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1.Introducción

Cada vez encontramos más aplicaciones automatizadas que requieren de un control 

de movimiento o estabilidad para poder llevar a cabo su tarea. Por ejemplo, si queremos 

enviar un satélite al espacio debemos controlar, de forma muy precisa, su movimiento 

hasta el espacio. Para ello se utilizan sistemas de medida inercial formados por 

diferentes componentes como una unidad de medida inercial, también conocida como

IMU1.

La unidad de medida inercial es el componente principal de estos sistemas de guía    

inerciales. Trabaja gracias a unos sensores específicos tales como acelerómetros y 

giróscopos debidamente colocados en una placa, que proporcionan al usuario datos 

como la aceleración y rotación, en los tres ejes de coordenadas, que sufra dicha placa. 

Normalmente viene acompañada de un receptor GPS2 para tener más exactitud en las 

medidas y del cual extraen la posición inicial para así poder calcular el recorrido 

efectuado. 

Éstas se utilizan en mayor medida para guiar un objeto, ya sea un avión no tripulado o 

UAV3 o hasta incluso un robot. Todos éstos tienen en común que necesitan de un 

sistema de guía inercial para poder llevar a cabo su función. También son muy 

utilizadas en lanzaderas y satélites, ya que conociendo su movimiento pueden corregir 

su ruta y así guiarse automáticamente sin necesidad de intervención humana.

Actualmente se están utilizando en sistemas de posicionamiento global para tener más 

exactitud que la proporcionada por el GPS, aunque el precio de los receptores aumenta 

considerablemente.

Este trabajo tiene como finalidad la adquisición de datos de una unidad de medida 

inercial, también conocida como IMU a través de una FPGA4, la cual se encargará de 

recibir y procesar los datos de la IMU y con la cual el usuario podrá definir la 

sensibilidad y la frecuencia de trabajo de la misma. Veremos como programar la unidad 

                                                

1 Inertial Measurement Unit (Unidad de Medida Inercial).

2 Global Positioning System (Sistema de Posicionamiento Global).

3 Unmanned Aerial Vehicle (Vehículo Aéreo no Tripulado).

4 Field Programmable Gate Array.
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de medida inercial y como se comunicará con la FPGA para obtener la mayor 

frecuencia de trabajo posible y aprovechar al máximo su rendimiento.

También estudiaremos el filtro de Kalman, necesario para corregir el bias producido 

por los giróscopos, el cuál se implementará en Matlab y en Visual Basic, donde se 

evaluará su rendimiento en tiempo real.

1.1 Descripción de la Situación a Tratar

Este trabajo forma parte de un proyecto de investigación del departamento de 

Microelectrónica y Sistemas Electrónicos de la UAB, mostrado en parte en la Figura 1,

en el que se combina una unidad de media inercial con un sistema GPS para la mejora 

del posicionamiento proporcionado por éste, que nos ofrece un error considerable de 13 

metros horizontales aproximadamente5 y una baja frecuencia de refresco de 1 Hz.

Aunque actualmente hay receptores GPS a mayor frecuencia, la mayoría de los 

receptores comerciales leen datos una vez por segundo. Para corregir este error se utiliza

un filtro de navegación, llamado filtro de Kalman, debido a la facilidad para integrar 

sensores con diferente ancho de banda. A grosso modo, el uso de este filtro necesita

información de la posición, velocidad y attitude obtenida de la IMU a través de la 

mecanización, para combinarla con los valores reales obtenidos del GPS. De esta forma

se minimiza el error, y los datos a la salida se actualizan a la frecuencia de la unidad de 

medida inercial, que como veremos es mucho mayor que la del GPS (del orden de 100 –

250 Hz típicamente). 

Figura 1. Arquitectura general de la integración GPS/INS.

                                                

5 Información extraída de Integración GPS/INS: Conceptos y Experimentos.
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Este trabajo se centra en la parte del proyecto referida al sistema de navegación 

inercial, que incluye la lectura de los datos de la IMU con la FPGA y la corrección del 

ángulo proporcionado por los giróscopos a través del filtro de Kalman, tal y como 

tenemos representado en la Figura 2.

Figura 2. Arquitectura general de la integración GPS/INS con corrección de ángulo (IMU) 

mediante el filtro de Kalman.

1.2 Objetivos

El objetivo principal de este trabajo es realizar la lectura de aceleración y velocidad 

angular de la unidad de medida inercial (IMU) con la FPGA en tiempo real, además de 

realizar la corrección del error (bias) de los ángulos pitch y roll mediante el filtro de 

Kalman.

Los datos obtenidos deben ser coherentes con la realidad y lo más exactos posible, 

además de poder obtener una frecuencia de funcionamiento suficientemente elevada 

para aplicaciones UAV (Figura 3). La fácil configuración de sensibilidad y frecuencia 

de trabajo de la unidad también es útil si el usuario desea cambiar la aplicación o 

estudiar un movimiento más o menos preciso. 

Para llevar a cabo este objetivo estudiaremos primero el método de trabajo de la 

unidad de medida inercial y la programaremos para enviar los datos a la FPGA a la 

mayor frecuencia posible. Se debe crear la IP de recepción y transmisión en la FPGA 
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para su sincronización con la IMU y programarla para poder configurar la sensibilidad y 

la frecuencia de la IMU mediante los switches.

Figura 3. Vehículo Aéreo no Tripulado (UAV).

En Matlab se estudiará el filtro de Kalman y su funcionamiento, para después 

implementarlo en Visual Basic junto a una aplicación que permitirá ver el 

comportamiento de la IMU en tiempo real.

Finalmente se comprobará que los resultados obtenidos con la corrección del error y 

la lectura de la IMU son correctos para su posterior aplicación en el sistema GPS/INS.
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2.Fundamentos Teóricos

2.1 Unidad de Medida Inercial

Una unidad de medida inercial o IMU es un componente electrónico basado en 

sensores de aceleración y velocidad angular (acelerómetros y giróscopos 

respectivamente) la cual nos reporta el movimiento y orientación (Figura 4) que sufre 

dicha unidad. Es el componente principal de sistemas de guía inercial usados en 

vehículos aéreos, espaciales, marinos y aplicaciones robóticas.

Figura 4. Orientación proporcionada por una IMU.

2.1.1. Componentes de una IMU

Cualquier unidad de medida inercial está compuesta como mínimo por un 

acelerómetro y un giróscopo para captar una aceleración y una velocidad angular en 

concreto. Generalmente, es interesante que las IMUs capten la aceleración y la 

velocidad angular en los tres ejes de coordenadas para conocer el movimiento exacto 

del componente. 
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También podemos encontrar unidades que incorporan un microprocesador que se 

encarga de recoger los datos de dichos sensores y enviarlos de forma ordenada al 

usuario mediante el protocolo de comunicación incorporado en la IMU. 

A continuación se detallarán los componentes nombrados:

 Acelerómetro: instrumento capaz de medir aceleración en uno, dos o tres ejes. 

Existen varios tipos de acelerómetros, dependiendo de su fabricación y 

funcionamiento. Las IMUs incorporan acelerómetros integrados en silicio,

utilizando la tecnología llamada MEMS6, debido a la necesidad de reducir el 

tamaño total de la unidad. La mayoría de éstos son capacitivos, y calculan la 

aceleración mediante el voltaje obtenido entre dos placas una de las cuales varía 

su posición dependiendo del movimiento del acelerómetro. Se caracterizan por 

ser muy precisos en situaciones estables y tener un gran error en situaciones 

vibratorias o movimientos muy inestables.

 Giróscopo: dispositivo que mide la orientación, basándose en los principios de 

la conservación del momento angular. Las unidades de medida inercial utilizan 

giróscopos MEMS, es decir, integrados y de tamaño reducido. La salida de dicho

sensor es un voltaje, la variación del cual nos indica en grados por segundo 

(V/º/s) la velocidad angular sufrida por el sensor. Se caracterizan por tener un 

error constante y lineal llamado bias el cual debemos tener en cuenta. 

 Microprocesador: algunas unidades de medida inercial, como ya hemos 

comentado, incorporan un microprocesador. Éste es programable, pero su 

principal función es recoger los datos entregados por los sensores, procesarlos 

según desee el usuario, y enviarlos. En el microprocesador se define la 

frecuencia de trabajo de la unidad, que será el tiempo comprendido desde que 

recoge el dato del primer sensor hasta que envía al usuario el dato procesado del 

último sensor. 

La mayoría de los microprocesadores incorporan un conversor analógico-digital, 

para así convertir el voltaje dado por el sensor en una muestra. El tiempo de 

                                                

6 Microelectromechanical Systems (Sistemas Microelectromecánicos).
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conversión influye en la frecuencia de trabajo de la unidad, como veremos más 

adelante.

 Protocolo de comunicación: los protocolos de comunicación alámbricos típicos 

en las IMUs son el UART, el RS-232 o el USB7. Algunas unidades incluyen 

protocolos inalámbricos, siendo los más utilizados ZigBee y Bluetooth.

 Magnetómetro: algunas unidades de medida inercial incluyen también sensores 

magnetómetros. Estos dispositivos miden la fuerza i/o dirección de los campos 

magnéticos que los afectan respecto el campo magnético terrestre. Aunque cabe 

la posibilidad de que se vean afectados por variación de otros campos 

magnéticos en algunas zonas.

2.1.2. Caracterización de una IMU

Los diferentes tipos de unidades de medida inercial que podemos encontrar en el 

mercado se caracterizan generalmente por el tipo de sensores de que están compuestas. 

Estos sensores, la frecuencia de trabajo, que puede interesar mayor o menor 

dependiendo de la aplicación para la que esté destinada la unidad, y el protocolo de 

comunicación son los que definen una IMU mejor que otra.

Los sensores de que se componen las unidades de medida inercial se definen 

principalmente por su rango de trabajo (máxima medida que soporta el sensor), su 

sensibilidad (relación entre la variación de la magnitud de salida y la de entrada) y su 

ancho de banda de respuesta (frecuencia de funcionamiento del sensor). Para el caso de 

los acelerómetros, el rango de trabajo se mide con la gravedad estándar, aceleración de 

g = 9.80665 m/s2. Podemos encontrar IMUs con un rango de 1.5g, 2g, 4g, etc. 

Dependiendo de este rango, obtenemos una sensibilidad u otra, ya que el nivel de 

voltaje máximo que podemos obtener viene definido por la alimentación del sensor. 

Entonces, para mayor rango, menor sensibilidad.

En los giróscopos, el rango de medida se mide en º/s, ya que obtenemos una 

velocidad angular, y la sensibilidad en mV/º/s. Valores típicos de rango que podemos 

encontrar son ± 200 º/s, ± 300 º/s, ± 500 º/s, etc. 

                                                

7 Universal Serial Bus (Bus Universal en Serie).
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En el caso de que la IMU tenga magnetómetros, el rango se mide en gauss = 1 

maxwell / cm2. 

La frecuencia de trabajo de la unidad de medida inercial viene definida por el reloj 

que use el microprocesador para enviar los datos al usuario y por la frecuencia de 

conversión del conversor analógico-digital. También influye la velocidad de 

transmisión, que depende del protocolo que utilicemos y de cómo lo definamos. Ésta 

velocidad se mide en baudios o bits por segundo y son valores típicos 38400 bps, 57600 

bps, 115200 bps, etc.

2.2 Filtro de Kalman

El filtro de Kalman es la técnica de análisis por excelencia en medidas de inercia y se 

usa principalmente para obtener la posición y orientación de lecturas inerciales. Este 

filtro proporciona robustez y exactitud al sistema de medida. De esta forma, podemos 

utilizar sensores de más bajo precio, aunque conlleve más error. 

En esta sección no detallaremos los algoritmos del filtro de Kalman, ya que es un 

sistema matemáticamente muy complejo, pero si comentaremos sus principios. Se 

puede encontrar información sobre el filtro de Kalman en [3].

El filtro de Kalman (KF) se basa en un algoritmo predictivo recursivo que utiliza el 

método de mínimos cuadrados. Esta solución permite calcular un estimador lineal, 

insesgado y óptimo del estado de un proceso en cada momento del tiempo con base en 

la información disponible en el instante de tiempo previo y actualizar dichas 

estimaciones. Se puede dividir en dos etapas tal y como nos muestra la Figura 5. La 

primera es la etapa de predicción o pronóstico, donde se tiene el estado actual del 

sistema (posiblemente con error) y un mapeo de la progresión del sistema a medida que 

avanza el tiempo. En esta etapa se predice el siguiente posible estado del sistema. La 

segunda es la etapa de corrección, donde se combina el valor real medido con la 

predicción de la primera etapa para obtener un nuevo estado del sistema más exacto.
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Figura 5. Ciclo del filtro de Kalman.

Lo que hace al filtro tan interesante es su habilidad para predecir el estado de un 

sistema en el pasado, presente y futuro, aún cuando la naturaleza precisa del sistema 

modelado es desconocida. En la práctica, las variables estado individuales de un sistema 

dinámico no pueden ser exactamente determinadas por una medición directa. Dado esto, 

su medición se realiza por medio de procesos estocásticos que involucran algún grado 

de incertidumbre en la medición.

El filtro de Kalman tiene como objetivo resolver el problema general de estimar el 

estado � ∈ ℜ� de un proceso controlado en tiempo discreto, el cual es dominado por 

una ecuación lineal en diferencia estocástica de la siguiente forma:

�� = ����� + ����� + ����

Con una medida � ∈ ℜ�, que es:

�� = ��� + ��

Las variable �� y �� representan el error del proceso y de la medida respectivamente. 

Se asume que son independientes entre ellas, que son ruido blanco y con distribución de 

probabilidad normal:

�(�) ≅ �(0, �)

�(�) ≅ �(0, �)

En la práctica, las matrices de covarianza de la perturbación del proceso, Q, y de la 

perturbación de la medida, R, podrían cambiar en el tiempo, pero por simplicidad se 

asumen constantes.
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La matriz A se asume de una dimensión nxn y relaciona el estado en el periodo 

previo k-1 con el estado actual k. La matriz H, de dimensiones mxn, relaciona el estado 

con la medición Zk. Estas matrices pueden cambiar con el tiempo, pero también se 

asumen constantes por simplicidad.

Ya tenemos definido el proceso a ser estimado. Ahora debemos aplicar el algoritmo 

del filtro de Kalman. La primera etapa, de predicción, pronostica las estimaciones del 

estado y la covarianza.

���
∗ = ������ + �����

��
∗ = ������� + �

Q representa la covarianza de la perturbación aleatoria del proceso que trata de 

estimar el estado.

En la segunda etapa, de corrección, encontramos la ganancia de Kalman Kk, 

seleccionada de tal forma que minimice la covarianza del error de la nueva estimación 

del estado. Luego se mide realmente el proceso para obtener Zk y entonces generar una 

nueva estimación del estado ���, que incorpora la nueva observación. El paso final es 

obtener una nueva estimación de la covarianza del error. El algoritmo descrito para la 

segunda etapa es el siguiente:

�� = ��
∗��(���

∗�� + �)��

��� = ���
∗ + ����� − ����

∗�

�� = (� − ���)��
∗

Después de cada par de actualizaciones, tanto del tiempo como de la medida, el 

proceso es repetido tomando como punto de partida las nuevas estimaciones del estado 

y de la covarianza del error. Esta naturaleza recursiva es una de las características 

llamativas del filtro de Kalman. 

La Figura 6 ofrece un cuadro completo de la operación del filtro.
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Figura 6. Visión completa del filtro de Kalman.

2.3 FPGA

Una FPGA es un circuito integrado de propósito general y lógica programable. Su 

configuración se especifica generalmente utilizando un lenguaje de descripción 

hardware o HDL, similar al utilizado para circuitos integrados de aplicación específica 

(ASIC). Una FPGA puede ser programada y usada para implementar cualquier función 

lógica que pueda implementar un ASIC, aunque se diferencian en que la FPGA se 

puede reprogramar si cambiamos la aplicación para la que está destinada.

La FPGA contiene bloques de lógica programable y una multitud de interconexiones 

reconfigurables que permite conectar los bloques entre sí, como nos muestra la Figura 7. 

Los bloques lógicos pueden ser configurados para llevar a cabo complejas funciones 

combinacionales o para implementar puertas lógicas como las conocidas AND o OR. La 

mayoría de FPGAs incluyen en los bloques lógicos elementos de memoria como 

simples flip-flops.
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Figura 7. Arquitectura interna de una FPGA.

En la arquitectura de una FPGA también encontramos las celdas de entrada y salida, 

que nos permiten pasar al dispositivo los parámetros deseados obteniendo así la 

respuesta programada.

2.3.1. Historia de la FPGA

La industria de la FPGA surge del resultado de la convergencia de dos tecnologías 

diferentes, los dispositivos lógicos programables (PLDs) y los circuitos integrados de 

aplicación específica (ASIC). La historia de los PLDs comenzó con los primeros 

dispositivos PROM8 y se les añadió versatilidad con los PAL9, que permitieron un 

mayor número de entradas y la inclusión de registros. Mientras, los ASIC siempre han 

sido potentes dispositivos, pero su uso ha requerido una considerable inversión tanto de 

tiempo como de costes. Finalmente, combinando las dos estrategias con un mecanismo 

de interconexión programable mediante fusibles, antifusibles o celdas RAM, 

obteníamos la FPGA.

La primera FPGA viable comercialmente fue inventada en el año 1984 por Ross 

Freeman y Bernard Vonderschmitt, co-fundadores de Xilinx. Esta FPGA, modelo 

                                                

8 Programmable Read-Only Memory (Memoria Programable de Sólo Lectura).

9 Programmable Array Logic (Matriz de Lógica Programable).
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XC2064, constaba de puertas lógicas e interconexión entre éstas programables. Fue el 

comienzo de una nueva tecnología y de un nuevo mercado.

Hoy en día existen diferentes compañías que compiten en el mercado de las FPGAs 

como Xilinx, una de las más populares en grupos de investigación, Atmel, Altera, AMD 

y Motorola. Una tendencia reciente ha sido la de adoptar el enfoque de arquitectura un 

paso más allá mediante la combinación de los  bloques lógicos e interconexiones de las 

FPGA con microprocesadores integrados y periféricos relacionados para formar un

completo sistema en un chip programable. Ejemplos de tales tecnologías híbridas se 

pueden encontrar en los dispositivos de Xilinx Virtex-II Pro (Figura 8) y Virtex-4 que 

incluyen uno o más procesadores PowerPC.

Figura 8. FPGA de Xilinx - Virtex-II Pro.

Muchas FPGA modernas soportan la reconfiguración parcial del sistema, permitiendo 

que una parte del diseño sea reprogramada mientras las demás partes siguen 

funcionando. Este es el principio de la idea de la computación reconfigurable.

2.3.2. Aplicaciones

Cualquier circuito de aplicación específica puede ser implementado en una FPGA, 

siempre y cuando ésta disponga de los recursos necesarios. Las aplicaciones donde más 

comúnmente se utilizan las FPGAs incluyen a los procesadores digital de señal (DSP), 

radio definido por software, sistemas aeroespaciales y de defensa, prototipos de ASICs, 

sistemas de imágenes para medicina, sistemas de visión para computadoras, 

reconocimiento de voz, bioinformática, entre otras. 



22

Su uso en otras áreas es cada vez mayor, sobre todo en aquellas aplicaciones que 

requieren un alto grado de paralelismo. Un ejemplo de este tipo de aplicaciones es el 

desciframiento de códigos, en particular, el ataque de fuerza bruta de los códigos 

criptográficos. El paralelismo inherente de los recursos lógicos de una FPGA permite un 

rendimiento de procesamiento computacional considerable, incluso a velocidades de 

reloj de baja frecuencia. 

En aplicaciones convencionales de alto rendimiento de computación también se está 

abriendo paso el uso de la FPGA, utilizando así el núcleo de la FPGA en lugar de un 

microprocesador.

Tradicionalmente, las FPGAs también tienen una gran utilidad para aplicaciones 

específicas en que el volumen de producción es pequeño. De esta manera, la prima que 

pagan las empresas en los costos por unidad de hardware de un chip programable es 

más asequible que los recursos de desarrollo dedicados a la creación de un ASIC para 

una aplicación de bajo volumen. Hoy en día, nuevos costes y la mejora del rendimiento 

de las FPGAs han ampliado la gama de aplicaciones viables para su uso.

2.3.3. Arquitectura

La mayoría de las arquitecturas de las FPGAs consiste en una matriz de bloques 

lógicos, celdas de entrada/salida y canales de conexión. Generalmente, todos los canales 

de interconexión tienen el mismo número de vías o uniones, e interconectan los bloques 

vertical y horizontalmente.

En general, un bloque lógico consiste en un pequeño número de celdas lógicas, 

típicamente formadas por 4 LUT (Lookup Table) de entrada, un sumador, tres 

multiplexores y un flip-flop tipo D como nos muestra la Figura 9. La salida puede ser

síncrona o asíncrona, dependiendo de la programación del multiplexor de la derecha en 

la figura. 

Figura 9. Ejemplo simple de una celda lógica.
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2.3.4. Procesador PowerPC 405

El núcleo del PowerPC 405 es una implementación de 32 bits de un procesador 

RISC10 PowerPC embebido. Está integrado en los dispositivos Xilinx Virtex-II Pro y 

Virtex-4, utilizando la tecnología de inmersión IP que soporta la infraestructura de bus 

CoreConnect11 y extensas IP para periféricos y utilidades. Una gran variedad de 

aplicaciones utilizan esta arquitectura. Algunas de ellas son cámaras digitales, módems, 

teléfonos móviles y dispositivos GPS entre otros.

En la Figura 10 tenemos representada la arquitectura general de un sistema embebido 

con procesador PowerPC.

                                                

10 Reduced Instruction Set Computing (Computadora con Conjunto de Instrucciones Reducidas).

11 CoreConnect es una arquitectura de bus para microprocesadores desarrollada por IBM para Sistemas 

en Chip (SoC).
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3.Descripción General del Proyecto

3.1 IMUs del Mercado

La primera parte del proyecto consiste en estudiar las diferentes unidades de medida 

inercial ofrecidas en el mercado actual y obtener una relación calidad/precio 

suficientemente buena para nuestro proyecto. Una vez estudiada gran parte del mercado 

y rechazado una serie de unidades debido a su elevado coste o sus bajas prestaciones, la 

elección de la IMU se encontraba reducida a dos unidades diferentes.

3.1.1. IMU 6DOF Razor - Ultra-Thin IMU

Esta pequeña unidad mostrada en la Figura 11 se compone por dos giróscopos y un 

acelerómetro. Los giróscopos son un LPR530AL para calcular el cabeceo (pitch) y 

alabeo (roll) y un LY530ALH para calcular la guiñada (yaw). El rango de estos 

giróscopos es de 300 º/s y unas sensibilidades de 0.83 y 3.33 mV/°/s dependiendo de la 

amplificación que le proporcionemos a la salida. El acelerómetro es un ADXL335 de 

tres ejes, con un rango de ± 3g y 300 mV/g de sensibilidad. 

Figura 11. IMU 6DOF Razor.

Estos sensores hacen que la IMU tenga 6 grados de libertad, ya que calculan 

aceleración en los tres ejes y rotación en los tres ángulos de navegación.

El precio de esta unidad es de 75.18 €12.

                                                

12 Precio Marzo 2009. Éste puede variar con el tiempo.
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3.1.2. Atomic IMU 6 Degrees of Freedom - XBee Ready

Esta unidad mostrada en la Figura 12 está compuesta por tres giróscopos LISY300AL

de 300 º/s de rango y 3.3 mV/º/s de sensibilidad y por un acelerómetro MMA7260Q de 

tres ejes con opción a diferentes rangos y sensibilidades como nos muestra la Tabla 1:

Rango Sensibilidad

1.5g 800 mV/g

2g 600 mV/g

4g 300 mV/g

6g 200 mV/g

Tabla 1. Rangos y sensibilidades para el acelerómetro MMA7260Q.

También incluye un microprocesador Atmel ATMega168 de 10 MHz de reloj con un 

conversor analógico-digital de seis canales de 10 bits para digitalizar las señales de los 

sensores.

Utiliza un protocolo de comunicación UART a 115200 baudios por segundo y viene 

preparada para poder utilizar el protocolo inalámbrico XBee. Aunque para ello se debe 

comprar un módulo XBee externo y añadirlo a la unidad.

Figura 12. Atomic IMU 6DOF – XBee Ready.

Esta unidad tiene un precio de 94.94 €13.

                                                

13 Precio Marzo 2009. Éste puede variar con el tiempo.
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3.2 IMU Adquirida

En el apartado anterior hemos visto algunas características de las dos unidades de 

medida inercial con una relación calidad/precio asequible para este proyecto. Una vez 

analizadas, decidimos comprar la Atomic IMU 6DOF – XBee Ready debido

principalmente a la mejora en los sensores y al microprocesador que ésta lleva 

integrado. Aunque el error que introducen los giróscopos es elevado respecto otras IMU 

menos económicas del mercado.

La Atomic IMU viene de fábrica con un programa en su microprocesador que nos 

permite, usando un terminal, cambiar la frecuencia de funcionamiento de la misma, 

activar o desactivar sensores según nos convenga y cambiar su sensibilidad, y escoger el 

tipo de salida entre binario o ASCII14. Esta configuración puede resultar interesante en 

según qué aplicaciones, pero para nuestro proyecto cambiaremos este programa para 

adaptarlo y optimizarlo a una mayor frecuencia de trabajo.

3.2.1. Comparación Atomic IMU con la unidad de la ETSE

Ahora compararemos la IMU que tenemos en la escuela con la nueva unidad que 

queremos adquirir. En la Tabla 2 podemos comparar los sensores de cada IMU y otras 

características de que se componen.

Atomic IMU IMU ETSE

Acelerómetros

Tipo MMA7260Q ADXL202

Rango de Medida ±1.5g/2g /4g/6g ±2g

Ancho de Banda (f-3dB)
Eje x, y: 300 Hz

Eje z: 150 Hz
500 Hz

Densidad de Ruido 350 µg/µHz 500 µg/µHz

Precio (unidad) 8.97 € 7.27 € (1000 uds)

                                                

14 American Standard Code for Information Interchange (Código Estadounidense Estándar para el 

Intercambio de Información).
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Giróscopos

Tipo LISY300AL ENC-03JA

Rango de Medida 300 º/seg 300 º/seg

Sensibilidad 3.3 mV/º/seg 0.67 mV/º/seg

Respuesta frec. 88 Hz 50 Hz

Precio (unidad) 9.08 €
9.63 € (100 

unidades)

Otros

ATMega168TM
Conversor A/D 

(3.17€)

Batería LiPo

Precio IMU 94.94 €
≥ 53.87 €

(solo sensores)

Tabla 2. Comparación entre Atomic IMU y la unidad de la ETSE.

En el precio de la IMU de la Universidad sólo se ha considerado el precio 

aproximado de los sensores. Deberíamos considerar también el precio de la fabricación 

y de otros posibles componentes como condensadores, resistencias, etc. También 

tenemos que tener en cuenta que la Atomic IMU tiene un procesador integrado que nos 

ayudará a la hora de enviar los datos hacia la FPGA.

Así pues, exceptuando el ancho de banda de los acelerómetros, podemos decir que la 

Atomic IMU tiene mejores prestaciones que la IMU de la Universidad en cuanto a 

sensibilidad de los sensores, ruido, precio y tipo de la señal de salida.

3.3 Funcionamiento y Programación de la Atomic 

IMU

Como hemos comentado en la sección 3.2, el microprocesador ATMega168 que 

incorpora la Atomic IMU viene con un programa establecido por defecto15. En este 

                                                

15 El programa por defecto de la Atomic IMU se puede descargar de la siguiente página de Sparkfun: 

http://www.sparkfun.com/commerce/product_info.php?products_id=9184  



28

apartado veremos el funcionamiento de la IMU así como la modificación del programa 

para adaptarlo a los requisitos del proyecto. También estudiaremos los diagramas de 

tiempo para las muestras de los sensores. Estos diagramas los utilizaremos para 

determinar aproximadamente la frecuencia máxima de trabajo de la IMU a la que 

podemos aspirar.

El programa proporcionado por Sparkfun tiene a la unidad en estado de reposo 

inicialmente. Para hacer funcionar la IMU debemos cambiar su estado a través de un 

terminal (cómo por ejemplo el HyperTerminal de Windows). Para ello debemos 

conectar la IMU con el PC. Como el protocolo de comunicación de la unidad de medida 

inercial es UART a 3.3V y el del PC es RS-232 a 5V, debemos utilizar un conversor 

TTL/RS-232 como el MAX232. El circuito acondicionador y el conversor lo podemos 

ver en la Figura 13.

Figura 13. Conversor MAX232.

En la Figura 14 vemos el mismo circuito en la realidad, montado y preparado para 

conectar directamente la IMU. El PC lo conectamos mediante el cable visto en la Figura 

15 al puerto serie. 
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Figura 14. Conversor MAX232 y el circuito acondicionador montado.

Figura 15. Cable para conectar el MAX232 con el PC mediante RS-232.

Cuando ya tenemos conectadas la IMU y el PC debemos configurar la conexión del 

terminal a 115200/8/N/1, lo que significa una velocidad de transmisión de 115200 

baudios, con 8 bits de datos y uno de parada. Así es como está configurada la 

transmisión de la IMU. 
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Ahora, pulsando la barra espaciadora, ya podemos ver en el terminal el menú de 

configuración de la IMU. Si ahora activamos todos los sensores a una frecuencia de 

funcionamiento determinada, la unidad empezará a mandar tramas al PC. El formato de 

éstas es:

A accx accy accz pitch roll yaw Z

Dónde A y Z son caracteres de principio y final de trama. Las aceleraciones lineales y 

angulares se pueden representar en binario o en ASCII. Así pues, vemos que el formato 

de la trama incluye una cabecera y final, unas tabulaciones entre cada carácter y los 

valores de los sensores. Esto implica una pérdida del ancho de banda, ya que enviamos 

caracteres que no necesitamos como el tabulador.

La modificación propuesta para optimizar el programa es anular todos los caracteres 

que no nos aportan información, como los tabuladores e incluso el carácter de final de 

trama. También adaptaremos la configuración de la frecuencia y sensibilidad del 

acelerómetro para la FPGA y así poder ofrecer al usuario una cómoda y rápida 

configuración a través de los switch de la placa.

Para poder programar el microprocesador de la IMU necesitamos de un programa que 

descarga el código en un lenguaje de bajo nivel a la IMU mediante un cable 

programador como el que nos muestra la Figura 16. El programa utilizado es el Pony-

Prog.

Figura 16. Programador Pony-Prog utilizado.
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Las partes de la Atomic IMU comentadas hasta ahora para programar, para la 

conexión con el conversor MAX232 (el mismo que para la FPGA), el microprocesador 

y la alimentación de la unidad las podemos ver en la Figura 17.

Figura 17. Vista superior de la Atomic IMU.

3.3.1. Diagramas de Tiempo

Para representar los diagramas de tiempo debemos calcular el tiempo de conversión 

del conversor analógico-digital teniendo en cuenta la frecuencia de reloj establecida. Por 

defecto, el microprocesador ATMega168 tiene un oscilador RC interno de 8 MHz y un

preescaler de 816, con lo que la frecuencia de reloj por defecto es de 1 MHz. Al ADC le 

asignamos un preescaler de 64, con lo que podemos calcular el tiempo de reloj ADC

como:

���� =
����

�������������
=

1 ���

64
= 15.625 ��� →  ���� =

1

����
= 64 ��

La primera conversión del ADC dura 25 ciclos de reloj ADC, con lo que la 

conversión de un dato de sensor es:

����� = 64 �� · 25 ������ = 1.6 ��

                                                

16 Según el datasheet del ATMega168 (CKDIV8).

Programador

Conexión 

FPGA / MAX232

Microprocesador
Alimentación
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Entonces, para convertir todos los datos de una trama (un dato de cada sensor)

necesitamos 6 · ����� = 9.6 ��. Este tiempo implica una frecuencia de trabajo de la 

unidad máxima de 100 Hz aproximadamente. 

Figura 18. Diagrama de tiempo para una frecuencia de reloj de 1 MHz y una frecuencia de 

trabajo de 100 Hz.

Para conseguir una mayor frecuencia de trabajo, del orden de 200 – 300 Hz, debemos 

utilizar el reloj externo de 10 MHz que lleva incorporado el ATMega168 y quitar el 

preescaler de 8 para trabajar a una frecuencia de 10 MHz. En este caso, el tiempo de 

reloj del conversor ADC será:

���� =
����

�������������
=

10 ���

64
= 156.25 ��� →  ���� =

1

����
= 6.4 ��

Y la duración de una conversión:

����� = 6.4 �� · 25 ������ = 160 ��

El tiempo de conversión de toda una trama mejora a 6 · ����� = 960 ��, con lo que 

podemos aplicar una frecuencia máxima de 1 kHz teóricamente. 

Figura 19. Diagrama de tiempo para una frecuencia de reloj de 10 MHz y una frecuencia de 

trabajo de 100 Hz.

En la práctica, estos tiempos varían ya que el microprocesador no sólo captura datos, 

sino que tiene instrucciones del tipo if y del tipo while, entre otras, que consumen 

ax ay az pitch roll yaw 100 Hz

1.6 ms 3.2 ms 4.8 ms 6.4 ms 8 ms 9.6 ms

ax ay az pitch roll yaw

···   

100 Hz

160 320 480 640 800 960 ··· (µs)
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muchos ciclos de reloj y que no estamos teniendo en cuenta. Además, también debemos 

considerar la velocidad de transmisión y recepción, ya que, por mucho que aumentemos 

la frecuencia de trabajo de la unidad, sólo podremos recibir como máximo a la 

frecuencia de transmisión de 115200 baudios.

3.4 Datos obtenidos de la IMU y cálculo del 

ángulo. Filtro de Kalman

En este apartado describiremos los pasos necesarios para obtener la aceleración y la 

velocidad angular a partir de los datos de los sensores. También veremos como extraer 

los ángulos de dichos datos y la importancia de aplicar el filtro de Kalman para corregir 

el error de los giróscopos.

3.4.1. Aceleración

Para obtener la aceleración a partir de los datos del acelerómetro (asensor) debemos 

aplicar la siguiente ecuación:

� =
(������� − ����) · ����

���� · ������
· � ��

��� �

El bias lo obtenemos a partir de un estudio de la unidad en la que la mantenemos 

estática y capturamos datos. Una vez tenemos suficientes, hacemos la media de los 

datos de la aceleración en x, y, z. Esta media obtenida es el bias de la aceleración para 

cada coordenada. El Vref (voltaje de referencia) y Sens (sensibilidad) lo extraemos del 

datasheet. La sensibilidad es variable, y puede ser 1.5g, 2g, 4g o 6g. La resolución del 

conversor analógico-digital es 1024, ya que convierte 10 bits y la g considera la 

gravedad. 

La ecuación anterior simplemente escala el dato del sensor para obtener la aceleración 

correctamente. En la Figura 20 tenemos representados los datos obtenidos directamente 

del acelerómetro y la aceleración calculada de dichos datos. Como podemos ver la 

gráfica es la misma pero con otra escala. También podemos deducir que el acelerómetro 

es muy sensible a vibraciones o movimientos bruscos por los picos que se aprecian.



34

Figura 20. Datos obtenidos del acelerómetro y aceleración (en el eje x) para f = 150 Hz.

3.4.2. Ángulo a partir de la aceleración

En esta sección veremos como calcular el ángulo pitch y roll a partir de la aceleración 

obtenida con los acelerómetros, vista en el apartado anterior. 

Sabemos que la gravedad es una aceleración, con lo que la podemos medir con 

nuestros acelerómetros. La Figura 21 nos muestra cómo podemos relacionar la gravedad 

y nuestra medida de aceleración con el ángulo θ y pitch respectivamente.

����ℎ =  � + 90º

Figura 21. Ángulo pitch a partir del acelerómetro y la gravedad.
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Por trigonometría podemos deducir la aceleración en el eje azul de la figura a partir  

del ángulo θ cómo:

���������ó� = cos � · � ��
��� �

Entonces, el ángulo será:

� = cos�� �
���������ó�

�
� [º]

����ℎ = sin�� �
���������ó�

�
� [º]

El inconveniente de esta sencilla solución es que el inverso del seno no nos 

proporciona 360 grados completos del ángulo pitch. Por ello necesitamos otro 

acelerómetro y aplicar la tangente de la siguiente forma:

����ℎ = − tan�� �
��

���
� + ��

�
� [º]

Donde ay, ax y az son las aceleraciones en el eje y, eje x y eje z respectivamente.

Si calculamos este ángulo para la aceleración obtenida en la Figura 20, obtenemos lo 

mostrado en la Figura 22, en la cual vemos un movimiento de ± 90º. Aquí podemos 

comprobar como realmente el acelerómetro es muy sensible a las vibraciones, y al 

obtener el ángulo nos encontramos unos valores muy ruidosos.

Figura 22. Ángulo pitch obtenido a partir de la aceleración para f = 150 Hz.
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Para el caso del roll la ecuación que utilizamos es la siguiente:

���� = − tan�� �
��

���
� + ��

�
� [º]

3.4.3. Velocidad Angular

Para los giróscopos tenemos una ecuación que nos extrae la velocidad angular a partir 

de los datos proporcionados. Esta ecuación contempla la sensibilidad del giróscopo, que 

para el LISY300AL vale 3.3 mV/º/s. Entonces obtenemos la velocidad angular como:

� = �
������� · ����

������
−

����

2
� ·

1

����
 �º

��� �

Como pasaba con la aceleración, la ecuación anterior sólo escala el dato del sensor 

para obtener velocidad angular. En la Figura 23 tenemos representados los datos del 

sensor y la velocidad angular de dichos datos.

Figura 23. Datos obtenidos del sensor y velocidad angular (pitch) para f = 150 Hz.

3.4.4. Ángulo a partir de la velocidad angular

Lo que realmente nos interesa de la unidad es el movimiento que sufre, y en ello se 
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velocidad angular vista anteriormente. La forma de integrar que utilizaremos es la 

siguiente, en la que tenemos en cuenta muestras anteriores:

�� = ���� + �� [º]

Si integramos la velocidad angular del apartado anterior (Figura 23), obtenemos el 

ángulo pitch que tenemos representado en la Figura 24. En el segundo gráfico podemos 

apreciar el error de bias del giróscopo, ya que el movimiento causado en la IMU es de  

± 90º y el ángulo encontrado tiende a aumentar con el tiempo. Para corregir este error 

necesitamos el filtro de Kalman, como veremos en el apartado 3.4.5.

Figura 24. Velocidad angular y ángulo pitch obtenidos a partir de los datos del giróscopo para      

f = 150 Hz.

3.4.5. Filtro de Kalman. Resultados

Ahora debemos aplicar el filtro de Kalman visto en la sección 2.2. Para ello 

consideraremos los siguientes parámetros, que representan a nuestra unidad de medida 
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 Matriz de estado � = � 
á�����

����
 �

 Matriz de covarianza de la medida � = 0.3

 Matriz de covarianza del proceso � = � 
0.001 0

0 0.003
 �

 � = � 
1 −��
0 1

 �, con dt el tiempo entre medidas.

 � = �
��
0

�

 � = (1 0)

 El valor de Zk es el ángulo obtenido con el acelerómetro como hemos visto en 

el apartado 3.4.2.

 El valor de uk es el ángulo obtenido con el giróscopo, visto en la sección 3.4.4.

Si aplicamos el filtro con estos parámetros para el movimiento visto en la Figura 24

obtenemos una corrección del movimiento y del ángulo. Lo podemos observar en la 

Figura 25.

Figura 25. Ángulo pitch sin filtro y con filtro de Kalman para f = 150 Hz.
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En la figura anterior podemos apreciar el error de bias del giróscopo sin utilizar el 

filtro. En cambio, al aplicar el filtro de Kalman, eliminamos este bias y obtenemos el 

ángulo exacto realizado en la IMU.

Otros ejemplos más del buen funcionamiento del filtro para obtener el ángulo pitch a 

diferentes frecuencias de trabajo lo vemos en la Figura 26, Figura 27 y Figura 28. En 

estos ejemplos se puede apreciar más el error de bias con el tiempo. Si no aplicáramos 

el filtro, en unos pocos segundos tendríamos un error de alguna centena de grados. 

Figura 26. Ángulo pitch sin filtro y con filtro de Kalman para f = 150 Hz.

Figura 27. Ángulo pitch sin filtro y con filtro de Kalman para f = 200 Hz.
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Figura 28. Ángulo pitch sin filtro y con filtro de Kalman para f = 250 Hz.

También aplicamos lo mismo para obtener el ángulo roll. Un ejemplo nos lo muestra 

la Figura 29. En este caso, a diferencia del anterior, el bias decrece en lugar de 

aumentar. En 4000 muestras tenemos un error de 320º − 90º = 230º. Eso, a una 

frecuencia de 200 Hz, significa que en 4000 · 1
200� = 20 segundos tenemos un error 

de 230º. Con el filtro de Kalman eliminamos este error y obtenemos el ángulo roll 

deseado de ± 90º.

Figura 29. Ángulo roll sin filtro y con filtro de Kalman para f = 200 Hz.
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El programa utilizado para obtener las figuras es Matlab y el código (obtención de los 

datos guardados en un fichero, cálculo de la aceleración y velocidad angular y 

aplicación del filtro de Kalman) se encuentra en el Anexo C.

3.5 Programación FPGA

Para la programación de la FPGA utilizamos un software específico de Xilinx 

llamado Xilinx Platform Studio (EDK). Esta potente herramienta nos permite ver el 

diagrama de bloques de la FPGA y crear o modificar las conexiones según los requisitos 

deseados. 

Para nuestro sistema necesitamos una conexión UART para conectar directamente la 

IMU a la FPGA y una conexión RS-232 para conectar el PC a la FPGA y poder 

observar su funcionamiento. Estas conexiones se manejan mediante el controlador 

UARTLITE. También necesitamos switches y pulsadores, que en este caso se manejan 

mediante el controlador GPIO. 

Al crear un nuevo proyecto con el software EDK, observamos que sólo hay un driver 

UART definido, el RS-232. Entonces, debemos definir el controlador UART para el 

periférico, en este caso la IMU. Para añadir el periférico lo buscamos en el programa 

mediante el IP Catalog, lo conectamos al bus PLB y lo configuramos para las 

condiciones de la IMU (115200 baudios, 8 bits de datos, sin paridad). Una vez hecho 

esto, debemos decirle al procesador por qué puerto UART conectaremos el periférico. 

En el datasheet de la FPGA VirtexII-Pro encontramos el nombre de todos los puertos de 

entrada y salida, donde escogemos los puertos UART L4 como receptor y N5 como 

transmisor (con nivel de voltaje TTL).

Para el caso de los switches y de los pulsadores, observamos que ya tienen definido 

cada uno sus controladores. En la Figura 30 vemos el diagrama de bloques de la 

conexión PLB, donde tenemos representados los switches en A, los pulsadores en C, el 

controlador RS-232 en D y el periférico añadido por nosotros para conectar la IMU 

llamado xps_uartlite_0. 
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Figura 30. Diagrama de bloques de la conexión PLB de la FPGA con los controladores GPIO y 

UARTLITE.

El programa diseñado para recoger los datos de la IMU y poder configurar la misma 

mediante los pulsadores y los switches lo podemos encontrar en el Anexo D. 

Básicamente, consiste en un bucle infinito que lee datos de la IMU mientras el receptor 

no esté vacío. En el caso que pulsemos el pulsador, enviará a la unidad una trama 

consistente en un 1 que indica que hemos pulsado y 4 bits que indican el estado de los 

switches. El programa de la IMU está diseñado para identificar si se ha pulsado el 

pulsador, lo que indica que queremos configurarla, y extraer la información de 

frecuencia y sensibilidad de los 4 bits. La Tabla 3 nos muestra la configuración que 

interpreta la IMU para los 4 bits que envía la FPGA.

Bits más 

significativos

Sensibilidad 

(g)

Bits menos 

significativos

Frecuencia 

(Hz)

00 1.5 00 100

01 2 01 200

10 4 10 250

11 6 11 300

Tabla 3. Valor de los 4 bits que se configuran mediante los switches.
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3.6 Programa en Visual Basic

Como ampliación del trabajo y para una mayor visualización del funcionamiento de 

la IMU, hemos modificado un programa en Visual Basic proporcionado por Sparkfun17

llamado Atomic Mixer, en el cual tenemos representadas siete barras que se llenan o 

vacían según el valor de cada sensor (exceptuando la primera que es el contador). Cada 

barra representa los datos de un sensor en ASCII, es decir, tal y cómo provienen de la 

IMU. Entonces, éstos solo nos dan una referencia del movimiento que aplicamos a la 

IMU según se llenan las barras. En esta aplicación nos permiten escoger la frecuencia 

de trabajo y la sensibilidad de los acelerómetros, tal y como podemos comprobar en la 

Figura 31.

Figura 31. Atomic Mixer proporcionado por Sparkfun.

Nuestra mejora al programa consiste en añadir una figura que se mueva según el 

usuario mueve la IMU en tiempo real. Para ello debemos calcular el ángulo de los 

giróscopos (sección 3.4.4), el de los acelerómetros (sección 3.4.2) y aplicar el filtro de 

Kalman visto en el apartado 3.4.5, ya que si aplicamos directamente los datos del 

giróscopo sin el filtro el dibujo rotará constantemente debido al error de bias producido.

                                                

17 El programa Atomic Mixer se puede descargar de la siguiente página de Sparkfun: 

http://www.sparkfun.com/commerce/product_info.php?products_id=9184  
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El programa modificado lo podemos ver en la Figura 32 y está detallado en el Anexo 

A.

Figura 32. Programa Atomic Mixer Adaptado.
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4.Conclusiones y líneas futuras

Se han cumplido los objetivos planteados en el trabajo como son la implementación 

de un programa para la unidad de medida inercial que sincroniza el envío de datos de 

aceleración y velocidad angular con la FPGA y aprovecha al máximo sus recursos, 

maximizando la frecuencia de trabajo y facilitando al usuario la configuración de 

sensibilidad y frecuencia de la IMU. Esto se ha comprobado mediante la aplicación 

implementada en Visual Basic que nos muestra el movimiento efectuado por la IMU en 

tiempo real.

Los resultados obtenidos mediante el filtro de Kalman del ángulo han sido los 

esperados, eliminando el bias producido por los sensores de giro y obteniendo así el 

ángulo correcto a largos plazos de tiempo. Cabe decir que la corrección del ángulo con 

el filtro de Kalman solo se ha podido implementar para los ángulos pitch y roll, dejando 

al ángulo yaw con bias.

Como trabajo futuro podemos plantear que, debido a que el conversor analógico-

digital con el que cuenta el microprocesador lo estamos utilizando en serie mediante un 

multiplexor en lugar de utilizarlo en paralelo, podríamos ganar el tiempo que pierde el 

conversor al empezar a convertir una nueva muestra si convierte las muestras 

seguidamente.
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Anexo A

ATMega168 IMU Code
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/*
6DOF Atomic

20/6/10, Alfred Raul Giménez Bonastre

Este programa específico para la Atomic IMU funciona a través de una 
FPGA. La configuración se hace mediante los switch de la FPGA 
(Sensibilidad, Frecuencia) y con el pulsador de la FPGA enviamos el valor 
de los switch para que la unidad se configure. 
Cuando envía datos, la trama tiene la siguiente forma: 

Aaxayazwxwywz , donde a es aceleración y w velocidad angular en ASCII

*/

//Librerías y Definiciones
//=========================================================
#include <avr/io.h>
#include "rprintf.h"
#include <math.h>
#include <avr/interrupt.h>

#define FOSC 10000000 //Velocidad de reloj
#define BAUD 115200 //Baudios
#define MYUBRR FOSC/8/BAUD-1
#define STAT 5

#define x_active 5
#define y_active 4
#define z_active 3
#define pitch_active 2
#define roll_active 1
#define yaw_active 0

#define FREQ_LOW 0
#define FREQ_HIGH 1
#define SENSE_AR_MODE2
#define ACT_CHAN 3

#define GS1 0
#define GS2 1

//Definición de Funciones
//=========================================================
void EEPROM_write(unsigned int uiAddress, unsigned char ucData);
unsigned char EEPROM_read(unsigned int uiAddress);
void ioinit(void);      
void USART_Init( unsigned int ubrr);
void Configurar_Imu(char temp1);
void put_char(char byte);
int get_adc(void);
char get_char(void);

void delay_ms(uint16_t x);
void delay_us(uint8_t x);

//Variables Globales
//==========================================================
int x_accel;
int y_accel;
int z_accel;
int pitch;
int roll;
int yaw;

char active_channels = 0b00111111;
float freq = 0;
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int main (void)
{

char temp, frec, temp2;
short b;

    ioinit(); //Inicializa los pines de entrada/salida
USART_Init(10); //Inicializa la UART a 115200 baudios
rprintf_devopen(put_char);

for (b = 0; b < 5; b++) //Parpadea el led de estado 5 veces al
// encender

{
PORTB &= (~(1<<STAT)); //Se enciende el led
delay_ms(50);
PORTB |= (1<<STAT); //Se apaga el led
delay_ms(50);

}
cli(); //Desabilita interrupciones

//Frecuencia a 100 Hz
EEPROM_write((unsigned int) FREQ_LOW, 50);
EEPROM_write((unsigned int) FREQ_HIGH, 0);
//Sensibilidad por defecto a 1.5g
EEPROM_write((unsigned int) SENSE_AR_MODE, 0);
//Activa todos los canales (sensores)
EEPROM_write((unsigned int) ACT_CHAN, 0x3F);

sei(); //Habilita interrupciones

freq = 100; //Frecuencia inicial a 100 Hz
PORTB &= (~((1<<GS1) | (1<<GS2))); //Sensibilidad a 1.5g

//=====================Bucle Principal=========================
while(1)
{

if (UCSR0A & (1<<RXC0)) //Si la IMU recibe algo...
{
      temp = UDR0;
      temp2 = temp & 0x10;
       if (temp2== 16) get_adc(); //Si lo que recibe es el

// pulsador de la FPGA
}

}
while(1);

}

//Inicializamos los pines de entrada/salida y timer
//=========================================================
void ioinit (void)
{

PORTB |= (1<<STAT);
DDRB |= ((1<<STAT) | (1<<GS1) | (1<<GS2));

TCCR1B = (1<<CS10) | (1<<CS11); //Preescaler del Timer a 64
TCCR2B = (1<<CS21);

}

//Inicializa la UART
//=========================================================
void USART_Init(unsigned int ubrr)
{

//Inicializa la velocidad de transmisión 
UBRR0H = (unsigned char)(ubrr>>8);
UBRR0L = (unsigned char)ubrr;
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// Habilita receptor y transmisor
UCSR0A = (1<<U2X0);
UCSR0B = ((1<<RXEN0)|(1<<TXEN0));

// Inicializa el formato de la trama: 8datos, 2bits de parada 
UCSR0C = ((1<<UCSZ00)|(1<<UCSZ01));

}

//Delays generales en ms
//=========================================================
void delay_ms(uint16_t x)
{
    for (; x > 0 ; x--)
    {
        delay_us(250); //Llama a la función de delays de us
        delay_us(250);
        delay_us(250);
        delay_us(250);
    }
}

//Delays generales en us aproximadamente
//=========================================================
void delay_us(uint8_t x)
{

char temp;

if (x == 0) temp = 1;
else temp = x;

TIFR2 |= 0x01; //Limpia flags de interrupciones en el Timer2
    TCNT2 = 256 - temp;

while(!(TIFR2 & 0x01));
}

//Función para enviar un caracter
//=========================================================
void put_char(char byte)
{

/* Espera a que el buffer de transmisión esté vacío */
while (!( UCSR0A & (1<<UDRE0)));
/* Almacena el dato en el buffer y lo envía */
UDR0 = byte;

}

//Función para recibir un caracter
//=========================================================
char get_char(void)
{

/* Espera a que el buffer de recepción esté lleno */
while(!(UCSR0A & (1<<RXC0)));
return UDR0;

}

//Función que toma los datos de los sensores
//=========================================================
int get_adc(void)
{

int h2 = 0, l2 = 0;
int time = 0, tmr_cnt;
char q, a;

x_accel = 0;
y_accel = 0;
z_accel = 0;
pitch = 0;
roll = 0;
yaw = 0;
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//Contador = (1/Target Frequency)/(Preescaler/Clock Frequency) - 1
tmr_cnt = (int)((1/freq)/.0000064) - 1;

while(1)
{

TIFR1 |= 0x01;
TCNT1 = 65536 - tmr_cnt; //Inicializa el contador para

//cada iteración

x_accel = 0, y_accel = 0, z_accel = 0;
pitch = 0, roll = 0, yaw = 0;      

        put_char('A'); //Envía el inicio de trama 'A'

//Conversión aceleración en x=============================
//Selecciona el canal del multiplexor
ADMUX = 0x40;
//Activa y configura el conversor A/D
ADCSRA = (1 << ADEN)|(1 << ADSC)|(1<<ADPS2)|(1<<ADPS1);
while(ADCSRA & (1 << ADSC));
l2 = (ADCL & 0xFF);
h2 = (ADCH & 0x03);
x_accel = ((h2<<8) | l2);

        rprintf("%d",x_accel); //Enviamos el dato de ax
h2 = 0; l2 = 0;

//Conversión aceleración en y=============================
ADMUX = 0x41;
ADCSRA = (1 << ADEN)|(1 << ADSC)|(1<<ADPS2)|(1<<ADPS1);
while(ADCSRA & (1 << ADSC));
l2 = (ADCL & 0xFF);
h2 = (ADCH & 0x03);
y_accel = ((h2<<8) | l2);

rprintf("%d",y_accel); 
h2 = 0; l2 = 0;

//Conversión aceleración en z=============================
ADMUX = 0x42;
ADCSRA = (1 << ADEN)|(1 << ADSC)|(1<<ADPS2)|(1<<ADPS1);
while(ADCSRA & (1 << ADSC));
l2 = (ADCL & 0xFF);
h2 = (ADCH & 0x03);
z_accel = ((h2<<8) | l2);

        rprintf("%d",z_accel); 
h2 = 0; l2 = 0;

//Conversion de pitch===================================
ADMUX = 0x43;
ADCSRA = (1 << ADEN)|(1 << ADSC)|(1<<ADPS2)|(1<<ADPS1);
while(ADCSRA & (1 << ADSC));
l2 = (ADCL & 0xFF);
h2 = (ADCH & 0x03);
pitch = ((h2<<8) | l2);

        rprintf("%d",pitch);            
h2 = 0; l2 = 0;

//Conversion de roll=====================================
ADMUX = 0x44;
ADCSRA = (1 << ADEN)|(1 << ADSC)|(1<<ADPS2)|(1<<ADPS1);
while(ADCSRA & (1 << ADSC));
l2 = (ADCL & 0xFF);
h2 = (ADCH & 0x03);
roll = ((h2<<8) | l2);
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rprintf("%d",roll);           
h2 = 0; l2 = 0;

//Conversion de yaw====================================
ADMUX = 0x45;
ADCSRA = (1 << ADEN)|(1 << ADSC)|(1<<ADPS2)|(1<<ADPS1);
while(ADCSRA & (1 << ADSC));
l2 = (ADCL & 0xFF);
h2 = (ADCH & 0x03);
yaw = ((h2<<8) | l2);

        rprintf("%d",yaw);           
h2 = 0; l2 = 0;

//Si el contador termina antes de llegar a este punto significa que la 
//frecuencia de trabajo es demasiado alta

if (TIFR1 & 0x01)
{

rprintf("\r\n\nFrecuencia demasiado alta!!\r\n\n",0);
freq = 100;
break;

}

while(!(TIFR1 & 0x01)); //Espera a que termine el timer

if (UCSR0A & (1<<RXC0)) //Si la unidad recibe algo...
{

q = UDR0;

//Máscara para saber si hemos pulsado el pulsador de la FPGA
a = q & 0x10;

//Entrar en el menú de configuración
if (a == 16)

{
//Si se ha pulsado el pulsador se entra en la configuración

Configurar_Imu(q);

//Actualizamos el valor del timer con la nueva frecuencia
tmr_cnt = (int)((1/freq)/.0000064);

}
}

}
return;

}

//Función de configuración de la IMU
//=========================================================
void Configurar_Imu(char temp1)
{

char sens, frec;

//Máscara para quedarnos con los switchs de la FPGA de sensibilidad
sens = temp1 & 0xC;
//Máscara para quedarnos con los switchs de la FPGA de frecuencia
frec = temp1 & 0x3;

//--------------------------------------SENSIBILIDAD----------------
if (sens == 0) //Sensibilidad 1.5g
{

PORTB &= (~((1<<GS1) | (1<<GS2)));//GS1, GS2 Low
}
else if (sens == 4) //Sensibilidad a 2g
{

PORTB |= (1<<GS1); //GS1 High
PORTB &= (~(1<<GS2)); //GS2 Low

}
else if (sens == 8) //Sensibilidad a 4g
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{
PORTB &= (~(1<<GS1)); //GS1 Low
PORTB |= (1<<GS2); //GS2 High

}
else if (sens == 12) //Sensibilidad a 6g
{

PORTB |= ((1<<GS1) | (1<<GS2)); //GS1, GS2 High
}

//-----------------------------------------FRECUENCIA---------------
if (frec == 0) //Frecuencia a 100Hz
{

freq = 100;
}
else if (frec == 1) //Frecuencia a 200Hz
{

freq = 200; 
}
else if (frec == 2) //Frecuencia a 250Hz
{

freq = 250;
}
else if (frec == 3) //Frecuencia a 300Hz
{

freq = 300;
}

}

//Función que escribe en la EEPROM
//=============================================================
void EEPROM_write(unsigned int uiAddress, unsigned char ucData)
{
/* Espera a que se complete la escritura anterior */
while(EECR & (1<<EEPE));

/* Inicializa las direcciones y datos */
EEAR = uiAddress;
EEDR = ucData;
EECR |= (1<<EEMPE);
/* Indica que se ha terminado la escritura */
EECR |= (1<<EEPE);
}

//Función que lee de la EEPROM
//=============================================================
unsigned char EEPROM_read(unsigned int uiAddress)
{

/* Espera a que se complete la lectura anterior */
while(EECR & (1<<EEPE));
/* Inicializa la dirección */
EEAR = uiAddress;
EECR |= (1<<EERE);
return EEDR;

}
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Anexo B

Código en Visual Basic para la visión 
en tiempo real del funcionamiento de 
la IMU. Aplicación del filtro de Kalman
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'Option Explicit

'6DOF Alfred Giménez

'Variables Globales
Dim Stop_Waiting As Boolean
Dim CommPort As Integer
Dim freq As Integer
Dim low As Boolean
Dim med As Boolean
Dim high As Boolean
Dim really_high As Boolean

Private Const PI = 3.14159265358979
Private Const Vref = 3.3
Private Const g = 9.8
Private Const Sens_acc = 0.8
Private Const Sens_gyro = 0.0033

'Constantes Filtro de Kalman
Private Const R_angle = 0.3
Private Const Q_angle = 0.001
Private Const Q_gyro = 0.003

'Variables utilizadas para mover el dibujo al mover la IMU
Private Enum TipoMovimientoConstants
    tmvLeft
    tmvRight
    tmvUp
    tmvDown
    tmvAgainstClock
    tmvClock
End Enum

Private Type Punto
    X   As Single
    Y   As Single
    Z   As Single
End Type

Private Type Linea
    IDPto1  As Integer
    IDPto2  As Integer
    Color   As OLE_COLOR
End Type

Private Type Figura
    Centro      As Punto
    Puntos()    As Punto
    Lineas()    As Linea
End Type

Private Figuras         As Figura
Private angulo_pitch    As Double
Private angulo_roll     As Double
Private angulo_yaw      As Double
Private angulo_ax       As Double
Private angulo_ay       As Double
Private angulo_az       As Double

'Seleccionamos el puerto Comm
Private Sub cboCommPort_Click()

    CommPort = cboCommPort.ListIndex + 1
    
End Sub

'Seleccionamos la frecuencia
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Private Sub cboCombo1_Click()

    freq = cboCombo1.List(cboCombo1.ListIndex)

End Sub

'Si pulsamos el botón de parar
Private Sub cmdBreak_Click()

    Stop_Waiting = True
    
End Sub

'Cuando pulsamos el botón de 'Start Unit' para que empiece a funcionar
Private Sub cmdOpenLink_Click()
    
    Dim i As Long
    Dim X As Byte
    Dim data_array(20) As Byte
    
    Dim count   As Long
    Dim magx    As Long
    Dim magy    As Long
    Dim magz    As Long

    Dim accx As Long
    Dim accy As Long
    Dim accz As Long
    Dim ax  As Double
    Dim ay  As Double
    Dim az  As Double
    
    Dim pitch   As Long
    Dim roll    As Long

    Dim yaw     As Long
    
    'Para calibrar y encontrar el bias
    Dim bias_pitch  As Long
    Dim bias_roll   As Long
    Dim bias_yaw    As Long
    Dim bias_ax     As Long
    Dim bias_ay     As Long
    Dim bias_az     As Long
    Dim dt          As Double
    
    
    'Variables donde guardaremos la velocidad angular
    Dim ang_pitch       As Double
    Dim ang_roll        As Double
    Dim ang_yaw         As Double
    Dim ang_pitch_acc   As Double
    Dim ang_roll_acc    As Double
    Dim ang_yaw_acc     As Double
    
    'Variables del filtro de Kalman
    Dim P_pitch(1 To 2, 1 To 2) As Double
    Dim P_roll(1 To 2, 1 To 2)  As Double
    Dim Pdot(7)                 As Double
    Dim w_bias_pitch            As Double
    Dim w_bias_roll             As Double
    Dim angulo_error_pitch      As Double
    Dim angulo_error_roll       As Double
    Dim K_pitch(1)              As Double
    Dim K_roll(1)               As Double
    
    'Inicializamos la matriz de covarianza P
    P_pitch(1, 1) = 1
    P_pitch(1, 2) = 0
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    P_pitch(2, 1) = 0
    P_pitch(2, 2) = 1
    P_roll(1, 1) = 1
    P_roll(1, 2) = 0
    P_roll(2, 1) = 0
    P_roll(2, 2) = 1
    
    'Inicializamos los bias
    bias_pitch = 520
    bias_roll = 498
    bias_yaw = 497
    bias_ax = 509
    bias_ay = 455
    bias_az = 537
    
    'Si el puerto está abierto lo cerramos
    If MSComm1.PortOpen = True Then MSComm1.PortOpen = False
    cmdBreak.Enabled = True
    cmdOpenLink.Enabled = False
    
    lblStatus.Caption = "Conectando a la unidad remota"
    MSComm1.CommPort = CommPort
    MSComm1.InputLen = 1
    'If Flow_control Then MSComm1.Handshaking = 0
    MSComm1.Handshaking = 1
    MSComm1.InputMode = comInputModeText
    MSComm1.Settings = "115200,n,8,1"
    MSComm1.PortOpen = True
    
    'Seleccionamos la sensibilidad de los acelerómetros en la unidad
    If really_high = True Then MSComm1.Output = Chr(40)
    If high = True Then MSComm1.Output = Chr(39)
    If med = True Then MSComm1.Output = Chr(38)
    If low = True Then MSComm1.Output = Chr(37)

    
    'Seleccionamos la frecuencia en la unidad
    If freq = 50 Then MSComm1.Output = Chr(41)
    If freq = 100 Then MSComm1.Output = Chr(42)
    If freq = 150 Then MSComm1.Output = Chr(43)
    If freq = 200 Then MSComm1.Output = Chr(44)
    If freq = 250 Then MSComm1.Output = Chr(45)
    MSComm1.Output = Chr(35)
    
    dt = 1 / freq 'Tiempo de muestreo
    
'---------------------------------Bucle principal----------------------------
SAMPLE_LOOP:
    DoEvents
    
    'Escaneamos el primer byte de la trama 'A'
    Do While MSComm1.Input <> "A"
        'Miramos si el usuario quiere parar
        If Stop_Waiting = True Then GoTo GET_OUT
        DoEvents
    Loop

    For X = 0 To 13
        
        Do While MSComm1.InBufferCount = 0
            'Miramos si el usuario quiere parar
            If Stop_Waiting = True Then GoTo GET_OUT
            DoEvents
        Loop
        
        'Guardamos la lectura en el vector data_array()
        data_array(X) = AscB(MSComm1.Input)
        DoEvents
    Next X
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    'Verificamos que el último byte es correcto 'Z'
    Do While MSComm1.InBufferCount = 0
        If Stop_Waiting = True Then GoTo GET_OUT 
        DoEvents
    Loop
        
    'Significa que tenemos una muestra correcta
    If MSComm1.Input = "Z" Then
    lblStatus.Caption = "Recibiendo Datos!" 'Cambiamos el estado
                
        'Contador
        count = data_array(0)
        count = count * 256 + data_array(1)
        lblReading(0).Caption = CStr(count)
        bluebar(0).Width = Int((count * whitebar(0).Width) / 32767)
        DoEvents
                     
        'Aceleraciones
        accx = data_array(2)
        accx = accx * 256 + data_array(3)
        lblReading(4).Caption = CStr(accx)
        bluebar(4).Width = Int((accx * whitebar(4).Width) / 1023)
        ax = (accx - bias_ax) * (Vref / 1024) * (g / Sens_acc)
        DoEvents
        
        accy = data_array(4)
        accy = accy * 256 + data_array(5)
        lblReading(5).Caption = CStr(accy)
        bluebar(5).Width = Int((accy * whitebar(5).Width) / 1023)
        ay = (accy - bias_ay) * (Vref / 1024) * (g / Sens_acc)
        DoEvents
        
        accz = data_array(6)

        accz = accz * 256 + data_array(7)
        lblReading(6).Caption = CStr(accz)
        bluebar(6).Width = Int((accz * whitebar(6).Width) / 1023)
        az = (accz - bias_az) * (Vref / 1024) * (g / Sens_acc)
        DoEvents
        
        'Pitch
        pitch = data_array(8)
        pitch = pitch * 256 + data_array(9)
        lblReading(7).Caption = CStr(pitch)
        bluebar(7).Width = Int((pitch * whitebar(7).Width) / 1023)
        ang_pitch = ((pitch - bias_pitch) / 1024) * (Vref / Sens_gyro) * (PI / 180)
        DoEvents
        
        'Roll
        roll = data_array(10)
        roll = roll * 256 + data_array(11)
        lblReading(8).Caption = CStr(roll)
        bluebar(8).Width = Int((roll * whitebar(8).Width) / 1023)
        ang_roll = ((roll - bias_roll) / 1024) * (Vref / Sens_gyro) * (PI / 180)
        DoEvents
        
       'Yaw
        yaw = data_array(12)
        yaw = yaw * 256 + data_array(13)
        lblReading(9).Caption = CStr(yaw)
        bluebar(9).Width = Int((yaw * whitebar(9).Width) / 1023)
        ang_yaw = ((yaw - bias_yaw) / 1024) * (Vref / Sens_gyro) * (PI / 180)
        angulo_yaw = ang_yaw * dt
        DoEvents
        
    End If
    
    '--------------------------------KALMAN-------------------------------------



59

    'Calculo del ángulo con los gyros y considerando el bias obtenido con Kalman
    angulo_pitch = dt * (ang_pitch - w_bias_pitch)
    angulo_roll = dt * (-ang_roll - w_bias_roll)
    
    Pdot(0) = Q_angle - P_pitch(1, 2) - P_pitch(2, 1)
    Pdot(1) = -P_pitch(2, 2)
    Pdot(2) = -P_pitch(2, 2)
    Pdot(3) = Q_gyro
    Pdot(4) = Q_angle - P_roll(1, 2) - P_roll(2, 1)
    Pdot(5) = -P_roll(2, 2)
    Pdot(6) = -P_roll(2, 2)
    Pdot(7) = Q_gyro
    
    'Actualizamos matriz de covarianza
    P_pitch(1, 1) = P_pitch(1, 1) + Pdot(0) * dt
    P_pitch(1, 2) = P_pitch(1, 2) + Pdot(1) * dt
    P_pitch(2, 1) = P_pitch(2, 1) + Pdot(2) * dt
    P_pitch(2, 2) = P_pitch(2, 2) + Pdot(3) * dt
    P_roll(1, 1) = P_roll(1, 1) + Pdot(4) * dt
    P_roll(1, 2) = P_roll(1, 2) + Pdot(5) * dt
    P_roll(2, 1) = P_roll(2, 1) + Pdot(6) * dt
    P_roll(2, 2) = P_roll(2, 2) + Pdot(7) * dt
    
    'Calculo del ángulo con los acelerómetros
    angulo_pitch_acc = -(Atn(ay / Sqr((ax ^ 2) + (az ^ 2))))  'Pitch en radianes
    angulo_roll_acc = -(Atn(ax / Sqr((ay ^ 2) + (az ^ 2))))    'Roll en radianes
    
    'Ángulo error
    angulo_error_pitch = angulo_pitch_acc - angulo_pitch
    angulo_error_roll = angulo_roll_acc - angulo_roll
    
    'Ganancia de Kalman
    K_pitch(0) = P_pitch(1, 1) / (R_angle + P_pitch(1, 1))
    K_pitch(1) = P_pitch(2, 1) / (R_angle + P_pitch(1, 1))

    K_roll(0) = P_roll(1, 1) / (R_angle + P_roll(1, 1))
    K_roll(1) = P_roll(2, 1) / (R_angle + P_roll(1, 1))

    P_pitch(1, 1) = P_pitch(1, 1) - (K_pitch(0) * P_pitch(1, 1))
    P_pitch(1, 2) = P_pitch(1, 2) - (K_pitch(0) * P_pitch(1, 2))
    P_pitch(2, 1) = P_pitch(2, 1) - (K_pitch(1) * P_pitch(1, 1))
    P_pitch(2, 2) = P_pitch(2, 2) - (K_pitch(1) * P_pitch(1, 2))
    P_roll(1, 1) = P_roll(1, 1) - (K_roll(0) * P_roll(1, 1))
    P_roll(1, 2) = P_roll(1, 2) - (K_roll(0) * P_roll(1, 2))
    P_roll(2, 1) = P_roll(2, 1) - (K_roll(1) * P_roll(1, 1))
    P_roll(2, 2) = P_roll(2, 2) - (K_roll(1) * P_roll(1, 2))
    
    'Ángulos finales
    angulo_pitch = angulo_pitch + K_pitch(0) * angulo_error_pitch
    angulo_roll = angulo_roll + K_roll(0) * angulo_error_roll
    
    'Bias final
    w_bias_pitch = w_bias_pitch + K_pitch(1) * angulo_error_pitch
    w_bias_roll = w_bias_roll + K_roll(1) * angulo_error_roll
    
    Call Avion 'Llamamos a la función que mueve el avión
    
GoTo SAMPLE_LOOP

GET_OUT:
    MSComm1.Output = Chr(32)
    cmdBreak.Enabled = False
    cmdOpenLink.Enabled = True
    Stop_Waiting = False
    
    'Mensaje diciendo que hemos parado la unidad
    MsgBox "Unit Stopped", vbOKOnly
    'Cambio de estado
    lblStatus.Caption = "Unidad en reposo..."
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    Exit Sub

'Si hay algún error con la conexión
ErrHandler:
    If Err.Number = 8020 Or Err.Number = 8015 Then
        MsgBox "The PIC seems to be using the UART at a different baud rate. Please 
power down the PIC or hold it in reset before initiating download."
    ElseIf Err.Number = 8005 Then
        MsgBox "COM" & CommPort & " already open."
    Else
        MsgBox "Error, " & Err.Description, vbOKOnly
        MsgBox Err.Number
    End If

ErrExit:
    
    'Si el puerto sigue abierto lo cerramos
    If MSComm1.PortOpen = True Then
        MSComm1.PortOpen = False
    End If
    
    cmdBreak.Enabled = False
    'Cambio de estado a Error
    lblStatus.Caption = "¡¡Error!!"
        
End Sub

'Si cerramos el archivo
Private Sub File_Close_Click()
    Unload Me
End Sub

'Al cargar el formulario (abrir archivo)

Private Sub Form_Load()

'On Error GoTo EH
    
    For i = 0 To 5
        'bluebar(i).Width = whitebar(i).Width / 2
    Next i
    
    CommPort = 6
    txtComPort.Text = CommPort
    
    Exit Sub

EH:
    MsgBox Err.Number & " = " & Err.Description
    
End Sub

'Selecciona la sensibilidad del acelerómetro a 1.5g
Private Sub Option1_Click()

    low = True
    med = False
    high = False
    really_high = False
     
End Sub

'Selecciona la sensibilidad del acelerómetro a 2g
Private Sub Option2_Click()
    low = False
    med = True
    high = False
    really_high = False
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End Sub

'Selecciona la sensibilidad del acelerómetro a 4g
Private Sub Option3_Click()
    low = False
    med = False
    high = True
    really_high = False
End Sub

'Selecciona la sensibilidad del acelerómetro a 6g
Private Sub Option4_Click()
    low = False
    med = False
    high = False
    really_high = True
End Sub

'Comprueba si el puerto comm que hemos puesto es correcto
Private Sub txtComPort_Change()

'On Error GoTo Error_Handler
    
    If CInt(txtComPort.Text) > 99 Then txtComPort.Text = "99"

    CommPort = CInt(txtComPort.Text)
    
    Exit Sub
    
Error_Handler:
    MsgBox "El número del puerto Comm debe ser entre 1 y 99"
    txtComPort.Text = "1"
    
End Sub

'---------------------------------------------FIGURA------------------------------------------
'Función que calcula la posición de los puntos
Private Function Pow(Number, Exp As Integer) As Double
    Dim auxI As Integer

    Pow = 1
    For auxI = 1 To Exp
        Pow = Pow * Number
    Next auxI
End Function

'Función que calcula el ángulo de cada punto
Private Function Angle(X As Single, Y As Single)
    Angle = Atn(Y / X) - IIf(X < 0, PI, 0)
End Function

'Función que nos crea la figura, con sus respectivos puntos y líneas
Private Sub CreaAvion(Fig As Figura)
    ReDim Fig.Puntos(1 To 5)

    'Situamos la figura a la derecha de la pantalla
    Fig.Centro.X = (Me.Width / 4) * 3.15
    Fig.Centro.Y = (Me.Height / 2) * 0.8
    Fig.Centro.Z = 0
    
    'Fijamos los puntos vértice de la figura
    Fig.Puntos(1).X = -2500
    Fig.Puntos(1).Y = 1500
    Fig.Puntos(1).Z = 0

    Fig.Puntos(2).X = 2500
    Fig.Puntos(2).Y = -1000
    Fig.Puntos(2).Z = 0
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    Fig.Puntos(3).X = -2700
    Fig.Puntos(3).Y = -1200
    Fig.Puntos(3).Z = 2000

    Fig.Puntos(4).X = -2700
    Fig.Puntos(4).Y = -1200
    Fig.Puntos(4).Z = -2000

    Fig.Puntos(5).X = -2000
    Fig.Puntos(5).Y = -1000
    Fig.Puntos(5).Z = 0

    'Unimos los vértices para formar la figura
    ReDim Fig.Lineas(1 To 9)

    Fig.Lineas(1).IDPto1 = 1
    Fig.Lineas(1).IDPto2 = 2
    Fig.Lineas(1).Color = vbBlue

    Fig.Lineas(2).IDPto1 = 1
    Fig.Lineas(2).IDPto2 = 5
    Fig.Lineas(2).Color = vbBlue

    Fig.Lineas(3).IDPto1 = 1
    Fig.Lineas(3).IDPto2 = 3
    Fig.Lineas(3).Color = vbBlue

    Fig.Lineas(4).IDPto1 = 1
    Fig.Lineas(4).IDPto2 = 4
    Fig.Lineas(4).Color = vbBlue

    Fig.Lineas(5).IDPto1 = 2
    Fig.Lineas(5).IDPto2 = 3

    Fig.Lineas(5).Color = vbBlue

    Fig.Lineas(6).IDPto1 = 2
    Fig.Lineas(6).IDPto2 = 4
    Fig.Lineas(6).Color = vbBlue

    Fig.Lineas(7).IDPto1 = 2
    Fig.Lineas(7).IDPto2 = 5
    Fig.Lineas(7).Color = vbBlue

    Fig.Lineas(8).IDPto1 = 3
    Fig.Lineas(8).IDPto2 = 5
    Fig.Lineas(8).Color = vbBlue

    Fig.Lineas(9).IDPto1 = 4
    Fig.Lineas(9).IDPto2 = 5
    Fig.Lineas(9).Color = vbBlue
    
    'La giramos PI/2 en yaw para que se oriente hacia
    'adelante según nuestra posición
    angulo_yaw = (PI / 2)
    
    'Llamamos a la función que nos dibuja la figura
    Call Avion

End Sub

'Función que nos dibuja la figura anteriormente descrita
Private Sub DibujaFigura(Fig As Figura, Optional Limpiar As Boolean = False)
    Dim auxI As Integer
    
    'Dibujamos los ejes x e y (y el punto central)
    Me.PSet (Fig.Centro.X, Fig.Centro.Y), vbGreen
    For auxI = 1 To 6
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        Me.Circle (Fig.Centro.X, Fig.Centro.Y), auxI * 5, IIf(Limpiar, Me.BackColor, 
vbGreen)
    Next auxI
    Me.DrawStyle = vbDot
    Me.Line (Fig.Centro.X - 2500, Fig.Centro.Y)-(Fig.Centro.X + 2500, Fig.Centro.Y), 
vbGreen
    Me.Line (Fig.Centro.X, Fig.Centro.Y - 2500)-(Fig.Centro.X, Fig.Centro.Y + 2500), 
vbGreen

    'Dibujamos los puntos vértices
    Me.DrawStyle = vbSolid
    For auxI = LBound(Fig.Puntos) To UBound(Fig.Puntos)
        Me.Circle (Fig.Centro.X + Fig.Puntos(auxI).X, Fig.Centro.Y + 
Fig.Puntos(auxI).Y), 60, IIf(Limpiar, Me.BackColor, vbRed)
    Next auxI
    
    'Dibujamos las líneas
    For auxI = LBound(Fig.Lineas) To UBound(Fig.Lineas)
        Me.Line (Fig.Centro.X + Fig.Puntos(Fig.Lineas(auxI).IDPto1).X, Fig.Centro.Y + 
Fig.Puntos(Fig.Lineas(auxI).IDPto1).Y)-(Fig.Centro.X + 
Fig.Puntos(Fig.Lineas(auxI).IDPto2).X, Fig.Centro.Y + 
Fig.Puntos(Fig.Lineas(auxI).IDPto2).Y), IIf(Limpiar, Me.BackColor, 
Fig.Lineas(auxI).Color)
    Next auxI
End Sub

'Función que mueve la figura entera llamando a la función que mueve los puntos
Private Sub MueveFigura(Fig As Figura)
    Dim auxI As Integer

    For auxI = LBound(Fig.Puntos) To UBound(Fig.Puntos)
        Call MuevePunto(Fig.Puntos(auxI))
    Next auxI
End Sub

'Función que mueve cada punto de la figura dependiendo del ángulo obtenido
Private Sub MuevePunto(Pto As Punto)
    Dim Angulo  As Double
    Dim xRadio  As Double

    'Calcula el radio y ángulo del punto a mover y a éste le suma el nuevo
    'ángulo. Luego mueve el punto en x, y, z, según convenga.
    If angulo_yaw <> 0 Then
        xRadio = Sqr(Pow(Pto.X, 2) + Pow(Pto.Z, 2))
        Angulo = Angle(Pto.X, Pto.Z)
        Angulo = Angulo + angulo_yaw
        Pto.X = xRadio * Cos(Angulo)
        Pto.Y = Pto.Y
        Pto.Z = xRadio * Sin(Angulo)
    End If

    If angulo_roll <> 0 Then
        xRadio = Sqr(Pow(Pto.Y, 2) + Pow(Pto.Z, 2))
        Angulo = Angle(Pto.Y, Pto.Z)
        Angulo = Angulo + angulo_roll
        Pto.X = Pto.X
        Pto.Y = xRadio * Cos(Angulo)
        Pto.Z = xRadio * Sin(Angulo)
    End If

    If angulo_pitch <> 0 Then
        xRadio = Sqr(Pow(Pto.X, 2) + Pow(Pto.Y, 2))
        Angulo = Angle(Pto.X, Pto.Y)
        Angulo = Angulo + angulo_pitch
        Pto.X = xRadio * Cos(Angulo)
        Pto.Y = xRadio * Sin(Angulo)
        Pto.Z = Pto.Z
    End If
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End Sub

'Al abrir el archivo crea la figura y la dibuja
Private Sub Form_Activate()
       
    'Función principal -> Primero creamos los puntos de la figura y luego los 
dibujamos
    Call CreaAvion(Figuras)
    
    Call DibujaFigura(Figuras)

End Sub

'Función que borra la figura, calcula los puntos nuevos y la dibuja
'llamando a las correspondientes funciones
Private Sub Avion()
           
        'Borramos la figura anterior para dibujar la nueva
        Call DibujaFigura(Figuras, True)
       
        'Calculamos los nuevos puntos a mover
        Call MueveFigura(Figuras)

        Call DibujaFigura(Figuras)  'Dibujamos la figura nueva
    
End Sub
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Anexo C

Código en Matlab para el estudio de 
los datos de la IMU. Filtro de Kalman
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%Programa en Matlab que calcula el ángulo sin filtro y con filtro de Kalman para 
%unos datos obtenidos de la IMU y guardados en un fichero.

close all
clear all

fd = fopen('New-1.5g-250Hz-pitch-90º.txt','r');

m = fscanf(fd,'%d',[7,inf]); %Leer los datos del fichero en filas
fclose(fd);             %Cerrar el fichero

valor = 4;
w_bias = 0;
g = 9.8;                %Gravedad
dt = 1/250;             %Frecuencia de muestreo
vref = 3.3;             %Voltaje de referencia
w_s = 3.3e-3;           %Sensibilidad giro

%Sensibilidad acelerometros
ac_s = 800e-3;   %1g
%ac_s = 600e-3;  %2g 
%ac_s = 300e-3;  %4g
%ac_s = 200e-3;  %6g

%Valores datos filtro Kalman
P = [1,0;0,1];          %Matriz de covarianza
R_angle = 0.3;
Q_angle = 0.001;
Q_gyro = 0.003;

%Velocidad angular 
wp1 = m(5,:);
wr = m(6,:);
wy = m(7,:);

%Aceleración
ax = m(2,:);
ay = m(3,:);
az = m(4,:);

%Calculo de la aceleración
ax = (((ax - 509) * (vref / 1024))./ac_s) * g;
ay = (((ay - 455) * (vref / 1024))./ac_s) * g;
az = (((az - 537) * (vref / 1024))./ac_s) * g;

%Calculo de la velocidad angular
wp = ((wp1.*vref/1024)-(vref/2))./w_s;
wr = ((wr.*vref/1024)-(vref/2))./w_s;
wy = ((wy.*vref/1024)-(vref/2))./w_s;

%Vector de datos
dat(1,:) = ax;
dat(2,:) = ay;
dat(3,:) = az;
dat(4,:) = wp;
dat(5,:) = wr;
dat(6,:) = wy;

%Valor inicial del angulo
angulo_wk(1) = dat(valor,1)*dt;  
angulo_w(1) = dat(valor,1)*dt;

%Calculamos el valor del angulo y aplicamos el filtro de Kalman
for i=2:length(dat),
    
   %Angulo sin filtro de Kalman
    angulo_w(i) = angulo_w(i-1) + dat(valor,i)*dt;     
    %Angulo con filtro de Kalman

angulo_wk(i) = angulo_wk(i-1) + dt*(dat(valor,i)-w_bias);   
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    Pdot = [Q_angle - P(1,2) - P(2,1), -P(2,2), -P(2,2), Q_gyro];
    
    %Actualizamos matriz de covarianza
    P(1,1) = P(1,1) + Pdot(1)*dt;
    P(1,2) = P(1,2) + Pdot(2)*dt;
    P(2,1) = P(2,1) + Pdot(3)*dt;
    P(2,2) = P(2,2) + Pdot(4)*dt;
    
    %Angulo extraído de los acelerómetros
    angulo_a(i) = -(atan(ay(i) / sqrt((ax(i))^2 + (az(i))^2 ))) * (180 / pi);   %Pitch
    angulo_a(i) = -(atan(ax(i) / sqrt((ay(i))^2 + (az(i))^2 ))) * (180 /pi);    %Roll
    angulo_error = angulo_a(i) - angulo_wk(i);

    E = R_angle + P(1,1);
    K0 = P(1,1) / E;
    K1 = P(2,1) / E;

    t_0 = P(1,1);
    t_1 = P(1,2);

    P(1,1) = P(1,1) - (K0 * t_0);
    P(1,2) = P(1,2) - (K0 * t_1);
    P(2,1) = P(2,1) - (K1 * t_0);
    P(2,2) = P(2,2) - (K1 * t_1);

    %Valor final del ángulo y del bias obtenidos a partir de la ganancia de
    %Kalman y del error
    angulo_wk(i) = angulo_wk(i) + K0 * angulo_error;
    w_bias = w_bias + K1 * angulo_error;

end

%Dibujamos los resultados obtenidos
subplot(1,2,1);
plot(angulo_w);
title('SIN FILTRO DE KALMAN');
xlabel('Muestras');
ylabel('Ángulo');
subplot(1,2,2);
plot(angulo_wk);
title('CON FILTRO DE KALMAN');
xlabel('Muestras');
ylabel('Ángulo');
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Anexo D

Código para programar la FPGA con 
EDK
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/*
* Xilinx EDK 10.1 EDK_K.15

    Programa para la FPGA Xilinx Virtex-II Pro que lee los datos de la IMU y envía 
una trama de configuración dependiendo de los switches cuando pulsamos el 
pulsador central.
*/

// Located in: ppc405_0/include/xparameters.h
#include "xparameters.h"
#include "stdio.h"
#include "xutil.h"
#include "xgpio_l.h"
#include "xuartlite_l.h"

//Define functions
int send_uart(void);
int read_uart(void);

//======================FUNCIÓN PRINCIPAL=========================
int main (void) {

       char pulsar;

       while(1) //Bucle infinito
       {

//Si hay datos en el recpetor debemos leer de la IMU
if(!XUartLite_mIsReceiveEmpty(XPAR_XPS_UARTLITE_0_BASEADDR))
{

read_uart(); //Función que lee los datos de la IMU
}

//Leemos el pulsador para saber si queremos configurar la IMU
pulsar = XGpio_mReadReg(XPAR_PUSHBUTTONS_5BIT_BASEADDR, 0); 

//Máscara para quedarnos con el switch central
pulsar = pulsar & 0x00000010; 

//Si hemos pulsado el pulsador central
if(!pulsar) 
{

send_uart(); //Función que configurará la IMU
}

       }
       return 0;
}

//-----------------------------FUNCIÓN QUE LEE DATOS DE LA IMU------------------
int read_uart(void)
{

char lectura_imu;

//Leemos datos IMU
lectura_imu = XUartLite_RecvByte(XPAR_XPS_UARTLITE_0_BASEADDR); 

//Sincronizamos receptor
while(XUartLite_mIsReceiveEmpty(XPAR_XPS_UARTLITE_0_BASEADDR)); 

//Enviamos al PC la lectura
XUartLite_SendByte(XPAR_RS232_UART_1_BASEADDR, lectura_imu); 

//Sincronizamos transmisor
while(XUartLite_mIsTransmitFull(XPAR_RS232_UART_1_BASEADDR)); 

}
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//---------------------FUNCIÓN QUE CONFIGURA LA IMU----------------
int send_uart(void)
{

char interruptores, config;

//Leemos los interruptores
interruptores = XGpio_mReadReg(XPAR_DIPSWS_4BIT_BASEADDR, 0); 

//Para cada posible caso...
switch (interruptores)
{
   case 15:
   config = 0x10;

   //Enviamos a la UART
   XUartLite_SendByte(XPAR_XPS_UARTLITE_0_BASEADDR, config); 
   while(XUartLite_mIsTransmitFull(XPAR_XPS_UARTLITE_0_BASEADDR));
   break;

   case 14:
   config = 0x11;

      XUartLite_SendByte(XPAR_XPS_UARTLITE_0_BASEADDR, config); 
   while(XUartLite_mIsTransmitFull(XPAR_XPS_UARTLITE_0_BASEADDR));
   break;

   case 13:
   config = 0x12;

   XUartLite_SendByte(XPAR_XPS_UARTLITE_0_BASEADDR, config);
   while(XUartLite_mIsTransmitFull(XPAR_XPS_UARTLITE_0_BASEADDR));
   break;

   case 12:

   config = 0x13;

   XUartLite_SendByte(XPAR_XPS_UARTLITE_0_BASEADDR, config); 
   while(XUartLite_mIsTransmitFull(XPAR_XPS_UARTLITE_0_BASEADDR));
   break;

   case 11:
   config = 0x14;

      XUartLite_SendByte(XPAR_XPS_UARTLITE_0_BASEADDR, config); 
   while(XUartLite_mIsTransmitFull(XPAR_XPS_UARTLITE_0_BASEADDR));
   break;

   case 10:
   config = 0x15;

   XUartLite_SendByte(XPAR_XPS_UARTLITE_0_BASEADDR, config); 
   while(XUartLite_mIsTransmitFull(XPAR_XPS_UARTLITE_0_BASEADDR));
   break;

   case 9:
   config = 0x16;

      XUartLite_SendByte(XPAR_XPS_UARTLITE_0_BASEADDR, config); 
   while(XUartLite_mIsTransmitFull(XPAR_XPS_UARTLITE_0_BASEADDR));
   break;

   case 8:
   config = 0x17;

     XUartLite_SendByte(XPAR_XPS_UARTLITE_0_BASEADDR, config); 
   while(XUartLite_mIsTransmitFull(XPAR_XPS_UARTLITE_0_BASEADDR));
   break;
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   case 7:
   config = 0x18;

   XUartLite_SendByte(XPAR_XPS_UARTLITE_0_BASEADDR, config); 
   while(XUartLite_mIsTransmitFull(XPAR_XPS_UARTLITE_0_BASEADDR));
   break;

   case 6:
   config = 0x19;

   XUartLite_SendByte(XPAR_XPS_UARTLITE_0_BASEADDR, config); 
   while(XUartLite_mIsTransmitFull(XPAR_XPS_UARTLITE_0_BASEADDR));
   break;

   case 5:
   config = 0x1A;

      XUartLite_SendByte(XPAR_XPS_UARTLITE_0_BASEADDR, config); 
   while(XUartLite_mIsTransmitFull(XPAR_XPS_UARTLITE_0_BASEADDR));
   break;

   case 4:
   config = 0x1B;

   XUartLite_SendByte(XPAR_XPS_UARTLITE_0_BASEADDR, config); 
   while(XUartLite_mIsTransmitFull(XPAR_XPS_UARTLITE_0_BASEADDR));
   break;

   case 3:
   config = 0x1C;

   XUartLite_SendByte(XPAR_XPS_UARTLITE_0_BASEADDR, config); 
   while(XUartLite_mIsTransmitFull(XPAR_XPS_UARTLITE_0_BASEADDR));
   break;

   case 2:
   config = 0x1D;

   XUartLite_SendByte(XPAR_XPS_UARTLITE_0_BASEADDR, config); 
   while(XUartLite_mIsTransmitFull(XPAR_XPS_UARTLITE_0_BASEADDR));
   break;

   case 1:
   config = 0x1E;

   XUartLite_SendByte(XPAR_XPS_UARTLITE_0_BASEADDR, config); 
   while(XUartLite_mIsTransmitFull(XPAR_XPS_UARTLITE_0_BASEADDR));
   break;

   default:
   config = 0x1F;

   XUartLite_SendByte(XPAR_XPS_UARTLITE_0_BASEADDR, config); 
   while(XUartLite_mIsTransmitFull(XPAR_XPS_UARTLITE_0_BASEADDR));
   }

}





Resum:

Els sistemes automatitzats que requereixen d’un control d’estabilitat o moviment es poden trobar cada 
cop en més àmbits. Aplicacions UAV o de posicionament global són les més comunes per aquest tipus de 
sistemes, degut a que necessiten d’un control de moviment molt precís. Per a dur a terme aquest procés 
s’utilitzen unitats de mesura inercial, que mitjançant acceleròmetres i giroscopis degudament posicionats, 
a més a més d’una correcció del possible error que puguin introduir aquests últims, proporcionen una 
acceleració i una velocitat angular de les quals es pot extreure el camí efectuat per aquestes unitats.

La IMU, combinada amb un GPS i mitjançant un filtre de Kalman, proporcionen una major exactitud , a 
més d’un punt de partida (proporcionat per el GPS), un recorregut representable en un mapa y, en el cas 
de perdre la senyal GPS, poder seguir adquirint dades de la IMU. Aquestes dades poden ser recollides i 
processades per una FPGA, que a la vegada podem sincronitzar amb una PDA per a que l’usuari pugui 
veure representat el moviment del sistema.

Aquest treball es centra en el funcionament de la IMU i l’adquisició de dades amb la FPGA. També 
introdueix el filtre de Kalman per a la correcció de l’error dels sensors. 

Resumen:

Los sistemas automatizados que requieren de un control de estabilidad o movimiento se encuentran cada 
vez en más ámbitos. Aplicaciones UAV o de posicionamiento global son las más comunes para este tipo 
de sistemas, ya que necesitan de un control de movimiento muy preciso. Para ello utilizan unidades de 
medida inercial, las cuáles, mediante unos acelerómetros y unos giróscopos debidamente posicionados y 
una corrección del posible error que pueda haber en éstos, proporcionan una aceleración y velocidad 
angular de las que puedes extraer el recorrido sufrido por dichas unidades.

La IMU, en combinación con un GPS y mediante un filtro de Kalman, proporcionan una exactitud mayor, 
además de tener un punto de partida (proporcionado por el GPS), un recorrido representable en un mapa 
y, en caso de perder la señal GPS, seguir adquiriendo datos de la IMU. Estos datos pueden ser recogidos
y procesados por una FPGA, la cual se puede sincronizar con una PDA para que el usuario pueda ver 
representado el movimiento del sistema.

Este trabajo estudia el funcionamiento de la IMU y la adquisición de datos de ésta con la FPGA. También 
introduce el filtro de Kalman para la corrección del error de los sensores.

Summary:

The automated systems that need a control of stability or motion control are increasingly in more areas. 
UAV or global positioning applications are the most common for these systems because they need a very 
precise motion control. They use inertial measurement units, which, with accelerometers and gyroscopes 
properly positioned and correction of possible errors that may appear in them, provide an acceleration and 
angular velocity that you can extract the movement suffered by these units.

The IMU, in combination with GPS and through a Kalman filter, provide greater accuracy, in addition to a 
starting point (provided by GPS), a representable route map and if you lose the GPS signal, the system 
continues acquiring data of IMU. These data can be processed by an FPGA, which can synchronize with a 
PDA. In this way, the user can see the motion of the system represented in a map.

This works study the functionality of the IMU and the data acquisition with the FPGA. It also introduces the 
Kalman filter to correct the error of the sensors.






