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Resumen 

En la actualidad, la computación de altas prestaciones está siendo utilizada en multitud de 

campos científicos donde los distintos problemas estudiados se resuelven mediante aplicaciones 

paralelas/distribuidas. Estas aplicaciones requieren gran capacidad de cómputo, bien sea por la 

complejidad de los problemas o por la necesidad de solventar situaciones en tiempo real. Por lo 

tanto se debe aprovechar los recursos y altas capacidades computacionales de los sistemas 

paralelos en los que se ejecutan estas aplicaciones con el fin de obtener un buen rendimiento. 

Sin embargo, lograr este rendimiento en una aplicación ejecutándose en un sistema es una dura 

tarea que requiere un alto grado de experiencia, especialmente cuando se trata de aplicaciones 

que presentan un comportamiento dinámico o cuando se usan sistemas heterogéneos. En estos 

casos actualmente se plantea realizar una mejora de rendimiento automática y dinámica de las 

aplicaciones como mejor enfoque para el análisis del rendimiento. El presente trabajo de 

investigación se sitúa dentro de este ámbito de estudio y su objetivo principal es sintonizar 

dinámicamente mediante MATE (Monitoring, Analysis and Tuning Environment) una 

aplicación MPI empleada en computación de altas prestaciones que siga un paradigma 

Master/Worker. Las técnicas de sintonización integradas en MATE han sido desarrolladas a 

partir del estudio de un modelo de rendimiento que refleja los cuellos de botella propios de 

aplicaciones situadas bajo un paradigma Master/Worker: balanceo de carga y número de 

workers. La ejecución de la aplicación elegida bajo el control dinámico de MATE y de la 

estrategia de sintonización implementada ha permitido observar la adaptación del 

comportamiento de dicha aplicación a las condiciones actuales del sistema donde se ejecuta, 

obteniendo así una mejora de su rendimiento. 

Palabras clave: análisis dinámico, sintonización dinámica, modelos de rendimiento, 

computación de altas prestaciones. 
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Resum 

En l'actualitat, la computació d'altes prestacions està sent utilitzada en multitud de camps 

científics on els diferents problemes estudiats es resolen mitjançant aplicacions 

paral·leles/distribuïdes. Aquestes aplicacions requereixen gran capacitat de còmput, bé sigui per 

la complexitat dels problemes o per la necessitat de solucionar situacions en temps real. Per tant 

s'ha d'aprofitar els recursos i altes capacitats computacionals dels sistemes paral·lels en els quals 

s'executen aquestes aplicacions amb la finalitat d'obtenir un bon rendiment. No obstant això, 

assolir aquest rendiment en una aplicació executant-se en un sistema és una tasca complexa que 

requereix de un alt grau d'experiència, especialment quan es tracta d'aplicacions que presenten 

un comportament dinàmic o quan s'usen sistemes heterogenis. En aquests casos actualment es 

planteja realitzar una millora de rendiment automàtica i dinàmica de les aplicacions com la 

millor via per l'anàlisi del rendiment. El present treball d'investigació es situa dins d'aquest 

àmbit d'estudi i el seu objectiu principal és és sintonitzar dinàmicament mitjançant MATE 

(Monitoring, Analysis and Tuning Environment) una aplicació MPI empleada en computació 

d'altes prestacions que segueixi un paradigma Master/Worker. Les tècniques de sintonització 

integrades en MATE han estat desenvolupades a partir de l'estudi d'un model de rendiment que 

reflecteix els colls d'ampolla propis d'aplicacions situades sota un paradigma Master/Worker: 

balanceig de càrrega i nombre de workers. L'execució de l'aplicació triada sota el control 

dinàmic de MATE i de l'estratègia de sintonització implementada ha permès observar 

l'adaptació del comportament d'aquesta aplicació a les condicions actuals del sistema on 

s'executa, obtenint així una millora en el seu rendiment.  

Paraules clau: anàlisi dinàmica, sintonització dinàmica, models de rendiment, computació 

d'altes prestacions. 
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Abstract 

At the present time, high performance computing is used in a multitude of scientific fields, 

where the problems studied are resolved using parallel/distributed applications. These 

applications require an enormous computing capacity due to both the complexity of the 

problems and the necessity to solve them in real time situations. Therefore, the computational 

capacities and resources of the parallel systems, where these applications are executed, must be 

taken advantage of to attain this vital high performance. However, achieving high performance 

in applications executed in parallel systems is a complicated task that requires a high degree of 

experience, especially when dealing with applications with dynamic behaviour or those running 

on heterogenous systems. In these cases the use of automatic and dynamic performance 

improvements is proposed as a better approach to performance analysis. The research presented 

falls within this field of study and has the principle objective of dynamically tuning, using 

MATE (Monitoring, Analysis and Tuning Environment), an MPI application which employs 

high performance computing following the Master/Worker paradigm. The tuning techniques 

integrated in MATE have been developed following a study of the performance model that 

reflects the bottlenecks specific to the Master/Worker paradigm: load balancing and the number 

of workers. The execution of the chosen application under the dynamic control of MATE using 

the tuning strategies implemented has permitted the observation of the behaviour of said 

application adapting to the changing conditions in the system where it is being executed, thus 

obtaining an improvement in the performance. 

Keywords: dynamic analysis, dynamic tuning, performance models, high performance 

computing. 
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Capítulo 1 

 

Introducción 

 

1.1 Descripción general 

En las últimas décadas, se han desarrollado en distintos campos científicos una gran cantidad de 

aplicaciones que resuelven problemas de elevada complejidad como son la determinación del 

genoma humano, el análisis de la estructura de las proteínas, predicción de desastres naturales, 

etc. Se trata de aplicaciones paralelas/distribuidas que emplean conjuntos de datos de gran 

tamaño y realizan sofisticados cálculos empleando las características propias de la computación 

de altas prestaciones. 

 Las aplicaciones paralelas/distribuidas deben resolver el problema considerado tan 

rápido como sea posible utilizando de forma eficiente los recursos disponibles en el sistema. En 

este contexto, el rendimiento de la aplicación se convierte en un aspecto clave. Cuando un 

programador desarrolla una aplicación, espera alcanzar unos ciertos índices de rendimiento, no 

muy alejados del rendimiento teórico esperado. Sin embargo, el desarrollo de este tipo de 

aplicaciones paralelas/distribuidas constituye una tarea difícil ya que no solo implica tener un 

conocimiento de modelos de programación paralela y librerías de comunicación, sino que 

también se incluyen algunos aspectos adicionales tales como descomposición de las tareas, 

mapping, concurrencia, escalabilidad, eficiencia, sincronismo, etc, lo cual determina el correcto 

comportamiento y rendimiento de estas aplicaciones [1]. 

 Ciertamente, la programación eficiente de una aplicación, para obtener beneficio real 

del paralelismo y demás características que ofrece la computación de altas prestaciones, es un 
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gran reto que requiere un elevado grado de pericia. Además, una vez que la aplicación ha sido 

implementada, debe ser depurada y testeada sistemáticamente desde un punto de vista funcional 

para garantizar su exactitud. Seguidamente, se debe aplicar un proceso de mejora de 

rendimiento. Dicho proceso, mediante la modificación de los parámetros críticos de la 

aplicación, permite que ésta sea ajustada y adaptada para asegurar la no existencia de cuellos de 

botella durante la ejecución, y en consecuencia aumentar el rendimiento de la misma. 

 El proceso de mejora de rendimiento incluye 3 fases sucesivas [2]: monitorización, 

análisis y sintonización. Primeramente durante la fase de monitorización, se captura la 

información o medidas de rendimiento, las cuales proporcionan los datos necesarios sobre el 

comportamiento de la aplicación. A continuación mediante el análisis de la información 

recopilada, se buscan los cuellos de botella, se deducen sus causas, intentando determinar cuáles 

son las acciones correctas para eliminarlos. Finalmente, se aplican los cambios decididos sobre 

el código de la aplicación con el fin de solventar los problemas y mejorar el rendimiento. Como 

consecuencia, los usuarios finales están forzados a conocer muy bien la aplicación, las 

diferentes capas software involucradas y el comportamiento del sistema distribuido sobre el que 

se ejecuta la aplicación. Todos estos aspectos hacen que el proceso de mejora de rendimiento 

sea difícil y costoso, especialmente para usuarios no expertos, debido al alto grado de pericia 

requerido para aumentar significativamente el rendimiento de la aplicación. 

 En concreto, la tarea más compleja e importante de todo el proceso de mejora es el 

análisis de rendimiento, debido a que en la práctica, los cuellos de botella pueden encontrarse en 

diferentes niveles de abstracción y además variar a lo largo de la ejecución de la aplicación. 

 Los problemas que provocan pérdidas de rendimiento pueden tener diversos orígenes. 

Algunos proceden de las comunicaciones, provocando un bloqueo inesperado en algunas 

funciones de comunicación; otros surgen debido a la implementación específica de la librería de 

comunicación, ya que el diseño o la implementación de las capas software pueden ser genéricas 

y no optimizadas para un particular sistema o condiciones. Características del sistema operativo 

también pueden comprometer el rendimiento de una aplicación, debido a que un inapropiado 

tamaño del buffer de gestión de mensajes a nivel de protocolo puede interferir en los tiempos de 

envío de los mensajes o de las capacidades hardware subyacentes, viéndose afectada la 

velocidad de ejecución de dicha aplicación. 

 Estos ejemplos muestran la complejidad del proceso que se ha de seguir para 

incrementar el rendimiento de la aplicación, poniendo de manifiesto la necesidad de usar 

herramientas automáticas para simplificar y acelerar el proceso de sintonización del 

rendimiento. Afortunadamente, a lo largo de los años han surgido distintas aproximaciones y 

herramientas con el objetivo de ayudar al usuario en las diferentes fases de este proceso. Estas 
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herramientas bajo diferentes enfoques de análisis y mejoras de rendimiento, han sido diseñadas 

con la finalidad de hacer más cómodo el proceso de evaluación de aplicaciones bajo entornos 

paralelos. 

 Inicialmente, estas aproximaciones o herramientas se basaban en un enfoque estático, 

mediante el cual se visualizaba gráficamente el comportamiento de la aplicación 

paralela/distribuida una vez que ésta había finalizado su ejecución. Los usuarios de tales 

herramientas deben ser capaces de analizar las visualizaciones que proporciona la herramienta y 

tomar las decisiones correctas para mejorar el rendimiento de la aplicación. Para disminuir las 

dificultades de los desarrolladores y usuarios en este proceso, se propuso el análisis automático. 

Las herramientas [3] [4] que usan este tipo de análisis están basadas en el conocimiento de 

problemas de rendimiento conocidos. Tales herramientas son capaces de identificar cuellos de 

botella críticos y ayudar en el proceso de optimización proporcionando sugerencias las cuales 

exponen problemas de rendimiento y ofrecen a los desarrolladores posibles mejoras. 

 En este tipo de aproximaciones en las que se realiza un análisis de rendimiento estático 

y/o automático, los datos sobre los que se toma alguna decisión son producto de ejecuciones 

anteriores, lo cual hace que las modificaciones realizadas en el código fuente solo sean útiles 

cuando el comportamiento de la aplicación no depende de los datos de entrada o no varía a lo 

largo de la misma ejecución. Además se requieren que el usuario posea un cierto grado de 

conocimiento y experiencia con aplicaciones paralelas/distribuidas, ya que son necesarios 

determinados cambios en el código fuente para mejorar el rendimiento del programa. De modo 

que este tipo de herramientas solo son adecuadas para desarrolladores con experiencias más que 

para usuarios de la aplicación no expertos tales como biólogos, químicos, físicos u otros 

científicos. El usuario final puede que no tenga conocimiento suficiente sobre la aplicación 

paralela/distribuida. 

 Para abordar todos estos problemas, surgen herramientas que automática y 

dinámicamente realizan la tarea de optimización de aplicaciones paralelas/distribuidas, 

eximiendo al desarrollador y usuario no experto de las tareas relacionadas con la mejora de 

rendimiento. Estas herramientas toman medidas de rendimiento, identifican cuellos de botella y 

realizan las modificaciones oportunas para mejorar el rendimiento, todo en tiempo de ejecución. 

Es decir, realizan el proceso de optimización sobre la marcha, adaptando el comportamiento de 

la aplicación a las condiciones actuales del sistema. De este modo, el desarrollador o usuario 

final no se ve en la necesidad de conocer la estructura interna de la aplicación ni de pausar la 

ejecuciones para tomar decisiones. 

 Existen diferentes herramientas que implementan esta aproximación [5] [6]. La 

principal diferencia entre ellas reside en los métodos o tecnologías empleadas para realizar los 
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procesos de monitorización y sintonización, y en la representación del conocimiento empleado 

para realizar la fase de análisis de rendimiento de la aplicación: lógica difusa, heurísticas, 

históricos o modelos de rendimiento. En la sección 2.5 del capítulo 2, se realizará un profundo 

estudio de ellas. 

 El proceso de optimización automática y dinámica de aplicaciones paralelas es una 

labor compleja y difícil ya que existen muchos aspectos que deben ser considerados. Una  

herramienta real de sintonización debería tener en cuenta puntos clave para que el proceso de 

sintonización dinámico sea posible y efectivo, tales como saber definir la representación del 

conocimiento empleado para realizar el análisis de rendimiento, realizar de forma cuidadosa las 

modificaciones dinámicas en la aplicación de modo que su ejecución continúe de forma 

correcta, llevar a cabo el análisis de una aplicación sin conocimiento de sus estructuras internas 

o la modificación dinámica de aplicaciones cuya estructura es desconocida. 

 Entre los aspectos expuesto anteriormente es muy destacable la importancia del 

conocimiento empleado para realizar el análisis de la aplicación, ya que a partir de él se 

determinará el comportamiento de la aplicación y se detectará los problemas de rendimiento 

existentes en la misma. Existen varias aproximaciones para realizar este análisis como por 

ejemplo el uso de técnicas heurísticas, modelos de rendimiento, etc. En los métodos heurísticos 

algunos parámetros deben ser controlados y determinados de forma automática mediante una 

búsqueda heurística en el espacio de valores del parámetro. Por otro lado, los modelos de 

rendimiento ayudan a determinar el tiempo de ejecución mínimo de la aplicación mediante la 

predicción del rendimiento de la misma. Estos modelos pueden contener fórmulas y/o 

condiciones que facilitan la determinación del comportamiento óptimo. Estas formulas 

necesitan medidas extraídas de la ejecución de la aplicación. De modo que basándose en las 

medidas y aplicando la fórmula adecuada, el modelo de rendimiento puede estimar el 

comportamiento de la aplicación, por ejemplo el valor óptimo de un parámetro dado. 

Finalmente, la aplicación puede ser sintonizada, cambiando el valor del parámetro. 

 Además, bajo la aproximación de análisis dinámico hay que tener presente que en 

ocasiones no es posible aplicar sintonización dinámica a cualquier aplicación y en cualquier 

entorno. Como se deduce, dicha aproximación presenta un grado de complejidad muy elevado. 

 El presente trabajo de investigación de máster tiene como eje principal la herramienta 

MATE (Monitoring, Analysis and Tuning Environment) [7]. MATE, como su nombre indica, es 

un entorno que desarrolla la aproximación comentada anteriormente, es decir, es capaz de  

sintonizar automática y dinámicamente una aplicación paralela/distribuida basándose en el 

conocimiento generado por el uso de modelos de rendimiento. A partir de la funcionalidad que 

proporciona esta herramienta, una aplicación paralela en ejecución puede ser automática y 
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dinámicamente monitorizada, analizada y sintonizada sobre la marcha sin necesidad de re-

compilar, re-enlazar o re-ejecutar, ya que las modificaciones son realizadas empleando la 

instrumentación dinámica mediante el uso de la librería Dyninst [8]. 

1.2 Objetivos 

El propósito de las aplicaciones paralelas/distribuidas es resolver el problema considerado del 

modo más rápido posible utilizando los recursos disponibles. Por lo tanto, el rendimiento se 

convierte en uno de los aspectos más importantes. De este modo el empleo de herramientas 

como MATE son necesarias en el campo de la computación de altas prestaciones para un 

correcto rendimiento de las aplicaciones paralelas. 

 Partiendo de la funcionalidad que proporciona MATE surge el trabajo de investigación 

a realizar, el cual se encuentra situado dentro de la línea de investigación Entornos para la 

evaluación del rendimiento y sintonización de aplicaciones. 

 El objetivo general de este trabajo de investigación es sintonizar dinámicamente 

mediante MATE una aplicación MPI empleada en computación de altas prestaciones que siga 

un paradigma Master/Worker; este estudio permitirá lograr un conocimiento sobre la pauta de 

comportamiento de la aplicación y sobre la herramienta de sintonización.   

 La determinación de la estructura y el comportamiento de la aplicación es un aspecto 

clave para lograr una sintonización adecuada, eficiente y poco intrusiva. Poseer esta 

información permite determinar los puntos que influyen en el rendimiento de la aplicación y 

crear un modelo de rendimiento asociado a la estructura y características de eficiencia de la 

misma. 

 Por tanto en este trabajo se pretende conocer la estructura y comportamiento de 

aplicaciones basadas en el paradigma de programación paralela Master/Worker, con el fin de 

explotar en MATE un modelo de rendimiento que describa ese tipo de aplicaciones. 

 Para lograr este objetivo, quedan definidos los siguientes objetivos específicos: 

- Estudiar la herramienta MATE. Esta herramienta de sintonización presenta una 

arquitectura formada por componentes que desempeñan funcionalidades diferenciadas 

desde un punto de vista lógico; además dichos componentes presentan entre ellos 

protocolos de comunicación definidos. Por tanto, el propósito de este estudio es obtener 

una comprensión general de la pauta de cada uno de los integrantes de MATE así como 

tener un primer contacto con la implementación de la herramienta. 
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- Modificar la implementación de MATE para que sea capaz de sintonizar aplicaciones 

basadas en la librería de paso de mensajes MPI desarrolladas en C/C++. Inicialmente 

MATE fue desarrollada para la sintonización de aplicaciones PVM. La decisión de 

realizar este cambio en la implementación tiene como fin incrementar la usabilidad de 

MATE, ya que en la actualidad la gran mayoría de las aplicaciones 

paralelas/distribuidas desarrolladas en ámbitos científicos emplean la librería MPI. 

- Estudiar el modelo de rendimiento para aplicaciones Master/Worker expuesto en [9]. 

Este modelo engloba los  problemas de rendimiento propios de este tipo de 

aplicaciones: balanceo de carga y número de workers. Para ello, partiendo de un modelo 

analítico, aplica una metodología que consta de dos fases: una primera fase que emplea 

una estrategia dinámica para el balanceo de carga y una segunda para adaptar el número 

de workers teniendo en cuenta las características actuales en las que se encuentra el 

sistema. 

- Localizar una aplicación paralela/distribuida empleada en computación de altas 

prestaciones que sea una buena candidata para el estudio que se va a realizar y que siga 

un paradigma Master/Worker. Tras realizar una compleja búsqueda, se llego a la 

conclusión de que actualmente las aplicaciones Master/Worker no presentan un uso 

muy extendido en computación de altas prestaciones debido al cuello de botella que 

supone la comunicación establecida entre un único master y todos los workers. 

A pesar de ello, y con el fin de poder obtener los conocimientos deseados del 

presente trabajo de investigación, se optó por la elección de una aplicación 

paralela/distribuida desarrollada en el departamento de Arquitectura de Computadores y 

Sistemas Operativos de la Universidad Autónoma de Barcelona. Se trata de un 

simulador de incendios de fuegos forestales, denominado Xfire [10]. 

- Implementar el tunlet que contiene la especificación del modelo de rendimiento 

estudiado para aplicaciones Master/Worker 

Los tunlets son el núcleo de la sintonización automática y dinámica 

implementada por MATE, en términos de representación del conocimiento. Cada tunlet 

define e implementa una particular técnica de sintonización, es decir, la lógica para 

resolver un determinado problema de rendimiento mediante la encapsulación del 

conocimiento de dicho problemas basándose en puntos de medida, funciones de 

rendimiento y puntos/acciones de sintonización. 

El tunlet diseñado será implementado en C++ empleando MPI y posteriormente 

integrados en la herramienta MATE. Por tanto, el desarrollo del tunlet conlleva el 
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análisis del modelo de rendimiento propuesto con el fin de identificar los puntos de 

medida y sintonización que se deben de implementar. 

- Realizar la experimentación necesaria que permita observar las posibles mejoras de 

rendimiento en la aplicación elegida tras la aplicación de la sintonización dinámica 

mediante la funcionalidad que proporciona MATE con el conocimiento del modelo de 

rendimiento estudiado integrado en el tunlet. 

 Tras la presentación de los objetivos, el resultado que se espera de este trabajo de 

investigación es obtener los conocimientos necesarios sobre el proceso de optimización 

automática y dinámica de aplicaciones paralelas/distribuidas, especialmente aquellos 

relacionados con las fase de análisis de rendimiento, en la que interviene los modelos de 

rendimiento, y la fase de sintonización dinámica. Además se pretende que esta investigación, y 

las conclusiones que se obtengan de ella, permitan comenzar con el estudio a largo plazo de la 

tesis doctoral que tiene como fin centrase en el análisis de las características de escalabilidad de 

MATE. 

1.3 Organización del trabajo 

El contenido de este trabajo de investigación se presenta dividido en los siguientes capítulos: 

- Capítulo 2: Análisis de rendimiento. 

 Se describe las aproximaciones existentes en el análisis de rendimiento de 

aplicaciones paralelas/distribuidas, desde el análisis clásico hasta la sintonización 

dinámica. Además se detallan algunas de las herramientas que conforman el estado del 

arte actual del análisis de rendimiento.  

- Capítulo 3. MATE. 

 Se centra en proporcionar una descripción general de MATE y detallar los 

principales aspectos relacionados con su arquitectura. Además, se expone los conceptos 

básicos sobre la instrumentación dinámica empleada por MATE en las fases de 

monitorización y sintonización. Finalmente se muestran las analogías y diferencias de 

MATE con otras herramientas existentes que realizan la misma labor que MATE 

basándose en otros métodos en el ámbito de la mejora dinámica de rendimiento de 

aplicaciones paralelas/distribuidas. 

- Capítulo 4. Modelo de rendimiento para aplicaciones Master/Worker. 

 Se presenta una descripción del modelo de rendimiento desarrollado para la 

sintonización dinámica de aplicaciones Master/Worker. Es un modelo de dos fases 

consistente en una estrategia para balancear la carga de los workers, y un modelo 

analítico para adaptar el número de workers de la aplicación. 
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- Capítulo 5. Desarrollo del modelo de rendimiento en MATE. 

 Muestra el proceso de integración del conocimiento proporcionado por el 

modelo de rendimiento, expuesto en el capítulo anterior, en el proceso de sintonización 

dinámica y automática que implementa MATE. También se detallan las características 

de la aplicación Master/Worker elegida para ser sintonizada. Finalmente se exponen las 

pruebas experimentales y resultados obtenidos de ejecución de la aplicación elegida tras 

ser sintonizada bajo MATE empleando como lógica de análisis y sintonización de 

rendimiento el estudiado modelo de rendimiento. 

- Capítulo 6. Conclusiones y trabajo futuro 

 Resumen el trabajo de investigación realizado, extrayendo las conclusiones 

derivadas del análisis y estudios realizados. Además se presentan las líneas abiertas 

presentes en esta área de investigación a través de las cuales se pretende dirigir el 

trabajo futuro. 
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Capítulo 2 

 

Análisis de rendimiento 

 

2.1 Introducción 

Uno de los principales propósitos de las aplicaciones paralelas y distribuidas es aprovechar los 

recursos y las altas capacidades computacionales de los sistemas paralelos.  Por tanto obtener un 

buen rendimiento en dichas aplicaciones se ha convertido en un punto clave del procesamiento 

paralelo/distribuido.  Sin embargo, lograr este rendimiento en una aplicación ejecutándose en un 

sistema es una dura tarea que requiere un alto grado de experiencia. De este modo, los usuarios, 

con el objetivo de mejorar el comportamiento de sus aplicaciones, deben enfrentarse al proceso 

de optimización de rendimiento. Se trata de un proceso cíclico, mostrado en la figura 2.1, 

compuesto principalmente por 3 fases fundamentales [2]: 

- Fase de monitorización, mediante la que se añade a la aplicación cierta información de 

instrumentación que permita recopilar conocimiento acerca del comportamiento de la 

aplicación. 

- Fase de análisis, durante la cual se inspecciona la información recopilada en la fase de 

monitorización y la información estática del programa con el objetivo de detectar 

problemas de rendimiento, deducir las causas y determinar soluciones.  

- Fase de sintonización, en la que se subsanan los posibles errores de rendimiento 

presentes en el comportamiento aplicando los cambios oportunos en el código de la 

aplicación. 
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 Se han desarrollado una gran cantidad de herramientas de análisis de rendimiento que 

ayudan al usuario a tratar los problemas de rendimiento de su aplicación. Estas pueden 

clasificarse en herramientas de monitorización, de análisis y/o de sintonización, aunque existen 

herramientas que realizan varias de estas acciones, ayudando al usuario en más de un único 

nivel. 

 

Figura 2.1. Proceso cíclico de mejora del rendimiento 

 Las herramientas de monitorización consta generalmente de dos partes: una librería o 

conjunto de librerías que permiten la inserción de instrumentación y rutinas para medir y 

almacenar los datos; y una seria de módulos cuya funcionalidad ofrece la posibilidad de mostrar 

los datos generados durante el monitoreo. Hay que tener en cuenta que la instrumentación puede 

afectar a las características de rendimiento de la aplicación paralela.  

 El objetivo de las herramientas de análisis es examinar automáticamente la información 

generada durante la monitorización para determinar los posibles cuellos de botella de la 

aplicación paralela. Para ello debe poseer conocimiento sobre los problemas de rendimiento 

posibles en la aplicación con el fin de proporcionar una solución de los mismos. 

 En lo referente a las herramientas de sintonización su intención es automatizar la 

inserción de las modificaciones oportunas en el código de la aplicación paralela para eliminar 

las imprecisiones en el rendimiento detectadas en la fase de análisis.  

 A lo largo de los años, con el desarrollo de la computación de altas prestaciones, se han 

propuesto varias aproximaciones de monitorización, análisis y sintonización de rendimiento 

para cooperar con el usuario en la mejora de sus aplicaciones. En las siguientes secciones se 

muestra un resumen de estas aproximaciones así como ejemplos de herramientas actuales que 

funcionalmente se sitúan dentro de las mismas. 
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2.2 Análisis clásico del rendimiento 

La aproximación clásica de análisis de rendimiento está basada en la visualización de la 

ejecución de la aplicación paralela una vez que ésta ha terminado de ejecutarse. Este proceso, 

mostrado en la figura 2.2 recibe el nombre de análisis de rendimiento post-mortem. 

 

Figura 2.2. Aproximación clásica del análisis de rendimiento 

 Generalmente, las herramientas situadas en esta aproximación reflejan información 

específica sobre el comportamiento de la aplicación mediante diferentes vistas gráficas y 

numéricas. Para ello, primeramente se requiere el uso de herramientas que realicen la 

monitorización para obtener datos de rendimiento de la ejecución del programa paralelo. La 

inserción de la instrumentación se puede realizar de forma estática por la herramienta o bien 

manualmente por el usuario. El proceso de monitorización se puede realizar siguiendo varias 

técnicas: 

- Basadas en tiempo de ejecución, mediante las que se detecta donde la aplicación 

paralela emplea la mayor parte del tiempo. 

- Basadas en contadores, que indican el número de ocurrencias de un determinado evento 

en la aplicación. 

- Basadas en muestreo, las cuales generan medidas periódicas sobre el estado de la 

aplicación. 

- Basadas en trazas de eventos, que proporcionan información asociada a eventos 

concretos definidos en la aplicación paralela. 
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 Con los datos almacenados en un fichero de traza de la aplicación, las herramientas de 

visualización generan gráficos sobre la pauta que sigue la aplicación, tales como diagramas de 

Gantt, diagramas circulares, de barra, etc. La información mostrada debe corresponder con 

aspectos relacionados con paso de mensajes, comunicaciones colectivas, ejecución de rutinas de 

la aplicación entre otras. Finalmente, el usuario debe analizar esas representaciones gráficas 

buscando problemas de rendimiento, determinando las causas de dichos problemas y cambiando 

el código fuente manualmente. De este modo, el proceso global se repite, volviendo a compilar, 

enlazar y ejecutar la aplicación, hasta que el rendimiento deseado sea alcanzado. 

 El análisis de rendimiento clásico requiere un elevado grado de experiencia en 

programación paralela para ser llevado a cabo de modo eficiente, de modo que constituye una 

tarea difícil especialmente para usuarios no expertos. La complejidad de esta tarea se debe 

principalmente a la interpretación y tamaño del fichero de traza el cual es proporcional al 

tamaño y el tiempo de ejecución de la aplicación. Además, esta aproximación no es fiable 

cuando las aplicaciones o los entornos de ejecución tienen un comportamiento dinámico. 

Muchas aplicaciones tienen un comportamiento diferente según los datos de entrada o incluso 

pueden variar durante la misma ejecución. Además muchas herramientas de visualización no 

escalan bien, por lo que cuando el número de procesos implicados en la aplicación es muy 

elevado, los gráficos generados son ilegibles. 

2.2.1 Herramientas 

2.2.1.1 MPICL 

MPICL [11] es una librería para instrumentación y monitorización desarrollada en el 

Laboratorio Nacional de Oak Ridge en 1997.  

 Su funcionamiento se basa en la recopilación de información sobre comunicación y 

eventos definidos por el usuario en programas paralelos usando MPI escritos en C o 

FORTRAN. Para ello, emplea  la interfaz de profiling de MPI que  interceptar automáticamente 

las llamadas a las rutinas de comunicación de MPI, eliminado la necesidad de añadir más que 

unas cuantas sentencias al código fuente para recopilar información. 

 MPICL instrumenta el código de la aplicación, primeramente usando rutinas en C que 

consultan el sistema de reloj y guarda información de eventos específicos en buffers internos  

Esta librería puede ser usada de dos formas distintas. Puede ser usada para realizar profiling, 

resumiendo el número de ocurrencias, estadísticas, y el tiempo gastado en comunicación. 

También puede ser usada para recopilar trazas de eventos, las cuales pueden ser visualizadas 

empleando una herramienta de visualización como Paragraph [12]. Finalmente MPICL genera 

un fichero de trazas [13], que contiene un registro de evento por línea, y cada registro consiste 
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en un conjunto de valores numéricos que especifican el tipo de evento, marcas de tiempo, el 

número de procesador, la longitud del mensaje, y otra información similar. 

 MPICL es una extensión de la librería PICL [14], un paquete software que proporciona 

una interfaz portable de paso de mensajes antes de que apareciera el estándar MPI. Los 

comandos de paso de mensajes de PICL simplemente llamaban a los comandos nativos 

subyacentes de cada máquina en la cual estaba implementado. Un usuario MPI no necesita saber 

nada sobre el paso de mensajes PICL, lo cual significa que MPICL puede ser usada para 

recopilar datos de rendimiento para programas no implementados con la librería MPI. Pero 

información sobre eventos de comunicación solo se recopila si se usa MPI, los comandos de 

paso de mensajes de PICL, o si el usuario instrumenta la capa de paso de mensajes empleando 

los comandos de instrumentación de MPICL.  

 Una característica destacable de MPICL es que intenta minimizar el overhead 

introducido por la recolección de información almacenando los ficheros de traza en la memoria 

local de cada procesador, después los descarga al disco solo cuando la aplicación haya 

terminado su ejecución. Sin embargo, tal monitorización introduce un coste extra que el caso de 

MPICL es una cantidad fija que se añade al coste de envío de cada mensaje. De este modo, la 

perturbación total es función de la frecuencia y del volumen del tráfico de comunicación, lo cual 

varía de máquina a máquina. Esta perturbación es normalmente bastante pequeña para que el 

comportamiento de la aplicación no se vea afectado. 

2.2.1.2 Paragraph 

Paragraph [12] es una herramienta de visualización que proporciona una representación gráfica, 

detallada y animada así como resúmenes de rendimiento gráficos de programas paralelos que 

usan  MPI. Fue desarrollada por la Universidad de Illinois y la Universidad de Tennessee en 

1995. 

 Paragraph tiene una relación consumidor-productor con MPICL: Paragraph emplea 

exclusivamente las trazas de datos que genera MPICL. De este modo, usando MPICL junto con 

MPI, el usuario puede crear los ficheros de datos necesarios para usar Paragraph, para analizar 

el comportamiento y el rendimiento de programas paralelos.  

 Está escrito en C y su estructura software está compuesta por un bucle de eventos y un 

switch que selecciona acciones basándose en la naturaleza de cada evento. Hay dos colas de 

eventos separadas: una cola eventos producidos por el usuario (clicks de ratón, pulsaciones de 

teclas…) y una cola de trazas de eventos producidas por el programa paralelo bajo estudio. 

Paragraph se alterna entre estas dos colas para proporcionar una representación dinámica del 

programa paralelo y una respuesta interactiva con el usuario.  
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 Aunque Paragraph solo es usado en la etapa de post-procesado, usando un fichero de 

traza generado durante la ejecución de un programa paralelo y almacenándolo para su posterior 

estudio, los datos de la visualización podrían en principio ir llegando a la estación de trabajo 

gráfica al mismo tiempo que la aplicación paralela se ejecuta en la máquina paralela.  

2.2.1.3 Pablo 

Pablo [15] es un entorno de análisis de rendimiento diseñado para desarrollar captura, análisis y 

presentación de datos en una gran variedad de sistemas paralelos escalables. Fue diseñado por la 

Universidad de Illinois en 1993. 

 Su infraestructura se divide en dos componentes principales: 

‐ Un software portable para realizar la instrumentación. 

‐ Un componente que realiza el análisis de rendimiento 

 El software para la instrumentación permite la especificación interactiva de puntos de 

instrumentación en el código fuente. Este software puede ser usado para recopilar datos de 

rendimiento sobre cualquier sistema o código de aplicación. Como parte de la instrumentación, 

se desarrollaron 3 módulos software: una interfaz gráfica para especificación de la 

instrumentación, analizadores en C o Fortran que emiten código fuente instrumentado y una 

librería de captura de eventos  de rendimiento en formato estándar [16] [17] generados por el 

código instrumentado cuando es ejecutado en sistemas paralelos de memoria distribuida. Pablo 

permite 3 tipos de monitorización: tracing, profiling e intervalos de tiempo. Los eventos de 

traceo representa la ocurrencia de una acción específica (por ejemplo un procedimiento en 

concreto es llamado por un procesador en un momento determinado), de manera que cada 

evento produce una entrada en el fichero de datos de rendimiento. En el caso de los eventos de 

conteo, estos no contienen datos de usuario, solo cuenta el número de veces que tiene lugar un 

determinado evento o acción. La librería de captura de datos de Pablo permite cuando 

almacenar un registro de eventos de conteo en un fichero de datos (por ejemplo cuando el 

contador alcance una determinada cantidad). Finalmente los eventos de intervalos de tiempo 

asocian un evento con dos puntos del código fuente. Cada ocurrencia produce un evento que 

contiene el tiempo que ha transcurrido durante la ejecución del código fuente situado entre los 

dos puntos especificados. 

 El componente de análisis de rendimiento de Pablo consiste en un conjunto de módulos 

de transformación de datos que pueden ser gráficamente interconectados, para formar un grafo 

acíclico y dirigido de datos de análisis. Los datos de rendimiento fluyen a través de los nodos 

del grafo y son transformados para ofrecer las métricas de rendimiento deseadas.  



Capítulo 2. Análisis de rendimiento 

 

 
15 

2.2.1.4 Vampir 

Vampir [3] [18] es una herramienta de análisis de rendimiento que permite la visualización 

gráfica y análisis de los cambios de estado de un programa, mensajes punto a punto, 

operaciones colectivas y contadores de rendimiento hardware junto con resúmenes estadísticos. 

Está diseñada para ser una herramienta de fácil uso, lo cual permite a los desarrolladores 

visualizar rápidamente el comportamiento de su aplicación en un determinado nivel de detalle. 

 Comenzó a desarrollarse en el Centro de Matemática Aplicada del Centro de 

Investigación de Jülich y el Centro de Computación de Altas Prestaciones de la Universidad 

Técnica de Dresden. Vampir está disponible como producto comercial desde 1996. En el 

pasado, fue distribuida por German Pallas GMBH, empresa que pasó a formar parte 

posteriormente de la compañía Intel. La cooperación con Intel terminó en 2005. Actualmente el 

desarrollo de Vampir continúa por parte del Centro de Servicios de Información y Computación 

de Altas Prestaciones (ZIH) de la Universidad Técnica de Dresden. Hoy en día, los productos 

Vampir se pueden obtener directamente desde la página web. 

 Esta herramienta ha sido probada y ampliamente usada en la comunidad de la 

computación de altas prestaciones durante muchos años. Un gran número de entornos de 

monitorización del rendimiento como TAU [19], KOJAK [20] o VampirTrace [21] generan 

ficheros de trazas que son interpretables por Vampir. Desafortunadamente no soporta el fichero 

de traza de estructura Intel, debido a razones de licencia. Desde la versión 5.0, Vampir soporta 

el formato Open Trace (OTF), desarrollado por ZIH. Este formato de traza está especialmente 

diseñado para programas masivamente paralelos. Diferentes gráficos temporales muestran las 

actividades y comunicaciones de la aplicación a lo largo de los ejes de tiempo, sobre los cuales 

el usuario puede desplazarse y hacer zoom, con el objetivo de detectar la causa real de los 

problemas de rendimiento. Además permite verificar la correcta paralelización y el balanceo de 

carga. Vampir generara gráficos estadísticos que proporcionan resultados cuantitativos sobre 

porciones arbitrarias temporales. La implementación está basada en el estándar X-Windows and 

Motif y corre en estaciones de trabajo así como en sistemas de producción paralela. Está 

disponible para casi todas las plataformas de 32 y 64 bit como PCs y Clusters Linux, IBM, SGI, 

SUN y Apple. 

 Actualmente hay dos versiones de Vampir. La primera, la estación de trabajo basada en 

la aplicación clásica con una historia de desarrollo de más de 10 años. Su último lanzamiento 

constituye la versión 7.1 y data de Noviembre del 2009 [22]. La segunda, la versión más 

escalable y distribuida llamada VampirServer [21]. Además, hay software de instrumentación y 

medida conocido como VampirTrace [21]. 
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VampirServer 

Es la siguiente generación de Vampir, que presenta una implementación paralela con una 

escalabilidad mucho mayor. La última versión desarrollada es VampirSever2.0 y data de 

noviembre de 2009 [22]. 

 Basándose en la experiencia adquirida en el desarrollo de Vampir, la nueva arquitectura, 

mostrada en la figura 2.3 usa una aproximación distribuida consistente en un servidor de análisis 

paralelo, el cual se supone que se está ejecutando en un segmento de un gran entorno de 

producción paralela, y un cliente de visualización de los datos de rendimiento obtenidos 

corriendo en otras estaciones de trabajo. El servidor es un programa paralelo el cual usa 

métodos de comunicación estándar tales como MPI, pthreads y sockets. La compleja 

preparación de los datos de rendimiento es llevada a cabo por el propio servidor. El servidor 

consiste en un proceso máster y un número variable de procesos worker. Ambos componentes, 

servidor y cliente, interactúa a través de Internet por medio de un socket estándar basado en 

conexiones de red. Los principales objetivos de esta aproximación paralela distribuida son los 

siguientes: 

- Mantener los datos de rendimiento cerca de la localización donde fueron generados. 

- Análisis de los datos de rendimiento en paralelo para mejorar el incremento de la 

escalabilidad con Speedy up del orden de 10 a 100. 

- Limitar los requerimientos de ancho de banda y latencia de la red a un mínimo para 

permitir un rápido acceso y análisis desde entornos de trabajo remoto. 

 

Figura 2.3 Arquitectura de análisis distribuido de VampirServer 
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 VampirServer implementa algoritmos paralelos de análisis de eventos y gráficos 

personalizables que permiten un seguimiento rápido e interactivo de complejos datos 

procedentes de la monitorización del rendimiento. La información de la traza de eventos se 

almacena en memoria distribuida en la máquina de análisis paralelo. Además, grandes 

volúmenes de datos pueden ser analizados sin copiar grandes cantidades de datos. 

VampirTrace 

Proporciona una infraestructura de medida para coleccionar datos de rendimiento. Permite el 

desarrollo con instrumentación y facilidades para recolectar medidas en aplicaciones HPC. 

Cubre el análisis de aplicaciones desarrolladas con MPI y OpenMP. La instrumentación 

modifica la aplicación para detectar y almacenar eventos de interés generados durante la 

ejecución, por ejemplo una operación de comunicación MPI o una cierta llamada a función. 

Esto puede ser hecho a nivel de código fuente, durante la compilación o en tiempo de enlace 

mediante varias técnicas. La librería VampirTrace se encarga de la recogida de datos en todos 

los procesos. Estos datos incluyen eventos definidos por el usuario, eventos MPI, eventos 

OpenMP, así como información sobre temporización o localización. Además también permite 

obtener información mediante contadores hardware mediante PAPI. La última versión 

desarrollada es VampirTrace 5.8 y data de noviembre de 2009 [22]. 

 La instrumentación automática del código fuente usando el compilador está disponible 

para compilador de GNU, Intel (versión 10), IBM, PGI, SUN (solo Fortran). La instrumentación 

binaria se desarrolla con Dynist. 

 Los datos de rendimiento almacenados se almacenan en un fichero usando el formato 

Open Trace (OTF). OTF es un rápido y eficiente formato que presenta características especiales 

para entrada/salida paralela. Este formato está diseñado para alcanzar un buen rendimiento en 

estaciones de trabajo de un único procesador así como en supercomputadores masivamente 

paralelos. 

 Su implementación está basada en el conjunto de herramientas KOJAK y es 

desarrollado en ZIH, en cooperación con ZAM, Centro de Investigación de Jülich, Alemania y 

el Laboratorio de Computación Innovadora de la Universidad de Tennesse, EEUU.  

2.3 Análisis automático de rendimiento 

Para reducir la complejidad que los programadores y usuarios encontraban en el análisis clásico 

de rendimiento, se propone un análisis automático del rendimiento de la aplicación paralela. 

Esta aproximación realiza un análisis automático basado en el conocimiento previo de las 
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características de los distintos problemas de rendimiento. La figura 2.4 muestra el ciclo de 

operación llevada a cabo en esta aproximación. 

 

Figura 2.4. Aproximación automática del análisis de rendimiento 

 Las herramientas que implementan este tipo de análisis son capaces de identificar 

cuellos de botella críticos y ayudar a la optimización de la aplicación proporcionando 

sugerencias, las cuales exponen problemas de rendimiento y posibles mejoras. Para ello, la 

aplicación es instrumentada antes de su ejecución y la instrumentación es insertada en los 

puntos concretos. Una vez que los datos de rendimiento se han recopilado y almacenado en el 

fichero de traza, el proceso de análisis automático puede desarrollarse. Este proceso consiste en 

una búsqueda de problemas de rendimiento en los datos obtenidos en la ejecución, basada en 

información sobre posibles cuellos de botella y como encontrarlos. Cuando el proceso de 

análisis finaliza, el usuario puede modificar la aplicación partiendo de las sugerencias 

proporcionadas por el análisis, volver a compilarla y enlazarla para proceder a la siguiente 

ejecución. 

 Este tipo de análisis reduce la cantidad de tiempo que los desarrolladores invierten en 

análisis de rendimiento. Sin embargo de nuevo está basado en ficheros de traza que contienen 

una única ejecución de la aplicación, por lo que, de la misma manera que en el análisis 

clásico, esta aproximación no es fiable cuando las aplicaciones o los entornos de 

ejecución tienen un comportamiento dinámico. 
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2.3.1 Herramientas 

2.3.1.1 Scalasca 

Scalasca [23] es un conjunto de herramientas de análisis de rendimiento automático que ha sido 

especialmente diseñado para el uso en sistema de gran escala, incluyendo IBM Blue Gene y 

Cray XT, pero también está construido para su uso en plataformas HPC de pequeña y media 

escala. Ha sido desarrollado en el Centro de Supercomputación de Jülich, Alemania en el año 

2008. 

 Scalasca realiza un procedimiento de análisis de rendimiento incremental que integra 

profiling en tiempo de ejecución con amplios estudios del comportamiento concurrente de la 

aplicación mediante trazas de eventos, adoptando una estrategia de análisis basada en sucesivas 

configuraciones de medidas de rendimiento. Una característica distintiva es su capacidad para 

detectar estados de espera que ocurren, por ejemplo, como resultado de un incorrecto balanceo 

de la carga. Especialmente cuando se intenta escalar aplicaciones de comunicación intensiva a 

grandes cantidades de procesos, tales estados de espera constituyen grandes retos para conseguir 

un buen rendimiento. Comparado con su antecesor, KOJAK [20], Scalasca puede detectar tales 

estados de espera incluso en configuraciones con grandes cantidades de procesos usando un 

innovador esquema paralelo de análisis de trazas.  

 La actual versión de Scalasca [24] permite el análisis de rendimiento de aplicaciones 

basadas en MPI, OpenMP, y construcciones de programación híbrida más ampliamente usadas 

en aplicaciones HPC altamente escalables escritas en C, C++, y Fortran en una amplia gama de 

plataformas actuales HPC. 

 En Scalasca, antes de la recopilación de cualquier dato de rendimiento, la aplicación 

objetivo debe ser instrumentada. Cuando se corre el código instrumentado en la máquina 

paralela, el usuario puede elegir entre generar un resumen con métricas de rendimiento 

agregadas y/o almacenar trazas de eventos individuales en tiempo de ejecución. El resumen de 

métricas es útil para obtener una vista general sobre el comportamiento de rendimiento. Cuando 

se habilita la traza, cada proceso genera un fichero de traza que contiene registros para los 

eventos generados de forma local.  

 Después de que la aplicación termine su ejecución, Scalasca carga los ficheros de traza 

en memoria principal y los analiza en paralelo usando tantas CPUs como han sido empleadas en 

la ejecución de la aplicación paralela. Durante el análisis, Scalasca genera patrones 

característicos indicativos de estados de espera y relaciona las propiedades de rendimiento, 

clasificando las instancias detectadas por categorías y cuantificando su importancia. El resultado 
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es un informe del análisis similar en estructura al informe resumen pero enriquecido con 

métricas sobre comunicación de alto nivel e ineficiencias de sincronización. 

 Ambos informes contienen métricas de rendimiento para cada llamada a función y 

recurso del sistema (proceso/hebra), pudiendo ser interactivamente explorado en una interfaz 

gráfica. Como alternativa a este patrón automático de búsqueda, las trazas pueden ser mezcladas 

y convertidas de manera que puedan visualizarse con otras herramientas como Paraver o 

VampirTrace, recogiendo las ventajas de sus visualizaciones desde el punto de vista temporal y 

su rica funcionalidad estadística. 

2.3.1.2 Periscope 

Periscope [25] es una herramienta escalable de análisis de rendimiento automático para 

aplicaciones MPI. Actualmente se encuentra bajo desarrollo en la Universidad Técnica de 

München en los proyectos ISAR y SILC; surge como sucesor de Peridot [26] en 2005. La 

última versión de Periscope data del año 2009, [27]. 

 Consiste en un frontend, una jerarquía de comunicación, agentes de análisis y una 

interfaz gráfica de usuario para analizar los resultados, tal y como se muestra en la figura 2.6. 

Cada uno de los agentes de análisis, es decir, los nodos de la jerarquía de agentes buscan 

autónomamente ineficiencias en un subconjunto de procesos de la aplicación. En la parte 

superior de la jerarquía de agentes, el agente máster es responsable de la interacción con el 

usuario. El agente máster proporciona las propiedades detectadas al usuario y toma como 

entrada comandos que direccionan el análisis. Los agentes intermedios de la jerarquía son 

necesarios para la búsqueda de propiedades que no pueden ser detectadas localmente porque se 

deben analizar conjuntamente los datos de rendimiento de más de un nodo. 

 Los procesos de la aplicación están enlazados con un sistema de monitorización que 

proporciona la Interfaz de Peticiones de Monitorización (MRI). Los agentes se unen al monitor 

por medio de sockets. La MRI permite a los agentes configurar la toma de medidas para 

comenzar, parar, terminar la ejecución y recuperar los datos de rendimiento. El monitor 

actualmente solo soporta información resumida (profiling). La disposición de los distintos 

componentes de Periscope se muestra en la figura 2.5. 

 La aplicación y la red de agentes son comenzadas a través del proceso frontend. Éste 

analiza el conjunto de procesadores disponibles, determina el mapeo de la aplicación y los 

procesos de los agentes de análisis, y entonces lanza la ejecución de la aplicación y la jerarquía 

de agentes. Después de la inicialización, un comando se propaga a lo largo de la jerarquía de 

agentes para comenzar la búsqueda. La búsqueda se desarrolla de acuerdo a la estrategia de 

búsqueda seleccionada cuando comienza el proceso frontend. Al final de la búsqueda local, las 
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propiedades de rendimiento detectadas son enviadas a través de la jerarquía de agentes al 

proceso frontend. Periscope comienza su análisis desde la especificación formal de las 

propiedades de rendimiento. La especificación determina la condición, el valor de confianza y la 

severidad de las propiedades de rendimiento. 

 

Figura 2.5 Esquema de la arquitectura de análisis distribuida de Periscope. El sistema de análisis de 
rendimiento de Periscope está compuesto por un número de agentes de análisis estructurados de forma 

jerárquica. 

2.3.1.3 TAU 

TAU (Tuning and Analysis Utilities) [28] [19] es un sistema de rendimiento paralelo que 

integra un framework y un conjunto de herramientas automáticas para instrumentación, medida, 

análisis y visualización del rendimiento de aplicaciones ejecutadas en sistemas paralelos de gran 

escala. Fue desarrollado en 1992 en la Universidad de Oregon, en EEUU, en colaboración con 

el Centro de Investigación de Jülich y el Laboratorio Nacional de Los Alamos. La última 

versión de TAU (2.19.1), fue lanzada en febrero de 2010 [29]. 

 Una de sus principales características es el gran número de plataformas hardware y 

software que soporta. TAU puede ser ejecutada en la mayoría de las plataformas actuales de 

cómputo de altas prestaciones y permite varios lenguajes, incluyendo C, C++, Java, Python, 

Fortran, OpenM, MPI and Charm. 

 El framework está compuesto por herramientas y módulos que se integran y coordinan 

sus operaciones usando interfaces bien definidas y formatos de datos concretos. Su arquitectura 
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se organiza en tres capas (instrumentación, medida y análisis), donde en cada capa múltiples 

módulos están disponibles y puede ser configurados de manera flexible por el usuario. 

 TAU soporta un flexible modelo de instrumentación, basado en instrumentación 

dinámica, que permite al usuario insertar instrumentación de rendimiento llamando a la API de 

medidas de TAU. El concepto clave de la capa de instrumentación es que en dicha capa es 

donde se definen los eventos de rendimiento. El mecanismo de instrumentación de TAU 

permite distintos tipos de eventos que definen el rendimiento, incluyendo eventos definidos por 

localizaciones de código, eventos de interfaz de librerías, eventos del sistema y eventos 

definidos por el propio usuario. De modo que, la salida de la instrumentación es información 

sobre los eventos de un experimento de rendimiento. Esta información será usada por otras 

herramientas. 

 La capa de instrumentación se comunica con la capa de medida mediante la API de 

medida de TAU. El sistema de medida de TAU está organizado en 4 partes: 

- La parte de creación y gestión de eventos determina como son procesados los eventos. 

- La parte de medidas de rendimiento permite la medición de dos formas: profiling y 

tracing. Para cada forma TAU presenta una completa infraestructura para gestionar los 

datos de medida durante la ejecución a cualquier escala. 

- La parte de fuentes de datos de rendimiento define que datos de rendimiento son 

medibles y pueden ser usados en profiling y tracing.  

- La parte de sistema operativo y sistema de ejecución proporciona el acoplamiento entre 

el sistema de medida de TAU y el sistema paralelo subyacente. TAU especializa y 

optimiza su ejecución de acuerdo a las características de la plataforma disponible. 

 

 La capa de análisis y visualización permite el uso de varios módulos. Estos módulos se 

dividen en componentes para profiling y componentes para tracing, cuya información generada 

puede ser visualizada por herramientas especializadas en ellos como ParaProf o Vampir, 

respectivamente. 

2.3.1.4 Paraver y Dimemas 

Paraver [30] y Dimemas [31] son dos herramientas de análisis de rendimiento automático 

desarrolladas en el Centro Europeo de Paralelismo de Barcelona (CEPBA) en 1996 y 1992 

respectivamente. 

 Paraver es una herramienta flexible para el análisis y visualización del rendimiento 

basada en trazas que puede ser usada para analizar cualquier información expresada en el 

formato de su traza de entrada de aplicaciones que empleen MPI, OpenMP, MPI+OpenMP, 
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Java, resúmenes de contadores hardware, actividad del sistema operativo…Además está 

disponible para múltiples plataformas como IRIX, AIX, Linux, Tru64. 

 Basada en una interfaz de usuario gráfica, Paraver fue desarrollada para responder a la 

necesidad de tener una percepción cualitativa global del comportamiento de las aplicaciones a 

través de un registro visual que permita tener una visión sobre los problemas de rendimiento 

presentes. Paraver proporciona una gran cantidad de información útil para mejorar las 

decisiones de si y dónde invertir esfuerzos en el proceso de programación con el objetivo de 

optimizar la aplicación. 

Algunas de las principales características de Paraver son: 

- Análisis cuantitativo detallado del rendimiento del programa. 

- Análisis comparativo concurrente de varias trazas. 

- Análisis rápido para trazas de gran tamaño. 

- Permite trazas con mezcla de paso de mensajes y memoria compartida. 

- Permite la personalización de la información a visualizar. 

- Generación de métricas derivadas. 

 

Paraver presenta 3 tipos de visualizaciones: 

- Vista gráfica: representa el comportamiento de la aplicación en el tiempo de manera que 

proporcionar al usuario una comprensión general del comportamiento del programa. 

También permite un análisis detallado mediante el uso de patrones de identificación y 

relaciones de causalidad. 

- Vista textual: proporciona el máximo detalle sobre la información mostrada. 

- Vista de análisis: proporciona datos cuantitativos. 

 

 La visualización gráfica es suficientemente flexible para representar visualmente una 

gran cantidad de información y para ser la referencia para el análisis cuantitativo. Esta 

visualización consiste en un diagrama de tiempo con una línea para cada objeto representado. 

Los tipos de objetos mostrados por Paraver están muy relaciones con los conceptos de los 

modelos de la programación paralela (carga de trabajo, aplicación, tarea, hebra…) y con los 

recursos de ejecución (sistema, nodo y CPU). 

 Dimemas es una herramienta de análisis de rendimiento para programas basados en 

paso de mensajes. Permite al usuario desarrollar y sintonizar aplicaciones paralelas en una 

estación de trabajo, mientras proporciona una buena predicción de su rendimiento en la máquina 

paralela objeto de la ejecución.  
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 El simulador Dimemas reconstruye el comportamiento temporal de la aplicación 

paralela en una máquina modelada por un conjunto de parámetros de rendimiento. De este 

modo, se pueden realizar experimentos de rendimiento de forma sencilla. El tipo de 

arquitecturas que se pueden simular incluyen redes de estaciones de trabajo, sistemas SMP, 

computadores paralelos de memoria distribuida, e incluso sistemas heterogeneos. 

 Dimemas soporta librerías de paso de mensajes, como PVM, MPI y PARMACS. Para la 

comunicación, se usa un modelo de rendimiento lineal, se tienen en cuenta además algunos 

efectos no lineales como conflictos en la red. Además el simulador permite especificar 

diferentes mapeos de tareas en los nodos. 

 Dimemas genera ficheros de traza válidos para dos herramientas de análisis: Paraver y 

Vampir. 

 Esta herramienta es útil en dos fases de la vida de una aplicación: durante su desarrollo, 

para realizar un análisis de los efectos de diferentes parámetros en el rendimiento sin requerir el 

uso de la arquitectura sobre la que se desea ejecutar; y después la fase de producción, para 

seleccionar la mejor arquitectura para ejecutar la aplicación. 

 Las entradas de Dimemas son: un fichero de traza y un fichero de configuración. El 

fichero de traza contiene los datos de una ejecución real en una máquina que captura 

información sobre la CPU y patrones de comunicación. Esta ejecución real puede ser hecha en 

cualquier tipo de máquina, incluso en máquinas uniprocesador, mapeando todos los procesos en 

un único procesador. Aunque el rendimiento de esa ejecución será muy bajo, el fichero de trazas 

de Dimemas será válido. La segunda entrada es un fichero de configuración que contienen un 

conjunto de parámetros que modelan la arquitectura deseada. 

 La salida de Dimemas puede ser simplemente un texto que contiene la predicción del 

tiempo empleado en la ejecución de la aplicación sobre la plataforma especificada o una 

visualización del fichero de trazas. 

2.3.1.5 KappaPi 

KappaPi (Knowledge-based Analyser of Parallel Program Applications and Performance 

Improver) [4] [32]  es una herramienta de análisis de rendimiento automatica desarrollada en la 

Universidad Autónoma de Barcelona entorno a 1998. 

 El objetivo de esta herramienta es ayudar en la tarea del análisis de rendimiento de 

programas paralelos implementados bajo un paradigma de paso de mensajes (MPI o PVM), 

mediante la detección de los principales cuellos de botella presentes en el rendimiento, el 

análisis de las causan que generan estos problemas y el establecimiento de la relación entre 
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dichas causas y el código fuente. Para ello se basa en el análisis post-mortem de un fichero de 

traza y en una base de datos de conocimiento que incluye los principales cuellos de botella 

encontrados en aplicaciones de paso de mensajes.  

 En el proceso de análisis de la aplicación realizado por KappaPi se distinguen una serie 

de fases cuyo objetivo final es proporcionar sugerencias al usuario sobre el rendimiento actual 

de la aplicación: 

- KappaPi obtiene los datos de ejecución de un fichero de traza. 

- Análisis de eficiencia. La herramienta busca aquellos intervalos de ejecución donde la 

eficiencia es baja. Los intervalos se almacenan en una lista acumulada. 

- Selección de las peores ineficiencias. Las ineficiencias almacenadas en la lista son 

ordenadas por importancia en función del tiempo acumulado y las CPUs involucradas. 

- Análisis de ineficiencia. Cada una de las ineficiencias es analizada con detalle. Con la 

ayuda de un sistema basado en reglas, la ineficiencia es clasificada. Su motor de 

inferencia evalua información del programa así como información de la traza. El primer 

paso del proceso de deducción está basado en los eventos de la traza actual, mientras 

que en los siguientes pasos del análisis se requieren algunos detalles del código fuente 

para proporcionar sugerencias para mejorar el rendimiento. 

- Sugerencias de rendimiento. Con la ayuda de la clasificación del problema, se 

proporciona al usuario algunos detalles de los problemas encontrados junto con algunas 

sugerencias para mejorar el rendimiento. 

2.4 Análisis dinámico de rendimiento 

El análisis de rendimiento dinámico surge con el objetivo de eliminar la necesidad de generar y 

almacenar enormes ficheros de traza y gestionar la cantidad de instrumentación insertada. La 

figura 2.6 muestra el ciclo de operación llevada a cabo en esta aproximación. 

 En esta aproximación el análisis de rendimiento pasa de ser post-mosterm a realizarse 

sobre la marcha durante la ejecución de la aplicación, de una manera completamente automática 

y evitando la necesidad de una instrumentación manual. Esto implica la necesidad de una 

monitorización constante, donde la principal ventaja es que no se necesita ficheros de traza para 

el análisis. Además la instrumentación puede ser dinámicamente insertada o eliminada de la 

aplicación mediante técnicas dinámicas de instrumentación. De este modo la fase de 

monitorización puede comenzar con una simple instrumentación y cuando se detectan 

condiciones especiales, se introduce instrumentación adicional. 
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Figura 2.6 Aproximación dinámica del análisis de rendimiento 

 Realizar el análisis durante la ejecución de la aplicación conlleva a introducir cierto 

overhead dentro de ella. Por ello, el análisis debe ser relativamente simple para introducir la 

menor cantidad de overhead posible. 

 El análisis dinámico permite la detección de problemas de rendimiento de forma más 

rápida que las aproximaciones post-mortem. De esta manera, este análisis es adecuado para 

aplicaciones iterativas que presentan un amplio tiempo de ejecución con grandes volúmenes de 

datos. Sin embargo, requiere que el usuario pare, modifique, recompile y vuelva a ejecutar la 

aplicación para aplicar la sintonización. Por ello esta aproximación es adecuada para 

desarrolladores con experiencia más que para usuarios no expertos de la aplicación tales como 

químicos, biólogos, etc. Además, como en las anteriores aproximaciones, decisiones basadas en 

una única ejecución podrían no ser significativas cuando la aplicación presenta un 

comportamiento dinámico, es decir, su pauta depende de los datos de entrada o de su evolución. 

2.4.1 Herramientas 

2.4.1.1 Paradyn 

Paradyn [33] es una herramienta de análisis desarrollada por la Universidad de Wiscosin-

Madison entorno a 1994. Puede ejecutarse en la mayoría de las plataformas actuales y soporta 

varios lenguajes de programación como C, Fortran y permite threads y comunicación con MPI. 
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Los autores de Paradyn son conscientes del problema asociado al almacenamiento y 

análisis de grandes cantidades de datos de trazas, y se acercaron a una solución que intenta 

evitar estos problemas. En lugar de almacenar una traza completa de todo el comportamiento de 

la aplicación, Paradyn realiza un análisis de rendimiento on-line. Paradyn lleva a cabo 

instrumentación binaria en tiempo de ejecución [8] cuando es necesario, intentando mantener el 

overhead causado por la instrumentación a un nivel mínimo. De modo que el código de la 

instrumentación puede ser insertado o eliminado por el usuario en tiempo de ejecución. 

Además, también proporciona una búsqueda automática de cuellos de botella en el rendimiento 

denominada Performance Consultant. Además el grupo de desarrollo de Paradyn desarrolló 

MRNet [34], arquitectura que permite agregar datos de rendimiento de forma distribuida. Así, 

solo el valor final agregado se envía la herramienta de análisis de rendimiento. 

Paradyn está compuesto por diferentes módulos software complementarios, todos 

unidos a una interfaz gráfica de usuario (GUI). Cuando los usuarios lanzan sus programas 

usando la GUI principal, Paradyn también lanza varios procesos demonios de monitorización en 

cada nodo. Cuando los usuarios seleccionan una visualización o desarrollan otra acción que 

requiere datos de rendimiento, la GUI se comunica con cada demonio y realiza una petición 

para insertar código de instrumentación en el programa en ejecución. De este modo, cada 

demonio realiza la instrumentación, comienza a almacenar datos, y periódicamente manda 

muestras de datos a la GUI principal. Estas muestras de datos son almacenadas en una base de 

datos round-robin, las cuales son presentadas al usuario gráficamente mediante alguna de las 

visualizaciones de Paradyn. 

Cuando se usa el módulo de Perfomance Consultant, tiene lugar una secuencia de 

acciones similar a la comentada anteriormente, excepto que estas acciones son controladas por 

la rutina de búsqueda del módulo Perfomance Consultant en lugar de por el usuario. El proceso 

de búsqueda usa el modelo W3 (Why is there a performance bottleneck? Where is it located? 

When did it happen?), que guía la búsqueda de ineficiencias en el rendimiento a un conjunto de 

cuellos de botella. Este modelo intenta responder por qué, donde y cuando la aplicación presenta 

un mal rendimiento relacionando las causas con especificas clases de cuellos de botella, nodos 

de una máquina y funciones del código fuente. 

2.5 Sintonización dinámica de rendimiento 

El proceso de sintonización dinámica proporciona una sintonización automática de la 

aplicación en tiempo de ejecución en lugar de la inserción manual de los cambios en el 

código fuente, desvinculando al desarrollador o usuario no experto del proceso de 
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sintonización de su aplicación. La figura 2.7 muestra el ciclo de operación llevada a cabo en 

esta aproximación. 

 

Figura 2.7 Aproximación dinámica de la sintonización de rendimiento 

 En esta aproximación todas las fases del proceso de optimización de rendimiento 

son realizadas de forma automática, dinámica y continúa durante la ejecución del 

programa paralelo. La aplicación es instrumentada en tiempo de ejecución de forma 

dinámica y automática para obtener información sobre el comportamiento de la misma. 

Durante la fase de análisis se busca los problemas, se detectan sus causas y se 

proporcionan las soluciones para eliminar esos problemas de rendimiento. Finalmente, 

se sintoniza la aplicación aplicando las soluciones dinámicamente. Además, mientras la 

aplicación está siendo sintonizada, no necesita ser compilada ni ejecutada otra vez ya 

que la instrumentación y las modificaciones son realizadas empleando técnicas de 

instrumentación dinámica. 

 El análisis dinámico y las modificaciones introducidas permiten la adaptación 

del comportamiento de la aplicación a las condiciones cambiantes de la propia 

aplicación o del entorno paralelo en el cual se ejecuta. 
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2.5.1 Herramientas 
 

2.5.1.1 Autopilot 

Autopilot [35] [6] es una infraestructura software desarrollada por la Universidad de Illinois en 

1998 para la sintonización dinámica del rendimiento de entornos computacionales heterogéneos 

basada en bucles de control cerrados. Se basa fundamentalmente en la aplicación de técnicas de 

control en tiempo real para adaptar dinámicamente el sistema a las diferentes demandas y 

disponibilidad de recursos. 

 Su desarrolló se basó en la experiencia adquirida en la realización del entorno de 

análisis de rendimiento Pablo, propuesto por la misma Universidad. 

La infraestructura de Autopilot, está formada por varios componentes software: 

- Sensores y actuadores distribuidos. Los primeros capturan datos en tiempo de ejecución 

y los envían a los clientes; los actuadores por su parte reciben comandos desde los 

clientes, y ajustan el comportamiento de la aplicación y las políticas de recursos. Cada 

sensor y actuador está asociado con un conjunto de propiedades (nombre, tipo, 

dirección de red…). 

 En el proceso de instrumentación los sensores y actuadores pueden operar en 

modos threaded y no-threaded. En el modo threaded, una hebra de monitorización 

separada se ejecuta en el mismo espacio de direcciones que la aplicación que está 

siendo monitorizada, y va pasivamente adquiriendo datos observando las variables 

compartidas y cambiando valores mediante los comandos de los actuadores. En el modo 

no-threaded, un sensor o actuador es invocado mediante una llamada a un 

procedimiento desde el código fuente que está siendo monitorizado. 

 Para permitir la reducción de datos, todos los sensores de Autopilot presentan 

funciones que son invocadas cada vez que el sensor recibe datos y actúa como filtros de 

datos, transformando los datos originales a una forma alternativa reducida.  

- Clientes, establecen comunicación directa con los sensores y actuadores. Todos los 

clientes remotos conectados reciben datos de los sensores, procesan estos datos, toman 

decisiones y envían comandos a los actuadores para implementar dichas decisiones. 

Además pueden cambiar el comportamiento de los sensores y actuadores (activación, 

tamaño del buffer…). 

- Gestor Autopilot, actúa como servidor de nombres y coordina la conexión entre 

sensores, actuadores y clientes. El proceso de gestión se muestra en la figura 2.8. A 
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través de él los clientes realizan peticiones a los sensores y actuadores. Para ello, 

inicialmente los sensores y actuadores registran sus propiedades, con el objetivo de que 

cuando el cliente realiza una petición con unas características concretas, el Gestor 

proporciona aquellos sensores y actuadores que satisfacen las mismas. 

 

Figura 2.8 Proceso de gestión en autopilot 

- Mecanismo de decisión, selecciona la política de gestión de recursos correcta basándose 

en las peticiones de la aplicación y en los datos de los sensores. Se estructura según un 

bucle de control adaptativo cerrado basado en un motor de lógica difusa, según se 

refleja en la figura 2.9. Esta motor toma las entradas de los sensores, fuzzifica los 

valores, computa la confianza relativa de cada regla, y defuzzifica los consecuentes para 

activar los actuadores remotos. 

 

Figura 2.9 Proceso de decisión basado en lógica difusa 
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 La comunicación entre los distintos componentes de Autopilot está construida sobre la 

herramienta Nexus. 

2.5.1.2 Active harmony 

Active Harmony [5] es un framework implementado en la Universidad de Maryland en 2002, 

que permite la adecuación dinámica de una aplicación a la red y a los recursos disponibles, 

mediante la adaptación automática de algoritmos, distribución de datos y balanceo de carga. 

 Su estructura está basada en un modelo cliente-servidor. El cliente es la aplicación 

“armonizada”, la cual envía la información de rendimiento al servidor. El servidor realiza la 

sintonización de la aplicación y adapta las decisiones basándose en la información obtenida del 

cliente. 

Su sistema, cuyo esquema se muestra en la figura 2.10, consiste en 3 componentes principales: 

‐ Una API implementada en C++ que permite la integración de las librerías de la 

aplicación del usuario con diferentes librerías que presenta la misma o similar 

funcionalidad.  

‐ El Controlador Harmony, el cual constituye la parte principal de la infraestructura del 

servidor Harmony.  

‐ Algoritmos parametrizables de sintonización y optimización. 

 

Figura 2.10 Sistema de sintonización automático en tiempo de ejecución de Active Harmony 
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 La API permite la “armonización” de la aplicación, mediante el uso del Controlador 

Harmony. Su principal objetivo es ayudar a la aplicación a usar el algoritmo subyacente más 

apropiado. Para conseguir tal fin, primeramente se caracteriza el patrón de la aplicación y se 

monitoriza el rendimiento de las distintas implementaciones de librerías subyacentes. Basándose 

en la información recopilada, se redireccionan las llamadas a las funciones del programa de la 

librería subyacente seleccionada. Esta selección es la realizada a través del Controlador. 

 Durante la ejecución el Controlador Harmony recibe las características de la petición 

desde la capa formada por la API. Tras esto, el Controlador gestiona los valores de los 

diferentes parámetros sintonizables proporcionados por la aplicación y devuelve el algoritmo 

subyacente sugerido para usar de acuerdo a los resultados obtenidos en su proceso de decisión. 

En la implementación inicial, cuando el Controlador selecciona un determinado algoritmo, 

intenta explorar todos los posibles algoritmos al menos durante un breve periodo de tiempo. 

Para ello emplea los algoritmos basados en técnicas heurísticas mediante los cuales explora el 

espacio de optimización de la aplicación y ajusta los valores en la sintonización basándose en el 

rendimiento observado.  Las métricas de rendimiento comúnmente utilizadas son el uso de los 

recursos por parte de la librería tales como tiempo de CPU o espacio de memoria. De modo que 

el Controlador intenta minimizar el valor de estas métricas de rendimiento cuando realiza la 

búsqueda de la librería subyacente apropiada. 

 Las últimas investigaciones sobre esta herramienta se basan en el estudio de la 

influencia de las técnicas heurísticas exploratorias del espacio para optimizar la aplicación bajo 

análisis [36]. 

2.5.1.3 PerCo 

PerCo [37] es una framework para el control del rendimiento en entornos heterogéneos. Es 

capaz de gestionar la ejecución distribuida de aplicaciones usando migraciones, por ejemplo, en 

respuesta a cambios en el entorno de ejecución. PerCo monitoriza los tiempos de ejecución y 

reacciona de forma acorde a una estrategia de control para adaptar el rendimiento cuando tienen 

lugar cambios importantes en el rendimiento. 

 Comenzó a ser desarrollada en la Universidad de Manchester en el año 2005. Su uso 

está orientado para dos tipos de aplicaciones empleadas en HPC: modelos de simulación 

científica [38] y búsqueda distribuida en control estadístico. 

 PerCo está diseñado para ser una aplicación ligera con el fin de controlar el rendimiento 

de un programa individual en un conjunto de recursos que han sido asignados por algún gestor 

de recursos externo. 
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 La aplicación a monitorizar se estructura en una serie de componentes individuales 

controlados cada uno de ellos por un loader PerCo. El conjunto de loaders constituyen la 

infraestructura de reimplementación. Cada loader es responsable de lanzar y mover su 

componente. Cada componente tiene dos interfaces. Una interfaz con otros componentes que 

permite la implementación de funciones que intercambian datos mediante comunicaciones entre 

componentes. Una interfaz de control de rendimiento para la comunicación con el componente 

que dirige el control del rendimiento (CPS). Esta interfaz es usada para intercambiar 

información de rendimiento y comandos de rendimiento. Un CPS es responsable del control 

local de su componente asociado. La entidad que tiene el control sobre todo el conjunto de la 

aplicación es el director del rendimiento de la aplicación (APS). El APS recibe datos de 

rendimiento desde los CPSs y contiene un repositorio de información que almacena datos 

históricos de rendimiento. El APS puede invocar a un predictor de rendimiento para determinar 

configuraciones de componentes mejoradas. La figura 2.11 muestra los distintos módulos que 

componen la funcionalidad de PerCo. 

 

Figura 2.11 Arquitectura del sistema PerCo 

 Este sistema se adapta a los cambios en el rendimiento de la aplicación desarrollando 

políticas de balanceo de carga y tolerancia a fallos [39]. La interacción del usuario no se 

requiere en el proceso ya que las decisiones de reimplementación no se basan en conocimiento 

humano experto, si no en una política que ha sido construida en el APS. La política se basa en 

predicciones de rendimiento. El modelo de predicciones combina series de tiempo y técnicas de 

ajuste de datos para predecir el tiempo de ejecución. Las series de tiempo son usadas para 
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predecir el rendimiento del siguiente paso de tiempo dada la actual implementación. Las 

técnicas de ajuste de datos se usan para predecir el rendimiento del siguiente paso de tiempo 

dada una nueva implementación. En tiempo de ejecución se emplean las dos técnicas para 

producir dos predicciones. La predicción de mayor calidad es la que se usa. Sin embargo, la 

diferencia entre las dos predicciones proporciona una estimación de la calidad de la predicción. 

2.5.1.4 MATE 

MATE [40] (Monitoring, Analysis and Tuning Environment) es una herramienta que 

implementa una sintonización automática y dinámica de aplicaciones paralelas. Su objetivo es 

mejorar el rendimiento de una aplicación paralela en tiempo de ejecución, adaptándola a las 

condiciones variables del sistema sobre el que se ejecuta. MATE constituye el eje en el cual se 

basa el presente trabajo de investigación, de modo que en el capítulo 3 se detalla dicha 

herramienta desde un punto de vista conceptual y funcional. 
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Capítulo 3 

 

MATE 

 

3.1 Introducción 

Actualmente, las aplicaciones informáticas son usadas para resolver complejos problemas en 

distintos ámbitos científicos como ciencia e ingeniería. Muchos de estos problemas necesitan 

una alta potencia de cálculo que sólo puede ser abordada por medio del procesamiento 

paralelo/distribuido, el cual permita aprovechar la potencia de distintos tipos de arquitecturas 

hardware en las que se dispone de más de un procesador. Por lo tanto, el rendimiento se 

convierte en uno de los aspectos más importantes en el procesamiento paralelo/distribuido.  

Conseguir y mantener un buen rendimiento en aplicaciones paralelas/distribuidas es una 

tarea compleja, más aún cuando dichas aplicaciones o los entornos de ejecución tienen un 

comportamiento dinámico. Muchas aplicaciones tienen un comportamiento diferente según los 

datos de entrada o incluso pueden variar durante la misma ejecución. En tales casos, no merece 

la pena realizar un análisis de rendimiento y sintonización postmortem, ya que las conclusiones 

basadas en una ejecución podrían ser erróneas para otra. En estos casos actualmente se plantea 

realizar una sintonización dinámica y automática de la aplicación durante su ejecución sin 

pararla, recompilarla o reejecutarla. 

Bajo este propósito se desarrolló la herramienta MATE. MATE (Monitoring, Analysis 

and Tuning Environment) [41] [42] proporciona una sintonización dinámica y automática de 

aplicaciones paralelas/distribuidas. Fue diseñada y desarrollada en el grupo de Entornos para la 

evaluación de rendimiento y sintonización de aplicaciones dentro del Departamento de 
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Arquitectura de Computadores y Sistemas Operativos de la Universidad Autónoma de 

Barcelona. Inicialmente fue creada para sintonizar aplicaciones PVM paralelas/distribuidas 

desarrolladas en C/C++ ejecutándose en plataformas UNIX y actualmente también está siendo 

desarrollada para sintonizar aplicaciones basadas en la librería de paso de mensajes MPI. Hace 

unos años también se desarrolló una versión orientada para entornos Grid, denominada GMATE 

[43]. 

La sintonización dinámica implementada por MATE, en concreto el uso de modelos de 

rendimiento en su fase de análisis, es el núcleo de este trabajo. De tal modo, en las siguientes 

secciones, se describen en mayor detalle las principales características, funcionalidad y 

arquitectura de MATE [7] [40]. 

3.2 Visión general 

En el capítulo 2, se mostraron las diferentes aproximaciones sobre análisis de rendimiento. 

Como se comentó, MATE implementa una sintonización dinámica y automática del 

rendimiento. En la presente sección se exponen las principales consideraciones y características 

de MATE que hace de él un sistema de sintonización en tiempo de ejecución, útil y eficiente. 

3.2.1 Sintonización dinámica y automática 

El principal objetivo de MATE es mejorar el rendimiento de una aplicación paralela, 

adaptándola a las condiciones variables del sistema sobre el que se ejecuta. Su potencia radica 

en dos características principales: 

‐ Sintonización dinámica, es útil especialmente cuando las aplicaciones son ejecutadas 

en entornos heterogéneos o sistemas de tiempo compartido, porque las decisiones para 

ajustar el comportamiento de una determinada aplicación se realiza sobre la marcha, 

teniendo en cuenta el estado actual del sistema. 

‐ Sintonización automática, es útil porque los usuarios no deben preocuparse o participar 

en el proceso de búsqueda de problemas de rendimiento o en la introducción de 

modificaciones en la aplicación para mejorar su rendimiento. 

  

 Las decisiones de cómo mejorar el rendimiento de la aplicación se realizan mediante el 

conocimiento de los posibles problemas de la aplicación. Este conocimiento debe ser 

proporcionado por el usuario, indicando qué  medidas que determinan el comportamiento de la 

aplicación deberían ser monitorizadas (puntos de medida), cómo detectar y resolver posibles 

problemas de rendimiento (funciones de rendimiento)  y qué parámetros críticos en la aplicación 

son necesarios modificar para mejorar el rendimiento (puntos de sintonización).  Dicho 
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conocimiento define un modelo de rendimiento, el cual será integrado en MATE mediante su 

codificación en un componente de software llamado tunlet.  

 Cuando MATE se ejecuta, carga un conjunto de tunlets los cuales proporcionan el 

conocimiento para mejorar y adaptar la aplicación. De este modo, un tunlet representa un 

modelo de rendimiento y su información es usada a lo largo del proceso de mejora de 

rendimiento para dirigir las fases de monitorización, análisis y sintonización. Cada tunlet es una 

librería compartida escrita en C/C++ que debe ser implementada usando la API de sintonización 

dinámica proporcionada por MATE (DTAPI). 

De este modo, tal y como se muestra en el esquema de la figura 3.1, mediante la 

monitorización dinámica de la ejecución de la aplicación, la instrumentación se inserta de 

acuerdo al modelo de rendimiento definido de manera automática en la aplicación recopilando 

información sobre el comportamiento de la aplicación. El análisis de la información recopilada 

se hace evaluando las fórmulas analíticas del modelo y las soluciones son automáticamente 

insertadas en la aplicación, y la aplicación no necesita ser recompilada, reenlazada o 

reejecutada. Para modificar la aplicación en tiempo de ejecución, MATE usa la técnica llamada 

instrumentación dinámica [8]. 

 

Figura 3.1 Proceso de mejora de rendimiento de MATE 

 La realización de estas 3 fases de forma automática hacen más fácil las tareas del 

usuario si se considera su intervención en el proceso de sintonización. La aproximación de la 

sintonización dinámica que MATE desarrolla libera al usuario de: 

‐ Instrumentar la aplicación a mano o semiautomáticamente. 

‐ Hacer un seguimiento de la traza de ejecución de la aplicación. 
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‐ Analizar analítica o automáticamente el rendimiento. 

‐ Modificar y recompilar el código fuente de la aplicación. 

3.2.2 Características funcionales 

Desde un punto de vista funcional, en MATE se distinguen tres fases básicas y continuas que 

conforman el proceso de mejora de rendimiento: monitorización, análisis y modificaciones. 

Como se comentó anteriormente, todas estas fases se realizan continúa, automática y 

dinámicamente mientras el programa está en ejecución.  

 Para realizar correctamente el proceso de mejora de rendimiento, MATE presenta una 

serie de características añadidas que permiten el funcionamiento de la herramienta como un 

todo integrado. Estas características son: 

‐ Control paralelo de la aplicación.  

  El proceso de mejora de rendimiento debe actuar sobre todas las tareas 

 ejecutadas en las distintas máquinas que conforman la aplicación con el objetivo de 

 poder gestionar o controlar la aplicación completa. 

‐ Análisis global. 

  El comportamiento de la aplicación debe ser evaluado de forma global, de 

 forma que la información recopilada de las distintas tareas que componen la aplicación 

 debe estar centralizada para poder realizar un análisis de rendimiento global. 

‐ Conocimiento de la aplicación. 

  La sintonización dinámica para que sea útil y eficiente precisa, como se 

 comentó anteriormente, que el proceso de análisis sea simple para poder tomar 

 decisiones en un corto periodo de tiempo y que las modificaciones que se realicen en 

 la aplicación sean claras y concisas. De tal manera, no poseer un determinado 

 conocimiento de la aplicación, puede hacer que el proceso de sintonización pierda 

 efectividad. 

Por tanto, es necesario proporcionar información sobre qué debería ser  medido 

(puntos de medida), cómo detectar y resolver posibles problemas de rendimiento 

(funciones de rendimiento) y qué es necesario modificar para ello (puntos de 

sintonización). Así, para el correcto funcionamiento de MATE, se precisa no sólo la 

cooperación del usuario para definir como analizar el comportamiento de la aplicación,  

sino que el usuario debe de conocer también los detalles de implementación de MATE 

para poder desarrollar o implementar las soluciones a los posibles problemas de 

rendimiento de su aplicación. 
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‐ Baja intrusión. 

  El overhead que causa el proceso de mejora de rendimiento debe ser mínimo 

 para evitar afectar al rendimiento de la aplicación, ya que ambos son ejecutados 

 concurrentemente. 

‐ Solventar los cuellos de botella. 

  Para solucionar los posibles problemas de rendimiento, las distintas fases del 

 proceso de sintonización necesitan un periodo de tiempo para determinar una 

 solución. Sin embargo, puede ocurrir que una vez que se haya aplicado la solución para 

 un el cuello de botella, éste haya desaparecido. En este caso, la sintonización dinámica 

 es especialmente recomendable para aquellos problemas que presenta una cierta 

 persistencia a lo largo del tiempo. 

3.2.3 Instrumentación dinámica mediante Dyninst 

El principio de la instrumentación dinámica consiste en postponer la instrumentación de la 

aplicación hasta que ésta esté siendo ejecutada e insertar, alterar o eliminar estas modificaciones 

en tiempo de ejecución. Esta aproximación fue inicialmente usada en la herramienta Paradyn 

descrita en la sección 2.4.1.1 del capítulo 2. De modo que, el grupo de Paradyn como resultado 

de su investigación desarrolló una librería que permitía la instrumentación dinámica; esta 

librería recibe el nombre de Dyninst [44]. 

 Dyninst es una API (Application Program Interface) que genera código en tiempo de 

ejecución y está dirigida a aplicaciones escritas en los lenguajes C/C++. La API está basada en 

una tecnología orientada a objetos, y proporciona un conjunto de clases y métodos que permiten 

al usuario la realización de una serie de acciones: 

‐ Modificar un proceso en ejecución o comenzar un nuevo proceso. 

‐ Crear un nuevo fragmento de código. 

‐ Acceder y usar código y estructuras de datos existentes. 

‐ Insertar código creado en el proceso en ejecución. 

‐ Eliminar código previamente insertando en el programa en ejecución. 

 

 El código insertado a través de Dyninst en una aplicación, será ejecutado cuando el 

programa ejecute la sección de código modificada. Para que esto ocurra, la aplicación no 

necesita ser recompilada, ni reenlazada ni reejecutada y además Dyninst no necesita acceder al 

código fuente de la aplicación, ya que todo el proceso de instrumentación lo realiza gestionando 

la imagen del espacio de direcciones del proceso. El único requisito precisado por Dyninst es la 

necesidad de información de depuración sobre el programa instrumentado para ser capaz de 
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localizar los procedimientos y variables necesarias, de tal modo que éste debe ser compilado 

con la correspondiente opción habilitada.  

 Esta librería es usada por MATE para lograr de manera dinámica y automática dos de 

los procesos principales de la aproximación de mejora de rendimiento que dicha herramienta 

desarrolla: 

‐ La fase de monitorización dinámica, de tal modo que mediante la instrumentación 

dinámica se puede añadir o eliminar código en el programa para recopilar información 

sobre el comportamiento de la aplicación. 

‐ La fase de sintonización dinámica,  en la cual el código de la aplicación es cambiado 

para mejorar su rendimiento. 

 

Abstracciones 

La librería Dyninst está basada en las siguientes abstracciones: 

‐ Mutatee o aplicación, es el programa que va a ser instrumentado. 

‐ Mutator, es el programa que controla y modifica la aplicación mediante Dyninst. 

‐ Punto, es un especifico punto de la aplicación donde algún nuevo fragmento de código 

puede ser insertado. 

‐ Snippet, es una representación de un fragmento de código ejecutable, el cual puede ser 

insertado en el programa en un punto determinado.  

‐ Proceso, corresponde a la ejecución de una proceso. 

‐ Imagen, constituye la representación estática del programa en disco. Cada hebra está 

unívocamente asociada a una imagen. 

 

 Las abstracciones usadas por Dyninst y sus interacciones se muestran en la figura 3.2.  

  

Figura 3.2. Abstracción usada en Dyninst 
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 Para poder emplear Dyninst en el proceso de sintonización dinámica, MATE actúa 

como mutator y la aplicación a sintonizar actúa como mutatee. Los snippets y los puntos 

dependen de la información necesaria para evaluar el comportamiento de la aplicación. 

3.3 Arquitectura 

MATE, está compuesto por varios módulos cooperativos, que controlan e intentan mejorar el 

rendimiento en la ejecución de la aplicación. Los principales componentes son los siguientes: 

‐ Controlador de Aplicación (AC). 

    Es un proceso que controla la ejecución de la aplicación MPI. Su labor 

 principal es gestionar los cambios que dinámicamente se realizan en las tareas 

 individuales que componen la aplicación. Para ello se encuentra enlazado con la 

 librería de instrumentación dinámica Dyninst, y emplea su API para generar la 

 instrumentación y modificaciones propias de la sintonización. Como se detalló en la 

 sección X, el código generado e insertado recibe el nombre de snippet. De este modo, 

 en tiempo de ejecución, el controlador de aplicación inserta o elimina los 

 correspondientes snippets en la tarea en ejecución. 

‐ Librería de monitorización dinámica (DMLib). 

  La DMLib tiene como objetivo facilitar la instrumentación y recolección de 

 datos de rendimiento. Es una librería compartida cargada de manera dinámica por el 

 Controlador de  Aplicación en las tareas que componen la aplicación paralela. Para 

 realizar su objetivo, la librería contiene funciones responsables del registro de los 

 eventos con todos los atributos requeridos, así como funciones encargadas del  envío 

 de dichos eventos para el análisis. 

‐ Analizador. 

  Es un proceso que realiza el análisis de rendimiento de la aplicación paralela, 

 detectando automáticamente los problemas de rendimiento existentes y solicitando 

 los cambios necesarios para mejorar el rendimiento de la aplicación. 

 En las siguientes secciones se describen con detalle todos los módulos que componen 

MATE, presentando su funcionalidad, requerimientos y limitaciones. 

3.3.1 Controlador de aplicación 

Como se introdujo anteriormente, cada controlador de aplicación es un único proceso que 

controla una única tarea MPI ejecutándose en una máquina local. Este proceso proporciona los 

siguientes servicios: 
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‐ Control distribuido de la aplicación. 

o Inicia y finaliza cada tarea MPI. 

‐ Gestión de la instrumentación de la aplicación. 

o Gestiona la instrumentación de las tareas en ejecución. 

o Permite remotamente al Analizador añadir/eliminar instrumentación. 

‐ Monitorización del rendimiento. 

o Carga la librería de monitorización compartida en las tareas de la aplicación. 

o Genera los snippets de monitorización. 

o Inserta/elimina los snippets. 

‐ Sintonización del rendimiento. 

o Carga la librería de sintonización compartida en las tareas de la aplicación. 

o Genera los snippets de sintonización. 

o Inserta/elimina los snippets. 

El Controlador de Aplicación está compuesto por varios módulos que cooperan entre sí, 

los cuales se muestran en la figura 3.3.  

 

Figura 3.3. Arquitectura interna del Controlador de Aplicación 

 El comunicador es el módulo del Controlador de Aplicación que gestiona la 

comunicación con el mundo exterior usando el protocolo TCP/IP. Éste despacha los 

mensajes que le llegan hacia componente correspondiente, Monitor o Sintonizador, los 

cuales actuarán de la manera indicada sobre la tarea de la aplicación mediante la API 

proporcionada por Dyninst. Más detalles pueden ser encontrados en [7]. 
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 Los módulos Monitor y Sintonizador son los que mayor funcionalidad presenta dentro 

del Controlador de Aplicación ya que participan en las fases claves del proceso de 

sintonización. En las siguientes secciones se describen con más detalle estos componentes. 

Monitor 

El Monitor es el módulo responsable de la monitorización de la ejecución de la aplicación. La 

monitorización está basada en eventos que se generan mediante llamadas a funciones. La 

aplicación es instrumentada dinámicamente en tiempo de ejecución y la instrumentación 

insertada genera eventos. Cuando MATE es lanzado, el Analizador indica al Monitor el 

conjunto de eventos que deben ser trazados. Conceptualmente, estos eventos reciben el nombre 

de puntos de medida. De este modo, cuando la aplicación comienza su ejecución, el Monitor 

inserta el código necesario para capturar los eventos en la aplicación en ejecución. 

 El Monitor ofrece una API que permite el Analizador añadir o eliminar dinámicamente 

un evento. En la API un evento queda definido mediante el identificador del proceso donde se 

añade/elimina, el identificador de dicho evento, el nombre de la función en la que se generará, el 

punto del código que determina donde el evento sería generado, el número de atributos que se 

almacenarían en dicho evento y las propiedades de tales atributos. 

 Para realizar la traza dinámica de eventos, el Monitor usa la librería Dyninst para 

insertar el código de instrumentación, snippet, que genera eventos para ser trazados. Para 

recopilar estos eventos y enviarlos al Analizador, el Monitor usa la DMLib cargada en cada 

tarea durante el proceso de arranque. 

 La instrumentación puede variar durante la ejecución. Para encontrar cuellos de botella 

el Analizador puede necesitar alguna información adicional, o puede necesitar eliminar alguna 

instrumentación que no utilice habitualmente. Cuando ocurre esto, el Analizador notifica al 

Monitor y como consecuencia éste último modifica el conjunto de eventos monitorizados. Es de 

destacar que la comunicación entre el Monitor y el Analizador es establecida usando un 

protocolo de bajo nivel de recolección de eventos basado en TCP/IP. 

Sintonizador 

El Sintonizador es el módulo responsable de aplicar las acciones de sintonización sobre las 

tareas de la aplicación. Los cambios necesarios son determinados por las soluciones propuestas 

por el Analizador a partir de las cuales el Sintonizador modifica la aplicación empleando de 

nuevo Dyninst, cambiando la memoria asociada a la misma. 

 Tras la fase de análisis y para realizar la sintonización de la aplicación, el Analizador 

puede requerir de un conjunto de acciones que le permite llevar a cabo la modificación de los 
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parámetros críticos de forma correcta. Estas acciones puede ser cargar una librería, establecer 

el valor de una variable, insertar la llamada a una función, etc. Para llevar a cabo este conjunto 

de acciones el Sintonizador proporciona una API al Analizador a través de la cual llevarlas a 

cabo.  

 Cada una de las acciones de sintonización incluye un parámetro de sincronización o 

breakpoint, el cual se inserta en un punto determinado de la aplicación, de modo que determina 

cuando la acción de sintonización podría ejecutarse para asegurar que el comportamiento de la 

aplicación siga siendo correcto. Cuando la ejecución de la aplicación alcanza el breakpoint, la 

acción de sintonización se ejecuta y el breakpoint queda eliminado. 

3.3.2 Librería de Monitorización Dinámica (DMLib) 

DMLib es una librería dinámica que proporciona la funcionalidad necesaria para realizar la 

traza de eventos y está implementada como una librería compartida. El Controlador de 

Aplicación carga esta librería en el espacio de direcciones de cada proceso de la aplicación para 

simplificar la instrumentación y recolección de datos.  

 Esta librería ofrece una API que contiene funciones que son responsables del registro de 

eventos con todos los atributos requeridos y de su envío para el análisis: 

‐ Inicializar la librería, proporcionando información sobre el proceso que va a ser 

monitorizado y la localización del host donde se aloja el Analizador. 

‐ Finalizar la librería, con el objetivo de liberar todos los recursos adquiridos y notificar 

al Analizador que los procesos de aplicación han terminado y cerrado la conexión con 

él. 

‐ Registrar eventos. En este caso el identificador o nombre del evento y los atributos del 

mismo deben ser proporcionados, así como la función o punto específico en el cual el 

evento seria capturado. Cuando el registro de un evento finaliza, significa que está 

preparado para ser enviado al Analizador. 

 Para evitar la sobrecarga de la red, la implementación de DMLib usa un mecanismo de 

buffering para gestionar los eventos. En lugar de enviar cada evento de manera individual, 

existe un buffer interno usado para agrupar eventos y enviarlos en mensajes de tamaño más 

elevado. Esto permite la reducción del número de mensajes generados y limita la intrusión. 

Dicho envío es controlado mediante marcas de tiempo con el fin de evitar una espera excesiva 

en la cola de envío para eventos individuales. 
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3.3.3 Analizador 

El Analizador es el módulo que dirige la sintonización de la aplicación. Para ello solicita las 

métricas necesarias, que le permiten llevar a cabo el análisis de rendimiento, e indica los 

cambios en la aplicación. 

 Para ser capaz de evaluar al comportamiento de una aplicación dada, el Analizador 

necesita algún tipo de conocimiento sobre la aplicación y traza de eventos online. Desde un 

punto de vista funcional, el Analizador se divide en dos módulos diferenciados: la API de 

Sintonización Dinámica (DTAPI) y los tunlets. 

API de Sintonización Dinámica (DTAPI) 

Esta API presenta la funcionalidad que permite gestionar el proceso de mejora de rendimiento 

de la aplicación. En ella se encuentran todos los aspectos de bajo nivel relacionados con la 

administración de los eventos entrantes, la gestión necesaria para el comienzo y la terminación 

de una tarea, información descriptiva de las tareas en ejecución de la aplicación,  la información 

necesaria para sintonizarlas, etc. Como se explicará en la siguiente sección los tunlets usan 

DTAPI como interfaz a través de la cual establecen la instrumentación necesaria para evaluar el 

modelo de rendimiento. 

Esta librería es implementada como un sistema distribuido y asíncrono donde: 

‐ Las peticiones de monitorización y sintonización son delegadas en los Controladores de 

Aplicación distribuidos que en su lugar instrumenta y sintoniza las tareas de la 

aplicación. 

‐ Los eventos recibidos procedentes de la librería de Sintonización Dinámica y los 

Controladores de Aplicación son recopilados y despachados hacia los manejadores de 

eventos. 

Tunlets 

Los tunlets son el núcleo de la sintonización dinámica y automática implementada por MATE, 

en términos de representación del conocimiento. Cada tunlet define e implementa una particular 

técnica de sintonización, por ejemplo, la lógica necesaria para superar un particular problema de 

rendimiento mediante la encapsulación del conocimiento sobre el problema de rendimiento en 

los siguientes términos: 

‐ Un conjunto de puntos de medida, los cuales indican que es necesario medir en la 

aplicación para evaluar su comportamiento. Esta definición incluye valores de variables, 

parámetros, marcas de tiempo, etc. 
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‐ Un conjunto de funciones de rendimiento, que son expresiones matemáticas que 

determinan como evaluar la información recopilada para detectar  cuellos de botella. 

‐ Un conjunto de acciones de sintonización, que indican que, donde y cuando cambiar 

en la ejecución de la aplicación con el objetivo de adaptar su comportamiento. 

 

 Los tunlets usan la API de Sintonización Dinámica para dirigir el proceso de análisis de 

rendimiento de la aplicación. Al inicio del proceso de sintonización el tunlet mediante la API, 

indica el conjunto de eventos de monitorización que deben ser insertados en una determinada 

tarea. Cuando el mensaje de la generación de un determinado evento llega al Analizador, es 

redirigido al tunlet, el cual analiza los parámetros existentes en dicho evento que describen el 

comportamiento de la aplicación. Cuando el tunlet detecta un posible problema de rendimiento 

usa la DTAPI para cambiar algún tipo de instrumentación realizada anteriormente o bien 

realizar la modificación de algún parámetro crítico para mejorar el rendimiento. Cuando el 

proceso de sintonización termina, el tunlet finaliza y se descarga de la memoria. 

 La DTAPI se dispone como un conjunto de clases C++, que los tunlets emplean como 

interfaz para trabajar correctamente integrados en MATE. 

3.4 Metodología de funcionamiento 

La figura 3.4 muestra la ejecución de una aplicación bajo MATE, identificando los distintos 

componentes de su arquitectura que participan y la funcionalidad de los mismos.  

 Cuando la ejecución de la aplicación comienza, un particular tunlet indica al Analizador 

cual es el conjunto de puntos de medida necesarios. El Analizador envía estos requerimientos a 

cada Controlador de Aplicación, concretamente al módulo Monitor, los cuales se encuentran 

distribuidos con cada tarea de la aplicación paralela. Cuando la ejecución de la aplicación o de 

alguna tarea en concreto alcanza un punto de instrumentación, se produce la creación de un 

evento. El evento posee determinados atributos que lo caracterizan, los cuales contienen 

información relacionada con el entorno de ejecución y con la aplicación, como puede ser marcas 

de tiempo, valores de variables, etc. Esta información es clave para poder calcular los 

parámetros de rendimiento del modelo matemático y evaluar las expresiones de rendimiento 

asociadas. Una vez generado el evento, la DMLib lo envía junto con sus atributos al Analizador.  
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Figura 3.4 Arquitectura de MATE sintonizando dinámicamente para MPI 

 A lo largo de la ejecución, el Analizador va recibiendo los eventos solicitados 

procedentes de los distintos procesos de la aplicación paralela, lo cual se le notifica al tunlet 

correspondiente. Los eventos recibidos son clasificados de acuerdo a un tipo en concreto 

definido en el tunlet.  

 Cuando el tunlet recibe mediante los eventos toda la información necesaria, evalúa las 

funciones de rendimiento y determina el rendimiento actual y óptimo. Si el tunlet detecta un 

cuello de botella, decide si el actual rendimiento puede ser mejorado bajo las actuales 

condiciones. En caso positivo, el tunlet informa al Analizador de los posibles cambios 

necesarios, y en consecuencia éste solicita las correspondientes acciones de sintonización. La 

solicitud determina que debería ser cambiado (punto/acción/sincronización de sintonización) y 

esto es enviado a la instancia del Controlador de Aplicación correspondiente, en concreto es 

reenviado al módulo Sintonizador.  

 Como se muestra conceptualmente en la figura 3.4, cada tunlet proporciona los 

elementos para dirigir las fases de monitorización, análisis y sintonización. Es de destacar, que 

los cambios que se realizan en la aplicación paralela en tiempo de ejecución, en los procesos de 

monitorización y sintonización, son implementados mediante la librería de instrumentación 

dinámica Dyninst. 
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3.5 MATE y otras herramientas de sintonización dinámica 

MATE presenta una aproximación para la sintonización dinámica del rendimiento en 

aplicaciones paralelas. Esta aproximación se fundamenta en los principios empleados en 

técnicas de análisis dinámico de rendimiento basadas en la instrumentación dinámica mediante 

el uso de la librería Dyninst [8], como la desarrollada en la herramienta Paradyn [33]. 

 MATE comparte algunas características con las herramientas de sintonización 

anteriormente comentadas en el capítulo 2, aunque también existen aspectos que las diferencian. 

En lo referente a los entornos de ejecución, MATE inicialmente estaba pensada para sintonizar 

aplicaciones PVM paralelas/distribuidas desarrolladas en C/C++ ejecutándose en plataformas 

UNIX y actualmente está siendo desarrollada para sintonizar aplicaciones basadas en MPI. 

También se desarrolló en 2008 una versión orientada para entornos Grid, denominada GMATE 

[43]. Por su parte, Autopilot [35] y PerCo [37] han sido diseñadas con el fin de ser empleadas 

especialmente en sistemas de computación heterogéneos. 

 En el proceso de monitorización, MATE monitoriza la aplicación mediante la 

instrumentación dinámica insertando puntos de medida los cuales generan eventos que serán 

enviados al analizador. De forma semejante a MATE en Autopilot, el proceso de monitorización 

se basa en la inserción dinámica de sensores, los cuales son procesos que permiten extraer 

información de rendimiento de la aplicación sintonizada. En el caso de Active Harmony [36], se 

realiza una continua monitorización del rendimiento de las distintas implementaciones de 

librerías subyacentes, de modo que basándose en la información recopilada, se redireccionan las 

llamadas de las funciones del programa a las de la librería subyacente seleccionada. 

 Por otro lado, en lo relacionado con el análisis de rendimiento, MATE usa reglas 

normales y modelos de rendimiento en los cuales se formalizan posibles problemas de 

rendimiento. Mientras que Autopilot emplea lógica difusa para automatizar el proceso de toma 

de decisiones, Active Harmony usa técnicas heurísticas mediante las cuales explora el espacio 

de optimización del patrón de la aplicación teniendo en cuenta las librerías subyacentes y ajusta 

los valores en la sintonización basándose en el rendimiento observado. PerCo basa su análisis en 

el empleo de técnicas para predecir el rendimiento, combinando series de tiempo y métodos de 

ajuste de datos. Las series de tiempo generan predicciones aplicando una fórmula matemática al 

histórico de datos; por su parte el ajuste de datos es aplicado a los datos históricos para obtener 

una fórmula matemática con muchas variables, de manera que evaluando dicha fórmula con los 

valores actuales (número de procesadores, tamaño de los datos de la aplicación, etc) se generan 

las predicciones. 
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 Finalmente, si se considera la preparación de la aplicación para la sintonización, usando 

MATE la sintonización se basa en la instrumentación dinámica donde los puntos de 

sintonización son determinados por el modelo de rendimiento; éstos últimos actualizando su 

valor sobre la marcha cuando el analizador lo determina. Para realizar esta acción en ocasiones 

es necesario adaptar la aplicación o poseer un mayor conocimiento de la aplicación que va a ser 

sintonizada. Igual que en MATE, en Autopilot los actuadores son insertados de manera 

dinámica en el proceso de sintonización pero para ello se requiere conocimiento sobre la 

aplicación. En Active Harmony el mecanismo se basa en la integración y elección de diferentes 

librerías con la misma funcionalidad. Y en PerCo, en el proceso de sintonización no se requiere 

la interacción directa del usuario ya que las decisiones de reimplementación se basan en una 

política que ha sido construida en el módulo que dirige el rendimiento de la aplicación. 

3.6 Limitaciones de MATE como entorno de sintonización 

En MATE, el análisis de rendimiento es realizado de forma centralizada, ya que existe un único 

Analizador responsable de recibir y procesar todos los eventos que le llegan directamente desde 

la aplicación, más específicamente desde las Librerías de Monitorización Dinámica asociadas a 

cada tarea MPI, tal y como se explico en la sección 3.4. El Analizador es ejecutado en una 

máquina independiente para reducir la sobrecarga causada por el continuo proceso de análisis en 

máquinas donde la aplicación se está ejecutando.  

 Sin embargo, aunque esta aproximación centralizada funciona, presenta algunos 

problemas relacionados con dos factores diferentes: 

‐ El número de máquinas involucradas en la ejecución de la aplicación. 

‐ La persistencia de problemas de rendimiento. 

 

 Con respecto al primero de los factores, se puede asumir que conforme el número de 

tareas involucradas en la aplicación aumenta, el número de eventos también se incrementa de 

manera proporcional. Como consecuencia el Analizador se convierte en un cuello de botella que 

afecta a la efectividad del sistema. 

 El Analizador posee una hebra que recolecta los eventos recibidos desde la aplicación. 

Independientemente de la cantidad de eventos entrantes, éstos son gestionados siguiendo una 

política FIFO (first in, first out). En consecuencia, el tiempo gastado en procesar la información 

es proporcional a la cantidad de eventos. Además, en ocasiones ocurren olas de eventos; esto 

quiere decir que cada tarea de la aplicación genera eventos aproximadamente al mismo tiempo, 

causando la sobrecarga del analizador en unos instantes determinados, tales como el final de la 
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iteración, cuando todos los procesos de la aplicación terminan. Además, mientras el Analizador 

está procesando datos de la iteración i continúa su ejecución por la iteración i+1. 

 En lo relacionado con la persistencia de problemas de rendimiento, se debería tener en 

cuenta que la sintonización dinámica está basada en asumir que los problemas de rendimiento 

surgen en más de una iteración. Esta es la razón de porqué el análisis de rendimiento para 

detectar problemas y encontrar soluciones debería ser rápido. En el caso de MATE, el análisis 

queda reducido a la evaluación de un conjunto de expresiones analíticas. Sin embargo, para 

evaluar estas expresiones, es necesario procesar todos los eventos que llegan para obtener los 

valores de los parámetros del modelo de rendimiento. De forma similar, cuando el número de 

eventos crece, el tiempo de procesamiento de la información asociada aumenta también. 

 Por lo tanto, si consideramos estas dos situaciones al mismo tiempo, el cuello de botella 

causado por la recolección de eventos y su posterior procesamiento puede significar que cuando 

la solución para un problema existente esté lista para ser insertada, tal vez el problema de 

rendimiento haya cambiado o desaparecido. 

 Se concluye que estos problemas limitan las propiedades de escalabilidad de MATE. 

Por ello, con el objetivo de aumentar la usabilidad de MATE, en el trabajo expuesto en [45] [46] 

se realiza un estudio para proporcionar a MATE la escalabilidad necesaria. Se propone una 

nueva aproximación de recolección y preprocesado de eventos jerárquica-distribuida, cuyo 

objetivo es resolver el cuello de botella que significa el Analizador. Esta aproximación se basa 

en la distribución de la recolección de eventos lo cual disminuye la sobrecarga con respecto a la 

manera original centralizada en la que dicha recolección era llevada a cabo, y el preprocesado 

de operaciones acumulativas o de comparación siempre que sea posible.  

 Los resultados de este trabajo muestran la resolución del cuello de botella que 

presentaba la aproximación centralizada empleada por MATE originalmente. Además se 

presenta una mejora en la sincronización del proceso de análisis con la ejecución de la 

aplicación ya que la estructura jerárquica de recolección de eventos aumenta la probabilidad de 

detectar y procesar cada evento tan rápido como es recibido. Este hecho logra además  un 

decremento en el tiempo de procesamiento del Analizador debido al preprocesado de eventos 

realizado. De tal modo, las ideas establecidas en este trabajo, suponen una buena base de partida 

para escalar el proceso de análisis en MATE. 
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Capítulo 4 

 

Modelo de rendimiento para 

aplicaciones Master/Worker 

 

4.1 Introducción 

La predicción de rendimiento es un aspecto importante para conseguir ejecuciones eficientes en 

programas paralelos. Conseguir un buen rendimiento de un código paralelo es una tarea ardua y 

difícil debido a la complejidad de los sistemas multiprocesador y a las dificultades en el análisis 

de su rendimiento. Por ello, la predicción del rendimiento es una utilidad esencial para la  

depuración de programas paralelos ya que ofrece información interesante para aumentar la 

eficiencia de los mismos. 

 Actualmente existen varias alternativas para obtener un modelo de rendimiento de las 

aplicaciones usando diferentes aproximaciones. En general estas aproximaciones se pueden 

clasificar en tres categorías: 

- Modelado por simulación. 

  Un simulador, construido como una aplicación software, es un sistema completo 

 que emula el comportamiento de cada uno de los subsistemas de una arquitectura 

 paralela. No sólo emula el comportamiento temporal de cómo se ejecuta en él un 

 determinado algoritmo, sino que también es capaz de extraer otros parámetros de la 



Capítulo 4. Modelo de rendimiento para aplicaciones Master/Worker 

 

 
52 

 arquitectura del sistema multicomputador: fallos de caché, instrucciones de procesador 

 ejecutadas, parámetros de la red de interconexión, etc.  

  Esta técnica de evaluación de rendimiento está especialmente indicada para 

 desarrollar nuevas arquitecturas paralelas ya que permite observar el comportamiento de 

 aplicaciones en sistemas que todavía no han sido implementados. Sin embargo, simular 

 el comportamiento de aplicaciones enteras puede ser muy costoso y por tanto no es 

 adecuado para utilizar estos modelos en herramientas de evaluación de rendimiento 

 interactivas. 

 

- Modelado analítico. 

  La idea básica de los modelos analíticos consiste en modelar tanto la 

 arquitectura paralela como el algoritmo usando métodos analíticos. El programa 

 paralelo que está siendo desarrollado puede analizarse independientemente de la 

 arquitectura en que va a ser implementado, lo que permite incluso analizar las posibles 

 arquitecturas o sistemas futuros que todavía estén en diseño y que podamos modelar por 

 una serie de parámetros.  

  Los modelos analíticos son métodos rápidos y efectivos comparados con otras 

 técnicas de modelado, ya que utilizan soluciones eficientes basadas en ecuaciones 

 matemáticas. Sin embargo, el grado de fiabilidad con respecto a la realidad puede 

 quedar mermado por las características de los parámetros elegidos para el modelo y es 

 inherente a las suposiciones y simplificaciones que se hacen del sistema paralelo y del 

 algoritmo. 

 

- Modelado por obtención de métricas y trazas. 

  La mejor forma de obtener resultados precisos para modelar una aplicación es 

 medir su comportamiento en un sistema paralelo real. Analizando los datos de traza 

 obtenidos, el usuario puede identificar y corregir los cuellos de botella en la aplicación, 

 pero esto significa tener a disposición un sistema paralelo para realizar el desarrollo de 

 los programas. Además se necesitan herramientas específicas de medida como librerías 

 de instrumentación y herramientas de análisis de traza, como las expuestas en la sección 

 2.21 del capítulo 2. Estas técnicas se usan normalmente para extraer los parámetros que 

 luego se utilizarán en los modelos analíticos, en las simulaciones, para validar un 

 modelo de rendimiento determinado, etc. 

  

 En el presente trabajo de investigación se ha estudiado el modelo de rendimiento 

expuesto en [9] para aplicaciones desarrolladas bajo un paradigma Master/Worker. Se trata de 

un modelo analítico cuyos parámetros corresponden a medidas de rendimiento que determinan 
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el comportamiento de la aplicación en un sistema paralelo real; tiene como objetivo mejorar el 

rendimiento de aplicaciones construidas bajo el citado paradigma atacando los problemas de 

rendimiento que las caracterizan. 

 Las aplicaciones Master/Worker pueden sufrir dos cuellos de botella de rendimiento 

relacionados con su estructura y funcionalidad: el primero de ellos es el desbalanceo de carga de 

los workers, lo cual puede producir largos periodos de inactividad para workers rápidos o 

bajamente cargados; y el segundo es el uso de un inadecuado número de workers para procesar 

el conjunto de tareas. De este modo, el modelo de rendimiento estudiado intenta solventar los 

citados problemas siguiendo una estrategia de actuación sobre la aplicación basada en 2 fases: 

una primera fase que emplea una estrategia para balancear la carga de manera que los recursos 

se usan de forma eficiente y una segunda para predecir el número de workers más adecuado 

para mejorar el rendimiento de la aplicación. 

 Una vez introducida la problemática y conceptos principales, en las siguientes secciones 

se expone de manera detallada el modelo de rendimiento para aplicaciones Master/Worker. En 

concreto se describe aquellas expresiones y conocimientos que se han aplicado directamente en 

el presente trabajo de investigación. Primeramente se planteará la estrategia seguida para 

alcanzar el balanceo de la carga computacional y a continuación se describirá los índices 

empleados para predecir el número de workers que optimizan tiempo de ejecución y uso de 

recursos. 

4.2 Balanceo de la carga entre los workers  

El tiempo de ejecución para una aplicación Master/Worker con N workers y un conjunto de 

tareas que pueden ser secuencialmente procesadas en un tiempo T, se encuentra limitado en un 

rango comprendido entre T/N (límite inferior), y T (límite superior), teniendo en cuenta que en 

dichas expresiones queda omitido el tiempo de comunicación. De tal modo, que conseguir un 

tiempo de ejecución cercano al límite inferior depende principalmente de la existencia de un 

buen balanceo de carga entre los workers, lo cual a su vez se basa en una buena política de 

distribución de datos.  

 En general las técnicas de balanceo de carga intentan compensar el desbalanceo 

asignando más trabajo a aquellos workers que terminan su trabajo antes. Para lograr el balanceo 

estas técnicas realizan una distribución parcial dividiendo el conjunto de tareas en diferentes 

porciones llamadas batches, cuyo tamaño queda determinado por un factor de partición. De tal 

modo, que el número de tareas asignadas a cada batch depende de la estrategia de distribución 

seguida, y es posible que sea diferente de un batch a otro. La idea es distribuir el primero de 

esos batches entre los workers en trozos o chunks del mismo tamaño, y cuando un worker 
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termine el procesamiento de su chunk asignado el master le enviará un nuevo chunk del Batch 

que corresponda. Este proceso, mostrado en la figura 4.1, continúa hasta que todos los batches 

han sido distribuidos. Partiendo de esta idea se obtiene que aquellos workers que han recibido 

tareas más pesadas no reciban más carga y workers que han recibido tareas más ligeras sean 

empleados para realizar más trabajo. 

 

Figura 4.1 Técnica de balanceo de carga 

 Existen diferentes estrategias para determinar el tamaño de un batch con el propósito de 

obtener un buen balanceo de carga con costes mínimos en computación y comunicación. En el 

trabajo estudiado expuesto en [9] se plantean 3 principales técnicas de balanceo de carga: 

- Fixed Size Chunking (FSC), el cual consiste en dividir el conjunto de tareas en un 

determinado número de batches de igual tamaño. En este caso, para una aplicación en 

concreto, se debe intentar encontrar cuál es el mejor número de batches para mejorar el 

balanceo de carga. 

- Dynamic Predictive Factoring (DPF), parte de la idea de construir el primer batch con 

alguna porción del conjunto de tareas, el segundo batch con la misma porción de las 

tareas restantes, y así de manera sucesiva hasta alcanzar un límite fijado en el tamaño de 

los batches. 
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- Dynamic Adjusting Factoring (DAF), presenta las mismas características que DPF pero 

empleando un factor variable para ir calculando el tamaño de los batches teniendo en 

cuenta las condiciones actuales de carga en la aplicación. 

 En el presente trabajo de investigación se ha implementado DAF como estrategia para 

alcanzar el balanceo de carga dentro del modelo de mejora de rendimiento para aplicaciones 

Master/Worker. 

4.2.1 Dynamic Adjusting Factoring (DAF) 

Dynamic Adjusting Factoring [47] es una política de distribución de datos que dinámicamente 

intenta adaptar el factor de partición a las actuales condiciones de la aplicación. La política de 

Factoring original [48] en la que se basa, destinada a la gestión de bucles paralelos, intenta 

asignar a los procesadores los chunks más grandes posibles de las iteraciones paralelas del bucle 

minimizando la probabilidad de exceder el tiempo de ejecución óptimo (T/N).  

 Este Factoring para bucles paralelos asume que el tiempo de ejecución de un chunk es 

una variable aleatoria obtenida como la suma de variables aleatoria idénticas, cada una de las 

cuales representa una iteración del bucle paralelo. Este modelo original tiene en cuenta el 

comportamiento independiente de todas las iteraciones porque su tiempo de ejecución puede ser 

determinado. 

 Este modelo puede ser fácilmente adaptado a aplicaciones Master/Worker sustituyendo 

las iteraciones del bucle paralelo por tareas. En este caso, la variable aleatoria queda definida 

como el tiempo de procesamiento de una tarea (C), el cual es inferido dividiendo el tiempo de 

ejecución de un chunk entre el número de tareas presentes en ese chunk.  

 La formulación matemática de este modelo asume que el entorno presenta N workers 

disponibles para ejecutar M tareas (M>>N), cada una de las cuales queda modelada mediante 

una variable aleatoria C caracterizada por sus parámetros estadísticos de media (µC) y 

desviación estándar (σC). Además se considera que el entorno es homogéneo, todos los 

procesadores tendrán la misma media y desviación estándar del tiempo de procesamiento de 

tarea. 

 Aceptando que inicialmente todos los workers están ociosos, el tiempo de ejecución de 

N chunks de F0 tareas en paralelo puede ser modelado por un estadístico de orden N, siendo F0 

el número de tareas asignadas en cada chunk del primer batch. El valor esperado para el 

estadístico de orden P para cualquier distribución de media µ y desviación estándar σ se 

encuentra limitada por la expresión: 

ߤ ൅ ൫ሺܰߪ െ 1ሻ √2ܰ െ 1⁄ ൯ ൑ ߤ ൅ ඥܰߪ 2⁄    (4.1) 
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 Si el primer batch tiene chunk de tamaño F0 tareas, el tiempo de ejecución de un worker 

puede ser modelado como una nueva variable aleatoria obtenida por el producto de la variable 

aleatoria del tiempo de procesamiento por tarea, y el número de tareas F0. Esta nueva variable 

tendrá una media µC F0  y una desviación estándar σCF0. Así, el valor esperado del estadístico de 

N chunks paralelos (cada uno con F0 tareas) en el primer batch es: 

଴ܨ஼ߤ ൅ ଴ඥܰܨ஼ߪ 2⁄      (4.2) 

 Siendo el propósito no superar el tiempo óptimo de ejecución, el cual viene expresado 

por µC(M/N), que se cumpla la condición impuesta por la expresión  

଴ܨ஼ߤ ൅ ଴ඥܰܨ஼ߪ 2⁄ ൌ ஼ሺܰߤ 2⁄ ሻ es el objetivo de la política de ajuste dinámico para el número 

de workers. Para alcanzar ese fin, se necesita calcular F0, el cual sería la porción del conjunto 

completo de tareas a ser distribuidas en el primer batch dividido entre el número de procesos, 

ܯ ሺݔ଴ܰሻ⁄ , donde x0 es el inverso del factor de partición usado por la política para generar el 

primer batch a ser distribuido. Se obtiene que: 

଴ݔ ൌ 1 ൅ ቀߪ஼ඥܰ 2⁄ ቁ ஼ൗߤ      (4.3) 

 Para el cálculo de los siguientes batches, los chunks presentan un tiempo de ejecución 

de media µC Fj  y desviación estándar σCFj, pero ahora se necesita otra aproximación ya que no 

se puede asumir que todos los workers están ociosos y por tanto el tiempo de comienzo de cada 

chunk es distinto.  Tal y como se expone en la política de Factoring original [48], el número de 

tasks Fj se determina partiendo de la idea de que queda suficiente trabajo para solventar el 

desbalanceo. De aquí se deduce las siguientes expresiones que permiten obtener xj, es decir, el 

inverso del factor de partición para calcular el resto de los batches: 

௝ܨ஼ߤ ൅ ௝ඥܰܨ஼ߪ 2⁄ ൌ ஼ߤ ൭൬
௝ܴ

ܰ
൰ െ  ௝൱ܨ

௝ܨ   ൌ
௝ܴ

௝ܰݔ
 

௝ݔ ൌ 2 ൅ ቀߪ஼ඥܰ 2⁄ ቁ ஼ൗߤ      (4.4) 

 Finalmente, se obtiene que mediante el uso de las ecuaciones (4.1) y (4.2) y empleando 

una estrategia de sintonización dinámica es posible adaptar a las actuales condiciones de la 

aplicación el factor de partición que determina el tamaño de los batches a lo largo de la 

iteración. 
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 El algoritmo de distribución que se propone en [9] y que será el implementado en el 

presente trabajo de investigación corresponde a los siguientes pasos: 

1. Con el objetivo de acumular suficiente información para calcular el factor adaptativo de 

distribución, la primera iteración de la aplicación es ejecutada empleando un factor fijo 

de 0.5 para la creación de todos sus batches. Este valor inicial de factor es 

empíricamente escogido porque en general es el que mejor comportamiento presenta.  

2. Al principio de las restantes iteraciones se calcula x0, mediante la ecuación 4.1 y 

empleando la información empleada en el pasado. De tal modo, a partir de x0 se obtiene 

el valor del factor adaptativo para el primer batch. Seguidamente, empleando los 

mismos datos históricos y la ecuación 4.2, calculamos x1 y por tanto el factor adaptativo 

para el batch 1. De tal modo que los batchs 0 y 1 ya están preparados para ser 

distribuidos. 

3. A lo largo del proceso de distribución de tareas, cuando el número de chunks 

disponibles del batch que actualmente está siendo repartido cae por debajo de un umbral 

definido (el cual en nuestro trabajo ha sido fijado a la mitad del número de workers), se 

usa la ecuación 4.2 para calcular xj, de manera que se obtiene el número de tareas del 

batch j y éste se encuentra preparado para su distribución. 

4. Si el número de tareas por chunk alcanza un límite mínimo predefinido, las restantes 

tareas son distribuidas entre los últimos chunks creados, y el proceso de distribución 

finalizada. 

 Tal y como se deduce de la lógica del algoritmo presentado, los valores 

correspondientes a los tiempos de cómputo por tarea empleados para calcular xj se deben de ir 

acumulando a lo largo de la iteración y de una iteración a otra con el objetivo de que los valores 

de los factores de distribución se vayan adaptando a las condiciones de balanceo que presenta la 

aplicación.  

 En el presente trabajo de investigación, con el objetivo de que en los factores de 

distribución no influyan iteraciones previas en las cuales el estado de la aplicación era distinto al 

que se presenta en la iteración actual, se ha definido una ventana que delimita el histórico de 

acumulación de los tiempos de cómputo comentados. 
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4.3 Determinación del número de workers  

Como se comentó en la sección 4.2, en una aplicación Master/Worker ideal el tiempo total de 

ejecución sería igual el tiempo secuencial de ejecución dividido por el número de workers. Esto 

hecho ocurriría si: 

- No hubiese coste de comunicación. 

- La aplicación se está ejecutando sobre una plataforma dedicada y homogénea. 

- Se ha alcanzado un balanceo de la carga. 

- La computación escala computacionalmente. 

  

 En el entorno de computación definido por las anteriores características, cualquier 

recurso disponible que pueda ser asignado a la aplicación debe serlo, porque será eficientemente 

usado para mejorar el rendimiento. Sin embargo en el mundo real, se observa que el speedup de 

una aplicación usualmente decrece  cuando se añaden nuevos recursos, poniendo de manifiesto 

una pérdida de eficiencia, ya que los costes introducidos (aumento del volumen de 

comunicaciones) son mayores que las ventajas que los nuevos recursos proporcionan. 

 Consecuentemente el  modelo de rendimiento estudiado, tiene en cuenta todos estos 

parámetros e intenta evaluar el comportamiento de la aplicación cuando se está ejecutando y 

decidir si merece la pena cambiar el número de workers para mejorar el rendimiento de la 

misma. En el desarrollo de dicho modelo se ha asumido que existe un solo worker por elemento 

de procesamiento, y que la aplicación está balanceada. El desarrollo detallado del modelo así 

como su discusión, se muestra y comentan en [9]. 

 En nuestro trabajo de investigación para determinar y sintonizar el número de workers 

de la aplicación, se ha empleado un índice de rendimiento Pi que directamente permite 

relacionar rendimiento con eficiencia en el uso de recursos. La principal ventaja de este índice 

es que puede ser automáticamente optimizado porque permite encontrar la mejor relación 

posible entre eficiencia y ganancia de rendimiento.  

 La eficiencia de una aplicación se encuentra definida como la porción de tiempo que los 

workers están realizando trabajo útil sobre el tiempo que éstos han estado disponibles para 

realizar trabajo provechoso. Más formalmente, para x workers el índice de eficiencia E(x) queda 

definido como ೎்

்ೌೡೌ೔೗
, donde ௖ܶ es el tiempo de procesamiento total de todos los workers, ௔ܶ௩௔௜௟ 

es ∑ ௜݈݅ܽݒܽݐ
௫ିଵ
௜ୀ଴ , y ݈݅ܽݒܽݐ௜ es el tiempo que el worker i ha estado disponible para hacer trabajo 

útil, lo cual para una aplicación como las que se pretende modelar, será el tiempo de una 

iteración completa ( ௧ܶ). De tal modo, el índice de eficiencia para x workers viene dado por la 

siguiente expresión: 
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ሻݔሺܧ ൌ ௖ܶ ݔ ௧ܶሺݔሻ⁄ .     (4.5) 

Consecuentemente, el índice de rendimiento para x  workers sería: 

ܲ݅ሺݔሻ ൌ ௧ܶሺݔሻ ⁄ሻݔሺܧ ൌ ݔ ௧ܶሺݔሻଶ ௖ܶ⁄     (4.6) 

 Basándonos en las expresiones definidas en el modelo de rendimiento para describir el 

comportamiento de una aplicación Master/Worker, y suponiendo que el protocolo de 

comunicación de la aplicación a modelar es asíncrono (el master realiza una operación de envío 

y los datos son almacenados en un buffer intermedio de forma que el siguiente envío puede 

realizarse antes que el envío previo haya finalizado), el tiempo de una iteración completa viene 

definido por la siguiente expresión: 

௧ܶሺݔሻ ൌ 2݉௢ ൅ ൣ൫ሺݔ െ 1ሻߙ ൅ 1൯ܸߣ ൅ ௖ܶ൧ ⁄ݔ     (4.7) 

 En la anterior expresión analítica, se identifican los siguientes parámetros que 

caracterizan el modelo de rendimiento: 

- mo: latencia de la red, en milisegundos (ms). 

 .coste de comunicación por byte (inverso del ancho de banda), en ms/byte :ߣ -

- ܸ: volumen total de comunicación, en bytes. 

 .porción de V  enviado a los workers :ߙ -

- ௖ܶ: tiempo total de procesamiento, en ms. 

- n: número de workers actual de la aplicación. 

  

 En conclusión, el índice de rendimiento Pi permitirá obtener para una aplicación 

Master/Worker el número de workers que maximiza el rendimiento, minimizando tiempo de 

ejecución, sin desperdiciar recursos, independientemente del valor de los parámetros que 

caracterizan a dicha aplicación. 

4.4 Definición del modelo de rendimiento para sintonización 

dinámica 

Los problemas de rendimiento que resuelven las dos estrategias planteadas en las secciones 

anteriores se caracterizan porque dependen de condiciones dinámicas, tales como la cantidad de 

tareas disponibles o la carga de los procesadores; de modo que, dichos problemas son 

apropiados para ser resueltos dinámicamente. Por tanto, la integración en MATE del modelo de 

rendimiento que contiene las dos estrategias descritas, permitirá, mediante el proceso de 

sintonización dinámica, intentar resolver esos problemas partiendo de la situación más 

adecuada. 
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 Dicha integración se ha realizado mediante el diseño e implementación del tunlet 

adecuado. Como se comentó en la sección 3.3.3 del capítulo 3, los tunlets son el núcleo de la 

sintonización automática y dinámica implementada por MATE, en términos de representación 

del conocimiento y constituyen el mecanismo inteligente empleado por MATE en la fase de 

análisis. Cada tunlet define e implementa una particular técnica de sintonización, de tal modo 

que en nuestro caso de estudio, el tunlet que se ha diseñado plantea la lógica de análisis 

necesaria para aplicar el modelo de rendimiento estudiado para aplicaciones Master/Worker. 

 Es de destacar que el modelo de rendimiento planteado en las secciones previas fue 

desarrollado en el mismo grupo de investigación que ha diseñado e implementado el entorno de 

sintonización dinámica MATE y se encuentra estrechamente asociado con dicha herramienta. 

Por eso, la definición y estructura del modelo de rendimiento se adapta a la organización del 

conocimiento requerida por MATE en la fase de análisis durante el  proceso de sintonización. 

Es decir, en las estrategias definidas se pueden distinguir (a) el conjunto de puntos de medida 

que deben ser monitorizados, (b) las expresiones de rendimiento a evaluar con dichos puntos de 

medida y (c) los parámetros críticos a modificar para mejorar el rendimiento de la aplicación  

 En el caso de la estrategia de balanceo de carga detallada anteriormente, MATE como 

entorno de sintonización dinámica, para poder modificar de forma automática y dinámica el 

factor de distribución solo necesita monitorizar el tiempo (ܿݐ௜) que emplea cada worker en el 

procesamiento del chunk asignado para poder estimar de este manera la media µC  y la 

desviación estándar σC. De este modo, en la tabla 4.1 se presenta la definición formal de esta 

primera estrategia del modelo de rendimiento. 

Puntos de Medida 
 

 .௜: tiempo de cómputo de cada worker, en msܿݐ -
 

Expresiones de rendimiento 

 
Expresión analítica para obtener el factor de distribución del 
primer batch de la iteración: 

଴ݔ ൌ 1 ൅ ቀߪ஼ඥܰ 2⁄ ቁ ஼ൗߤ  

Expresión analítica para obtener el factor de distribución del 
resto de los batches a lo largo de la iteración 

௝ݔ ൌ 2 ൅ ቀߪ஼ඥܰ 2⁄ ቁ ஼ൗߤ  

 

Puntos/Acciones de 
sintonización 

 
El factor de distribución será el elemento a sintonizar. Su valor  
puede ser modificado a lo largo de toda la iteración. 
 

 

Tabla 4.1 Definición de la estrategia de balanceo de carga para su uso bajo sintonización dinámica 

 Por otro lado, para determinar el número de workers que maximiza el rendimiento,  
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 MATE necesita monitorizar la latencia de la red (m0) y el coste de comunicación por 

byte (ߣ) como parámetros que caracterizan el sistema de cómputo. Además para calcular el 

volumen total de comunicación V que tiene lugar en la aplicación, es necesario determinar el 

tamaño de las comunicaciones establecidas entre el master y los workers (ݒ௜ y ݒ௠). Y 

finalmente el tiempo de cómputo total Tc será calculado mediante el tiempo de procesamiento 

 de cada uno de los workers que participan en la ejecución. La siguiente tabla 4.2  muestra (௜ܿݐ)

la definición formal de la segunda estrategia que compone el modelo de rendimiento estudiado. 

Puntos de Medida 

 
- m0: latencia de la red, en ms. 
 .coste comunicación por byte, en ms/byte :ߣ -
 .௜: tamaño de las tareas enviadas al worker i, en bytesݒ -
 ௠: tamaño de los resultados enviados al master desdeݒ -

cada worker, en bytes. 
 ௜: tiempo de cómputo de cada worker, en msܿݐ -

 

Expresiones de rendimiento 

 
La expresión que se ha de evaluar es el índice de rendimiento 
para distinto número de workers: 

ܲ݅ሺݔሻ ൌ
ݔ ௧ܶሺݔሻଶ

௖ܶ
 

Donde el tiempo de ejecución de una iteración ௧ܶሺݔሻ es 

௧ܶሺݔሻ ൌ 2݉௢ ൅
ൣ൫ሺݔ െ 1ሻߙ ൅ 1൯ܸߣ ൅ ௖ܶ൧

ݔ
 

 

Puntos/Acciones de 
sintonización 

 
El número de workers de la aplicación será el elemento a 
sintonizar. El nuevo valor será aquel que prediga un menor 
tiempo de ejecución y mejor aprovechamiento de los recursos. 
 

 

Tabla 4.2 Definición de la estrategia de determinación del número de workers para su uso bajo 

sintonización dinámica 
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Capítulo 5 

 

Desarrollo del modelo de 

rendimiento en MATE 

 

5.1 Introducción 

En el trabajo de investigación expuesto hasta el momento, se ha presentado la metodología de 

investigación seguida para conseguir el objetivo establecido inicialmente: sintonizar mediante 

MATE una aplicación empleada en computación de altas prestaciones desarrollada bajo un 

paradigma Master/Worker. 

 Inicialmente se comenzó por un estudio en profundidad de la herramienta MATE. 

Recordando lo expuesto en el capítulo 3, MATE (Monitoring, Analysis and Tuning 

Environment) es, como su nombre indica, una herramienta creada para adaptar y controlar la 

ejecución de aplicaciones paralelas. Este entorno, trabaja sobre la aplicación en tres fases 

diferentes y continuas: monitorización, análisis y sintonización. Inicialmente instrumenta una 

aplicación durante el tiempo de ejecución de forma dinámica y automática para obtener 

información sobre el comportamiento de dicha aplicación. La fase de análisis busca los 

problemas, detecta sus causas y proporciona las soluciones para eliminar esos problemas de 

rendimiento. Finalmente, MATE sintoniza la aplicación aplicando las soluciones 

dinámicamente. 
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 Para que la fase de análisis tenga lugar, MATE necesita poseer el conocimiento sobre 

el/los problemas de rendimiento que se quieren resolver. Los modelos de rendimiento 

constituyen dicho conocimiento empleado por MATE para conducir el proceso de análisis, 

determinando la información que se necesita recopilar durante la ejecución (puntos de medida), 

como evaluar la información recogida (funciones de rendimiento) y que cambios se necesitan 

para sintonizar la aplicación (puntos/acciones/sincronizaciones de sintonización). 

 De tal modo, el segundo paso realizado en nuestra metodología ha sido el estudio de un 

modelo de rendimiento para aplicaciones Master/Worker, cuyo principal objetivo es resolver los 

problemas de rendimiento que en ellas se presentan: desbalanceo de carga entre los workers y 

empleo del adecuado número de workers. En la sección 4.4 del capítulo 4, se presenta la 

representación de dicho modelo en los términos los puntos de medida, funciones de rendimiento 

y puntos de sintonización. 

 Por tanto, una vez conocida la herramienta de sintonización y estudiados los problemas 

de rendimiento que se desean resolver y su representación, el último paso para lograr el objetivo 

del presente trabajo, es el diseño y desarrollo del tunlet para ser integrado en MATE. 

 Los tunlets constituyen el núcleo de la sintonización dinámica y automática 

implementada por MATE, en términos de representación del conocimiento. Técnicamente, un 

tunlet es una librería que condensa la información sobre un determinado problema de 

rendimiento que puede afectar a un tipo de aplicaciones paralelas, implementando una particular 

técnica de sintonización. En el presente trabajo, el tunlet implementado encapsulará toda la 

información necesaria derivada del modelo de rendimiento estudiado. 

 El conocimiento presente en el tunlet será usado para las fases de monitorización, 

análisis y sintonización a lo largo de la ejecución de la aplicación bajo MATE. Para ser capaz de 

cooperar con MATE, la implementación del tunlets estará basada en la API de Sintonización 

Dinámica proporcionada por el módulo de análisis de la herramienta. 

 Para poder aplicar el modelo de rendimiento estudiado para aplicaciones 

Master/Worker, encapsularlo en un tunlet e integrarlo en MATE, se realizó una compleja 

búsqueda de aplicaciones situadas bajo dicho paradigma y empleadas en computación 

paralela/distribuida. Esta búsqueda permitió llegar a la conclusión de que actualmente las 

aplicaciones Master/Worker no presentan un uso muy extendido en computación de altas 

prestaciones debido al cuello de botella que supone la comunicación establecida entre un único 

master y todos los workers. 

 A pesar de ello, y con el fin de poder obtener los conocimientos deseados en el presente 

trabajo de investigación, se optó por una aplicación paralela/distribuida desarrollada en el 
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Departamento de Arquitectura de Computadores y Sistemas Operativos de la Universidad 

Autónoma de Barcelona. Se trata de un simulador de incendios forestales, denominado Xfire 

[10]. 

 En el presente capítulo, se presenta el desarrollo del modelo de rendimiento en MATE. 

En la siguiente sección se presenta detalladamente la aplicación que va ser objeto de la 

sintonización. Seguidamente se plantea la metodología seguida en el diseño y desarrollo del 

tunlet, la cual se concreta con la interpretación de las dos técnicas de mejora de rendimiento de 

aplicaciones Master/Worker bajo dicha metodología. Finalmente se presentan las pruebas 

experimentales realizadas y los resultados obtenidos. 

5.2 Xfire 

5.2.1 Simuladores de incendios forestales 

Los fuegos forestales son uno de los mayores riesgos medioambientales, especialmente en el sur 

de Europa. El diagnóstico de la variabilidad y propagación espacial de los mismos en un 

territorio requiere de la disponibilidad de una base científico-técnica, desde la cual se pueda 

ayudar y/o sustentar la toma de decisiones. La disponibilidad de aplicaciones informáticas en 

los que se integran el conjunto de variables que identifican la propagación y emisión energética 

de las llamas, constituye un elemento de apoyo para las estrategias de defensa de la superficie 

forestal ante grandes incendios forestales. 

 En los últimos años, los simuladores de la propagación de los incendios forestales se 

han afincado como un instrumento más para la toma de decisiones de los gestores forestales, 

útiles para decidir qué acciones son las más adecuadas para minimizar los riesgos o daños de un 

fuego. 

 La simulación de la propagación de los incendios forestales mediante las aplicaciones 

informáticas se fundamenta en la modelización de combustibles y en las fórmulas semi-

empíricas desarrolladas por Rothermel [49]. El modelo de Rothermel es uno de los modelos más 

utilizados para predicción del comportamiento del fuego. La mayoría de los simuladores de 

comportamiento del fuego basan sus cálculos en este modelo. Sus operaciones calculan el índice 

de máxima propagación y la intensidad de reacción del fuego conociendo ciertas propiedades 

del combustible y del ambiente donde se desarrolla el incendio. 

 En la literatura existen varios modelos de propagación de fuegos forestales [50] los 

cuales parten de la idea de que la propagación de un fuego es un problema muy complejo que 

involucra varios aspectos que deben ser considerados relacionados con características 

meteorológicas (viento, temperatura, etc), de vegetación y topografía.  
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 En el presente trabajo se ha seleccionado para ser objeto de sintonización dinámica la 

aplicación de simulación de la propagación de incendios forestales Xfire. Esta aplicación parte 

su análisis de la geometría actual del frente del incendio, para evaluar su posible avance 

considerando los diferentes aspectos climáticos, vegetación y topografía del terreno. En el 

siguiente apartado se expone con mayor detalle las principales características de este simulador. 

5.2.2 Visión general de Xfire 

Xfire [10] [51] es una aplicación paralela de cómputo intensivo que simula la propagación de 

incendios forestales. 

 Xfire simula la propagación de la línea de fuego basándose en el modelo de Andre-

Viegas [52] [53], cuyo ciclo de operación se muestra en la figura 5.1. Xfire define la línea de 

fuego como un conjunto de secciones donde cada sección contiene un conjunto de puntos. Cada 

sección debe ser desglosada para calcular el progreso individual de cada punto en cada paso de 

tiempo. Cuando el progreso de todos los puntos ha sido calculado, es necesario agregar las 

nuevas posiciones de los puntos para reconstruir la línea de fuego.  

 

Figura 5.1 Ciclo de operación del modelo de André-Viegas 

 Para simular la propagación de la línea de fuego, Xfire divide el frente de fuego 

empleando dos modelos: uno global y otro local. El modelo global permite la partición de la 

línea de fuego en secciones y la unión de estas secciones en la siguiente posición del frente 

aplicando algoritmos numéricos. Mientras se calcula una nueva posición de la línea de fuego, el 

frente del fuego puede expandirse y bajo determinadas circunstancias se pueden añadir más 
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puntos. Se debe tener en cuenta que las secciones son independientes, pero los puntos finales de 

cada sección son compartidos entre secciones vecinas. El modelo local calcula el movimiento de 

cada punto individual. Mientras se evalúa un punto, se usan algoritmos numéricos y se tiene en 

cuenta condiciones estáticas y dinámicas definidas en el modelo numérico (características 

meteorológicas, vegetación y topografía). 

 La simulación de la propagación de incendios forestales implica diferentes pasos que 

requieren complejos cálculos que hacen que el proceso sea costoso computacionalmente en lo 

referente al tiempo consumido. La primera implementación de proyecto Xfire fue secuencial y 

se ejecutó en un PC. Sin embargo, debido al pobre rendimiento, los desarrolladores de Xfire 

decidieron implementarla de forma paralela. Para ello emplearon paralelismo de datos, mediante 

el cual el movimiento de cada sección que compone la línea de fuego puede ser calculado 

independientemente. De esta forma la línea de fuego se divide en N secciones, y cada sección es 

ejecutada por distintos procesos que forman parte de la máquina paralela.  

 Inicialmente Xfire se implementó empleando como librería de comunicación paralela 

PVM. Posteriormente, y debido al avance en el uso de la librería de paso de mensajes MPI, 

también fue implementada bajo dicha librería. Ambas implementaciones seguían un paradigma 

de implementación paralela Master/Worker. El algoritmo general de esta aplicación usando un 

paradigma Master/Worker es el siguiente: 

‐ Proceso master 

o Obtienen la línea de fuego inicial. 

o Genera una partición de la línea de fuego y la distribuye entre los workers. 

o Espera la respuesta de los workers. 

o Si el tiempo de simulación ha terminado entonces finaliza la ejecución, en caso 

contrario, compone una nueva línea de fuego, añadiendo puntos si es necesario y 

vuelve al segundo paso. 

‐ Proceso Worker 

o Obtiene la sección de línea de fuego enviada por el master. 

o Calcula la propagación local de cada punto de la sección (para calcular la posición 

de un punto del modelo necesita conocer sus vecinos). 

o Devuelve la nueva sección al master. 

 Tal y como se muestra, el proceso de simulación de fuegos realizado por Xfire es 

iterativo, de manera que en el algoritmo se realizan tantas iteraciones como el tiempo de 

simulación establecido permita.  
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 Como datos de entrada, Xfire precisa de información que describa el terreno y las 

condiciones en las que se produce el incendio y la línea de fuego inicial. Para ello, durante el 

proceso de inicialización del algoritmo, Xfire toma los siguientes datos de entrada: 

‐ Frente o línea de fuego inicial. 

  Se caracteriza por la forma que puede presentar el frente (punto, línea, curva 

 abierta o curva cerrada), el número de puntos que componen dicho frente y las 

 coordenadas UMT de los mismos. 

‐ Características meteorológicas. 

 Se trata básicamente de información sobre la situación del viento. Se 

proporciona las coordenadas UMT del viento, su dirección en grados y su velocidad en 

kilómetros por hora. 

‐ Vegetación. 

 Se determina el tipo de modelo de vegetación que se encuentra sobre el terreno 

donde se produce el incendio y los distintos parámetros que lo caracterizan, los cuales 

serán utilizados en el modelo de simulación que emplea Xfire. 

‐ Topografía. 

 El terreno donde tiene lugar el incendio queda determinado por el conjunto de 

puntos que caracterizan el modelo de vegetación. Estos puntos quedan establecidos por 

coordenadas x, y, z y c. 

‐ Tiempo de simulación. 

 Para especificar el tiempo de simulación, la aplicación necesita tomar como 

datos de entrada el tiempo inicial de simulación, el tiempo final y el incremento de 

tiempo a simular en cada iteración del proceso. 

5.2.3 Adaptación de Xfire al modelo de rendimiento 

Como se comentó anteriormente, Xfire sigue un paradigma Master/Worker que explota el 

paralelismo de datos presente en la funcionalidad del simulador de incendios. Para ello, el 

master distribuye la línea de fuego entre todos los workers sin emplear ninguna técnica de 

balanceo de carga; de tal modo que en cada iteración el frente de fuego es dividido en secciones 

de igual tamaño que serán procesadas por los workers. 

 En nuestro trabajo de investigación, se ha estudiado y adaptado Xfire para poder 

sintonizarla siguiendo el conocimiento proporcionado por el modelo de rendimiento 

Master/Worker expuesto en el capítulo 5, el cual intenta resolver los problemas de rendimiento 

relacionados con el desbalanceo de la carga entre los workers y el uso de un apropiado número 
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de workers en la aplicación. Para ello ha sido necesario realizar un análisis del código fuente de 

la misma; en concreto nuestro estudio se ha centrado en la sección de código del proceso master 

encargada de la distribución del frente de fuego entre los workers. La adaptación realizada 

queda caracteriza por dos aspectos principales: 

‐ Transformación de la lógica seguida en el proceso de distribución de trabajo de forma 

que permita la gestión de la línea de fuego como un conjunto de batchs de tamaño 

variable que se irán creando a lo largo de la iteración. 

‐ La determinación del tamaño de los batchs, tal y como se comentó en la sección X, 

varía a lo largo de una iteración de la simulación dependiendo de un factor de partición 

cuyo valor refleja las condiciones actuales de balanceo de carga de la aplicación. Por 

tanto, es necesaria la introducción de dicho factor como variable que forma parte de la 

lógica de reparto del frente de fuego entre workers y que será sintonizada en el proceso 

de mejora de rendimiento seguido por MATE. 

 Es de destacar el hecho de que si la aplicación Xfire hubiese sido creada empleando un 

framework conocido de diseño y programación paralela, se reduciría la complejidad que alcanza 

el proceso de sintonización, ya que se conocería de antemano el paradigma de programación de 

la aplicación y su estructura funcional. 

5.3 Metodología de diseño y desarrollo del tunlet 

5.3.1 Metodología 

El objetivo que se persigue en este capítulo es encapsular en un tunlet toda la información de 

cómo resolver los problemas de rendimiento definidos en el modelo estudiado. Este tunlet será 

usado a lo largo de la ejecución de Xfire para dirigir su monitorización, análisis y sintonización 

a través de la herramienta MATE. 

 Para realizar un correcto diseño y desarrollo del tunlet, hay que tener en cuenta que su 

definición debe incluir la identificación e interpretación de una serie de elementos vinculados 

principalmente con el modelo de rendimiento y la aplicación bajo estudio. La interdependencia 

entre estos componente se refleja en la figura 5.2. 
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Figura 5.2 Interrelación entre la aplicación, el modelo de rendimiento y el tunlet 

 En lo referente al modelo de rendimiento para aplicaciones Master/Worker en nuestro 

caso de estudio, constituye la base del tunlet que se ha definido, debido a que proporciona 

información relativa a qué debería ser medido en la aplicación, cómo detectar y resolver los 

posibles problemas de rendimiento y qué es necesario modificar para ello en dicha aplicación. 

Entonces desde el punto de vista del modelo de rendimiento es necesario definir: 

- Los puntos de medida. 

- Las funciones de rendimiento analíticas. 

- Puntos/Acciones/Sincronizaciones de sintonización. 

 

 Sin embargo, para instrumentar la aplicación en los procesos de monitorización y 

sintonización, el modelo de rendimiento no es suficiente, se necesita algún conocimiento 

adicional sobre la aplicación, tal como las variables las cuales serán usadas como métricas, los 

valores que van a ser cambiados, y el modelo de programación, entre otros, para tener una 

visión conceptual de la aplicación. Por tanto, desde el punto de vista de la aplicación, en nuestro 

trabajo hemos tenido en cuenta: 

- El modelo de programación que sigue la aplicación, identificando los diferentes tipos de 

procesos involucrados en el esquema. 

- Las variables o valores que se puede manipular, con el objetivo de localizar las 

variables a sintonizar. 

- Las funciones cuya ejecución necesitamos detectar para recopilar información sobre el 

comportamiento de la aplicación y enviarla como eventos. 

 Con el propósito de poder modelar correctamente todas las interrelaciones existentes 

entre la aplicación Xfire, el modelo de rendimiento para aplicaciones Master/Worker y el 

mecanismo de encapsular el conocimiento en MATE, en el presente trabajo de investigación se 

ha seguido una metodología de diseño y desarrollo del tunlet. El proceso que ésta describe 

estimamos que es el más adecuado para culminar con un tunlet que guie el proceso de 
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sintonización deseado, de tal manera que puede ser generalizable para la sintonización bajo 

MATE de cualquier aplicación empleando cualquier modelo de rendimiento adecuado a ésta. 

La metodología definida consta de los siguientes pasos: 

- Proporcionar un modelo de rendimiento. 

 En nuestro trabajo de investigación se trata del modelo de rendimiento detallado 

en el capítulo 4. Tal y como se expuso, se trata de un modelo preexistente desarrollado 

en anteriores investigaciones para aplicaciones bajo paradigma Master/Worker. 

 

- Comprensión del modelo de rendimiento. 

 Una vez que el modelo de rendimiento se ha determinado, la comprensión del 

mismo es un requerimiento básico debido a que el modelo debe de ser interpretado en 

concordancia con la aplicación, en este caso Xfire.  

 En nuestro caso, el proceso de comprensión del modelo ha permitido establecer 

la correspondiente relación entre dicho modelo y el tunlet a desarrollar, mediante la 

caracterización de los parámetros y las funciones de rendimiento del mismo. 

 

- Interpretación del modelo de rendimiento. 

 Este es la fase que conlleva establecer que valores, variables y funciones de la 

aplicación se emplearán para interpretar los parámetros del modelo de rendimiento, 

definir los eventos que se deben capturar, la información asociada a los mismos y los 

distintos procesos que participan en la ejecución de la aplicación. 

 

 Como se puede observar, las dos primeras fases de la metodología han sido ya 

desarrolladas y expuestas en el capitulo precedente. De modo que el procedimiento de 

interpretación del modelo de rendimiento es el proceso requerido para completar el diseño y 

desarrollo del tunlet. Esta es la fase que se pretende mostrar en las siguientes secciones. 

5.3.1.1 Interpretación del modelo de rendimiento 

Cuando el modelo de rendimiento ha sido determinado y especialmente los distintos parámetros 

de rendimiento se han comprendido, la fase de interpretación del modelo es fundamental ya que 

en ella se identifican qué entidades de la aplicación se corresponden con los parámetros de 

rendimiento.  

 Este proceso incluye una serie de pasos relacionados con el estudio de la 

correspondencia entre los distintos componentes del modelo de rendimiento y la estructura y 

variables de la aplicación. Estos pasos son los siguientes: 
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- Identificación de los actores en la aplicación. 

 En general, cada aplicación paralela posee distintos tipos de procesos 

ejecutándose en paralelo y cooperando para resolver el problema. De modo que cada 

tipo de proceso en el modelo de programación representa un actor. 

 El tunlet que se diseñe necesita poseer esta información porque en general cada 

tipo de proceso debe ser instrumentado de forma diferente dependiendo del papel que 

juega en la ejecución de la aplicación. Es decir, para cada actor, se necesitan capturar 

eventos distintos, de tal modo que la instrumentación insertada en los mismos también 

variará.  

 

- Identificación de la información/variables/valores.  

 Los parámetros de rendimiento que caracterizan el modelo tienen que ser 

interpretados de acuerdo a las variables, valores y funciones de la aplicación bajo 

estudio, en este caso Xfire.  

 El concepto de variable, corresponde a variables presentes en la aplicación; 

mientras que un valor es el contenido de un determinado parámetro de una función o el 

resultado de la misma. Tanto las variables como los valores pueden ser requeridos para 

cambiar su valor o bien obtenerlo, es decir, son los elementos de la aplicación que 

pueden ser instrumentados o sintonizados. 

 En función de las características o naturaleza de cada parámetro de rendimiento, 

en nuestro proceso de diseño debemos determinar cómo constituir su valor y cuál es el 

evento que se debe definir para obtener la información asociada.  

 En el desarrollo del tunlet el empleo de variables requiere una especial 

importancia, ya que aquellas variables de las que se decida que es necesario requerir su 

valor o cambiarlas, tienen que ser variables globales, condición expuesta por la librería 

Dyninst al utilizarla como método de instrumentación dinámica. De tal modo, puede 

ocurrir que se necesitan determinados cambios en la implementación de la aplicación 

definiendo algunas variables como globales. 

 

- Identificación de los eventos. 

 Los eventos constituyen el mecanismo empleado por MATE para recopilar 

información sobre el comportamiento de la aplicación.  Los eventos son capturados en 

las entradas o salidas de funciones y pueden contener información adicional asociada a 

ellos. 

 Entonces, de acuerdo a la semántica de los distintos parámetros que componen 

nuestro  modelo de rendimiento, debemos determinar cuáles son las entradas y salidas 
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de las funciones que tienen que ser capturadas, es decir, localizar aquellos puntos de 

nuestra aplicación en los cuales se tiene disponible la información que se requiere.  

 

- Determinación de cuándo y bajo qué circunstancias evaluar las funciones de 

rendimiento y ejecutar el cambio de los puntos de sintonización. 

 La recopilación de los eventos no solo permite al tunlet ir recopilando la 

información necesaria para evaluar las funciones de rendimiento asociadas a la 

estrategia de sintonización, sino que también determina cuando se debe evaluar dichas 

condiciones y, bajo determinadas condiciones, ejecutar el cambio de los parámetros 

críticos que permitirán la mejora de rendimiento de la aplicación. 

 

 Esta metodología será la empleada para la interpretación de las dos técnicas de 

sintonización estudiadas para mejorar el rendimiento de aplicaciones Master/Worker. 

5.3.1.2 Requerimientos de MATE 

Las fases de la metodología de diseño del tunlet expuestas en la sección 5.3.1, presentan 

aspectos que son muy dependientes de los detalles de implementación de MATE, ya que se 

encuentran muy relacionados con la manera en la que el Analizador representa y usa el 

conocimiento. 

 Si recordamos lo expuesto en el capitulo X (MATE), desde un punto de vista funcional, 

el Analizador está dividido en dos partes principales que son la API de Sintonización Dinámica 

(DTAPI) y los tunlets. 

 La DTAPI constituye la interfaz que emplea el Analizador para comunicarse con las 

fases de Monitorización y Sintonización. Esta API proporciona al Analizador una visión global 

de la aplicación, las tareas y los eventos. Con respecto a los tunlets, ellos usan la API de 

Sintonización Dinámica para gestionar la aplicación e invocar las peticiones de monitorización 

y sintonización, y para manejar los eventos recopilando la información de la aplicación 

necesaria para el análisis. Por tanto, la DTAPI constituye la interfaz que el tunlet debe emplear 

para trabajar de forma coordina con MATE.  

 Para la implementación del tunlet, en el estudio realizado se ha considerado tener 

presente además los siguientes aspectos: 

- Cómo capturar la información. Se han considerado los métodos proporcionados por la 

DTAPI para instrumentar la aplicación, y en particular, para determinar las propiedades 

que definen un evento. Hay que tener presente que para insertar un evento en un 
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proceso particular, se necesita un nombre para identificar el evento, donde se debe 

insertar dicho evento en el código fuente y los atributos asociados a él.  

- Como gestionar la información recopilada. Cuando un evento es insertado en un 

proceso, es necesario determinar una entidad que controle ese evento cuando éste ocurre 

y es recibido en la fase de análisis. Generalmente, los tunlets son los que controlan los 

eventos, debido a que en ellos se encapsula la lógica para procesar la información e 

interpretarla de acuerdo al modelo de rendimiento. 

- Como y donde manejar la información. En el presente trabajo el tunlet desarrollado 

gestiona una compleja estructura de datos para cada iteración de la aplicación. En tal 

estructura, la información recopilada es almacenada en función de su procedencia: 

información sobre la iteración, sobre los batches repartidos en la iteración y sobre los 

workers. 

- Cómo modificar la aplicación. De forma similar a la instrumentación para la 

monitorización, cuando se requiere alguna información de sintonización se han de 

considerar los métodos proporcionados por la DTAPI para introducir algunas 

modificaciones en la aplicación. En nuestro trabajo, la modificación de la aplicación 

únicamente se realizará mediante el cambio del valor de alguna variable. 

 

 Teniendo en cuenta los conceptos expuestos en la fase de interpretación del modelo de 

rendimiento y su dependencia con la implementación, en las próximas secciones se exponen la 

especificación del tunlet creado a partir del modelo de rendimiento expuesto en el capitulo X y 

la aplicación Master/Worker Xfire. 

5.4 Desarrollo del tunlet 

En la presente sección se muestra la especificación del tunlet que integrará las dos estrategias de 

sintonización para mejorar el rendimiento en aplicaciones Master/Worker: 

- Balanceo de la carga entre los workers. 

- Adaptación del número de workers. 

 La especificación del tunlet se realizará teniendo en cuanta la especificación de cada 

una de las estrategias de sintonización, las cuales fueron expuestas detalladamente en el capítulo 

4. Además la generación del tunlet se detallará partiendo de la metodología diseñada y 

presentada en la sección 5.3.1.1. 

 En la presente sección se aplica la metodología detallada en la sección previa para 

definir y diseñar cada una de las técnicas de sintonización que componen el tunlet desarrollado, 
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teniendo en cuenta las interrelaciones entre el modelo de rendimiento, la aplicación Xfire y la 

herramienta de sintonización MATE. 

5.4.1 Balanceo de la carga entre workers 

El desbalanceo de carga en sistemas paralelos puede ser causado por la heterogeneidad de los 

procesadores, interferencias con el sistema operativo o irregularidad en las tareas asignadas a los 

procesadores. 

 El balanceo de carga dinámico es una técnica cuyo propósito es distribuir la carga entre 

los procesos para evitar que algunos procesos se mantengan ociosos mientras que otros esperan 

recibir trabajo y no hacen nada más. Esto se consigue asignando más trabajo a los procesadores 

que terminan antes el trabajo asignado. 

 Factoring es una estrategia de balanceo de carga que divide el número total de tareas a 

procesar en bacthes. Cada batch tiene tantos chunks como procesadores están ejecutándose y 

cada chunk contiene la misma cantidad de tareas. 

 Tal y como se expuso en la sección X, en el presente trabajo de investigación se ha 

estudiado una aproximación de la técnica de Factoring denominada Dynamic Adjusting 

Factoring (DAF). Esta estrategia permite ajustar dinámicamente el tamaño de los batches a lo 

largo de la ejecución teniendo en cuenta las condiciones actuales de balanceo de carga de la 

aplicación. 

5.4.1.1 Interpretación de la técnica de sintonización 

Recopilando la información detallada en la sección X, los términos y conceptos que forman 

parte de la técnica de sintonización para balancear la carga entre los workers son: 

- N: número de workers. 

- xi: inverso del factor de partición, porción de tareas incluidas en el batch i. 

- C: tiempo de procesamiento medio por tarea (ms/tarea). 

- µሺܥሻ: media del tiempo de procesamiento por tarea. 

- σሺܥሻ: desviación estándar del tiempo de procesamiento por tarea. 

- Batch: cada una de las partes en las que M es dividida a lo largo de la implementación 

mediante el algoritmo DAF. Cada batch constituye un subconjunto de tareas. 

 El objetivo de esta técnica es ajustar a lo largo de la ejecución de la aplicación el factor 

de partición que determina el tamaño de los distintos batches en los que se va dividiendo el 

conjunto total de tareas. Por tanto, dicho factor de partición constituye el punto de 

sintonización de esta estrategia.  
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 Tal y como se detalló en la sección 4.3.1 del capítulo 4, el valor del factor de partición 

se determina a partir del valor de xi. Éste se calcula mediante las siguientes expresiones: 

௜ݔ ൌ

ە
۔

1ۓ ൅ ቀߪ஼ඥܰ 2⁄ ቁ ஼ൗߤ     , ݅ ݅ݏ ൌ 0

2 ൅ ቀߪ஼ඥܰ 2⁄ ቁ ஼ൗߤ    , ݅ ݅ݏ ് 0

   

 Ambas fórmulas analíticas constituyen las funciones de rendimiento de la técnica de 

sintonización. La diferencia entre ambas expresiones radica en el hecho de que en el caso de la 

creación del primer batch (cuando i = 0) los workers están sincronizados ya que se encuentran el 

inicio de la iteración en espera de datos para ser procesados, mientras que para el resto de los 

batches la disponibilidad de los workers depende de la velocidad con la que los previos batches 

fueron procesados. 

 Así, para el cálculo de xi necesitamos obtener el tiempo medio de procesamiento por 

tarea (C), el cual es necesario para calcular ߤ஼ y ߪ஼ , y el número de workers N de la aplicación. 

Identificación de actores. 

La aplicación que va a ser sintonizada, tal y como se expuso en secciones previas, está 

implementada bajo un paradigma Master/Worker. De tal modo, que en su ejecución podemos 

identificar dos tipos de procesos que cooperan entre sí: un proceso master y N procesos worker. 

Identificación de variables y valores. 

Para esta técnica de sintonización, se necesitan interpretar  xi, C y N, identificando las variables 

y valores que en la aplicación representan estos parámetros. 

- C tiene que ser calculado como la media del tiempo de cómputo empleado por un 

worker en procesar cada una de las tareas recibidas. De tal modo, el parámetro puede 

calcularse como ܥ ൌ ݉݁݀݅ܽሺܿݐ௜ ⁄ݏܽ݁ݎܽܶܰ ሻ, donde: 

o tci equivale el tiempo que el worker i ha estado procesando las tareas asignadas. 

Este tiempo se calcula tomando los instantes en los que el Worker comienza y 

termina la fase de cómputo.  

o NTareas es una variable en el proceso master que indica cuántas tareas son 

enviadas a cada uno de los workers. También es empleada en el proceso de 

recepción que realiza el master a lo largo de toda la iteración, con el objetivo de 

comprobar que al final de la misma se han recibido todas las tareas que han sido 

enviadas. 

- N es obtenido de la variable NW del proceso master. Esta variable permite al master 

controlar la cantidad de workers a lo largo de la iteración. Tiene que ser medida al 
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inicio de la iteración de la aplicación, y debe ser periódicamente actualizada en el caso 

de que el número de workers pueda cambiar a lo largo de la ejecución.  

- xi es el inverso del valor que tomará la variable que va a ser sintonizada (F0, F1 y F2), 

es decir, el factor de distribución que determina el número de batchs. Esta variable se 

sitúa en el proceso master ya que éste es el encargado de realizar la distribución de las 

tareas entre los workers. Desde el punto de vista de la aplicación ha sido necesaria la 

definición de 3 variables que actúan como factores de distribución, denominadas F0, F1 

y F2. Esto se debe principalmente a la adaptación de la aplicación Xfire a la lógica del 

proceso de sintonización: 

o La variable F0 representa el factor de distribución para el primer batch de la 

iteración. 

o La variable F1 representa el factor de distribución para el segundo batch de la 

iteración. 

o La variable F2 representa el factor de distribución para el resto de los batches 

de la iteración. 

 Por último hay que tener en cuenta que son necesarias una serie de variables de control 

que permiten crear el flujo propio de la lógica de análisis que corresponde a la técnica de 

sintonización. Estas variables son: 

- workerId, esta variable es usada por el proceso master para identificar el proceso worker 

al que está enviando o de que proceso worker está recibiendo. 

- batchId, esta variable está presente en el proceso master. Es necesaria porque existen 

eventos cuya información está relacionada con un determinado batch. En concreto, está 

variable es usada por el proceso master bajo dos circunstancias: 

o Para identificar cada uno de los batches que se van creando a lo largo de la 

iteración en función del factor de partición. 

o Para identificar a que batch pertenece las tareas que está enviando a un 

determinado proceso worker o que recibe de un determinado proceso worker. 

- numChunk, esta variable es empleada por el proceso master para tener conocimiento 

sobre el número de chunks que componen los batches que se van creando. 

Generalmente, los batches tienen tantos chunks como workers están implicados en la 

ejecución de la aplicación pero existe la excepción de los últimos batches de la 

iteración. 

- TheTotalWork, esta variable empleada en el proceso master representa en la aplicación 

al número total de tareas de una iteración, es decir, el número de puntos totales de la 

actual línea de fuego. 
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- iterId, esta variable está presente en el proceso master  y en el proceso Worker. Para el 

master esta variable se requiere para identificar cuando se recibe un evento a que 

iteración pertenece para asociar la información a una correspondiente iteración. De 

manera semejante, en el caso del proceso Worker, la identificación de la iteración es 

necesaria para asociar a una iteración determinada la información de los eventos 

generados en dichos procesos.  

Identificación de eventos 

El siguiente paso consiste en determinar cómo, cuándo y dónde capturar las variables y valores 

previamente enumerados. Para ello se han definido una serie de eventos que serán insertados en 

los procesos correspondientes y proporcionarán la información requerida por la técnica de 

sintonización. Los eventos definidos son los siguientes: 

- Inicio de iteración. 

 Este evento se genera cada vez que el proceso master comienza una nueva 

iteración en la aplicación, es decir, cuando comienza la distribución de la nueva línea de 

fuego entre los workers. 

 La información que presenta asociada es el número de iteración en la que se 

encuentra la aplicación, el número de tareas totales a distribuir a lo largo de esa 

iteración y el número de workers que participan. 

 Para obtener estos datos, el evento se debe de insertar en la entrada de la 

función global_sendreceive que realiza el proceso de distribución de datos. 

  

- Fin de iteración. 

 Este evento es capturado cuando el proceso master termina la recepción de los 

resultados obtenidos por los workers.  

 La información que presenta asociada es el número de la iteración que termina. 

Y de la misma forma que el evento anterior es insertado en la función 

global_sendreceive, pero en este caso a la salida de la misma. 

 

- Envío de datos del master al worker.  

 Este evento se genera cada vez que el proceso master envía el conjunto de tareas 

que debe computar a un proceso worker.  

 Este evento permite recopilar información relacionada con el identificador del 

worker al que se le envía las tareas, el identificador del batch al que pertenecen dichas 

tareas y el número de tareas enviadas. Para ello, el evento debe ser insertado en la 
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entrada del método global_sendwork, en el cual se realiza el empaquetado y envío de 

todos los datos necesarios al worker determinado.  

 

- Recepción de datos de los workers en el master. 

 Este evento tiene lugar cada vez que el proceso master recibe el resultado del 

procesamiento realizado por un worker determinado. 

 Tiene asociada la misma información que el evento anterior, pero en este caso 

debe ser insertado a la salida de la función global_receivework, en la cual se realiza la 

recepción y desempaquetado de la información recibida por el master. 

 

- Inicio cómputo de worker. 

 Este evento se genera cuando un worker comienza el procesamiento del 

conjunto de tareas recibidas. 

 Mediante este evento se requiere recopilar información relacionada con la 

iteración en la cual se encuentra computando el worker, el identificador del batch al 

cual pertenece el chunk sobre el que va a computar, y la marca de tiempo asociada a 

dicho comienzo de cómputo. 

 Para obtener correctamente dicha información, el evento debe ser insertado a la 

entrada de la función arcStepKernel, la cual funcionalmente representa el proceso de 

cómputo realizado por cada worker. 

 

- Fin de cómputo de Worker. 

 Este evento complementa al evento anterior, y se genera cuando un worker 

finaliza el cómputo del chunk enviado. 

 Se recopila la misma información que en evento de inicio de cómputo, pero en 

la salida de la función arcStepKernel. 

 

- Creación de un nuevo batch 

 Este evento se genera cada vez que el proceso master durante la fase de reparto 

de tareas entre los workers calcula un nuevo batch con un determinado factor de 

distribución. 

 La información asociada a este evento es el identificador del nuevo batch creado 

y su tamaño, es decir, el número de chunks que lo componen. Para recopilar dicha 

información el evento debe ser insertado en la función Factoring_SetNumTuples, que 

forma parte del procedimiento de factoring, en la cual se van inicializando las 

estructuras de datos que representan a los batches. 
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La tabla 5.1 resume la información más importante relacionada con cada evento. 

Evento Atributos Actor Método Lugar 

Inicio Iteración 

 
- iterId 
- NW 
- TheTotalWork 

 

master global_sendreceive entrada 

Fin Iteración 
 

- iterId 
 

master global_sendreceive salida 

EnvioMW 

 
- workerId 
- batchId 
- NTareas 

 

master global_sendwork entrada 

RecepciónMW 

 
- workerId 
- batchId 
- NTareas 

 

master global_receivework salida 

Inicio 
Cómputo 
Worker 

 
- Marca de tiempo 
- iterId 
- batchId 

 

worker arcStepKernel entrada 

Fin Cómputo 
Worker 

 
- Marca de tiempo 
- iterId 
- batchId 

 

worker arcStepKernel salida 

Creación de un 
nuevo batch 

 
- batchId 
- numChunks 

 

master Factoring_SetNumTuples salida 

Tabla 5.1 Información sobre los eventos para la técnica de sintonización de balanceo de carga 

Determinación de cuándo y bajo qué condiciones realizar el proceso de sintonización 

La recepción de determinados eventos desencadena en la lógica de sintonización implementada 

en el tunlet la evaluación de las funciones de rendimiento propias de la estrategia de balanceo de 

carga. 

 En el caso bajo estudio, el ajuste del factor de distribución tiene lugar cuando se reciben 

los siguientes eventos: 
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- Inicio de iteración 

 Cuando el proceso master comienza la ejecución de una nueva iteración, el 

tunlet ya posee la información sobre los tiempos de cómputo por tarea de la iteración 

anterior ya completada.  

 Este hecho permite la evaluación de las formulas analíticas de la estrategia de 

balanceo de carga, de tal manera que se actualizan los valores de los factores de 

distribución F0 y F1 para determinar el tamaño de los batches 0 y 1 de la iteración, tal y 

como se expone en el paso 2 del algoritmo planteado en la sección 4.2.1 del capítulo 4. 

- Fin de cómputo de un worker. 

 Cuando un proceso worker termina el cómputo del chunk que le ha sido 

enviado, la información sobre el tiempo de cómputo es recopilada por el tunlet.  

 En el caso de que, tras recibir  la información de este chunk, se compruebe que 

se ha completado el procesamiento del batch al cual pertenece dicho chunk, se actualiza 

el histórico de información acumulada sobre los tiempos de cómputo por tarea con los 

datos asociados al batch finalizado; y entonces tiene lugar la actualización del valor del 

factor de distribución F2 teniendo en cuenta las condiciones actuales de la aplicación en 

cuanto a balanceo de carga. 

 

 La modificación o sintonización de las variables F0, F1 y F2 en la aplicación puede 

tener lugar en cualquier momento a lo largo de las distintas iteraciones que componen la 

ejecución de la aplicación. 

5.4.2 Adaptación del número de workers 

La ejecución de una aplicación con el número de workers más apropiado no es una decisión 

trivial. En la mayoría de los casos las condiciones cambian durante la ejecución de la aplicación 

(por ejemplo en sistemas con carga compartida) y el número correcto de workers no es fijo, por 

lo que debe evolucionar durante la ejecución de la aplicación.  

 En estos casos, la determinación del número de workers debe ser sintonizado sobre la 

marcha en tiempo de ejecución de la aplicación. Con este objetivo, en el presente trabajo de 

investigación se ha estudiado una técnica de sintonización que permite mejorar el rendimiento 

de la aplicación ajustando el número de workers. 

 Para conseguir este objetivo, tal y como se expone en la sección X, se emplea un índice 

de rendimiento que relaciona tiempo de ejecución con eficiencia en cuanto al uso de los 

recursos, determinando el número de workers que proporciona un mejor rendimiento en la 

aplicación. 
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5.4.2.1 Interpretación de la técnica de sintonización 

Recopilando la información detallada en la sección X, los términos y conceptos que forman 

parte de la técnica de sintonización para adaptar el número de workers en la aplicación son: 

- mo: latencia de la red, en milisegundos (ms). 

 .coste de comunicación por byte (inverso del ancho de banda), en ms/byte :ߣ -

- ܸ: volumen total de comunicación, en bytes. 

 .porción de V  enviado a los workers :ߙ -

- ௖ܶ: tiempo total de procesamiento, en ms. 

- ݊: número de workers actual de la aplicación. 

- ௧ܶ: tiempo total de la iteración, en ms. 

 El objetivo de esta técnica es adaptar el número de workers de la aplicación a aquel 

valor que represente un mejor ajuste del rendimiento teniendo en cuenta el tiempo de ejecución 

y la eficiencia en el uso de los recursos. Por tanto, dicho número de workers constituye el punto 

de sintonización de esta estrategia.  

 Tal y como se expuso en la sección 4.3 del capítulo 4, el número de workers, n, es 

obtenido a partir de un índice de rendimiento Pi(n) expresado mediante la siguiente expresión 

analítica: 

ܲ݅ሺ݊ሻ ൌ
௡ ೟்ሺ௡ሻమ

೎்
    donde Tt es 

௧ܶሺ݊ሻ ൌ 2݉௢ ൅
ൣ൫ሺ݊ െ 1ሻߙ ൅ 1൯ܸߣ ൅ ௖ܶ൧

݊
 

 Ambas fórmulas analíticas constituyen las funciones de rendimiento de la técnica de 

sintonización. De modo que el número de workers que buscamos será aquel que maximice el 

rendimiento sin desperdiciar recursos en la aplicación. 

 Así, para el cálculo de n necesitamos obtener el volumen total de comunicación (V), el 

tiempo total de procesamiento (Tc), la porción del volumen total de comunicación enviado a los 

workers (α), la latencia de la red (m0), el coste de comunicación por byte (ߣ) y el número actual 

de workers (n). 

Identificación de actores. 

De nuevo la aplicación que va a ser sintonizada bajo esta estrategia es Xfire. Coincidiendo con 

lo expuesto para la especificación de la estrategia de balanceo de carga, en la ejecución de la 

aplicación se pueden identificar dos tipos de procesos que cooperan entre sí: un proceso master 

y N procesos worker. 
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Identificación de variables y valores. 

Para esta técnica de sintonización, se necesitan interpretar  V, Tc, m0, ߣ y n identificando las 

variables y valores que en la aplicación representan estos parámetros. 

- V tiene que ser calculado como la suma del tamaño de las tareas enviadas desde el 

master a todos los worker o recibidas desde los workers. De tal modo, el parámetro 

puede calcularse como ܸ ൌ  ∑ ሺݒ௜ ൅ ௠ሻݒ
௡ିଵ
௜ୀ଴ , donde: 

o vi equivale al tamaño total de las tareas enviadas a cada worker i, en bytes. Para 

obtener este valor se necesita: 

 El número de tareas enviadas a cada worker. 

Este valor puede ser capturado en el proceso de envío del master a los 

workers, en concreto a partir de la variable NTareas que indica el 

número de tareas enviadas al worker i. 

 El tamaño en bytes de cada tarea.  

En la aplicación, en concreto en el proceso master, existe una variable 

denominada TheWorkSizeUnitBytes  que indica el tamaño en bytes de 

cada tarea. 

o vm equivale al tamaño total de tareas recibidas por el master. Este valor puede 

ser capturado cuando el master recibe las tareas de los workers. Y el tamaño en 

bytes de cada tarea se obtiene de forma equivalente a vi. 

- α puede ser calculado directamente una vez obtenido el valor vi para cada worker i y el 

volumen total de comunicación V, a partir de la siguiente expresión ߙ ൌ  ∑ ௜ݒ
௡ିଵ
௜ୀ଴ ܸ⁄ . 

- Tc tiene que ser calculado como la suma del tiempo de cómputo de cada Worker a lo 

largo de la iteración. De tal modo, el parámetro puede calcularse como ௖ܶ ൌ  ∑ ሺܿݐ௜ሻ
௡ିଵ
௜ୀ଴ , 

donde: 

o tci equivale al tiempo de cómputo total de cada worker i, en ms. Este valor 

puede ser obtenido a partir de los tiempos de comienzo y fin de la fase de 

cómputo de cada uno de los workers.  

- m0 y ߣ deberían calcularse al principio de la iteración y deberían ser periódicamente 

actualizados para permitir la adaptación del sistema a las condiciones de la red. En 

nuestro caso de estudio se han dejado como valores constantes.   

- n es el valor actual de workers de la aplicación, que se puede obtener mediante la 

variable NW. Este es el valor que será empleado para sintonizar la variable NW. 

 En el diseño de esta técnica de sintonización son de nuevo necesarias una serie de 

variables de control que permiten crear el flujo propio de la lógica de análisis que corresponde a 

la técnica de sintonización para adaptar el número de workers. Estas variables son: 



Capítulo 5. Desarrollo del modelo de rendimiento en MATE 

 

 
84 

- workerId, esta variable es usada por el proceso master para identificar el proceso worker 

al que está enviando o de que proceso worker está recibiendo. 

- TheWorkSizeUnitBytes, esta variable empleada en el proceso master representa cual es 

el tamaño en bytes de cada una de las tareas a ser procesadas. 

- iterId, esta variable está presente en el proceso master  y en el proceso Worker. Para el 

master esta variable se requiere para identificar cuando se recibe un evento a que 

iteración pertenece para asociar la información a una correspondiente iteración. De 

manera semejante, en el caso del proceso Worker, la identificación de la iteración es 

necesaria para asociar a una iteración determinada la información de los eventos 

generados en dichos procesos. 

Identificación de eventos 

De nuevo, una vez determinadas las variables y valores requeridos de la aplicación, se deben 

definir los eventos que permitan obtener la información que represente los datos requeridos. Los 

eventos definidos son los siguientes: 

- Inicio de iteración. 

 Este evento se genera cada vez que el proceso master comienza una nueva 

iteración en la aplicación, es decir, cuando comienza la distribución de la nueva línea de 

fuego entre los workers. 

 La información que presenta asociada es el número de iteración en la que se 

encuentra la aplicación, el tamaño en bytes de las tareas que se van a distribuir a lo 

largo de esa iteración y el número de workers que participan. 

 Para obtener estos datos, el evento se debe de insertar en la entrada de la 

función global_sendreceive que realiza el proceso de distribución de datos. 

  

- Fin de iteración. 

 Este evento es coincidente con el detallado en la anterior técnica de 

sintonización. 

 

- Envío de datos del master al worker.  

 Este evento se genera cada vez que el proceso master envía el conjunto de tareas 

que debe computar a un proceso worker. 

 Este evento permite recopilar información relacionada con el identificador del 

worker al que se le envía las tareas y el número de tareas enviadas. Para ello, el evento 

debe ser insertado en la entrada del método global_sendwork, en el cual se realiza el 

empaquetado y envío de todos los datos necesarios al Worker determinado. 
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- Recepción de datos de los workers en el master. 

 Este evento tiene lugar cada vez que el proceso master recibe el resultado del 

procesamiento realizado por un worker determinado. 

 Tiene asociada la misma información que el evento anterior, pero en este caso 

debe ser insertado a la salida de la función global_receivework, en la cual se realiza la 

recepción y desempaquetado de la información recibida por el master. 

 

- Inicio cómputo de worker. 

 Este evento se genera cuando un worker comienza el procesamiento del 

conjunto de tareas recibidas. 

 Mediante este evento se requiere recopilar información relacionada con la 

iteración en la cual se encuentra computando el Worker y la marca de tiempo asociada a 

dicho comienzo de cómputo. 

 Para obtener correctamente dicha información, el evento debe ser insertado a la 

entrada de la función arcStepKernel, la cual funcionalmente representa el proceso de 

cómputo realizado por cada worker. 

 

- Fin de cómputo de worker. 

 Este evento complementa al evento anterior, y se genera cuando un worker 

finaliza el cómputo del chunk enviado. 

 Se recopila la misma información que en evento de inicio de cómputo, pero en 

la salida de la función arcStepKernel. 

 

La tabla 5.2 resume la información más importante relacionada con cada evento. 

 

Determinación de cuándo y bajo qué condiciones realizar el proceso de sintonización 

Bajo esta estrategia de sintonización, el ajuste del número de workers se realiza el inicio de una 

iteración, es decir, cuando se ha recibido un evento de inicio de iteración. La actualización del 

valor que corresponde al de workers tiene lugar en este instante ya que es cuando el tunlet ha 

podido recopilar toda la información procedente de la iteración anterior y por tanto puede 

obtener todos los parámetros necesarios para evaluar la función de rendimiento.  

 La modificación o cambio del número de workers en Xfire se realiza exclusivamente al 

inicio de una iteración. 
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Evento Atributos Actor Método Lugar

Inicio 
Iteración 

 
- iterId 
- NW 
- TheWorkSizeUnitBytes 

 

master global_sendreceive entrada

Fin Iteración 
 

- iterId 
 

master global_sendreceive salida 

EnvioMW 

 
- workerId 
- NTareas 

 

master global_sendwork entrada

RecepciónMW 

 
- workerId 
- NTareas 

 

master global_receivework salida 

Inicio 
Cómputo 
Worker 

 
- Marca de tiempo 
- iterId 

 

worker arcStepKernel entrada

Fin Cómputo 
Worker 

 
- Marca de tiempo 
- iterId 

 

worker arcStepKernel salida 

Tabla 5.2 Información sobre los eventos para la técnica de sintonización para adaptar el número de 

workers 

5.4.3 Integración de las estrategias de sintonización en el tunlet 

Tras interpretar las dos técnicas de sintonización siguiendo la metodología desarrollada, se 

obtiene un tunlet que contiene el conocimiento para resolver los problemas de rendimiento 

presentes en aplicaciones Master/Worker. 

 El tunlet combina la lógica de análisis de las dos estrategias de sintonización y los 

eventos definidos en cada una de ellas, tal y como se muestra en la tabla 5.3. 

En anteriores trabajos realizados con MATE [7] [54], se aplicaban varias técnicas de 

sintonización de forma separada. Durante la ejecución de la aplicación, MATE intentaba aplicar 

todos los escenarios de optimización, pero cada uno de manera individual. MATE cargaba todos 

los tunlets disponibles y cada uno de ellos llevaba a cabo su particular mejora de rendimiento de 

la aplicación. Su objetivo era identificar e investigar distintas técnicas de sintonización. De tal 

modo, que se centraban en los efectos de las técnicas individuales, sin considerar el rendimiento 

total de la aplicación. Pero, bajo ciertas condiciones es necesario considerar dependencias entre 

diferentes problemas de rendimiento y las técnicas de sintonización asociadas a ellos. 
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 Por ello, hay que destacar que en el presente trabajo de investigación se ha desarrollado 

un tunlet, cuya complejidad es más elevada, ya que contiene el conocimiento necesario sobre 

dos técnicas de sintonización que intentan resolver los problemas de rendimiento que se 

observan en las aplicaciones Master/Worker ya comentados en la sección X. En este caso, la 

técnica de sintonización que ajusta el número de workers considera el rendimiento total de la 

aplicación ya que su función de rendimiento se basa en un índice que permite obtener el número 

de workers que no sólo minimiza el tiempo de ejecución, sino al mismo tiempo maximiza el 

rendimiento aprovechando de la forma más eficiente los recursos, siendo esto último también el 

objetivo de la estrategia de factoring implementada. 

Evento Atributos Actor Método Lugar

Inicio 
Iteración 

 
- iterId 
- NW 
- TheTotalWork 
- TheWorkSizeUnitBytes 

 

master global_sendreceive entrada

Fin Iteración 
 

- iterId 
 

master global_sendreceive salida 

EnvioMW 

 
- workerId 
- batchId 
- NTareas 

 

master global_sendwork entrada

RecepciónMW 

 
- workerId 
- batchId 
- NTareas 

 

master global_receivework salida 

Inicio 
Cómputo 
Worker 

 
- Marca de tiempo. 
- iterId 
- batchId 

 

worker arcStepKernel entrada

Fin Cómputo 
Worker 

 
- Marca de tiempo. 
- iterId 
- batchId 

 

worker arcStepKernel salida 

Creación de un 
nuevo batch 

 
- batchId 
- numChunks 

 

master Factoring_SetNumTuples salida 

Tabla 5.3 Información sobre los eventos para las 2 técnicas de sintonización implementadas 
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5.5 Resultados experimentales 

Una vez obtenido el tunlet que contiene el conocimiento para desarrollar el proceso de 

sintonización sobre aplicaciones Master/Worker y adaptada la aplicación bajo estudio Xfire, el  

siguiente paso consiste en validar la eficiencia y utilidad del citado tunlet cuando es integrado 

en MATE para realizar el proceso de sintonización dinámica. 

 Tal y como se detalló en las secciones previas, el tunlet desarrollado contiene la lógica 

de análisis de las dos estrategias de sintonización que cubren los problemas de rendimiento de 

aplicaciones Master/Worker: balanceo de la carga de la aplicación entre los workers y 

determinación del número de workers que obtiene un buen rendimiento y eficiencia en la 

aplicación. Sin embargo, por motivos de tiempo, la experimentación planteada sólo cubre el 

estudio de rendimiento obtenido mediante la aplicación de la estrategia de balanceo de carga 

sobre Xfire.  

 Los experimentos expuestos a continuación tienen como objetivo general comprobar la 

mejora de rendimiento en la aplicación Xfire cuando es ejecutada y sintonizada bajo la 

herramienta MATE empleando el tunlet desarrollado.  

 Las pruebas experimentales han sido llevadas a cabo en un clúster homogéneo y 

dedicado compuesto por 10 nodos cuya configuración se muestra en la tabla 5.4. 

 La configuración hardware disponible ha sido determinante a la hora de plantear 

nuestros experimentos. Éstos requieren una unidad de procesamiento para cada proceso worker, 

para el proceso master y para el componente Analizador de MATE. Por tanto, debido a la 

existencia de 8 nodos de cómputo, se han podido ejecutar configuraciones Master/Worker 

formadas por 2, 3, 4, 5, 6 y 7 workers. En el caso de los experimentos realizados con 7 workers, 

es de destacar que alguna unida de procesamiento ha sido compartida entre un proceso master o 

worker y el módulo Analizador de MATE. 

 Como se comentó en la sección 5.2, Xfire toma como datos de entrada distintos ficheros 

de configuración que describen el terreno, las condiciones en las que se produce el incendio y la 

línea de fuego inicial. En las pruebas experimentales realizadas, la línea de fuego está formada 

por 786420 puntos que forman una curva cerrada o elipse. 

 Se han planteado tres escenarios de ejecución de Xfire: 

1. Ejecución de Xfire en su versión original. 

2. Ejecución de Xfire junto con MATE pero sin aplicar la estrategia de sintonización. 

3. Ejecución de Xfire junto con MATE aplicando la estrategia de sintonización. 
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Nodo Front-End 

 
- Máquina clónica con placa base Asus. 
- Procesador Intel Pentium 4 @3.0GHz.  
- 1MB L2 1 GB DDR. 
- HD 60 GB. 
 

Nodo File-Server 

 
- Máquina clónica con placa base Asus. 
- Procesador Intel Pentium 4 @3.0GHz.  
- 1MB L2 1 GB DDR. 
- 4xHD 60 GB: el 1º para sistema y los 3 siguientes formando un 

RAID-5 para alojamiento de $HOME compartido por NFS de 
111 GB. 
 

8 Nodos de 
cómputo 

 
- HP dc7100sff. 
- Procesador Intel Pentium 4 @3.0GHz. 
-  1MB L2 1 GB DDR. 
- HD 80 GB. 
- Tarjeta de red Broadcom NetXtreme. 

 

Red 
 
      Toda la red interna del cluster funciona a 1 Gbps . 
 

Tabla 5.4 Características del entorno donde se han realizado las pruebas experiementales 

 El planteamiento de distintos escenarios de ejecución tiene como objetivo lograr obtener 

conclusiones acerca de la sobrecarga introducida por MATE y la mejora de rendimiento o no 

generada por el proceso de sintonización. Cada experimento fue desarrollado muchas veces y se 

calculó la media para el tiempo de ejecución de la aplicación. La tabla 5.5 muestra los tiempos 

de ejecución obtenidos para cada uno de los escenarios ejecutados. 

Escenario Número de workers 2 3 4 5 6 7 

1 Xfire 529,6 381,61 305,06 264,95 229,27 209,94

2 
Xfire+MATE (sin 

sintonizar) 
559,99 414,5 336,5 299,46 261,46 242,27

3 
Xfire+MATE 
(sintonizando) 

545,14 391,83 305,96 257,9 226,27 203,59

 
Tabla 5.5 Tiempos de ejecución de Xfire considerando distinto número de workers en los tres escenarios 

de ejecución presentados (en segundos). 

 El primer escenario muestra los tiempos de ejecución obtenidos cuando la aplicación es 

ejecutada en su versión original, es decir, sin la intrusión o control de la herramienta de 

sintonización. Los resultados presentados muestra que, para los mismos datos de entrada, el 

tiempo de ejecución de la aplicación disminuye al aumentar el número de workers. Se puede 

concluir que Xfire escala, pero las ganancias generadas no son las ideales. 
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 El segundo escenario de ejecución muestra los resultados logrados cuando Xfire es 

ejecutada bajo el control de MATE, sin realizar sintonización, es decir, solo tiene lugar la 

inserción de la instrumentación en los distintos procesos, la generación de los eventos que son 

enviados al analizador, el procesamiento de dichos eventos y la evaluación las funciones de 

rendimiento pero no se aplica sobre Xfire el resultado de dicha evaluación.   

 En cuanto a la sobrecarga generada por MATE en la ejecución de Xfire, si comparamos 

los resultados obtenidos de los escenarios 1 y 2, se observa que ésta es constante 

independientemente del número de workers implicados en el desarrollo de la aplicación 

(sobrecarga absoluta) situándose en torno a los 32 segundos. Esto se debe a que cada proceso 

(master o worker) emiten el mismo número de eventos, y éstos son generados en paralelo.   

 Sin embargo hay que destacar que si la aplicación escala, sin cambiar el tamaño de los 

datos de entrada, cuando se aumenta el número de workers disminuyendo el tiempo de 

ejecución, el overhead que introduce MATE aumenta en proporción a dicho tiempo de 

ejecución de la aplicación (sobrecarga relativa), tal y como se muestra en la figura 5.3. Por tanto 

sería interesante estudiar la posibilidad de intentar reducir la intrusión por defecto de MATE, 

especialmente cuando debido al reducido tiempo de cómputo tal overhead deja de ser aceptable 

en el proceso de sintonización. 

 

 Figura 5.3 Sobrecarga relativa (%) y absoluta (segundos) introducida por MATE (sin aplicar 
sintonización) en la ejecución de Xfire. 

 El tercer escenario de ejecución aplica todo el funcionamiento de MATE sobre Xfire. 

Los resultados obtenidos en este entorno nos permite concluir que, una vez analizada y teniendo 

en cuenta la sobrecarga introducida por MATE, se observa una mejora de rendimiento cuando 

se aplica la estrategia de balanceo de carga a la aplicación Xfire. A lo largo de la ejecución de la 

aplicación MATE va adaptando el factor de distribución de datos a las condiciones actuales de 
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balanceo de la aplicación generando una mejora en el rendimiento. Dicha mejora es 

especialmente patente cuando el número de workers es mayor, ya que la división del conjunto 

de tareas totales en batches de menor tamaño permite un mayor solapamiento de los procesos de 

cómputo y comunicación.  

 Para entender mejor el comportamiento de la aplicación, se realizó un estudio en 

profundidad del algoritmo de procesamiento del master y de los workers. 

 

Figura 5.4 Comportamiento de la aplicación Xfire durante tres iteraciones. 

 El master a lo largo de la ejecución de la aplicación es el encargado de dividir la línea 

de fuego actual en fragmentos, preparar cada fragmento para su envío, enviar cada uno de ellos 

a un workers, recibir los resultados de los workers, combinarlos y finalmente generar la nueva 

línea de fuego. Una traza de la ejecución, mostrada en la figura 5.4, nos permitió ver que este 

comportamiento del proceso master genera tiempos de espera en los procesos workers, 

especialmente las fases de preparación de los fragmentos para el envío y la combinación de los 

fragmentos tras su recepción, lo cual provoca que la aplicación se encuentre un poco 

desbalanceada. 

 Para el caso del proceso worker, se observó que independientemente de cuál sea el 

punto de la línea de fuego el cómputo que se realiza es el mismo. Por lo tanto no existen puntos 

o tareas más pesadas que otras y todos requieren la misma potencia de procesamiento. Además 

partimos de la premisa de que las ejecuciones se están realizando en un entorno homogéneo y 

controlado, por lo que no existen workers más lentos que otros ni tareas ejecutándose de otros 

usuarios que dificulten el procesamiento del los workers. 
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 Por último, es de destacar que  la ganancia introducida por la técnica de sintonización, 

en algunos casos no solo es capaz de reducir el overhead introducido por MATE, sino que 

también se iguala o mejora el tiempo de ejecución obtenido respecto a la ejecución de la versión 

original de Xfire. Estos resultados se muestran en la figura 5.5.  

 Estas conclusiones muestran por tanto la efectividad del proceso de sintonización 

realizado a partir del tunlet desarrollado e integrado en MATE.  

 

Figura 5.5 Comparativa de los tiempos de ejecución obtenidos para los distintos escenarios planteados. 

 Con el objetivo de poder observar de manera más clara, los beneficios que proporciona 

la estrategia de análisis desarrollado,  y lograr unas mejoras de rendimiento más significativas, 

se decidió introducir un desbalanceo sintético en la aplicación, en concreto en los procesos 

worker. Este desbalanceo se ha simulado suponiendo que determinados puntos de la línea de 

fuego requieren un mayor cómputo que otros, es decir, constituyen tareas más pesadas. 

 Si se analiza la línea de fuego inicial, se puede observar que esta es una curva cerrada, 

en concreto una elipse. De tal modo, que para simular la existencia de tareas más pesadas, se ha 

establecido un umbral o frontera en dicha línea de fuego, mostrado en la figura 5.6, de manera 

que todos los puntos de la línea de fuego situados debajo de ese umbral corresponde a tareas que 

necesitan un mayor tiempo de cómputo. 

 Para reproducir esa idea el propósito era dejar ocioso cada proceso worker una cantidad 

de tiempo igual al tiempo de cómputo que el worker ha empleado para procesar su fragmento de 

la línea de fuego por la proporción de puntos de dicho fragmento que se sitúan por debajo del 

umbral. De esta manera, se logra introducir un desbalanceo variable a lo largo del tiempo, ya 

que depende de la línea de fuego y ésta se va reconstruyendo en cada iteración. 
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Figura 5.6 Estructura de la línea de fuego inicial y el umbral de desbalanceo empleado en las pruebas 
experimentales con Xfire.  

 Los resultados en cuanto a tiempo de ejecución obtenidos ejecutando Xfire en su 

versión original y Xfire siendo sintonizada a través del balanceo de carga para distintas 

combinaciones de número de workers introduciendo la desbalanceo sintético se muestran en la 

tabla 5.6. 

Número de workers 2 3 4 5 6 7 

Xfire+desbalanceo sintético 648,28 460,34 393,37 322,82 276,17 252,74

Xfire+MATE 
(sintonizando)+desbalanceo sintético 

629,63 453,16 360,03 290,23 246,97 220,8 

Ganancia % 2,9 1,5 8,4 10,09 10,57 12,63 

 
Tabla 5.6 Tiempos de ejecución de Xfire considerando distinto número de workers con y sin desbalanceo 
sintético en los workers, y de Xfire bajo MATE con desbalanceo sintético (en segundos). Ganancia sobre 

el tiempo de ejecución de Xfire+desbalanceo sintético obtenida aplicando la sintonizción 

 Como se puede observar en la tabla, el tiempo de ejecución de Xfire aumenta cuando la 

carga es inyectada. En este caso, gracias al desbalanceo introducido, la mejora que proporciona 

la técnica de sintonización desarrollada en este trabajo es más acusada ya que dicho desbalanceo 

es en general corregido debido a que MATE detecta los cambios en las condiciones del sistema 

y adapta los factores de partición de los datos para distribuir el trabajo. Como se puede observar 

la ganancia aumenta conforme aumenta el número de workers, lo cual se debe a que el mayor 



Capítulo 5. Desarrollo del modelo de rendimiento en MATE 

 

 
94 

particionado de datos, permite que haya más solapamiento entre los procesos de cómputo y 

comunicación al haber un mayor número de workers. Por tanto, sería interesante realizar en 

futuros estudios estas pruebas aumentando el número de workers con el objetivo de observar si 

nuestra técnica de balanceo sigue siendo efectiva. 
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Capítulo 6 

 

Conclusiones y trabajo futuro 

 

6.1 Conclusiones 

La computación paralela/distribuida proporciona la potencia necesaria para resolver problemas 

complejos. El rendimiento de las aplicaciones escritas para tales entornos de ejecución es un 

aspecto muy relevante. 

 Hoy en día existen distintas aproximaciones y herramientas que ayudan al usuario en el 

proceso de mejora de rendimiento proporcionándoles la información suficiente y apropiada 

sobre el comportamiento de la aplicación. Una de estas aproximaciones es la sintonización 

dinámica cuya principal característica es que realiza todo el proceso de análisis de prestaciones 

de aplicaciones paralelas/distribuidas de forma dinámica; es decir, monitoriza la aplicación para 

obtener información sobre su comportamiento, identifica los cuellos de botella y realiza las 

modificación de los parámetros críticos de la aplicación para mejorar el rendimiento, todo esto 

en tiempo de ejecución. Una de las herramientas que se sitúan bajo este enfoque es MATE, la 

cual ha sido el eje del presente trabajo. 

 El principal objetivo de esta investigación era sintonizar dinámicamente mediante 

MATE una aplicación MPI empleada en computación de altas prestaciones que siga un 

paradigma Master/Worker. 

 Para conseguir el fin propuesto, el trabajo comenzó estudiando otras aproximaciones y 

herramientas conocidas en el campo de la monitorización, análisis y sintonización de 

rendimiento de aplicaciones. Este análisis sirvió  para observar como otros grupos o centros de 
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investigación afrontan el problema de mejora de rendimiento, y poder contextualizar nuestro 

trabajo claramente en el área de la sintonización dinámica. 

 Seguidamente, se procedió a estudiar la herramienta de sintonización dinámica MATE. 

Este estudio ha permitido tener una visión conceptual clara de la arquitectura que presenta la 

herramienta así como adquirir conocimientos sobre la funcionalidad de cada uno de los 

componentes de la citada arquitectura. Una tarea compleja fue lograr la comprensión global de 

cómo MATE realiza de forma dinámica todo el proceso de análisis de rendimiento, ya que para 

ello fue necesaria una inmersión en el código fuente de MATE. Este cometido llevó a tener el 

primer contacto con la técnica de instrumentación dinámica en la que se basa MATE para la 

realización del proceso de análisis en tiempo de ejecución. 

 El proceso de sintonización que se pretendía realizar en este trabajo estaba encaminado 

a solventar los cuellos de botella que presentan las aplicaciones Master/Worker. Para ello, 

MATE necesita poseer el conocimiento sobre dichos problemas de rendimiento. Los modelos de 

rendimiento constituyen la base del conocimiento empleado por MATE para conducir el 

proceso de análisis, determinando la información que se necesita recopilar durante la ejecución 

(puntos de medida), como evaluar la información recogida (funciones de rendimiento) y que 

cambios se necesitan para sintonizar la aplicación (puntos/acciones/sincronizaciones de 

sintonización). Para poder integrar este conocimiento en MATE, el siguiente paso fue el estudio 

de un modelo de rendimiento para aplicaciones Master/Worker, cuyo principal objetivo es 

resolver los problemas de rendimiento que en ellas se presentan aplicando una estrategia basada 

en dos fases: una primera fase en la se emplea una estrategia dinámica para el balanceo de carga 

y una segunda para adaptar el número de workers teniendo en cuenta las características actuales 

en las que se encuentra el sistema. 

 Por tanto, una vez que se estuvo el conocimiento sobre  la herramienta de sintonización 

y estudiados los problemas de rendimiento que se desean resolver y su representación en el 

modelo de rendimiento, el último paso para lograr el objeto de esta investigación, fue el diseño 

y desarrollo del tunlet para ser integrado en MATE. El tunlet es el componente software o 

librería que constituyen el mecanismo inteligente empleado por MATE en la fase de análisis. 

Cada tunlet define e implementa una particular técnica de sintonización, de tal modo que en 

nuestro caso de estudio, el tunlet que se ha diseñado plantea la lógica de análisis necesaria para 

aplicar el modelo de rendimiento estudiado para aplicaciones Master/Worker. En este punto es 

de destacar que los tunlets desarrollados en anteriores trabajos de investigación implementaban 

una única técnica de sintonización, sin embargo, en nuestro caso de estudio, el tunlet creado 

presenta una complejidad más elevada ya que el conocimiento representado en él integra las dos 

estrategias de sintonización representadas en el modelo de rendimiento. La aplicación elegida 
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para ser sintonizada mediante la lógica integrada en el tunlet es un simulador de incendios 

forestales desarrollado bajo un paradigma Master/Worker, denominado Xfire. 

 Para el desarrollo del modelo de rendimiento en MATE, en el capítulo 5 se propone una 

metodología para la obtención del tunlet. Siguiendo esta metodología se ha logrado establecer: 

- Aquellos valores y variables  de Xfire que se requerían para interpretar los parámetros 

del modelo de rendimiento. Se determinó que las variables en Xfire que debían ser 

modificadas para mejorar el rendimiento eran: 1) el factor de partición adaptativo que 

indica el tamaño de los subconjuntos en los que será dividida la línea de fuego y 2) el 

número de workers de la aplicación. Además se dedujo cómo obtener todos los 

parámetros necesarios para evaluar la función analítica del modelo de rendimiento. 

- Los eventos que se debían capturar y la información asociada a los mismos. Los 

eventos constituyen el mecanismo empleado por MATE para recopilar información 

sobre el comportamiento de la aplicación. Por tanto, nuestro trabajo fue determinar en 

que funciones de Xfire debían ser insertados los eventos para conseguir recopilar toda la 

información requerida. 

- Identificar los distintos procesos que participan en la ejecución de Xfire. En este caso, 

al tratarse de una aplicación Master/Worker, únicamente había dos actores participando 

en la aplicación: procesos workers y un master. 

 El procedimiento que describe la metodología presentada estimamos que es el más 

adecuado para culminar con un tunlet que guie el proceso de sintonización deseado, de tal 

manera que puede ser generalizable para la sintonización bajo MATE de cualquier aplicación 

empleando cualquier modelo de rendimiento adecuado a ésta. 

 Hay que destacar que para poder aplicar sobre Xfire las técnicas de sintonización 

estudiadas fue necesario el estudio y la adaptación de dicha aplicación a las características 

requeridas por el modelo de rendimiento; en concreto las modificaciones se han realizado en la 

lógica de procesamiento del proceso master en la fase de distribución de datos entre workers. Si 

Xfire hubiese sido realizada empleando un framework conocido de diseño y programación 

paralela, el proceso de diseño del tunlet hubiera tenido una complejidad menos elevada. 

Además, dicho tunlet podría ser usado para mejorar el rendimiento de otra aplicación, que 

presente el mismo paradigma que Xfire y haya sido construida empleando el mismo framework. 

 Finalmente, una vez desarrollado el tunlet e integrado en MATE, procedimos a realizar 

pruebas experimentales. Hay que comentar que dichas pruebas, por motivos de tiempo, sólo 

cubrieron el estudio de rendimiento obtenido mediante la aplicación de la estrategia de balanceo 
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de carga sobre Xfire. Se plantearon varios escenarios de ejecución, con distintas combinaciones 

del número de workers, con el objetivo de obtener conclusiones sobre la sobrecarga que 

introduce MATE en la ejecución de la aplicación y sobre la ganancia obtenida en cuanto a 

rendimiento al aplicar las técnicas de sintonización.  

 Con respecto a la sobrecarga generada por MATE, se concluyó que ésta es constante 

independientemente del número de workers que participa en la ejecución de la aplicación, ya 

que la cantidad de instrumentación insertada y el número de eventos generados por proceso es 

siempre el mismo, y además estos son generados en paralelo.  

 Por otro lado, el análisis de la ganancia obtenida en el tiempo de ejecución de Xfire 

cuando ésta es ejecutada bajo el control de MATE muestra que las mejoras en el rendimiento 

aumentan conforme aumenta el número de workers, lo cual se debe a que el división adaptativa 

y dinámica del conjunto de tareas que realiza la técnica de factorización desarrollada permite 

que se produzca un mayor solapamiento entre los procesos de cómputo y comunicación. 

 Tras estos resultados, finalmente podemos concluir que la técnica de sintonización 

implementada e integrada en MATE es efectiva ya que la ejecución de Xfire bajo el control 

dinámico de MATE ha permitido observar la adaptación del comportamiento de dicha 

aplicación a las condiciones actuales del sistema donde se ejecuta, obteniendo así una mejora de 

su rendimiento. 

6.2 Trabajo futuro 

En cuanto al trabajo futuro, queda pendiente la depuración de la técnica de sintonización que 

permite adaptar el número de workers en la aplicación empleando un índice de rendimiento que 

directamente permite relacionar rendimiento, en cuanto a tiempo de ejecución, con eficiencia en 

el uso de recursos.  

 Lograr el funcionamiento de esta estrategia será una labor compleja ya que se necesita 

crear y eliminar procesos worker de forma dinámica en tiempo de ejecución; de modo que el 

estudio de la lógica de implementación que permita obtener esta funcionalidad se plantea como 

un gran reto. 

 Una vez estén funcionando de manera coordinada las dos técnicas de sintonización 

planteadas en el presente trabajo, se pretende realizar experimentación a partir de la cual poder 

obtener conclusiones sobre el comportamiento que presenta el tunlet desarrollado y las posibles 

influencias mutuas entre dichas estrategias de sintonización. 
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 También se pretender llevar a cabo pruebas experimentales en entornos de cómputo que 

presenten un mayor número de nodos. Estas pruebas nos permitirán obtener de nuevo 

conclusiones sobre el comportamiento del tunlet, y además nos posibilitarán estudiar las 

características de escalabilidad de MATE. Tal y como se comentó en la sección 3.6 del capítulo 

3, la escalabilidad de MATE se encuentran reducidas cuando aumenta el número de máquinas 

involucradas en la ejecución de la aplicación ya que el análisis centralizado que MATE lleva a 

cabo se convierte en un cuello de botella que hace que la detección de los problemas de 

rendimiento no sea rápida y por tanto los problemas de rendimiento no se resuelvan de manera 

adecuada. 

 Las conclusiones que se obtenga sobre el estudio de la escalabilidad, nos posibilitarán 

sentar las bases para comenzar con el trabajo futuro de la tesis doctoral que se centra en estudiar 

y mejorar la escalabilidad de MATE. Esta mejora inicialmente se centra en el empleo de un 

esquema de comunicación jerarquizado en la arquitectura de MATE y en un mecanismo de 

análisis de rendimiento distribuido. El fin que se persigue es poder hacer eficiente y útil el uso 

de MATE en el ámbito de la computación de altas prestaciones. 
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