del error. Esta naturaleza recursiva es una de las caracteristicas

llamativas del filtro de Kalman.

La Figura 6 ofrece un cuadro completo de la operacion del filtro.
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Figura 6. Visién completa del filtro de Kalman.

2.3 FPGA

Una FPGA es un circuito integrado de propdsito general y logica programable. Su
configuracién se especifica generalmente utilizando un lenguaje de descripcion
hardware o HDL, similar al utilizado para circuitos integrados de aplicacion especifica
(ASIC). Una FPGA puede ser programada y usada para implementar cualquier funcion
logica que pueda implementar un ASIC, aunque se diferencian en que la FPGA se

puede reprogramar si cambiamos la aplicacion para la que esta destinada.

La FPGA contiene bloques de logica programable y una multitud de interconexiones
reconfigurables que permite conectar los bloques entre si, como nos muestra la Figura 7.
Los bloques logicos pueden ser configurados para llevar a cabo complejas funciones
combinacionales o para implementar puertas logicas como las conocidas AND o OR. La
mayoria de FPGAs incluyen en los bloques logicos elementos de memoria como

simples flip-flops.
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Interconnect Resources
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Figura 7. Arquitectura interna de una FPGA.

En la arquitectura de una FPGA también encontramos las celdas de entrada y salida,
que nos permiten pasar al dispositivo los pardmetros deseados obteniendo asi la

respuesta programada.

2.3.1. Historia de la FPGA

La industria de la FPGA surge del resultado de la convergencia de dos tecnologias
diferentes, los dispositivos l6gicos programables (PLDs) y los circuitos integrados de
aplicacion especifica (ASIC). La historia de los PLDs comenzd con los primeros
dispositivos PROM® y se les afiadié versatilidad con los PAL’, que permitieron un
mayor numero de entradas y la inclusion de registros. Mientras, los ASIC siempre han
sido potentes dispositivos, pero su uso ha requerido una considerable inversion tanto de
tiempo como de costes. Finalmente, combinando las dos estrategias con un mecanismo
de interconexion programable mediante fusibles, antifusibles o celdas RAM,

obteniamos la FPGA.

La primera FPGA viable comercialmente fue inventada en el afio 1984 por Ross

Freeman y Bernard Vonderschmitt, co-fundadores de Xilinx. Esta FPGA, modelo

¥ Programmable Read-Only Memory (Memoria Programable de Solo Lectura).

® Programmable Array Logic (Matriz de Logica Programable).
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XC2064, constaba de puertas logicas e interconexion entre éstas programables. Fue el

comienzo de una nueva tecnologia y de un nuevo mercado.

Hoy en dia existen diferentes compaifiias que compiten en el mercado de las FPGAs
como Xilinx, una de las mas populares en grupos de investigacion, Atmel, Altera, AMD
y Motorola. Una tendencia reciente ha sido la de adoptar el enfoque de arquitectura un
paso mas alld mediante la combinacion de los bloques l6gicos e interconexiones de las
FPGA con microprocesadores integrados y periféricos relacionados para formar un
completo sistema en un chip programable. Ejemplos de tales tecnologias hibridas se
pueden encontrar en los dispositivos de Xilinx Virtex-II Pro (Figura 8) y Virtex-4 que

incluyen uno o mas procesadores PowerPC.

Figura 8. FPGA de Xilinx - Virtex-II Pro.

Muchas FPGA modernas soportan la reconfiguracion parcial del sistema, permitiendo
que una parte del disefio sea reprogramada mientras las demds partes siguen

funcionando. Este es el principio de la idea de la computacion reconfigurable.

2.3.2. Aplicaciones

Cualquier circuito de aplicacion especifica puede ser implementado en una FPGA,
siempre y cuando ésta disponga de los recursos necesarios. Las aplicaciones donde mas
comunmente se utilizan las FPGAs incluyen a los procesadores digital de sefial (DSP),
radio definido por software, sistemas aeroespaciales y de defensa, prototipos de ASICs,
sistemas de imdgenes para medicina, sistemas de vision para computadoras,

reconocimiento de voz, bioinformatica, entre otras.
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Su uso en otras areas es cada vez mayor, sobre todo en aquellas aplicaciones que
requieren un alto grado de paralelismo. Un ejemplo de este tipo de aplicaciones es el
desciframiento de cddigos, en particular, el ataque de fuerza bruta de los codigos
criptograficos. El paralelismo inherente de los recursos 16gicos de una FPGA permite un
rendimiento de procesamiento computacional considerable, incluso a velocidades de

reloj de baja frecuencia.

En aplicaciones convencionales de alto rendimiento de computacion también se esta
abriendo paso el uso de la FPGA, utilizando asi el nicleo de la FPGA en lugar de un

microprocesador.

Tradicionalmente, las FPGAs también tienen una gran utilidad para aplicaciones
especificas en que el volumen de produccidn es pequeio. De esta manera, la prima que
pagan las empresas en los costos por unidad de hardware de un chip programable es
mas asequible que los recursos de desarrollo dedicados a la creacion de un ASIC para
una aplicacion de bajo volumen. Hoy en dia, nuevos costes y la mejora del rendimiento

de las FPGAs han ampliado la gama de aplicaciones viables para su uso.

2.3.3. Arquitectura

La mayoria de las arquitecturas de las FPGAs consiste en una matriz de bloques
logicos, celdas de entrada/salida y canales de conexion. Generalmente, todos los canales
de interconexion tienen el mismo numero de vias o uniones, e interconectan los bloques

vertical y horizontalmente.

En general, un bloque logico consiste en un pequeiio numero de celdas logicas,
tipicamente formadas por 4 LUT (Lookup Table) de entrada, un sumador, tres
multiplexores y un flip-flop tipo D como nos muestra la Figura 9. La salida puede ser
sincrona o asincrona, dependiendo de la programacion del multiplexor de la derecha en
la figura.

carry in clk

a ., [ 13-LUT ;
b , FA LN 173 E 3 out

DFF

carry out clk

Figura 9. Ejemplo simple de una celda légica.
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2.3.4. Procesador PowerPC 405

El nucleo del PowerPC 405 es una implementacion de 32 bits de un procesador
RISC' PowerPC embebido. Esta integrado en los dispositivos Xilinx Virtex-II Pro y
Virtex-4, utilizando la tecnologia de inmersioén IP que soporta la infraestructura de bus
CoreConnect'' y extensas IP para periféricos y utilidades. Una gran variedad de
aplicaciones utilizan esta arquitectura. Algunas de ellas son camaras digitales, mdédems,

teléfonos moviles y dispositivos GPS entre otros.

En la Figura 10 tenemos representada la arquitectura general de un sistema embebido

con procesador PowerPC.

Block RAM

PowerPC 405

%

Figura 10. Arquitectura del sistema con PowerPC.

' Reduced Instruction Set Computing (Computadora con Conjunto de Instrucciones Reducidas).

" CoreConnect es una arquitectura de bus para microprocesadores desarrollada por IBM para Sistemas

en Chip (SoC).
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3.Descripcion General del Proyecto

3.1 IMUs del Mercado

La primera parte del proyecto consiste en estudiar las diferentes unidades de medida
inercial ofrecidas en el mercado actual y obtener una relacion calidad/precio
suficientemente buena para nuestro proyecto. Una vez estudiada gran parte del mercado
y rechazado una serie de unidades debido a su elevado coste o sus bajas prestaciones, la

eleccion de la IMU se encontraba reducida a dos unidades diferentes.

3.1.1. IMU 6DOF Razor - Ultra-Thin IMU

Esta pequefia unidad mostrada en la Figura 11 se compone por dos girdscopos y un
acelerometro. Los giréscopos son un LPR530AL para calcular el cabeceo (pitch) y
alabeo (roll) y un LYS530ALH para calcular la guifada (yaw). El rango de estos
girdscopos es de 300 °/s y unas sensibilidades de 0.83 y 3.33 mV/°/s dependiendo de la
amplificacion que le proporcionemos a la salida. El acelerometro es un ADXL335 de

tres ejes, con un rango de = 3g y 300 mV/g de sensibilidad.

Figura 11. IMU 6DOF Razor.

Estos sensores hacen que la IMU tenga 6 grados de libertad, ya que calculan

aceleracion en los tres ejes y rotacion en los tres angulos de navegacion.

El precio de esta unidad es de 75.18 €'2.

2 Precio Marzo 2009. Este puede variar con el tiempo.
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3.1.2. Atomic IMU 6 Degrees of Freedom - XBee Ready

Esta unidad mostrada en la Figura 12 estd compuesta por tres giréscopos LISY300AL
de 300 °/s de rango y 3.3 mV/°/s de sensibilidad y por un acelerémetro MMA7260Q de

tres ejes con opcidn a diferentes rangos y sensibilidades como nos muestra la Tabla 1:

Rango Sensibilidad

1.5g 800 mV/g
2g 600 mV/g
4g 300 mV/g
6g 200 mV/g

Tabla 1. Rangos y sensibilidades para el acelerémetro MMA7260Q.

También incluye un microprocesador Atmel ATMegal68 de 10 MHz de reloj con un
conversor analdgico-digital de seis canales de 10 bits para digitalizar las sefiales de los

SENSOores.

Utiliza un protocolo de comunicacion UART a 115200 baudios por segundo y viene
preparada para poder utilizar el protocolo inalambrico XBee. Aunque para ello se debe

comprar un modulo XBee externo y afiadirlo a la unidad.

Figura 12. Atomic IMU 6DOF — XBee Ready.

Esta unidad tiene un precio de 94.94 €"°.

" Precio Marzo 2009. Este puede variar con el tiempo.
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3.2 IMU Adquirida

En el apartado anterior hemos visto algunas caracteristicas de las dos unidades de
medida inercial con una relacion calidad/precio asequible para este proyecto. Una vez
analizadas, decidimos comprar la Afomic IMU 6DOF — XBee Ready debido
principalmente a la mejora en los sensores y al microprocesador que ésta lleva
integrado. Aunque el error que introducen los girdscopos es elevado respecto otras IMU

menos econdémicas del mercado.

La Atomic IMU viene de fabrica con un programa en su microprocesador que nos
permite, usando un terminal, cambiar la frecuencia de funcionamiento de la misma,
activar o desactivar sensores segiin nos convenga y cambiar su sensibilidad, y escoger el
tipo de salida entre binario o ASCII'. Esta configuracién puede resultar interesante en
segin qué aplicaciones, pero para nuestro proyecto cambiaremos este programa para

adaptarlo y optimizarlo a una mayor frecuencia de trabajo.

3.2.1. Comparacioén Atomic IMU con la unidad de la ETSE

Ahora compararemos la IMU que tenemos en la escuela con la nueva unidad que
queremos adquirir. En la Tabla 2 podemos comparar los sensores de cada IMU y otras

caracteristicas de que se componen.

Atomic IMU IMU ETSE
Tipo MMA7260Q ADXL202
Rango de Medida +1.5g/2g /4g/6g 12g

Eje x, y: 300 Hz

Acelerémetros Ancho de Banda (f.zqs) 500 Hz
Eje z: 150 Hz
Densidad de Ruido 350 pug/uHz 500 pg/uHz
Precio (unidad) 8.97 € 7.27 € (1000 uds)

' American Standard Code for Information Interchange (Coédigo Estadounidense Estindar para el

Intercambio de Informacion).
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Tipo

Rango de Medida

LISY300AL

300 9/seg

ENC-03JA

300 2/seg

. Sensibilidad 3.3 mV/2/seg 0.67 mV/29/seg
Girdscopos
Respuesta frec. 88 Hz 50 Hz
9.63 € (100
Precio (unidad) 9.08 €
unidades)
Conversor A/D
ATMegal68TM
(3.17€)
Otros Bateria LiPo
>53.87 €
Precio IMU 94.94 €

(solo sensores)

Tabla 2. Comparacién entre Atomic IMU y la unidad de la ETSE.

En el precio de la IMU de la Universidad solo se ha considerado el precio
aproximado de los sensores. Deberiamos considerar también el precio de la fabricacion
y de otros posibles componentes como condensadores, resistencias, etc. También
tenemos que tener en cuenta que la Afomic IMU tiene un procesador integrado que nos

ayudard a la hora de enviar los datos hacia la FPGA.

Asi pues, exceptuando el ancho de banda de los acelerometros, podemos decir que la
Atomic IMU tiene mejores prestaciones que la IMU de la Universidad en cuanto a

sensibilidad de los sensores, ruido, precio y tipo de la sefal de salida.

3.3 Funcionamiento y Programacion de la Atomic
IMU

Como hemos comentado en la seccion 3.2, el microprocesador ATMegal68 que

incorpora la Atomic IMU viene con un programa establecido por defecto'”. En este

' El programa por defecto de la Atomic IMU se puede descargar de la siguiente pagina de Sparkfin:
http://www.sparkfun.com/commerce/product_info.php?products id=9184
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apartado veremos el funcionamiento de la IMU asi como la modificacion del programa
para adaptarlo a los requisitos del proyecto. También estudiaremos los diagramas de
tiempo para las muestras de los sensores. Estos diagramas los utilizaremos para
determinar aproximadamente la frecuencia méaxima de trabajo de la IMU a la que

podemos aspirar.

El programa proporcionado por Sparkfun tiene a la unidad en estado de reposo
inicialmente. Para hacer funcionar la IMU debemos cambiar su estado a través de un
terminal (como por ejemplo el HyperTerminal de Windows). Para ello debemos
conectar la IMU con el PC. Como el protocolo de comunicacion de la unidad de medida
inercial es UART a 3.3V y el del PC es RS-232 a 5V, debemos utilizar un conversor
TTL/RS-232 como el MAX232. El circuito acondicionador y el conversor lo podemos

ver en la Figura 13.

Figura 13. Conversor MAX232.

En la Figura 14 vemos el mismo circuito en la realidad, montado y preparado para
conectar directamente la IMU. El PC lo conectamos mediante el cable visto en la Figura

15 al puerto serie.
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Figura 14. Conversor MAX232 y el circuito acondicionador montado.

Figura 15. Cable para conectar el MAX232 con el PC mediante RS-232.

Cuando ya tenemos conectadas la IMU y el PC debemos configurar la conexion del
terminal a 115200/8/N/1, lo que significa una velocidad de transmision de 115200
baudios, con 8 bits de datos y uno de parada. Asi es como estd configurada la
transmision de la IMU.
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Ahora, pulsando la barra espaciadora, ya podemos ver en el terminal el ment de
configuracion de la IMU. Si ahora activamos todos los sensores a una frecuencia de
funcionamiento determinada, la unidad empezara a mandar tramas al PC. El formato de

éstas es:
A accy acey acce, pitch roll yaw Z

Donde A y Z son caracteres de principio y final de trama. Las aceleraciones lineales y
angulares se pueden representar en binario o en ASCII. Asi pues, vemos que el formato
de la trama incluye una cabecera y final, unas tabulaciones entre cada caracter y los
valores de los sensores. Esto implica una pérdida del ancho de banda, ya que enviamos

caracteres que no necesitamos como el tabulador.

La modificacion propuesta para optimizar el programa es anular todos los caracteres
que no nos aportan informaciéon, como los tabuladores e incluso el caracter de final de
trama. También adaptaremos la configuracion de la frecuencia y sensibilidad del
acelerometro para la FPGA y asi poder ofrecer al usuario una comoda y rapida

configuracion a través de los switch de la placa.

Para poder programar el microprocesador de la IMU necesitamos de un programa que
descarga el cdodigo en un lenguaje de bajo nivel a la IMU mediante un cable
programador como el que nos muestra la Figura 16. El programa utilizado es el Pony-

Prog.

Figura 16. Programador Pony-Prog utilizado.
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Las partes de la Afomic IMU comentadas hasta ahora para programar, para la
conexion con el conversor MAX232 (el mismo que para la FPGA), el microprocesador

y la alimentacion de la unidad las podemos ver en la Figura 17.

Conexion

FPGA / MAX232

Alimentacion

ON Programador

Figura 17. Vista superior de la Atfomic IMU.

Microprocesador €=

3.3.1. Diagramas de Tiempo

Para representar los diagramas de tiempo debemos calcular el tiempo de conversion
del conversor analdgico-digital teniendo en cuenta la frecuencia de reloj establecida. Por
defecto, el microprocesador ATMegal68 tiene un oscilador RC interno de 8 MHz y un
preescaler de 8'°, con lo que la frecuencia de reloj por defecto es de 1 MHz. Al ADC le
asignamos un preescaler de 64, con lo que podemos calcular el tiempo de reloj ADC

como.

=1 = 15.625 =1 —ea
64 T ” -

La primera conversion del ADC dura 25 ciclos de reloj ADC, con lo que la

conversion de un dato de sensor es:

=64 -25 =16

' Segtin el datasheet del ATMegal68 (CKDIVS).
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Entonces, para convertir todos los datos de una trama (un dato de cada sensor)

necesitamos 6 - =9.6 . Este tiempo implica una frecuencia de trabajo de la

unidad maxima de 100 Hz aproximadamente.

ax ay az pitch roll yaw 100 Hz
1.6 ms 3.2ms 4.8 ms 6.4 ms 8 ms 9.6 ms

Figura 18. Diagrama de tiempo para una frecuencia de reloj de 1 MHz y una frecuencia de

trabajo de 100 Hz.

Para conseguir una mayor frecuencia de trabajo, del orden de 200 — 300 Hz, debemos
utilizar el reloj externo de 10 MHz que lleva incorporado el ATMegal68 y quitar el
preescaler de 8 para trabajar a una frecuencia de 10 MHz. En este caso, el tiempo de

reloj del conversor ADC sera:

= _10 = 156.25 -1 6.4
- 64 ' - - e
Y la duracién de una conversion:
=64 25 = 160
El tiempo de conversion de toda una trama mejora a 6 - =960 , con lo que
podemos aplicar una frecuencia maxima de 1 kHz tedricamente.
ax ay az pitch roll yaw 100 Hz
160 320 480 640 800 960 (us)

Figura 19. Diagrama de tiempo para una frecuencia de reloj de 10 MHz y una frecuencia de

trabajo de 100 Hz.

En la practica, estos tiempos varian ya que el microprocesador no solo captura datos,

sino que tiene instrucciones del tipo if'y del tipo while, entre otras, que consumen
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muchos ciclos de reloj y que no estamos teniendo en cuenta. Ademas, también debemos
considerar la velocidad de transmisidn y recepcion, ya que, por mucho que aumentemos
la frecuencia de trabajo de la unidad, s6lo podremos recibir como maximo a la

frecuencia de transmision de 115200 baudios.

3.4 Datos obtenidos de la IMU y calculo del

angulo. Filtro de Kalman

En este apartado describiremos los pasos necesarios para obtener la aceleracion y la
velocidad angular a partir de los datos de los sensores. También veremos como extraer
los angulos de dichos datos y la importancia de aplicar el filtro de Kalman para corregir

el error de los girdscopos.

3.4.1. Aceleracion

Para obtener la aceleracion a partir de los datos del acelerometro (asensor) debemos

aplicar la siguiente ecuacion:

El bias lo obtenemos a partir de un estudio de la unidad en la que la mantenemos
estatica y capturamos datos. Una vez tenemos suficientes, hacemos la media de los
datos de la aceleracion en x, y, z. Esta media obtenida es el bias de la aceleracion para
cada coordenada. El Vs (voltaje de referencia) y Sens (sensibilidad) lo extraemos del
datasheet. La sensibilidad es variable, y puede ser 1.5g, 2g, 4g o 6g. La resolucion del
conversor analdgico-digital es 1024, ya que convierte 10 bits y la g considera la

gravedad.

La ecuacion anterior simplemente escala el dato del sensor para obtener la aceleracion
correctamente. En la Figura 20 tenemos representados los datos obtenidos directamente
del acelerometro y la aceleracion calculada de dichos datos. Como podemos ver la
grafica es la misma pero con otra escala. También podemos deducir que el acelerometro

es muy sensible a vibraciones 0 movimientos bruscos por los picos que se aprecian.
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Datos obtenidos del Sensor Aceleracion en m/s2

560 \ ‘ ‘ 2
550+ E 150 i
40 L i
540 1l |
530+ B
0.5 R
520+ R
oll J
510 R
-0.5¢ i
500 R
Ak i
490 - R
480 - i 1.5+ i
470 . ‘ : - L L L
0 500 1000 1500 2000 0 500 1000 1500 2000

Figura 20. Datos obtenidos del acelerometro y aceleracion (en el eje x) para f =150 Hz.

3.4.2. Angulo a partir de la aceleracién

En esta seccion veremos como calcular el angulo pitch y roll a partir de la aceleracion

obtenida con los acelerometros, vista en el apartado anterior.

Sabemos que la gravedad es una aceleracion, con lo que la podemos medir con
nuestros acelerometros. La Figura 21 nos muestra como podemos relacionar la gravedad

y nuestra medida de aceleracion con el &ngulo 6 y pitch respectivamente.

= +090°

Figura 21. Angulo pitch a partir del acelerémetro y la gravedad.
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Por trigonometria podemos deducir la aceleracion en el eje azul de la figura a partir

del angulo 6 cémo:
0 =cos
Entonces, el angulo sera:

=cos — [9]

(@

=sin ———— [°]

El inconveniente de esta sencilla solucion es que el inverso del seno no nos
proporciona 360 grados completos del angulo pitch. Por ello necesitamos otro
acelerometro y aplicar la tangente de la siguiente forma:

= —tan —_ [O]
+

Donde ay, a, y a. son las aceleraciones en el eje y, eje X y eje z respectivamente.

Si calculamos este angulo para la aceleracion obtenida en la Figura 20, obtenemos lo
mostrado en la Figura 22, en la cual vemos un movimiento de = 90°. Aqui podemos
comprobar como realmente el acelerdmetro es muy sensible a las vibraciones, y al

obtener el angulo nos encontramos unos valores muy ruidosos.

Angulo a partir de la aceleracion
100 . . . .

80+ B

60 - B

20 b

Angulo en grados
o
Il

L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800
Muestras

Figura 22. Angulo pitch obtenido a partir de la aceleracién para f =150 Hz.
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Para el caso del roll la ecuacion que utilizamos es la siguiente:

= —tan —_ [O]

3.4.3. Velocidad Angular

Para los gir6scopos tenemos una ecuacion que nos extrae la velocidad angular a partir
de los datos proporcionados. Esta ecuacion contempla la sensibilidad del giréscopo, que

para el LISY300AL vale 3.3 mV/°/s. Entonces obtenemos la velocidad angular como:

1 o

2

Como pasaba con la aceleracion, la ecuacion anterior s6lo escala el dato del sensor
para obtener velocidad angular. En la Figura 23 tenemos representados los datos del

sensor y la velocidad angular de dichos datos.

Datos obtenidos del Sensor Velocidad angular en 0/s2

750 ‘ ; ‘ 250

700 . 200+ i
650 . 150 - 8
600 8 100 - R
550 8 50 R
500 8 0 M‘r M 8
450+ . -50+ 8
400+ . -100 + 8
350+ . -150 8
300+ . -200 + 8

250

L L L _250 L L L
0 500 1000 1500 2000 0 500 1000 1500 2000

Figura 23. Datos obtenidos del sensor y velocidad angular (pitch) para f=150 Hz.

3.4.4. Angulo a partir de la velocidad angular

Lo que realmente nos interesa de la unidad es el movimiento que suftre, y en ello se

incluye la rotacion o el giro en grados. Para obtener esta rotacion debemos integrar la
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velocidad angular vista anteriormente. La forma de integrar que utilizaremos es la

siguiente, en la que tenemos en cuenta muestras anteriores:
= + [

Si integramos la velocidad angular del apartado anterior (Figura 23), obtenemos el
angulo pitch que tenemos representado en la Figura 24. En el segundo grafico podemos
apreciar el error de bias del giréscopo, ya que el movimiento causado en la IMU es de
+ 90° y el angulo encontrado tiende a aumentar con el tiempo. Para corregir este error

necesitamos el filtro de Kalman, como veremos en el apartado 3.4.5.

Velocidad angular en 0/s2 Angulo pitch en °

250 ‘ ‘ ‘ 100 ‘ ‘ ‘
200 - . 80 8
150 | . 60 .
100 - ﬁ . 40 i
50+ . 20 .
0 W 4 0 i
-50 - . -20 .
-100 - . -40 .
-150 - . -60 8
-200 - . -80 .

-2500 560 1 dOO 1 560 2000 O0 560 1 dOO 1 560 2000

Figura 24. Velocidad angular y angulo pitch obtenidos a partir de los datos del giréscopo para

f=150 Hz.

3.4.5. Filtro de Kalman. Resultados

Ahora debemos aplicar el filtro de Kalman visto en la seccion 2.2. Para ello
consideraremos los siguientes parametros, que representan a nuestra unidad de medida

inercial sobre el filtro:
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e Matriz de estado

e Matriz de covarianza de la medida = 0.3
. . _ 0001 0
e Matriz de covarianza del proceso 0 0.003
1 - : :
. = o 1 ~con dt el tiempo entre medidas.
[ ] =
0
e =(1 0

e El valor de Z; es el angulo obtenido con el acelerdémetro como hemos visto en

el apartado 3.4.2.

e El valor de u es el angulo obtenido con el girdscopo, visto en la seccion 3.4.4.

Si aplicamos el filtro con estos pardmetros para el movimiento visto en la Figura 24

obtenemos una correccion del movimiento y del angulo. Lo podemos observar en la

CON FILTRO DE KALMAN

Figura 25.
SIN FILTRO DE KALMAN
100 ‘ ‘ ‘ 100
80 g 80
60 g 60
40 E 40
20 E 20
o o
> 0 1 3 0
C C
< <
-20 E -20
-40 E -40
-60 g -60
-80 8 -80
-100 L ‘ ‘ -100
0 500 1000 1500 2000 0

Muestras

1000 1500 2000
Muestras

500

Figura 25. Angulo pitch sin filtro y con filtro de Kalman para f = 150 Hz.
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En la figura anterior podemos apreciar el error de bias del girdscopo sin utilizar el
filtro. En cambio, al aplicar el filtro de Kalman, eliminamos este bias y obtenemos el

angulo exacto realizado en la IMU.

Otros ejemplos mas del buen funcionamiento del filtro para obtener el angulo pitch a
diferentes frecuencias de trabajo lo vemos en la Figura 26, Figura 27 y Figura 28. En
estos ejemplos se puede apreciar mas el error de bias con el tiempo. Si no aplicaramos

el filtro, en unos pocos segundos tendriamos un error de alguna centena de grados.

CON FILTRO DE KALMAN

SIN FILTRO DE KALMAN

300 100
80| 1
250} E
60 1
200+ J 40 B
20t 1
150} E
o o
= 3 0 .
;C ;C
< 400} 1<
-20 i
50 1 40r 1
60} B
0 v -
80} B

-50

L L L -100 L L L
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Muestras Muestras

Figura 26. Angulo pitch sin filtro y con filtro de Kalman para f = 150 Hz.

SIN FILTRO DE KALMAN CON FILTRO DE KALMAN

160 100
140} 1 80| 1
120+ B 60 - 1
100} 1 40| 1
80} ] 20} ]
° °
> 60F 13 o i
= =
< <
40! 1 20} 1

20+

-4 L L L -100 L L L
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Muestras Muestras

Figura 27. Angulo pitch sin filtro y con filtro de Kalman para f = 200 Hz.
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SIN FILTRO DE KALMAN CON FILTRO DE KALMAN

200
150 - 4 i
100 + B B
k) o
3 =}
(o)) (o) 7
C o
<< <L
50+ B B
O % - -
-50 : : -100 : :
0 1000 2000 3000 0 1000 2000 3000
Muestras Muestras

Figura 28. Angulo pitch sin filtro y con filtro de Kalman para f = 250 Hz.

También aplicamos lo mismo para obtener el angulo roll. Un ejemplo nos lo muestra
la Figura 29. En este caso, a diferencia del anterior, el bias decrece en lugar de
aumentar. En 4000 muestras tenemos un error de 320° — 90° = 230°. Eso, a una
frecuencia de 200 Hz, significa que en 4000 - L 200 = 20 segundos tenemos un error

de 230°. Con el filtro de Kalman eliminamos este error y obtenemos el angulo roll

deseado de £+ 90°.

SIN FILTRO DE KALMAN CON FILTRO DE KALMAN
50 100
ol | 80 g
60 —
50 L i
40 —
-100 + B 20 |
o o
o 150} 1 3 0 1
C C
<< <
200+ 1 -20 i
40 |
-250 + B
-60 |
-300 + B 80 |
-350 . ! -100 . |
0 2000 4000 6000 0 2000 4000 6000
Muestras Muestras

Figura 29. Angulo roll sin filtro y con filtro de Kalman para f = 200 Hz.
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El programa utilizado para obtener las figuras es Matlab y el codigo (obtencion de los
datos guardados en un fichero, cdlculo de la aceleracion y velocidad angular y

aplicacion del filtro de Kalman) se encuentra en el Anexo C.

3.5 Programacion FPGA

Para la programacion de la FPGA utilizamos un software especifico de Xilinx
llamado Xilinx Platform Studio (EDK). Esta potente herramienta nos permite ver el
diagrama de bloques de la FPGA y crear o modificar las conexiones segun los requisitos

deseados.

Para nuestro sistema necesitamos una conexion UART para conectar directamente la
IMU a la FPGA y una conexion RS-232 para conectar el PC a la FPGA y poder
observar su funcionamiento. Estas conexiones se manejan mediante el controlador
UARTLITE. También necesitamos switches y pulsadores, que en este caso se manejan

mediante el controlador GPIO.

Al crear un nuevo proyecto con el software EDK, observamos que s6lo hay un driver
UART definido, el RS-232. Entonces, debemos definir el controlador UART para el
periférico, en este caso la IMU. Para afiadir el periférico lo buscamos en el programa
mediante el /P Catalog, lo conectamos al bus PLB y lo configuramos para las
condiciones de la IMU (115200 baudios, 8 bits de datos, sin paridad). Una vez hecho
esto, debemos decirle al procesador por qué puerto UART conectaremos el periférico.
En el datasheet de la FPGA VirtexII-Pro encontramos el nombre de todos los puertos de
entrada y salida, donde escogemos los puertos UART L4 como receptor y N5 como

transmisor (con nivel de voltaje TTL).

Para el caso de los switches y de los pulsadores, observamos que ya tienen definido
cada uno sus controladores. En la Figura 30 vemos el diagrama de bloques de la
conexion PLB, donde tenemos representados los switches en A, los pulsadores en C, el
controlador RS-232 en D y el periférico afiadido por nosotros para conectar la IMU

llamado xps_uartlite O.
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SLAVES OF plb0

xps_gpio xps_gpio xXps_gpio
DIPSWs_4Bit LEDs 4Bit PushButtons_ 5Bit

A B C

xps_uartlite xps_uartlite
RS232 Vart 1 xps_uartlite 0

Figura 30. Diagrama de bloques de la conexion PLB de la FPGA con los controladores GPIO y
UARTLITE.

El programa disefiado para recoger los datos de la IMU y poder configurar la misma
mediante los pulsadores y los swifches lo podemos encontrar en el Anexo D.
Basicamente, consiste en un bucle infinito que lee datos de la IMU mientras el receptor
no esté vacio. En el caso que pulsemos el pulsador, enviard a la unidad una trama
consistente en un 1 que indica que hemos pulsado y 4 bits que indican el estado de los
switches. El programa de la IMU esta disefiado para identificar si se ha pulsado el
pulsador, lo que indica que queremos configurarla, y extraer la informacion de
frecuencia y sensibilidad de los 4 bits. La Tabla 3 nos muestra la configuracion que

interpreta la IMU para los 4 bits que envia la FPGA.

Bits mas Sensibilidad Bits menos  Frecuencia
significativos (g) significativos (Hz)
00 1.5 00 100
01 2 01 200
10 4 10 250
11 6 11 300

Tabla 3. Valor de los 4 bits que se configuran mediante los switches.
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3.6 Programa en Visual Basic

Como ampliacién del trabajo y para una mayor visualizacion del funcionamiento de
la IMU, hemos modificado un programa en Visual Basic proporcionado por Sparkfun'’
llamado Atomic Mixer, en el cual tenemos representadas siete barras que se llenan o
vacian segun el valor de cada sensor (exceptuando la primera que es el contador). Cada
barra representa los datos de un sensor en ASCII, es decir, tal y como provienen de la
IMU. Entonces, éstos solo nos dan una referencia del movimiento que aplicamos a la
IMU segtin se llenan las barras. En esta aplicacion nos permiten escoger la frecuencia
de trabajo y la sensibilidad de los acelerometros, tal y como podemos comprobar en la

Figura 31.

Figura 31. Atomic Mixer proporcionado por Sparkfun.

Nuestra mejora al programa consiste en afiadir una figura que se mueva segun el
usuario mueve la IMU en tiempo real. Para ello debemos calcular el angulo de los
girdscopos (seccion 3.4.4), el de los acelerometros (seccion 3.4.2) y aplicar el filtro de
Kalman visto en el apartado 3.4.5, ya que si aplicamos directamente los datos del

giroscopo sin el filtro el dibujo rotard constantemente debido al error de bias producido.

" El programa Atomic Mixer se puede descargar de la siguiente pagina de Sparkfun:

http://www.sparkfun.com/commerce/product_info.php?products id=9184
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El programa modificado lo podemos ver en la Figura 32 y esta detallado en el Anexo

A.

Figura 32. Programa Atomic Mixer Adaptado.
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4.Conclusiones y lineas futuras

Se han cumplido los objetivos planteados en el trabajo como son la implementacién
de un programa para la unidad de medida inercial que sincroniza el envio de datos de
aceleracion y velocidad angular con la FPGA y aprovecha al maximo sus recursos,
maximizando la frecuencia de trabajo y facilitando al usuario la configuracion de
sensibilidad y frecuencia de la IMU. Esto se ha comprobado mediante la aplicacion
implementada en Visual Basic que nos muestra el movimiento efectuado por la IMU en

tiempo real.

Los resultados obtenidos mediante el filtro de Kalman del angulo han sido los
esperados, eliminando el bias producido por los sensores de giro y obteniendo asi el
angulo correcto a largos plazos de tiempo. Cabe decir que la correccion del angulo con
el filtro de Kalman solo se ha podido implementar para los angulos pitch y roll, dejando

al angulo yaw con bias.

Como trabajo futuro podemos plantear que, debido a que el conversor analogico-
digital con el que cuenta el microprocesador lo estamos utilizando en serie mediante un
multiplexor en lugar de utilizarlo en paralelo, podriamos ganar el tiempo que pierde el
conversor al empezar a convertir una nueva muestra si convierte las muestras

seguidamente.
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Anexo A

ATMega168 IMU Code
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/*
6DOF Atomic

20/6/10, Alfred Raul Giménez Bonastre

Este programa especifico para la Atomic IMU funciona a través de una
FPGA. La configuracion se hace mediante los switch de la FPGA
(Sensibilidad, Frecuencia) y con el pulsador de la FPGA enviamos el valor
de los switch para que la unidad se configure.

Cuando envia datos, la trama tiene la siguiente forma:

Aaxayazwxwywz , donde a es aceleracion y w velocidad angular en ASCII
*/

//Librerias y Definiciones
//
#include <avr/io.h>
#include "rprintf.h"
#include <math.h>
#include <avr/interrupt.h>

#define FOSC 10000000

#define BAUD 115200

#define MYUBRR FOSC/8/BAUD-1
#define STAT 5

//Velocidad de reloj
//Baudios

#define x_active
#define y_active
#define z_active
#define pitch_active
#define roll_active
#define yaw_active

O FRLr NWRAWUM
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#define FREQ_LOW 0
#define FREQ_HIGH 1
#define SENSE_AR_MODE2

#define ACT_CHAN 3
#define GS1 0

#tdefine GS2 1

//Definicidon de Funciones

/! == ==
void EEPROM_write(unsigned int uiAddress, unsigned char ucData);
unsigned char EEPROM_read(unsigned int uiAddress);

void ioinit(void);

void USART_Init( unsigned int ubrr);

void Configurar_Imu(char temp1);

void put_char(char byte);

int get_adc(void);

char get_char(void);

void delay_ms(uint16_t x);
void delay_us(uint8_t x);

//Variables Globales

/] ==
int x_accel;

inty_accel;

int z_accel;

int pitch;

int roll;

int yaw;

char active_channels = 0b00111111;
float freq = 0;



// Bucle Principal==

int main (void) while(1)
{ {
char temp, frec, temp2; if (UCSROA & (1<<RXC0)) //Si la IMU recibe algo...
short b; {
temp = UDRO;
temp2 =temp & 0x10;
ioinit(); //Inicializa los pines de entrada/salida if (temp2==16) get_adc(); //Silo que recibe es el
USART_Init(10); //Inicializa la UART a 115200 baudios // pulsador de la FPGA
rprintf_devopen(put_char); }
}
for (b =0; b <5; b++) //Parpadea el led de estado 5 veces al while(1);
// encender }
{
PORTB &= (~(1<<STAT)); //Se enciende el led //nicializamos los pines de entrada/salida y timer
delay_ms(50); // ==
PORTB |= (1<<STAT); //Se apaga el led void ioinit (void)
delay_ms(50); {
} PORTB | = (1<<STAT);
cli(); //Desabilita interrupciones DDRB |= ((1<<STAT) | (1<<GS1) | (1<<GS2));
//Frecuencia a 100 Hz TCCR1B = (1<<CS10) | (1<<CS11); //Preescaler del Timer a 64
EEPROM_write((unsigned int) FREQ_LOW, 50); TCCR2B = (1<<CS21);
EEPROM_write((unsigned int) FREQ_HIGH, 0); }
//Sensibilidad por defecto a 1.5g
EEPROM_write((unsigned int) SENSE_AR_MODE, 0); //\nicializa la UART
//Activa todos los canales (sensores) //= =
EEPROM_write((unsigned int) ACT_CHAN, 0x3F); void USART_Init(unsigned int ubrr)
{
sei(); //Habilita interrupciones //Inicializa la velocidad de transmision
UBRROH = (unsigned char)(ubrr>>8);
freq = 100; //Frecuencia inicial a 100 Hz UBRROL = (unsigned char)ubrr;
PORTB &= (~((1<<GS1) | (1<<GS2))); //Sensibilidad a 1.5g
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// Habilita receptor y transmisor
UCSROA = (1<<U2X0);
UCSROB = ((1<<RXENO) | (1<<TXENO));

// Inicializa el formato de la trama: 8datos, 2bits de parada
UCSROC = ((1<<UCSZ00) | (1<<UCSZ01));

}
//Delays generales en ms
/! ===
void delay_ms(uint16_t x)
{
for (; x>0; x--)
{
delay_us(250); //Llama a la funcién de delays de us
delay_us(250);
delay_us(250);
delay_us(250);
}
}
//Delays generales en us aproximadamente
//
void delay_us(uint8_t x)
{
char temp;
if (x==0)temp =1,
else temp = x;
TIFR2 |=0x01; //Limpia flags de interrupciones en el Timer2
TCNT2 = 256 - temp;
while(!(TIFR2 & 0x01));
}
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//Funcién para enviar un caracter

//
void put_char(char byte)
{
/* Espera a que el buffer de transmisién esté vacio */
while (!( UCSROA & (1<<UDREO0)));
/* Almacena el dato en el buffer y lo envia */
UDRO = byte;
}

//Funcién para recibir un caracter

//
char get_char(void)
{
/* Espera a que el buffer de recepcion esté lleno */
while(!(UCSROA & (1<<RXCO0)));
return UDRO;
}
//Funcién que toma los datos de los sensores
//
int get_adc(void)
{
inth2=0,12=0;
int time =0, tmr_cnt;
charq, a;
x_accel =0;
y_accel =0;
z_accel = 0;
pitch = 0;
roll = 0;
yaw =0;



//Contador = (1/Target Frequency)/(Preescaler/Clock Frequency) - 1 rprintf("%d",y_accel);

tmr_cnt = (int)((1/freq)/.0000064) - 1; h2=0;12=0;
while(1) //Conversidn aceleracién en z=========== ==
{ ADMUX = 0x42;

TIFR1 |= 0x01; ADCSRA = (1 << ADEN)] (1 << ADSC) | (1<<ADPS2)|(1<<ADPS1);

TCNT1 = 65536 - tmr_cnt; //Inicializa el contador para while(ADCSRA & (1 << ADSC));

//cada iteracion 12 = (ADCL & OxFF);
h2 = (ADCH & 0x03);
x_accel =0, y_accel =0, z_accel = 0; z_accel = ((h2<<8) | 12);

pitch =0, roll = 0, yaw = 0;

rprintf("%d",z_accel);
put_char('A'"); //Envia el inicio de trama 'A' h2=0;12=0;

//Conversi(')n aceleracidon en x=============================

//Selecciona el canal del multiplexor //Conversion de pitch======= ====

ADMUX = 0x40; ADMUX = 0x43;

//Activa y configura el conversor A/D ADCSRA = (1 << ADEN)|(1 << ADSC) | (1<<ADPS2) | (1<<ADPS1);
ADCSRA = (1 << ADEN)| (1 << ADSC) | (1<<ADPS2) | (1<<ADPS1); while(ADCSRA & (1 << ADSC));

while(ADCSRA & (1 << ADSC)); 12 = (ADCL & OXFF);

12 = (ADCL & OxFF); h2 = (ADCH & 0x03);

h2 = (ADCH & 0x03); pitch = ((h2<<8) | 12);

x_accel = ((h2<<8) | 12);
rprintf("%d",pitch);

rprintf("%d",x_accel); //Enviamos el dato de ax h2=0;12=0;
h2=0;12=0;
//Conversion de roll===================== ====

//Conversion aceleracion en'y ADMUX = 0x44;

ADMUX = 0x41; ADCSRA = (1 << ADEN)|(1 << ADSC) | (1<<ADPS2)|(1<<ADPS1);

ADCSRA = (1 << ADEN)|(1 << ADSC)|(1<<ADPS2)|(1<<ADPS1); while(ADCSRA & (1 << ADSC));

while(ADCSRA & (1 << ADSC)); 12 = (ADCL & OXFF);

12 = (ADCL & OXFF); h2 = (ADCH & 0x03);

h2 = (ADCH & 0x03); roll = ((h2<<8) | 12);

y_accel = ((h2<<8) | 12);
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rprintf("%d",roll);
h2=0;12=0;

//Conversion de yaw====
ADMUX = 0x45;
ADCSRA = (1 << ADEN)|(1 << ADSC)|(1<<ADPS2)|(1<<ADPS1);
while(ADCSRA & (1 << ADSC));

12 = (ADCL & OxFF);
h2 = (ADCH & 0x03);
yaw = ((h2<<8) | 12);

rprintf("%d",yaw);
h2=0;12=0;

//Si el contador termina antes de llegar a este punto significa que la
//frecuencia de trabajo es demasiado alta
if (TIFR1 & 0x01)

{
rprintf("\r\n\nFrecuencia demasiado alta!!\r\n\n",0);
freq = 100;
break;

}

while(!(TIFR1 & 0x01)); //Espera a que termine el timer

if (UCSROA & (1<<RXCO0)) //Sila unidad recibe algo...

{
q = UDRO;

//Mascara para saber si hemos pulsado el pulsador de la FPGA
a=q & 0x10;

//Entrar en el menu de configuracién
if (a==16)

{

//Si se ha pulsado el pulsador se entra en la configuracion
Configurar_Imu(q);

//Actualizamos el valor del timer con la nueva frecuencia
tmr_cnt = (int)((1/freq)/.0000064);
}

}

return;

}

//Funcién de configuracion de la IMU
// ==
void Configurar_Imu(char temp1)

{

char sens, frec;

//Mascara para quedarnos con los switchs de la FPGA de sensibilidad
sens = templ & 0xC;

//Mascara para quedarnos con los switchs de la FPGA de frecuencia
frec = templ & 0x3;

// SENSIBILIDAD---------nmono-
if (sens ==0) //Sensibilidad 1.5g
{
PORTB &= (~((1<<GS1) | (1<<GS2)));//GS1, GS2 Low
}
else if (sens == 4) //Sensibilidad a 2g
{
PORTB |= (1<<GS1); //GS1 High
PORTB &= (¥(1<<GS2)); //GS2 Low
}
else if (sens == 8) //Sensibilidad a 4g



{
PORTB &= (~(1<<GS1)); //GS1 Low
PORTB | = (1<<GS2); //GS2 High
}
else if (sens == 12) //Sensibilidad a 6g
{
PORTB |= ((1<<GS1) | (1<<GS2)); //GS1, GS2 High
}
// FRECUENCIA---------------
if (frec == 0) //Frecuencia a 100Hz
{
freq = 100;
}
else if (frec == 1) //Frecuencia a 200Hz
{
freq = 200;
}
else if (frec == 2) //Frecuencia a 250Hz
{
freq = 250;
}
else if (frec == 3) //Frecuencia a 300Hz
{
freq = 300;
}

}

//Funcidn que escribe en la EEPROM
//
void EEPROM_write(unsigned int uiAddress, unsigned char ucData)
{

/* Espera a que se complete la escritura anterior */

while(EECR & (1<<EEPE));
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/* Inicializa las direcciones y datos */

EEAR = uiAddress;

EEDR = ucData;

EECR |= (1<<EEMPE);

/* Indica que se ha terminado la escritura */
EECR |= (1<<EEPE);

}
//Funcion que lee de la EEPROM
/] ==
unsigned char EEPROM_read(unsigned int uiAddress)
{
/* Espera a que se complete la lectura anterior */
while(EECR & (1<<EEPE));
/* Inicializa la direccién */
EEAR = uiAddress;
EECR |= (1<<EERE);
return EEDR;
}



Anexo B

Caodigo en Visual Basic para la vision
en tiempo real del funcionamiento de
la IMU. Aplicacion del filtro de Kalman

54



'Option Explicit
'6DOF Alfred Giménez

'Variables Globales

Dim Stop_Waiting As Boolean
Dim CommPort As Integer
Dim freq As Integer
Dim low As Boolean
Dim med As Boolean
Dim high As Boolean
Dim really_high As Boolean

Private Const Pl = 3.14159265358979
Private Const Vref = 3.3

Private Const g=9.8

Private Const Sens_acc = 0.8

Private Const Sens_gyro = 0.0033

'Constantes Filtro de Kalman
Private Const R_angle =0.3
Private Const Q_angle = 0.001
Private Const Q_gyro = 0.003

'Variables utilizadas para mover el dibujo al mover la IMU

Private Enum TipoMovimientoConstants
tmvLeft
tmvRight
tmvUp
tmvDown
tmvAgainstClock
tmvClock
End Enum

Private Type Punto
X As Single
Y AsSingle
Z AsSingle

End Type

Private Type Linea

IDPtol As Integer

IDPto2 As Integer

Color As OLE_COLOR
End Type

Private Type Figura

Centro As Punto

Puntos() As Punto

Lineas() As Linea
End Type
Private Figuras As Figura
Private angulo_pitch As Double
Private angulo_roll As Double
Private angulo_yaw As Double
Private angulo_ax As Double
Private angulo_ay As Double
Private angulo_az As Double

'Seleccionamos el puerto Comm
Private Sub cboCommPort_Click()

CommPort = cboCommPort.Listindex + 1

End Sub

'Seleccionamos la frecuencia



Private Sub cboCombo1_Click() Dim yaw As Long

freq = cboCombol.List(cboCombo1l.Listindex) 'Para calibrar y encontrar el bias
Dim bias_pitch As Long
End Sub Dim bias_roll As Long
Dim bias_yaw As Long
'Si pulsamos el botén de parar Dim bias_ax As Long
Private Sub cmdBreak_Click() Dim bias_ay As Long
Dim bias_az As Long
Stop_Waiting = True Dim dt As Double
End Sub
'Variables donde guardaremos la velocidad angular
'Cuando pulsamos el botén de 'Start Unit' para que empiece a funcionar Dim ang_pitch As Double
Private Sub cmdOpenLink_Click() Dim ang_roll As Double
Dim ang_yaw As Double
Dimi As Long Dim ang_pitch_acc As Double
Dim X As Byte Dim ang_roll_acc As Double
Dim data_array(20) As Byte Dim ang_yaw_acc As Double

'Variables del filtro de Kalman

Dim count As Long
Dim P_pitch(1 To 2,1 To 2) As Double

Dim magx As Long
Dim magy As Long Dim P_roll(1 To 2, 1 To 2) As Double
Dim magz As Long Dim Pdot(7) As Double
Dim w_bias_pitch As Double
Dim accx As Long Dim w_bias_roll As Double
Dim accy As Long Dim angulo_error_pitch As Double
Dim accz As Long Dim angulo_error_roll As Double
Dim ax As Double Dim K_pitch(1) As Double
Dim ay As Double Dim K_roll(1) As Double
Dim az As Double

'Inicializamos la matriz de covarianza P
P_pitch(1,1)=1

Dim pitch As Long P_pitch(1,2)=0
_pitentd, 2) =

Dim roll As Long
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P_pitch(2, 1
P_pitch(2, 2
P_roll(1, 1
P_roli(1, 2
P_roll(2, 1
P_roll(2, 2

'Inicializamos los bias
bias_pitch = 520
bias_roll = 498
bias_yaw =497
bias_ax = 509
bias_ay = 455
bias_az = 537

'Si el puerto esta abierto lo cerramos

If MSComm1.PortOpen = True Then MSComm1.PortOpen = False
cmdBreak.Enabled = True

cmdOpenlLink.Enabled = False

IblStatus.Caption = "Conectando a la unidad remota"
MSComm1.CommPort = CommPort
MSComml.Inputlen =1

'If Flow_control Then MSComm1.Handshaking = 0
MSComm1.Handshaking = 1

MSComml1.InputMode = comlnputModeText
MSComm1.Settings = "115200,n,8,1"
MSComm1.PortOpen = True

'Seleccionamos la sensibilidad de los acelerémetros en la unidad
If really_high = True Then MSComm1.Output = Chr(40)

If high = True Then MSComm1.0utput = Chr(39)

If med = True Then MSComm1.0utput = Chr(38)

If low = True Then MSComm1.0utput = Chr(37)

'Seleccionamos la frecuencia en la unidad

If freq = 50 Then MSComm1.0utput = Chr(41)
If freq = 100 Then MSComm1.0utput = Chr(42)
If freq = 150 Then MSComm1.0utput = Chr(43)
If freq = 200 Then MSComm1.0Output = Chr(44)
If freq = 250 Then MSComm1.0Output = Chr(45)
MSComm1.Output = Chr(35)

dt =1/ freq 'Tiempo de muestreo

Bucle principal

SAMPLE_LOOP:

DoEvents

'‘Escaneamos el primer byte de la trama 'A'

Do While MSComm1.Input <> "A"
'Miramos si el usuario quiere parar
If Stop_Waiting = True Then GoTo GET_OUT
DoEvents

Loop

ForX=0To 13

Do While MSComm1.InBufferCount = 0
'Miramos si el usuario quiere parar
If Stop_Waiting = True Then GoTo GET_OUT
DoEvents

Loop

'Guardamos la lectura en el vector data_array()
data_array(X) = AscB(MSComm1.Input)
DoEvents

Next X



'Verificamos que el ultimo byte es correcto 'Z'
Do While MSComm1.InBufferCount = 0
If Stop_Waiting = True Then GoTo GET_OUT
DoEvents
Loop

'Significa que tenemos una muestra correcta
If MSComm1.Input ="Z" Then
IblStatus.Caption = "Recibiendo Datos!" 'Cambiamos el estado

'Contador

count = data_array(0)

count = count * 256 + data_array(1)

IbIReading(0).Caption = CStr(count)

bluebar(0).Width = Int((count * whitebar(0).Width) / 32767)
DoEvents

'Aceleraciones

accx = data_array(2)

accx = acex * 256 + data_array(3)

IbIReading(4).Caption = CStr(accx)

bluebar(4).Width = Int((accx * whitebar(4).Width) / 1023)
ax = (accx - bias_ax) * (Vref / 1024) * (g / Sens_acc)
DoEvents

accy = data_array(4)

accy = accy * 256 + data_array(5)

IbIReading(5).Caption = CStr(accy)

bluebar(5).Width = Int((accy * whitebar(5).Width) / 1023)
ay = (accy - bias_ay) * (Vref / 1024) * (g / Sens_acc)
DoEvents

accz = data_array(6)

accz = accz * 256 + data_array(7)

IbIReading(6).Caption = CStr(accz)

bluebar(6).Width = Int((accz * whitebar(6).Width) / 1023)
az = (accz - bias_az) * (Vref / 1024) * (g / Sens_acc)
DoEvents

'Pitch

pitch = data_array(8)

pitch = pitch * 256 + data_array(9)

IbIReading(7).Caption = CStr(pitch)

bluebar(7).Width = Int((pitch * whitebar(7).Width) / 1023)

ang_pitch = ((pitch - bias_pitch) / 1024) * (Vref / Sens_gyro) * (Pl / 180)
DoEvents

'Roll

roll = data_array(10)

roll = roll * 256 + data_array(11)

IbIReading(8).Caption = CStr(roll)

bluebar(8).Width = Int((roll * whitebar(8).Width) / 1023)

ang_roll = ((roll - bias_roll) / 1024) * (Vref / Sens_gyro) * (Pl / 180)
DoEvents

'Yaw

yaw = data_array(12)

yaw = yaw * 256 + data_array(13)

IbIReading(9).Caption = CStr(yaw)

bluebar(9).Width = Int((yaw * whitebar(9).Width) / 1023)

ang_yaw = ((yaw - bias_yaw) / 1024) * (Vref / Sens_gyro) * (Pl / 180)
angulo_yaw = ang_yaw * dt

DoEvents

End If

' KALMAN




'Calculo del dngulo con los gyros y considerando el bias obtenido con Kalman
angulo_pitch = dt * (ang_pitch - w_bias_pitch)
angulo_roll = dt * (-ang_roll - w_bias_roll)

Pdot(0) = Q_angle - P_pitch(1, 2) - P_pitch(2, 1)
Pdot(1) = -P_pitch(2, 2)

Pdot(2) = -P_pitch(2, 2)

Pdot(3) = Q_gyro

Pdot(4) = Q_angle - P_roll(1, 2) - P_roll(2, 1)
Pdot(5) = -P_roll(2, 2)

Pdot(6) = -P_roll(2, 2)

Pdot(7) = Q_gyro

'Actualizamos matriz de covarianza
P_pitch(1, 1) = P_pitch(1, 1) + Pdot(0) * dt
P_pitch(1, 2) = P_pitch(1, 2) + Pdot(1) * dt
P_pitch(2, 1) = P_pitch(2, 1) + Pdot(2) * dt
P_pitch(2, 2) = P_pitch(2, 2) + Pdot(3) * dt
P_roll(1, 1) = P_roll(1, 1) + Pdot(4) * dt
P_roll(1, 2) = P_roll(1, 2) + Pdot(5) * dt
P_roll(2, 1) = P_roll(2, 1) + Pdot(6) * dt
P_roll(2, 2) = P_roll(2, 2) + Pdot(7) * dt

'Calculo del dngulo con los acelerémetros
angulo_pitch_acc = -(Atn(ay / Sqr((ax * 2) + (az » 2)))) 'Pitch en radianes
angulo_roll_acc = -(Atn(ax / Sqr((ay » 2) + (az * 2)))) 'Roll en radianes

'‘Angulo error
angulo_error_pitch = angulo_pitch_acc - angulo_pitch
angulo_error_roll = angulo_roll_acc - angulo_roll

'Ganancia de Kalman
K_pitch(0) = P_pitch(1, 1) / (R_angle + P_pitch(1, 1))
K_pitch(1) = P_pitch(2, 1) / (R_angle + P_pitch(1, 1))
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P_roll(1, 1) / (R_angle + P_roll(1, 1))
P_roll(2, 1) / (R_angle + P_roll(1, 1))

K_roll(0) =
K_roll(1) =

P_pitch(1, 1) = P_pitch(1, 1) - (K_pitch(0) * P_pitch(1, 1
P_pitch(1, 2) = P_pitch(1, 2) - (K_pitch(0) * P_pitch(1, 2
P_pitch(2, 1) = P_pitch(2, 1) - (K_pitch(1) * P_pitch(1, 1
P_pitch(2, 2) = P_pitch(2, 2) - (K_pitch(1) * P_pitch(1, 2

—_— — — —
P

P_roll(1, 1) = P_roll(1, 1) - (K_roll(0) * P_roll(1, 1))
P_roll(1, 2) = P_roll(1, 2) - (K_roll(0) * P_roll(1, 2))
P_roll(2, 1) = P_roll(2, 1) - (K_roll(1) * P_roll(1, 1))
P_roll(2, 2) = P_roll(2, 2) - (K_roll(1) * P_roll(1, 2))

'Angulos finales
angulo_pitch = angulo_pitch + K_pitch(0) * angulo_error_pitch
angulo_roll = angulo_roll + K_roll(0) * angulo_error_roll

‘Bias final
w_bias_pitch = w_bias_pitch + K_pitch(1) * angulo_error_pitch
w_bias_roll = w_bias_roll + K_roll(1) * angulo_error_roll

Call Avion 'Llamamos a la funcién que mueve el avidn
GoTo SAMPLE_LOOP

GET_OUT:
MSComm1.0utput = Chr(32)
cmdBreak.Enabled = False
cmdOpenlLink.Enabled = True
Stop_Waiting = False

'Mensaje diciendo que hemos parado la unidad
MsgBox "Unit Stopped", vbOKOnly

‘Cambio de estado

IbIStatus.Caption = "Unidad en reposo..."



Exit Sub

'Si hay algun error con la conexion
ErrHandler:
If Err.Number = 8020 Or Err.Number = 8015 Then
MsgBox "The PIC seems to be using the UART at a different baud rate. Please
power down the PIC or hold it in reset before initiating download."
Elself Err.Number = 8005 Then
MsgBox "COM" & CommPort & " already open."
Else
MsgBox "Error, " & Err.Description, voOKOnly
MsgBox Err.Number
End If

ErrExit:

'Si el puerto sigue abierto lo cerramos

If MSComm1.PortOpen = True Then
MSComm1.PortOpen = False

End If

cmdBreak.Enabled = False
‘Cambio de estado a Error

IbIStatus.Caption = "jjError!!"

End Sub

'Si cerramos el archivo

Private Sub File_Close_Click()
Unload Me

End Sub

'Al cargar el formulario (abrir archivo)
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Private Sub Form_Load()
'On Error GoTo EH
Fori=0To5
'bluebar(i).Width = whitebar(i).Width / 2

Next i

CommPort =6
txtComPort.Text = CommPort

Exit Sub

EH:
MsgBox Err.Number & " =" & Err.Description

End Sub

'Selecciona la sensibilidad del acelerémetro a 1.5g
Private Sub Option1_Click()

low = True
med = False
high = False

really_high = False

End Sub

'Selecciona la sensibilidad del acelerémetro a 2g
Private Sub Option2_Click()

low = False
med = True
high = False

really_high = False



End Sub

'Selecciona la sensibilidad del acelerometro a 4g
Private Sub Option3_Click()

low = False

med = False

high = True

really_high = False
End Sub

'Selecciona la sensibilidad del acelerometro a 6g
Private Sub Option4_Click()

low = False

med = False

high = False

really_high = True
End Sub

' FIGURA

'Funcidn que calcula la posicion de los puntos
Private Function Pow(Number, Exp As Integer) As Double
Dim auxl As Integer

Pow=1
For auxl=1To Exp
Pow = Pow * Number
Next auxl|
End Function

'Funcion que calcula el angulo de cada punto

Private Function Angle(X As Single, Y As Single)
Angle = Atn(Y / X) - lIf(X < 0, PI, 0)

End Function

'Comprueba si el puerto comm que hemos puesto es correcto
Private Sub txtComPort_Change()

'On Error GoTo Error_Handler
If CInt(txtComPort.Text) > 99 Then txtComPort.Text = "99"
CommPort = CInt(txtComPort.Text)
Exit Sub
Error_Handler:
MsgBox "El nimero del puerto Comm debe ser entre 1y 99"

txtComPort.Text = "1"

End Sub

'Funciéon que nos crea la figura, con sus respectivos puntos y lineas

Private Sub CreaAvion(Fig As Figura)
ReDim Fig.Puntos(1 To 5)

'Situamos la figura a la derecha de la pantalla
Fig.Centro.X = (Me.Width / 4) * 3.15
Fig.Centro.Y = (Me.Height / 2) * 0.8
Fig.Centro.Z=0

'Fijamos los puntos vértice de la figura
Fig.Puntos(1).X = -2500
Fig.Puntos(1).Y = 1500
Fig.Puntos(1).Z=0

Fig.Puntos(2).X = 2500
Fig.Puntos(2).Y = -1000
Fig.Puntos(2).Z2=0



Fig.Puntos(3).X =-2700
Fig.Puntos(3).Y =-1200
Fig.Puntos(3).Z = 2000

Fig.Puntos(4).X = -2700
Fig.Puntos(4).Y =-1200
Fig.Puntos(4).Z = -2000

Fig.Puntos(5).X =-2000
Fig.Puntos(5).Y = -1000
Fig.Puntos(5).Z2=0

'Unimos los vértices para formar la figura
ReDim Fig.Lineas(1 To 9)

Fig.Lineas(1).IDPtol =1
Fig.Lineas(1).IDPto2 = 2
Fig.Lineas(1).Color = vbBlue

Fig.Lineas(2).IDPtol =1
Fig.Lineas(2).IDPto2 =5
Fig.Lineas(2).Color = vbBlue

Fig.Lineas(3).IDPtol =1
Fig.Lineas(3).IDPto2 = 3
Fig.Lineas(3).Color = vbBlue

Fig.Lineas(4).IDPtol =1
Fig.Lineas(4).IDPto2 = 4
Fig.Lineas(4).Color = vbBlue

Fig.Lineas(5).IDPtol = 2
Fig.Lineas(5).IDPto2 = 3
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Fig.Lineas(5).Color = vbBlue

Fig.Lineas(6).IDPtol = 2
Fig.Lineas(6).IDPto2 = 4
Fig.Lineas(6).Color = vbBlue

Fig.Lineas(7).IDPtol = 2
Fig.Lineas(7).IDPto2 = 5
Fig.Lineas(7).Color = vbBlue

Fig.Lineas(8).IDPtol = 3
Fig.Lineas(8).IDPto2 =5
Fig.Lineas(8).Color = vbBlue

Fig.Lineas(9).IDPtol = 4
Fig.Lineas(9).IDPto2 = 5
Fig.Lineas(9).Color = vbBlue

'La giramos PI/2 en yaw para que se oriente hacia
'adelante segln nuestra posicién

angulo_yaw = (Pl / 2)

'‘Llamamos a la funcién que nos dibuja la figura

Call Avion

End Sub

'Funcidon que nos dibuja la figura anteriormente descrita
Private Sub DibujaFigura(Fig As Figura, Optional Limpiar As Boolean = False)

Dim auxl As Integer

'Dibujamos los ejes x e y (y el punto central)
Me.PSet (Fig.Centro.X, Fig.Centro.Y), vbGreen

Forauxl=1To 6



Me.Circle (Fig.Centro.X, Fig.Centro.Y), auxl * 5, lIf(Limpiar, Me.BackColor,

vbGreen)

Next auxl

Me.DrawStyle = vbDot

Me.Line (Fig.Centro.X - 2500, Fig.Centro.Y)-(Fig.Centro.X + 2500, Fig.Centro.Y),
vbGreen

Me.Line (Fig.Centro.X, Fig.Centro.Y - 2500)-(Fig.Centro.X, Fig.Centro.Y + 2500),
vbGreen

‘Dibujamos los puntos vértices
Me.DrawsStyle = vbSolid
For auxl = LBound(Fig.Puntos) To UBound(Fig.Puntos)
Me.Circle (Fig.Centro.X + Fig.Puntos(auxl).X,
Fig.Puntos(auxl).Y), 60, lIf(Limpiar, Me.BackColor, vbRed)
Next auxl

Fig.Centro.Y +

'Dibujamos las lineas
For auxl = LBound(Fig.Lineas) To UBound(Fig.Lineas)

Me.Line (Fig.Centro.X + Fig.Puntos(Fig.Lineas(auxl).IDPto1).X, Fig.Centro.Y +
Fig.Puntos(Fig.Lineas(auxl).IDPto1).Y)-(Fig.Centro.X +
Fig.Puntos(Fig.Lineas(auxl).IDPto2).X, Fig.Centro.Y +
Fig.Puntos(Fig.Lineas(auxl).IDPt02).Y), lIf(Limpiar, Me.BackColor,
Fig.Lineas(auxl).Color)

Next auxl
End Sub

'Funcion que mueve la figura entera llamando a la funcién que mueve los puntos
Private Sub MueveFigura(Fig As Figura)
Dim auxl As Integer

For auxl = LBound(Fig.Puntos) To UBound(Fig.Puntos)
Call MuevePunto(Fig.Puntos(auxl))
Next auxl
End Sub
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'Funcion que mueve cada punto de la figura dependiendo del angulo obtenido
Private Sub MuevePunto(Pto As Punto)

Dim Angulo As Double

Dim xRadio As Double

'Calcula el radio y angulo del punto a mover y a éste le suma el nuevo
'angulo. Luego mueve el punto en x, y, z, segln convenga.
If angulo_yaw <> 0 Then

xRadio = Sgr(Pow(Pto.X, 2) + Pow(Pto.Z, 2))

Angulo = Angle(Pto.X, Pto.Z)

Angulo = Angulo + angulo_yaw

Pto.X = xRadio * Cos(Angulo)

Pto.Y = Pto.Y
Pto.Z = xRadio * Sin(Angulo)
End If

If angulo_roll <> 0 Then
xRadio = Sgr(Pow(Pto.Y, 2) + Pow(Pto.Z, 2))
Angulo = Angle(Pto.Y, Pto.Z)
Angulo = Angulo + angulo_roll
Pto.X = Pto.X
Pto.Y = xRadio * Cos(Angulo)
Pto.Z = xRadio * Sin(Angulo)
End If

If angulo_pitch <> 0 Then
xRadio = Sqr(Pow(Pto.X, 2) + Pow(Pto.Y, 2))
Angulo = Angle(Pto.X, Pto.Y)
Angulo = Angulo + angulo_pitch
Pto.X = xRadio * Cos(Angulo)
Pto.Y = xRadio * Sin(Angulo)
Pto.Z = Pto.Z
End If



End Sub

'Al abrir el archivo crea la figura y la dibuja
Private Sub Form_Activate()

'Funcion principal -> Primero creamos los puntos de la figura y luego los
dibujamos
Call CreaAvion(Figuras)

Call DibujaFigura(Figuras)

End Sub

'Funcion que borra la figura, calcula los puntos nuevos y la dibuja
'llamando a las correspondientes funciones
Private Sub Avion()

'Borramos la figura anterior para dibujar la nueva
Call DibujaFigura(Figuras, True)

'Calculamos los nuevos puntos a mover
Call MueveFigura(Figuras)

Call DibujaFigura(Figuras) 'Dibujamos la figura nueva

End Sub
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Anexo C

Caodigo en Matlab para el estudio de
los datos de la IMU. Filtro de Kalman
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%Programa en Matlab que calcula el dangulo sin filtro y con filtro de Kalman para
%unos datos obtenidos de la IMU y guardados en un fichero.

close all
clear all

fd = fopen('New-1.5g-250Hz-pitch-902.txt","r');

m = fscanf(fd,'%d',[7,inf]); %Leer los datos del fichero en filas

fclose(fd); %Cerrar el fichero
valor = 4;

w_bias = 0;

g=9.8; %Gravedad

dt =1/250; %Frecuencia de muestreo
vref = 3.3; %Voltaje de referencia
w_s =3.3e-3; %Sensibilidad giro

%Sensibilidad acelerometros
ac_s =800e-3; %lg

%ac_s = 600e-3; %2g

%ac_s = 300e-3; %4g

%ac_s = 200e-3; %b6g

%Valores datos filtro Kalman

P =1[1,0;0,1]; %Matriz de covarianza
R_angle =0.3;

Q_angle =0.001;

Q_gyro =0.003;

%Velocidad angular

wpl=m(5,:);
wr =m(6,:);
wy =m(7,:);
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%Aceleracion

ax =m(2,:);
ay =m(3,:);
az=m(4,:);

%Calculo de la aceleracion

ax = (((ax - 509) * (vref / 1024))./ac_s) * g;
ay = (((ay - 455) * (vref / 1024))./ac_s) * g;
az=(((az-537) * (vref / 1024))./ac_s) * g;

%Calculo de la velocidad angular

wp = ((wpl.*vref/1024)-(vref/2))./w_s;
wr = ((wr.*vref/1024)-(vref/2))./w_s;
wy = ((wy.*vref/1024)-(vref/2))./w_s;

%Vector de datos

dat(1,:) = ax;
dat(2,:) = ay;
dat(3,:) = az;
dat(4,:) = wp;
dat(5,:) = wr;
dat(6,:) = wy;

%Valor inicial del angulo
angulo_wk(1) = dat(valor,1)*dt;
angulo_w(1) = dat(valor,1)*dt;

%Calculamos el valor del angulo y aplicamos el filtro de Kalman

for i=2:length(dat),

%Angulo sin filtro de Kalman

angulo_w(i) = angulo_w(i-1) + dat(valor,i)*dt;

%Angulo con filtro de Kalman

angulo_wk(i) = angulo_wk(i-1) + dt*(dat(valor,i)-w_bias);



Pdot = [Q_angle - P(llz) - P(le)l 'P(zlz)l 'P(zlz)l Q_gyro]I

%Actualizamos matriz de covarianza
P(1,1) = P(1,1) + Pdot(1)*dt;
P(1,2) = P(1,2) + Pdot(2)*dt;
P(2,1) = P(2,1) + Pdot(3)*dt;
P(2,2) = P(2,2) + Pdot(4)*dt;

%Angulo extraido de los acelerdmetros

angulo_a(i) = -(atan(ay(i) / sqrt((ax(i))*2 + (az(i))*2))) * (180 / pi); %Pitch
angulo_a(i) = -(atan(ax(i) / sqrt((ay(i))*2 + (az(i))*2))) * (180 /pi); %Roll
angulo_error = angulo_a(i) - angulo_wk(i);

E=R_angle + P(1,1);
KO=P(1,1) / E;
K1=P(2,1)/E;

t_0="P(1,1);
t_1="P(1,2);

P(1,1) = P(1,1) - (KO * t_0);
P(1,2) = P(1,2) - (KO * t_1);
P(2,1) = P(2,1) - (K1 * t_0);
P(2,2) = P(2,2) - (K1 * t_1);

%Valor final del angulo y del bias obtenidos a partir de la ganancia de
%Kalman y del error

angulo_wk(i) = angulo_wk(i) + KO * angulo_error;

w_bias = w_bias + K1 * angulo_error;

end
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%Dibujamos los resultados obtenidos
subplot(1,2,1);

plot(angulo_w);

title('SIN FILTRO DE KALMAN');
xlabel('Muestras');
ylabel('Angulo');

subplot(1,2,2);
plot(angulo_wk);

title('"CON FILTRO DE KALMAN');
xlabel('Muestras');
ylabel('Angulo');



Anexo D

Caodigo para programar la FPGA con
EDK
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/*
* Xilinx EDK 10.1 EDK_K.15

Programa para la FPGA Xilinx Virtex-1l Pro que lee los datos de la IMU y envia
una trama de configuracién dependiendo de los switches cuando pulsamos el
pulsador central.

*/

// Located in: ppc405_0/include/xparameters.h
#include "xparameters.h"

#include "stdio.h"

#include "xutil.h"

#include "xgpio_l.h"

#include "xuartlite_I.h"

//Define functions
int send_uart(void);
int read_uart(void);

// FUNCION PRINCIPAL =
int main (void) {

char pulsar;

while(1) //Bucle infinito
{

//Si hay datos en el recpetor debemos leer de la IMU
if(!XUartLite_mIsReceiveEmpty(XPAR_XPS_UARTLITE_O_BASEADDR))
{

read_uart(); //Funcion que lee los datos de la IMU

}

//Leemos el pulsador para saber si queremos configurar la IMU
pulsar = XGpio_mReadReg(XPAR_PUSHBUTTONS_5BIT_BASEADDR, 0);
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//Mascara para quedarnos con el switch central
pulsar = pulsar & 0x00000010;

//Si hemos pulsado el pulsador central
if('pulsar)
{

send_uart(); //Funcién que configurard la IMU

}
}

return 0O;

}

// FUNCION QUE LEE DATQOS DE LA IMU------------mm--—-
int read_uart(void)

{

char lectura_imu;

//Leemos datos IMU
lectura_imu = XUartLite_RecvByte(XPAR_XPS_UARTLITE_O_BASEADDR);

//Sincronizamos receptor
while(XUartLite_mIsReceiveEmpty(XPAR_XPS_UARTLITE_O_BASEADDR));

//Enviamos al PC la lectura
XUartLite_SendByte(XPAR_RS232_UART_1_BASEADDR, lectura_imu);

//Sincronizamos transmisor
while(XUartLite_miIsTransmitFull(XPAR_RS232_UART_1_BASEADDR));



int send_uart(void)

{

char interruptores, config;

//Leemos los interruptores
interruptores = XGpio_mReadReg(XPAR_DIPSWS_4BIT_BASEADDR, 0);

//Para cada posible caso...
switch (interruptores)
{

case 15:

config = 0x10;

//Enviamos a la UART
XUartLite_SendByte(XPAR_XPS_UARTLITE_O_BASEADDR, config);

while(XUartLite_mlsTransmitFull(XPAR_XPS_UARTLITE_O_BASEADDR));

break;

case 14:
config = 0x11;

XUartLite_SendByte(XPAR_XPS_UARTLITE_O_BASEADDR, config);

while(XUartLite_mIsTransmitFull(XPAR_XPS_UARTLITE_O_BASEADDR));

break;

case 13:
config = 0x12;

XUartLite_SendByte(XPAR_XPS_UARTLITE_O_BASEADDR, config);

while(XUartLite_mlsTransmitFull(XPAR_XPS_UARTLITE_O_BASEADDRY));

break;

case 12:
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config = 0x13;

XUartLite_SendByte(XPAR_XPS_UARTLITE_O_BASEADDR, config);
while(XUartLite_mlsTransmitFull(XPAR_XPS_UARTLITE_O_BASEADDR));
break;

case 11:
config = 0x14;

XUartLite_SendByte(XPAR_XPS_UARTLITE_O_BASEADDR, config);
while(XUartLite_mlsTransmitFull(XPAR_XPS_UARTLITE_O_BASEADDR));
break;

case 10:
config = 0x15;

XUartLite_SendByte(XPAR_XPS_UARTLITE_O_BASEADDR, config);
while(XUartLite_mlsTransmitFull(XPAR_XPS_UARTLITE_O_BASEADDR));
break;

case 9:
config = 0x16;

XUartLite_SendByte(XPAR_XPS_UARTLITE_O_BASEADDR, config);
while(XUartLite_mlsTransmitFull(XPAR_XPS_UARTLITE_O_BASEADDR));
break;

case 8:
config = 0x17;

XUartLite_SendByte(XPAR_XPS_UARTLITE_O_BASEADDR, config);
while(XUartLite_mlsTransmitFull(XPAR_XPS_UARTLITE_O_BASEADDR));
break;



case 7:
config = 0x18;

XUartLite_SendByte(XPAR_XPS_UARTLITE_O_BASEADDR, config);
while(XUartLite_mlsTransmitFull(XPAR_XPS_UARTLITE_O_BASEADDR));
break;

case 6:
config = 0x19;

XUartLite_SendByte(XPAR_XPS_UARTLITE_O_BASEADDR, config);
while(XUartLite_mlsTransmitFull(XPAR_XPS_UARTLITE_O_BASEADDR));
break;

case 5:
config = Ox1A;

XUartLite_SendByte(XPAR_XPS_UARTLITE_O_BASEADDR, config);
while(XUartLite_mlsTransmitFull(XPAR_XPS_UARTLITE_O_BASEADDR));
break;

case 4:
config = 0x1B;

XUartLite_SendByte(XPAR_XPS_UARTLITE_O_BASEADDR, config);
while(XUartLite_mlsTransmitFull(XPAR_XPS_UARTLITE_O_BASEADDR));
break;

case 3:
config = 0x1C;

XUartLite_SendByte(XPAR_XPS_UARTLITE_O_BASEADDR, config);
while(XUartLite_mlsTransmitFull(XPAR_XPS_UARTLITE_O_BASEADDR));
break;
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case 2:
config = 0x1D;

XUartLite_SendByte(XPAR_XPS_UARTLITE_O_BASEADDR, config);
while(XUartLite_mlsTransmitFull(XPAR_XPS_UARTLITE_O_BASEADDR));
break;

case 1:
config = Ox1E;

XUartLite_SendByte(XPAR_XPS_UARTLITE_O_BASEADDR, config);
while(XUartLite_mlsTransmitFull(XPAR_XPS_UARTLITE_O_BASEADDR));
break;

default:
config = Ox1F;

XUartLite_SendByte(XPAR_XPS_UARTLITE_O_BASEADDR, config);
while(XUartLite_mlsTransmitFul(XPAR_XPS_UARTLITE_O_BASEADDR));

}






Resum:

Els sistemes automatitzats que requereixen d’'un control d’estabilitat 0 moviment es poden trobar cada
cop en més ambits. Aplicacions UAV o de posicionament global sén les més comunes per aquest tipus de
sistemes, degut a que necessiten d’un control de moviment molt precis. Per a dur a terme aquest procés
s'utilitzen unitats de mesura inercial, que mitjangant accelerometres i giroscopis degudament posicionats,
a més a més d'una correccio del possible error que puguin introduir aquests ultims, proporcionen una
acceleracio i una velocitat angular de les quals es pot extreure el cami efectuat per aquestes unitats.

La IMU, combinada amb un GPS i mitjiangant un filtre de Kalman, proporcionen una major exactitud , a
més d’'un punt de partida (proporcionat per el GPS), un recorrequt representable en un mapa y, en el cas
de perdre la senyal GPS, poder sequir adquirint dades de la IMU. Aquestes dades poden ser recollides i
processades per una FPGA, que a la vegada podem sincronitzar amb una PDA per a que l'usuari pugui
veure representat el moviment del sistema.

Aquest treball es centra en el funcionament de la IMU i 'adquisicio de dades amb la FPGA. També
introdueix el filtre de Kalman per a la correcci6 de l'error dels sensors.

Resumen:

Los sistemas automatizados que requieren de un control de estabilidad o movimiento se encuentran cada
vez en mas ambitos. Aplicaciones UAV o de posicionamiento global son las mas comunes para este tipo
de sistemas, ya que necesitan de un control de movimiento muy preciso. Para ello utilizan unidades de
medida inercial, las cuales, mediante unos acelerometros y unos giréscopos debidamente posicionados y
una correccion del posible error que pueda haber en éstos, proporcionan una aceleracion y velocidad
angular de las que puedes extraer el recorrido sufrido por dichas unidades.

La IMU, en combinacién con un GPS y mediante un filtro de Kalman, proporcionan una exactitud mayor,
ademas de tener un punto de partida (proporcionado por el GPS), un recorrido representable en un mapa
y, en caso de perder la sefial GPS, seguir adquiriendo datos de la IMU. Estos datos pueden ser recogidos
y procesados por una FPGA, la cual se puede sincronizar con una PDA para que el usuario pueda ver
representado el movimiento del sistema.

Este trabajo estudia el funcionamiento de la IMU y la adquisicion de datos de ésta con la FPGA. También
introduce el filtro de Kalman para la correccion del error de los sensores.

Summary:

The automated systems that need a control of stability or motion control are increasingly in more areas.
UAV or global positioning applications are the most common for these systems because they need a very
precise motion control. They use inertial measurement units, which, with accelerometers and gyroscopes
properly positioned and correction of possible errors that may appear in them, provide an acceleration and
angular velocity that you can extract the movement suffered by these units.

The IMU, in combination with GPS and through a Kalman filter, provide greater accuracy, in addition to a
starting point (provided by GPS), a representable route map and if you lose the GPS signal, the system
continues acquiring data of IMU. These data can be processed by an FPGA, which can synchronize with a
PDA. In this way, the user can see the motion of the system represented in a map.

This works study the functionality of the IMU and the data acquisition with the FPGA. It also introduces the
Kalman filter to correct the error of the sensors.









