

Departament d'Arquitectura de
Computadors i Sistemes Operatius

Màster en
 Computació d’altes prestacions

B e l l a t e r r a , J u l i o 2 0 1 0

Sintonización
dinámica de
aplicaciones MPI

Memoria del trabajo de investigación
del “Máster en Computació d’altes
prestacions”, realizada por Andrea
Martínez Trujillo, bajo la dirección de
Dra. Anna Barbara Morajko y Dr. Joan
Sorribes Gomis. Presentada en la
Escuela de Ingeniería (Departamento
de Arquitectura de Computadores y
Sistemas Operativos)

Iniciación a la investigación. Trabajo de fin de máster

Máster en Computación de Altas Prestaciones.

Sintonización dinámica de aplicaciones MPI

Realizada por Andrea Martínez Trujillo en la Escuela de
Ingeniería, en el Departamento de Arquitectura de
Computadores y Sistemas Operativos

Dirigida por: Anna Barbara Morajko y Joan Sorribes Gomis

Firmado

 Directora Director Estudiante

v

A mis padres, mis hermanas, mis cuñados, mis sobrinos y a todos mis seres queridos

por su apoyo constante y su confianza depositada en mí, y por intentar hacer que los kilómetros

que nos separan no se aprecien…

A Ania, Eduardo, Joan y Tomás,

por su enseñanzas, su ayuda incondicional, por escucharme (‘amos a ver…)…

A Lola y Emilio,

por ayudarme a disfrutar este proceso de formación investigadora…

A Claudia, Gonza, Alvaro, Moni y Ronal,

 por su amistad, sus constantes ánimos, su cariño…

A Hayden,

 por hacerme más fácil el día a día y contagiarme su alegría…

A María, Conchi, Mª Dolores, Sandra, Inma y Manuel,

por ser parte de mi formación y por no olvidarse de mi…

A todos mis compañeros de primer año,

 por esas clases de máster repletas de risas…

A todos los miembros de CAOS,

por recibirme con los brazos abiertos…

¡Muchísimas Gracias!

vi

vii

Resumen

En la actualidad, la computación de altas prestaciones está siendo utilizada en multitud de

campos científicos donde los distintos problemas estudiados se resuelven mediante aplicaciones

paralelas/distribuidas. Estas aplicaciones requieren gran capacidad de cómputo, bien sea por la

complejidad de los problemas o por la necesidad de solventar situaciones en tiempo real. Por lo

tanto se debe aprovechar los recursos y altas capacidades computacionales de los sistemas

paralelos en los que se ejecutan estas aplicaciones con el fin de obtener un buen rendimiento.

Sin embargo, lograr este rendimiento en una aplicación ejecutándose en un sistema es una dura

tarea que requiere un alto grado de experiencia, especialmente cuando se trata de aplicaciones

que presentan un comportamiento dinámico o cuando se usan sistemas heterogéneos. En estos

casos actualmente se plantea realizar una mejora de rendimiento automática y dinámica de las

aplicaciones como mejor enfoque para el análisis del rendimiento. El presente trabajo de

investigación se sitúa dentro de este ámbito de estudio y su objetivo principal es sintonizar

dinámicamente mediante MATE (Monitoring, Analysis and Tuning Environment) una

aplicación MPI empleada en computación de altas prestaciones que siga un paradigma

Master/Worker. Las técnicas de sintonización integradas en MATE han sido desarrolladas a

partir del estudio de un modelo de rendimiento que refleja los cuellos de botella propios de

aplicaciones situadas bajo un paradigma Master/Worker: balanceo de carga y número de

workers. La ejecución de la aplicación elegida bajo el control dinámico de MATE y de la

estrategia de sintonización implementada ha permitido observar la adaptación del

comportamiento de dicha aplicación a las condiciones actuales del sistema donde se ejecuta,

obteniendo así una mejora de su rendimiento.

Palabras clave: análisis dinámico, sintonización dinámica, modelos de rendimiento,

computación de altas prestaciones.

viii

Resum

En l'actualitat, la computació d'altes prestacions està sent utilitzada en multitud de camps

científics on els diferents problemes estudiats es resolen mitjançant aplicacions

paral·leles/distribuïdes. Aquestes aplicacions requereixen gran capacitat de còmput, bé sigui per

la complexitat dels problemes o per la necessitat de solucionar situacions en temps real. Per tant

s'ha d'aprofitar els recursos i altes capacitats computacionals dels sistemes paral·lels en els quals

s'executen aquestes aplicacions amb la finalitat d'obtenir un bon rendiment. No obstant això,

assolir aquest rendiment en una aplicació executant-se en un sistema és una tasca complexa que

requereix de un alt grau d'experiència, especialment quan es tracta d'aplicacions que presenten

un comportament dinàmic o quan s'usen sistemes heterogenis. En aquests casos actualment es

planteja realitzar una millora de rendiment automàtica i dinàmica de les aplicacions com la

millor via per l'anàlisi del rendiment. El present treball d'investigació es situa dins d'aquest

àmbit d'estudi i el seu objectiu principal és és sintonitzar dinàmicament mitjançant MATE

(Monitoring, Analysis and Tuning Environment) una aplicació MPI empleada en computació

d'altes prestacions que segueixi un paradigma Master/Worker. Les tècniques de sintonització

integrades en MATE han estat desenvolupades a partir de l'estudi d'un model de rendiment que

reflecteix els colls d'ampolla propis d'aplicacions situades sota un paradigma Master/Worker:

balanceig de càrrega i nombre de workers. L'execució de l'aplicació triada sota el control

dinàmic de MATE i de l'estratègia de sintonització implementada ha permès observar

l'adaptació del comportament d'aquesta aplicació a les condicions actuals del sistema on

s'executa, obtenint així una millora en el seu rendiment.

Paraules clau: anàlisi dinàmica, sintonització dinàmica, models de rendiment, computació

d'altes prestacions.

ix

Abstract

At the present time, high performance computing is used in a multitude of scientific fields,

where the problems studied are resolved using parallel/distributed applications. These

applications require an enormous computing capacity due to both the complexity of the

problems and the necessity to solve them in real time situations. Therefore, the computational

capacities and resources of the parallel systems, where these applications are executed, must be

taken advantage of to attain this vital high performance. However, achieving high performance

in applications executed in parallel systems is a complicated task that requires a high degree of

experience, especially when dealing with applications with dynamic behaviour or those running

on heterogenous systems. In these cases the use of automatic and dynamic performance

improvements is proposed as a better approach to performance analysis. The research presented

falls within this field of study and has the principle objective of dynamically tuning, using

MATE (Monitoring, Analysis and Tuning Environment), an MPI application which employs

high performance computing following the Master/Worker paradigm. The tuning techniques

integrated in MATE have been developed following a study of the performance model that

reflects the bottlenecks specific to the Master/Worker paradigm: load balancing and the number

of workers. The execution of the chosen application under the dynamic control of MATE using

the tuning strategies implemented has permitted the observation of the behaviour of said

application adapting to the changing conditions in the system where it is being executed, thus

obtaining an improvement in the performance.

Keywords: dynamic analysis, dynamic tuning, performance models, high performance

computing.

x

Índice

xi

Índice

ÍNDICE DE FIGURAS xiii

ÍNDICE DE TABLAS xv

ÍNDICE DE ECUACIONES xvii

1. INTRODUCCIÓN…………………………………………………………………… Pág.1

 1.1 DESCRIPCIÓN GENERAL.…………………………………………………...
 1.2 OBJETIVOS.……………...………………………………………………….
 1.3 ORGANIZACIÓN DEL TRABAJO…...………………………………………...

Pág.1
Pág.5
Pág.7

2. ANÁLISIS DE RENDIMIENTO……..……………………………...……………….. Pág.9

 2.1 INTRODUCCIÓN…..………………………………………………………...
 2.2 ANÁLISIS CLÁSICO DE RENDIMIENTO……...

2.2.1 HERRAMIENTAS……….…...………………………………............
2.2.1.1 MPICL………………………………………………………..
2.2.1.2 PARAGRAPH…………………………………………………
2.2.1.3 PABLO……………………………………………………….
2.2.1.4 VAMPIR………………………………………………...........

 2.3 ANÁLISIS AUTOMÁTICO DE RENDIMIENTO……...
2.3.1 HERRAMIENTAS……….…...………………………………............

2.3.1.1 SCALASCA.…………………………………………………..
2.3.1.2 PERISCOPE…..……………………………………………….
2.3.1.3 TAU...………………………………………………………..
2.3.1.4 PARAVER Y DIMEMAS..………………………………...........
2.3.1.5 KAPPAPI……………………………………………………..

 2.4 ANÁLISIS DINÁMICO DE RENDIMIENTO……..
2.4.1 HERRAMIENTAS…….……...………………………………............

2.4.1.1 PARADYN...………………………………………………….
 2.5 SINTONIZACIÓN DINÁMICA DE RENDIMIENTO……......................................

2.5.1 HERRAMIENTAS…………...……………………………….............
2.5.1.1 AUTOPILOT…………………………………………………..
2.5.1.2 ACTIVE HARMONY..…………………………………………
2.5.1.3 PERCO...……………………………………………………..
2.5.1.4 MATE...………………………………………………............

Pág.9
Pág.11
Pág.12
Pág.12
Pág.13
Pág.14
Pág.15
Pág.17
Pág.19
Pág.19
Pág.20
Pág.21
Pág.22
Pág.24
Pág.25
Pág.26
Pág.26
Pág.27
Pág.29
Pág.29
Pág.31
Pág.32
Pág.34

3. MATE………………………….…………………………………………………. Pág.35

3.1 INTRODUCCIÓN…..………………………………………………………
3.2 VISIÓN GENERAL…………………………………………………………..

3.2.1 SINTONIZACIÓN DINÁMICA Y AUTOMÁTICA.………………...........
3.2.2 CARACTERÍSTICAS FUNCIONALES...………………………............

Pág.35
Pág.36
Pág.36
Pág.38

Índice

xii

3.2.3 INSTRUMENTACIÓN DINÁMICA MEDIANTE DYNINST………...........
3.3 ARQUITECTURA…………………………….……………………………...

3.3.1 CONTROLADOR DE APLICACIÓN……………………………...........
3.3.2 LIBRERÍA DE MONITORIZACIÓN DINÁMICA (DMLIB)...……...........
3.3.3 ANALIZADOR………………………………………………............

3.4 METODOLOGÍA DE FUNCIONAMIENTO……………………………………..
3.5 MATE Y OTRAS HERRAMIENTAS DE SINTONIZACIÓN DINÁMICA…………
3.6 LIMITACIONES DE MATE COMO ENTORNO DE SINTONIZACIÓN……..........

Pág.39
Pág.41
Pág.41
Pág.44
Pág.45
Pág.46
Pág.48
Pág.49

4. MODELO DE RENDIMIENTO PARA APLICACIONES MASTER/WORKER..……….. Pág.51

 4.1 INTRODUCCIÓN……….……………………………………………………
 4.2 BALANCEO DE CARGA ENTRE LOS WORKERS...………...…………………..

4.2.1 DYNAMIC ADJUSTING FACTORING (DAF).………………..............
 4.3 DETERMINACIÓN DEL NÚMERO DE WORKERS...…………......……………..
 4.4 DEFINICIÓN DEL MODELO DE RENDIMIENTO PARA SINTONIZACIÓN

DINÁMICA..

Pág.51
Pág.53
Pág.55
Pág.58

Pág.59

5. DESARROLLO DEL MODELO DE RENDIMIENTO EN MATE…...…...……………. Pág.63

5.1. INTRODUCCIÓN……………………………………………………………
5.2. XFIRE……………………………………………………………………...

5.2.1 SIMULADORES DE INCENDIOS FORESTALES……………….............
5.2.1 VISIÓN GENERAL………………………...………………...............
5.2.1 ADAPTACIÓN DE XFIRE AL MODELO DE RENDIMIENTO…...............

 5.3 METODOLOGÍA DE DISEÑO DEL TUNLET……...
5.3.1 METODOLOGÍA…..………...………………………………............

5.3.1.1 INTERPRETACIÓN DEL MODELO DE RENDIMIENTO..…………
5.3.1.2 REQUERIMIENTOS DE MATE………………………………..

 5.4 DESARROLLO DEL TUNLET…………………..
5.4.1 BALANCEO DE LA CARGA ENTRE LOS WORKERS……...……..........

5.4.1.1 INTERPRETACIÓN DE LA TÉCNICA DE SINTONIZACIÓN……...
5.4.2 ADAPTACIÓN DEL NÚMERO DE WORKERS………..…...……...........

5.4.2.1 INTERPRETACIÓN DE LA TÉCNICA DE SINTONIZACIÓN……...
5.4.3 INTEGRACIÓN DE LAS TÉCNICAS DE SINTONIZACIÓN EN EL

TUNLET…………………………………………………………………..
 5.5 RESULTADOS EXPERIMENTALES...…………..

Pág.63
Pág.65
Pág.65
Pág.66
Pág.68
Pág.69
Pág.69
Pág.71
Pág.73
Pág.74
Pág.75
Pág.75
Pág.81
Pág.82

Pág.86
Pág.88

6. CONCLUSIONES Y TRABAJO FUTURO……………………………………………. Pág.95

6.1 CONCLUSIONES…………………………………………………………….
6.2 TRABAJO FUTURO………………..………………………………………...

Pág.95
Pág.98

BIBLIOGRAFÍA Pág.101

Índice de figuras

xiii

Índice de figuras

Figura 2.1. Proceso cíclico de mejora del rendimiento………………………………

Figura 2.2. Aproximación clásica del análisis de rendimiento………………………

Figura 2.3 Arquitectura de análisis distribuido de VampirServer……………………

Figura 2.4. Aproximación automática del análisis de rendimiento…………………..

Figura 2.5 Esquema de la arquitectura de análisis distribuida de Periscope. El

sistema de análisis de rendimiento de Periscope está compuesto por un número de

agentes de análisis estructurados de forma jerárquica………………………………...

Figura 2.6 Aproximación dinámica del análisis de rendimiento……………………..

Figura 2.7 Aproximación dinámica de la sintonización de rendimiento……………..

Figura 2.8 Proceso de gestión en autopilot…………………………………………

Figura 2.9 Proceso de decisión basado en lógica difusa……………………………..

Figura 2.10 Sistema de sintonización automático en tiempo de ejecución de Active

Harmony………………………………………………………………………………

Figura 2.11 Arquitectura del sistema PerCo…………………………………………

Figura 3.1 Proceso de mejora de rendimiento de MATE……………………….........

Figura 3.2. Abstracción usada en Dyninst……………………………………………

Figura 3.3. Arquitectura interna del Controlador de Aplicación……………………..

Figura 3.4 Arquitectura de MATE sintonizando dinámicamente para MPI…………

Figura 4.1 Técnica de balanceo de carga…………………………………………….

Figura 5.1 Ciclo de operación del modelo de André-Viegas………………………

Figura 5.2 Interrelación entre la aplicación, el modelo de rendimiento y el tunlet…..

Figura 5.3 Sobrecarga relativa (%) y absoluta (segundos) introducida por MATE

(sin aplicar sintonización) en la ejecución de Xfire…………………………………..

Figura 5.4 Comportamiento de la aplicación Xfire durante tres iteraciones…………

Figura 5.5 Comparativa de los tiempos de ejecución obtenidos para los distintos

escenarios planteados…………………………………………………………………

Figura 5.6 Estructura de la línea de fuego inicial y el umbral de desbalanceo

empleado en las pruebas experimentales con Xfire…………………………………..

Pág.10

Pág.11

Pág.16

Pág.18

Pág.21

Pág.26

Pág.28

Pág.30

Pág.30

Pág.31

Pág.33

Pág.37

Pág.40

Pág.42

Pág.47

Pág.54

Pág.66

Pág.69

Pág.90

Pág.91

Pág.92

Pág.93

xiv

Índice de tablas

xv

Índice de tablas

Tabla 4.1 Definición de la estrategia de balanceo de carga para su uso bajo

sintonización dinámica………………………………………………………………..

Tabla 4.2 Definición de la estrategia de determinación del número de workers para

su uso bajo sintonización dinámica…………………………………………………...

Tabla 5.1 Información sobre los eventos para la técnica de sintonización de

balanceo de carga……………………………………………………………………..

Tabla 5.2 Información sobre los eventos para la técnica de sintonización para

adaptar el número de workers………………………………………………………...

Tabla 5.3 Información sobre los eventos para las 2 técnicas de sintonización

implementadas………………………………………………………………………...

Tabla 5.4 Características del entorno donde se han realizado las pruebas

experiementales……………………………………………………………………….

Tabla 5.5 Tiempos de ejecución de Xfire considerando distinto número de workers

en los tres escenarios de ejecución presentados (en segundos)……………………….

Tabla 5.6 Tiempos de ejecución de Xfire considerando distinto número de workers

con y sin desbalanceo sintético en los workers, y de Xfire bajo MATE con

desbalanceo sintético (en segundos). Ganancia sobre el tiempo de ejecución de

Xfire+desbalanceo sintético obtenida aplicando la sintonizción……………………..

Pág.60

Pág.61

Pág.80

Pág.86

Pág.87

Pág.89

Pág.89

Pág.93

xvi

Índice de ecuaciones

xvii

Índice de ecuaciones

Ecuación 4.1 Límite para el valor esperado de el estadístico de orden P para

cualquier distribución de media µ y desviación estándar σ ………..............................

Ecuación 4.2 Límite superior para el tiempo de procesamiento del primer batch

siendo el tiempo media de ejecución µC F0 con una desviación estándar σCF0………

Ecuación 4.3 Valor inverso del factor de partición empleado para generar el primer

batch de la iteración a ser repartido entre los workers………......................................

Ecuación 4.4 Valor inverso del factor de partición empleado para generar los

restantes batches de la iteración a ser repartidos entre los workers…..........................

Ecuación 4.5 Índice de eficiencia que relaciona tiempo de cómputo de los workers

con el tiempo total de la iteración. Empleado para calcular el número de workers

que maximiza el rendimiento de una aplicación……...

Ecuación 4.6 Índice de rendimiento que permite relacionar rendimiento con

eficiencia en el uso de los recursos. Empleado para calcular el número de workers

que maximiza el rendimiento de una aplicación………………...................................

Ecuación 4.7 Tiempo de ejecución de una iteración completa del proceso master.....

Pág.55

Pág.56

Pág.56

Pág.56

Pág.59

Pág.59

Pág.59

Capítulo 1. Introducción

1

Capítulo 1

Introducción

1.1 Descripción general

En las últimas décadas, se han desarrollado en distintos campos científicos una gran cantidad de

aplicaciones que resuelven problemas de elevada complejidad como son la determinación del

genoma humano, el análisis de la estructura de las proteínas, predicción de desastres naturales,

etc. Se trata de aplicaciones paralelas/distribuidas que emplean conjuntos de datos de gran

tamaño y realizan sofisticados cálculos empleando las características propias de la computación

de altas prestaciones.

 Las aplicaciones paralelas/distribuidas deben resolver el problema considerado tan

rápido como sea posible utilizando de forma eficiente los recursos disponibles en el sistema. En

este contexto, el rendimiento de la aplicación se convierte en un aspecto clave. Cuando un

programador desarrolla una aplicación, espera alcanzar unos ciertos índices de rendimiento, no

muy alejados del rendimiento teórico esperado. Sin embargo, el desarrollo de este tipo de

aplicaciones paralelas/distribuidas constituye una tarea difícil ya que no solo implica tener un

conocimiento de modelos de programación paralela y librerías de comunicación, sino que

también se incluyen algunos aspectos adicionales tales como descomposición de las tareas,

mapping, concurrencia, escalabilidad, eficiencia, sincronismo, etc, lo cual determina el correcto

comportamiento y rendimiento de estas aplicaciones [1].

 Ciertamente, la programación eficiente de una aplicación, para obtener beneficio real

del paralelismo y demás características que ofrece la computación de altas prestaciones, es un

Capítulo 1. Introducción

2

gran reto que requiere un elevado grado de pericia. Además, una vez que la aplicación ha sido

implementada, debe ser depurada y testeada sistemáticamente desde un punto de vista funcional

para garantizar su exactitud. Seguidamente, se debe aplicar un proceso de mejora de

rendimiento. Dicho proceso, mediante la modificación de los parámetros críticos de la

aplicación, permite que ésta sea ajustada y adaptada para asegurar la no existencia de cuellos de

botella durante la ejecución, y en consecuencia aumentar el rendimiento de la misma.

 El proceso de mejora de rendimiento incluye 3 fases sucesivas [2]: monitorización,

análisis y sintonización. Primeramente durante la fase de monitorización, se captura la

información o medidas de rendimiento, las cuales proporcionan los datos necesarios sobre el

comportamiento de la aplicación. A continuación mediante el análisis de la información

recopilada, se buscan los cuellos de botella, se deducen sus causas, intentando determinar cuáles

son las acciones correctas para eliminarlos. Finalmente, se aplican los cambios decididos sobre

el código de la aplicación con el fin de solventar los problemas y mejorar el rendimiento. Como

consecuencia, los usuarios finales están forzados a conocer muy bien la aplicación, las

diferentes capas software involucradas y el comportamiento del sistema distribuido sobre el que

se ejecuta la aplicación. Todos estos aspectos hacen que el proceso de mejora de rendimiento

sea difícil y costoso, especialmente para usuarios no expertos, debido al alto grado de pericia

requerido para aumentar significativamente el rendimiento de la aplicación.

 En concreto, la tarea más compleja e importante de todo el proceso de mejora es el

análisis de rendimiento, debido a que en la práctica, los cuellos de botella pueden encontrarse en

diferentes niveles de abstracción y además variar a lo largo de la ejecución de la aplicación.

 Los problemas que provocan pérdidas de rendimiento pueden tener diversos orígenes.

Algunos proceden de las comunicaciones, provocando un bloqueo inesperado en algunas

funciones de comunicación; otros surgen debido a la implementación específica de la librería de

comunicación, ya que el diseño o la implementación de las capas software pueden ser genéricas

y no optimizadas para un particular sistema o condiciones. Características del sistema operativo

también pueden comprometer el rendimiento de una aplicación, debido a que un inapropiado

tamaño del buffer de gestión de mensajes a nivel de protocolo puede interferir en los tiempos de

envío de los mensajes o de las capacidades hardware subyacentes, viéndose afectada la

velocidad de ejecución de dicha aplicación.

 Estos ejemplos muestran la complejidad del proceso que se ha de seguir para

incrementar el rendimiento de la aplicación, poniendo de manifiesto la necesidad de usar

herramientas automáticas para simplificar y acelerar el proceso de sintonización del

rendimiento. Afortunadamente, a lo largo de los años han surgido distintas aproximaciones y

herramientas con el objetivo de ayudar al usuario en las diferentes fases de este proceso. Estas

Capítulo 1. Introducción

3

herramientas bajo diferentes enfoques de análisis y mejoras de rendimiento, han sido diseñadas

con la finalidad de hacer más cómodo el proceso de evaluación de aplicaciones bajo entornos

paralelos.

 Inicialmente, estas aproximaciones o herramientas se basaban en un enfoque estático,

mediante el cual se visualizaba gráficamente el comportamiento de la aplicación

paralela/distribuida una vez que ésta había finalizado su ejecución. Los usuarios de tales

herramientas deben ser capaces de analizar las visualizaciones que proporciona la herramienta y

tomar las decisiones correctas para mejorar el rendimiento de la aplicación. Para disminuir las

dificultades de los desarrolladores y usuarios en este proceso, se propuso el análisis automático.

Las herramientas [3] [4] que usan este tipo de análisis están basadas en el conocimiento de

problemas de rendimiento conocidos. Tales herramientas son capaces de identificar cuellos de

botella críticos y ayudar en el proceso de optimización proporcionando sugerencias las cuales

exponen problemas de rendimiento y ofrecen a los desarrolladores posibles mejoras.

 En este tipo de aproximaciones en las que se realiza un análisis de rendimiento estático

y/o automático, los datos sobre los que se toma alguna decisión son producto de ejecuciones

anteriores, lo cual hace que las modificaciones realizadas en el código fuente solo sean útiles

cuando el comportamiento de la aplicación no depende de los datos de entrada o no varía a lo

largo de la misma ejecución. Además se requieren que el usuario posea un cierto grado de

conocimiento y experiencia con aplicaciones paralelas/distribuidas, ya que son necesarios

determinados cambios en el código fuente para mejorar el rendimiento del programa. De modo

que este tipo de herramientas solo son adecuadas para desarrolladores con experiencias más que

para usuarios de la aplicación no expertos tales como biólogos, químicos, físicos u otros

científicos. El usuario final puede que no tenga conocimiento suficiente sobre la aplicación

paralela/distribuida.

 Para abordar todos estos problemas, surgen herramientas que automática y

dinámicamente realizan la tarea de optimización de aplicaciones paralelas/distribuidas,

eximiendo al desarrollador y usuario no experto de las tareas relacionadas con la mejora de

rendimiento. Estas herramientas toman medidas de rendimiento, identifican cuellos de botella y

realizan las modificaciones oportunas para mejorar el rendimiento, todo en tiempo de ejecución.

Es decir, realizan el proceso de optimización sobre la marcha, adaptando el comportamiento de

la aplicación a las condiciones actuales del sistema. De este modo, el desarrollador o usuario

final no se ve en la necesidad de conocer la estructura interna de la aplicación ni de pausar la

ejecuciones para tomar decisiones.

 Existen diferentes herramientas que implementan esta aproximación [5] [6]. La

principal diferencia entre ellas reside en los métodos o tecnologías empleadas para realizar los

Capítulo 1. Introducción

4

procesos de monitorización y sintonización, y en la representación del conocimiento empleado

para realizar la fase de análisis de rendimiento de la aplicación: lógica difusa, heurísticas,

históricos o modelos de rendimiento. En la sección 2.5 del capítulo 2, se realizará un profundo

estudio de ellas.

 El proceso de optimización automática y dinámica de aplicaciones paralelas es una

labor compleja y difícil ya que existen muchos aspectos que deben ser considerados. Una

herramienta real de sintonización debería tener en cuenta puntos clave para que el proceso de

sintonización dinámico sea posible y efectivo, tales como saber definir la representación del

conocimiento empleado para realizar el análisis de rendimiento, realizar de forma cuidadosa las

modificaciones dinámicas en la aplicación de modo que su ejecución continúe de forma

correcta, llevar a cabo el análisis de una aplicación sin conocimiento de sus estructuras internas

o la modificación dinámica de aplicaciones cuya estructura es desconocida.

 Entre los aspectos expuesto anteriormente es muy destacable la importancia del

conocimiento empleado para realizar el análisis de la aplicación, ya que a partir de él se

determinará el comportamiento de la aplicación y se detectará los problemas de rendimiento

existentes en la misma. Existen varias aproximaciones para realizar este análisis como por

ejemplo el uso de técnicas heurísticas, modelos de rendimiento, etc. En los métodos heurísticos

algunos parámetros deben ser controlados y determinados de forma automática mediante una

búsqueda heurística en el espacio de valores del parámetro. Por otro lado, los modelos de

rendimiento ayudan a determinar el tiempo de ejecución mínimo de la aplicación mediante la

predicción del rendimiento de la misma. Estos modelos pueden contener fórmulas y/o

condiciones que facilitan la determinación del comportamiento óptimo. Estas formulas

necesitan medidas extraídas de la ejecución de la aplicación. De modo que basándose en las

medidas y aplicando la fórmula adecuada, el modelo de rendimiento puede estimar el

comportamiento de la aplicación, por ejemplo el valor óptimo de un parámetro dado.

Finalmente, la aplicación puede ser sintonizada, cambiando el valor del parámetro.

 Además, bajo la aproximación de análisis dinámico hay que tener presente que en

ocasiones no es posible aplicar sintonización dinámica a cualquier aplicación y en cualquier

entorno. Como se deduce, dicha aproximación presenta un grado de complejidad muy elevado.

 El presente trabajo de investigación de máster tiene como eje principal la herramienta

MATE (Monitoring, Analysis and Tuning Environment) [7]. MATE, como su nombre indica, es

un entorno que desarrolla la aproximación comentada anteriormente, es decir, es capaz de

sintonizar automática y dinámicamente una aplicación paralela/distribuida basándose en el

conocimiento generado por el uso de modelos de rendimiento. A partir de la funcionalidad que

proporciona esta herramienta, una aplicación paralela en ejecución puede ser automática y

Capítulo 1. Introducción

5

dinámicamente monitorizada, analizada y sintonizada sobre la marcha sin necesidad de re-

compilar, re-enlazar o re-ejecutar, ya que las modificaciones son realizadas empleando la

instrumentación dinámica mediante el uso de la librería Dyninst [8].

1.2 Objetivos

El propósito de las aplicaciones paralelas/distribuidas es resolver el problema considerado del

modo más rápido posible utilizando los recursos disponibles. Por lo tanto, el rendimiento se

convierte en uno de los aspectos más importantes. De este modo el empleo de herramientas

como MATE son necesarias en el campo de la computación de altas prestaciones para un

correcto rendimiento de las aplicaciones paralelas.

 Partiendo de la funcionalidad que proporciona MATE surge el trabajo de investigación

a realizar, el cual se encuentra situado dentro de la línea de investigación Entornos para la

evaluación del rendimiento y sintonización de aplicaciones.

 El objetivo general de este trabajo de investigación es sintonizar dinámicamente

mediante MATE una aplicación MPI empleada en computación de altas prestaciones que siga

un paradigma Master/Worker; este estudio permitirá lograr un conocimiento sobre la pauta de

comportamiento de la aplicación y sobre la herramienta de sintonización.

 La determinación de la estructura y el comportamiento de la aplicación es un aspecto

clave para lograr una sintonización adecuada, eficiente y poco intrusiva. Poseer esta

información permite determinar los puntos que influyen en el rendimiento de la aplicación y

crear un modelo de rendimiento asociado a la estructura y características de eficiencia de la

misma.

 Por tanto en este trabajo se pretende conocer la estructura y comportamiento de

aplicaciones basadas en el paradigma de programación paralela Master/Worker, con el fin de

explotar en MATE un modelo de rendimiento que describa ese tipo de aplicaciones.

 Para lograr este objetivo, quedan definidos los siguientes objetivos específicos:

- Estudiar la herramienta MATE. Esta herramienta de sintonización presenta una

arquitectura formada por componentes que desempeñan funcionalidades diferenciadas

desde un punto de vista lógico; además dichos componentes presentan entre ellos

protocolos de comunicación definidos. Por tanto, el propósito de este estudio es obtener

una comprensión general de la pauta de cada uno de los integrantes de MATE así como

tener un primer contacto con la implementación de la herramienta.

Capítulo 1. Introducción

6

- Modificar la implementación de MATE para que sea capaz de sintonizar aplicaciones

basadas en la librería de paso de mensajes MPI desarrolladas en C/C++. Inicialmente

MATE fue desarrollada para la sintonización de aplicaciones PVM. La decisión de

realizar este cambio en la implementación tiene como fin incrementar la usabilidad de

MATE, ya que en la actualidad la gran mayoría de las aplicaciones

paralelas/distribuidas desarrolladas en ámbitos científicos emplean la librería MPI.

- Estudiar el modelo de rendimiento para aplicaciones Master/Worker expuesto en [9].

Este modelo engloba los problemas de rendimiento propios de este tipo de

aplicaciones: balanceo de carga y número de workers. Para ello, partiendo de un modelo

analítico, aplica una metodología que consta de dos fases: una primera fase que emplea

una estrategia dinámica para el balanceo de carga y una segunda para adaptar el número

de workers teniendo en cuenta las características actuales en las que se encuentra el

sistema.

- Localizar una aplicación paralela/distribuida empleada en computación de altas

prestaciones que sea una buena candidata para el estudio que se va a realizar y que siga

un paradigma Master/Worker. Tras realizar una compleja búsqueda, se llego a la

conclusión de que actualmente las aplicaciones Master/Worker no presentan un uso

muy extendido en computación de altas prestaciones debido al cuello de botella que

supone la comunicación establecida entre un único master y todos los workers.

A pesar de ello, y con el fin de poder obtener los conocimientos deseados del

presente trabajo de investigación, se optó por la elección de una aplicación

paralela/distribuida desarrollada en el departamento de Arquitectura de Computadores y

Sistemas Operativos de la Universidad Autónoma de Barcelona. Se trata de un

simulador de incendios de fuegos forestales, denominado Xfire [10].

- Implementar el tunlet que contiene la especificación del modelo de rendimiento

estudiado para aplicaciones Master/Worker

Los tunlets son el núcleo de la sintonización automática y dinámica

implementada por MATE, en términos de representación del conocimiento. Cada tunlet

define e implementa una particular técnica de sintonización, es decir, la lógica para

resolver un determinado problema de rendimiento mediante la encapsulación del

conocimiento de dicho problemas basándose en puntos de medida, funciones de

rendimiento y puntos/acciones de sintonización.

El tunlet diseñado será implementado en C++ empleando MPI y posteriormente

integrados en la herramienta MATE. Por tanto, el desarrollo del tunlet conlleva el

Capítulo 1. Introducción

7

análisis del modelo de rendimiento propuesto con el fin de identificar los puntos de

medida y sintonización que se deben de implementar.

- Realizar la experimentación necesaria que permita observar las posibles mejoras de

rendimiento en la aplicación elegida tras la aplicación de la sintonización dinámica

mediante la funcionalidad que proporciona MATE con el conocimiento del modelo de

rendimiento estudiado integrado en el tunlet.

 Tras la presentación de los objetivos, el resultado que se espera de este trabajo de

investigación es obtener los conocimientos necesarios sobre el proceso de optimización

automática y dinámica de aplicaciones paralelas/distribuidas, especialmente aquellos

relacionados con las fase de análisis de rendimiento, en la que interviene los modelos de

rendimiento, y la fase de sintonización dinámica. Además se pretende que esta investigación, y

las conclusiones que se obtengan de ella, permitan comenzar con el estudio a largo plazo de la

tesis doctoral que tiene como fin centrase en el análisis de las características de escalabilidad de

MATE.

1.3 Organización del trabajo

El contenido de este trabajo de investigación se presenta dividido en los siguientes capítulos:

- Capítulo 2: Análisis de rendimiento.

 Se describe las aproximaciones existentes en el análisis de rendimiento de

aplicaciones paralelas/distribuidas, desde el análisis clásico hasta la sintonización

dinámica. Además se detallan algunas de las herramientas que conforman el estado del

arte actual del análisis de rendimiento.

- Capítulo 3. MATE.

 Se centra en proporcionar una descripción general de MATE y detallar los

principales aspectos relacionados con su arquitectura. Además, se expone los conceptos

básicos sobre la instrumentación dinámica empleada por MATE en las fases de

monitorización y sintonización. Finalmente se muestran las analogías y diferencias de

MATE con otras herramientas existentes que realizan la misma labor que MATE

basándose en otros métodos en el ámbito de la mejora dinámica de rendimiento de

aplicaciones paralelas/distribuidas.

- Capítulo 4. Modelo de rendimiento para aplicaciones Master/Worker.

 Se presenta una descripción del modelo de rendimiento desarrollado para la

sintonización dinámica de aplicaciones Master/Worker. Es un modelo de dos fases

consistente en una estrategia para balancear la carga de los workers, y un modelo

analítico para adaptar el número de workers de la aplicación.

Capítulo 1. Introducción

8

- Capítulo 5. Desarrollo del modelo de rendimiento en MATE.

 Muestra el proceso de integración del conocimiento proporcionado por el

modelo de rendimiento, expuesto en el capítulo anterior, en el proceso de sintonización

dinámica y automática que implementa MATE. También se detallan las características

de la aplicación Master/Worker elegida para ser sintonizada. Finalmente se exponen las

pruebas experimentales y resultados obtenidos de ejecución de la aplicación elegida tras

ser sintonizada bajo MATE empleando como lógica de análisis y sintonización de

rendimiento el estudiado modelo de rendimiento.

- Capítulo 6. Conclusiones y trabajo futuro

 Resumen el trabajo de investigación realizado, extrayendo las conclusiones

derivadas del análisis y estudios realizados. Además se presentan las líneas abiertas

presentes en esta área de investigación a través de las cuales se pretende dirigir el

trabajo futuro.

Capítulo 2. Análisis de rendimiento

9

Capítulo 2

Análisis de rendimiento

2.1 Introducción

Uno de los principales propósitos de las aplicaciones paralelas y distribuidas es aprovechar los

recursos y las altas capacidades computacionales de los sistemas paralelos. Por tanto obtener un

buen rendimiento en dichas aplicaciones se ha convertido en un punto clave del procesamiento

paralelo/distribuido. Sin embargo, lograr este rendimiento en una aplicación ejecutándose en un

sistema es una dura tarea que requiere un alto grado de experiencia. De este modo, los usuarios,

con el objetivo de mejorar el comportamiento de sus aplicaciones, deben enfrentarse al proceso

de optimización de rendimiento. Se trata de un proceso cíclico, mostrado en la figura 2.1,

compuesto principalmente por 3 fases fundamentales [2]:

- Fase de monitorización, mediante la que se añade a la aplicación cierta información de

instrumentación que permita recopilar conocimiento acerca del comportamiento de la

aplicación.

- Fase de análisis, durante la cual se inspecciona la información recopilada en la fase de

monitorización y la información estática del programa con el objetivo de detectar

problemas de rendimiento, deducir las causas y determinar soluciones.

- Fase de sintonización, en la que se subsanan los posibles errores de rendimiento

presentes en el comportamiento aplicando los cambios oportunos en el código de la

aplicación.

Capítulo 2. Análisis de rendimiento

10

 Se han desarrollado una gran cantidad de herramientas de análisis de rendimiento que

ayudan al usuario a tratar los problemas de rendimiento de su aplicación. Estas pueden

clasificarse en herramientas de monitorización, de análisis y/o de sintonización, aunque existen

herramientas que realizan varias de estas acciones, ayudando al usuario en más de un único

nivel.

Figura 2.1. Proceso cíclico de mejora del rendimiento

 Las herramientas de monitorización consta generalmente de dos partes: una librería o

conjunto de librerías que permiten la inserción de instrumentación y rutinas para medir y

almacenar los datos; y una seria de módulos cuya funcionalidad ofrece la posibilidad de mostrar

los datos generados durante el monitoreo. Hay que tener en cuenta que la instrumentación puede

afectar a las características de rendimiento de la aplicación paralela.

 El objetivo de las herramientas de análisis es examinar automáticamente la información

generada durante la monitorización para determinar los posibles cuellos de botella de la

aplicación paralela. Para ello debe poseer conocimiento sobre los problemas de rendimiento

posibles en la aplicación con el fin de proporcionar una solución de los mismos.

 En lo referente a las herramientas de sintonización su intención es automatizar la

inserción de las modificaciones oportunas en el código de la aplicación paralela para eliminar

las imprecisiones en el rendimiento detectadas en la fase de análisis.

 A lo largo de los años, con el desarrollo de la computación de altas prestaciones, se han

propuesto varias aproximaciones de monitorización, análisis y sintonización de rendimiento

para cooperar con el usuario en la mejora de sus aplicaciones. En las siguientes secciones se

muestra un resumen de estas aproximaciones así como ejemplos de herramientas actuales que

funcionalmente se sitúan dentro de las mismas.

Capítulo 2. Análisis de rendimiento

11

2.2 Análisis clásico del rendimiento

La aproximación clásica de análisis de rendimiento está basada en la visualización de la

ejecución de la aplicación paralela una vez que ésta ha terminado de ejecutarse. Este proceso,

mostrado en la figura 2.2 recibe el nombre de análisis de rendimiento post-mortem.

Figura 2.2. Aproximación clásica del análisis de rendimiento

 Generalmente, las herramientas situadas en esta aproximación reflejan información

específica sobre el comportamiento de la aplicación mediante diferentes vistas gráficas y

numéricas. Para ello, primeramente se requiere el uso de herramientas que realicen la

monitorización para obtener datos de rendimiento de la ejecución del programa paralelo. La

inserción de la instrumentación se puede realizar de forma estática por la herramienta o bien

manualmente por el usuario. El proceso de monitorización se puede realizar siguiendo varias

técnicas:

- Basadas en tiempo de ejecución, mediante las que se detecta donde la aplicación

paralela emplea la mayor parte del tiempo.

- Basadas en contadores, que indican el número de ocurrencias de un determinado evento

en la aplicación.

- Basadas en muestreo, las cuales generan medidas periódicas sobre el estado de la

aplicación.

- Basadas en trazas de eventos, que proporcionan información asociada a eventos

concretos definidos en la aplicación paralela.

Capítulo 2. Análisis de rendimiento

12

 Con los datos almacenados en un fichero de traza de la aplicación, las herramientas de

visualización generan gráficos sobre la pauta que sigue la aplicación, tales como diagramas de

Gantt, diagramas circulares, de barra, etc. La información mostrada debe corresponder con

aspectos relacionados con paso de mensajes, comunicaciones colectivas, ejecución de rutinas de

la aplicación entre otras. Finalmente, el usuario debe analizar esas representaciones gráficas

buscando problemas de rendimiento, determinando las causas de dichos problemas y cambiando

el código fuente manualmente. De este modo, el proceso global se repite, volviendo a compilar,

enlazar y ejecutar la aplicación, hasta que el rendimiento deseado sea alcanzado.

 El análisis de rendimiento clásico requiere un elevado grado de experiencia en

programación paralela para ser llevado a cabo de modo eficiente, de modo que constituye una

tarea difícil especialmente para usuarios no expertos. La complejidad de esta tarea se debe

principalmente a la interpretación y tamaño del fichero de traza el cual es proporcional al

tamaño y el tiempo de ejecución de la aplicación. Además, esta aproximación no es fiable

cuando las aplicaciones o los entornos de ejecución tienen un comportamiento dinámico.

Muchas aplicaciones tienen un comportamiento diferente según los datos de entrada o incluso

pueden variar durante la misma ejecución. Además muchas herramientas de visualización no

escalan bien, por lo que cuando el número de procesos implicados en la aplicación es muy

elevado, los gráficos generados son ilegibles.

2.2.1 Herramientas

2.2.1.1 MPICL

MPICL [11] es una librería para instrumentación y monitorización desarrollada en el

Laboratorio Nacional de Oak Ridge en 1997.

 Su funcionamiento se basa en la recopilación de información sobre comunicación y

eventos definidos por el usuario en programas paralelos usando MPI escritos en C o

FORTRAN. Para ello, emplea la interfaz de profiling de MPI que interceptar automáticamente

las llamadas a las rutinas de comunicación de MPI, eliminado la necesidad de añadir más que

unas cuantas sentencias al código fuente para recopilar información.

 MPICL instrumenta el código de la aplicación, primeramente usando rutinas en C que

consultan el sistema de reloj y guarda información de eventos específicos en buffers internos

Esta librería puede ser usada de dos formas distintas. Puede ser usada para realizar profiling,

resumiendo el número de ocurrencias, estadísticas, y el tiempo gastado en comunicación.

También puede ser usada para recopilar trazas de eventos, las cuales pueden ser visualizadas

empleando una herramienta de visualización como Paragraph [12]. Finalmente MPICL genera

un fichero de trazas [13], que contiene un registro de evento por línea, y cada registro consiste

Capítulo 2. Análisis de rendimiento

13

en un conjunto de valores numéricos que especifican el tipo de evento, marcas de tiempo, el

número de procesador, la longitud del mensaje, y otra información similar.

 MPICL es una extensión de la librería PICL [14], un paquete software que proporciona

una interfaz portable de paso de mensajes antes de que apareciera el estándar MPI. Los

comandos de paso de mensajes de PICL simplemente llamaban a los comandos nativos

subyacentes de cada máquina en la cual estaba implementado. Un usuario MPI no necesita saber

nada sobre el paso de mensajes PICL, lo cual significa que MPICL puede ser usada para

recopilar datos de rendimiento para programas no implementados con la librería MPI. Pero

información sobre eventos de comunicación solo se recopila si se usa MPI, los comandos de

paso de mensajes de PICL, o si el usuario instrumenta la capa de paso de mensajes empleando

los comandos de instrumentación de MPICL.

 Una característica destacable de MPICL es que intenta minimizar el overhead

introducido por la recolección de información almacenando los ficheros de traza en la memoria

local de cada procesador, después los descarga al disco solo cuando la aplicación haya

terminado su ejecución. Sin embargo, tal monitorización introduce un coste extra que el caso de

MPICL es una cantidad fija que se añade al coste de envío de cada mensaje. De este modo, la

perturbación total es función de la frecuencia y del volumen del tráfico de comunicación, lo cual

varía de máquina a máquina. Esta perturbación es normalmente bastante pequeña para que el

comportamiento de la aplicación no se vea afectado.

2.2.1.2 Paragraph

Paragraph [12] es una herramienta de visualización que proporciona una representación gráfica,

detallada y animada así como resúmenes de rendimiento gráficos de programas paralelos que

usan MPI. Fue desarrollada por la Universidad de Illinois y la Universidad de Tennessee en

1995.

 Paragraph tiene una relación consumidor-productor con MPICL: Paragraph emplea

exclusivamente las trazas de datos que genera MPICL. De este modo, usando MPICL junto con

MPI, el usuario puede crear los ficheros de datos necesarios para usar Paragraph, para analizar

el comportamiento y el rendimiento de programas paralelos.

 Está escrito en C y su estructura software está compuesta por un bucle de eventos y un

switch que selecciona acciones basándose en la naturaleza de cada evento. Hay dos colas de

eventos separadas: una cola eventos producidos por el usuario (clicks de ratón, pulsaciones de

teclas…) y una cola de trazas de eventos producidas por el programa paralelo bajo estudio.

Paragraph se alterna entre estas dos colas para proporcionar una representación dinámica del

programa paralelo y una respuesta interactiva con el usuario.

Capítulo 2. Análisis de rendimiento

14

 Aunque Paragraph solo es usado en la etapa de post-procesado, usando un fichero de

traza generado durante la ejecución de un programa paralelo y almacenándolo para su posterior

estudio, los datos de la visualización podrían en principio ir llegando a la estación de trabajo

gráfica al mismo tiempo que la aplicación paralela se ejecuta en la máquina paralela.

2.2.1.3 Pablo

Pablo [15] es un entorno de análisis de rendimiento diseñado para desarrollar captura, análisis y

presentación de datos en una gran variedad de sistemas paralelos escalables. Fue diseñado por la

Universidad de Illinois en 1993.

 Su infraestructura se divide en dos componentes principales:

‐ Un software portable para realizar la instrumentación.

‐ Un componente que realiza el análisis de rendimiento

 El software para la instrumentación permite la especificación interactiva de puntos de

instrumentación en el código fuente. Este software puede ser usado para recopilar datos de

rendimiento sobre cualquier sistema o código de aplicación. Como parte de la instrumentación,

se desarrollaron 3 módulos software: una interfaz gráfica para especificación de la

instrumentación, analizadores en C o Fortran que emiten código fuente instrumentado y una

librería de captura de eventos de rendimiento en formato estándar [16] [17] generados por el

código instrumentado cuando es ejecutado en sistemas paralelos de memoria distribuida. Pablo

permite 3 tipos de monitorización: tracing, profiling e intervalos de tiempo. Los eventos de

traceo representa la ocurrencia de una acción específica (por ejemplo un procedimiento en

concreto es llamado por un procesador en un momento determinado), de manera que cada

evento produce una entrada en el fichero de datos de rendimiento. En el caso de los eventos de

conteo, estos no contienen datos de usuario, solo cuenta el número de veces que tiene lugar un

determinado evento o acción. La librería de captura de datos de Pablo permite cuando

almacenar un registro de eventos de conteo en un fichero de datos (por ejemplo cuando el

contador alcance una determinada cantidad). Finalmente los eventos de intervalos de tiempo

asocian un evento con dos puntos del código fuente. Cada ocurrencia produce un evento que

contiene el tiempo que ha transcurrido durante la ejecución del código fuente situado entre los

dos puntos especificados.

 El componente de análisis de rendimiento de Pablo consiste en un conjunto de módulos

de transformación de datos que pueden ser gráficamente interconectados, para formar un grafo

acíclico y dirigido de datos de análisis. Los datos de rendimiento fluyen a través de los nodos

del grafo y son transformados para ofrecer las métricas de rendimiento deseadas.

Capítulo 2. Análisis de rendimiento

15

2.2.1.4 Vampir

Vampir [3] [18] es una herramienta de análisis de rendimiento que permite la visualización

gráfica y análisis de los cambios de estado de un programa, mensajes punto a punto,

operaciones colectivas y contadores de rendimiento hardware junto con resúmenes estadísticos.

Está diseñada para ser una herramienta de fácil uso, lo cual permite a los desarrolladores

visualizar rápidamente el comportamiento de su aplicación en un determinado nivel de detalle.

 Comenzó a desarrollarse en el Centro de Matemática Aplicada del Centro de

Investigación de Jülich y el Centro de Computación de Altas Prestaciones de la Universidad

Técnica de Dresden. Vampir está disponible como producto comercial desde 1996. En el

pasado, fue distribuida por German Pallas GMBH, empresa que pasó a formar parte

posteriormente de la compañía Intel. La cooperación con Intel terminó en 2005. Actualmente el

desarrollo de Vampir continúa por parte del Centro de Servicios de Información y Computación

de Altas Prestaciones (ZIH) de la Universidad Técnica de Dresden. Hoy en día, los productos

Vampir se pueden obtener directamente desde la página web.

 Esta herramienta ha sido probada y ampliamente usada en la comunidad de la

computación de altas prestaciones durante muchos años. Un gran número de entornos de

monitorización del rendimiento como TAU [19], KOJAK [20] o VampirTrace [21] generan

ficheros de trazas que son interpretables por Vampir. Desafortunadamente no soporta el fichero

de traza de estructura Intel, debido a razones de licencia. Desde la versión 5.0, Vampir soporta

el formato Open Trace (OTF), desarrollado por ZIH. Este formato de traza está especialmente

diseñado para programas masivamente paralelos. Diferentes gráficos temporales muestran las

actividades y comunicaciones de la aplicación a lo largo de los ejes de tiempo, sobre los cuales

el usuario puede desplazarse y hacer zoom, con el objetivo de detectar la causa real de los

problemas de rendimiento. Además permite verificar la correcta paralelización y el balanceo de

carga. Vampir generara gráficos estadísticos que proporcionan resultados cuantitativos sobre

porciones arbitrarias temporales. La implementación está basada en el estándar X-Windows and

Motif y corre en estaciones de trabajo así como en sistemas de producción paralela. Está

disponible para casi todas las plataformas de 32 y 64 bit como PCs y Clusters Linux, IBM, SGI,

SUN y Apple.

 Actualmente hay dos versiones de Vampir. La primera, la estación de trabajo basada en

la aplicación clásica con una historia de desarrollo de más de 10 años. Su último lanzamiento

constituye la versión 7.1 y data de Noviembre del 2009 [22]. La segunda, la versión más

escalable y distribuida llamada VampirServer [21]. Además, hay software de instrumentación y

medida conocido como VampirTrace [21].

Capítulo 2. Análisis de rendimiento

16

VampirServer

Es la siguiente generación de Vampir, que presenta una implementación paralela con una

escalabilidad mucho mayor. La última versión desarrollada es VampirSever2.0 y data de

noviembre de 2009 [22].

 Basándose en la experiencia adquirida en el desarrollo de Vampir, la nueva arquitectura,

mostrada en la figura 2.3 usa una aproximación distribuida consistente en un servidor de análisis

paralelo, el cual se supone que se está ejecutando en un segmento de un gran entorno de

producción paralela, y un cliente de visualización de los datos de rendimiento obtenidos

corriendo en otras estaciones de trabajo. El servidor es un programa paralelo el cual usa

métodos de comunicación estándar tales como MPI, pthreads y sockets. La compleja

preparación de los datos de rendimiento es llevada a cabo por el propio servidor. El servidor

consiste en un proceso máster y un número variable de procesos worker. Ambos componentes,

servidor y cliente, interactúa a través de Internet por medio de un socket estándar basado en

conexiones de red. Los principales objetivos de esta aproximación paralela distribuida son los

siguientes:

- Mantener los datos de rendimiento cerca de la localización donde fueron generados.

- Análisis de los datos de rendimiento en paralelo para mejorar el incremento de la

escalabilidad con Speedy up del orden de 10 a 100.

- Limitar los requerimientos de ancho de banda y latencia de la red a un mínimo para

permitir un rápido acceso y análisis desde entornos de trabajo remoto.

Figura 2.3 Arquitectura de análisis distribuido de VampirServer

Capítulo 2. Análisis de rendimiento

17

 VampirServer implementa algoritmos paralelos de análisis de eventos y gráficos

personalizables que permiten un seguimiento rápido e interactivo de complejos datos

procedentes de la monitorización del rendimiento. La información de la traza de eventos se

almacena en memoria distribuida en la máquina de análisis paralelo. Además, grandes

volúmenes de datos pueden ser analizados sin copiar grandes cantidades de datos.

VampirTrace

Proporciona una infraestructura de medida para coleccionar datos de rendimiento. Permite el

desarrollo con instrumentación y facilidades para recolectar medidas en aplicaciones HPC.

Cubre el análisis de aplicaciones desarrolladas con MPI y OpenMP. La instrumentación

modifica la aplicación para detectar y almacenar eventos de interés generados durante la

ejecución, por ejemplo una operación de comunicación MPI o una cierta llamada a función.

Esto puede ser hecho a nivel de código fuente, durante la compilación o en tiempo de enlace

mediante varias técnicas. La librería VampirTrace se encarga de la recogida de datos en todos

los procesos. Estos datos incluyen eventos definidos por el usuario, eventos MPI, eventos

OpenMP, así como información sobre temporización o localización. Además también permite

obtener información mediante contadores hardware mediante PAPI. La última versión

desarrollada es VampirTrace 5.8 y data de noviembre de 2009 [22].

 La instrumentación automática del código fuente usando el compilador está disponible

para compilador de GNU, Intel (versión 10), IBM, PGI, SUN (solo Fortran). La instrumentación

binaria se desarrolla con Dynist.

 Los datos de rendimiento almacenados se almacenan en un fichero usando el formato

Open Trace (OTF). OTF es un rápido y eficiente formato que presenta características especiales

para entrada/salida paralela. Este formato está diseñado para alcanzar un buen rendimiento en

estaciones de trabajo de un único procesador así como en supercomputadores masivamente

paralelos.

 Su implementación está basada en el conjunto de herramientas KOJAK y es

desarrollado en ZIH, en cooperación con ZAM, Centro de Investigación de Jülich, Alemania y

el Laboratorio de Computación Innovadora de la Universidad de Tennesse, EEUU.

2.3 Análisis automático de rendimiento

Para reducir la complejidad que los programadores y usuarios encontraban en el análisis clásico

de rendimiento, se propone un análisis automático del rendimiento de la aplicación paralela.

Esta aproximación realiza un análisis automático basado en el conocimiento previo de las

Capítulo 2. Análisis de rendimiento

18

características de los distintos problemas de rendimiento. La figura 2.4 muestra el ciclo de

operación llevada a cabo en esta aproximación.

Figura 2.4. Aproximación automática del análisis de rendimiento

 Las herramientas que implementan este tipo de análisis son capaces de identificar

cuellos de botella críticos y ayudar a la optimización de la aplicación proporcionando

sugerencias, las cuales exponen problemas de rendimiento y posibles mejoras. Para ello, la

aplicación es instrumentada antes de su ejecución y la instrumentación es insertada en los

puntos concretos. Una vez que los datos de rendimiento se han recopilado y almacenado en el

fichero de traza, el proceso de análisis automático puede desarrollarse. Este proceso consiste en

una búsqueda de problemas de rendimiento en los datos obtenidos en la ejecución, basada en

información sobre posibles cuellos de botella y como encontrarlos. Cuando el proceso de

análisis finaliza, el usuario puede modificar la aplicación partiendo de las sugerencias

proporcionadas por el análisis, volver a compilarla y enlazarla para proceder a la siguiente

ejecución.

 Este tipo de análisis reduce la cantidad de tiempo que los desarrolladores invierten en

análisis de rendimiento. Sin embargo de nuevo está basado en ficheros de traza que contienen

una única ejecución de la aplicación, por lo que, de la misma manera que en el análisis

clásico, esta aproximación no es fiable cuando las aplicaciones o los entornos de

ejecución tienen un comportamiento dinámico.

Capítulo 2. Análisis de rendimiento

19

2.3.1 Herramientas

2.3.1.1 Scalasca

Scalasca [23] es un conjunto de herramientas de análisis de rendimiento automático que ha sido

especialmente diseñado para el uso en sistema de gran escala, incluyendo IBM Blue Gene y

Cray XT, pero también está construido para su uso en plataformas HPC de pequeña y media

escala. Ha sido desarrollado en el Centro de Supercomputación de Jülich, Alemania en el año

2008.

 Scalasca realiza un procedimiento de análisis de rendimiento incremental que integra

profiling en tiempo de ejecución con amplios estudios del comportamiento concurrente de la

aplicación mediante trazas de eventos, adoptando una estrategia de análisis basada en sucesivas

configuraciones de medidas de rendimiento. Una característica distintiva es su capacidad para

detectar estados de espera que ocurren, por ejemplo, como resultado de un incorrecto balanceo

de la carga. Especialmente cuando se intenta escalar aplicaciones de comunicación intensiva a

grandes cantidades de procesos, tales estados de espera constituyen grandes retos para conseguir

un buen rendimiento. Comparado con su antecesor, KOJAK [20], Scalasca puede detectar tales

estados de espera incluso en configuraciones con grandes cantidades de procesos usando un

innovador esquema paralelo de análisis de trazas.

 La actual versión de Scalasca [24] permite el análisis de rendimiento de aplicaciones

basadas en MPI, OpenMP, y construcciones de programación híbrida más ampliamente usadas

en aplicaciones HPC altamente escalables escritas en C, C++, y Fortran en una amplia gama de

plataformas actuales HPC.

 En Scalasca, antes de la recopilación de cualquier dato de rendimiento, la aplicación

objetivo debe ser instrumentada. Cuando se corre el código instrumentado en la máquina

paralela, el usuario puede elegir entre generar un resumen con métricas de rendimiento

agregadas y/o almacenar trazas de eventos individuales en tiempo de ejecución. El resumen de

métricas es útil para obtener una vista general sobre el comportamiento de rendimiento. Cuando

se habilita la traza, cada proceso genera un fichero de traza que contiene registros para los

eventos generados de forma local.

 Después de que la aplicación termine su ejecución, Scalasca carga los ficheros de traza

en memoria principal y los analiza en paralelo usando tantas CPUs como han sido empleadas en

la ejecución de la aplicación paralela. Durante el análisis, Scalasca genera patrones

característicos indicativos de estados de espera y relaciona las propiedades de rendimiento,

clasificando las instancias detectadas por categorías y cuantificando su importancia. El resultado

Capítulo 2. Análisis de rendimiento

20

es un informe del análisis similar en estructura al informe resumen pero enriquecido con

métricas sobre comunicación de alto nivel e ineficiencias de sincronización.

 Ambos informes contienen métricas de rendimiento para cada llamada a función y

recurso del sistema (proceso/hebra), pudiendo ser interactivamente explorado en una interfaz

gráfica. Como alternativa a este patrón automático de búsqueda, las trazas pueden ser mezcladas

y convertidas de manera que puedan visualizarse con otras herramientas como Paraver o

VampirTrace, recogiendo las ventajas de sus visualizaciones desde el punto de vista temporal y

su rica funcionalidad estadística.

2.3.1.2 Periscope

Periscope [25] es una herramienta escalable de análisis de rendimiento automático para

aplicaciones MPI. Actualmente se encuentra bajo desarrollo en la Universidad Técnica de

München en los proyectos ISAR y SILC; surge como sucesor de Peridot [26] en 2005. La

última versión de Periscope data del año 2009, [27].

 Consiste en un frontend, una jerarquía de comunicación, agentes de análisis y una

interfaz gráfica de usuario para analizar los resultados, tal y como se muestra en la figura 2.6.

Cada uno de los agentes de análisis, es decir, los nodos de la jerarquía de agentes buscan

autónomamente ineficiencias en un subconjunto de procesos de la aplicación. En la parte

superior de la jerarquía de agentes, el agente máster es responsable de la interacción con el

usuario. El agente máster proporciona las propiedades detectadas al usuario y toma como

entrada comandos que direccionan el análisis. Los agentes intermedios de la jerarquía son

necesarios para la búsqueda de propiedades que no pueden ser detectadas localmente porque se

deben analizar conjuntamente los datos de rendimiento de más de un nodo.

 Los procesos de la aplicación están enlazados con un sistema de monitorización que

proporciona la Interfaz de Peticiones de Monitorización (MRI). Los agentes se unen al monitor

por medio de sockets. La MRI permite a los agentes configurar la toma de medidas para

comenzar, parar, terminar la ejecución y recuperar los datos de rendimiento. El monitor

actualmente solo soporta información resumida (profiling). La disposición de los distintos

componentes de Periscope se muestra en la figura 2.5.

 La aplicación y la red de agentes son comenzadas a través del proceso frontend. Éste

analiza el conjunto de procesadores disponibles, determina el mapeo de la aplicación y los

procesos de los agentes de análisis, y entonces lanza la ejecución de la aplicación y la jerarquía

de agentes. Después de la inicialización, un comando se propaga a lo largo de la jerarquía de

agentes para comenzar la búsqueda. La búsqueda se desarrolla de acuerdo a la estrategia de

búsqueda seleccionada cuando comienza el proceso frontend. Al final de la búsqueda local, las

Capítulo 2. Análisis de rendimiento

21

propiedades de rendimiento detectadas son enviadas a través de la jerarquía de agentes al

proceso frontend. Periscope comienza su análisis desde la especificación formal de las

propiedades de rendimiento. La especificación determina la condición, el valor de confianza y la

severidad de las propiedades de rendimiento.

Figura 2.5 Esquema de la arquitectura de análisis distribuida de Periscope. El sistema de análisis de
rendimiento de Periscope está compuesto por un número de agentes de análisis estructurados de forma

jerárquica.

2.3.1.3 TAU

TAU (Tuning and Analysis Utilities) [28] [19] es un sistema de rendimiento paralelo que

integra un framework y un conjunto de herramientas automáticas para instrumentación, medida,

análisis y visualización del rendimiento de aplicaciones ejecutadas en sistemas paralelos de gran

escala. Fue desarrollado en 1992 en la Universidad de Oregon, en EEUU, en colaboración con

el Centro de Investigación de Jülich y el Laboratorio Nacional de Los Alamos. La última

versión de TAU (2.19.1), fue lanzada en febrero de 2010 [29].

 Una de sus principales características es el gran número de plataformas hardware y

software que soporta. TAU puede ser ejecutada en la mayoría de las plataformas actuales de

cómputo de altas prestaciones y permite varios lenguajes, incluyendo C, C++, Java, Python,

Fortran, OpenM, MPI and Charm.

 El framework está compuesto por herramientas y módulos que se integran y coordinan

sus operaciones usando interfaces bien definidas y formatos de datos concretos. Su arquitectura

Capítulo 2. Análisis de rendimiento

22

se organiza en tres capas (instrumentación, medida y análisis), donde en cada capa múltiples

módulos están disponibles y puede ser configurados de manera flexible por el usuario.

 TAU soporta un flexible modelo de instrumentación, basado en instrumentación

dinámica, que permite al usuario insertar instrumentación de rendimiento llamando a la API de

medidas de TAU. El concepto clave de la capa de instrumentación es que en dicha capa es

donde se definen los eventos de rendimiento. El mecanismo de instrumentación de TAU

permite distintos tipos de eventos que definen el rendimiento, incluyendo eventos definidos por

localizaciones de código, eventos de interfaz de librerías, eventos del sistema y eventos

definidos por el propio usuario. De modo que, la salida de la instrumentación es información

sobre los eventos de un experimento de rendimiento. Esta información será usada por otras

herramientas.

 La capa de instrumentación se comunica con la capa de medida mediante la API de

medida de TAU. El sistema de medida de TAU está organizado en 4 partes:

- La parte de creación y gestión de eventos determina como son procesados los eventos.

- La parte de medidas de rendimiento permite la medición de dos formas: profiling y

tracing. Para cada forma TAU presenta una completa infraestructura para gestionar los

datos de medida durante la ejecución a cualquier escala.

- La parte de fuentes de datos de rendimiento define que datos de rendimiento son

medibles y pueden ser usados en profiling y tracing.

- La parte de sistema operativo y sistema de ejecución proporciona el acoplamiento entre

el sistema de medida de TAU y el sistema paralelo subyacente. TAU especializa y

optimiza su ejecución de acuerdo a las características de la plataforma disponible.

 La capa de análisis y visualización permite el uso de varios módulos. Estos módulos se

dividen en componentes para profiling y componentes para tracing, cuya información generada

puede ser visualizada por herramientas especializadas en ellos como ParaProf o Vampir,

respectivamente.

2.3.1.4 Paraver y Dimemas

Paraver [30] y Dimemas [31] son dos herramientas de análisis de rendimiento automático

desarrolladas en el Centro Europeo de Paralelismo de Barcelona (CEPBA) en 1996 y 1992

respectivamente.

 Paraver es una herramienta flexible para el análisis y visualización del rendimiento

basada en trazas que puede ser usada para analizar cualquier información expresada en el

formato de su traza de entrada de aplicaciones que empleen MPI, OpenMP, MPI+OpenMP,

Capítulo 2. Análisis de rendimiento

23

Java, resúmenes de contadores hardware, actividad del sistema operativo…Además está

disponible para múltiples plataformas como IRIX, AIX, Linux, Tru64.

 Basada en una interfaz de usuario gráfica, Paraver fue desarrollada para responder a la

necesidad de tener una percepción cualitativa global del comportamiento de las aplicaciones a

través de un registro visual que permita tener una visión sobre los problemas de rendimiento

presentes. Paraver proporciona una gran cantidad de información útil para mejorar las

decisiones de si y dónde invertir esfuerzos en el proceso de programación con el objetivo de

optimizar la aplicación.

Algunas de las principales características de Paraver son:

- Análisis cuantitativo detallado del rendimiento del programa.

- Análisis comparativo concurrente de varias trazas.

- Análisis rápido para trazas de gran tamaño.

- Permite trazas con mezcla de paso de mensajes y memoria compartida.

- Permite la personalización de la información a visualizar.

- Generación de métricas derivadas.

Paraver presenta 3 tipos de visualizaciones:

- Vista gráfica: representa el comportamiento de la aplicación en el tiempo de manera que

proporcionar al usuario una comprensión general del comportamiento del programa.

También permite un análisis detallado mediante el uso de patrones de identificación y

relaciones de causalidad.

- Vista textual: proporciona el máximo detalle sobre la información mostrada.

- Vista de análisis: proporciona datos cuantitativos.

 La visualización gráfica es suficientemente flexible para representar visualmente una

gran cantidad de información y para ser la referencia para el análisis cuantitativo. Esta

visualización consiste en un diagrama de tiempo con una línea para cada objeto representado.

Los tipos de objetos mostrados por Paraver están muy relaciones con los conceptos de los

modelos de la programación paralela (carga de trabajo, aplicación, tarea, hebra…) y con los

recursos de ejecución (sistema, nodo y CPU).

 Dimemas es una herramienta de análisis de rendimiento para programas basados en

paso de mensajes. Permite al usuario desarrollar y sintonizar aplicaciones paralelas en una

estación de trabajo, mientras proporciona una buena predicción de su rendimiento en la máquina

paralela objeto de la ejecución.

Capítulo 2. Análisis de rendimiento

24

 El simulador Dimemas reconstruye el comportamiento temporal de la aplicación

paralela en una máquina modelada por un conjunto de parámetros de rendimiento. De este

modo, se pueden realizar experimentos de rendimiento de forma sencilla. El tipo de

arquitecturas que se pueden simular incluyen redes de estaciones de trabajo, sistemas SMP,

computadores paralelos de memoria distribuida, e incluso sistemas heterogeneos.

 Dimemas soporta librerías de paso de mensajes, como PVM, MPI y PARMACS. Para la

comunicación, se usa un modelo de rendimiento lineal, se tienen en cuenta además algunos

efectos no lineales como conflictos en la red. Además el simulador permite especificar

diferentes mapeos de tareas en los nodos.

 Dimemas genera ficheros de traza válidos para dos herramientas de análisis: Paraver y

Vampir.

 Esta herramienta es útil en dos fases de la vida de una aplicación: durante su desarrollo,

para realizar un análisis de los efectos de diferentes parámetros en el rendimiento sin requerir el

uso de la arquitectura sobre la que se desea ejecutar; y después la fase de producción, para

seleccionar la mejor arquitectura para ejecutar la aplicación.

 Las entradas de Dimemas son: un fichero de traza y un fichero de configuración. El

fichero de traza contiene los datos de una ejecución real en una máquina que captura

información sobre la CPU y patrones de comunicación. Esta ejecución real puede ser hecha en

cualquier tipo de máquina, incluso en máquinas uniprocesador, mapeando todos los procesos en

un único procesador. Aunque el rendimiento de esa ejecución será muy bajo, el fichero de trazas

de Dimemas será válido. La segunda entrada es un fichero de configuración que contienen un

conjunto de parámetros que modelan la arquitectura deseada.

 La salida de Dimemas puede ser simplemente un texto que contiene la predicción del

tiempo empleado en la ejecución de la aplicación sobre la plataforma especificada o una

visualización del fichero de trazas.

2.3.1.5 KappaPi

KappaPi (Knowledge-based Analyser of Parallel Program Applications and Performance

Improver) [4] [32] es una herramienta de análisis de rendimiento automatica desarrollada en la

Universidad Autónoma de Barcelona entorno a 1998.

 El objetivo de esta herramienta es ayudar en la tarea del análisis de rendimiento de

programas paralelos implementados bajo un paradigma de paso de mensajes (MPI o PVM),

mediante la detección de los principales cuellos de botella presentes en el rendimiento, el

análisis de las causan que generan estos problemas y el establecimiento de la relación entre

Capítulo 2. Análisis de rendimiento

25

dichas causas y el código fuente. Para ello se basa en el análisis post-mortem de un fichero de

traza y en una base de datos de conocimiento que incluye los principales cuellos de botella

encontrados en aplicaciones de paso de mensajes.

 En el proceso de análisis de la aplicación realizado por KappaPi se distinguen una serie

de fases cuyo objetivo final es proporcionar sugerencias al usuario sobre el rendimiento actual

de la aplicación:

- KappaPi obtiene los datos de ejecución de un fichero de traza.

- Análisis de eficiencia. La herramienta busca aquellos intervalos de ejecución donde la

eficiencia es baja. Los intervalos se almacenan en una lista acumulada.

- Selección de las peores ineficiencias. Las ineficiencias almacenadas en la lista son

ordenadas por importancia en función del tiempo acumulado y las CPUs involucradas.

- Análisis de ineficiencia. Cada una de las ineficiencias es analizada con detalle. Con la

ayuda de un sistema basado en reglas, la ineficiencia es clasificada. Su motor de

inferencia evalua información del programa así como información de la traza. El primer

paso del proceso de deducción está basado en los eventos de la traza actual, mientras

que en los siguientes pasos del análisis se requieren algunos detalles del código fuente

para proporcionar sugerencias para mejorar el rendimiento.

- Sugerencias de rendimiento. Con la ayuda de la clasificación del problema, se

proporciona al usuario algunos detalles de los problemas encontrados junto con algunas

sugerencias para mejorar el rendimiento.

2.4 Análisis dinámico de rendimiento

El análisis de rendimiento dinámico surge con el objetivo de eliminar la necesidad de generar y

almacenar enormes ficheros de traza y gestionar la cantidad de instrumentación insertada. La

figura 2.6 muestra el ciclo de operación llevada a cabo en esta aproximación.

 En esta aproximación el análisis de rendimiento pasa de ser post-mosterm a realizarse

sobre la marcha durante la ejecución de la aplicación, de una manera completamente automática

y evitando la necesidad de una instrumentación manual. Esto implica la necesidad de una

monitorización constante, donde la principal ventaja es que no se necesita ficheros de traza para

el análisis. Además la instrumentación puede ser dinámicamente insertada o eliminada de la

aplicación mediante técnicas dinámicas de instrumentación. De este modo la fase de

monitorización puede comenzar con una simple instrumentación y cuando se detectan

condiciones especiales, se introduce instrumentación adicional.

Capítulo 2. Análisis de rendimiento

26

Figura 2.6 Aproximación dinámica del análisis de rendimiento

 Realizar el análisis durante la ejecución de la aplicación conlleva a introducir cierto

overhead dentro de ella. Por ello, el análisis debe ser relativamente simple para introducir la

menor cantidad de overhead posible.

 El análisis dinámico permite la detección de problemas de rendimiento de forma más

rápida que las aproximaciones post-mortem. De esta manera, este análisis es adecuado para

aplicaciones iterativas que presentan un amplio tiempo de ejecución con grandes volúmenes de

datos. Sin embargo, requiere que el usuario pare, modifique, recompile y vuelva a ejecutar la

aplicación para aplicar la sintonización. Por ello esta aproximación es adecuada para

desarrolladores con experiencia más que para usuarios no expertos de la aplicación tales como

químicos, biólogos, etc. Además, como en las anteriores aproximaciones, decisiones basadas en

una única ejecución podrían no ser significativas cuando la aplicación presenta un

comportamiento dinámico, es decir, su pauta depende de los datos de entrada o de su evolución.

2.4.1 Herramientas

2.4.1.1 Paradyn

Paradyn [33] es una herramienta de análisis desarrollada por la Universidad de Wiscosin-

Madison entorno a 1994. Puede ejecutarse en la mayoría de las plataformas actuales y soporta

varios lenguajes de programación como C, Fortran y permite threads y comunicación con MPI.

Capítulo 2. Análisis de rendimiento

27

Los autores de Paradyn son conscientes del problema asociado al almacenamiento y

análisis de grandes cantidades de datos de trazas, y se acercaron a una solución que intenta

evitar estos problemas. En lugar de almacenar una traza completa de todo el comportamiento de

la aplicación, Paradyn realiza un análisis de rendimiento on-line. Paradyn lleva a cabo

instrumentación binaria en tiempo de ejecución [8] cuando es necesario, intentando mantener el

overhead causado por la instrumentación a un nivel mínimo. De modo que el código de la

instrumentación puede ser insertado o eliminado por el usuario en tiempo de ejecución.

Además, también proporciona una búsqueda automática de cuellos de botella en el rendimiento

denominada Performance Consultant. Además el grupo de desarrollo de Paradyn desarrolló

MRNet [34], arquitectura que permite agregar datos de rendimiento de forma distribuida. Así,

solo el valor final agregado se envía la herramienta de análisis de rendimiento.

Paradyn está compuesto por diferentes módulos software complementarios, todos

unidos a una interfaz gráfica de usuario (GUI). Cuando los usuarios lanzan sus programas

usando la GUI principal, Paradyn también lanza varios procesos demonios de monitorización en

cada nodo. Cuando los usuarios seleccionan una visualización o desarrollan otra acción que

requiere datos de rendimiento, la GUI se comunica con cada demonio y realiza una petición

para insertar código de instrumentación en el programa en ejecución. De este modo, cada

demonio realiza la instrumentación, comienza a almacenar datos, y periódicamente manda

muestras de datos a la GUI principal. Estas muestras de datos son almacenadas en una base de

datos round-robin, las cuales son presentadas al usuario gráficamente mediante alguna de las

visualizaciones de Paradyn.

Cuando se usa el módulo de Perfomance Consultant, tiene lugar una secuencia de

acciones similar a la comentada anteriormente, excepto que estas acciones son controladas por

la rutina de búsqueda del módulo Perfomance Consultant en lugar de por el usuario. El proceso

de búsqueda usa el modelo W3 (Why is there a performance bottleneck? Where is it located?

When did it happen?), que guía la búsqueda de ineficiencias en el rendimiento a un conjunto de

cuellos de botella. Este modelo intenta responder por qué, donde y cuando la aplicación presenta

un mal rendimiento relacionando las causas con especificas clases de cuellos de botella, nodos

de una máquina y funciones del código fuente.

2.5 Sintonización dinámica de rendimiento

El proceso de sintonización dinámica proporciona una sintonización automática de la

aplicación en tiempo de ejecución en lugar de la inserción manual de los cambios en el

código fuente, desvinculando al desarrollador o usuario no experto del proceso de

Capítulo 2. Análisis de rendimiento

28

sintonización de su aplicación. La figura 2.7 muestra el ciclo de operación llevada a cabo en

esta aproximación.

Figura 2.7 Aproximación dinámica de la sintonización de rendimiento

 En esta aproximación todas las fases del proceso de optimización de rendimiento

son realizadas de forma automática, dinámica y continúa durante la ejecución del

programa paralelo. La aplicación es instrumentada en tiempo de ejecución de forma

dinámica y automática para obtener información sobre el comportamiento de la misma.

Durante la fase de análisis se busca los problemas, se detectan sus causas y se

proporcionan las soluciones para eliminar esos problemas de rendimiento. Finalmente,

se sintoniza la aplicación aplicando las soluciones dinámicamente. Además, mientras la

aplicación está siendo sintonizada, no necesita ser compilada ni ejecutada otra vez ya

que la instrumentación y las modificaciones son realizadas empleando técnicas de

instrumentación dinámica.

 El análisis dinámico y las modificaciones introducidas permiten la adaptación

del comportamiento de la aplicación a las condiciones cambiantes de la propia

aplicación o del entorno paralelo en el cual se ejecuta.

Capítulo 2. Análisis de rendimiento

29

2.5.1 Herramientas

2.5.1.1 Autopilot

Autopilot [35] [6] es una infraestructura software desarrollada por la Universidad de Illinois en

1998 para la sintonización dinámica del rendimiento de entornos computacionales heterogéneos

basada en bucles de control cerrados. Se basa fundamentalmente en la aplicación de técnicas de

control en tiempo real para adaptar dinámicamente el sistema a las diferentes demandas y

disponibilidad de recursos.

 Su desarrolló se basó en la experiencia adquirida en la realización del entorno de

análisis de rendimiento Pablo, propuesto por la misma Universidad.

La infraestructura de Autopilot, está formada por varios componentes software:

- Sensores y actuadores distribuidos. Los primeros capturan datos en tiempo de ejecución

y los envían a los clientes; los actuadores por su parte reciben comandos desde los

clientes, y ajustan el comportamiento de la aplicación y las políticas de recursos. Cada

sensor y actuador está asociado con un conjunto de propiedades (nombre, tipo,

dirección de red…).

 En el proceso de instrumentación los sensores y actuadores pueden operar en

modos threaded y no-threaded. En el modo threaded, una hebra de monitorización

separada se ejecuta en el mismo espacio de direcciones que la aplicación que está

siendo monitorizada, y va pasivamente adquiriendo datos observando las variables

compartidas y cambiando valores mediante los comandos de los actuadores. En el modo

no-threaded, un sensor o actuador es invocado mediante una llamada a un

procedimiento desde el código fuente que está siendo monitorizado.

 Para permitir la reducción de datos, todos los sensores de Autopilot presentan

funciones que son invocadas cada vez que el sensor recibe datos y actúa como filtros de

datos, transformando los datos originales a una forma alternativa reducida.

- Clientes, establecen comunicación directa con los sensores y actuadores. Todos los

clientes remotos conectados reciben datos de los sensores, procesan estos datos, toman

decisiones y envían comandos a los actuadores para implementar dichas decisiones.

Además pueden cambiar el comportamiento de los sensores y actuadores (activación,

tamaño del buffer…).

- Gestor Autopilot, actúa como servidor de nombres y coordina la conexión entre

sensores, actuadores y clientes. El proceso de gestión se muestra en la figura 2.8. A

Capítulo 2. Análisis de rendimiento

30

través de él los clientes realizan peticiones a los sensores y actuadores. Para ello,

inicialmente los sensores y actuadores registran sus propiedades, con el objetivo de que

cuando el cliente realiza una petición con unas características concretas, el Gestor

proporciona aquellos sensores y actuadores que satisfacen las mismas.

Figura 2.8 Proceso de gestión en autopilot

- Mecanismo de decisión, selecciona la política de gestión de recursos correcta basándose

en las peticiones de la aplicación y en los datos de los sensores. Se estructura según un

bucle de control adaptativo cerrado basado en un motor de lógica difusa, según se

refleja en la figura 2.9. Esta motor toma las entradas de los sensores, fuzzifica los

valores, computa la confianza relativa de cada regla, y defuzzifica los consecuentes para

activar los actuadores remotos.

Figura 2.9 Proceso de decisión basado en lógica difusa

Capítulo 2. Análisis de rendimiento

31

 La comunicación entre los distintos componentes de Autopilot está construida sobre la

herramienta Nexus.

2.5.1.2 Active harmony

Active Harmony [5] es un framework implementado en la Universidad de Maryland en 2002,

que permite la adecuación dinámica de una aplicación a la red y a los recursos disponibles,

mediante la adaptación automática de algoritmos, distribución de datos y balanceo de carga.

 Su estructura está basada en un modelo cliente-servidor. El cliente es la aplicación

“armonizada”, la cual envía la información de rendimiento al servidor. El servidor realiza la

sintonización de la aplicación y adapta las decisiones basándose en la información obtenida del

cliente.

Su sistema, cuyo esquema se muestra en la figura 2.10, consiste en 3 componentes principales:

‐ Una API implementada en C++ que permite la integración de las librerías de la

aplicación del usuario con diferentes librerías que presenta la misma o similar

funcionalidad.

‐ El Controlador Harmony, el cual constituye la parte principal de la infraestructura del

servidor Harmony.

‐ Algoritmos parametrizables de sintonización y optimización.

Figura 2.10 Sistema de sintonización automático en tiempo de ejecución de Active Harmony

Capítulo 2. Análisis de rendimiento

32

 La API permite la “armonización” de la aplicación, mediante el uso del Controlador

Harmony. Su principal objetivo es ayudar a la aplicación a usar el algoritmo subyacente más

apropiado. Para conseguir tal fin, primeramente se caracteriza el patrón de la aplicación y se

monitoriza el rendimiento de las distintas implementaciones de librerías subyacentes. Basándose

en la información recopilada, se redireccionan las llamadas a las funciones del programa de la

librería subyacente seleccionada. Esta selección es la realizada a través del Controlador.

 Durante la ejecución el Controlador Harmony recibe las características de la petición

desde la capa formada por la API. Tras esto, el Controlador gestiona los valores de los

diferentes parámetros sintonizables proporcionados por la aplicación y devuelve el algoritmo

subyacente sugerido para usar de acuerdo a los resultados obtenidos en su proceso de decisión.

En la implementación inicial, cuando el Controlador selecciona un determinado algoritmo,

intenta explorar todos los posibles algoritmos al menos durante un breve periodo de tiempo.

Para ello emplea los algoritmos basados en técnicas heurísticas mediante los cuales explora el

espacio de optimización de la aplicación y ajusta los valores en la sintonización basándose en el

rendimiento observado. Las métricas de rendimiento comúnmente utilizadas son el uso de los

recursos por parte de la librería tales como tiempo de CPU o espacio de memoria. De modo que

el Controlador intenta minimizar el valor de estas métricas de rendimiento cuando realiza la

búsqueda de la librería subyacente apropiada.

 Las últimas investigaciones sobre esta herramienta se basan en el estudio de la

influencia de las técnicas heurísticas exploratorias del espacio para optimizar la aplicación bajo

análisis [36].

2.5.1.3 PerCo

PerCo [37] es una framework para el control del rendimiento en entornos heterogéneos. Es

capaz de gestionar la ejecución distribuida de aplicaciones usando migraciones, por ejemplo, en

respuesta a cambios en el entorno de ejecución. PerCo monitoriza los tiempos de ejecución y

reacciona de forma acorde a una estrategia de control para adaptar el rendimiento cuando tienen

lugar cambios importantes en el rendimiento.

 Comenzó a ser desarrollada en la Universidad de Manchester en el año 2005. Su uso

está orientado para dos tipos de aplicaciones empleadas en HPC: modelos de simulación

científica [38] y búsqueda distribuida en control estadístico.

 PerCo está diseñado para ser una aplicación ligera con el fin de controlar el rendimiento

de un programa individual en un conjunto de recursos que han sido asignados por algún gestor

de recursos externo.

Capítulo 2. Análisis de rendimiento

33

 La aplicación a monitorizar se estructura en una serie de componentes individuales

controlados cada uno de ellos por un loader PerCo. El conjunto de loaders constituyen la

infraestructura de reimplementación. Cada loader es responsable de lanzar y mover su

componente. Cada componente tiene dos interfaces. Una interfaz con otros componentes que

permite la implementación de funciones que intercambian datos mediante comunicaciones entre

componentes. Una interfaz de control de rendimiento para la comunicación con el componente

que dirige el control del rendimiento (CPS). Esta interfaz es usada para intercambiar

información de rendimiento y comandos de rendimiento. Un CPS es responsable del control

local de su componente asociado. La entidad que tiene el control sobre todo el conjunto de la

aplicación es el director del rendimiento de la aplicación (APS). El APS recibe datos de

rendimiento desde los CPSs y contiene un repositorio de información que almacena datos

históricos de rendimiento. El APS puede invocar a un predictor de rendimiento para determinar

configuraciones de componentes mejoradas. La figura 2.11 muestra los distintos módulos que

componen la funcionalidad de PerCo.

Figura 2.11 Arquitectura del sistema PerCo

 Este sistema se adapta a los cambios en el rendimiento de la aplicación desarrollando

políticas de balanceo de carga y tolerancia a fallos [39]. La interacción del usuario no se

requiere en el proceso ya que las decisiones de reimplementación no se basan en conocimiento

humano experto, si no en una política que ha sido construida en el APS. La política se basa en

predicciones de rendimiento. El modelo de predicciones combina series de tiempo y técnicas de

ajuste de datos para predecir el tiempo de ejecución. Las series de tiempo son usadas para

Capítulo 2. Análisis de rendimiento

34

predecir el rendimiento del siguiente paso de tiempo dada la actual implementación. Las

técnicas de ajuste de datos se usan para predecir el rendimiento del siguiente paso de tiempo

dada una nueva implementación. En tiempo de ejecución se emplean las dos técnicas para

producir dos predicciones. La predicción de mayor calidad es la que se usa. Sin embargo, la

diferencia entre las dos predicciones proporciona una estimación de la calidad de la predicción.

2.5.1.4 MATE

MATE [40] (Monitoring, Analysis and Tuning Environment) es una herramienta que

implementa una sintonización automática y dinámica de aplicaciones paralelas. Su objetivo es

mejorar el rendimiento de una aplicación paralela en tiempo de ejecución, adaptándola a las

condiciones variables del sistema sobre el que se ejecuta. MATE constituye el eje en el cual se

basa el presente trabajo de investigación, de modo que en el capítulo 3 se detalla dicha

herramienta desde un punto de vista conceptual y funcional.

Capítulo 3. MATE

35

Capítulo 3

MATE

3.1 Introducción

Actualmente, las aplicaciones informáticas son usadas para resolver complejos problemas en

distintos ámbitos científicos como ciencia e ingeniería. Muchos de estos problemas necesitan

una alta potencia de cálculo que sólo puede ser abordada por medio del procesamiento

paralelo/distribuido, el cual permita aprovechar la potencia de distintos tipos de arquitecturas

hardware en las que se dispone de más de un procesador. Por lo tanto, el rendimiento se

convierte en uno de los aspectos más importantes en el procesamiento paralelo/distribuido.

Conseguir y mantener un buen rendimiento en aplicaciones paralelas/distribuidas es una

tarea compleja, más aún cuando dichas aplicaciones o los entornos de ejecución tienen un

comportamiento dinámico. Muchas aplicaciones tienen un comportamiento diferente según los

datos de entrada o incluso pueden variar durante la misma ejecución. En tales casos, no merece

la pena realizar un análisis de rendimiento y sintonización postmortem, ya que las conclusiones

basadas en una ejecución podrían ser erróneas para otra. En estos casos actualmente se plantea

realizar una sintonización dinámica y automática de la aplicación durante su ejecución sin

pararla, recompilarla o reejecutarla.

Bajo este propósito se desarrolló la herramienta MATE. MATE (Monitoring, Analysis

and Tuning Environment) [41] [42] proporciona una sintonización dinámica y automática de

aplicaciones paralelas/distribuidas. Fue diseñada y desarrollada en el grupo de Entornos para la

evaluación de rendimiento y sintonización de aplicaciones dentro del Departamento de

Capítulo 3. MATE

36

Arquitectura de Computadores y Sistemas Operativos de la Universidad Autónoma de

Barcelona. Inicialmente fue creada para sintonizar aplicaciones PVM paralelas/distribuidas

desarrolladas en C/C++ ejecutándose en plataformas UNIX y actualmente también está siendo

desarrollada para sintonizar aplicaciones basadas en la librería de paso de mensajes MPI. Hace

unos años también se desarrolló una versión orientada para entornos Grid, denominada GMATE

[43].

La sintonización dinámica implementada por MATE, en concreto el uso de modelos de

rendimiento en su fase de análisis, es el núcleo de este trabajo. De tal modo, en las siguientes

secciones, se describen en mayor detalle las principales características, funcionalidad y

arquitectura de MATE [7] [40].

3.2 Visión general

En el capítulo 2, se mostraron las diferentes aproximaciones sobre análisis de rendimiento.

Como se comentó, MATE implementa una sintonización dinámica y automática del

rendimiento. En la presente sección se exponen las principales consideraciones y características

de MATE que hace de él un sistema de sintonización en tiempo de ejecución, útil y eficiente.

3.2.1 Sintonización dinámica y automática

El principal objetivo de MATE es mejorar el rendimiento de una aplicación paralela,

adaptándola a las condiciones variables del sistema sobre el que se ejecuta. Su potencia radica

en dos características principales:

‐ Sintonización dinámica, es útil especialmente cuando las aplicaciones son ejecutadas

en entornos heterogéneos o sistemas de tiempo compartido, porque las decisiones para

ajustar el comportamiento de una determinada aplicación se realiza sobre la marcha,

teniendo en cuenta el estado actual del sistema.

‐ Sintonización automática, es útil porque los usuarios no deben preocuparse o participar

en el proceso de búsqueda de problemas de rendimiento o en la introducción de

modificaciones en la aplicación para mejorar su rendimiento.

 Las decisiones de cómo mejorar el rendimiento de la aplicación se realizan mediante el

conocimiento de los posibles problemas de la aplicación. Este conocimiento debe ser

proporcionado por el usuario, indicando qué medidas que determinan el comportamiento de la

aplicación deberían ser monitorizadas (puntos de medida), cómo detectar y resolver posibles

problemas de rendimiento (funciones de rendimiento) y qué parámetros críticos en la aplicación

son necesarios modificar para mejorar el rendimiento (puntos de sintonización). Dicho

Capítulo 3. MATE

37

conocimiento define un modelo de rendimiento, el cual será integrado en MATE mediante su

codificación en un componente de software llamado tunlet.

 Cuando MATE se ejecuta, carga un conjunto de tunlets los cuales proporcionan el

conocimiento para mejorar y adaptar la aplicación. De este modo, un tunlet representa un

modelo de rendimiento y su información es usada a lo largo del proceso de mejora de

rendimiento para dirigir las fases de monitorización, análisis y sintonización. Cada tunlet es una

librería compartida escrita en C/C++ que debe ser implementada usando la API de sintonización

dinámica proporcionada por MATE (DTAPI).

De este modo, tal y como se muestra en el esquema de la figura 3.1, mediante la

monitorización dinámica de la ejecución de la aplicación, la instrumentación se inserta de

acuerdo al modelo de rendimiento definido de manera automática en la aplicación recopilando

información sobre el comportamiento de la aplicación. El análisis de la información recopilada

se hace evaluando las fórmulas analíticas del modelo y las soluciones son automáticamente

insertadas en la aplicación, y la aplicación no necesita ser recompilada, reenlazada o

reejecutada. Para modificar la aplicación en tiempo de ejecución, MATE usa la técnica llamada

instrumentación dinámica [8].

Figura 3.1 Proceso de mejora de rendimiento de MATE

 La realización de estas 3 fases de forma automática hacen más fácil las tareas del

usuario si se considera su intervención en el proceso de sintonización. La aproximación de la

sintonización dinámica que MATE desarrolla libera al usuario de:

‐ Instrumentar la aplicación a mano o semiautomáticamente.

‐ Hacer un seguimiento de la traza de ejecución de la aplicación.

Capítulo 3. MATE

38

‐ Analizar analítica o automáticamente el rendimiento.

‐ Modificar y recompilar el código fuente de la aplicación.

3.2.2 Características funcionales

Desde un punto de vista funcional, en MATE se distinguen tres fases básicas y continuas que

conforman el proceso de mejora de rendimiento: monitorización, análisis y modificaciones.

Como se comentó anteriormente, todas estas fases se realizan continúa, automática y

dinámicamente mientras el programa está en ejecución.

 Para realizar correctamente el proceso de mejora de rendimiento, MATE presenta una

serie de características añadidas que permiten el funcionamiento de la herramienta como un

todo integrado. Estas características son:

‐ Control paralelo de la aplicación.

 El proceso de mejora de rendimiento debe actuar sobre todas las tareas

 ejecutadas en las distintas máquinas que conforman la aplicación con el objetivo de

 poder gestionar o controlar la aplicación completa.

‐ Análisis global.

 El comportamiento de la aplicación debe ser evaluado de forma global, de

 forma que la información recopilada de las distintas tareas que componen la aplicación

 debe estar centralizada para poder realizar un análisis de rendimiento global.

‐ Conocimiento de la aplicación.

 La sintonización dinámica para que sea útil y eficiente precisa, como se

 comentó anteriormente, que el proceso de análisis sea simple para poder tomar

 decisiones en un corto periodo de tiempo y que las modificaciones que se realicen en

 la aplicación sean claras y concisas. De tal manera, no poseer un determinado

 conocimiento de la aplicación, puede hacer que el proceso de sintonización pierda

 efectividad.

Por tanto, es necesario proporcionar información sobre qué debería ser medido

(puntos de medida), cómo detectar y resolver posibles problemas de rendimiento

(funciones de rendimiento) y qué es necesario modificar para ello (puntos de

sintonización). Así, para el correcto funcionamiento de MATE, se precisa no sólo la

cooperación del usuario para definir como analizar el comportamiento de la aplicación,

sino que el usuario debe de conocer también los detalles de implementación de MATE

para poder desarrollar o implementar las soluciones a los posibles problemas de

rendimiento de su aplicación.

Capítulo 3. MATE

39

‐ Baja intrusión.

 El overhead que causa el proceso de mejora de rendimiento debe ser mínimo

 para evitar afectar al rendimiento de la aplicación, ya que ambos son ejecutados

 concurrentemente.

‐ Solventar los cuellos de botella.

 Para solucionar los posibles problemas de rendimiento, las distintas fases del

 proceso de sintonización necesitan un periodo de tiempo para determinar una

 solución. Sin embargo, puede ocurrir que una vez que se haya aplicado la solución para

 un el cuello de botella, éste haya desaparecido. En este caso, la sintonización dinámica

 es especialmente recomendable para aquellos problemas que presenta una cierta

 persistencia a lo largo del tiempo.

3.2.3 Instrumentación dinámica mediante Dyninst

El principio de la instrumentación dinámica consiste en postponer la instrumentación de la

aplicación hasta que ésta esté siendo ejecutada e insertar, alterar o eliminar estas modificaciones

en tiempo de ejecución. Esta aproximación fue inicialmente usada en la herramienta Paradyn

descrita en la sección 2.4.1.1 del capítulo 2. De modo que, el grupo de Paradyn como resultado

de su investigación desarrolló una librería que permitía la instrumentación dinámica; esta

librería recibe el nombre de Dyninst [44].

 Dyninst es una API (Application Program Interface) que genera código en tiempo de

ejecución y está dirigida a aplicaciones escritas en los lenguajes C/C++. La API está basada en

una tecnología orientada a objetos, y proporciona un conjunto de clases y métodos que permiten

al usuario la realización de una serie de acciones:

‐ Modificar un proceso en ejecución o comenzar un nuevo proceso.

‐ Crear un nuevo fragmento de código.

‐ Acceder y usar código y estructuras de datos existentes.

‐ Insertar código creado en el proceso en ejecución.

‐ Eliminar código previamente insertando en el programa en ejecución.

 El código insertado a través de Dyninst en una aplicación, será ejecutado cuando el

programa ejecute la sección de código modificada. Para que esto ocurra, la aplicación no

necesita ser recompilada, ni reenlazada ni reejecutada y además Dyninst no necesita acceder al

código fuente de la aplicación, ya que todo el proceso de instrumentación lo realiza gestionando

la imagen del espacio de direcciones del proceso. El único requisito precisado por Dyninst es la

necesidad de información de depuración sobre el programa instrumentado para ser capaz de

Capítulo 3. MATE

40

localizar los procedimientos y variables necesarias, de tal modo que éste debe ser compilado

con la correspondiente opción habilitada.

 Esta librería es usada por MATE para lograr de manera dinámica y automática dos de

los procesos principales de la aproximación de mejora de rendimiento que dicha herramienta

desarrolla:

‐ La fase de monitorización dinámica, de tal modo que mediante la instrumentación

dinámica se puede añadir o eliminar código en el programa para recopilar información

sobre el comportamiento de la aplicación.

‐ La fase de sintonización dinámica, en la cual el código de la aplicación es cambiado

para mejorar su rendimiento.

Abstracciones

La librería Dyninst está basada en las siguientes abstracciones:

‐ Mutatee o aplicación, es el programa que va a ser instrumentado.

‐ Mutator, es el programa que controla y modifica la aplicación mediante Dyninst.

‐ Punto, es un especifico punto de la aplicación donde algún nuevo fragmento de código

puede ser insertado.

‐ Snippet, es una representación de un fragmento de código ejecutable, el cual puede ser

insertado en el programa en un punto determinado.

‐ Proceso, corresponde a la ejecución de una proceso.

‐ Imagen, constituye la representación estática del programa en disco. Cada hebra está

unívocamente asociada a una imagen.

 Las abstracciones usadas por Dyninst y sus interacciones se muestran en la figura 3.2.

Figura 3.2. Abstracción usada en Dyninst

Capítulo 3. MATE

41

 Para poder emplear Dyninst en el proceso de sintonización dinámica, MATE actúa

como mutator y la aplicación a sintonizar actúa como mutatee. Los snippets y los puntos

dependen de la información necesaria para evaluar el comportamiento de la aplicación.

3.3 Arquitectura

MATE, está compuesto por varios módulos cooperativos, que controlan e intentan mejorar el

rendimiento en la ejecución de la aplicación. Los principales componentes son los siguientes:

‐ Controlador de Aplicación (AC).

 Es un proceso que controla la ejecución de la aplicación MPI. Su labor

 principal es gestionar los cambios que dinámicamente se realizan en las tareas

 individuales que componen la aplicación. Para ello se encuentra enlazado con la

 librería de instrumentación dinámica Dyninst, y emplea su API para generar la

 instrumentación y modificaciones propias de la sintonización. Como se detalló en la

 sección X, el código generado e insertado recibe el nombre de snippet. De este modo,

 en tiempo de ejecución, el controlador de aplicación inserta o elimina los

 correspondientes snippets en la tarea en ejecución.

‐ Librería de monitorización dinámica (DMLib).

 La DMLib tiene como objetivo facilitar la instrumentación y recolección de

 datos de rendimiento. Es una librería compartida cargada de manera dinámica por el

 Controlador de Aplicación en las tareas que componen la aplicación paralela. Para

 realizar su objetivo, la librería contiene funciones responsables del registro de los

 eventos con todos los atributos requeridos, así como funciones encargadas del envío

 de dichos eventos para el análisis.

‐ Analizador.

 Es un proceso que realiza el análisis de rendimiento de la aplicación paralela,

 detectando automáticamente los problemas de rendimiento existentes y solicitando

 los cambios necesarios para mejorar el rendimiento de la aplicación.

 En las siguientes secciones se describen con detalle todos los módulos que componen

MATE, presentando su funcionalidad, requerimientos y limitaciones.

3.3.1 Controlador de aplicación

Como se introdujo anteriormente, cada controlador de aplicación es un único proceso que

controla una única tarea MPI ejecutándose en una máquina local. Este proceso proporciona los

siguientes servicios:

Capítulo 3. MATE

42

‐ Control distribuido de la aplicación.

o Inicia y finaliza cada tarea MPI.

‐ Gestión de la instrumentación de la aplicación.

o Gestiona la instrumentación de las tareas en ejecución.

o Permite remotamente al Analizador añadir/eliminar instrumentación.

‐ Monitorización del rendimiento.

o Carga la librería de monitorización compartida en las tareas de la aplicación.

o Genera los snippets de monitorización.

o Inserta/elimina los snippets.

‐ Sintonización del rendimiento.

o Carga la librería de sintonización compartida en las tareas de la aplicación.

o Genera los snippets de sintonización.

o Inserta/elimina los snippets.

El Controlador de Aplicación está compuesto por varios módulos que cooperan entre sí,

los cuales se muestran en la figura 3.3.

Figura 3.3. Arquitectura interna del Controlador de Aplicación

 El comunicador es el módulo del Controlador de Aplicación que gestiona la

comunicación con el mundo exterior usando el protocolo TCP/IP. Éste despacha los

mensajes que le llegan hacia componente correspondiente, Monitor o Sintonizador, los

cuales actuarán de la manera indicada sobre la tarea de la aplicación mediante la API

proporcionada por Dyninst. Más detalles pueden ser encontrados en [7].

Capítulo 3. MATE

43

 Los módulos Monitor y Sintonizador son los que mayor funcionalidad presenta dentro

del Controlador de Aplicación ya que participan en las fases claves del proceso de

sintonización. En las siguientes secciones se describen con más detalle estos componentes.

Monitor

El Monitor es el módulo responsable de la monitorización de la ejecución de la aplicación. La

monitorización está basada en eventos que se generan mediante llamadas a funciones. La

aplicación es instrumentada dinámicamente en tiempo de ejecución y la instrumentación

insertada genera eventos. Cuando MATE es lanzado, el Analizador indica al Monitor el

conjunto de eventos que deben ser trazados. Conceptualmente, estos eventos reciben el nombre

de puntos de medida. De este modo, cuando la aplicación comienza su ejecución, el Monitor

inserta el código necesario para capturar los eventos en la aplicación en ejecución.

 El Monitor ofrece una API que permite el Analizador añadir o eliminar dinámicamente

un evento. En la API un evento queda definido mediante el identificador del proceso donde se

añade/elimina, el identificador de dicho evento, el nombre de la función en la que se generará, el

punto del código que determina donde el evento sería generado, el número de atributos que se

almacenarían en dicho evento y las propiedades de tales atributos.

 Para realizar la traza dinámica de eventos, el Monitor usa la librería Dyninst para

insertar el código de instrumentación, snippet, que genera eventos para ser trazados. Para

recopilar estos eventos y enviarlos al Analizador, el Monitor usa la DMLib cargada en cada

tarea durante el proceso de arranque.

 La instrumentación puede variar durante la ejecución. Para encontrar cuellos de botella

el Analizador puede necesitar alguna información adicional, o puede necesitar eliminar alguna

instrumentación que no utilice habitualmente. Cuando ocurre esto, el Analizador notifica al

Monitor y como consecuencia éste último modifica el conjunto de eventos monitorizados. Es de

destacar que la comunicación entre el Monitor y el Analizador es establecida usando un

protocolo de bajo nivel de recolección de eventos basado en TCP/IP.

Sintonizador

El Sintonizador es el módulo responsable de aplicar las acciones de sintonización sobre las

tareas de la aplicación. Los cambios necesarios son determinados por las soluciones propuestas

por el Analizador a partir de las cuales el Sintonizador modifica la aplicación empleando de

nuevo Dyninst, cambiando la memoria asociada a la misma.

 Tras la fase de análisis y para realizar la sintonización de la aplicación, el Analizador

puede requerir de un conjunto de acciones que le permite llevar a cabo la modificación de los

Capítulo 3. MATE

44

parámetros críticos de forma correcta. Estas acciones puede ser cargar una librería, establecer

el valor de una variable, insertar la llamada a una función, etc. Para llevar a cabo este conjunto

de acciones el Sintonizador proporciona una API al Analizador a través de la cual llevarlas a

cabo.

 Cada una de las acciones de sintonización incluye un parámetro de sincronización o

breakpoint, el cual se inserta en un punto determinado de la aplicación, de modo que determina

cuando la acción de sintonización podría ejecutarse para asegurar que el comportamiento de la

aplicación siga siendo correcto. Cuando la ejecución de la aplicación alcanza el breakpoint, la

acción de sintonización se ejecuta y el breakpoint queda eliminado.

3.3.2 Librería de Monitorización Dinámica (DMLib)

DMLib es una librería dinámica que proporciona la funcionalidad necesaria para realizar la

traza de eventos y está implementada como una librería compartida. El Controlador de

Aplicación carga esta librería en el espacio de direcciones de cada proceso de la aplicación para

simplificar la instrumentación y recolección de datos.

 Esta librería ofrece una API que contiene funciones que son responsables del registro de

eventos con todos los atributos requeridos y de su envío para el análisis:

‐ Inicializar la librería, proporcionando información sobre el proceso que va a ser

monitorizado y la localización del host donde se aloja el Analizador.

‐ Finalizar la librería, con el objetivo de liberar todos los recursos adquiridos y notificar

al Analizador que los procesos de aplicación han terminado y cerrado la conexión con

él.

‐ Registrar eventos. En este caso el identificador o nombre del evento y los atributos del

mismo deben ser proporcionados, así como la función o punto específico en el cual el

evento seria capturado. Cuando el registro de un evento finaliza, significa que está

preparado para ser enviado al Analizador.

 Para evitar la sobrecarga de la red, la implementación de DMLib usa un mecanismo de

buffering para gestionar los eventos. En lugar de enviar cada evento de manera individual,

existe un buffer interno usado para agrupar eventos y enviarlos en mensajes de tamaño más

elevado. Esto permite la reducción del número de mensajes generados y limita la intrusión.

Dicho envío es controlado mediante marcas de tiempo con el fin de evitar una espera excesiva

en la cola de envío para eventos individuales.

Capítulo 3. MATE

45

3.3.3 Analizador

El Analizador es el módulo que dirige la sintonización de la aplicación. Para ello solicita las

métricas necesarias, que le permiten llevar a cabo el análisis de rendimiento, e indica los

cambios en la aplicación.

 Para ser capaz de evaluar al comportamiento de una aplicación dada, el Analizador

necesita algún tipo de conocimiento sobre la aplicación y traza de eventos online. Desde un

punto de vista funcional, el Analizador se divide en dos módulos diferenciados: la API de

Sintonización Dinámica (DTAPI) y los tunlets.

API de Sintonización Dinámica (DTAPI)

Esta API presenta la funcionalidad que permite gestionar el proceso de mejora de rendimiento

de la aplicación. En ella se encuentran todos los aspectos de bajo nivel relacionados con la

administración de los eventos entrantes, la gestión necesaria para el comienzo y la terminación

de una tarea, información descriptiva de las tareas en ejecución de la aplicación, la información

necesaria para sintonizarlas, etc. Como se explicará en la siguiente sección los tunlets usan

DTAPI como interfaz a través de la cual establecen la instrumentación necesaria para evaluar el

modelo de rendimiento.

Esta librería es implementada como un sistema distribuido y asíncrono donde:

‐ Las peticiones de monitorización y sintonización son delegadas en los Controladores de

Aplicación distribuidos que en su lugar instrumenta y sintoniza las tareas de la

aplicación.

‐ Los eventos recibidos procedentes de la librería de Sintonización Dinámica y los

Controladores de Aplicación son recopilados y despachados hacia los manejadores de

eventos.

Tunlets

Los tunlets son el núcleo de la sintonización dinámica y automática implementada por MATE,

en términos de representación del conocimiento. Cada tunlet define e implementa una particular

técnica de sintonización, por ejemplo, la lógica necesaria para superar un particular problema de

rendimiento mediante la encapsulación del conocimiento sobre el problema de rendimiento en

los siguientes términos:

‐ Un conjunto de puntos de medida, los cuales indican que es necesario medir en la

aplicación para evaluar su comportamiento. Esta definición incluye valores de variables,

parámetros, marcas de tiempo, etc.

Capítulo 3. MATE

46

‐ Un conjunto de funciones de rendimiento, que son expresiones matemáticas que

determinan como evaluar la información recopilada para detectar cuellos de botella.

‐ Un conjunto de acciones de sintonización, que indican que, donde y cuando cambiar

en la ejecución de la aplicación con el objetivo de adaptar su comportamiento.

 Los tunlets usan la API de Sintonización Dinámica para dirigir el proceso de análisis de

rendimiento de la aplicación. Al inicio del proceso de sintonización el tunlet mediante la API,

indica el conjunto de eventos de monitorización que deben ser insertados en una determinada

tarea. Cuando el mensaje de la generación de un determinado evento llega al Analizador, es

redirigido al tunlet, el cual analiza los parámetros existentes en dicho evento que describen el

comportamiento de la aplicación. Cuando el tunlet detecta un posible problema de rendimiento

usa la DTAPI para cambiar algún tipo de instrumentación realizada anteriormente o bien

realizar la modificación de algún parámetro crítico para mejorar el rendimiento. Cuando el

proceso de sintonización termina, el tunlet finaliza y se descarga de la memoria.

 La DTAPI se dispone como un conjunto de clases C++, que los tunlets emplean como

interfaz para trabajar correctamente integrados en MATE.

3.4 Metodología de funcionamiento

La figura 3.4 muestra la ejecución de una aplicación bajo MATE, identificando los distintos

componentes de su arquitectura que participan y la funcionalidad de los mismos.

 Cuando la ejecución de la aplicación comienza, un particular tunlet indica al Analizador

cual es el conjunto de puntos de medida necesarios. El Analizador envía estos requerimientos a

cada Controlador de Aplicación, concretamente al módulo Monitor, los cuales se encuentran

distribuidos con cada tarea de la aplicación paralela. Cuando la ejecución de la aplicación o de

alguna tarea en concreto alcanza un punto de instrumentación, se produce la creación de un

evento. El evento posee determinados atributos que lo caracterizan, los cuales contienen

información relacionada con el entorno de ejecución y con la aplicación, como puede ser marcas

de tiempo, valores de variables, etc. Esta información es clave para poder calcular los

parámetros de rendimiento del modelo matemático y evaluar las expresiones de rendimiento

asociadas. Una vez generado el evento, la DMLib lo envía junto con sus atributos al Analizador.

Capítulo 3. MATE

47

Figura 3.4 Arquitectura de MATE sintonizando dinámicamente para MPI

 A lo largo de la ejecución, el Analizador va recibiendo los eventos solicitados

procedentes de los distintos procesos de la aplicación paralela, lo cual se le notifica al tunlet

correspondiente. Los eventos recibidos son clasificados de acuerdo a un tipo en concreto

definido en el tunlet.

 Cuando el tunlet recibe mediante los eventos toda la información necesaria, evalúa las

funciones de rendimiento y determina el rendimiento actual y óptimo. Si el tunlet detecta un

cuello de botella, decide si el actual rendimiento puede ser mejorado bajo las actuales

condiciones. En caso positivo, el tunlet informa al Analizador de los posibles cambios

necesarios, y en consecuencia éste solicita las correspondientes acciones de sintonización. La

solicitud determina que debería ser cambiado (punto/acción/sincronización de sintonización) y

esto es enviado a la instancia del Controlador de Aplicación correspondiente, en concreto es

reenviado al módulo Sintonizador.

 Como se muestra conceptualmente en la figura 3.4, cada tunlet proporciona los

elementos para dirigir las fases de monitorización, análisis y sintonización. Es de destacar, que

los cambios que se realizan en la aplicación paralela en tiempo de ejecución, en los procesos de

monitorización y sintonización, son implementados mediante la librería de instrumentación

dinámica Dyninst.

Capítulo 3. MATE

48

3.5 MATE y otras herramientas de sintonización dinámica

MATE presenta una aproximación para la sintonización dinámica del rendimiento en

aplicaciones paralelas. Esta aproximación se fundamenta en los principios empleados en

técnicas de análisis dinámico de rendimiento basadas en la instrumentación dinámica mediante

el uso de la librería Dyninst [8], como la desarrollada en la herramienta Paradyn [33].

 MATE comparte algunas características con las herramientas de sintonización

anteriormente comentadas en el capítulo 2, aunque también existen aspectos que las diferencian.

En lo referente a los entornos de ejecución, MATE inicialmente estaba pensada para sintonizar

aplicaciones PVM paralelas/distribuidas desarrolladas en C/C++ ejecutándose en plataformas

UNIX y actualmente está siendo desarrollada para sintonizar aplicaciones basadas en MPI.

También se desarrolló en 2008 una versión orientada para entornos Grid, denominada GMATE

[43]. Por su parte, Autopilot [35] y PerCo [37] han sido diseñadas con el fin de ser empleadas

especialmente en sistemas de computación heterogéneos.

 En el proceso de monitorización, MATE monitoriza la aplicación mediante la

instrumentación dinámica insertando puntos de medida los cuales generan eventos que serán

enviados al analizador. De forma semejante a MATE en Autopilot, el proceso de monitorización

se basa en la inserción dinámica de sensores, los cuales son procesos que permiten extraer

información de rendimiento de la aplicación sintonizada. En el caso de Active Harmony [36], se

realiza una continua monitorización del rendimiento de las distintas implementaciones de

librerías subyacentes, de modo que basándose en la información recopilada, se redireccionan las

llamadas de las funciones del programa a las de la librería subyacente seleccionada.

 Por otro lado, en lo relacionado con el análisis de rendimiento, MATE usa reglas

normales y modelos de rendimiento en los cuales se formalizan posibles problemas de

rendimiento. Mientras que Autopilot emplea lógica difusa para automatizar el proceso de toma

de decisiones, Active Harmony usa técnicas heurísticas mediante las cuales explora el espacio

de optimización del patrón de la aplicación teniendo en cuenta las librerías subyacentes y ajusta

los valores en la sintonización basándose en el rendimiento observado. PerCo basa su análisis en

el empleo de técnicas para predecir el rendimiento, combinando series de tiempo y métodos de

ajuste de datos. Las series de tiempo generan predicciones aplicando una fórmula matemática al

histórico de datos; por su parte el ajuste de datos es aplicado a los datos históricos para obtener

una fórmula matemática con muchas variables, de manera que evaluando dicha fórmula con los

valores actuales (número de procesadores, tamaño de los datos de la aplicación, etc) se generan

las predicciones.

Capítulo 3. MATE

49

 Finalmente, si se considera la preparación de la aplicación para la sintonización, usando

MATE la sintonización se basa en la instrumentación dinámica donde los puntos de

sintonización son determinados por el modelo de rendimiento; éstos últimos actualizando su

valor sobre la marcha cuando el analizador lo determina. Para realizar esta acción en ocasiones

es necesario adaptar la aplicación o poseer un mayor conocimiento de la aplicación que va a ser

sintonizada. Igual que en MATE, en Autopilot los actuadores son insertados de manera

dinámica en el proceso de sintonización pero para ello se requiere conocimiento sobre la

aplicación. En Active Harmony el mecanismo se basa en la integración y elección de diferentes

librerías con la misma funcionalidad. Y en PerCo, en el proceso de sintonización no se requiere

la interacción directa del usuario ya que las decisiones de reimplementación se basan en una

política que ha sido construida en el módulo que dirige el rendimiento de la aplicación.

3.6 Limitaciones de MATE como entorno de sintonización

En MATE, el análisis de rendimiento es realizado de forma centralizada, ya que existe un único

Analizador responsable de recibir y procesar todos los eventos que le llegan directamente desde

la aplicación, más específicamente desde las Librerías de Monitorización Dinámica asociadas a

cada tarea MPI, tal y como se explico en la sección 3.4. El Analizador es ejecutado en una

máquina independiente para reducir la sobrecarga causada por el continuo proceso de análisis en

máquinas donde la aplicación se está ejecutando.

 Sin embargo, aunque esta aproximación centralizada funciona, presenta algunos

problemas relacionados con dos factores diferentes:

‐ El número de máquinas involucradas en la ejecución de la aplicación.

‐ La persistencia de problemas de rendimiento.

 Con respecto al primero de los factores, se puede asumir que conforme el número de

tareas involucradas en la aplicación aumenta, el número de eventos también se incrementa de

manera proporcional. Como consecuencia el Analizador se convierte en un cuello de botella que

afecta a la efectividad del sistema.

 El Analizador posee una hebra que recolecta los eventos recibidos desde la aplicación.

Independientemente de la cantidad de eventos entrantes, éstos son gestionados siguiendo una

política FIFO (first in, first out). En consecuencia, el tiempo gastado en procesar la información

es proporcional a la cantidad de eventos. Además, en ocasiones ocurren olas de eventos; esto

quiere decir que cada tarea de la aplicación genera eventos aproximadamente al mismo tiempo,

causando la sobrecarga del analizador en unos instantes determinados, tales como el final de la

Capítulo 3. MATE

50

iteración, cuando todos los procesos de la aplicación terminan. Además, mientras el Analizador

está procesando datos de la iteración i continúa su ejecución por la iteración i+1.

 En lo relacionado con la persistencia de problemas de rendimiento, se debería tener en

cuenta que la sintonización dinámica está basada en asumir que los problemas de rendimiento

surgen en más de una iteración. Esta es la razón de porqué el análisis de rendimiento para

detectar problemas y encontrar soluciones debería ser rápido. En el caso de MATE, el análisis

queda reducido a la evaluación de un conjunto de expresiones analíticas. Sin embargo, para

evaluar estas expresiones, es necesario procesar todos los eventos que llegan para obtener los

valores de los parámetros del modelo de rendimiento. De forma similar, cuando el número de

eventos crece, el tiempo de procesamiento de la información asociada aumenta también.

 Por lo tanto, si consideramos estas dos situaciones al mismo tiempo, el cuello de botella

causado por la recolección de eventos y su posterior procesamiento puede significar que cuando

la solución para un problema existente esté lista para ser insertada, tal vez el problema de

rendimiento haya cambiado o desaparecido.

 Se concluye que estos problemas limitan las propiedades de escalabilidad de MATE.

Por ello, con el objetivo de aumentar la usabilidad de MATE, en el trabajo expuesto en [45] [46]

se realiza un estudio para proporcionar a MATE la escalabilidad necesaria. Se propone una

nueva aproximación de recolección y preprocesado de eventos jerárquica-distribuida, cuyo

objetivo es resolver el cuello de botella que significa el Analizador. Esta aproximación se basa

en la distribución de la recolección de eventos lo cual disminuye la sobrecarga con respecto a la

manera original centralizada en la que dicha recolección era llevada a cabo, y el preprocesado

de operaciones acumulativas o de comparación siempre que sea posible.

 Los resultados de este trabajo muestran la resolución del cuello de botella que

presentaba la aproximación centralizada empleada por MATE originalmente. Además se

presenta una mejora en la sincronización del proceso de análisis con la ejecución de la

aplicación ya que la estructura jerárquica de recolección de eventos aumenta la probabilidad de

detectar y procesar cada evento tan rápido como es recibido. Este hecho logra además un

decremento en el tiempo de procesamiento del Analizador debido al preprocesado de eventos

realizado. De tal modo, las ideas establecidas en este trabajo, suponen una buena base de partida

para escalar el proceso de análisis en MATE.

Capítulo 4. Modelo de rendimiento para aplicaciones Master/Worker

51

Capítulo 4

Modelo de rendimiento para

aplicaciones Master/Worker

4.1 Introducción

La predicción de rendimiento es un aspecto importante para conseguir ejecuciones eficientes en

programas paralelos. Conseguir un buen rendimiento de un código paralelo es una tarea ardua y

difícil debido a la complejidad de los sistemas multiprocesador y a las dificultades en el análisis

de su rendimiento. Por ello, la predicción del rendimiento es una utilidad esencial para la

depuración de programas paralelos ya que ofrece información interesante para aumentar la

eficiencia de los mismos.

 Actualmente existen varias alternativas para obtener un modelo de rendimiento de las

aplicaciones usando diferentes aproximaciones. En general estas aproximaciones se pueden

clasificar en tres categorías:

- Modelado por simulación.

 Un simulador, construido como una aplicación software, es un sistema completo

 que emula el comportamiento de cada uno de los subsistemas de una arquitectura

 paralela. No sólo emula el comportamiento temporal de cómo se ejecuta en él un

 determinado algoritmo, sino que también es capaz de extraer otros parámetros de la

Capítulo 4. Modelo de rendimiento para aplicaciones Master/Worker

52

 arquitectura del sistema multicomputador: fallos de caché, instrucciones de procesador

 ejecutadas, parámetros de la red de interconexión, etc.

 Esta técnica de evaluación de rendimiento está especialmente indicada para

 desarrollar nuevas arquitecturas paralelas ya que permite observar el comportamiento de

 aplicaciones en sistemas que todavía no han sido implementados. Sin embargo, simular

 el comportamiento de aplicaciones enteras puede ser muy costoso y por tanto no es

 adecuado para utilizar estos modelos en herramientas de evaluación de rendimiento

 interactivas.

- Modelado analítico.

 La idea básica de los modelos analíticos consiste en modelar tanto la

 arquitectura paralela como el algoritmo usando métodos analíticos. El programa

 paralelo que está siendo desarrollado puede analizarse independientemente de la

 arquitectura en que va a ser implementado, lo que permite incluso analizar las posibles

 arquitecturas o sistemas futuros que todavía estén en diseño y que podamos modelar por

 una serie de parámetros.

 Los modelos analíticos son métodos rápidos y efectivos comparados con otras

 técnicas de modelado, ya que utilizan soluciones eficientes basadas en ecuaciones

 matemáticas. Sin embargo, el grado de fiabilidad con respecto a la realidad puede

 quedar mermado por las características de los parámetros elegidos para el modelo y es

 inherente a las suposiciones y simplificaciones que se hacen del sistema paralelo y del

 algoritmo.

- Modelado por obtención de métricas y trazas.

 La mejor forma de obtener resultados precisos para modelar una aplicación es

 medir su comportamiento en un sistema paralelo real. Analizando los datos de traza

 obtenidos, el usuario puede identificar y corregir los cuellos de botella en la aplicación,

 pero esto significa tener a disposición un sistema paralelo para realizar el desarrollo de

 los programas. Además se necesitan herramientas específicas de medida como librerías

 de instrumentación y herramientas de análisis de traza, como las expuestas en la sección

 2.21 del capítulo 2. Estas técnicas se usan normalmente para extraer los parámetros que

 luego se utilizarán en los modelos analíticos, en las simulaciones, para validar un

 modelo de rendimiento determinado, etc.

 En el presente trabajo de investigación se ha estudiado el modelo de rendimiento

expuesto en [9] para aplicaciones desarrolladas bajo un paradigma Master/Worker. Se trata de

un modelo analítico cuyos parámetros corresponden a medidas de rendimiento que determinan

Capítulo 4. Modelo de rendimiento para aplicaciones Master/Worker

53

el comportamiento de la aplicación en un sistema paralelo real; tiene como objetivo mejorar el

rendimiento de aplicaciones construidas bajo el citado paradigma atacando los problemas de

rendimiento que las caracterizan.

 Las aplicaciones Master/Worker pueden sufrir dos cuellos de botella de rendimiento

relacionados con su estructura y funcionalidad: el primero de ellos es el desbalanceo de carga de

los workers, lo cual puede producir largos periodos de inactividad para workers rápidos o

bajamente cargados; y el segundo es el uso de un inadecuado número de workers para procesar

el conjunto de tareas. De este modo, el modelo de rendimiento estudiado intenta solventar los

citados problemas siguiendo una estrategia de actuación sobre la aplicación basada en 2 fases:

una primera fase que emplea una estrategia para balancear la carga de manera que los recursos

se usan de forma eficiente y una segunda para predecir el número de workers más adecuado

para mejorar el rendimiento de la aplicación.

 Una vez introducida la problemática y conceptos principales, en las siguientes secciones

se expone de manera detallada el modelo de rendimiento para aplicaciones Master/Worker. En

concreto se describe aquellas expresiones y conocimientos que se han aplicado directamente en

el presente trabajo de investigación. Primeramente se planteará la estrategia seguida para

alcanzar el balanceo de la carga computacional y a continuación se describirá los índices

empleados para predecir el número de workers que optimizan tiempo de ejecución y uso de

recursos.

4.2 Balanceo de la carga entre los workers

El tiempo de ejecución para una aplicación Master/Worker con N workers y un conjunto de

tareas que pueden ser secuencialmente procesadas en un tiempo T, se encuentra limitado en un

rango comprendido entre T/N (límite inferior), y T (límite superior), teniendo en cuenta que en

dichas expresiones queda omitido el tiempo de comunicación. De tal modo, que conseguir un

tiempo de ejecución cercano al límite inferior depende principalmente de la existencia de un

buen balanceo de carga entre los workers, lo cual a su vez se basa en una buena política de

distribución de datos.

 En general las técnicas de balanceo de carga intentan compensar el desbalanceo

asignando más trabajo a aquellos workers que terminan su trabajo antes. Para lograr el balanceo

estas técnicas realizan una distribución parcial dividiendo el conjunto de tareas en diferentes

porciones llamadas batches, cuyo tamaño queda determinado por un factor de partición. De tal

modo, que el número de tareas asignadas a cada batch depende de la estrategia de distribución

seguida, y es posible que sea diferente de un batch a otro. La idea es distribuir el primero de

esos batches entre los workers en trozos o chunks del mismo tamaño, y cuando un worker

Capítulo 4. Modelo de rendimiento para aplicaciones Master/Worker

54

termine el procesamiento de su chunk asignado el master le enviará un nuevo chunk del Batch

que corresponda. Este proceso, mostrado en la figura 4.1, continúa hasta que todos los batches

han sido distribuidos. Partiendo de esta idea se obtiene que aquellos workers que han recibido

tareas más pesadas no reciban más carga y workers que han recibido tareas más ligeras sean

empleados para realizar más trabajo.

Figura 4.1 Técnica de balanceo de carga

 Existen diferentes estrategias para determinar el tamaño de un batch con el propósito de

obtener un buen balanceo de carga con costes mínimos en computación y comunicación. En el

trabajo estudiado expuesto en [9] se plantean 3 principales técnicas de balanceo de carga:

- Fixed Size Chunking (FSC), el cual consiste en dividir el conjunto de tareas en un

determinado número de batches de igual tamaño. En este caso, para una aplicación en

concreto, se debe intentar encontrar cuál es el mejor número de batches para mejorar el

balanceo de carga.

- Dynamic Predictive Factoring (DPF), parte de la idea de construir el primer batch con

alguna porción del conjunto de tareas, el segundo batch con la misma porción de las

tareas restantes, y así de manera sucesiva hasta alcanzar un límite fijado en el tamaño de

los batches.

Capítulo 4. Modelo de rendimiento para aplicaciones Master/Worker

55

- Dynamic Adjusting Factoring (DAF), presenta las mismas características que DPF pero

empleando un factor variable para ir calculando el tamaño de los batches teniendo en

cuenta las condiciones actuales de carga en la aplicación.

 En el presente trabajo de investigación se ha implementado DAF como estrategia para

alcanzar el balanceo de carga dentro del modelo de mejora de rendimiento para aplicaciones

Master/Worker.

4.2.1 Dynamic Adjusting Factoring (DAF)

Dynamic Adjusting Factoring [47] es una política de distribución de datos que dinámicamente

intenta adaptar el factor de partición a las actuales condiciones de la aplicación. La política de

Factoring original [48] en la que se basa, destinada a la gestión de bucles paralelos, intenta

asignar a los procesadores los chunks más grandes posibles de las iteraciones paralelas del bucle

minimizando la probabilidad de exceder el tiempo de ejecución óptimo (T/N).

 Este Factoring para bucles paralelos asume que el tiempo de ejecución de un chunk es

una variable aleatoria obtenida como la suma de variables aleatoria idénticas, cada una de las

cuales representa una iteración del bucle paralelo. Este modelo original tiene en cuenta el

comportamiento independiente de todas las iteraciones porque su tiempo de ejecución puede ser

determinado.

 Este modelo puede ser fácilmente adaptado a aplicaciones Master/Worker sustituyendo

las iteraciones del bucle paralelo por tareas. En este caso, la variable aleatoria queda definida

como el tiempo de procesamiento de una tarea (C), el cual es inferido dividiendo el tiempo de

ejecución de un chunk entre el número de tareas presentes en ese chunk.

 La formulación matemática de este modelo asume que el entorno presenta N workers

disponibles para ejecutar M tareas (M>>N), cada una de las cuales queda modelada mediante

una variable aleatoria C caracterizada por sus parámetros estadísticos de media (µC) y

desviación estándar (σC). Además se considera que el entorno es homogéneo, todos los

procesadores tendrán la misma media y desviación estándar del tiempo de procesamiento de

tarea.

 Aceptando que inicialmente todos los workers están ociosos, el tiempo de ejecución de

N chunks de F0 tareas en paralelo puede ser modelado por un estadístico de orden N, siendo F0

el número de tareas asignadas en cada chunk del primer batch. El valor esperado para el

estadístico de orden P para cualquier distribución de media µ y desviación estándar σ se

encuentra limitada por la expresión:

ߤ ൅ ൫ሺܰߪ െ 1ሻ √2ܰ െ 1⁄ ൯ ൑ ߤ ൅ ඥܰߪ 2⁄ (4.1)

Capítulo 4. Modelo de rendimiento para aplicaciones Master/Worker

56

 Si el primer batch tiene chunk de tamaño F0 tareas, el tiempo de ejecución de un worker

puede ser modelado como una nueva variable aleatoria obtenida por el producto de la variable

aleatoria del tiempo de procesamiento por tarea, y el número de tareas F0. Esta nueva variable

tendrá una media µC F0 y una desviación estándar σCF0. Así, el valor esperado del estadístico de

N chunks paralelos (cada uno con F0 tareas) en el primer batch es:

଴ܨ஼ߤ ൅ ଴ඥܰܨ஼ߪ 2⁄ (4.2)

 Siendo el propósito no superar el tiempo óptimo de ejecución, el cual viene expresado

por µC(M/N), que se cumpla la condición impuesta por la expresión

଴ܨ஼ߤ ൅ ଴ඥܰܨ஼ߪ 2⁄ ൌ ஼ሺܰߤ 2⁄ ሻ es el objetivo de la política de ajuste dinámico para el número

de workers. Para alcanzar ese fin, se necesita calcular F0, el cual sería la porción del conjunto

completo de tareas a ser distribuidas en el primer batch dividido entre el número de procesos,

ܯ ሺݔ଴ܰሻ⁄ , donde x0 es el inverso del factor de partición usado por la política para generar el

primer batch a ser distribuido. Se obtiene que:

଴ݔ ൌ 1 ൅ ቀߪ஼ඥܰ 2⁄ ቁ ஼ൗߤ (4.3)

 Para el cálculo de los siguientes batches, los chunks presentan un tiempo de ejecución

de media µC Fj y desviación estándar σCFj, pero ahora se necesita otra aproximación ya que no

se puede asumir que todos los workers están ociosos y por tanto el tiempo de comienzo de cada

chunk es distinto. Tal y como se expone en la política de Factoring original [48], el número de

tasks Fj se determina partiendo de la idea de que queda suficiente trabajo para solventar el

desbalanceo. De aquí se deduce las siguientes expresiones que permiten obtener xj, es decir, el

inverso del factor de partición para calcular el resto de los batches:

௝ܨ஼ߤ ൅ ௝ඥܰܨ஼ߪ 2⁄ ൌ ஼ߤ ൭൬
௝ܴ

ܰ
൰ െ ௝൱ܨ

௝ܨ ൌ
௝ܴ

௝ܰݔ

௝ݔ ൌ 2 ൅ ቀߪ஼ඥܰ 2⁄ ቁ ஼ൗߤ (4.4)

 Finalmente, se obtiene que mediante el uso de las ecuaciones (4.1) y (4.2) y empleando

una estrategia de sintonización dinámica es posible adaptar a las actuales condiciones de la

aplicación el factor de partición que determina el tamaño de los batches a lo largo de la

iteración.

Capítulo 4. Modelo de rendimiento para aplicaciones Master/Worker

57

 El algoritmo de distribución que se propone en [9] y que será el implementado en el

presente trabajo de investigación corresponde a los siguientes pasos:

1. Con el objetivo de acumular suficiente información para calcular el factor adaptativo de

distribución, la primera iteración de la aplicación es ejecutada empleando un factor fijo

de 0.5 para la creación de todos sus batches. Este valor inicial de factor es

empíricamente escogido porque en general es el que mejor comportamiento presenta.

2. Al principio de las restantes iteraciones se calcula x0, mediante la ecuación 4.1 y

empleando la información empleada en el pasado. De tal modo, a partir de x0 se obtiene

el valor del factor adaptativo para el primer batch. Seguidamente, empleando los

mismos datos históricos y la ecuación 4.2, calculamos x1 y por tanto el factor adaptativo

para el batch 1. De tal modo que los batchs 0 y 1 ya están preparados para ser

distribuidos.

3. A lo largo del proceso de distribución de tareas, cuando el número de chunks

disponibles del batch que actualmente está siendo repartido cae por debajo de un umbral

definido (el cual en nuestro trabajo ha sido fijado a la mitad del número de workers), se

usa la ecuación 4.2 para calcular xj, de manera que se obtiene el número de tareas del

batch j y éste se encuentra preparado para su distribución.

4. Si el número de tareas por chunk alcanza un límite mínimo predefinido, las restantes

tareas son distribuidas entre los últimos chunks creados, y el proceso de distribución

finalizada.

 Tal y como se deduce de la lógica del algoritmo presentado, los valores

correspondientes a los tiempos de cómputo por tarea empleados para calcular xj se deben de ir

acumulando a lo largo de la iteración y de una iteración a otra con el objetivo de que los valores

de los factores de distribución se vayan adaptando a las condiciones de balanceo que presenta la

aplicación.

 En el presente trabajo de investigación, con el objetivo de que en los factores de

distribución no influyan iteraciones previas en las cuales el estado de la aplicación era distinto al

que se presenta en la iteración actual, se ha definido una ventana que delimita el histórico de

acumulación de los tiempos de cómputo comentados.

Capítulo 4. Modelo de rendimiento para aplicaciones Master/Worker

58

4.3 Determinación del número de workers

Como se comentó en la sección 4.2, en una aplicación Master/Worker ideal el tiempo total de

ejecución sería igual el tiempo secuencial de ejecución dividido por el número de workers. Esto

hecho ocurriría si:

- No hubiese coste de comunicación.

- La aplicación se está ejecutando sobre una plataforma dedicada y homogénea.

- Se ha alcanzado un balanceo de la carga.

- La computación escala computacionalmente.

 En el entorno de computación definido por las anteriores características, cualquier

recurso disponible que pueda ser asignado a la aplicación debe serlo, porque será eficientemente

usado para mejorar el rendimiento. Sin embargo en el mundo real, se observa que el speedup de

una aplicación usualmente decrece cuando se añaden nuevos recursos, poniendo de manifiesto

una pérdida de eficiencia, ya que los costes introducidos (aumento del volumen de

comunicaciones) son mayores que las ventajas que los nuevos recursos proporcionan.

 Consecuentemente el modelo de rendimiento estudiado, tiene en cuenta todos estos

parámetros e intenta evaluar el comportamiento de la aplicación cuando se está ejecutando y

decidir si merece la pena cambiar el número de workers para mejorar el rendimiento de la

misma. En el desarrollo de dicho modelo se ha asumido que existe un solo worker por elemento

de procesamiento, y que la aplicación está balanceada. El desarrollo detallado del modelo así

como su discusión, se muestra y comentan en [9].

 En nuestro trabajo de investigación para determinar y sintonizar el número de workers

de la aplicación, se ha empleado un índice de rendimiento Pi que directamente permite

relacionar rendimiento con eficiencia en el uso de recursos. La principal ventaja de este índice

es que puede ser automáticamente optimizado porque permite encontrar la mejor relación

posible entre eficiencia y ganancia de rendimiento.

 La eficiencia de una aplicación se encuentra definida como la porción de tiempo que los

workers están realizando trabajo útil sobre el tiempo que éstos han estado disponibles para

realizar trabajo provechoso. Más formalmente, para x workers el índice de eficiencia E(x) queda

definido como ೎்

்ೌೡೌ೔೗
, donde ௖ܶ es el tiempo de procesamiento total de todos los workers, ௔ܶ௩௔௜௟

es ∑ ௜݈݅ܽݒܽݐ
௫ିଵ
௜ୀ଴ , y ݈݅ܽݒܽݐ௜ es el tiempo que el worker i ha estado disponible para hacer trabajo

útil, lo cual para una aplicación como las que se pretende modelar, será el tiempo de una

iteración completa (௧ܶ). De tal modo, el índice de eficiencia para x workers viene dado por la

siguiente expresión:

Capítulo 4. Modelo de rendimiento para aplicaciones Master/Worker

59

ሻݔሺܧ ൌ ௖ܶ ݔ ௧ܶሺݔሻ⁄ . (4.5)

Consecuentemente, el índice de rendimiento para x workers sería:

ܲ݅ሺݔሻ ൌ ௧ܶሺݔሻ ⁄ሻݔሺܧ ൌ ݔ ௧ܶሺݔሻଶ ௖ܶ⁄ (4.6)

 Basándonos en las expresiones definidas en el modelo de rendimiento para describir el

comportamiento de una aplicación Master/Worker, y suponiendo que el protocolo de

comunicación de la aplicación a modelar es asíncrono (el master realiza una operación de envío

y los datos son almacenados en un buffer intermedio de forma que el siguiente envío puede

realizarse antes que el envío previo haya finalizado), el tiempo de una iteración completa viene

definido por la siguiente expresión:

௧ܶሺݔሻ ൌ 2݉௢ ൅ ൣ൫ሺݔ െ 1ሻߙ ൅ 1൯ܸߣ ൅ ௖ܶ൧ ⁄ݔ (4.7)

 En la anterior expresión analítica, se identifican los siguientes parámetros que

caracterizan el modelo de rendimiento:

- mo: latencia de la red, en milisegundos (ms).

 .coste de comunicación por byte (inverso del ancho de banda), en ms/byte :ߣ -

- ܸ: volumen total de comunicación, en bytes.

 .porción de V enviado a los workers :ߙ -

- ௖ܶ: tiempo total de procesamiento, en ms.

- n: número de workers actual de la aplicación.

 En conclusión, el índice de rendimiento Pi permitirá obtener para una aplicación

Master/Worker el número de workers que maximiza el rendimiento, minimizando tiempo de

ejecución, sin desperdiciar recursos, independientemente del valor de los parámetros que

caracterizan a dicha aplicación.

4.4 Definición del modelo de rendimiento para sintonización

dinámica

Los problemas de rendimiento que resuelven las dos estrategias planteadas en las secciones

anteriores se caracterizan porque dependen de condiciones dinámicas, tales como la cantidad de

tareas disponibles o la carga de los procesadores; de modo que, dichos problemas son

apropiados para ser resueltos dinámicamente. Por tanto, la integración en MATE del modelo de

rendimiento que contiene las dos estrategias descritas, permitirá, mediante el proceso de

sintonización dinámica, intentar resolver esos problemas partiendo de la situación más

adecuada.

Capítulo 4. Modelo de rendimiento para aplicaciones Master/Worker

60

 Dicha integración se ha realizado mediante el diseño e implementación del tunlet

adecuado. Como se comentó en la sección 3.3.3 del capítulo 3, los tunlets son el núcleo de la

sintonización automática y dinámica implementada por MATE, en términos de representación

del conocimiento y constituyen el mecanismo inteligente empleado por MATE en la fase de

análisis. Cada tunlet define e implementa una particular técnica de sintonización, de tal modo

que en nuestro caso de estudio, el tunlet que se ha diseñado plantea la lógica de análisis

necesaria para aplicar el modelo de rendimiento estudiado para aplicaciones Master/Worker.

 Es de destacar que el modelo de rendimiento planteado en las secciones previas fue

desarrollado en el mismo grupo de investigación que ha diseñado e implementado el entorno de

sintonización dinámica MATE y se encuentra estrechamente asociado con dicha herramienta.

Por eso, la definición y estructura del modelo de rendimiento se adapta a la organización del

conocimiento requerida por MATE en la fase de análisis durante el proceso de sintonización.

Es decir, en las estrategias definidas se pueden distinguir (a) el conjunto de puntos de medida

que deben ser monitorizados, (b) las expresiones de rendimiento a evaluar con dichos puntos de

medida y (c) los parámetros críticos a modificar para mejorar el rendimiento de la aplicación

 En el caso de la estrategia de balanceo de carga detallada anteriormente, MATE como

entorno de sintonización dinámica, para poder modificar de forma automática y dinámica el

factor de distribución solo necesita monitorizar el tiempo (ܿݐ௜) que emplea cada worker en el

procesamiento del chunk asignado para poder estimar de este manera la media µC y la

desviación estándar σC. De este modo, en la tabla 4.1 se presenta la definición formal de esta

primera estrategia del modelo de rendimiento.

Puntos de Medida

 .௜: tiempo de cómputo de cada worker, en msܿݐ -

Expresiones de rendimiento

Expresión analítica para obtener el factor de distribución del
primer batch de la iteración:

଴ݔ ൌ 1 ൅ ቀߪ஼ඥܰ 2⁄ ቁ ஼ൗߤ

Expresión analítica para obtener el factor de distribución del
resto de los batches a lo largo de la iteración

௝ݔ ൌ 2 ൅ ቀߪ஼ඥܰ 2⁄ ቁ ஼ൗߤ

Puntos/Acciones de
sintonización

El factor de distribución será el elemento a sintonizar. Su valor
puede ser modificado a lo largo de toda la iteración.

Tabla 4.1 Definición de la estrategia de balanceo de carga para su uso bajo sintonización dinámica

 Por otro lado, para determinar el número de workers que maximiza el rendimiento,

Capítulo 4. Modelo de rendimiento para aplicaciones Master/Worker

61

 MATE necesita monitorizar la latencia de la red (m0) y el coste de comunicación por

byte (ߣ) como parámetros que caracterizan el sistema de cómputo. Además para calcular el

volumen total de comunicación V que tiene lugar en la aplicación, es necesario determinar el

tamaño de las comunicaciones establecidas entre el master y los workers (ݒ௜ y ݒ௠). Y

finalmente el tiempo de cómputo total Tc será calculado mediante el tiempo de procesamiento

 de cada uno de los workers que participan en la ejecución. La siguiente tabla 4.2 muestra (௜ܿݐ)

la definición formal de la segunda estrategia que compone el modelo de rendimiento estudiado.

Puntos de Medida

- m0: latencia de la red, en ms.
 .coste comunicación por byte, en ms/byte :ߣ -
 .௜: tamaño de las tareas enviadas al worker i, en bytesݒ -
 ௠: tamaño de los resultados enviados al master desdeݒ -

cada worker, en bytes.
 ௜: tiempo de cómputo de cada worker, en msܿݐ -

Expresiones de rendimiento

La expresión que se ha de evaluar es el índice de rendimiento
para distinto número de workers:

ܲ݅ሺݔሻ ൌ
ݔ ௧ܶሺݔሻଶ

௖ܶ

Donde el tiempo de ejecución de una iteración ௧ܶሺݔሻ es

௧ܶሺݔሻ ൌ 2݉௢ ൅
ൣ൫ሺݔ െ 1ሻߙ ൅ 1൯ܸߣ ൅ ௖ܶ൧

ݔ

Puntos/Acciones de
sintonización

El número de workers de la aplicación será el elemento a
sintonizar. El nuevo valor será aquel que prediga un menor
tiempo de ejecución y mejor aprovechamiento de los recursos.

Tabla 4.2 Definición de la estrategia de determinación del número de workers para su uso bajo

sintonización dinámica

62

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

63

Capítulo 5

Desarrollo del modelo de

rendimiento en MATE

5.1 Introducción

En el trabajo de investigación expuesto hasta el momento, se ha presentado la metodología de

investigación seguida para conseguir el objetivo establecido inicialmente: sintonizar mediante

MATE una aplicación empleada en computación de altas prestaciones desarrollada bajo un

paradigma Master/Worker.

 Inicialmente se comenzó por un estudio en profundidad de la herramienta MATE.

Recordando lo expuesto en el capítulo 3, MATE (Monitoring, Analysis and Tuning

Environment) es, como su nombre indica, una herramienta creada para adaptar y controlar la

ejecución de aplicaciones paralelas. Este entorno, trabaja sobre la aplicación en tres fases

diferentes y continuas: monitorización, análisis y sintonización. Inicialmente instrumenta una

aplicación durante el tiempo de ejecución de forma dinámica y automática para obtener

información sobre el comportamiento de dicha aplicación. La fase de análisis busca los

problemas, detecta sus causas y proporciona las soluciones para eliminar esos problemas de

rendimiento. Finalmente, MATE sintoniza la aplicación aplicando las soluciones

dinámicamente.

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

64

 Para que la fase de análisis tenga lugar, MATE necesita poseer el conocimiento sobre

el/los problemas de rendimiento que se quieren resolver. Los modelos de rendimiento

constituyen dicho conocimiento empleado por MATE para conducir el proceso de análisis,

determinando la información que se necesita recopilar durante la ejecución (puntos de medida),

como evaluar la información recogida (funciones de rendimiento) y que cambios se necesitan

para sintonizar la aplicación (puntos/acciones/sincronizaciones de sintonización).

 De tal modo, el segundo paso realizado en nuestra metodología ha sido el estudio de un

modelo de rendimiento para aplicaciones Master/Worker, cuyo principal objetivo es resolver los

problemas de rendimiento que en ellas se presentan: desbalanceo de carga entre los workers y

empleo del adecuado número de workers. En la sección 4.4 del capítulo 4, se presenta la

representación de dicho modelo en los términos los puntos de medida, funciones de rendimiento

y puntos de sintonización.

 Por tanto, una vez conocida la herramienta de sintonización y estudiados los problemas

de rendimiento que se desean resolver y su representación, el último paso para lograr el objetivo

del presente trabajo, es el diseño y desarrollo del tunlet para ser integrado en MATE.

 Los tunlets constituyen el núcleo de la sintonización dinámica y automática

implementada por MATE, en términos de representación del conocimiento. Técnicamente, un

tunlet es una librería que condensa la información sobre un determinado problema de

rendimiento que puede afectar a un tipo de aplicaciones paralelas, implementando una particular

técnica de sintonización. En el presente trabajo, el tunlet implementado encapsulará toda la

información necesaria derivada del modelo de rendimiento estudiado.

 El conocimiento presente en el tunlet será usado para las fases de monitorización,

análisis y sintonización a lo largo de la ejecución de la aplicación bajo MATE. Para ser capaz de

cooperar con MATE, la implementación del tunlets estará basada en la API de Sintonización

Dinámica proporcionada por el módulo de análisis de la herramienta.

 Para poder aplicar el modelo de rendimiento estudiado para aplicaciones

Master/Worker, encapsularlo en un tunlet e integrarlo en MATE, se realizó una compleja

búsqueda de aplicaciones situadas bajo dicho paradigma y empleadas en computación

paralela/distribuida. Esta búsqueda permitió llegar a la conclusión de que actualmente las

aplicaciones Master/Worker no presentan un uso muy extendido en computación de altas

prestaciones debido al cuello de botella que supone la comunicación establecida entre un único

master y todos los workers.

 A pesar de ello, y con el fin de poder obtener los conocimientos deseados en el presente

trabajo de investigación, se optó por una aplicación paralela/distribuida desarrollada en el

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

65

Departamento de Arquitectura de Computadores y Sistemas Operativos de la Universidad

Autónoma de Barcelona. Se trata de un simulador de incendios forestales, denominado Xfire

[10].

 En el presente capítulo, se presenta el desarrollo del modelo de rendimiento en MATE.

En la siguiente sección se presenta detalladamente la aplicación que va ser objeto de la

sintonización. Seguidamente se plantea la metodología seguida en el diseño y desarrollo del

tunlet, la cual se concreta con la interpretación de las dos técnicas de mejora de rendimiento de

aplicaciones Master/Worker bajo dicha metodología. Finalmente se presentan las pruebas

experimentales realizadas y los resultados obtenidos.

5.2 Xfire

5.2.1 Simuladores de incendios forestales

Los fuegos forestales son uno de los mayores riesgos medioambientales, especialmente en el sur

de Europa. El diagnóstico de la variabilidad y propagación espacial de los mismos en un

territorio requiere de la disponibilidad de una base científico-técnica, desde la cual se pueda

ayudar y/o sustentar la toma de decisiones. La disponibilidad de aplicaciones informáticas en

los que se integran el conjunto de variables que identifican la propagación y emisión energética

de las llamas, constituye un elemento de apoyo para las estrategias de defensa de la superficie

forestal ante grandes incendios forestales.

 En los últimos años, los simuladores de la propagación de los incendios forestales se

han afincado como un instrumento más para la toma de decisiones de los gestores forestales,

útiles para decidir qué acciones son las más adecuadas para minimizar los riesgos o daños de un

fuego.

 La simulación de la propagación de los incendios forestales mediante las aplicaciones

informáticas se fundamenta en la modelización de combustibles y en las fórmulas semi-

empíricas desarrolladas por Rothermel [49]. El modelo de Rothermel es uno de los modelos más

utilizados para predicción del comportamiento del fuego. La mayoría de los simuladores de

comportamiento del fuego basan sus cálculos en este modelo. Sus operaciones calculan el índice

de máxima propagación y la intensidad de reacción del fuego conociendo ciertas propiedades

del combustible y del ambiente donde se desarrolla el incendio.

 En la literatura existen varios modelos de propagación de fuegos forestales [50] los

cuales parten de la idea de que la propagación de un fuego es un problema muy complejo que

involucra varios aspectos que deben ser considerados relacionados con características

meteorológicas (viento, temperatura, etc), de vegetación y topografía.

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

66

 En el presente trabajo se ha seleccionado para ser objeto de sintonización dinámica la

aplicación de simulación de la propagación de incendios forestales Xfire. Esta aplicación parte

su análisis de la geometría actual del frente del incendio, para evaluar su posible avance

considerando los diferentes aspectos climáticos, vegetación y topografía del terreno. En el

siguiente apartado se expone con mayor detalle las principales características de este simulador.

5.2.2 Visión general de Xfire

Xfire [10] [51] es una aplicación paralela de cómputo intensivo que simula la propagación de

incendios forestales.

 Xfire simula la propagación de la línea de fuego basándose en el modelo de Andre-

Viegas [52] [53], cuyo ciclo de operación se muestra en la figura 5.1. Xfire define la línea de

fuego como un conjunto de secciones donde cada sección contiene un conjunto de puntos. Cada

sección debe ser desglosada para calcular el progreso individual de cada punto en cada paso de

tiempo. Cuando el progreso de todos los puntos ha sido calculado, es necesario agregar las

nuevas posiciones de los puntos para reconstruir la línea de fuego.

Figura 5.1 Ciclo de operación del modelo de André-Viegas

 Para simular la propagación de la línea de fuego, Xfire divide el frente de fuego

empleando dos modelos: uno global y otro local. El modelo global permite la partición de la

línea de fuego en secciones y la unión de estas secciones en la siguiente posición del frente

aplicando algoritmos numéricos. Mientras se calcula una nueva posición de la línea de fuego, el

frente del fuego puede expandirse y bajo determinadas circunstancias se pueden añadir más

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

67

puntos. Se debe tener en cuenta que las secciones son independientes, pero los puntos finales de

cada sección son compartidos entre secciones vecinas. El modelo local calcula el movimiento de

cada punto individual. Mientras se evalúa un punto, se usan algoritmos numéricos y se tiene en

cuenta condiciones estáticas y dinámicas definidas en el modelo numérico (características

meteorológicas, vegetación y topografía).

 La simulación de la propagación de incendios forestales implica diferentes pasos que

requieren complejos cálculos que hacen que el proceso sea costoso computacionalmente en lo

referente al tiempo consumido. La primera implementación de proyecto Xfire fue secuencial y

se ejecutó en un PC. Sin embargo, debido al pobre rendimiento, los desarrolladores de Xfire

decidieron implementarla de forma paralela. Para ello emplearon paralelismo de datos, mediante

el cual el movimiento de cada sección que compone la línea de fuego puede ser calculado

independientemente. De esta forma la línea de fuego se divide en N secciones, y cada sección es

ejecutada por distintos procesos que forman parte de la máquina paralela.

 Inicialmente Xfire se implementó empleando como librería de comunicación paralela

PVM. Posteriormente, y debido al avance en el uso de la librería de paso de mensajes MPI,

también fue implementada bajo dicha librería. Ambas implementaciones seguían un paradigma

de implementación paralela Master/Worker. El algoritmo general de esta aplicación usando un

paradigma Master/Worker es el siguiente:

‐ Proceso master

o Obtienen la línea de fuego inicial.

o Genera una partición de la línea de fuego y la distribuye entre los workers.

o Espera la respuesta de los workers.

o Si el tiempo de simulación ha terminado entonces finaliza la ejecución, en caso

contrario, compone una nueva línea de fuego, añadiendo puntos si es necesario y

vuelve al segundo paso.

‐ Proceso Worker

o Obtiene la sección de línea de fuego enviada por el master.

o Calcula la propagación local de cada punto de la sección (para calcular la posición

de un punto del modelo necesita conocer sus vecinos).

o Devuelve la nueva sección al master.

 Tal y como se muestra, el proceso de simulación de fuegos realizado por Xfire es

iterativo, de manera que en el algoritmo se realizan tantas iteraciones como el tiempo de

simulación establecido permita.

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

68

 Como datos de entrada, Xfire precisa de información que describa el terreno y las

condiciones en las que se produce el incendio y la línea de fuego inicial. Para ello, durante el

proceso de inicialización del algoritmo, Xfire toma los siguientes datos de entrada:

‐ Frente o línea de fuego inicial.

 Se caracteriza por la forma que puede presentar el frente (punto, línea, curva

 abierta o curva cerrada), el número de puntos que componen dicho frente y las

 coordenadas UMT de los mismos.

‐ Características meteorológicas.

 Se trata básicamente de información sobre la situación del viento. Se

proporciona las coordenadas UMT del viento, su dirección en grados y su velocidad en

kilómetros por hora.

‐ Vegetación.

 Se determina el tipo de modelo de vegetación que se encuentra sobre el terreno

donde se produce el incendio y los distintos parámetros que lo caracterizan, los cuales

serán utilizados en el modelo de simulación que emplea Xfire.

‐ Topografía.

 El terreno donde tiene lugar el incendio queda determinado por el conjunto de

puntos que caracterizan el modelo de vegetación. Estos puntos quedan establecidos por

coordenadas x, y, z y c.

‐ Tiempo de simulación.

 Para especificar el tiempo de simulación, la aplicación necesita tomar como

datos de entrada el tiempo inicial de simulación, el tiempo final y el incremento de

tiempo a simular en cada iteración del proceso.

5.2.3 Adaptación de Xfire al modelo de rendimiento

Como se comentó anteriormente, Xfire sigue un paradigma Master/Worker que explota el

paralelismo de datos presente en la funcionalidad del simulador de incendios. Para ello, el

master distribuye la línea de fuego entre todos los workers sin emplear ninguna técnica de

balanceo de carga; de tal modo que en cada iteración el frente de fuego es dividido en secciones

de igual tamaño que serán procesadas por los workers.

 En nuestro trabajo de investigación, se ha estudiado y adaptado Xfire para poder

sintonizarla siguiendo el conocimiento proporcionado por el modelo de rendimiento

Master/Worker expuesto en el capítulo 5, el cual intenta resolver los problemas de rendimiento

relacionados con el desbalanceo de la carga entre los workers y el uso de un apropiado número

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

69

de workers en la aplicación. Para ello ha sido necesario realizar un análisis del código fuente de

la misma; en concreto nuestro estudio se ha centrado en la sección de código del proceso master

encargada de la distribución del frente de fuego entre los workers. La adaptación realizada

queda caracteriza por dos aspectos principales:

‐ Transformación de la lógica seguida en el proceso de distribución de trabajo de forma

que permita la gestión de la línea de fuego como un conjunto de batchs de tamaño

variable que se irán creando a lo largo de la iteración.

‐ La determinación del tamaño de los batchs, tal y como se comentó en la sección X,

varía a lo largo de una iteración de la simulación dependiendo de un factor de partición

cuyo valor refleja las condiciones actuales de balanceo de carga de la aplicación. Por

tanto, es necesaria la introducción de dicho factor como variable que forma parte de la

lógica de reparto del frente de fuego entre workers y que será sintonizada en el proceso

de mejora de rendimiento seguido por MATE.

 Es de destacar el hecho de que si la aplicación Xfire hubiese sido creada empleando un

framework conocido de diseño y programación paralela, se reduciría la complejidad que alcanza

el proceso de sintonización, ya que se conocería de antemano el paradigma de programación de

la aplicación y su estructura funcional.

5.3 Metodología de diseño y desarrollo del tunlet

5.3.1 Metodología

El objetivo que se persigue en este capítulo es encapsular en un tunlet toda la información de

cómo resolver los problemas de rendimiento definidos en el modelo estudiado. Este tunlet será

usado a lo largo de la ejecución de Xfire para dirigir su monitorización, análisis y sintonización

a través de la herramienta MATE.

 Para realizar un correcto diseño y desarrollo del tunlet, hay que tener en cuenta que su

definición debe incluir la identificación e interpretación de una serie de elementos vinculados

principalmente con el modelo de rendimiento y la aplicación bajo estudio. La interdependencia

entre estos componente se refleja en la figura 5.2.

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

70

Figura 5.2 Interrelación entre la aplicación, el modelo de rendimiento y el tunlet

 En lo referente al modelo de rendimiento para aplicaciones Master/Worker en nuestro

caso de estudio, constituye la base del tunlet que se ha definido, debido a que proporciona

información relativa a qué debería ser medido en la aplicación, cómo detectar y resolver los

posibles problemas de rendimiento y qué es necesario modificar para ello en dicha aplicación.

Entonces desde el punto de vista del modelo de rendimiento es necesario definir:

- Los puntos de medida.

- Las funciones de rendimiento analíticas.

- Puntos/Acciones/Sincronizaciones de sintonización.

 Sin embargo, para instrumentar la aplicación en los procesos de monitorización y

sintonización, el modelo de rendimiento no es suficiente, se necesita algún conocimiento

adicional sobre la aplicación, tal como las variables las cuales serán usadas como métricas, los

valores que van a ser cambiados, y el modelo de programación, entre otros, para tener una

visión conceptual de la aplicación. Por tanto, desde el punto de vista de la aplicación, en nuestro

trabajo hemos tenido en cuenta:

- El modelo de programación que sigue la aplicación, identificando los diferentes tipos de

procesos involucrados en el esquema.

- Las variables o valores que se puede manipular, con el objetivo de localizar las

variables a sintonizar.

- Las funciones cuya ejecución necesitamos detectar para recopilar información sobre el

comportamiento de la aplicación y enviarla como eventos.

 Con el propósito de poder modelar correctamente todas las interrelaciones existentes

entre la aplicación Xfire, el modelo de rendimiento para aplicaciones Master/Worker y el

mecanismo de encapsular el conocimiento en MATE, en el presente trabajo de investigación se

ha seguido una metodología de diseño y desarrollo del tunlet. El proceso que ésta describe

estimamos que es el más adecuado para culminar con un tunlet que guie el proceso de

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

71

sintonización deseado, de tal manera que puede ser generalizable para la sintonización bajo

MATE de cualquier aplicación empleando cualquier modelo de rendimiento adecuado a ésta.

La metodología definida consta de los siguientes pasos:

- Proporcionar un modelo de rendimiento.

 En nuestro trabajo de investigación se trata del modelo de rendimiento detallado

en el capítulo 4. Tal y como se expuso, se trata de un modelo preexistente desarrollado

en anteriores investigaciones para aplicaciones bajo paradigma Master/Worker.

- Comprensión del modelo de rendimiento.

 Una vez que el modelo de rendimiento se ha determinado, la comprensión del

mismo es un requerimiento básico debido a que el modelo debe de ser interpretado en

concordancia con la aplicación, en este caso Xfire.

 En nuestro caso, el proceso de comprensión del modelo ha permitido establecer

la correspondiente relación entre dicho modelo y el tunlet a desarrollar, mediante la

caracterización de los parámetros y las funciones de rendimiento del mismo.

- Interpretación del modelo de rendimiento.

 Este es la fase que conlleva establecer que valores, variables y funciones de la

aplicación se emplearán para interpretar los parámetros del modelo de rendimiento,

definir los eventos que se deben capturar, la información asociada a los mismos y los

distintos procesos que participan en la ejecución de la aplicación.

 Como se puede observar, las dos primeras fases de la metodología han sido ya

desarrolladas y expuestas en el capitulo precedente. De modo que el procedimiento de

interpretación del modelo de rendimiento es el proceso requerido para completar el diseño y

desarrollo del tunlet. Esta es la fase que se pretende mostrar en las siguientes secciones.

5.3.1.1 Interpretación del modelo de rendimiento

Cuando el modelo de rendimiento ha sido determinado y especialmente los distintos parámetros

de rendimiento se han comprendido, la fase de interpretación del modelo es fundamental ya que

en ella se identifican qué entidades de la aplicación se corresponden con los parámetros de

rendimiento.

 Este proceso incluye una serie de pasos relacionados con el estudio de la

correspondencia entre los distintos componentes del modelo de rendimiento y la estructura y

variables de la aplicación. Estos pasos son los siguientes:

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

72

- Identificación de los actores en la aplicación.

 En general, cada aplicación paralela posee distintos tipos de procesos

ejecutándose en paralelo y cooperando para resolver el problema. De modo que cada

tipo de proceso en el modelo de programación representa un actor.

 El tunlet que se diseñe necesita poseer esta información porque en general cada

tipo de proceso debe ser instrumentado de forma diferente dependiendo del papel que

juega en la ejecución de la aplicación. Es decir, para cada actor, se necesitan capturar

eventos distintos, de tal modo que la instrumentación insertada en los mismos también

variará.

- Identificación de la información/variables/valores.

 Los parámetros de rendimiento que caracterizan el modelo tienen que ser

interpretados de acuerdo a las variables, valores y funciones de la aplicación bajo

estudio, en este caso Xfire.

 El concepto de variable, corresponde a variables presentes en la aplicación;

mientras que un valor es el contenido de un determinado parámetro de una función o el

resultado de la misma. Tanto las variables como los valores pueden ser requeridos para

cambiar su valor o bien obtenerlo, es decir, son los elementos de la aplicación que

pueden ser instrumentados o sintonizados.

 En función de las características o naturaleza de cada parámetro de rendimiento,

en nuestro proceso de diseño debemos determinar cómo constituir su valor y cuál es el

evento que se debe definir para obtener la información asociada.

 En el desarrollo del tunlet el empleo de variables requiere una especial

importancia, ya que aquellas variables de las que se decida que es necesario requerir su

valor o cambiarlas, tienen que ser variables globales, condición expuesta por la librería

Dyninst al utilizarla como método de instrumentación dinámica. De tal modo, puede

ocurrir que se necesitan determinados cambios en la implementación de la aplicación

definiendo algunas variables como globales.

- Identificación de los eventos.

 Los eventos constituyen el mecanismo empleado por MATE para recopilar

información sobre el comportamiento de la aplicación. Los eventos son capturados en

las entradas o salidas de funciones y pueden contener información adicional asociada a

ellos.

 Entonces, de acuerdo a la semántica de los distintos parámetros que componen

nuestro modelo de rendimiento, debemos determinar cuáles son las entradas y salidas

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

73

de las funciones que tienen que ser capturadas, es decir, localizar aquellos puntos de

nuestra aplicación en los cuales se tiene disponible la información que se requiere.

- Determinación de cuándo y bajo qué circunstancias evaluar las funciones de

rendimiento y ejecutar el cambio de los puntos de sintonización.

 La recopilación de los eventos no solo permite al tunlet ir recopilando la

información necesaria para evaluar las funciones de rendimiento asociadas a la

estrategia de sintonización, sino que también determina cuando se debe evaluar dichas

condiciones y, bajo determinadas condiciones, ejecutar el cambio de los parámetros

críticos que permitirán la mejora de rendimiento de la aplicación.

 Esta metodología será la empleada para la interpretación de las dos técnicas de

sintonización estudiadas para mejorar el rendimiento de aplicaciones Master/Worker.

5.3.1.2 Requerimientos de MATE

Las fases de la metodología de diseño del tunlet expuestas en la sección 5.3.1, presentan

aspectos que son muy dependientes de los detalles de implementación de MATE, ya que se

encuentran muy relacionados con la manera en la que el Analizador representa y usa el

conocimiento.

 Si recordamos lo expuesto en el capitulo X (MATE), desde un punto de vista funcional,

el Analizador está dividido en dos partes principales que son la API de Sintonización Dinámica

(DTAPI) y los tunlets.

 La DTAPI constituye la interfaz que emplea el Analizador para comunicarse con las

fases de Monitorización y Sintonización. Esta API proporciona al Analizador una visión global

de la aplicación, las tareas y los eventos. Con respecto a los tunlets, ellos usan la API de

Sintonización Dinámica para gestionar la aplicación e invocar las peticiones de monitorización

y sintonización, y para manejar los eventos recopilando la información de la aplicación

necesaria para el análisis. Por tanto, la DTAPI constituye la interfaz que el tunlet debe emplear

para trabajar de forma coordina con MATE.

 Para la implementación del tunlet, en el estudio realizado se ha considerado tener

presente además los siguientes aspectos:

- Cómo capturar la información. Se han considerado los métodos proporcionados por la

DTAPI para instrumentar la aplicación, y en particular, para determinar las propiedades

que definen un evento. Hay que tener presente que para insertar un evento en un

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

74

proceso particular, se necesita un nombre para identificar el evento, donde se debe

insertar dicho evento en el código fuente y los atributos asociados a él.

- Como gestionar la información recopilada. Cuando un evento es insertado en un

proceso, es necesario determinar una entidad que controle ese evento cuando éste ocurre

y es recibido en la fase de análisis. Generalmente, los tunlets son los que controlan los

eventos, debido a que en ellos se encapsula la lógica para procesar la información e

interpretarla de acuerdo al modelo de rendimiento.

- Como y donde manejar la información. En el presente trabajo el tunlet desarrollado

gestiona una compleja estructura de datos para cada iteración de la aplicación. En tal

estructura, la información recopilada es almacenada en función de su procedencia:

información sobre la iteración, sobre los batches repartidos en la iteración y sobre los

workers.

- Cómo modificar la aplicación. De forma similar a la instrumentación para la

monitorización, cuando se requiere alguna información de sintonización se han de

considerar los métodos proporcionados por la DTAPI para introducir algunas

modificaciones en la aplicación. En nuestro trabajo, la modificación de la aplicación

únicamente se realizará mediante el cambio del valor de alguna variable.

 Teniendo en cuenta los conceptos expuestos en la fase de interpretación del modelo de

rendimiento y su dependencia con la implementación, en las próximas secciones se exponen la

especificación del tunlet creado a partir del modelo de rendimiento expuesto en el capitulo X y

la aplicación Master/Worker Xfire.

5.4 Desarrollo del tunlet

En la presente sección se muestra la especificación del tunlet que integrará las dos estrategias de

sintonización para mejorar el rendimiento en aplicaciones Master/Worker:

- Balanceo de la carga entre los workers.

- Adaptación del número de workers.

 La especificación del tunlet se realizará teniendo en cuanta la especificación de cada

una de las estrategias de sintonización, las cuales fueron expuestas detalladamente en el capítulo

4. Además la generación del tunlet se detallará partiendo de la metodología diseñada y

presentada en la sección 5.3.1.1.

 En la presente sección se aplica la metodología detallada en la sección previa para

definir y diseñar cada una de las técnicas de sintonización que componen el tunlet desarrollado,

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

75

teniendo en cuenta las interrelaciones entre el modelo de rendimiento, la aplicación Xfire y la

herramienta de sintonización MATE.

5.4.1 Balanceo de la carga entre workers

El desbalanceo de carga en sistemas paralelos puede ser causado por la heterogeneidad de los

procesadores, interferencias con el sistema operativo o irregularidad en las tareas asignadas a los

procesadores.

 El balanceo de carga dinámico es una técnica cuyo propósito es distribuir la carga entre

los procesos para evitar que algunos procesos se mantengan ociosos mientras que otros esperan

recibir trabajo y no hacen nada más. Esto se consigue asignando más trabajo a los procesadores

que terminan antes el trabajo asignado.

 Factoring es una estrategia de balanceo de carga que divide el número total de tareas a

procesar en bacthes. Cada batch tiene tantos chunks como procesadores están ejecutándose y

cada chunk contiene la misma cantidad de tareas.

 Tal y como se expuso en la sección X, en el presente trabajo de investigación se ha

estudiado una aproximación de la técnica de Factoring denominada Dynamic Adjusting

Factoring (DAF). Esta estrategia permite ajustar dinámicamente el tamaño de los batches a lo

largo de la ejecución teniendo en cuenta las condiciones actuales de balanceo de carga de la

aplicación.

5.4.1.1 Interpretación de la técnica de sintonización

Recopilando la información detallada en la sección X, los términos y conceptos que forman

parte de la técnica de sintonización para balancear la carga entre los workers son:

- N: número de workers.

- xi: inverso del factor de partición, porción de tareas incluidas en el batch i.

- C: tiempo de procesamiento medio por tarea (ms/tarea).

- µሺܥሻ: media del tiempo de procesamiento por tarea.

- σሺܥሻ: desviación estándar del tiempo de procesamiento por tarea.

- Batch: cada una de las partes en las que M es dividida a lo largo de la implementación

mediante el algoritmo DAF. Cada batch constituye un subconjunto de tareas.

 El objetivo de esta técnica es ajustar a lo largo de la ejecución de la aplicación el factor

de partición que determina el tamaño de los distintos batches en los que se va dividiendo el

conjunto total de tareas. Por tanto, dicho factor de partición constituye el punto de

sintonización de esta estrategia.

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

76

 Tal y como se detalló en la sección 4.3.1 del capítulo 4, el valor del factor de partición

se determina a partir del valor de xi. Éste se calcula mediante las siguientes expresiones:

௜ݔ ൌ

ە
۔

1ۓ ൅ ቀߪ஼ඥܰ 2⁄ ቁ ஼ൗߤ , ݅ ݅ݏ ൌ 0

2 ൅ ቀߪ஼ඥܰ 2⁄ ቁ ஼ൗߤ , ݅ ݅ݏ ് 0

 Ambas fórmulas analíticas constituyen las funciones de rendimiento de la técnica de

sintonización. La diferencia entre ambas expresiones radica en el hecho de que en el caso de la

creación del primer batch (cuando i = 0) los workers están sincronizados ya que se encuentran el

inicio de la iteración en espera de datos para ser procesados, mientras que para el resto de los

batches la disponibilidad de los workers depende de la velocidad con la que los previos batches

fueron procesados.

 Así, para el cálculo de xi necesitamos obtener el tiempo medio de procesamiento por

tarea (C), el cual es necesario para calcular ߤ஼ y ߪ஼ , y el número de workers N de la aplicación.

Identificación de actores.

La aplicación que va a ser sintonizada, tal y como se expuso en secciones previas, está

implementada bajo un paradigma Master/Worker. De tal modo, que en su ejecución podemos

identificar dos tipos de procesos que cooperan entre sí: un proceso master y N procesos worker.

Identificación de variables y valores.

Para esta técnica de sintonización, se necesitan interpretar xi, C y N, identificando las variables

y valores que en la aplicación representan estos parámetros.

- C tiene que ser calculado como la media del tiempo de cómputo empleado por un

worker en procesar cada una de las tareas recibidas. De tal modo, el parámetro puede

calcularse como ܥ ൌ ݉݁݀݅ܽሺܿݐ௜ ⁄ݏܽ݁ݎܽܶܰ ሻ, donde:

o tci equivale el tiempo que el worker i ha estado procesando las tareas asignadas.

Este tiempo se calcula tomando los instantes en los que el Worker comienza y

termina la fase de cómputo.

o NTareas es una variable en el proceso master que indica cuántas tareas son

enviadas a cada uno de los workers. También es empleada en el proceso de

recepción que realiza el master a lo largo de toda la iteración, con el objetivo de

comprobar que al final de la misma se han recibido todas las tareas que han sido

enviadas.

- N es obtenido de la variable NW del proceso master. Esta variable permite al master

controlar la cantidad de workers a lo largo de la iteración. Tiene que ser medida al

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

77

inicio de la iteración de la aplicación, y debe ser periódicamente actualizada en el caso

de que el número de workers pueda cambiar a lo largo de la ejecución.

- xi es el inverso del valor que tomará la variable que va a ser sintonizada (F0, F1 y F2),

es decir, el factor de distribución que determina el número de batchs. Esta variable se

sitúa en el proceso master ya que éste es el encargado de realizar la distribución de las

tareas entre los workers. Desde el punto de vista de la aplicación ha sido necesaria la

definición de 3 variables que actúan como factores de distribución, denominadas F0, F1

y F2. Esto se debe principalmente a la adaptación de la aplicación Xfire a la lógica del

proceso de sintonización:

o La variable F0 representa el factor de distribución para el primer batch de la

iteración.

o La variable F1 representa el factor de distribución para el segundo batch de la

iteración.

o La variable F2 representa el factor de distribución para el resto de los batches

de la iteración.

 Por último hay que tener en cuenta que son necesarias una serie de variables de control

que permiten crear el flujo propio de la lógica de análisis que corresponde a la técnica de

sintonización. Estas variables son:

- workerId, esta variable es usada por el proceso master para identificar el proceso worker

al que está enviando o de que proceso worker está recibiendo.

- batchId, esta variable está presente en el proceso master. Es necesaria porque existen

eventos cuya información está relacionada con un determinado batch. En concreto, está

variable es usada por el proceso master bajo dos circunstancias:

o Para identificar cada uno de los batches que se van creando a lo largo de la

iteración en función del factor de partición.

o Para identificar a que batch pertenece las tareas que está enviando a un

determinado proceso worker o que recibe de un determinado proceso worker.

- numChunk, esta variable es empleada por el proceso master para tener conocimiento

sobre el número de chunks que componen los batches que se van creando.

Generalmente, los batches tienen tantos chunks como workers están implicados en la

ejecución de la aplicación pero existe la excepción de los últimos batches de la

iteración.

- TheTotalWork, esta variable empleada en el proceso master representa en la aplicación

al número total de tareas de una iteración, es decir, el número de puntos totales de la

actual línea de fuego.

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

78

- iterId, esta variable está presente en el proceso master y en el proceso Worker. Para el

master esta variable se requiere para identificar cuando se recibe un evento a que

iteración pertenece para asociar la información a una correspondiente iteración. De

manera semejante, en el caso del proceso Worker, la identificación de la iteración es

necesaria para asociar a una iteración determinada la información de los eventos

generados en dichos procesos.

Identificación de eventos

El siguiente paso consiste en determinar cómo, cuándo y dónde capturar las variables y valores

previamente enumerados. Para ello se han definido una serie de eventos que serán insertados en

los procesos correspondientes y proporcionarán la información requerida por la técnica de

sintonización. Los eventos definidos son los siguientes:

- Inicio de iteración.

 Este evento se genera cada vez que el proceso master comienza una nueva

iteración en la aplicación, es decir, cuando comienza la distribución de la nueva línea de

fuego entre los workers.

 La información que presenta asociada es el número de iteración en la que se

encuentra la aplicación, el número de tareas totales a distribuir a lo largo de esa

iteración y el número de workers que participan.

 Para obtener estos datos, el evento se debe de insertar en la entrada de la

función global_sendreceive que realiza el proceso de distribución de datos.

- Fin de iteración.

 Este evento es capturado cuando el proceso master termina la recepción de los

resultados obtenidos por los workers.

 La información que presenta asociada es el número de la iteración que termina.

Y de la misma forma que el evento anterior es insertado en la función

global_sendreceive, pero en este caso a la salida de la misma.

- Envío de datos del master al worker.

 Este evento se genera cada vez que el proceso master envía el conjunto de tareas

que debe computar a un proceso worker.

 Este evento permite recopilar información relacionada con el identificador del

worker al que se le envía las tareas, el identificador del batch al que pertenecen dichas

tareas y el número de tareas enviadas. Para ello, el evento debe ser insertado en la

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

79

entrada del método global_sendwork, en el cual se realiza el empaquetado y envío de

todos los datos necesarios al worker determinado.

- Recepción de datos de los workers en el master.

 Este evento tiene lugar cada vez que el proceso master recibe el resultado del

procesamiento realizado por un worker determinado.

 Tiene asociada la misma información que el evento anterior, pero en este caso

debe ser insertado a la salida de la función global_receivework, en la cual se realiza la

recepción y desempaquetado de la información recibida por el master.

- Inicio cómputo de worker.

 Este evento se genera cuando un worker comienza el procesamiento del

conjunto de tareas recibidas.

 Mediante este evento se requiere recopilar información relacionada con la

iteración en la cual se encuentra computando el worker, el identificador del batch al

cual pertenece el chunk sobre el que va a computar, y la marca de tiempo asociada a

dicho comienzo de cómputo.

 Para obtener correctamente dicha información, el evento debe ser insertado a la

entrada de la función arcStepKernel, la cual funcionalmente representa el proceso de

cómputo realizado por cada worker.

- Fin de cómputo de Worker.

 Este evento complementa al evento anterior, y se genera cuando un worker

finaliza el cómputo del chunk enviado.

 Se recopila la misma información que en evento de inicio de cómputo, pero en

la salida de la función arcStepKernel.

- Creación de un nuevo batch

 Este evento se genera cada vez que el proceso master durante la fase de reparto

de tareas entre los workers calcula un nuevo batch con un determinado factor de

distribución.

 La información asociada a este evento es el identificador del nuevo batch creado

y su tamaño, es decir, el número de chunks que lo componen. Para recopilar dicha

información el evento debe ser insertado en la función Factoring_SetNumTuples, que

forma parte del procedimiento de factoring, en la cual se van inicializando las

estructuras de datos que representan a los batches.

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

80

La tabla 5.1 resume la información más importante relacionada con cada evento.

Evento Atributos Actor Método Lugar

Inicio Iteración

- iterId
- NW
- TheTotalWork

master global_sendreceive entrada

Fin Iteración

- iterId

master global_sendreceive salida

EnvioMW

- workerId
- batchId
- NTareas

master global_sendwork entrada

RecepciónMW

- workerId
- batchId
- NTareas

master global_receivework salida

Inicio
Cómputo
Worker

- Marca de tiempo
- iterId
- batchId

worker arcStepKernel entrada

Fin Cómputo
Worker

- Marca de tiempo
- iterId
- batchId

worker arcStepKernel salida

Creación de un
nuevo batch

- batchId
- numChunks

master Factoring_SetNumTuples salida

Tabla 5.1 Información sobre los eventos para la técnica de sintonización de balanceo de carga

Determinación de cuándo y bajo qué condiciones realizar el proceso de sintonización

La recepción de determinados eventos desencadena en la lógica de sintonización implementada

en el tunlet la evaluación de las funciones de rendimiento propias de la estrategia de balanceo de

carga.

 En el caso bajo estudio, el ajuste del factor de distribución tiene lugar cuando se reciben

los siguientes eventos:

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

81

- Inicio de iteración

 Cuando el proceso master comienza la ejecución de una nueva iteración, el

tunlet ya posee la información sobre los tiempos de cómputo por tarea de la iteración

anterior ya completada.

 Este hecho permite la evaluación de las formulas analíticas de la estrategia de

balanceo de carga, de tal manera que se actualizan los valores de los factores de

distribución F0 y F1 para determinar el tamaño de los batches 0 y 1 de la iteración, tal y

como se expone en el paso 2 del algoritmo planteado en la sección 4.2.1 del capítulo 4.

- Fin de cómputo de un worker.

 Cuando un proceso worker termina el cómputo del chunk que le ha sido

enviado, la información sobre el tiempo de cómputo es recopilada por el tunlet.

 En el caso de que, tras recibir la información de este chunk, se compruebe que

se ha completado el procesamiento del batch al cual pertenece dicho chunk, se actualiza

el histórico de información acumulada sobre los tiempos de cómputo por tarea con los

datos asociados al batch finalizado; y entonces tiene lugar la actualización del valor del

factor de distribución F2 teniendo en cuenta las condiciones actuales de la aplicación en

cuanto a balanceo de carga.

 La modificación o sintonización de las variables F0, F1 y F2 en la aplicación puede

tener lugar en cualquier momento a lo largo de las distintas iteraciones que componen la

ejecución de la aplicación.

5.4.2 Adaptación del número de workers

La ejecución de una aplicación con el número de workers más apropiado no es una decisión

trivial. En la mayoría de los casos las condiciones cambian durante la ejecución de la aplicación

(por ejemplo en sistemas con carga compartida) y el número correcto de workers no es fijo, por

lo que debe evolucionar durante la ejecución de la aplicación.

 En estos casos, la determinación del número de workers debe ser sintonizado sobre la

marcha en tiempo de ejecución de la aplicación. Con este objetivo, en el presente trabajo de

investigación se ha estudiado una técnica de sintonización que permite mejorar el rendimiento

de la aplicación ajustando el número de workers.

 Para conseguir este objetivo, tal y como se expone en la sección X, se emplea un índice

de rendimiento que relaciona tiempo de ejecución con eficiencia en cuanto al uso de los

recursos, determinando el número de workers que proporciona un mejor rendimiento en la

aplicación.

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

82

5.4.2.1 Interpretación de la técnica de sintonización

Recopilando la información detallada en la sección X, los términos y conceptos que forman

parte de la técnica de sintonización para adaptar el número de workers en la aplicación son:

- mo: latencia de la red, en milisegundos (ms).

 .coste de comunicación por byte (inverso del ancho de banda), en ms/byte :ߣ -

- ܸ: volumen total de comunicación, en bytes.

 .porción de V enviado a los workers :ߙ -

- ௖ܶ: tiempo total de procesamiento, en ms.

- ݊: número de workers actual de la aplicación.

- ௧ܶ: tiempo total de la iteración, en ms.

 El objetivo de esta técnica es adaptar el número de workers de la aplicación a aquel

valor que represente un mejor ajuste del rendimiento teniendo en cuenta el tiempo de ejecución

y la eficiencia en el uso de los recursos. Por tanto, dicho número de workers constituye el punto

de sintonización de esta estrategia.

 Tal y como se expuso en la sección 4.3 del capítulo 4, el número de workers, n, es

obtenido a partir de un índice de rendimiento Pi(n) expresado mediante la siguiente expresión

analítica:

ܲ݅ሺ݊ሻ ൌ
௡ ೟்ሺ௡ሻమ

೎்
 donde Tt es

௧ܶሺ݊ሻ ൌ 2݉௢ ൅
ൣ൫ሺ݊ െ 1ሻߙ ൅ 1൯ܸߣ ൅ ௖ܶ൧

݊

 Ambas fórmulas analíticas constituyen las funciones de rendimiento de la técnica de

sintonización. De modo que el número de workers que buscamos será aquel que maximice el

rendimiento sin desperdiciar recursos en la aplicación.

 Así, para el cálculo de n necesitamos obtener el volumen total de comunicación (V), el

tiempo total de procesamiento (Tc), la porción del volumen total de comunicación enviado a los

workers (α), la latencia de la red (m0), el coste de comunicación por byte (ߣ) y el número actual

de workers (n).

Identificación de actores.

De nuevo la aplicación que va a ser sintonizada bajo esta estrategia es Xfire. Coincidiendo con

lo expuesto para la especificación de la estrategia de balanceo de carga, en la ejecución de la

aplicación se pueden identificar dos tipos de procesos que cooperan entre sí: un proceso master

y N procesos worker.

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

83

Identificación de variables y valores.

Para esta técnica de sintonización, se necesitan interpretar V, Tc, m0, ߣ y n identificando las

variables y valores que en la aplicación representan estos parámetros.

- V tiene que ser calculado como la suma del tamaño de las tareas enviadas desde el

master a todos los worker o recibidas desde los workers. De tal modo, el parámetro

puede calcularse como ܸ ൌ ∑ ሺݒ௜ ൅ ௠ሻݒ
௡ିଵ
௜ୀ଴ , donde:

o vi equivale al tamaño total de las tareas enviadas a cada worker i, en bytes. Para

obtener este valor se necesita:

 El número de tareas enviadas a cada worker.

Este valor puede ser capturado en el proceso de envío del master a los

workers, en concreto a partir de la variable NTareas que indica el

número de tareas enviadas al worker i.

 El tamaño en bytes de cada tarea.

En la aplicación, en concreto en el proceso master, existe una variable

denominada TheWorkSizeUnitBytes que indica el tamaño en bytes de

cada tarea.

o vm equivale al tamaño total de tareas recibidas por el master. Este valor puede

ser capturado cuando el master recibe las tareas de los workers. Y el tamaño en

bytes de cada tarea se obtiene de forma equivalente a vi.

- α puede ser calculado directamente una vez obtenido el valor vi para cada worker i y el

volumen total de comunicación V, a partir de la siguiente expresión ߙ ൌ ∑ ௜ݒ
௡ିଵ
௜ୀ଴ ܸ⁄ .

- Tc tiene que ser calculado como la suma del tiempo de cómputo de cada Worker a lo

largo de la iteración. De tal modo, el parámetro puede calcularse como ௖ܶ ൌ ∑ ሺܿݐ௜ሻ
௡ିଵ
௜ୀ଴ ,

donde:

o tci equivale al tiempo de cómputo total de cada worker i, en ms. Este valor

puede ser obtenido a partir de los tiempos de comienzo y fin de la fase de

cómputo de cada uno de los workers.

- m0 y ߣ deberían calcularse al principio de la iteración y deberían ser periódicamente

actualizados para permitir la adaptación del sistema a las condiciones de la red. En

nuestro caso de estudio se han dejado como valores constantes.

- n es el valor actual de workers de la aplicación, que se puede obtener mediante la

variable NW. Este es el valor que será empleado para sintonizar la variable NW.

 En el diseño de esta técnica de sintonización son de nuevo necesarias una serie de

variables de control que permiten crear el flujo propio de la lógica de análisis que corresponde a

la técnica de sintonización para adaptar el número de workers. Estas variables son:

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

84

- workerId, esta variable es usada por el proceso master para identificar el proceso worker

al que está enviando o de que proceso worker está recibiendo.

- TheWorkSizeUnitBytes, esta variable empleada en el proceso master representa cual es

el tamaño en bytes de cada una de las tareas a ser procesadas.

- iterId, esta variable está presente en el proceso master y en el proceso Worker. Para el

master esta variable se requiere para identificar cuando se recibe un evento a que

iteración pertenece para asociar la información a una correspondiente iteración. De

manera semejante, en el caso del proceso Worker, la identificación de la iteración es

necesaria para asociar a una iteración determinada la información de los eventos

generados en dichos procesos.

Identificación de eventos

De nuevo, una vez determinadas las variables y valores requeridos de la aplicación, se deben

definir los eventos que permitan obtener la información que represente los datos requeridos. Los

eventos definidos son los siguientes:

- Inicio de iteración.

 Este evento se genera cada vez que el proceso master comienza una nueva

iteración en la aplicación, es decir, cuando comienza la distribución de la nueva línea de

fuego entre los workers.

 La información que presenta asociada es el número de iteración en la que se

encuentra la aplicación, el tamaño en bytes de las tareas que se van a distribuir a lo

largo de esa iteración y el número de workers que participan.

 Para obtener estos datos, el evento se debe de insertar en la entrada de la

función global_sendreceive que realiza el proceso de distribución de datos.

- Fin de iteración.

 Este evento es coincidente con el detallado en la anterior técnica de

sintonización.

- Envío de datos del master al worker.

 Este evento se genera cada vez que el proceso master envía el conjunto de tareas

que debe computar a un proceso worker.

 Este evento permite recopilar información relacionada con el identificador del

worker al que se le envía las tareas y el número de tareas enviadas. Para ello, el evento

debe ser insertado en la entrada del método global_sendwork, en el cual se realiza el

empaquetado y envío de todos los datos necesarios al Worker determinado.

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

85

- Recepción de datos de los workers en el master.

 Este evento tiene lugar cada vez que el proceso master recibe el resultado del

procesamiento realizado por un worker determinado.

 Tiene asociada la misma información que el evento anterior, pero en este caso

debe ser insertado a la salida de la función global_receivework, en la cual se realiza la

recepción y desempaquetado de la información recibida por el master.

- Inicio cómputo de worker.

 Este evento se genera cuando un worker comienza el procesamiento del

conjunto de tareas recibidas.

 Mediante este evento se requiere recopilar información relacionada con la

iteración en la cual se encuentra computando el Worker y la marca de tiempo asociada a

dicho comienzo de cómputo.

 Para obtener correctamente dicha información, el evento debe ser insertado a la

entrada de la función arcStepKernel, la cual funcionalmente representa el proceso de

cómputo realizado por cada worker.

- Fin de cómputo de worker.

 Este evento complementa al evento anterior, y se genera cuando un worker

finaliza el cómputo del chunk enviado.

 Se recopila la misma información que en evento de inicio de cómputo, pero en

la salida de la función arcStepKernel.

La tabla 5.2 resume la información más importante relacionada con cada evento.

Determinación de cuándo y bajo qué condiciones realizar el proceso de sintonización

Bajo esta estrategia de sintonización, el ajuste del número de workers se realiza el inicio de una

iteración, es decir, cuando se ha recibido un evento de inicio de iteración. La actualización del

valor que corresponde al de workers tiene lugar en este instante ya que es cuando el tunlet ha

podido recopilar toda la información procedente de la iteración anterior y por tanto puede

obtener todos los parámetros necesarios para evaluar la función de rendimiento.

 La modificación o cambio del número de workers en Xfire se realiza exclusivamente al

inicio de una iteración.

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

86

Evento Atributos Actor Método Lugar

Inicio
Iteración

- iterId
- NW
- TheWorkSizeUnitBytes

master global_sendreceive entrada

Fin Iteración

- iterId

master global_sendreceive salida

EnvioMW

- workerId
- NTareas

master global_sendwork entrada

RecepciónMW

- workerId
- NTareas

master global_receivework salida

Inicio
Cómputo
Worker

- Marca de tiempo
- iterId

worker arcStepKernel entrada

Fin Cómputo
Worker

- Marca de tiempo
- iterId

worker arcStepKernel salida

Tabla 5.2 Información sobre los eventos para la técnica de sintonización para adaptar el número de

workers

5.4.3 Integración de las estrategias de sintonización en el tunlet

Tras interpretar las dos técnicas de sintonización siguiendo la metodología desarrollada, se

obtiene un tunlet que contiene el conocimiento para resolver los problemas de rendimiento

presentes en aplicaciones Master/Worker.

 El tunlet combina la lógica de análisis de las dos estrategias de sintonización y los

eventos definidos en cada una de ellas, tal y como se muestra en la tabla 5.3.

En anteriores trabajos realizados con MATE [7] [54], se aplicaban varias técnicas de

sintonización de forma separada. Durante la ejecución de la aplicación, MATE intentaba aplicar

todos los escenarios de optimización, pero cada uno de manera individual. MATE cargaba todos

los tunlets disponibles y cada uno de ellos llevaba a cabo su particular mejora de rendimiento de

la aplicación. Su objetivo era identificar e investigar distintas técnicas de sintonización. De tal

modo, que se centraban en los efectos de las técnicas individuales, sin considerar el rendimiento

total de la aplicación. Pero, bajo ciertas condiciones es necesario considerar dependencias entre

diferentes problemas de rendimiento y las técnicas de sintonización asociadas a ellos.

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

87

 Por ello, hay que destacar que en el presente trabajo de investigación se ha desarrollado

un tunlet, cuya complejidad es más elevada, ya que contiene el conocimiento necesario sobre

dos técnicas de sintonización que intentan resolver los problemas de rendimiento que se

observan en las aplicaciones Master/Worker ya comentados en la sección X. En este caso, la

técnica de sintonización que ajusta el número de workers considera el rendimiento total de la

aplicación ya que su función de rendimiento se basa en un índice que permite obtener el número

de workers que no sólo minimiza el tiempo de ejecución, sino al mismo tiempo maximiza el

rendimiento aprovechando de la forma más eficiente los recursos, siendo esto último también el

objetivo de la estrategia de factoring implementada.

Evento Atributos Actor Método Lugar

Inicio
Iteración

- iterId
- NW
- TheTotalWork
- TheWorkSizeUnitBytes

master global_sendreceive entrada

Fin Iteración

- iterId

master global_sendreceive salida

EnvioMW

- workerId
- batchId
- NTareas

master global_sendwork entrada

RecepciónMW

- workerId
- batchId
- NTareas

master global_receivework salida

Inicio
Cómputo
Worker

- Marca de tiempo.
- iterId
- batchId

worker arcStepKernel entrada

Fin Cómputo
Worker

- Marca de tiempo.
- iterId
- batchId

worker arcStepKernel salida

Creación de un
nuevo batch

- batchId
- numChunks

master Factoring_SetNumTuples salida

Tabla 5.3 Información sobre los eventos para las 2 técnicas de sintonización implementadas

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

88

5.5 Resultados experimentales

Una vez obtenido el tunlet que contiene el conocimiento para desarrollar el proceso de

sintonización sobre aplicaciones Master/Worker y adaptada la aplicación bajo estudio Xfire, el

siguiente paso consiste en validar la eficiencia y utilidad del citado tunlet cuando es integrado

en MATE para realizar el proceso de sintonización dinámica.

 Tal y como se detalló en las secciones previas, el tunlet desarrollado contiene la lógica

de análisis de las dos estrategias de sintonización que cubren los problemas de rendimiento de

aplicaciones Master/Worker: balanceo de la carga de la aplicación entre los workers y

determinación del número de workers que obtiene un buen rendimiento y eficiencia en la

aplicación. Sin embargo, por motivos de tiempo, la experimentación planteada sólo cubre el

estudio de rendimiento obtenido mediante la aplicación de la estrategia de balanceo de carga

sobre Xfire.

 Los experimentos expuestos a continuación tienen como objetivo general comprobar la

mejora de rendimiento en la aplicación Xfire cuando es ejecutada y sintonizada bajo la

herramienta MATE empleando el tunlet desarrollado.

 Las pruebas experimentales han sido llevadas a cabo en un clúster homogéneo y

dedicado compuesto por 10 nodos cuya configuración se muestra en la tabla 5.4.

 La configuración hardware disponible ha sido determinante a la hora de plantear

nuestros experimentos. Éstos requieren una unidad de procesamiento para cada proceso worker,

para el proceso master y para el componente Analizador de MATE. Por tanto, debido a la

existencia de 8 nodos de cómputo, se han podido ejecutar configuraciones Master/Worker

formadas por 2, 3, 4, 5, 6 y 7 workers. En el caso de los experimentos realizados con 7 workers,

es de destacar que alguna unida de procesamiento ha sido compartida entre un proceso master o

worker y el módulo Analizador de MATE.

 Como se comentó en la sección 5.2, Xfire toma como datos de entrada distintos ficheros

de configuración que describen el terreno, las condiciones en las que se produce el incendio y la

línea de fuego inicial. En las pruebas experimentales realizadas, la línea de fuego está formada

por 786420 puntos que forman una curva cerrada o elipse.

 Se han planteado tres escenarios de ejecución de Xfire:

1. Ejecución de Xfire en su versión original.

2. Ejecución de Xfire junto con MATE pero sin aplicar la estrategia de sintonización.

3. Ejecución de Xfire junto con MATE aplicando la estrategia de sintonización.

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

89

Nodo Front-End

- Máquina clónica con placa base Asus.
- Procesador Intel Pentium 4 @3.0GHz.
- 1MB L2 1 GB DDR.
- HD 60 GB.

Nodo File-Server

- Máquina clónica con placa base Asus.
- Procesador Intel Pentium 4 @3.0GHz.
- 1MB L2 1 GB DDR.
- 4xHD 60 GB: el 1º para sistema y los 3 siguientes formando un

RAID-5 para alojamiento de $HOME compartido por NFS de
111 GB.

8 Nodos de
cómputo

- HP dc7100sff.
- Procesador Intel Pentium 4 @3.0GHz.
- 1MB L2 1 GB DDR.
- HD 80 GB.
- Tarjeta de red Broadcom NetXtreme.

Red

 Toda la red interna del cluster funciona a 1 Gbps .

Tabla 5.4 Características del entorno donde se han realizado las pruebas experiementales

 El planteamiento de distintos escenarios de ejecución tiene como objetivo lograr obtener

conclusiones acerca de la sobrecarga introducida por MATE y la mejora de rendimiento o no

generada por el proceso de sintonización. Cada experimento fue desarrollado muchas veces y se

calculó la media para el tiempo de ejecución de la aplicación. La tabla 5.5 muestra los tiempos

de ejecución obtenidos para cada uno de los escenarios ejecutados.

Escenario Número de workers 2 3 4 5 6 7

1 Xfire 529,6 381,61 305,06 264,95 229,27 209,94

2
Xfire+MATE (sin

sintonizar)
559,99 414,5 336,5 299,46 261,46 242,27

3
Xfire+MATE
(sintonizando)

545,14 391,83 305,96 257,9 226,27 203,59

Tabla 5.5 Tiempos de ejecución de Xfire considerando distinto número de workers en los tres escenarios

de ejecución presentados (en segundos).

 El primer escenario muestra los tiempos de ejecución obtenidos cuando la aplicación es

ejecutada en su versión original, es decir, sin la intrusión o control de la herramienta de

sintonización. Los resultados presentados muestra que, para los mismos datos de entrada, el

tiempo de ejecución de la aplicación disminuye al aumentar el número de workers. Se puede

concluir que Xfire escala, pero las ganancias generadas no son las ideales.

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

90

 El segundo escenario de ejecución muestra los resultados logrados cuando Xfire es

ejecutada bajo el control de MATE, sin realizar sintonización, es decir, solo tiene lugar la

inserción de la instrumentación en los distintos procesos, la generación de los eventos que son

enviados al analizador, el procesamiento de dichos eventos y la evaluación las funciones de

rendimiento pero no se aplica sobre Xfire el resultado de dicha evaluación.

 En cuanto a la sobrecarga generada por MATE en la ejecución de Xfire, si comparamos

los resultados obtenidos de los escenarios 1 y 2, se observa que ésta es constante

independientemente del número de workers implicados en el desarrollo de la aplicación

(sobrecarga absoluta) situándose en torno a los 32 segundos. Esto se debe a que cada proceso

(master o worker) emiten el mismo número de eventos, y éstos son generados en paralelo.

 Sin embargo hay que destacar que si la aplicación escala, sin cambiar el tamaño de los

datos de entrada, cuando se aumenta el número de workers disminuyendo el tiempo de

ejecución, el overhead que introduce MATE aumenta en proporción a dicho tiempo de

ejecución de la aplicación (sobrecarga relativa), tal y como se muestra en la figura 5.3. Por tanto

sería interesante estudiar la posibilidad de intentar reducir la intrusión por defecto de MATE,

especialmente cuando debido al reducido tiempo de cómputo tal overhead deja de ser aceptable

en el proceso de sintonización.

 Figura 5.3 Sobrecarga relativa (%) y absoluta (segundos) introducida por MATE (sin aplicar
sintonización) en la ejecución de Xfire.

 El tercer escenario de ejecución aplica todo el funcionamiento de MATE sobre Xfire.

Los resultados obtenidos en este entorno nos permite concluir que, una vez analizada y teniendo

en cuenta la sobrecarga introducida por MATE, se observa una mejora de rendimiento cuando

se aplica la estrategia de balanceo de carga a la aplicación Xfire. A lo largo de la ejecución de la

aplicación MATE va adaptando el factor de distribución de datos a las condiciones actuales de

0

5

10

15

20

25

30

35

40

0%

2%

4%

6%

8%

10%

12%

14%

16%

2 3 4 5 6 7

So
b
re
ca
rg
a
ab

so
lu
ta
 (
se
gu

n
d
o
s)

So
b
re
ca
rg
a
re
la
ti
va
 (
%
)

Nº Workers

sobrecarga relativa sobrecarga absoluta

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

91

balanceo de la aplicación generando una mejora en el rendimiento. Dicha mejora es

especialmente patente cuando el número de workers es mayor, ya que la división del conjunto

de tareas totales en batches de menor tamaño permite un mayor solapamiento de los procesos de

cómputo y comunicación.

 Para entender mejor el comportamiento de la aplicación, se realizó un estudio en

profundidad del algoritmo de procesamiento del master y de los workers.

Figura 5.4 Comportamiento de la aplicación Xfire durante tres iteraciones.

 El master a lo largo de la ejecución de la aplicación es el encargado de dividir la línea

de fuego actual en fragmentos, preparar cada fragmento para su envío, enviar cada uno de ellos

a un workers, recibir los resultados de los workers, combinarlos y finalmente generar la nueva

línea de fuego. Una traza de la ejecución, mostrada en la figura 5.4, nos permitió ver que este

comportamiento del proceso master genera tiempos de espera en los procesos workers,

especialmente las fases de preparación de los fragmentos para el envío y la combinación de los

fragmentos tras su recepción, lo cual provoca que la aplicación se encuentre un poco

desbalanceada.

 Para el caso del proceso worker, se observó que independientemente de cuál sea el

punto de la línea de fuego el cómputo que se realiza es el mismo. Por lo tanto no existen puntos

o tareas más pesadas que otras y todos requieren la misma potencia de procesamiento. Además

partimos de la premisa de que las ejecuciones se están realizando en un entorno homogéneo y

controlado, por lo que no existen workers más lentos que otros ni tareas ejecutándose de otros

usuarios que dificulten el procesamiento del los workers.

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

92

 Por último, es de destacar que la ganancia introducida por la técnica de sintonización,

en algunos casos no solo es capaz de reducir el overhead introducido por MATE, sino que

también se iguala o mejora el tiempo de ejecución obtenido respecto a la ejecución de la versión

original de Xfire. Estos resultados se muestran en la figura 5.5.

 Estas conclusiones muestran por tanto la efectividad del proceso de sintonización

realizado a partir del tunlet desarrollado e integrado en MATE.

Figura 5.5 Comparativa de los tiempos de ejecución obtenidos para los distintos escenarios planteados.

 Con el objetivo de poder observar de manera más clara, los beneficios que proporciona

la estrategia de análisis desarrollado, y lograr unas mejoras de rendimiento más significativas,

se decidió introducir un desbalanceo sintético en la aplicación, en concreto en los procesos

worker. Este desbalanceo se ha simulado suponiendo que determinados puntos de la línea de

fuego requieren un mayor cómputo que otros, es decir, constituyen tareas más pesadas.

 Si se analiza la línea de fuego inicial, se puede observar que esta es una curva cerrada,

en concreto una elipse. De tal modo, que para simular la existencia de tareas más pesadas, se ha

establecido un umbral o frontera en dicha línea de fuego, mostrado en la figura 5.6, de manera

que todos los puntos de la línea de fuego situados debajo de ese umbral corresponde a tareas que

necesitan un mayor tiempo de cómputo.

 Para reproducir esa idea el propósito era dejar ocioso cada proceso worker una cantidad

de tiempo igual al tiempo de cómputo que el worker ha empleado para procesar su fragmento de

la línea de fuego por la proporción de puntos de dicho fragmento que se sitúan por debajo del

umbral. De esta manera, se logra introducir un desbalanceo variable a lo largo del tiempo, ya

que depende de la línea de fuego y ésta se va reconstruyendo en cada iteración.

0

100

200

300

400

500

600

2 3 4 5 6 7Ti
e
m
o
p
 d
e
 e
je
cu
ci
ó
n
 (
se
gu

n
d
o
s)

Nº Workers

Tiempo de ejecución Xfire original

Tiempo de ejecución de Xfire+MATE (sin sintonizar)

Tiempo de ejecución de Xfire+MATE (sintonizando)

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

93

Figura 5.6 Estructura de la línea de fuego inicial y el umbral de desbalanceo empleado en las pruebas
experimentales con Xfire.

 Los resultados en cuanto a tiempo de ejecución obtenidos ejecutando Xfire en su

versión original y Xfire siendo sintonizada a través del balanceo de carga para distintas

combinaciones de número de workers introduciendo la desbalanceo sintético se muestran en la

tabla 5.6.

Número de workers 2 3 4 5 6 7

Xfire+desbalanceo sintético 648,28 460,34 393,37 322,82 276,17 252,74

Xfire+MATE
(sintonizando)+desbalanceo sintético

629,63 453,16 360,03 290,23 246,97 220,8

Ganancia % 2,9 1,5 8,4 10,09 10,57 12,63

Tabla 5.6 Tiempos de ejecución de Xfire considerando distinto número de workers con y sin desbalanceo
sintético en los workers, y de Xfire bajo MATE con desbalanceo sintético (en segundos). Ganancia sobre

el tiempo de ejecución de Xfire+desbalanceo sintético obtenida aplicando la sintonizción

 Como se puede observar en la tabla, el tiempo de ejecución de Xfire aumenta cuando la

carga es inyectada. En este caso, gracias al desbalanceo introducido, la mejora que proporciona

la técnica de sintonización desarrollada en este trabajo es más acusada ya que dicho desbalanceo

es en general corregido debido a que MATE detecta los cambios en las condiciones del sistema

y adapta los factores de partición de los datos para distribuir el trabajo. Como se puede observar

la ganancia aumenta conforme aumenta el número de workers, lo cual se debe a que el mayor

Capítulo 5. Desarrollo del modelo de rendimiento en MATE

94

particionado de datos, permite que haya más solapamiento entre los procesos de cómputo y

comunicación al haber un mayor número de workers. Por tanto, sería interesante realizar en

futuros estudios estas pruebas aumentando el número de workers con el objetivo de observar si

nuestra técnica de balanceo sigue siendo efectiva.

Capítulo 6. Conclusiones y trabajo futuro

95

Capítulo 6

Conclusiones y trabajo futuro

6.1 Conclusiones

La computación paralela/distribuida proporciona la potencia necesaria para resolver problemas

complejos. El rendimiento de las aplicaciones escritas para tales entornos de ejecución es un

aspecto muy relevante.

 Hoy en día existen distintas aproximaciones y herramientas que ayudan al usuario en el

proceso de mejora de rendimiento proporcionándoles la información suficiente y apropiada

sobre el comportamiento de la aplicación. Una de estas aproximaciones es la sintonización

dinámica cuya principal característica es que realiza todo el proceso de análisis de prestaciones

de aplicaciones paralelas/distribuidas de forma dinámica; es decir, monitoriza la aplicación para

obtener información sobre su comportamiento, identifica los cuellos de botella y realiza las

modificación de los parámetros críticos de la aplicación para mejorar el rendimiento, todo esto

en tiempo de ejecución. Una de las herramientas que se sitúan bajo este enfoque es MATE, la

cual ha sido el eje del presente trabajo.

 El principal objetivo de esta investigación era sintonizar dinámicamente mediante

MATE una aplicación MPI empleada en computación de altas prestaciones que siga un

paradigma Master/Worker.

 Para conseguir el fin propuesto, el trabajo comenzó estudiando otras aproximaciones y

herramientas conocidas en el campo de la monitorización, análisis y sintonización de

rendimiento de aplicaciones. Este análisis sirvió para observar como otros grupos o centros de

Capítulo 6. Conclusiones y trabajo futuro

96

investigación afrontan el problema de mejora de rendimiento, y poder contextualizar nuestro

trabajo claramente en el área de la sintonización dinámica.

 Seguidamente, se procedió a estudiar la herramienta de sintonización dinámica MATE.

Este estudio ha permitido tener una visión conceptual clara de la arquitectura que presenta la

herramienta así como adquirir conocimientos sobre la funcionalidad de cada uno de los

componentes de la citada arquitectura. Una tarea compleja fue lograr la comprensión global de

cómo MATE realiza de forma dinámica todo el proceso de análisis de rendimiento, ya que para

ello fue necesaria una inmersión en el código fuente de MATE. Este cometido llevó a tener el

primer contacto con la técnica de instrumentación dinámica en la que se basa MATE para la

realización del proceso de análisis en tiempo de ejecución.

 El proceso de sintonización que se pretendía realizar en este trabajo estaba encaminado

a solventar los cuellos de botella que presentan las aplicaciones Master/Worker. Para ello,

MATE necesita poseer el conocimiento sobre dichos problemas de rendimiento. Los modelos de

rendimiento constituyen la base del conocimiento empleado por MATE para conducir el

proceso de análisis, determinando la información que se necesita recopilar durante la ejecución

(puntos de medida), como evaluar la información recogida (funciones de rendimiento) y que

cambios se necesitan para sintonizar la aplicación (puntos/acciones/sincronizaciones de

sintonización). Para poder integrar este conocimiento en MATE, el siguiente paso fue el estudio

de un modelo de rendimiento para aplicaciones Master/Worker, cuyo principal objetivo es

resolver los problemas de rendimiento que en ellas se presentan aplicando una estrategia basada

en dos fases: una primera fase en la se emplea una estrategia dinámica para el balanceo de carga

y una segunda para adaptar el número de workers teniendo en cuenta las características actuales

en las que se encuentra el sistema.

 Por tanto, una vez que se estuvo el conocimiento sobre la herramienta de sintonización

y estudiados los problemas de rendimiento que se desean resolver y su representación en el

modelo de rendimiento, el último paso para lograr el objeto de esta investigación, fue el diseño

y desarrollo del tunlet para ser integrado en MATE. El tunlet es el componente software o

librería que constituyen el mecanismo inteligente empleado por MATE en la fase de análisis.

Cada tunlet define e implementa una particular técnica de sintonización, de tal modo que en

nuestro caso de estudio, el tunlet que se ha diseñado plantea la lógica de análisis necesaria para

aplicar el modelo de rendimiento estudiado para aplicaciones Master/Worker. En este punto es

de destacar que los tunlets desarrollados en anteriores trabajos de investigación implementaban

una única técnica de sintonización, sin embargo, en nuestro caso de estudio, el tunlet creado

presenta una complejidad más elevada ya que el conocimiento representado en él integra las dos

estrategias de sintonización representadas en el modelo de rendimiento. La aplicación elegida

Capítulo 6. Conclusiones y trabajo futuro

97

para ser sintonizada mediante la lógica integrada en el tunlet es un simulador de incendios

forestales desarrollado bajo un paradigma Master/Worker, denominado Xfire.

 Para el desarrollo del modelo de rendimiento en MATE, en el capítulo 5 se propone una

metodología para la obtención del tunlet. Siguiendo esta metodología se ha logrado establecer:

- Aquellos valores y variables de Xfire que se requerían para interpretar los parámetros

del modelo de rendimiento. Se determinó que las variables en Xfire que debían ser

modificadas para mejorar el rendimiento eran: 1) el factor de partición adaptativo que

indica el tamaño de los subconjuntos en los que será dividida la línea de fuego y 2) el

número de workers de la aplicación. Además se dedujo cómo obtener todos los

parámetros necesarios para evaluar la función analítica del modelo de rendimiento.

- Los eventos que se debían capturar y la información asociada a los mismos. Los

eventos constituyen el mecanismo empleado por MATE para recopilar información

sobre el comportamiento de la aplicación. Por tanto, nuestro trabajo fue determinar en

que funciones de Xfire debían ser insertados los eventos para conseguir recopilar toda la

información requerida.

- Identificar los distintos procesos que participan en la ejecución de Xfire. En este caso,

al tratarse de una aplicación Master/Worker, únicamente había dos actores participando

en la aplicación: procesos workers y un master.

 El procedimiento que describe la metodología presentada estimamos que es el más

adecuado para culminar con un tunlet que guie el proceso de sintonización deseado, de tal

manera que puede ser generalizable para la sintonización bajo MATE de cualquier aplicación

empleando cualquier modelo de rendimiento adecuado a ésta.

 Hay que destacar que para poder aplicar sobre Xfire las técnicas de sintonización

estudiadas fue necesario el estudio y la adaptación de dicha aplicación a las características

requeridas por el modelo de rendimiento; en concreto las modificaciones se han realizado en la

lógica de procesamiento del proceso master en la fase de distribución de datos entre workers. Si

Xfire hubiese sido realizada empleando un framework conocido de diseño y programación

paralela, el proceso de diseño del tunlet hubiera tenido una complejidad menos elevada.

Además, dicho tunlet podría ser usado para mejorar el rendimiento de otra aplicación, que

presente el mismo paradigma que Xfire y haya sido construida empleando el mismo framework.

 Finalmente, una vez desarrollado el tunlet e integrado en MATE, procedimos a realizar

pruebas experimentales. Hay que comentar que dichas pruebas, por motivos de tiempo, sólo

cubrieron el estudio de rendimiento obtenido mediante la aplicación de la estrategia de balanceo

Capítulo 6. Conclusiones y trabajo futuro

98

de carga sobre Xfire. Se plantearon varios escenarios de ejecución, con distintas combinaciones

del número de workers, con el objetivo de obtener conclusiones sobre la sobrecarga que

introduce MATE en la ejecución de la aplicación y sobre la ganancia obtenida en cuanto a

rendimiento al aplicar las técnicas de sintonización.

 Con respecto a la sobrecarga generada por MATE, se concluyó que ésta es constante

independientemente del número de workers que participa en la ejecución de la aplicación, ya

que la cantidad de instrumentación insertada y el número de eventos generados por proceso es

siempre el mismo, y además estos son generados en paralelo.

 Por otro lado, el análisis de la ganancia obtenida en el tiempo de ejecución de Xfire

cuando ésta es ejecutada bajo el control de MATE muestra que las mejoras en el rendimiento

aumentan conforme aumenta el número de workers, lo cual se debe a que el división adaptativa

y dinámica del conjunto de tareas que realiza la técnica de factorización desarrollada permite

que se produzca un mayor solapamiento entre los procesos de cómputo y comunicación.

 Tras estos resultados, finalmente podemos concluir que la técnica de sintonización

implementada e integrada en MATE es efectiva ya que la ejecución de Xfire bajo el control

dinámico de MATE ha permitido observar la adaptación del comportamiento de dicha

aplicación a las condiciones actuales del sistema donde se ejecuta, obteniendo así una mejora de

su rendimiento.

6.2 Trabajo futuro

En cuanto al trabajo futuro, queda pendiente la depuración de la técnica de sintonización que

permite adaptar el número de workers en la aplicación empleando un índice de rendimiento que

directamente permite relacionar rendimiento, en cuanto a tiempo de ejecución, con eficiencia en

el uso de recursos.

 Lograr el funcionamiento de esta estrategia será una labor compleja ya que se necesita

crear y eliminar procesos worker de forma dinámica en tiempo de ejecución; de modo que el

estudio de la lógica de implementación que permita obtener esta funcionalidad se plantea como

un gran reto.

 Una vez estén funcionando de manera coordinada las dos técnicas de sintonización

planteadas en el presente trabajo, se pretende realizar experimentación a partir de la cual poder

obtener conclusiones sobre el comportamiento que presenta el tunlet desarrollado y las posibles

influencias mutuas entre dichas estrategias de sintonización.

Capítulo 6. Conclusiones y trabajo futuro

99

 También se pretender llevar a cabo pruebas experimentales en entornos de cómputo que

presenten un mayor número de nodos. Estas pruebas nos permitirán obtener de nuevo

conclusiones sobre el comportamiento del tunlet, y además nos posibilitarán estudiar las

características de escalabilidad de MATE. Tal y como se comentó en la sección 3.6 del capítulo

3, la escalabilidad de MATE se encuentran reducidas cuando aumenta el número de máquinas

involucradas en la ejecución de la aplicación ya que el análisis centralizado que MATE lleva a

cabo se convierte en un cuello de botella que hace que la detección de los problemas de

rendimiento no sea rápida y por tanto los problemas de rendimiento no se resuelvan de manera

adecuada.

 Las conclusiones que se obtenga sobre el estudio de la escalabilidad, nos posibilitarán

sentar las bases para comenzar con el trabajo futuro de la tesis doctoral que se centra en estudiar

y mejorar la escalabilidad de MATE. Esta mejora inicialmente se centra en el empleo de un

esquema de comunicación jerarquizado en la arquitectura de MATE y en un mecanismo de

análisis de rendimiento distribuido. El fin que se persigue es poder hacer eficiente y útil el uso

de MATE en el ámbito de la computación de altas prestaciones.

100

Bibliografía

101

Bibliografía

[1] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to Parallel Computing.:

Pearson Addison Wesley, 2003.

[2] R. Jain, The Art of Computer Systems Performance Analysis: Techniques for Experimental

Design, Measurement, Simulation, and Modeling.: Wiley-Interscience, New York, 1991.

[3] W. E. Nagel, A. Arnold, M. Weber, H.-Ch. Hoppe, and K. Solchenbach, "VAMPIR:

Visualization and Analysis of MPI Resources," Supercomputer, vol. 12, pp. 69-80, 1996.

[4] J. Jorba, T. Margalef, and E. Luque, "Search of Performance Inefficiencies in Message

Passing Applications with KappaPI 2 Tool," in Proceedings PARA Conference, 2006, pp.

409-419.

[5] C. Tapus, I. Chung, and J.K. Hollingsworth, "Active Harmony: Towards Automated

Performance Tuning," in Proceedings from the Conference on High Performance

Networking, 2003, pp. 1-11.

[6] R.L. Ribler, H. Simitci, and D.A. Reed, "Autopilot Performance-Directed Adaptive Control

System," in Proceedings Future Generation Computer Systems Conference, 1997, pp. 175-

187.

[7] A. Morajko, "Dynamic Tuning of Parallel/Distributed Applications," Universidad

Autónoma de Barcelona, Barcelona, Tesis doctoral 2003.

[8] J. K. Hollingsworth, "An API for Runtime Code Patching," The International Journal of

High Performance Computing Applications, vol. 14, pp. 317-329, 2000.

[9] E. Cesar, A. Moreno, J. Sorribes, and E. Luque, "Modeling master/worker applications for

automatic performance tuning," Parallel Comput., vol. 32, no. 7, pp. 568-589, 2006.

[10] J Jorba, T Margalef, and E Luque, "Simulation of Forest Fire Propagation on Parallel and

Distributed PVM Platforms," in Proceedings of the 8th European PVM/MPI Users' Group

Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface,

2001, pp. 386-392.

Bibliografía

102

[11] P.H. Worley. (Accedida Junio 2010) Portable Instrumentation Library for MPI (MPICL).

[Online]. http://www.netlib.org/mpicl/

[12] M. T. Heath and J. E. Finger. (Accedida Junio 2010) ParaGraph: A Performance

Visualization Tool for MPI. [Online]. http://www.csar.illinois.edu/software/paragraph/

[13] P.H. Worley, "A new PICL trace file format," Oak Ridge National Laboratory, Oak Ridge,

TN, ORNL Technical Report ORNL/TM-12125 September 1992.

[14] A. Geist, T.M. Heath, B.W. Peyton, and P.H. Worley, "A User's Guide to PICL: A Portable

Instrumentation Communication Library," ORNL Technical Report ORNL/TM-11616,

October 1990.

[15] D.A. Reed et al., "Scalable Performance Analysis: The Pablo Performance Analysis

Environment," in Proceedings of the Scalable parallel libraries conference, 1993, pp. 104-

113.

[16] R.A. Aydt, "SDDF: The Pablo Self-Describing Data Format," University of Illinois at

Urbana Champaign, Department of Computer Science, Technical Report. 1993.

[17] D. Reed et al., "Scalable Performance Environments for Parallel Systems," in Proceedings

of the Sixth Distributed Memory Computing Conference, 1991, pp. 562-569.

[18] H. Brunst, H.-C Hoppe, W. E. Nagel, and M. Winkler, "Performance Optimization for

Large Scale Computing: The Scalable VAMPIR Approach," in Proceedings International

Conference on Computational Science, 2001, pp. 751-760.

[19] S.S. Shende and A.D. Malony, "The Tau Parallel Performance System," Int. J. High

Perform. Comput. Appl., vol. 20, no. 2, pp. 287-311, 2006.

[20] F. Wolf and B. Mohr, "Automatic performance analysis of hybrid MPI/OpenMP

applications," Journal of Systems Architecture, vol. 49, no. 10-11, pp. 421-439, 2003.

[21] M. S. Müller et al., "Developing Scalable Applications with Vampir, VampirServer and

VampirTrace," Parallel Computing: Architectures, Algorithms and Applications, vol. 38,

pp. 637-644, 2007.

[22] H. Brunst, D.K. Müller, M.S. Muller, and E.N. Wolfgang, "Tools for scalable parallel

program analysis: Vampir NG, MARMOT, and DeWiz," Int. J. Comput. Sci. Eng., vol. 4,

no. 3, pp. 149-161, 2009.

Bibliografía

103

[23] M. Geimer et al., "The SCALASCA Performance Toolset Architecture," in Proceedings

International Workshop on Scalable Tools for High-End Computing (STHEC), 2008, pp.

51-65.

[24] Brian J. N., "The Scalasca performance toolset architecture," Concurrency and

Computation: Practice and Experience, vol. 22, pp. 702-719, 2010.

[25] K. Fürlinger and M. Gerndt, "Periscope: Performance Analysis on Large-Scale Systems,"

Innovatives Supercomputing in Deutschland, vol. 3, no. 2, pp. 26-29, 2005.

[26] M Gerndt, K. Furlinger, and E. Kereku, "Periscope: Advanced Techniques for Performance

Analysis," in Proceedings PARCO Conference, 2005, pp. 15-26.

[27] S. Benedict, V Petkov, and M. Gerndt, "PERISCOPE: An Online-based Distributed

Performance Analysis Tool," in Proceedings 3rd International Workshop on Parallel Tools

for High Performance, 2009.

[28] B. Mohr, D. Brown, and A.D. Malony, "TAU: A Portable Parallel Program Analysis

Environment for pC++," in Proceedings CONPAR, 1994, pp. 29-40.

[29] TAU (Tuning and Analysis Utilities). (Accedida en Junio 2010) [Online].

http://www.cs.uoregon.edu/research/tau/home.php

[30] V. Pillet, J. Labarta, T. Cortes, and S. Girona, "PARAVER: A Tool to Visualize and

Analyze Parallel Code," Departament d'arquitectura de Computadors, Barcelona, Technical

Report 1995.

[31] J. Labarta, S. Girona, and T. Cortes, "Analyzing Scheduling Policies Using Dimemas,"

Barcelona, Technical Report 1997.

[32] A. Espinosa, T. Margalef, and E. Luque, "Automatic detection of parallel program

performance problems," in SPDT '98: Proceedings of the SIGMETRICS symposium on

Parallel and distributed tools, New York, NY, USA, 1998, pp. 149.

[33] Barton P. Miller et al., "The Paradyn Parallel Performance Measurement Tools," IEEE

COMPUTER, vol. 28, pp. 37-46, 1995.

[34] P.C. Roth, D.C. Arnold, and B.P. Miller, "MRNet: A Software-Based Multicast/Reduction

Network for Scalable Tools," in SC '03: Proceedings of the 2003 ACM/IEEE conference on

Supercomputing, Washington, DC, USA, 2003, pp. 21.

Bibliografía

104

[35] R. Ribler, J. Vetter, H. Simitci, and D.A. Reed, "Autopilot: Adaptive Control of Distributed

Applications," in Proceedings of the 7th IEEE Symposium on High-Performance

Distributed Computing, 1998, pp. 172-179.

[36] A. Tiwari, V. Tabatabaee, and J.K. Hollingsworth, "Tuning parallel applications in

parallel," Parallel Computing, vol. 35, no. 8-9, pp. 475-492, 2009.

[37] G. D. Riley and J. R. Gurd, "Towards Performance Control on the Grid," Philosophical

Transactions: Mathematical, Physical and Engineering Sciences, vol. 363, no. 1833, pp.

1793-1805, 2005.

[38] M. Hussein, K. Mayes, M. Luján, and J. Gurd, "Adaptive performance control for

distributed scientific coupled models," in ICS '07: Proceedings of the 21st annual

international conference on Supercomputing, New York, NY, USA, 2007, pp. 274-283.

[39] K. Chen, K. R. Mayes, and J. R. Gurd, "Autonomous performance control of distributed

applications in a heterogeneous environment," in Autonomics '07: Proceedings of the 1st

international conference on Autonomic computing and communication systems, ICST,

Brussels, Belgium, Belgium, 2007, pp. 1-5.

[40] A. Morajko, P. Caymes-Scutari, T. Margalef, and E. Luque, "MATE: Monitoring, Analysis

and Tuning Environment for parallel/distributed applications," Concurr. Comput. : Pract.

Exper., vol. 19, no. 11, pp. 1517-1531, 2005.

[41] A., Morajko, O., Jorba, J., Margalef, T., Luque, E. Morajko, "Dynamic Performance

Tuning of Distributed Programming Libraries," in ICCS'03: Proceedings of the 2003

international conference on Computational science, vol. 2660, Melbourne, Australia, 2003,

pp. 191-200.

[42] A. Morajko, O. Morajko, T. Margalef, and E. Luque, "MATE: Dynamic Performance

Tuning Environment," in Proceedings Euro-Par Conference, 2004, pp. 98-106.

[43] G. Costa, J. Jorba, A. Morajko, T. Margalef, and E. Luque, "Performance models for

dynamic tuning of parallel applications on Computational Grids," in Proceedings 2008

IEEE International Conference on Cluster Computing, Tsukuba, 2008, pp. 376-385.

[44] Dyninst Library. (Accedido en Mayo 2010) [Online]. http://www.dyninst.org

Bibliografía

105

[45] P. Caymes-Scutari, "Extending the usability of a Dinamic tuning environment,"

Universidad Autónoma de Barcelona, Barcelona, Tesis Doctoral 2007.

[46] P. Caymes-Scutari, A. Morajko, T. Margalef, and E. Luque, "Scalable dynamic

Monitoring, Analysis and Tuning Environment for parallel applications," J. Parallel

Distrib. Comput., vol. 70, no. 4, pp. 330-337, 2010.

[47] I. Banicescu and V. Velusamy, "Load Balancing Highly Irregular Computations with the

Adaptive Factoring," in Proceedings IPDPS Conference, 2002.

[48] S. F. Hummel, E. Schonberg, and L. E. Flynn, "Factoring: A Method for Scheduling

Parallel Loops," Commun. ACM, vol. 35, no. 8, pp. 90-101, 1992.

[49] R.C. Rothermel, "How to Predict the Sperad and Intensity of Forest and Range Fires," ,

vol. INT-143, 1983, pp. 1-5.

[50] Fire Software. (Accedido en mayo de 2010.) [Online]. http://fire.org

[51] J.C.S. André, E. Luque, and D.X. Viegas, "Application of parallel processing to the

simulation of forest fire propagation," in Proceedings International Conferencie on Forest

Fire Research, vol. II, Coimbra, Portugal, 1998.

[52] J.C.S. André and D.X. Viegas, "A Strategy to Model the Average Fireline Movement of a

light-to-medium Intensity Surface Forest Fire," in Proc. of the 2nd International

Conference on Forest Fire Research, 1994, pp. 221-242.

[53] J.C.S André, "A theory on the propagation of surface forest fire fronts," Universidade de

Coimbra, Portugal, Tesis doctoral 1996.

[54] A. Morajko, P. Caymes-Scutari, T. Margalef, and E. Luque, "Automatic Tuning of Data

Distribution Using Factoring in Master/Worker Applications," in Proceedings

International Conference on Computational Science, 2005, pp. 132-139.

