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1 Motivation

Power law distributions, a well-known model in the theory of real random
variables, characterize a wide variety of natural and man made phenomena.
The intensity of earthquakes, the word frequencies, the solar flares and the
sizes of power outages are distributed according to a power law distribution.

Recently, given the usage of power laws in the scientific community, several
articles have been published criticizing the statistical methods used to estimate
the power law behaviour and establishing new techniques to their estimation
with proven reliability.

The main object of the present study is to go in deep understanding of
this kind of distribution and its analysis, and introduce the half-lives of the
radioactive isotopes as a new candidate in the nature following a power law
distribution, as well as a “canonical laboratory” to test statistical methods
appropriate for long-tailed distributions.
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2 Introduction

Power laws distributions have appeared in a large variety of research fields as
ecology, physics, economy and finance, etc—see [1], [2], [3]. But sometimes the
methods used for the power law distribution analysis in the scientific literature
have not been as accurate as should be—see [1], [4], [2].

A power law density distribution is a function of the form f(x) = Cx−α,
C > 0 and being the exponent a positive constant parameter. Normally,
in empirical cases, the value of the exponent is unknown and it has to be
estimated. A mechanism to estimate this value, for a supposed quantity x
obeying a power law distribution, is plotting the logarithm of the empirical
density versus the logarithm of the quantity and estimate the slope of the plot
by a linear regression. Given that, ln f(x) = −α lnx+ constant.

Figure 1: Empirical probability density of a simulated power law with exponent
α = 2.0, xmin, and 10000 random data points, represented in a double logarithmic
scale. The density is estimated following the recipe of [5].

Recent studies have proved that this method generates significant inaccu-
racy in the estimation of the exponent of the power law—see [4]. Therefore,
as would be usual in the estimation of parameters of probability distributions,
the estimation of α should be done with a robust method as the maximum
likelihood estimation of parameters.

4
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As we will explain in the next section, we have obtained an empirical data
set of radionuclide half-lives which seems to follow a power law distribution,
at least, in a partial range of the whole domain. Given that, we will try to
discern, with an accurate statistical study, if the hypothesis of the power law
is a plausible one for this data set. Since it is the most extended test for non
normal distributions, we will use the KS statistic to test the hypothesis. In our
particular study, we estimate the parameters from the same data set in which
we will test the null hypothesis, ergo the statistical significance of the results
can not be computed by the standard way. Therefore, the goodness-of-fit test
is computed using the same method, based on Monte Carlo simulations, as
proposed by Clauset et al. in [1].

This work is organized as follows. In chapter 3, we explain what represents
in nuclear physics the half-life of a given radionuclide, how the radionuclide
data has been obtained and some interesting images that illustrate and mo-
tivate our research work. In the next chapter, we introduce the power law
distribution, distinguishing the cases of the pure power law and the truncated
power law, and the truncated log-normal distribution. In chapter 5, we de-
scribe the probability and statistical methodologies used for the distribution
parameters estimation and the goodness-of-fit performance, and the main al-
gorithm of the code implementing it. The discussion of the results is found in
chapter 6, which is divided in three parts where we show the results for each
distribution analyzed in the study. Finally, chapter 7 is intended to summarize
and discuss the results in a general manner and present the main conclusions
we can extract from this work.

5
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3 The Nuclide Data

In nuclear physics the half-life for a given radionuclide is the time for half of
radionuclides in any sample to undergo radioactive decay. After two half-lives,
there will be one fourth the original sample, after three half-lives one eight
the original sample, and so forth. In other words, the radioactive half-life
gives a pattern of reduction to half in any successive half-life period. So, the
mathematical formula for the pattern is

N = N02
−t/T1/2 = N0e

−t ln 2/T1/2 = N0e
−λt

where N0 would be the initial number of the radionuclides in the sample, N the
resulting number of radionuclides after a time t, T1/2 the characteristic half-life
of the radionuclide, λ the characteristic decay constant and 1/λ the average
lifetime. The formula above is the widely known radioactive disintegration
law.

The rate of radioactive decay is typically expressed in terms of either the
radioactive half-life, or the radioactive decay constant. Both give the same
information, so either may be used to characterize the decay of a given ra-
dionuclide.

Since we are interested in the distribution of the half-lives of the radionu-
clides we need information from all possible isotopes known. The Lund/LBNL
Nuclear Data Search is a web page from Lawrence Berkeley National Labo-
ratory and the Department of Physics of the Lund University from Sweden,
where one can find full information about nuclear structure and decay data
(http://nucleardata.nuclear.lu.se/nucleardata/toi). For our interests, we have
used a data table with information about the half-life, mass number, atomic
number and other relevant physical magnitudes of each known isotope. The
figure 2.a shows the appearance of the web data table and figure 2.b an example
of searching radionuclides with half-lives from 1000 to 1050 seconds.

6
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Figure 2: (a) Table where we have obtained the half-lives of the readionuclides.
Since we were interested in obtaining the maximum number of radionuclides we put
in the field T1/2 the values from 1 ·10−34 to 1 ·1034 seconds, and no more restrictions
to the search. The nuclides with half-life up to 1 · 1034 s are considered stable. (b)
This is an example of the search that one can perform in the web data table to
find radioactive isotopes with half-life value between 1000 and 1050 seconds, both
included.

By means of this table, we have obtained a data set consisting in 3001
unstable nuclei ranging from 3H (Z=1; N=2) to 269Hs (Z=108; N=161). The
number at the left of the nuclide noun represents the mass number of the
nuclide, which is the sum of the number of neutrons (N) plus the number of
protons (Z). In figure 3 we show a map of N Vs. Z for our data set, where each
point in the map represents a given radionuclide of the set. The blank straight
line in the map is where one could find all the stable nuclides.

In addition, we have included the unstable nuclide 209Bi (see reference [6] for
further information) which can not be found in the table since their properties

7
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were studied after the last actualization of the table. In sum, we have collected
a list of 3002 unstable nuclides.

Figure 3: Representation of the radioisotopes data set on an N Vs. Z map. The
red square shows the position of the 209Bi isotope. The map is plotted in different
colours to separate the radionuclides in five different groups depending on the value
of their half-life (see the legend).

8
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Figure 4: This is the empirical probability density of the data after a double loga-
rithmic rescaling, calculated with the method of logarithmic binning—see [5]. The
large error bars at the end of the plot and in the beginning indicates the presence
of only one data point in the specific bin, so the error it is, in fact, not defined (see
[7] for the evaluation of the error).

One immediately realizes that the half-lives vary across many orders of
magnitude, being the shortest one 3.04 · 10−22 seconds for the 5Li and the
largest one 6.94 · 1031 seconds for the 128Te. This large range of variation
provides an interesting problem for the calculation of statistical properties.
Figure 4 illustrates the empirical density distribution of the complete data set.

9
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4 Continuous Distributions

The continuous probability distribution of a given continuous random variable
X is completely determined by its probability density, commonly denoted by
f(x), which is a non-negative function with

∫
R f(x)dx = 1. The basic idea

is that probabilities are defined by areas under the graph of f(x). That is, a
random variable X has density f(x) if, and only if, for all x1 ≤ x2, x1, x2 ∈ R,

P (x1 < X < x2) =

∫ x2

x1

f(x)dx,

which is the area shaded in the following diagram:

A continuous random variable with a power-law distribution has a proba-
bility density of the form

f(x) = Cx−α, C > 0

∀x ∈ [a, b] α > 0, a > 0, a < b ∈ R
(1)

being α a positive constant parameter known as the exponent or scaling pa-
rameter of the distribution and C the normalization constant, which depends
on the value of α. The parameters a and b are an upper and a lower bound for
the distributions. In this work we will separate the power law distributions in
two different subsets (since the mathematical and computational treatments
are not exactly the same): power laws in a semi-infinite interval [a,∞) and
power laws in a finite interval [a, b].

In the subsections below we will perform a little introduction to each distri-
bution mentioned above and a brief introduction to the truncated log-normal
distribution, given that we suspect the data follows this distribution in some
regions of the whole domain.

10
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4.1 Power-law when x ∈ [a,∞)

In the case of considering a power-law distribution in the interval [a,∞), one
can easy find the constant C in formula (1) by the normalization requirement

1 =

∫ ∞
a

f(x)dx = C

∫ ∞
a

x−αdx =
C

1− α
[
x−α+1

]∞
a
. (2)

One can observe that the equation is only possible for α > 1, since otherwise
the integral in (2) diverges and the requirement of integral in the whole domain
of the density equal to 1 is not satisfied. Therefore, if α > 1 then expression
(2) gives

C = (α− 1)aα−1, (3)

and the expression for the density itself is

f(x) =
α− 1

a1−α
1

xα
. (4)

Some distributions follow a power law for part of their range but are cut
off at high values of x. In some cases, above some value they deviate from
the power law and fall off quickly towards zero. If this happens, then the
distribution may be normalizable no matter what the value of the exponent
α. Anyway, in the next subsection we introduce the truncated power law
distributions without wondering what is the behaviour after or before the power
law range.

4.2 Power-law when x ∈ [a, b], b ∈ R
It is convenient for our work to define a power law distribution in the case of
having both a lower and an upper bound for the values of x. Labeling the lower
and the upper bound as a and b, respectively, one can normalize the density
(1) in the same way as we did in the previous case. Then, the normalization
constant is, ∀α > 0,

C =
1− α

b1−α − a1−α (5)

and we obtain the exact formula for the density of a power law in the finite
interval [a, b]:

f(x) =
α− 1

a1−α − b1−α
1

xα
. (6)

We can see that doing b→∞ in this formula we find again the probability
density (4) for the case [a,∞) if α > 1.

11
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The next step is to introduce the third candidate of distribution we think
that can be useful in the modelization of the behaviour of the radionuclide
half-lives data.

4.3 Normal distribution when x ∈ [A,B]

We say that X is a normal random variable (or simply that X is normally
distributed) if the probability density of X is given by

f(x) = Ce−
(x−µ)2

2σ2 , C > 0

∀x ∈ R µ ∈ R, σ > 0
(7)

where µ is the mean of x, σ the standard deviation and C the normalization
constant. Typically, the value for the constant C is 1√

2πσ2
given that the domain

of the density is (−∞,∞). However, we are interested in the cases where the
domain of the distribution is truncated. Then, if A and B are the lower and
the upper bound of the truncated domain, the interval in which we have to
work becomes [A,B], where A ∈ R and A < B ∈ R. As we did in the case
of truncated power law, we have to compute the correspondig C taking into
account that the density out of the interval is zero. After some algebra, the
constant C takes the value

C =
2√

2πσ2

[
erf

(
B − µ√

2σ2

)
− erf

(
A− µ√

2σ2

)]−1

(8)

and the exact form for the probability density is

f(x) =
2√

2πσ2

[
erf

(
B − µ√

2σ2

)
− erf

(
A− µ√

2σ2

)]−1

e−
(x−µ)2

2σ2 , (9)

where erf(·) is the known error function given by

erf(z) =
2√
π

∫ z

0

e−t
2

dt.

But, as said in the beginning of the chapter, we think the data following
not a normal distribution but a log-normal distribution. Even though, a vari-
able with a log-normal distribution is a variable whose logarithm is normally
distributed. Then, if y is a variable with a log-normal distribution, defining
the simple regular change of variable x = ln y the resulting variable x becomes

12
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normally distributed. Therefore, since it is easier to work with normal distribu-
tion than a log-normal distribution, we can take the logarithm of the empirical
data and, then, we may work with it as a normally distributed sample.

Some chapters below, we will need the formula of the log-normal density.
Then, by the equality

g(y) = f(x)

∣∣∣∣dxdy
∣∣∣∣ ,

where g(y) represents the log-normal density, we obtain that

g(y) = C
1

y
e−

(ln y−µ)2

2σ2 (10)

where 1/y comes from the factor |dx/dy| and C is the constant (8). It is
necessary to clarify that the domain of the variable y (our original data) is [a, b]
where 0 < a < b and a, b ∈ R. Then the correspondence between the domain of
the normal distribution and the domain of the log-normal distribution comes
from A = ln a and B = ln b.

13
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5 Data Analysis

This chapter is pretended to describe in detail the statistical and computational
issues we have required in our study, and it is divided in two parts. In the first
part one can find the explanation of the three main blocks of the statistical
concepts used in our work and the standard method of simulating data from
a known probability distribution. In the second part there is summary of the
main algorithm implemented in the codes for doing the data analysis.

5.1 Tools for the data analysis

Given the nature of a power law distribution, a commonly method used in the
estimation of the scaling parameter of the distribution is performing a least-
squares linear regression, or other variations on the same theme. This implies
the binning of the data in small intervals and count the number of observations
in each bin, generating a histogram that reproduces empirically the probability
density of the distribution. After a doubly logarithmic rescaling one obtains a
straight line whose slope is pretended to be the exponent of the power law.

Unfortunately, this method generates substantial inaccurate results since it
assumes independent Gaussian distributed errors in the bins of the histogram
but it is not applicable after the logarithmic rescaling of the plot—see [1].
Recent studies on estimating the exponent of power law distributions support
this fact and confirm that maximum likelihood estimation outperforms other
methods in both accuracy and precision—see [4].

5.1.1 Maximum Likelihood parameter Estimator (MLE)

Definition 5.1. If x1, . . . , xN are the values of random sample of a variable
X with density fX(x; θ), where θ is the characteristic parameter of the density,
the likelihood function of this random sample, is given by

L(θ) = fX1,...,XN (x1, . . . , xN ; θ) (11)

for the values of θ in a given domain. In this case fX1,...,XN (x1, . . . , xN ; θ) is
the value of the joint probability density of the random variables X1, . . . , XN

in x1, . . . , xN .

The maximum likelihood method consist in maximizing the likelihood func-
tion respect to θ—see [8]. More explicitly, given the assumption of independent

14
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and identically distributed data in the random sample, the function L(θ) to
maximize becomes

L(θ) =
N∏
i=1

fXi(xi; θ) (12)

where xi represents our data points and fXi(xi; θ) are, obviously, identical
versions of fX(x; θ). Then, the equation we have to solve to find the maximum
of L(θ) is the following

∂L(θ)

∂θ
= 0. (13)

We will refer to the value θ̂ that solves this equation as the maximum likelihood
estimator (MLE) of θ.

It will be convenient for our job to work with log-likelihood function L(θ)
instead of the likelihood function since the logarithm properties will make easy
the finding of MLE α̂ in the case of power laws and σ̂ and µ̂ in the log-normal
distribution case. The log-likelihood function is defined by taking the logarithm
of the likelihood function and dividing by the total number of data points N ,
then

L(θ) =
1

N
lnL(θ), (14)

and the equation we will solve to find the maximum it is the same as before but
changing L(θ) for L(θ). It is easy to see that the maximum of the likelihood
function and the maximum of log-likelihood function are the same.

In the case of a power law in the domain [a,+∞), the log-likelihood function
to maximize is

L(α) = ln(α− 1)− ln a− α

N

N∑
i=1

ln
(xi
a

)
. (15)

Setting ∂L(α)/∂α = 0 and after some algebra one can find that the exact form
for the MLE of the scaling parameter is

α̂ = 1 +N

[
N∑
i=1

ln
(xi
a

)]−1

. (16)

In the case of a power law in the domain [a, b], the log-likelihood function
takes the form

L(α) = ln

(
1− α

b1−α − a1−α

)
− α

N

N∑
i=1

lnxi. (17)

15
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Unfortunately, the derivative of (17), as something usual in this context, it
doesn’t have analytical solution when set equal to zero, so we have to calculate
the maximum value α̂ numerically 1.

Finally, in the case of data following a log-normal distribution in [a, b], we
have two parameters to estimate, σ and µ. Using expression (9) it is clear that
the likelihood function in this case will be

L(µ, σ) = lnC(µ, σ)− 1

2σ2N

N∑
i=1

(xi − µ)2 (18)

where C(µ, σ) comes from the normalization constant (8). Given the complex-
ity of the function we will not compute the likelihood equations and, as in the
previous case, we will use a numerical recipe to find the MLE for µ and σ,
directly working with the log-likelihood function.

5.1.2 Kolmogorov-Smirnov statistic

For our purposes it will be necessary to estimate how far are the theoretical
models we find from the empirical data. There are a variety of measures for
quantifying the distance between two probability distributions, but for non-
normal data the commonest is the Kolmogorov-Smirnov test or KS statistic
based on the Glivenko-Cantelli theorem (a fundamental theorem of statistics—
see [9]), which is simply the maximum distance between the cumulative dis-
tribution function (or their complementary—see section 9.1 of the Appendix
for further information about the complementary CDF functions used) of the
data and the theoretical model. The KS statistic is given by

dKS = sup
a≤x≤b

|SN(x)− F (x; θ)| (19)

where SN(x) is the empirical CDF of the experimental data (see section 9.2
of the Appendix for information about computing it) and F (x; θ) is the CDF
of the theoretical model in the region a ≤ x ≤ b. In our case, the theoretical
model is the model with the parameters obtained using the maximum like-
lihood method (i.e. the model with θ̂). Then, we redefine the KS statistic
as

d̂KS = sup
a≤x≤b

∣∣∣SN(x)− F̂ (x; θ̂(x))
∣∣∣ . (20)

1We use here a subroutine (amoeba.for) from [10] that implements the downhill simplex
method for minimizing functions.
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A property of the KS statistic that makes it very useful is that its distri-
bution in the case of data sets drawn from the theoretical distribution (the
null hypothesis) can be calculated, at least to useful approximation, thus giv-
ing the significance of any observed nonzero value of dKS. Unfortunately, we
can not use this interesting property since the KS statistic is not stable under
theoretical models obtained by estimation of parameters. Instead of that, we
shall do Monte Carlo simulations to calculate the significance of our results.
This will be the aim of the next subsection.

5.1.3 Simulated construction of d̂KS distribution

As previously explained, we can not use directly the distribution of the KS
statistic to give a significance of our results because we use the maximum
likelihood method to fit the best theoretical model for our data. Given that, to
estimate the statistical significance of the calculated KS statistics we compute
a p-value that is evaluated following a Monte Carlo procedure.

This procedure consists in simulating n synthetic data (say 1000 simula-
tions), each of these with N random numbers following the theoretical model
we found by maximum likelihood estimation of parameters, given by θ̂. After
that, by maximum likelihood again, we calculate the theoretical model (if we
do 1000 simulations, we do it 1000 times) and we compute the KS statistic of
each simulation. Mathematically,

d̂sim
KS,i = sup

a≤x≤b

∣∣∣Ssim
i (x)− F̂ sim

i (x; θ̂(x))
∣∣∣ i = 1, . . . , n (21)

where Ssim
i (x) is the CDF of the simulated data i and F̂ sim

i (x; θ̂(x)) is the
theoretical model CDF relative to each simulated data i. Finally we compute
the p-value simply counting the d̂sim

KS,i cases bigger than the d̂KS value for the
empirical data, against total cases. In other words,

p =
Number of simulations(d̂sim

KS,i > d̂KS)

n
. (22)

We can define the simulated p-value as the probability of obtaining a d̂KS larger
than the one that was actually observed, assuming that the null hypothesis is
true. In general, it is straightforward to see that, under the null hypothesis,
with the domain [a, b] fixed, the p-value itself will be randomly distributed,
with a uniform distribution in [0, 1].

The p-value gives us a measure of how far is our adjustment from the
simulations randomly generated. For example, if p = 0.6 means that the 60%

17
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of KS distances calculated from random simulations are bigger than d̂KS from
empirical data, then we can not reject the null hypothesis because, in some
way, this distance d̂KS could be generated by random simulation from the
theoretical model. Conversely, obtaining a very small p-value (say p = 0.0001)
means that our KS distance is bigger than the majority of the KS distances
from all the simulations and then the error introduced in the adjustment of
the data seems to be bigger than the random error of the simulations. Then,
we must reject the null hypothesis.

An important question is how to decide how many simulations we need
to generate. Since we want approximately an accuracy of ε = 0.01 in our
estimates of the p-value we will do over 1

4
ε−2 simulations each time, according

to [1].

5.1.4 Simulations

The most commonly used method for generating random numbers of non-
uniform distributions is the transformation method—see Appendix 9.3 and
reference [11]. The method involves in fact that the CDF of a given random
variable follows a uniform [0, 1] distribution by itself. Then, if we know the
cumulative distribution function for a given variable X then

FX(x) ∼ unif[0, 1] (23)

and inverting this formula we obtain

X ∼ F−1
X (unif[0, 1]) . (24)

In conclusion, if we can compute the inverse of the distribution function of
a given random variable X we could generate a sequence of random numbers
following the distribution ofX by applying the inverse of the CDF to a sequence
of uniform random numbers. In the case of a normal distribution, the CDF
contains the error function, and its inversion is not easily available in practice.
However, a generalization of the method to two dimensions allows the use in
this case of cylindrical coordinates, from which the rectangular components
can be immediately obtained. This is the Box-Mueller-Wiener algorithm—see
[10].

18
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Distribution Random Numbers

Power law in [a,∞) x = a

(1−u)
1

α̂−1

Power law in [a, b] x = a{
1−
[
1−(ab )

α̂−1
]
u
} 1
α̂−1

Log-Normal x = e(µ̂+σ̂g)

Table 1: In the first two cases u represents a uniform random number obtained
using the ran3.for, a uniform random number generator from [10]. In the third
case the number g is a Gaussian random number with variance equal to 1 and 0
mean. This number g is obtained by means of Box-Mueller-Wiener algorithm, as
explained in the main text. Parameters µ̂ and σ̂ are the characteristic parameters
of the log-normal distribution, obtained by maximum likelihood method.

19
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5.2 Procedure for the data analysis

There exist multiple commercial software for general data analysis and statis-
tics. But, in our case, given the very specific skills of the topics we have treated,
it has been necessary to implement all the routines for the data analysis by
ourselves. The main goal of this subsection is to explain the procedure we have
followed, in the F77 routines we have created, to analyze the nuclide data. It
is important to remark that we have used several subroutines and functions
from [10] in our F77 codes.

For simplicity, we have implemented separately the codes for the three cases
of distributions we have studied. The main procedure is the same in the three
cases and their scheme is the following:

1. Read and sort the nuclide data in increasing order.

2. Loop: Take a lower bound ai for the data, i = 1, . . . , Na.

(a) Loop: Take an upper bound bj for the data, j = 1, . . . , Nb
2.

i. Compute the value α̂ij, or µ̂ij and σ̂ij in the case of log-normal
distribution, by MLE method.

ii. Compute the KS statistic (d̂KS) for the interval.

iii. Compute the p-value:

A. Simulate a distribution with parameters: ai, bj, α̂ij or µ̂ij
and σ̂ij, and nij (the number of data points in [ai, bj]).

B. Compute a new α̂sim (or µ̂sim and σ̂sim) with MLE, now with
the simulated data points.

C. Calculate the KS statistic for the simulation:

d̂sim
KS = sup

a≤x≤b

∣∣∣Ssim(x)− F̂ sim(x; θ̂(x))
∣∣∣ ,

where Scsim(x) and F sim(x; θ̂(x)) are the CDF of the sim-
ulated data and the CDF of the theoretical model that
best fits the simulated data (with θ̂(x) = α̂sim, or θ̂(x) =
(µ̂sim, σ̂sim), from B), respectively.

D. Check if d̂sim
KS > d̂KS. Go to A.

2In the case of power law in [a,∞) we omit this step
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E. Repeat the three steps before 2500 times for each ai, bj, α̂ij
(or µ̂ij and σ̂ij) and nij, and calculate:

p =
Number of (d̂sim

KS > d̂KS)

2500
.

(b) Go to (a). End when b = bNb .

3. Go to 2. End when a = aNa .

4. End program.

Other F77 routines have been used in order to pre-processing the nuclide
data from the website, to extract information from data, etc. But we will not
explain here the details since this is not the main object of the work.
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6 Results

This section is organized in four parts. The three first are destined to show and
discuss separately, for the three approaches treated in this work, the results
obtained after the application of the procedures described to our data. Finally,
in the last one, we summarize all the results and we make a global discussion
of them.

6.1 Power-law x ∈ [a,∞)

As explained in subsection 5.2 we have done 2500 simulations for each fixed
value of the lower bound a. We have moved a from 1.47 · 10−5 to 6.81 · 1021

seconds with the formula ai = a0101/6102i/3 for i = 0, . . . , 40 and a0 = 10−5.
The reason of the factor 101/6 is in order to avoid integer powers of 10, to
which the data have tendency to be rounded. We show the results in table 2.
One can see in this table that we have omitted the results of the simulations
with lower bounds less than 1.47 · 10−1 and greater than 3.16 · 1014. In the
first case the reason is simply that the p-values for these simulations are zero
and they do not contribute in any relevant information for our study. In the
second case we have considered that the number N of data points is too small
to be statistically significant and they do not contribute in any important
information too.

With the results in table 2 we can extract interesting conclusions, not only
for the nuclide data, but for the Clauset method too. It is clear that does not
exist a pure power law, at least for a large range of the data. However, we
show in table 2 that, if there exist, the power law must have a lower bound
around a = 1.47 · 109 seconds since the simulations for this range provide an
acceptable p-value (p = 60%), despite that the number of data N seems to be
a little bit poor (N = 97). Values of a up to 1.47 ·107 s also provide reasonable
p-values.

It is important to note that the best p-value in the table do not correspond
with the lowest KS distance. As one can observe, the lowest value of the
KS distance (dKS = 0.038) is obtained when the lower bound takes the value
1.47 · 101 seconds and the p-value in this case is 0. This fact reveals that the
recipe proposed for Clauset et al. in [1] to analyze power law distributed data
has to be carefully used.

In figure 5 we show the fits discussed above. In the case of the fit that
gives the greatest p-value the exponent of the power law is α = 1.08 and the
case with minimal KS distance an exponent of α = 1.15. We can note in the
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a(s) α̂± σ d̂KS N p
1.47 · 10−1 1.12± 0.00 0.110 2565 0.00
6.81 · 10−1 1.13± 0.00 0.090 2317 0.00
3.16 · 100 1.14± 0.00 0.068 2050 0.00
1.47 · 101 1.15± 0.00 0.038 1754 0.00
6.81 · 101 1.16± 0.00 0.040 1440 0.00
3.16 · 102 1.16± 0.00 0.051 1119 0.00
1.47 · 103 1.15± 0.01 0.065 853 0.00
6.81 · 103 1.14± 0.01 0.080 644 0.00
3.16 · 104 1.14± 0.01 0.103 502 0.00
1.47 · 105 1.13± 0.01 0.124 372 0.00
6.81 · 105 1.12± 0.01 0.137 287 0.00
3.16 · 106 1.11± 0.01 0.137 223 0.00
1.47 · 107 1.09± 0.01 0.069 161 0.19
6.81 · 107 1.09± 0.01 0.057 133 0.57
3.16 · 108 1.09± 0.01 0.065 116 0.47
1.47 · 109 1.08± 0.01 0.065 97 0.60
6.81 · 109 1.08± 0.01 0.083 84 0.36
3.16 · 1010 1.08± 0.01 0.086 76 0.38
1.47 · 1011 1.09± 0.01 0.099 71 0.25
6.81 · 1011 1.09± 0.01 0.115 62 0.16
3.16 · 1012 1.09± 0.01 0.138 56 0.07
1.47 · 1013 1.09± 0.01 0.135 45 0.15
6.81 · 1013 1.08± 0.01 0.135 38 0.23
3.16 · 1014 1.08± 0.01 0.138 30 0.36

Table 2: Estimates of the scaling parameter α̂, the KS distance (d̂KS) and the p-
value (p) by increasing values of the lower bound a. The column N is the number
of data points. The error on α̂ is given by the standard error σ and the error in p is
0.01.
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figure how the fit with largest p-value works well at the end of the empirical
density (since the lower bound is a = 1.47 · 109) and the fit with minimal KS
distance (a = 1.47 ·101) performs better at the middle of the empirical density
but worse at the end.

It has been interesting to plot the evolution of the KS distance versus the
lower bound of the distribution. In figure 6 one can observe this evolution
and note how the best p-value is obtained when the distance falls in a local
minimum with approximate value around 0.060.

For the reasons explained above it has been convenient to fit other distri-
butions to our data: the truncated power law.

Figure 5: Here we can observe the two fits mentioned in the main text for the power
law in [a,∞). In blue: the fit with α = 1.08 that provides the maximum p-value.
In purple: the fit with α = 1.15 that provides the minimal d̂KS . The empirical
distribution is the same as shown in section 3, and it is plotted in red with green
error bars.
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Figure 6: In green: the evolution of d̂KS when we increase the lower bound of the
case of the pure power law. One can observe the minimum (d̂KS) when a = 1.47·101.
In red: the evolution of the p-value.
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6.2 Power-law x ∈ [a, b]

In order to obtain the results for the truncated power law, we have increased the
values of the lower bound of the power law from a = 1.47·10−12 to a = 1.47·108

seconds, for each value of a we do several simulations changing the upper bound
b. Specifically, we have replaced the upper bound b from 1.47·1010 to 1.47·1030,
and we have done 2500 simulations for each pair [ai, bj]. The formulas used
to increment a and b have been ai = a0101/6102i/3 and bj = b0101/6102j/3 with
a0 = 10−12 and b0 = 1010, respectively, and i, j = 0, . . . , 30 (i.e., we have
obtained i × j results since we have one p-value for each pair [ai, bj]). The
most interesting results have appeared in the simulations for the value of the
lower bound a = 1.47 · 102. In table 3, we show the results of data analysis
for this fixed value of a and some possible values of b. One can see that the
largest p-value is obtained for b = 1.47 · 1014.

First of all, we can assert the existence of a power law behaviour in the
range [1.47 · 102, 1.47 · 1014] where we have found the minimum of the KS
minimum distances (d̂KS = 0.016) and the greater p-value (p = 83%). The
number of nuclides N for this result is 1252. In a second term, we find a
reasonable values in the range [1.47 · 102, 3.16 · 1021] where the KS minimum
distance becomes d̂KS = 0.020 and the p-value takes the not inconsiderable
rate of p = 51%. This last interval has the benefit of containing more nuclides
than the first interval: 1271 versus 1252 (about 1.5% more).

As did in the previous subsection, we have represented in figure 8 the
evolution of the KS statistic as a function of a and b, which describes a surface
in the space. Then, in figure 9 we show the projection of this surface in the
plane (ln a, d̂KS).

Comparison of the exponents of the truncated power law and the pure
power law reported above (1.18 versus 1.08) suggest that may be the rightmost
tail of the distribution (the highest half-lives) suffers from some kind of over
sampling. For some reason, it is possible that nuclei in the limit of stability
have attracted more experimental interest and this makes the other nuclei to
be under-represented in the sample.

In addition, since we have observed a change of slope in the empirical
density, approximately when the half-life is around 1 second, we have proceeded
to analyze the data before this value (range of data with low half-lives). Now,
the formulas used to move the [ai, bj] interval have been ai = a0101/610i/4 and
bj = b0101/610j/4, where i, j = 1, . . . , 20. The values of the upper and the lower
bound where we have begun to analyze the power law have been a0 = 10−11

and b0 = 10−7.

26



Francesc Font M. Probability distribution of the radionuclide half-lives

b(s) α̂± σ d̂KS N p
1.47 · 1010 1.19 ± 0.01 0.024 1206 0.26
6.81 · 1010 1.19 ± 0.01 0.023 1211 0.34
3.16 · 1011 1.19 ± 0.01 0.024 1221 0.32
1.47 · 1012 1.18 ± 0.01 0.036 1224 0.02
6.81 · 1012 1.19 ± 0.01 0.024 1233 0.26
3.16 · 1013 1.19 ± 0.01 0.019 1240 0.60
1.47 · 1014 1.18 ± 0.01 0.016 1252 0.83
6.81 · 1014 1.18 ± 0.01 0.017 1257 0.76
3.16 · 1015 1.18 ± 0.01 0.023 1260 0.33
1.47 · 1016 1.18 ± 0.01 0.018 1261 0.68
6.81 · 1016 1.18 ± 0.01 0.022 1263 0.35
3.16 · 1017 1.18 ± 0.01 0.022 1264 0.36
1.47 · 1018 1.18 ± 0.01 0.021 1267 0.47
6.81 · 1018 1.17 ± 0.00 0.029 1270 0.10
3.16 · 1019 1.17 ± 0.00 0.028 1271 0.13
1.47 · 1020 1.17 ± 0.00 0.029 1271 0.11
6.81 · 1020 1.17 ± 0.00 0.029 1271 0.11
3.16 · 1021 1.18 ± 0.00 0.020 1271 0.51
1.47 · 1022 1.17 ± 0.00 0.028 1273 0.15

Table 3: From right to left: the upper bound of the half-lives in seconds, the esti-
mation of the scaling parameter α̂ (with associated statistical error σ—see reference
[12]), the value of the KS statistic, the number N of data points between a and b
and the p-value for the simulations with a = 1.47 · 102.
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Figure 7: In blue: the fit for the range [1.47 · 102, 1.47 · 1014]. In purple: the fit for
the case of range [1.47 · 102, 3.16 · 1021].

Figure 8: Surface described by the KS statistic, as a function of ln a and ln b.

28



Francesc Font M. Probability distribution of the radionuclide half-lives

Figure 9: Projection of the surface described by d̂KS(ln a, ln b) in the plane
(ln a, d̂KS).

b(s) α̂± σ d̂KS N p
1.47 · 10−7 0.82±0.16 0.062 29 1.00
2.61 · 10−7 0.86±0.13 0.060 34 0.99
4.64 · 10−7 0.93±0.11 0.099 37 0.52
8.25 · 10−7 0.86±0.09 0.078 46 0.73
1.47 · 10−6 0.88±0.08 0.055 51 0.97
2.61 · 10−6 0.95±0.07 0.093 53 0.35
4.64 · 10−6 0.97±0.06 0.093 57 0.27
8.25 · 10−6 0.99±0.06 0.099 60 0.18
1.47 · 10−5 1.02±0.05 0.099 62 0.15
2.61 · 10−5 1.00±0.05 0.088 68 0.24
4.64 · 10−5 0.99±0.04 0.087 73 0.21

Table 4: This table shows the results for the adjustment of a truncated power
law with lower bound a = 2.61 · 10−9 seconds and upper bound form 1.47 · 10−7 to
4.64 ·10−5 seconds. The smallest KS distance and corresponding p-value are in bold.
We show the same parameters as in table 3.
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One can realize in table 4 that all the p-values are greater than 0.10. Since
we have fixed the barrier of p in this value, to rule out the null hypothesis,
we must accept the null hypothesis in all cases shown in this table. Even
though, according to [1], the interval [2.61 · 10−9, 1.47 · 10−6] with α̂ = 0.88
has the property of minimizing the KS distance and, therefore, we will take
it as the best fit of our data in the range of low half-lives. However, it is
important to remark that the poor number of data points at low half-lives can
affect negatively at the results shown in table 4. Perhaps, further research
about new radionuclides with low half-life could provide more information in
the future to improve these hypothesis.

It is interesting to note that, for high values of the half-lives, there is a
power law behaviour with exponent α̂H = 1.18 and, for low values of the half-
lives, there seems to be a power law behaviour with exponent α̂L = 0.88. One
can realize that α̂H + α̂L = 2.06 ≈ 2. This behaviour has also been observed in
the band transport of charges in amorphous semiconductors, for instance [13].
It would be interesting to explore a possible mathematical connection between
both phenomena.

Figure 10: This figure shows, in purple, the fit with minimum d̂KS for the power
law at low half-lives (α̂L = 0.88) and, in blue, the fit with minimum d̂KS for the
power law at high values of half-lives (α̂ = 1.18).
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6.3 Log-normal

The results for the log-normal distribution, as we mentioned, have been ob-
tained with the same algorithm as the power law one. In this case, we have
taken the lower bound from 3.16 · 10−7 to 3.16 · 10−1 seconds and the upper
bound from 3.16 · 100 to 3.16 · 1011 seconds. The intervals have been generated
with the formula ai = 2

√
5 · 10i where i = −7, . . . ,−1 for the increment of a,

and the formula bj = 2
√

5 · 10j where j = 0, . . . , 11 for the increment of b. In
table 5 we present the results for a = 3.16 · 10−2 seconds and for all possible
values of b, since it is the range we have found the minimum of d̂KS.

b(s) µ̂± u(µ̂) σ̂2 ± u(σ̂2) d̂KS N p
3.16·100 0.51±0.02 9.23 ±0.51 0.019 664 0.97
3.16·101 1.87±0.06 16.70±0.71 0.015 1106 0.97
3.16·102 4.02±0.10 34.19±1.21 0.015 1595 0.87
3.16·103 3.50±0.08 28.90±0.92 0.012 1977 0.92
3.16·104 3.29±0.07 25.48±0.77 0.015 2212 0.70
3.16·105 3.44±0.07 30.11±0.87 0.010 2393 0.96
3.16·106 3.45±0.07 32.26±0.91 0.013 2491 0.75
3.16·107 3.41±0.07 37.99±1.06 0.022 2571 0.18
3.16·108 3.40±0.07 38.56±1.07 0.022 2598 0.14
3.16·109 3.26±0.06 42.93±1.18 0.027 2626 0.04
3.16·1010 3.17±0.06 45.16±1.24 0.030 2638 0.02
3.16·1011 2.95±0.06 49.86±1.37 0.034 2651 0.01

Table 5: Results for the log-normal adjustment and the computed p-value, for a
fixed lower bound of a = 3.16·10−2 seconds. Both u(µ̂) and u(σ̂2) are lower levels for
the statistical error associated to the paramters—see [14]. The smallest KS distance
and corresponding p-value are in bold.

One can see in table 5 that the smallest KS distance (d̂KS = 0.010) is
obtained for a = 3.16 · 10−2 and b = 3.16 · 105 seconds, where the computed p-
value takes the rate p = 96%. Then, we accept as a best fit for our data, in the
range delimited for these upper and lower bounds, a log-normal distribution
with characteristic parameters µ̂ = 3.44 and σ̂2 = 30.11. However, as one can
see, there are several high p-values in the top of the table, then we can say that
the null hypothesis must be accepted in these cases too. In figure 12 we show
the fit with the above mentioned parameters and in figure 11 an evolution of
d̂KS as a function of a and b is presented.
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Figure 11: Surface described by the KS statistic, as a function of ln a and ln b, in
the case of the log-normal adjustment.

Figure 12: This is the fit of the log-normal density with parameters µ̂ = 3.44 and
σ̂2 = 30.11, with lower bound a = 3.16 · 10−2 s and upper bound b = 3.16 · 105 s,
where we have encountered the minimum d̂KS and one of the most high p-values.
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It should be noted that the number of data points N , in the fits commented
above, is large. Specifically, the fit that gives the minimal d̂KS has N = 2393
of the 3002 total data points. This makes the log-normal distribution a very
representative one for most of the radioactive isotopes. To conclude the section,
table 6 summarizes the main results obtained.

a(s) b(s) distribution parameters
2.61 · 10−9 1.47 · 10−6 power law α̂ = 0.88± 0.08
3.16 · 10−2 3.16 · 105 log-normal µ̂ = 3.44± 0.07, σ̂2 = 30.11± 0.87
1.47 · 102 1.47 · 1014 power law α̂ = 1.18± 0.01
1.47 · 109 - pure power l. α̂ = 1.08± 0.01

Table 6: This table shows a summary of the results found. The first three cases
have the property of minimize the d̂KS with an acceptable p-value. Concretely, in
the cases of the truncated power law, the p-values for the results shown in the table
are the highest ones. The last row shows the result with the highest p-value, for the
analysis of the data, assuming a pure power law, which does not coincide with the
minimal d̂KS .

33



Francesc Font M. Probability distribution of the radionuclide half-lives

7 Conclusions

In this work, the method proposed by Clauset et al. in [1] to fit power laws
distributions and to test the goodness of fit by means of Monte-Carlo simu-
lation has been implemented and generalized to the case of truncated power
laws and log-normal distributions. Application of the methods to the half-lifes
of radioactive elements reveals both the interest of using such record as an
illustration of a data set with a broad range of variability and a long-tailed
behaviour, and also the relative limitation of the optimization method pro-
posed by Clauset et al. We see that a “blind” application of the recipe is not
recommended at all.

We can say that the method and criteria used bring to accept that there
is a power law behaviour of the nuclide data in the range from 1.47 · 102 to
1.47 · 1014 seconds with an exponent of α = 1.18. We speculate that the slight
deviation to an exponent α = 1.08 for the highest half-lives could be due to
an artifact caused by a biased sampling for these values. Anyhow, a power
law tail implies the lack of a characteristic scale in the half-lifes, in this case
[15]. In addition, at low values of half-lives the data seems to have a power
law behaviour with approximated exponent α = 0.88. Nevertheless, due to the
few number of data at low half-lives, we can not be certain at all that the data
in this range is drawn from a power law distribution.

Moreover, we have encountered a clear log-normal behaviour of the data in
the intermediate values of half-lives, between the two power laws, where the
number of data points is very large.

It would be interesting to determine with a certain precision for which value
of the half-life the transition from the log-normal distribution to the power law
distribution takes place. A maximum likelihood ratio test could provide the
necessary information. Preliminary analysis shows, however, that it does not
seem easy to find such value, as the ratio is very close to one for the range in
which both distributions overlap, so the differences between both distributions
would not be significant.

As a future objective, we could look for a unique probability distribution
that could account for the different behaviours of the half-life distribution.
Different limit behaviours should yield a power law or a log-normal, depending
on the value of the half-life. Certainly, in this case, we would need to modify our
estimation procedure, as it would not be possible to find a closed expression
for the normalization constant, which should be determined numerically for
each value of the parameters.

Finally, the statitical findings reported here open interesting physical ques-
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tions. Which is the reason that the radioactive nuclides obey such a clear
probability law (first power law, then lognormal, and then a somewhat steeper
power law)? How are these findings related to the different modes of radioactive
decay? Does the distribution change when it is conditioned to alpha emission,
beta decay, etc.?

In summary, our work offers new opportunities of research, which can unveil
some unknown properties of radioactive nuclei thanks to careful statistical
analysis.
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9 Appendix

9.1 Cumulative distribution function

Since the cumulative distribution function of a given continuous random vari-
able X with probability density f(x) is defined as

F (x) = P (X ≤ x) =

∫ x

−∞
f(x′)dx′, (25)

their complementary is defined as

F c(x) = P (X > x) =

∫ ∞
x

f(x′)dx′ (26)

or, equivalently, F c(x) = 1− F (x).
The routine we have used to estimate the dKS between two distributions

needs the formula of the CDF, or their complementary, of the distribution
as an input. For simplicity, in the cases of power laws it has been useful to
implement the complementary function and in the case of log-normal we have
implemented the cumulative function. Here we show the calculations:

• Complementary CDF of a power law in [a,∞):

F c(x) = C

∫ ∞
x

1

x′α
dx′

=
C

1− α
[
x′1−α

]∞
x

=
C

1− α
x1−α

=
(x
a

)1−α

where C comes from the formula (3).

• Complementary CDF of a power law in [a, b]:

F c(x) = C

∫ b

x

1

x′α
dx′

=
C

1− α
[
x′1−α

]b
x

=
C

1− α
[
b1−α − x1−α]

=
1−

(
x
b

)1−α
1−

(
a
b

)1−α .
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where C comes from the formula (5).

• Using the notation employed in subsection 4.3, the complementary CDF
of a normal distribution in the interval [A,B] is the following:

F c(x) = C

∫ B

x

e−
(t−µ)2

2σ2 dt′

= C
√

2σ2

∫ B−µ√
2σ2

x−µ√
2σ2

e−z
2

dz

= C
√

2σ2

(∫ B−µ√
2σ2

0

e−z
2

dz −
∫ x−µ√

2σ2

0

e−z
2

dz

)

= C

√
2πσ2

2

[
erf

(
B − µ√

2σ2

)
− erf

(
x− µ√

2σ2

)]

=
erf
(
B−µ√

2σ2

)
− erf

(
x−µ√
2σ2

)
erf
(
B−µ√

2σ2

)
− erf

(
A−µ√

2σ2

)
where C comes from the formula (8). In the second equality we have
applied the standard change of variable z = (t− µ)/

√
2σ2.
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9.2 Computation of SN(x)

The computation of SN(x) is very simple. If the N events are located at
values xi, i = 1, . . . , N , then SN(x) is the function giving the fraction of
data points to the left of a given value x. Then, previously sorting the data
x1, . . . , xN in ascending order, the value of the function at given i will be
SN(xi) = i/N . Since we have worked with the complementary of the CDF, the
corresponding complementary of SN(x) is ScN(x) = 1− SN(x) and, obviously,
SN(xi) = 1− i/N .

Figure 13: This plot shows the empirical complementary CDF, ScN (x), for our
half-lives data.
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9.3 The Transformation Method

Proposition 9.1. Let X a random variable with cumulative distribution func-
tion FX(x). Define a new random variable Y = FX(x), then Y is uniformly
distributed Y ∼ unif [0, 1].

Proof. Computing the cumulative distribution function for Y occurs the fol-
lowing

FY (y) = P [Y ≤ y]

= P [FX(x) ≤ y]

= P [X ≤ F−1
X (y)]

= FX(F−1
X (y))

= y

so Y ∼ unif[0, 1].
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