UNnB

Universitat Autonoma
de Barcelona

Departament d'Arquitectura de
Computadors i Sistemes Operatius

Master en
Computacio d’altes prestacions

Sintonizacién
dinamica de
aplicaciones MPI

Memoria del trabajo de investigacion
del “Master en Computacié d’altes
prestacions”, realizada por Andrea
Martinez Trujillo, bajo la direccion de
Dra. Anna Barbara Morajko y Dr. Joan
Sorribes Gomis. Presentada en la
Escuela de Ingenieria (Departamento
de Arquitectura de Computadores y
Sistemas Operativos)

Bellaterra, Julio 2010

Iniciacion a la investigacion. Trabajo de fin de master

Master en Computacion de Altas Prestaciones.

Sintonizacion dinamica de aplicaciones MPI

Realizada por Andrea Martinez Trujillo en la Escuela de
Ingenieria, en el Departamento de Arquitectura de
Computadores y Sistemas Operativos

Dirigida por: Anna Barbara Morajko y Joan Sorribes Gomis

Firmado

Directora Director Estudiante

A mis padres, mis hermanas, mis cuiiados, mis sobrinos y a todos mis seres queridos
por su apoyo constante y su confianza depositada en mi, y por intentar hacer que los kilémetros

(ue nos separan Nno se aprecien...

A Ania, Eduardo, Joan y Tomas,

por su ensefianzas, su ayuda incondicional, por escucharme (‘amos a ver...)...

A Lola y Emilio,

por ayudarme a disfrutar este proceso de formacion investigadora...

A Claudia, Gonza, Alvaro, Moni y Ronal,

por su amistad, sus constantes &nimos, su carifio...

A Hayden,

por hacerme mas facil el dia a dia y contagiarme su alegria...

A Maria, Conchi, M“ Dolores, Sandra, Inma y Manuel,

por ser parte de mi formacion y por no olvidarse de mi...

A todos mis comparieros de primer ario,

por esas clases de master repletas de risas...

A todos los miembros de CAOS,

por recibirme con los brazos abiertos...

iMuchisimas Gracias!

Vi

Resumen

En la actualidad, la computacion de altas prestaciones esta siendo utilizada en multitud de
campos cientificos donde los distintos problemas estudiados se resuelven mediante aplicaciones
paralelas/distribuidas. Estas aplicaciones requieren gran capacidad de computo, bien sea por la
complejidad de los problemas o por la necesidad de solventar situaciones en tiempo real. Por lo
tanto se debe aprovechar los recursos y altas capacidades computacionales de los sistemas
paralelos en los que se ejecutan estas aplicaciones con el fin de obtener un buen rendimiento.
Sin embargo, lograr este rendimiento en una aplicacion ejecutandose en un sistema es una dura
tarea que requiere un alto grado de experiencia, especialmente cuando se trata de aplicaciones
gue presentan un comportamiento dinamico o cuando se usan sistemas heterogéneos. En estos
casos actualmente se plantea realizar una mejora de rendimiento automaética y dindmica de las
aplicaciones como mejor enfoque para el analisis del rendimiento. El presente trabajo de
investigacion se situa dentro de este ambito de estudio y su objetivo principal es sintonizar
dindmicamente mediante MATE (Monitoring, Analysis and Tuning Environment) una
aplicacion MPI empleada en computacién de altas prestaciones que siga un paradigma
Master/Worker. Las técnicas de sintonizacién integradas en MATE han sido desarrolladas a
partir del estudio de un modelo de rendimiento que refleja los cuellos de botella propios de
aplicaciones situadas bajo un paradigma Master/Worker: balanceo de carga y numero de
workers. La ejecucion de la aplicacion elegida bajo el control dinamico de MATE y de la
estrategia de sintonizacion implementada ha permitido observar la adaptacion del
comportamiento de dicha aplicacion a las condiciones actuales del sistema donde se ejecuta,

obteniendo asi una mejora de su rendimiento.

Palabras clave: andlisis dindmico, sintonizacion dindmica, modelos de rendimiento,

computacion de altas prestaciones.

Vii

Resum

En l'actualitat, la computacié d'altes prestacions esta sent utilitzada en multitud de camps
cientifics on els diferents problemes estudiats es resolen mitjancant aplicacions
paral-leles/distribuides. Aquestes aplicacions requereixen gran capacitat de comput, bé sigui per
la complexitat dels problemes o per la necessitat de solucionar situacions en temps real. Per tant
s'ha d'aprofitar els recursos i altes capacitats computacionals dels sistemes paral-lels en els quals
s'executen aquestes aplicacions amb la finalitat d'obtenir un bon rendiment. No obstant aixo,
assolir aquest rendiment en una aplicaci6 executant-se en un sistema és una tasca complexa que
requereix de un alt grau d'experiéncia, especialment quan es tracta d'aplicacions que presenten
un comportament dinamic o quan s'usen sistemes heterogenis. En aquests casos actualment es
planteja realitzar una millora de rendiment automatica i dinamica de les aplicacions com la
millor via per I'analisi del rendiment. El present treball d'investigacio es situa dins d'aquest
ambit d'estudi i el seu objectiu principal és és sintonitzar dinamicament mitjancant MATE
(Monitoring, Analysis and Tuning Environment) una aplicacié MPI empleada en computacio
d'altes prestacions que segueixi un paradigma Master/Worker. Les técniques de sintonitzacié
integrades en MATE han estat desenvolupades a partir de I'estudi d'un model de rendiment que
reflecteix els colls d'ampolla propis d'aplicacions situades sota un paradigma Master/\Worker:
balanceig de carrega i nombre de workers. L'execucié de l'aplicacié triada sota el control
dinamic de MATE i de l'estratégia de sintonitzacid6 implementada ha permés observar
l'adaptacié del comportament d'aquesta aplicacié a les condicions actuals del sistema on

s'executa, obtenint aixi una millora en el seu rendiment.

Paraules clau: analisi dinamica, sintonitzacié dinamica, models de rendiment, computacio

d'altes prestacions.

viii

Abstract

At the present time, high performance computing is used in a multitude of scientific fields,
where the problems studied are resolved using parallel/distributed applications. These
applications require an enormous computing capacity due to both the complexity of the
problems and the necessity to solve them in real time situations. Therefore, the computational
capacities and resources of the parallel systems, where these applications are executed, must be
taken advantage of to attain this vital high performance. However, achieving high performance
in applications executed in parallel systems is a complicated task that requires a high degree of
experience, especially when dealing with applications with dynamic behaviour or those running
on heterogenous systems. In these cases the use of automatic and dynamic performance
improvements is proposed as a better approach to performance analysis. The research presented
falls within this field of study and has the principle objective of dynamically tuning, using
MATE (Monitoring, Analysis and Tuning Environment), an MPI application which employs
high performance computing following the Master/Worker paradigm. The tuning techniques
integrated in MATE have been developed following a study of the performance model that
reflects the bottlenecks specific to the Master/Worker paradigm: load balancing and the number
of workers. The execution of the chosen application under the dynamic control of MATE using
the tuning strategies implemented has permitted the observation of the behaviour of said
application adapting to the changing conditions in the system where it is being executed, thus

obtaining an improvement in the performance.

Keywords: dynamic analysis, dynamic tuning, performance models, high performance

computing.

Indice

Indice

INDICE DE FIGURAS Xiii
INDICE DE TABLAS XV
INDICE DE ECUACIONES XVii
L INTRODUCCION. .. cttttt ettt e e e et et e et e et e e et e e e e e ee et ee e eaeae Pag.1
1.1 DESCRIPCION GENERAL.\utuettie e et eenieseeate eee et ee e eteeenenaenns Pag.1
20 @ = = Y70 Pag.5
1.3 ORGANIZACION DEL TRABAJO. .. .e ettt ettt vet e e et e e een e eenns Pag.7
2. ANALISIS DE RENDIMIENTO .t uiiittet e eet e et aet e aen e saeeae e et e e e aen s P&g.9
2.1 INTRODUCCION . ..ottt et eit et e e e e e e e e e e et e e e e e e e, Pag.9

2.2 ANALISIS CLASICO DE RENDIMIENTO0 uviiiiierieiesiesiesiete e siesieseere e ssenenis Pag.11

2.2. L HERRAMIENTAS ttteeteiitet e eet e e e e et et e nen e e e eneerennens Pag.12

2 0 Y/ I Pag.12

2.2.1. 2 PARAGRAPHttt e et e e e e Pag.13

2.2. 1.3 PABLO. ..ot Pag.14

2.2.LAVAMPIR. ..ttt e e e Pag.15

2.3 ANALISIS AUTOMATICO DE RENDIMIENTO.... ...uviiiiiiiiieiereeresiesieseeneesesee s Péag.17

2.3. L HERRAMIENTAS e tntiit et et e e ve et e e e et e e e e Pag.19

2.3. 1.1 SCALASCA. ... ettt e et e e e e Pag.19

2.3.1.2 PERISCOPE .. .iiu ittt et et e e e e e e e e e Pag.20

2.3 L3 T AU ittt et e e e Pag.21

2.3.1.APARAVER Y DIMEMAS........oit ittt aee e e Péag.22

2.3 L5 KAPPAPL. .. Pag.24

2.4 ANALISIS DINAMICO DE RENDIMIENTO ... c.uiiieiieieiiesieeeeeesie e Pag.25

2.4 L HERRAMIENTAS ... 1. eteiiitiiet e e et ce et e et e et e e e Pag.26

R = N Y 3 4 N Pag.26

2.5 SINTONIZACION DINAMICA DE RENDIMIENTOcoiieieeeiesiesieeeneeresee e Péag.27

2.5, L HERRAMIENTASttt ttiiiieeee et e e e e e et e e Pag.29

2.5.0. 1 AUTOPILOT «. ettt ettt e et et e e e e e e e e e e Pag.29

2.5.1.2 ACTIVE HARMONY ...t tite et et tet e eeee e aen e e Péag.31

2.5. 1.3 PERCO. ..ttt et e e e Pag.32

2.5, LA MATE i it Pag.34

B M AT E e Pé&g.35

S L INTRODUCCION ..ottt et ettt e e e et e et e e e et n e Péag.35

3.2 VISION GENERAL ...« eu ittt e et eet et e e et e et e e e eee e et e aee e eeanas Pag.36

3.2.1 SINTONIZACION DINAMICA Y AUTOMATICA...........evveeveveieee. . PAQ.36
3.2.2 CARACTERISTICAS FUNCIONALES. ... cevieeeieevinieeeneveniieiinnee. P&Q.38

Xi

Indice

3.2.3 INSTRUMENTACION DINAMICA MEDIANTE DYNINST.......c.oiieninns
3.3 ARQUITECTURA . ..t e et it tte et et e v e e et e aes e te e et e aaeeeeanaas
3.3.1 CONTROLADOR DE APLICACION.....iiut it e iie it vie e ee eneieenns
3.3.2 LIBRERIA DE MONITORIZACION DINAMICA (DMLIB)....................
3.3.3 ANALIZADOR. ..« .ttt et ettt et e e e e e
3.4 METODOLOGIA DE FUNCIONAMIENTO ...ttt it vt vevieateeteaievevneanaanaas
3.5 MATE Y OTRAS HERRAMIENTAS DE SINTONIZACION DINAMICA..........
3.6 LIMITACIONES DE MATE COMO ENTORNO DE SINTONIZACION................

4. MODELO DE RENDIMIENTO PARA APLICACIONES MASTER/WORKER..........

4.1 INTRODUCCION . ..t etieet e e et et e et e e e et e e e aen e s
4.2 BALANCEO DE CARGA ENTRE LOS WORKERS.......c.vuiirieeavninenenennsn

4.2.1 DYNAMIC ADJUSTING FACTORING (DAF).....c..ccoiiii i,
4.3 DETERMINACION DEL NUMERO DE WORKERS....... . ctitniiiieei e eenannn

4.4 DEFINICION DEL MODELO DE RENDIMIENTO PARA SINTONIZACION

DINAMICA. .ottt et ettt e e ettt e e s e e sttt e e s e sa b e eeeesessasraeeeeesssasrrreeeeesranrens
5. DESARROLLO DEL MODELO DE RENDIMIENTOENMATE ... vcciiiiin

DL INTRODUGCCION. . . et ittt et et e et e e e et e et et e ettt e e e aeenans
IV (1= =
5.2.1 SIMULADORES DE INCENDIOS FORESTALES.evvteir vt eeiiieneeen

5.2.1 VISION GENERAL..

5.2.1 ADAPTACION DE XFIRE AL MODELO DE RENDIMIENTO...............

5.3 METODOLOGIA DE DISENO DEL TUNLETviiiiiiieiie e steesreestes e sree s
5.3. L METODOLOGIA. ...ttt ittt e e et e e e e et e
5.3.1.1 INTERPRETACION DEL MODELO DE RENDIMIENTO...........

5.3.1.2 REQUERIMIENTOSDE MATE ...t

5.4 DESARROLLO DEL TUNLET.. .
5.4.1 BALANCEO DE LA CARGA ENTRE LOS WORKERS..

5.4.1.1 INTERPRETACION DE LA TECNICA DE SINTONIZACION

5.4.2 ADAPTACION DEL NUMERO DE WORKERS..

5.4.2.1 INTERPRETACION DE LA TECNICA DE SINTONIZACION

5.4.3 INTEGRACION DE LAS TECNICAS DE SINTONIZACION EN EL

L
5.5 RESULTADOS EXPERIMENTALES. vt tittetiiiiieiieesieesteesies e e nnneesneeens

6. CONCLUSIONES Y TRABAJO FUTURO ...ttt et eveevee eie e eniesvaeaeevaeneens

6.1 CONCLUSIONES. ...ttt it ettt et ee eteee et e vae ee e e e rae e eaaen e s
6.2 TRABAIJO FUTURO . ..ot ittt et it e e e e e e e e e e eeaaen s

BIBLIOGRAFIA

Xii

P&g.39
Pag.41
Pag.41
Pag.44
Pag.45
P&g.46
P&g.48
P&g.49

P&g.51

P&g.51
P4g.53
P&g.55
P4g.58

P&g.59
P&g.63

P4g.63
Pag.65
Pag.65
Péag.66
Pag.68
Pé4g.69
Pag.69
Pag.71
Pag.73
Pag.74
P&g.75
Pag.75
Pag.81
Pag.82

P4g.86
P4g.88

P4g.95

Pag.95
Pag.98

P4g.101

Indice de figuras

Indice de figuras

Figura 2.1. Proceso ciclico de mejora del rendimiento..............ccovveiiiiiinnennnn. Pé&g.10
Figura 2.2. Aproximacion clésica del andlisis de rendimiento........................... Pag.11
Figura 2.3 Arquitectura de analisis distribuido de VampirServer........................ Pé&g.16
Figura 2.4. Aproximacién automatica del analisis de rendimiento....................... P4g.18

Figura 2.5 Esquema de la arquitectura de andlisis distribuida de Periscope. El

sistema de andlisis de rendimiento de Periscope esta compuesto por un nimero de

agentes de analisis estructurados de forma jerarquica...........c.cooveveviiiieceninenennn. Pag.21
Figura 2.6 Aproximacion dinamica del andlisis de rendimiento.......................... Pag.26
Figura 2.7 Aproximacion dinamica de la sintonizacion de rendimiento................. Pag.28
Figura 2.8 Proceso de gestidon en autopilot.............c.oooviiiii i i Pag.30
Figura 2.9 Proceso de decisidn basado en légica difusa.............cooeviviiiiinnnnen, Pag.30

Figura 2.10 Sistema de sintonizacion automatico en tiempo de ejecucién de Active

U 110 Y2 P Pag.31
Figura 2.11 Arquitectura del sistema PerCo..........cccoviiii i v, Pag.33
Figura 3.1 Proceso de mejora de rendimiento de MATE............ccovviiiiivenviiennn, Pag.37
Figura 3.2. Abstraccion usada en Dyninst..........c.ccooviiiiieiie i e e, Pag.40
Figura 3.3. Arquitectura interna del Controlador de Aplicacion.......................... Pag.42
Figura 3.4 Arquitectura de MATE sintonizando dinamicamente para MPI............ Pag.47
Figura 4.1 Técnica de balanceo de Carga..........vevvueeiiieeiieeeiie e aeeene e Pag.54
Figura 5.1 Ciclo de operacion del modelo de André-Viegas............ocevvevvnnnnnn. P&g.66
Figura 5.2 Interrelacion entre la aplicacion, el modelo de rendimiento y el tunlet..... P&g.69

Figura 5.3 Sobrecarga relativa (%) y absoluta (segundos) introducida por MATE
(sin aplicar sintonizacion) en la ejecucion de Xfire..........cocooiiiiiiiiiiiiiii e P&g.90
Figura 5.4 Comportamiento de la aplicacion Xfire durante tres iteraciones............ Pag.91
Figura 5.5 Comparativa de los tiempos de ejecucion obtenidos para los distintos
ESCENANIOS PlANTEATOS. ettt e e e e Pag.92
Figura 5.6 Estructura de la linea de fuego inicial y el umbral de desbalanceo

empleado en las pruebas experimentales con Xfire............cooooiviiiiiii i, Pag.93

xiii

Xiv

Indice de tablas

Indice de tablas

Tabla 4.1 Definicién de la estrategia de balanceo de carga para su uso bajo
SINtONIZACION dINAMICA. ee i e e e e e e e e e e
Tabla 4.2 Definicion de la estrategia de determinacion del nimero de workers para
SU USO bajo SiNtoNizacion diNAMICA.virie et et e e
Tabla 5.1 Informacion sobre los eventos para la técnica de sintonizacion de
DAlANCEO A8 CAMGA. ... i e et e e e e e
Tabla 5.2 Informacidn sobre los eventos para la técnica de sintonizacion para
adaptar €l NUMEr0 A8 WOIKEIS. e et e e e e e e e e e e e
Tabla 5.3 Informacién sobre los eventos para las 2 técnicas de sintonizacion
IMPIEMENEAUAS. .. .o e
Tabla 5.4 Caracteristicas del entorno donde se han realizado las pruebas
X P EMENTALES . .. ettt e e
Tabla 5.5 Tiempos de ejecucién de Xfire considerando distinto nimero de workers
en los tres escenarios de ejecucion presentados (en segundos)..........coeveveveeennnnns
Tabla 5.6 Tiempos de ejecucion de Xfire considerando distinto nimero de workers
con y sin desbalanceo sintético en los workers, y de Xfire bajo MATE con
desbalanceo sintético (en segundos). Ganancia sobre el tiempo de ejecucién de

Xfire+desbalanceo sintético obtenida aplicando la sintonizcion..........................

P4g.60

Pag.61

P4g.80

P4g.86

P&g.87

P4g.89

P4g.89

XV

XVi

Indice de ecuaciones

Indice de ecuaciones

Ecuacién 4.1 Limite para el valor esperado de el estadistico de orden P para
cualquier distribucién de media u y desviacion estandar occcoeevviviiecenienn.
Ecuacién 4.2 Limite superior para el tiempo de procesamiento del primer batch
siendo el tiempo media de ejecucion uc F,y con una desviacién estandar ocFy.
Ecuacidén 4.3 Valor inverso del factor de particion empleado para generar el primer
batch de la iteracion a ser repartido entre 10S WOrKers..........cccvveieevcviene s,
Ecuaciéon 4.4 Valor inverso del factor de particibn empleado para generar los
restantes batches de la iteracion a ser repartidos entre 1os workers.........c..cccccevveeneen
Ecuacion 4.5 indice de eficiencia que relaciona tiempo de computo de los workers
con el tiempo total de la iteracion. Empleado para calcular el nimero de workers
que maximiza el rendimiento de una aplicaCion..........cccccevveierereiisiene e
Ecuacion 4.6 Indice de rendimiento que permite relacionar rendimiento con
eficiencia en el uso de los recursos. Empleado para calcular el niamero de workers
que maximiza el rendimiento de una aplicaCion.............c.oceiiiinieieies s

Ecuacién 4.7 Tiempo de ejecucion de una iteracion completa del proceso master.....

P&g.55

P&g.56

P&g.56

P&g.56

P4g.59

Pag.59
Pag.59

XVii

Capitulo 1. Introduccion

Capitulo 1

Introduccidn

1.1 Descripcion general

En las dltimas décadas, se han desarrollado en distintos campos cientificos una gran cantidad de
aplicaciones que resuelven problemas de elevada complejidad como son la determinacion del
genoma humano, el andlisis de la estructura de las proteinas, prediccion de desastres naturales,
etc. Se trata de aplicaciones paralelas/distribuidas que emplean conjuntos de datos de gran
tamafio y realizan sofisticados calculos empleando las caracteristicas propias de la computacion
de altas prestaciones.

Las aplicaciones paralelas/distribuidas deben resolver el problema considerado tan
rapido como sea posible utilizando de forma eficiente los recursos disponibles en el sistema. En
este contexto, el rendimiento de la aplicacion se convierte en un aspecto clave. Cuando un
programador desarrolla una aplicacion, espera alcanzar unos ciertos indices de rendimiento, no
muy alejados del rendimiento teérico esperado. Sin embargo, el desarrollo de este tipo de
aplicaciones paralelas/distribuidas constituye una tarea dificil ya que no solo implica tener un
conocimiento de modelos de programacion paralela y librerias de comunicacion, sino que
también se incluyen algunos aspectos adicionales tales como descomposicion de las tareas,
mapping, concurrencia, escalabilidad, eficiencia, sincronismo, etc, lo cual determina el correcto

comportamiento y rendimiento de estas aplicaciones [1].

Ciertamente, la programacién eficiente de una aplicacion, para obtener beneficio real

del paralelismo y demas caracteristicas que ofrece la computacion de altas prestaciones, es un

Capitulo 1. Introduccion

gran reto que requiere un elevado grado de pericia. Ademas, una vez que la aplicacion ha sido
implementada, debe ser depurada y testeada sisteméaticamente desde un punto de vista funcional
para garantizar su exactitud. Seguidamente, se debe aplicar un proceso de mejora de
rendimiento. Dicho proceso, mediante la modificacion de los pardmetros criticos de la
aplicacidn, permite que ésta sea ajustada y adaptada para asegurar la no existencia de cuellos de

botella durante la ejecucion, y en consecuencia aumentar el rendimiento de la misma.

El proceso de mejora de rendimiento incluye 3 fases sucesivas [2]: monitorizacion,
analisis y sintonizacion. Primeramente durante la fase de monitorizacion, se captura la
informacion o medidas de rendimiento, las cuales proporcionan los datos necesarios sobre el
comportamiento de la aplicacién. A continuacion mediante el analisis de la informacion
recopilada, se buscan los cuellos de botella, se deducen sus causas, intentando determinar cuales
son las acciones correctas para eliminarlos. Finalmente, se aplican los cambios decididos sobre
el cédigo de la aplicacién con el fin de solventar los problemas y mejorar el rendimiento. Como
consecuencia, los usuarios finales estdn forzados a conocer muy bien la aplicacion, las
diferentes capas software involucradas y el comportamiento del sistema distribuido sobre el que
se ejecuta la aplicacion. Todos estos aspectos hacen que el proceso de mejora de rendimiento
sea dificil y costoso, especialmente para usuarios no expertos, debido al alto grado de pericia

requerido para aumentar significativamente el rendimiento de la aplicacion.

En concreto, la tarea mas compleja e importante de todo el proceso de mejora es el
analisis de rendimiento, debido a que en la préctica, los cuellos de botella pueden encontrarse en

diferentes niveles de abstraccién y ademas variar a lo largo de la ejecucidon de la aplicacion.

Los problemas que provocan pérdidas de rendimiento pueden tener diversos origenes.
Algunos proceden de las comunicaciones, provocando un bloqueo inesperado en algunas
funciones de comunicacion; otros surgen debido a la implementacidn especifica de la libreria de
comunicacién, ya que el disefio o la implementacion de las capas software pueden ser genéricas
y no optimizadas para un particular sistema o condiciones. Caracteristicas del sistema operativo
también pueden comprometer el rendimiento de una aplicacion, debido a que un inapropiado
tamafio del buffer de gestién de mensajes a nivel de protocolo puede interferir en los tiempos de
envio de los mensajes o de las capacidades hardware subyacentes, viéndose afectada la

velocidad de ejecucion de dicha aplicacion.

Estos ejemplos muestran la complejidad del proceso que se ha de seguir para
incrementar el rendimiento de la aplicacion, poniendo de manifiesto la necesidad de usar
herramientas automaticas para simplificar y acelerar el proceso de sintonizaciéon del
rendimiento. Afortunadamente, a lo largo de los afios han surgido distintas aproximaciones y

herramientas con el objetivo de ayudar al usuario en las diferentes fases de este proceso. Estas

Capitulo 1. Introduccion

herramientas bajo diferentes enfoques de analisis y mejoras de rendimiento, han sido disefiadas
con la finalidad de hacer mas comodo el proceso de evaluacién de aplicaciones bajo entornos

paralelos.

Inicialmente, estas aproximaciones o herramientas se basaban en un enfoque estatico,
mediante el cual se visualizaba graficamente el comportamiento de la aplicacion
paralela/distribuida una vez que ésta habia finalizado su ejecucion. Los usuarios de tales
herramientas deben ser capaces de analizar las visualizaciones que proporciona la herramienta y
tomar las decisiones correctas para mejorar el rendimiento de la aplicacion. Para disminuir las
dificultades de los desarrolladores y usuarios en este proceso, se propuso el analisis automatico.
Las herramientas [3] [4] que usan este tipo de analisis estdn basadas en el conocimiento de
problemas de rendimiento conocidos. Tales herramientas son capaces de identificar cuellos de
botella criticos y ayudar en el proceso de optimizacion proporcionando sugerencias las cuales

exponen problemas de rendimiento y ofrecen a los desarrolladores posibles mejoras.

En este tipo de aproximaciones en las que se realiza un andlisis de rendimiento estatico
y/o automaético, los datos sobre los que se toma alguna decision son producto de ejecuciones
anteriores, lo cual hace que las modificaciones realizadas en el cédigo fuente solo sean Utiles
cuando el comportamiento de la aplicacion no depende de los datos de entrada o no varia a lo
largo de la misma ejecucion. Ademas se requieren que el usuario posea un cierto grado de
conocimiento y experiencia con aplicaciones paralelas/distribuidas, ya que son necesarios
determinados cambios en el codigo fuente para mejorar el rendimiento del programa. De modo
que este tipo de herramientas solo son adecuadas para desarrolladores con experiencias mas que
para usuarios de la aplicacion no expertos tales como bidlogos, quimicos, fisicos u otros
cientificos. El usuario final puede que no tenga conocimiento suficiente sobre la aplicacion

paralela/distribuida.

Para abordar todos estos problemas, surgen herramientas que automatica y
dindmicamente realizan la tarea de optimizacion de aplicaciones paralelas/distribuidas,
eximiendo al desarrollador y usuario no experto de las tareas relacionadas con la mejora de
rendimiento. Estas herramientas toman medidas de rendimiento, identifican cuellos de botella y
realizan las modificaciones oportunas para mejorar el rendimiento, todo en tiempo de ejecucion.
Es decir, realizan el proceso de optimizacion sobre la marcha, adaptando el comportamiento de
la aplicacion a las condiciones actuales del sistema. De este modo, el desarrollador o usuario
final no se ve en la necesidad de conocer la estructura interna de la aplicacion ni de pausar la

ejecuciones para tomar decisiones.

Existen diferentes herramientas que implementan esta aproximacion [5] [6]. La

principal diferencia entre ellas reside en los métodos o tecnologias empleadas para realizar los

Capitulo 1. Introduccion

procesos de monitorizacion y sintonizacion, y en la representacion del conocimiento empleado
para realizar la fase de andlisis de rendimiento de la aplicacion: Idgica difusa, heuristicas,
histéricos 0 modelos de rendimiento. En la seccion 2.5 del capitulo 2, se realizard un profundo

estudio de ellas.

El proceso de optimizacion automatica y dindmica de aplicaciones paralelas es una
labor compleja y dificil ya que existen muchos aspectos que deben ser considerados. Una
herramienta real de sintonizacién deberia tener en cuenta puntos clave para que el proceso de
sintonizacion dinamico sea posible y efectivo, tales como saber definir la representacion del
conocimiento empleado para realizar el analisis de rendimiento, realizar de forma cuidadosa las
modificaciones dinamicas en la aplicacion de modo que su ejecucion continte de forma
correcta, llevar a cabo el analisis de una aplicacion sin conocimiento de sus estructuras internas

o la modificacién dindmica de aplicaciones cuya estructura es desconocida.

Entre los aspectos expuesto anteriormente es muy destacable la importancia del
conocimiento empleado para realizar el andlisis de la aplicacion, ya que a partir de él se
determinara el comportamiento de la aplicacion y se detectard los problemas de rendimiento
existentes en la misma. Existen varias aproximaciones para realizar este analisis como por
ejemplo el uso de técnicas heuristicas, modelos de rendimiento, etc. En los métodos heuristicos
algunos parametros deben ser controlados y determinados de forma automética mediante una
busqueda heuristica en el espacio de valores del pardmetro. Por otro lado, los modelos de
rendimiento ayudan a determinar el tiempo de ejecucién minimo de la aplicacion mediante la
prediccién del rendimiento de la misma. Estos modelos pueden contener férmulas y/o
condiciones que facilitan la determinacion del comportamiento 6ptimo. Estas formulas
necesitan medidas extraidas de la ejecucion de la aplicacion. De modo que basandose en las
medidas y aplicando la férmula adecuada, el modelo de rendimiento puede estimar el
comportamiento de la aplicacion, por ejemplo el valor 6ptimo de un parametro dado.

Finalmente, la aplicacién puede ser sintonizada, cambiando el valor del parametro.

Ademas, bajo la aproximaciéon de anélisis dinAmico hay que tener presente que en
ocasiones no es posible aplicar sintonizacion dindmica a cualquier aplicacion y en cualquier

entorno. Como se deduce, dicha aproximacidn presenta un grado de complejidad muy elevado.

El presente trabajo de investigacion de master tiene como eje principal la herramienta
MATE (Monitoring, Analysis and Tuning Environment) [7]. MATE, como su nombre indica, es
un entorno que desarrolla la aproximacién comentada anteriormente, es decir, es capaz de
sintonizar automaética y dindmicamente una aplicacion paralela/distribuida basandose en el
conocimiento generado por el uso de modelos de rendimiento. A partir de la funcionalidad que

proporciona esta herramienta, una aplicacién paralela en ejecucion puede ser automatica y

Capitulo 1. Introduccion

dindmicamente monitorizada, analizada y sintonizada sobre la marcha sin necesidad de re-
compilar, re-enlazar o re-ejecutar, ya que las modificaciones son realizadas empleando la

instrumentacion dinamica mediante el uso de la libreria Dyninst [8].

1.2 Objetivos

El propdsito de las aplicaciones paralelas/distribuidas es resolver el problema considerado del
modo mas rapido posible utilizando los recursos disponibles. Por lo tanto, el rendimiento se
convierte en uno de los aspectos mas importantes. De este modo el empleo de herramientas
como MATE son necesarias en el campo de la computacion de altas prestaciones para un

correcto rendimiento de las aplicaciones paralelas.

Partiendo de la funcionalidad que proporciona MATE surge el trabajo de investigacion
a realizar, el cual se encuentra situado dentro de la linea de investigacion Entornos para la

evaluacion del rendimiento y sintonizacion de aplicaciones.

El objetivo general de este trabajo de investigacién es sintonizar dinamicamente
mediante MATE una aplicacion MPI empleada en computacion de altas prestaciones que siga
un paradigma Master/Worker; este estudio permitira lograr un conocimiento sobre la pauta de

comportamiento de la aplicacion y sobre la herramienta de sintonizacion.

La determinacién de la estructura y el comportamiento de la aplicacion es un aspecto
clave para lograr una sintonizacion adecuada, eficiente y poco intrusiva. Poseer esta
informacion permite determinar los puntos que influyen en el rendimiento de la aplicacion y
crear un modelo de rendimiento asociado a la estructura y caracteristicas de eficiencia de la

misma.

Por tanto en este trabajo se pretende conocer la estructura y comportamiento de
aplicaciones basadas en el paradigma de programacién paralela Master/Worker, con el fin de

explotar en MATE un modelo de rendimiento que describa ese tipo de aplicaciones.
Para lograr este objetivo, quedan definidos los siguientes objetivos especificos:

- Estudiar la herramienta MATE. Esta herramienta de sintonizacidon presenta una
arquitectura formada por componentes que desempefian funcionalidades diferenciadas
desde un punto de vista ldgico; ademéas dichos componentes presentan entre ellos
protocolos de comunicacién definidos. Por tanto, el propésito de este estudio es obtener
una comprension general de la pauta de cada uno de los integrantes de MATE asi como

tener un primer contacto con la implementacion de la herramienta.

Capitulo 1. Introduccion

- Modificar la implementacion de MATE para que sea capaz de sintonizar aplicaciones
basadas en la libreria de paso de mensajes MPI desarrolladas en C/C++. Inicialmente
MATE fue desarrollada para la sintonizacion de aplicaciones PVM. La decision de
realizar este cambio en la implementacion tiene como fin incrementar la usabilidad de
MATE, ya que en la actualidad la gran mayoria de las aplicaciones

paralelas/distribuidas desarrolladas en &mbitos cientificos emplean la libreria MPI.

- Estudiar el modelo de rendimiento para aplicaciones Master/Worker expuesto en [9].
Este modelo engloba los problemas de rendimiento propios de este tipo de
aplicaciones: balanceo de carga y nimero de workers. Para ello, partiendo de un modelo
analitico, aplica una metodologia que consta de dos fases: una primera fase que emplea
una estrategia dindmica para el balanceo de carga y una segunda para adaptar el nimero
de workers teniendo en cuenta las caracteristicas actuales en las que se encuentra el

sistema.

- Localizar una aplicacion paralela/distribuida empleada en computacion de altas
prestaciones que sea una buena candidata para el estudio que se va a realizar y que siga
un paradigma Master/Worker. Tras realizar una compleja busqueda, se llego a la
conclusion de que actualmente las aplicaciones Master/Worker no presentan un uso
muy extendido en computacién de altas prestaciones debido al cuello de botella que
supone la comunicacion establecida entre un nico master y todos los workers.

A pesar de ello, y con el fin de poder obtener los conocimientos deseados del
presente trabajo de investigacion, se opté por la eleccion de una aplicacion
paralela/distribuida desarrollada en el departamento de Arquitectura de Computadores y
Sistemas Operativos de la Universidad Auténoma de Barcelona. Se trata de un

simulador de incendios de fuegos forestales, denominado Xfire [10].

- Implementar el tunlet que contiene la especificacion del modelo de rendimiento

estudiado para aplicaciones Master/Worker

Los tunlets son el ndcleo de la sintonizacion automatica y dindmica
implementada por MATE, en términos de representacion del conocimiento. Cada tunlet
define e implementa una particular técnica de sintonizacion, es decir, la légica para
resolver un determinado problema de rendimiento mediante la encapsulacion del
conocimiento de dicho problemas basandose en puntos de medida, funciones de
rendimiento y puntos/acciones de sintonizacién.

El tunlet disefiado sera implementado en C++ empleando MPI y posteriormente

integrados en la herramienta MATE. Por tanto, el desarrollo del tunlet conlleva el

Capitulo 1. Introduccion

andlisis del modelo de rendimiento propuesto con el fin de identificar los puntos de

medida y sintonizacion que se deben de implementar.

- Realizar la experimentacion necesaria que permita observar las posibles mejoras de
rendimiento en la aplicacién elegida tras la aplicacion de la sintonizacion dinamica
mediante la funcionalidad que proporciona MATE con el conocimiento del modelo de

rendimiento estudiado integrado en el tunlet.

Tras la presentacion de los objetivos, el resultado que se espera de este trabajo de
investigacion es obtener los conocimientos necesarios sobre el proceso de optimizacion
automatica y dinamica de aplicaciones paralelas/distribuidas, especialmente aquellos
relacionados con las fase de analisis de rendimiento, en la que interviene los modelos de
rendimiento, y la fase de sintonizacion dindmica. Ademas se pretende que esta investigacion, y
las conclusiones que se obtengan de ella, permitan comenzar con el estudio a largo plazo de la
tesis doctoral que tiene como fin centrase en el andlisis de las caracteristicas de escalabilidad de
MATE.

1.3 Organizacion del trabajo

El contenido de este trabajo de investigacién se presenta dividido en los siguientes capitulos:

- Capitulo 2: Andlisis de rendimiento.
Se describe las aproximaciones existentes en el analisis de rendimiento de
aplicaciones paralelas/distribuidas, desde el andlisis clasico hasta la sintonizacion
dindmica. Ademas se detallan algunas de las herramientas que conforman el estado del

arte actual del andlisis de rendimiento.

- Capitulo 3. MATE.

Se centra en proporcionar una descripcion general de MATE vy detallar los
principales aspectos relacionados con su arquitectura. Ademas, se expone los conceptos
basicos sobre la instrumentacion dinamica empleada por MATE en las fases de
monitorizacion y sintonizacion. Finalmente se muestran las analogias y diferencias de
MATE con otras herramientas existentes que realizan la misma labor que MATE
basandose en otros métodos en el ambito de la mejora dindmica de rendimiento de

aplicaciones paralelas/distribuidas.

- Capitulo 4. Modelo de rendimiento para aplicaciones Master/Worker.
Se presenta una descripcion del modelo de rendimiento desarrollado para la
sintonizacion dindmica de aplicaciones Master/Worker. Es un modelo de dos fases
consistente en una estrategia para balancear la carga de los workers, y un modelo

analitico para adaptar el nimero de workers de la aplicacion.

Capitulo 1. Introduccion

- Capitulo 5. Desarrollo del modelo de rendimiento en MATE.

Muestra el proceso de integracion del conocimiento proporcionado por el
modelo de rendimiento, expuesto en el capitulo anterior, en el proceso de sintonizacion
dindmica y automética que implementa MATE. También se detallan las caracteristicas
de la aplicacién Master/Worker elegida para ser sintonizada. Finalmente se exponen las
pruebas experimentales y resultados obtenidos de ejecucion de la aplicacion elegida tras
ser sintonizada bajo MATE empleando como ldgica de analisis y sintonizacion de

rendimiento el estudiado modelo de rendimiento.

- Capitulo 6. Conclusiones y trabajo futuro
Resumen el trabajo de investigacion realizado, extrayendo las conclusiones
derivadas del andlisis y estudios realizados. Ademas se presentan las lineas abiertas
presentes en esta area de investigacion a través de las cuales se pretende dirigir el

trabajo futuro.

Capitulo 2. Analisis de rendimiento

Capitulo 2

Analisis de rendimiento

2.1 Introduccidén

Uno de los principales propositos de las aplicaciones paralelas y distribuidas es aprovechar los
recursos y las altas capacidades computacionales de los sistemas paralelos. Por tanto obtener un
buen rendimiento en dichas aplicaciones se ha convertido en un punto clave del procesamiento
paralelo/distribuido. Sin embargo, lograr este rendimiento en una aplicacion ejecutdndose en un
sistema es una dura tarea que requiere un alto grado de experiencia. De este modo, los usuarios,
con el objetivo de mejorar el comportamiento de sus aplicaciones, deben enfrentarse al proceso
de optimizacién de rendimiento. Se trata de un proceso ciclico, mostrado en la figura 2.1,

compuesto principalmente por 3 fases fundamentales [2]:

- Fase de monitorizacion, mediante la que se afiade a la aplicacion cierta informacion de
instrumentacion que permita recopilar conocimiento acerca del comportamiento de la
aplicacion.

- Fase de analisis, durante la cual se inspecciona la informacion recopilada en la fase de
monitorizacion y la informacién estatica del programa con el objetivo de detectar
problemas de rendimiento, deducir las causas y determinar soluciones.

- Fase de sintonizacién, en la que se subsanan los posibles errores de rendimiento
presentes en el comportamiento aplicando los cambios oportunos en el cédigo de la

aplicacion.

Capitulo 2. Analisis de rendimiento

Se han desarrollado una gran cantidad de herramientas de analisis de rendimiento que
ayudan al usuario a tratar los problemas de rendimiento de su aplicacion. Estas pueden
clasificarse en herramientas de monitorizacion, de andlisis y/o de sintonizacion, aunque existen
herramientas que realizan varias de estas acciones, ayudando al usuario en mas de un Unico

nivel.

Modificaciones

Sintonizacian de rendimiento |

iy

Froblernas y
SUQErencias

Instrumentacidn

h i

Monitori zacion Lrdlisis de rendimiento |

Datos de rendimiento
Figura 2.1. Proceso ciclico de mejora del rendimiento

Las herramientas de monitorizacion consta generalmente de dos partes: una libreria o
conjunto de librerias que permiten la insercion de instrumentacion y rutinas para medir y
almacenar los datos; y una seria de médulos cuya funcionalidad ofrece la posibilidad de mostrar
los datos generados durante el monitoreo. Hay que tener en cuenta que la instrumentacion puede

afectar a las caracteristicas de rendimiento de la aplicacion paralela.

El objetivo de las herramientas de andlisis es examinar automaticamente la informacion
generada durante la monitorizacion para determinar los posibles cuellos de botella de la
aplicacion paralela. Para ello debe poseer conocimiento sobre los problemas de rendimiento

posibles en la aplicacion con el fin de proporcionar una solucién de los mismos.

En lo referente a las herramientas de sintonizacién su intencién es automatizar la
insercién de las modificaciones oportunas en el codigo de la aplicacion paralela para eliminar

las imprecisiones en el rendimiento detectadas en la fase de andlisis.

A lo largo de los afios, con el desarrollo de la computacion de altas prestaciones, se han
propuesto varias aproximaciones de monitorizacién, analisis y sintonizacion de rendimiento
para cooperar con el usuario en la mejora de sus aplicaciones. En las siguientes secciones se
muestra un resumen de estas aproximaciones asi como ejemplos de herramientas actuales que

funcionalmente se sitdan dentro de las mismas.

10

Capitulo 2. Analisis de rendimiento

2.2 Analisis clasico del rendimiento

La aproximacion clasica de analisis de rendimiento esta basada en la visualizacion de la
gjecucidén de la aplicacion paralela una vez que ésta ha terminado de ejecutarse. Este proceso,

mostrado en la figura 2.2 recibe el nombre de analisis de rendimiento post-mortem.

-
[

Aplicacion Sintorizacion de rendimiento

| Sem—

)
N
Usuario L Amalisis de rendimiento
Ejecucén
' A

Tiempo de ejecucion

Monitorizacion (Yisualizadon |
Herramienta

P

W

Fichero de traza [

Figura 2.2. Aproximacion clasica del andlisis de rendimiento

Generalmente, las herramientas situadas en esta aproximacion reflejan informacion
especifica sobre el comportamiento de la aplicacion mediante diferentes vistas graficas y
numéricas. Para ello, primeramente se requiere el uso de herramientas que realicen la
monitorizacion para obtener datos de rendimiento de la ejecucion del programa paralelo. La
insercion de la instrumentacion se puede realizar de forma estatica por la herramienta o bien
manualmente por el usuario. El proceso de monitorizacion se puede realizar siguiendo varias
técnicas:

- Basadas en tiempo de ejecucion, mediante las que se detecta donde la aplicacion
paralela emplea la mayor parte del tiempo.

- Basadas en contadores, que indican el nimero de ocurrencias de un determinado evento
en la aplicacion.

- Basadas en muestreo, las cuales generan medidas periddicas sobre el estado de la
aplicacion.

- Basadas en trazas de eventos, que proporcionan informacion asociada a eventos

concretos definidos en la aplicacion paralela.

11

Capitulo 2. Analisis de rendimiento

Con los datos almacenados en un fichero de traza de la aplicacion, las herramientas de
visualizacion generan gréaficos sobre la pauta que sigue la aplicacién, tales como diagramas de
Gantt, diagramas circulares, de barra, etc. La informacion mostrada debe corresponder con
aspectos relacionados con paso de mensajes, comunicaciones colectivas, ejecucion de rutinas de
la aplicacion entre otras. Finalmente, el usuario debe analizar esas representaciones graficas
buscando problemas de rendimiento, determinando las causas de dichos problemas y cambiando
el cédigo fuente manualmente. De este modo, el proceso global se repite, volviendo a compilar,

enlazar y ejecutar la aplicacion, hasta que el rendimiento deseado sea alcanzado.

El andlisis de rendimiento clasico requiere un elevado grado de experiencia en
programacion paralela para ser llevado a cabo de modo eficiente, de modo que constituye una
tarea dificil especialmente para usuarios no expertos. La complejidad de esta tarea se debe
principalmente a la interpretacion y tamafio del fichero de traza el cual es proporcional al
tamafio y el tiempo de ejecucion de la aplicacion. Ademas, esta aproximacion no es fiable
cuando las aplicaciones o los entornos de ejecucion tienen un comportamiento dindmico.
Muchas aplicaciones tienen un comportamiento diferente segln los datos de entrada o incluso
pueden variar durante la misma ejecucion. Ademas muchas herramientas de visualizacion no
escalan bien, por lo que cuando el nimero de procesos implicados en la aplicacién es muy

elevado, los gréficos generados son ilegibles.

2.2.1 Herramientas

2.2.1.1 MPICL

MPICL [11] es una libreria para instrumentacion y monitorizacion desarrollada en el
Laboratorio Nacional de Oak Ridge en 1997.

Su funcionamiento se basa en la recopilacion de informacién sobre comunicacion y
eventos definidos por el usuario en programas paralelos usando MPI escritos en C o
FORTRAN. Para ello, emplea la interfaz de profiling de MPI que interceptar automaticamente
las llamadas a las rutinas de comunicacion de MPI, eliminado la necesidad de afiadir mas que

unas cuantas sentencias al codigo fuente para recopilar informacion.

MPICL instrumenta el cddigo de la aplicacion, primeramente usando rutinas en C que
consultan el sistema de reloj y guarda informacion de eventos especificos en buffers internos
Esta libreria puede ser usada de dos formas distintas. Puede ser usada para realizar profiling,
resumiendo el numero de ocurrencias, estadisticas, y el tiempo gastado en comunicacion.
También puede ser usada para recopilar trazas de eventos, las cuales pueden ser visualizadas
empleando una herramienta de visualizacion como Paragraph [12]. Finalmente MPICL genera

un fichero de trazas [13], que contiene un registro de evento por linea, y cada registro consiste

12

Capitulo 2. Analisis de rendimiento

en un conjunto de valores numéricos que especifican el tipo de evento, marcas de tiempo, el

namero de procesador, la longitud del mensaje, y otra informacion similar.

MPICL es una extension de la libreria PICL [14], un paquete software que proporciona
una interfaz portable de paso de mensajes antes de que apareciera el estandar MPI. Los
comandos de paso de mensajes de PICL simplemente llamaban a los comandos nativos
subyacentes de cada maquina en la cual estaba implementado. Un usuario MPI no necesita saber
nada sobre el paso de mensajes PICL, lo cual significa que MPICL puede ser usada para
recopilar datos de rendimiento para programas no implementados con la libreria MPI. Pero
informacidn sobre eventos de comunicacion solo se recopila si se usa MPI, los comandos de
paso de mensajes de PICL, o si el usuario instrumenta la capa de paso de mensajes empleando

los comandos de instrumentacion de MPICL.

Una caracteristica destacable de MPICL es que intenta minimizar el overhead
introducido por la recoleccion de informacion almacenando los ficheros de traza en la memoria
local de cada procesador, después los descarga al disco solo cuando la aplicacién haya
terminado su ejecucion. Sin embargo, tal monitorizacion introduce un coste extra que el caso de
MPICL es una cantidad fija que se afiade al coste de envio de cada mensaje. De este modo, la
perturbacidn total es funcion de la frecuencia y del volumen del trafico de comunicacién, lo cual
varia de maquina a maquina. Esta perturbacion es normalmente bastante pequefia para que el

comportamiento de la aplicacion no se vea afectado.

2.2.1.2 Paragraph

Paragraph [12] es una herramienta de visualizacion que proporciona una representacion grafica,
detallada y animada asi como resimenes de rendimiento graficos de programas paralelos que
usan MPI. Fue desarrollada por la Universidad de Illinois y la Universidad de Tennessee en
1995.

Paragraph tiene una relacion consumidor-productor con MPICL: Paragraph emplea
exclusivamente las trazas de datos que genera MPICL. De este modo, usando MPICL junto con
MPI, el usuario puede crear los ficheros de datos necesarios para usar Paragraph, para analizar

el comportamiento y el rendimiento de programas paralelos.

Esta escrito en C y su estructura software estd compuesta por un bucle de eventos y un
switch que selecciona acciones basandose en la naturaleza de cada evento. Hay dos colas de
eventos separadas: una cola eventos producidos por el usuario (clicks de raton, pulsaciones de
teclas...) y una cola de trazas de eventos producidas por el programa paralelo bajo estudio.
Paragraph se alterna entre estas dos colas para proporcionar una representacion dinamica del

programa paralelo y una respuesta interactiva con el usuario.

13

Capitulo 2. Analisis de rendimiento

Aunque Paragraph solo es usado en la etapa de post-procesado, usando un fichero de
traza generado durante la ejecucion de un programa paralelo y almacenandolo para su posterior
estudio, los datos de la visualizacion podrian en principio ir llegando a la estacion de trabajo

gréafica al mismo tiempo que la aplicacion paralela se ejecuta en la maquina paralela.
2.2.1.3 Pablo

Pablo [15] es un entorno de andlisis de rendimiento disefiado para desarrollar captura, analisis y
presentacion de datos en una gran variedad de sistemas paralelos escalables. Fue disefiado por la

Universidad de Illinois en 1993.

Su infraestructura se divide en dos componentes principales:

- Un software portable para realizar la instrumentacion.

- Un componente que realiza el analisis de rendimiento

El software para la instrumentacion permite la especificacion interactiva de puntos de
instrumentacion en el codigo fuente. Este software puede ser usado para recopilar datos de
rendimiento sobre cualquier sistema o c6digo de aplicacién. Como parte de la instrumentacion,
se desarrollaron 3 médulos software: una interfaz gréafica para especificacion de la
instrumentacion, analizadores en C o Fortran que emiten cddigo fuente instrumentado y una
libreria de captura de eventos de rendimiento en formato estandar [16] [17] generados por el
codigo instrumentado cuando es ejecutado en sistemas paralelos de memoria distribuida. Pablo
permite 3 tipos de monitorizacion: tracing, profiling e intervalos de tiempo. Los eventos de
traceo representa la ocurrencia de una accion especifica (por ejemplo un procedimiento en
concreto es llamado por un procesador en un momento determinado), de manera que cada
evento produce una entrada en el fichero de datos de rendimiento. En el caso de los eventos de
conteo, estos no contienen datos de usuario, solo cuenta el nimero de veces que tiene lugar un
determinado evento o accion. La libreria de captura de datos de Pablo permite cuando
almacenar un registro de eventos de conteo en un fichero de datos (por ejemplo cuando el
contador alcance una determinada cantidad). Finalmente los eventos de intervalos de tiempo
asocian un evento con dos puntos del codigo fuente. Cada ocurrencia produce un evento que
contiene el tiempo que ha transcurrido durante la ejecucion del cédigo fuente situado entre los

dos puntos especificados.

El componente de andlisis de rendimiento de Pablo consiste en un conjunto de médulos
de transformacion de datos que pueden ser graficamente interconectados, para formar un grafo
aciclico y dirigido de datos de andlisis. Los datos de rendimiento fluyen a través de los nodos

del grafo y son transformados para ofrecer las métricas de rendimiento deseadas.

14

Capitulo 2. Analisis de rendimiento

2.2.1.4 Vampir

Vampir [3] [18] es una herramienta de andlisis de rendimiento que permite la visualizacion
grafica y anadlisis de los cambios de estado de un programa, mensajes punto a punto,
operaciones colectivas y contadores de rendimiento hardware junto con resimenes estadisticos.
Estd disefiada para ser una herramienta de féacil uso, lo cual permite a los desarrolladores

visualizar rapidamente el comportamiento de su aplicacién en un determinado nivel de detalle.

Comenzd a desarrollarse en el Centro de Matematica Aplicada del Centro de
Investigacion de Jilich y el Centro de Computacién de Altas Prestaciones de la Universidad
Técnica de Dresden. Vampir estd disponible como producto comercial desde 1996. En el
pasado, fue distribuida por German Pallas GMBH, empresa que pasé a formar parte
posteriormente de la compafiia Intel. La cooperacion con Intel termind en 2005. Actualmente el
desarrollo de Vampir continda por parte del Centro de Servicios de Informacion y Computacion
de Altas Prestaciones (ZIH) de la Universidad Técnica de Dresden. Hoy en dia, los productos

Vampir se pueden obtener directamente desde la pagina web.

Esta herramienta ha sido probada y ampliamente usada en la comunidad de la
computacion de altas prestaciones durante muchos afios. Un gran nimero de entornos de
monitorizacion del rendimiento como TAU [19], KOJAK [20] o VampirTrace [21] generan
ficheros de trazas que son interpretables por Vampir. Desafortunadamente no soporta el fichero
de traza de estructura Intel, debido a razones de licencia. Desde la version 5.0, Vampir soporta
el formato Open Trace (OTF), desarrollado por ZIH. Este formato de traza esta especialmente
disefiado para programas masivamente paralelos. Diferentes graficos temporales muestran las
actividades y comunicaciones de la aplicacién a lo largo de los ejes de tiempo, sobre los cuales
el usuario puede desplazarse y hacer zoom, con el objetivo de detectar la causa real de los
problemas de rendimiento. Ademas permite verificar la correcta paralelizacion y el balanceo de
carga. Vampir generara graficos estadisticos que proporcionan resultados cuantitativos sobre
porciones arbitrarias temporales. La implementacion esta basada en el estandar X-Windows and
Motif y corre en estaciones de trabajo asi como en sistemas de produccion paralela. Esta
disponible para casi todas las plataformas de 32 y 64 bit como PCs y Clusters Linux, IBM, SGI,
SUNy Apple.

Actualmente hay dos versiones de Vampir. La primera, la estacién de trabajo basada en
la aplicacién clasica con una historia de desarrollo de mas de 10 afios. Su Gltimo lanzamiento
constituye la version 7.1 y data de Noviembre del 2009 [22]. La segunda, la versién mas
escalable y distribuida Ilamada VampirServer [21]. Ademas, hay software de instrumentacién y

medida conocido como VampirTrace [21].

15

Capitulo 2. Analisis de rendimiento

VampirServer

Es la siguiente generacion de Vampir, que presenta una implementacion paralela con una
escalabilidad mucho mayor. La udltima version desarrollada es VampirSever2.0 y data de
noviembre de 2009 [22].

Basandose en la experiencia adquirida en el desarrollo de Vampir, la nueva arquitectura,
mostrada en la figura 2.3 usa una aproximacion distribuida consistente en un servidor de analisis
paralelo, el cual se supone que se estd ejecutando en un segmento de un gran entorno de
produccién paralela, y un cliente de visualizacion de los datos de rendimiento obtenidos
corriendo en otras estaciones de trabajo. El servidor es un programa paralelo el cual usa
métodos de comunicacion estandar tales como MPI, pthreads y sockets. La compleja
preparacion de los datos de rendimiento es llevada a cabo por el propio servidor. El servidor
consiste en un proceso master y un nimero variable de procesos worker. Ambos componentes,
servidor y cliente, interactia a través de Internet por medio de un socket estandar basado en
conexiones de red. Los principales objetivos de esta aproximacion paralela distribuida son los

siguientes:

- Mantener los datos de rendimiento cerca de la localizacion donde fueron generados.

- Andlisis de los datos de rendimiento en paralelo para mejorar el incremento de la
escalabilidad con Speedy up del orden de 10 a 100.

- Limitar los requerimientos de ancho de banda y latencia de la red a un minimo para

permitir un rapido acceso y analisis desde entornos de trabajo remoto.

Entornode computacion paralela WLAN/LAN| | Escritorio de estaciones de trabajo

“ Cliente 1

Proceso Master

$

Worker 1 Worker 2 Worker iV

AR
A
_Trezal |

Figura 2.3 Arquitectura de andlisis distribuido de VampirServer

Cliente 2

Cliente N

.

16

Capitulo 2. Analisis de rendimiento

VampirServer implementa algoritmos paralelos de analisis de eventos y graficos
personalizables que permiten un seguimiento rapido e interactivo de complejos datos
procedentes de la monitorizacién del rendimiento. La informacion de la traza de eventos se
almacena en memoria distribuida en la maquina de andlisis paralelo. Ademas, grandes

volimenes de datos pueden ser analizados sin copiar grandes cantidades de datos.

VampirTrace

Proporciona una infraestructura de medida para coleccionar datos de rendimiento. Permite el
desarrollo con instrumentacion y facilidades para recolectar medidas en aplicaciones HPC.
Cubre el anélisis de aplicaciones desarrolladas con MPI y OpenMP. La instrumentacion
modifica la aplicacion para detectar y almacenar eventos de interés generados durante la
ejecucion, por ejemplo una operacién de comunicacion MPI o una cierta llamada a funcién.
Esto puede ser hecho a nivel de codigo fuente, durante la compilacién o en tiempo de enlace
mediante varias técnicas. La libreria VampirTrace se encarga de la recogida de datos en todos
los procesos. Estos datos incluyen eventos definidos por el usuario, eventos MPI, eventos
OpenMP, asi como informacién sobre temporizacion o localizacion. Ademas también permite
obtener informacion mediante contadores hardware mediante PAPI. La ultima version

desarrollada es VampirTrace 5.8 y data de noviembre de 2009 [22].

La instrumentacién automatica del cédigo fuente usando el compilador esta disponible
para compilador de GNU, Intel (versién 10), IBM, PGI, SUN (solo Fortran). La instrumentacion

binaria se desarrolla con Dynist.

Los datos de rendimiento almacenados se almacenan en un fichero usando el formato
Open Trace (OTF). OTF es un rapido y eficiente formato que presenta caracteristicas especiales
para entrada/salida paralela. Este formato esta disefiado para alcanzar un buen rendimiento en
estaciones de trabajo de un Unico procesador asi como en supercomputadores masivamente

paralelos.

Su implementacion estd basada en el conjunto de herramientas KOJAK vy es
desarrollado en ZIH, en cooperacion con ZAM, Centro de Investigacion de Jilich, Alemania y

el Laboratorio de Computacion Innovadora de la Universidad de Tennesse, EEUU.

2.3 Analisis automatico de rendimiento

Para reducir la complejidad que los programadores y usuarios encontraban en el analisis cléasico
de rendimiento, se propone un andlisis automatico del rendimiento de la aplicacion paralela.

Esta aproximacion realiza un andlisis automatico basado en el conocimiento previo de las

17

Capitulo 2. Analisis de rendimiento

caracteristicas de los distintos problemas de rendimiento. La figura 2.4 muestra el ciclo de

operacion llevada a cabo en esta aproximacion.

Sintori zacion de rendimiento

Usuario (T)
Ejeciidon

Tiempo de ejecucidn

Moniterizacion
Herramienta Ardlisis de rendimiento

¢

Sugerencias para
el usuario

N
Fichero de traza I

Figura 2.4. Aproximacion automatica del analisis de rendimiento

Las herramientas que implementan este tipo de andlisis son capaces de identificar
cuellos de botella criticos y ayudar a la optimizacion de la aplicacion proporcionando
sugerencias, las cuales exponen problemas de rendimiento y posibles mejoras. Para ello, la
aplicacion es instrumentada antes de su ejecucion y la instrumentacion es insertada en los
puntos concretos. Una vez que los datos de rendimiento se han recopilado y almacenado en el
fichero de traza, el proceso de andlisis automatico puede desarrollarse. Este proceso consiste en
una buasqueda de problemas de rendimiento en los datos obtenidos en la ejecucion, basada en
informacion sobre posibles cuellos de botella y como encontrarlos. Cuando el proceso de
analisis finaliza, el usuario puede modificar la aplicacion partiendo de las sugerencias
proporcionadas por el andlisis, volver a compilarla y enlazarla para proceder a la siguiente

ejecucion.

Este tipo de analisis reduce la cantidad de tiempo que los desarrolladores invierten en
analisis de rendimiento. Sin embargo de nuevo esta basado en ficheros de traza que contienen
una Unica ejecucion de la aplicacion, por lo que, de la misma manera que en el analisis
clasico, esta aproximacion no es fiable cuando las aplicaciones o los entornos de

ejecucion tienen un comportamiento dinamico.

18

Capitulo 2. Analisis de rendimiento

2.3.1 Herramientas

2.3.1.1 Scalasca

Scalasca [23] es un conjunto de herramientas de analisis de rendimiento automatico que ha sido
especialmente disefiado para el uso en sistema de gran escala, incluyendo IBM Blue Gene y
Cray XT, pero también esta construido para su uso en plataformas HPC de pequefia y media
escala. Ha sido desarrollado en el Centro de Supercomputacion de Jilich, Alemania en el afio
2008.

Scalasca realiza un procedimiento de analisis de rendimiento incremental que integra
profiling en tiempo de ejecucion con amplios estudios del comportamiento concurrente de la
aplicacién mediante trazas de eventos, adoptando una estrategia de andlisis basada en sucesivas
configuraciones de medidas de rendimiento. Una caracteristica distintiva es su capacidad para
detectar estados de espera que ocurren, por ejemplo, como resultado de un incorrecto balanceo
de la carga. Especialmente cuando se intenta escalar aplicaciones de comunicacion intensiva a
grandes cantidades de procesos, tales estados de espera constituyen grandes retos para conseguir
un buen rendimiento. Comparado con su antecesor, KOJAK [20], Scalasca puede detectar tales
estados de espera incluso en configuraciones con grandes cantidades de procesos usando un

innovador esquema paralelo de andlisis de trazas.

La actual versién de Scalasca [24] permite el analisis de rendimiento de aplicaciones
basadas en MPI, OpenMP, y construcciones de programacion hibrida més ampliamente usadas
en aplicaciones HPC altamente escalables escritas en C, C++, y Fortran en una amplia gama de

plataformas actuales HPC.

En Scalasca, antes de la recopilacion de cualquier dato de rendimiento, la aplicacion
objetivo debe ser instrumentada. Cuando se corre el cédigo instrumentado en la maquina
paralela, el usuario puede elegir entre generar un resumen con métricas de rendimiento
agregadas y/o almacenar trazas de eventos individuales en tiempo de ejecucion. El resumen de
métricas es Util para obtener una vista general sobre el comportamiento de rendimiento. Cuando
se habilita la traza, cada proceso genera un fichero de traza que contiene registros para los

eventos generados de forma local.

Después de que la aplicacion termine su ejecucién, Scalasca carga los ficheros de traza
en memoria principal y los analiza en paralelo usando tantas CPUs como han sido empleadas en
la ejecucion de la aplicacion paralela. Durante el andlisis, Scalasca genera patrones
caracteristicos indicativos de estados de espera y relaciona las propiedades de rendimiento,

clasificando las instancias detectadas por categorias y cuantificando su importancia. El resultado

19

Capitulo 2. Analisis de rendimiento

es un informe del andlisis similar en estructura al informe resumen pero enriquecido con

métricas sobre comunicacion de alto nivel e ineficiencias de sincronizacion.

Ambos informes contienen métricas de rendimiento para cada llamada a funcion y
recurso del sistema (proceso/hebra), pudiendo ser interactivamente explorado en una interfaz
grafica. Como alternativa a este patron automatico de busqueda, las trazas pueden ser mezcladas
y convertidas de manera que puedan visualizarse con otras herramientas como Paraver o
VampirTrace, recogiendo las ventajas de sus visualizaciones desde el punto de vista temporal y

su rica funcionalidad estadistica.
2.3.1.2 Periscope

Periscope [25] es una herramienta escalable de analisis de rendimiento automatico para
aplicaciones MPI. Actualmente se encuentra bajo desarrollo en la Universidad Técnica de
Minchen en los proyectos ISAR y SILC; surge como sucesor de Peridot [26] en 2005. La

Gltima version de Periscope data del afio 2009, [27].

Consiste en un frontend, una jerarquia de comunicacion, agentes de analisis y una
interfaz gréfica de usuario para analizar los resultados, tal y como se muestra en la figura 2.6.
Cada uno de los agentes de andlisis, es decir, los nodos de la jerarquia de agentes buscan
autobnomamente ineficiencias en un subconjunto de procesos de la aplicacion. En la parte
superior de la jerarquia de agentes, el agente master es responsable de la interacciéon con el
usuario. El agente master proporciona las propiedades detectadas al usuario y toma como
entrada comandos que direccionan el analisis. Los agentes intermedios de la jerarquia son
necesarios para la busqueda de propiedades que no pueden ser detectadas localmente porque se

deben analizar conjuntamente los datos de rendimiento de méas de un nodo.

Los procesos de la aplicacion estdn enlazados con un sistema de monitorizacion que
proporciona la Interfaz de Peticiones de Monitorizacion (MRI). Los agentes se unen al monitor
por medio de sockets. La MRI permite a los agentes configurar la toma de medidas para
comenzar, parar, terminar la ejecucion y recuperar los datos de rendimiento. EI monitor
actualmente solo soporta informacion resumida (profiling). La disposicion de los distintos

componentes de Periscope se muestra en la figura 2.5.

La aplicacion y la red de agentes son comenzadas a través del proceso frontend. Este
analiza el conjunto de procesadores disponibles, determina el mapeo de la aplicacion y los
procesos de los agentes de analisis, y entonces lanza la ejecucion de la aplicacion y la jerarquia
de agentes. Después de la inicializacion, un comando se propaga a lo largo de la jerarquia de
agentes para comenzar la bisqueda. La busqueda se desarrolla de acuerdo a la estrategia de

busqueda seleccionada cuando comienza el proceso frontend. Al final de la busqueda local, las

20

Capitulo 2. Analisis de rendimiento

propiedades de rendimiento detectadas son enviadas a través de la jerarquia de agentes al
proceso frontend. Periscope comienza su andlisis desde la especificacion formal de las
propiedades de rendimiento. La especificacion determina la condicion, el valor de confianza y la

severidad de las propiedades de rendimiento.

Interfaz Grafica de Usuario Interfaz basada en Eclipse
Frontend Interactivo Analisis y control
o | Red de agentes
v k4 "y

Interfaz de peticiones para
= monitorizacion

Aplicacion

Figura 2.5 Esquema de la arquitectura de analisis distribuida de Periscope. El sistema de analisis de
rendimiento de Periscope esta compuesto por un nimero de agentes de andlisis estructurados de forma
jerérquica.

2.3.1.3 TAU

TAU (Tuning and Analysis Utilities) [28] [19] es un sistema de rendimiento paralelo que
integra un framework y un conjunto de herramientas automaticas para instrumentacion, medida,
analisis y visualizacién del rendimiento de aplicaciones ejecutadas en sistemas paralelos de gran
escala. Fue desarrollado en 1992 en la Universidad de Oregon, en EEUU, en colaboracion con
el Centro de Investigacion de Jilich y el Laboratorio Nacional de Los Alamos. La ultima
version de TAU (2.19.1), fue lanzada en febrero de 2010 [29].

Una de sus principales caracteristicas es el gran ndmero de plataformas hardware y
software que soporta. TAU puede ser ejecutada en la mayoria de las plataformas actuales de
computo de altas prestaciones y permite varios lenguajes, incluyendo C, C++, Java, Python,
Fortran, OpenM, MPI and Charm.

El framework estd compuesto por herramientas y modulos que se integran y coordinan

sus operaciones usando interfaces bien definidas y formatos de datos concretos. Su arquitectura

21

Capitulo 2. Analisis de rendimiento

se organiza en tres capas (instrumentacion, medida y analisis), donde en cada capa mdultiples

maodulos estan disponibles y puede ser configurados de manera flexible por el usuario.

TAU soporta un flexible modelo de instrumentacion, basado en instrumentacion
dindmica, que permite al usuario insertar instrumentacién de rendimiento Illamando a la APl de
medidas de TAU. El concepto clave de la capa de instrumentacién es que en dicha capa es
donde se definen los eventos de rendimiento. EI mecanismo de instrumentacion de TAU
permite distintos tipos de eventos que definen el rendimiento, incluyendo eventos definidos por
localizaciones de codigo, eventos de interfaz de librerias, eventos del sistema y eventos
definidos por el propio usuario. De modo que, la salida de la instrumentacion es informacion
sobre los eventos de un experimento de rendimiento. Esta informacion serd usada por otras

herramientas.

La capa de instrumentaciéon se comunica con la capa de medida mediante la API de

medida de TAU. El sistema de medida de TAU esta organizado en 4 partes:

- Laparte de creacién y gestién de eventos determina como son procesados los eventos.

- La parte de medidas de rendimiento permite la medicion de dos formas: profiling y
tracing. Para cada forma TAU presenta una completa infraestructura para gestionar los
datos de medida durante la ejecucion a cualquier escala.

- La parte de fuentes de datos de rendimiento define que datos de rendimiento son
medibles y pueden ser usados en profiling y tracing.

- La parte de sistema operativo y sistema de ejecucion proporciona el acoplamiento entre
el sistema de medida de TAU y el sistema paralelo subyacente. TAU especializa y

optimiza su ejecucion de acuerdo a las caracteristicas de la plataforma disponible.

La capa de anélisis y visualizacion permite el uso de varios mddulos. Estos modulos se
dividen en componentes para profiling y componentes para tracing, cuya informacion generada
puede ser visualizada por herramientas especializadas en ellos como ParaProf o Vampir,

respectivamente.
2.3.1.4 Paraver y Dimemas

Paraver [30] y Dimemas [31] son dos herramientas de andlisis de rendimiento automatico
desarrolladas en el Centro Europeo de Paralelismo de Barcelona (CEPBA) en 1996 y 1992

respectivamente.

Paraver es una herramienta flexible para el analisis y visualizacion del rendimiento
basada en trazas que puede ser usada para analizar cualquier informacién expresada en el

formato de su traza de entrada de aplicaciones que empleen MPI, OpenMP, MPI+OpenMP,

22

Capitulo 2. Analisis de rendimiento

Java, resimenes de contadores hardware, actividad del sistema operativo...Ademas esta

disponible para multiples plataformas como IRIX, AlX, Linux, Tru64.

Basada en una interfaz de usuario grafica, Paraver fue desarrollada para responder a la
necesidad de tener una percepcion cualitativa global del comportamiento de las aplicaciones a
través de un registro visual que permita tener una vision sobre los problemas de rendimiento
presentes. Paraver proporciona una gran cantidad de informacién util para mejorar las
decisiones de si y donde invertir esfuerzos en el proceso de programacion con el objetivo de

optimizar la aplicacion.
Algunas de las principales caracteristicas de Paraver son:

- Andlisis cuantitativo detallado del rendimiento del programa.

- Andlisis comparativo concurrente de varias trazas.

- Andlisis rapido para trazas de gran tamafio.

- Permite trazas con mezcla de paso de mensajes y memoria compartida.
- Permite la personalizacion de la informacion a visualizar.

- Generacidn de métricas derivadas.

Paraver presenta 3 tipos de visualizaciones:

- Vista gréfica: representa el comportamiento de la aplicacién en el tiempo de manera que
proporcionar al usuario una comprension general del comportamiento del programa.
También permite un analisis detallado mediante el uso de patrones de identificacion y
relaciones de causalidad.

- Vista textual: proporciona el maximo detalle sobre la informacion mostrada.

- Vista de anélisis: proporciona datos cuantitativos.

La visualizacion gréfica es suficientemente flexible para representar visualmente una
gran cantidad de informacion y para ser la referencia para el analisis cuantitativo. Esta
visualizacion consiste en un diagrama de tiempo con una linea para cada objeto representado.
Los tipos de objetos mostrados por Paraver estdn muy relaciones con los conceptos de los
modelos de la programacion paralela (carga de trabajo, aplicacion, tarea, hebra...) y con los

recursos de ejecucion (sistema, nodo y CPU).

Dimemas es una herramienta de analisis de rendimiento para programas basados en
paso de mensajes. Permite al usuario desarrollar y sintonizar aplicaciones paralelas en una
estacion de trabajo, mientras proporciona una buena prediccién de su rendimiento en la maquina

paralela objeto de la ejecucion.

23

Capitulo 2. Analisis de rendimiento

El simulador Dimemas reconstruye el comportamiento temporal de la aplicacién
paralela en una maquina modelada por un conjunto de pardmetros de rendimiento. De este
modo, se pueden realizar experimentos de rendimiento de forma sencilla. El tipo de
arquitecturas que se pueden simular incluyen redes de estaciones de trabajo, sistemas SMP,

computadores paralelos de memoria distribuida, e incluso sistemas heterogeneos.

Dimemas soporta librerias de paso de mensajes, como PVM, MPl y PARMACS. Para la
comunicacién, se usa un modelo de rendimiento lineal, se tienen en cuenta ademas algunos
efectos no lineales como conflictos en la red. Ademéas el simulador permite especificar

diferentes mapeos de tareas en los nodos.

Dimemas genera ficheros de traza validos para dos herramientas de andlisis: Paraver y

Vampir.

Esta herramienta es Gtil en dos fases de la vida de una aplicacion: durante su desarrollo,
para realizar un analisis de los efectos de diferentes pardmetros en el rendimiento sin requerir el
uso de la arquitectura sobre la que se desea ejecutar; y después la fase de produccion, para

seleccionar la mejor arquitectura para ejecutar la aplicacion.

Las entradas de Dimemas son: un fichero de traza y un fichero de configuracion. El
fichero de traza contiene los datos de una ejecucién real en una maquina que captura
informacidn sobre la CPU y patrones de comunicacién. Esta ejecucion real puede ser hecha en
cualquier tipo de maquina, incluso en maquinas uniprocesador, mapeando todos los procesos en
un Unico procesador. Aungue el rendimiento de esa ejecucion sera muy bajo, el fichero de trazas
de Dimemas sera valido. La segunda entrada es un fichero de configuracion que contienen un

conjunto de pardmetros que modelan la arquitectura deseada.

La salida de Dimemas puede ser simplemente un texto que contiene la prediccion del
tiempo empleado en la ejecucién de la aplicacion sobre la plataforma especificada o una

visualizacion del fichero de trazas.
2.3.1.5 KappaPi

KappaPi (Knowledge-based Analyser of Parallel Program Applications and Performance
Improver) [4] [32] es una herramienta de analisis de rendimiento automatica desarrollada en la

Universidad Autébnoma de Barcelona entorno a 1998.

El objetivo de esta herramienta es ayudar en la tarea del analisis de rendimiento de
programas paralelos implementados bajo un paradigma de paso de mensajes (MPI o PVM),
mediante la deteccion de los principales cuellos de botella presentes en el rendimiento, el

andlisis de las causan que generan estos problemas y el establecimiento de la relacion entre

24

Capitulo 2. Analisis de rendimiento

dichas causas y el cédigo fuente. Para ello se basa en el analisis post-mortem de un fichero de
traza y en una base de datos de conocimiento que incluye los principales cuellos de botella

encontrados en aplicaciones de paso de mensajes.

En el proceso de analisis de la aplicacién realizado por KappaPi se distinguen una serie
de fases cuyo objetivo final es proporcionar sugerencias al usuario sobre el rendimiento actual

de la aplicacion:

- KappaPi obtiene los datos de ejecucion de un fichero de traza.

- Andlisis de eficiencia. La herramienta busca aquellos intervalos de ejecucion donde la
eficiencia es baja. Los intervalos se almacenan en una lista acumulada.

- Seleccién de las peores ineficiencias. Las ineficiencias almacenadas en la lista son
ordenadas por importancia en funcién del tiempo acumulado y las CPUs involucradas.

- Anédlisis de ineficiencia. Cada una de las ineficiencias es analizada con detalle. Con la
ayuda de un sistema basado en reglas, la ineficiencia es clasificada. Su motor de
inferencia evalua informacion del programa asi como informacién de la traza. EI primer
paso del proceso de deduccion estd basado en los eventos de la traza actual, mientras
que en los siguientes pasos del analisis se requieren algunos detalles del codigo fuente
para proporcionar sugerencias para mejorar el rendimiento.

- Sugerencias de rendimiento. Con la ayuda de la clasificacién del problema, se
proporciona al usuario algunos detalles de los problemas encontrados junto con algunas

sugerencias para mejorar el rendimiento.

2.4 Analisis dinamico de rendimiento

El andlisis de rendimiento dinamico surge con el objetivo de eliminar la necesidad de generar y
almacenar enormes ficheros de traza y gestionar la cantidad de instrumentacion insertada. La

figura 2.6 muestra el ciclo de operacion llevada a cabo en esta aproximacion.

En esta aproximacion el analisis de rendimiento pasa de ser post-mosterm a realizarse
sobre la marcha durante la ejecucién de la aplicacion, de una manera completamente automatica
y evitando la necesidad de una instrumentacion manual. Esto implica la necesidad de una
monitorizacion constante, donde la principal ventaja es que no se necesita ficheros de traza para
el analisis. Ademas la instrumentacion puede ser dindmicamente insertada o eliminada de la
aplicaciébn mediante técnicas dindmicas de instrumentacion. De este modo la fase de
monitorizacion puede comenzar con una simple instrumentacion y cuando se detectan

condiciones especiales, se introduce instrumentacion adicional.

25

Capitulo 2. Analisis de rendimiento

Aplicacion

L

| m—

Sintorizacion de rendimiento

Usuario T b
Ejecudon

Tiempo de ejecucion

Hermramienta

Moritcrizacion :
=) Suigerencias para
el usuario

y

Ardlisis de rendimiento

Figura 2.6 Aproximacion dindmica del analisis de rendimiento

Realizar el anélisis durante la ejecucién de la aplicacion conlleva a introducir cierto
overhead dentro de ella. Por ello, el andlisis debe ser relativamente simple para introducir la

menor cantidad de overhead posible.

El andlisis dindmico permite la deteccion de problemas de rendimiento de forma mas
rpida que las aproximaciones post-mortem. De esta manera, este analisis es adecuado para
aplicaciones iterativas que presentan un amplio tiempo de ejecucién con grandes volumenes de
datos. Sin embargo, requiere que el usuario pare, modifique, recompile y vuelva a ejecutar la
aplicacion para aplicar la sintonizacion. Por ello esta aproximacion es adecuada para
desarrolladores con experiencia mas que para usuarios no expertos de la aplicacion tales como
quimicos, bidlogos, etc. Ademas, como en las anteriores aproximaciones, decisiones basadas en
una Unica ejecucion podrian no ser significativas cuando la aplicacion presenta un

comportamiento dinamico, es decir, su pauta depende de los datos de entrada o de su evolucién.

2.4.1 Herramientas

2.4.1.1 Paradyn

Paradyn [33] es una herramienta de analisis desarrollada por la Universidad de Wiscosin-
Madison entorno a 1994. Puede ejecutarse en la mayoria de las plataformas actuales y soporta

varios lenguajes de programacion como C, Fortran y permite threads y comunicacion con MPI.

26

Capitulo 2. Analisis de rendimiento

Los autores de Paradyn son conscientes del problema asociado al almacenamiento y
andlisis de grandes cantidades de datos de trazas, y se acercaron a una solucién que intenta
evitar estos problemas. En lugar de almacenar una traza completa de todo el comportamiento de
la aplicacion, Paradyn realiza un andlisis de rendimiento on-line. Paradyn lleva a cabo
instrumentacion binaria en tiempo de ejecucion [8] cuando es necesario, intentando mantener el
overhead causado por la instrumentacion a un nivel minimo. De modo que el codigo de la
instrumentacion puede ser insertado o eliminado por el usuario en tiempo de ejecucion.
Ademas, también proporciona una busqueda automatica de cuellos de botella en el rendimiento
denominada Performance Consultant. Ademas el grupo de desarrollo de Paradyn desarrolld
MRNet [34], arquitectura que permite agregar datos de rendimiento de forma distribuida. Asi,

solo el valor final agregado se envia la herramienta de analisis de rendimiento.

Paradyn esta compuesto por diferentes modulos software complementarios, todos
unidos a una interfaz grafica de usuario (GUI). Cuando los usuarios lanzan sus programas
usando la GUI principal, Paradyn también lanza varios procesos demonios de monitorizacién en
cada nodo. Cuando los usuarios seleccionan una visualizacién o desarrollan otra accion que
requiere datos de rendimiento, la GUI se comunica con cada demonio y realiza una peticién
para insertar codigo de instrumentacién en el programa en ejecucion. De este modo, cada
demonio realiza la instrumentacion, comienza a almacenar datos, y periédicamente manda
muestras de datos a la GUI principal. Estas muestras de datos son almacenadas en una base de
datos round-robin, las cuales son presentadas al usuario graficamente mediante alguna de las

visualizaciones de Paradyn.

Cuando se usa el médulo de Perfomance Consultant, tiene lugar una secuencia de
acciones similar a la comentada anteriormente, excepto que estas acciones son controladas por
la rutina de busqueda del médulo Perfomance Consultant en lugar de por el usuario. El proceso
de basqueda usa el modelo W? (Why is there a performance bottleneck? Where is it located?
When did it happen?), que guia la busqueda de ineficiencias en el rendimiento a un conjunto de
cuellos de botella. Este modelo intenta responder por qué, donde y cuando la aplicacion presenta
un mal rendimiento relacionando las causas con especificas clases de cuellos de botella, nodos

de una maquina y funciones del cddigo fuente.

2.5 Sintonizacion dindmica de rendimiento

El proceso de sintonizacion dinamica proporciona una sintonizacion automatica de la
aplicacion en tiempo de ejecucion en lugar de la insercién manual de los cambios en el

codigo fuente, desvinculando al desarrollador o usuario no experto del proceso de

27

Capitulo 2. Analisis de rendimiento

sintonizacion de su aplicacion. La figura 2.7 muestra el ciclo de operacién llevada a cabo en

esta aproximacion.

—]
Usuario : I
Ejecuddn Menpriaeh N
la splicacion | [
S

Tiempo de ejecucion

Sintori zacion de rendimiento

Herramienta

¥

Moritor zacidn 3 Andlisis de rendimiento

Sugerencias para
el usuario

Figura 2.7 Aproximacién dinamica de la sintonizacion de rendimiento

En esta aproximacion todas las fases del proceso de optimizacion de rendimiento
son realizadas de forma automatica, dindmica y continta durante la ejecucién del
programa paralelo. La aplicacién es instrumentada en tiempo de ejecucion de forma
dinamica y automatica para obtener informacién sobre el comportamiento de la misma.
Durante la fase de andlisis se busca los problemas, se detectan sus causas y se
proporcionan las soluciones para eliminar esos problemas de rendimiento. Finalmente,
se sintoniza la aplicacién aplicando las soluciones dindmicamente. Ademas, mientras la
aplicacion esta siendo sintonizada, no necesita ser compilada ni ejecutada otra vez ya
que la instrumentacion y las modificaciones son realizadas empleando técnicas de

instrumentacién dindmica.

El analisis dinamico y las modificaciones introducidas permiten la adaptacion
del comportamiento de la aplicacion a las condiciones cambiantes de la propia

aplicacion o del entorno paralelo en el cual se ejecuta.

28

Capitulo 2. Analisis de rendimiento

2.5.1 Herramientas

2.5.1.1 Autopilot

Autopilot [35] [6] es una infraestructura software desarrollada por la Universidad de Illinois en
1998 para la sintonizacion dindmica del rendimiento de entornos computacionales heterogéneos
basada en bucles de control cerrados. Se basa fundamentalmente en la aplicacidn de técnicas de
control en tiempo real para adaptar dinamicamente el sistema a las diferentes demandas y

disponibilidad de recursos.

Su desarroll6 se basé en la experiencia adquirida en la realizacion del entorno de

andlisis de rendimiento Pablo, propuesto por la misma Universidad.
La infraestructura de Autopilot, esta formada por varios componentes software:

- Sensores y actuadores distribuidos. Los primeros capturan datos en tiempo de ejecucién
y los envian a los clientes; los actuadores por su parte reciben comandos desde los
clientes, y ajustan el comportamiento de la aplicacién y las politicas de recursos. Cada
sensor y actuador estd asociado con un conjunto de propiedades (nombre, tipo,

direccion de red...).

En el proceso de instrumentacion los sensores y actuadores pueden operar en
modos threaded Yy no-threaded. En el modo threaded, una hebra de monitorizacion
separada se ejecuta en el mismo espacio de direcciones que la aplicacion que esta
siendo monitorizada, y va pasivamente adquiriendo datos observando las variables
compartidas y cambiando valores mediante los comandos de los actuadores. En el modo
no-threaded, un sensor 0 actuador es invocado mediante una llamada a un

procedimiento desde el codigo fuente que esta siendo monitorizado.

Para permitir la reduccién de datos, todos los sensores de Autopilot presentan
funciones que son invocadas cada vez que el sensor recibe datos y acta como filtros de

datos, transformando los datos originales a una forma alternativa reducida.

- Clientes, establecen comunicacion directa con los sensores y actuadores. Todos los
clientes remotos conectados reciben datos de los sensores, procesan estos datos, toman
decisiones y envian comandos a los actuadores para implementar dichas decisiones.
Ademas pueden cambiar el comportamiento de los sensores y actuadores (activacion,

tamafio del buffer...).

- Gestor Autopilot, actia como servidor de nombres y coordina la conexién entre

sensores, actuadores y clientes. El proceso de gestion se muestra en la figura 2.8. A

29

Capitulo 2. Analisis de rendimiento

través de él los clientes realizan

inicialmente los sensores y actuadores registran sus propiedades, con el objetivo de que

cuando el cliente realiza una peticion con unas caracteristicas concretas, el Gestor

peticiones a los sensores y actuadores. Para ello,

proporciona aquellos sensores y actuadores que satisfacen las mismas.

Contro

| Sensor/Actuador

Figura 2.8 Proceso de gestion en autopilot

- Mecanismo de decision, selecciona

en las peticiones de la aplicacion y

bucle de control adaptativo cerrado basado en un motor de logica difusa, segln se

refleja en la figura 2.9. Esta motor toma las entradas de los sensores, fuzzifica los

valores, computa la confianza relati

activar los actuadores remotos.

la politica de gestién de recursos correcta basandose

en los datos de los sensores. Se estructura segln un

va de cada regla, y defuzzifica los consecuentes para

Repositorio de Conocimiento

Reglas

Conjuntos
difusos

Entra;das
W
L 2

Légica Difusa !

Motor de decision

Salidas

—

Figura 2.9 Proceso de decision basado en ldgica difusa

30

Capitulo 2. Analisis de rendimiento

La comunicacion entre los distintos componentes de Autopilot esta construida sobre la
herramienta Nexus.

2.5.1.2 Active harmony

Active Harmony [5] es un framework implementado en la Universidad de Maryland en 2002,
que permite la adecuacion dindmica de una aplicacion a la red y a los recursos disponibles,

mediante la adaptacién automatica de algoritmos, distribucion de datos y balanceo de carga.

Su estructura esta basada en un modelo cliente-servidor. El cliente es la aplicacion
“armonizada”, la cual envia la informacion de rendimiento al servidor. El servidor realiza la
sintonizacion de la aplicacion y adapta las decisiones basdndose en la informacién obtenida del
cliente.

Su sistema, cuyo esquema se muestra en la figura 2.10, consiste en 3 componentes principales:

- Una API implementada en C++ que permite la integracion de las librerias de la
aplicacion del usuario con diferentes librerias que presenta la misma o similar
funcionalidad.

- El Controlador Harmony, el cual constituye la parte principal de la infraestructura del
servidor Harmony.

- Algoritmos parametrizables de sintonizacion y optimizacion.

APLICACION Servidor Harmony

API

Capa de especificacion Controlador
de la libreria Componente de

monitorizacion

Librerial Libreria2 Libreria N

Parametros | Parametros Parametros

SISTEMA (ENTORNO DE EJECUCION)

Figura 2.10 Sistema de sintonizacion automatico en tiempo de ejecucion de Active Harmony

31

Capitulo 2. Analisis de rendimiento

La API permite la “armonizacion” de la aplicacion, mediante el uso del Controlador
Harmony. Su principal objetivo es ayudar a la aplicacion a usar el algoritmo subyacente mas
apropiado. Para conseguir tal fin, primeramente se caracteriza el patron de la aplicacion y se
monitoriza el rendimiento de las distintas implementaciones de librerias subyacentes. Basandose
en la informacion recopilada, se redireccionan las llamadas a las funciones del programa de la

libreria subyacente seleccionada. Esta seleccion es la realizada a través del Controlador.

Durante la ejecucion el Controlador Harmony recibe las caracteristicas de la peticion
desde la capa formada por la API. Tras esto, el Controlador gestiona los valores de los
diferentes parametros sintonizables proporcionados por la aplicacion y devuelve el algoritmo
subyacente sugerido para usar de acuerdo a los resultados obtenidos en su proceso de decision.
En la implementacion inicial, cuando el Controlador selecciona un determinado algoritmo,
intenta explorar todos los posibles algoritmos al menos durante un breve periodo de tiempo.
Para ello emplea los algoritmos basados en técnicas heuristicas mediante los cuales explora el
espacio de optimizacion de la aplicacién y ajusta los valores en la sintonizacion basandose en el
rendimiento observado. Las métricas de rendimiento comunmente utilizadas son el uso de los
recursos por parte de la libreria tales como tiempo de CPU o espacio de memoria. De modo que
el Controlador intenta minimizar el valor de estas métricas de rendimiento cuando realiza la

busqueda de la libreria subyacente apropiada.

Las ultimas investigaciones sobre esta herramienta se basan en el estudio de la
influencia de las técnicas heuristicas exploratorias del espacio para optimizar la aplicacion bajo

andlisis [36].
2.5.1.3 PerCo

PerCo [37] es una framework para el control del rendimiento en entornos heterogéneos. Es
capaz de gestionar la ejecucion distribuida de aplicaciones usando migraciones, por ejemplo, en
respuesta a cambios en el entorno de ejecucion. PerCo monitoriza los tiempos de ejecucién y
reacciona de forma acorde a una estrategia de control para adaptar el rendimiento cuando tienen

lugar cambios importantes en el rendimiento.

Comenzo a ser desarrollada en la Universidad de Manchester en el afio 2005. Su uso
estd orientado para dos tipos de aplicaciones empleadas en HPC: modelos de simulacion

cientifica [38] y busqueda distribuida en control estadistico.

PerCo esta disefiado para ser una aplicacion ligera con el fin de controlar el rendimiento
de un programa individual en un conjunto de recursos que han sido asignados por algun gestor
de recursos externo.

32

Capitulo 2. Analisis de rendimiento

La aplicacion a monitorizar se estructura en una serie de componentes individuales
controlados cada uno de ellos por un loader PerCo. El conjunto de loaders constituyen la
infraestructura de reimplementacion. Cada loader es responsable de lanzar y mover su
componente. Cada componente tiene dos interfaces. Una interfaz con otros componentes que
permite la implementacion de funciones que intercambian datos mediante comunicaciones entre
componentes. Una interfaz de control de rendimiento para la comunicacion con el componente
que dirige el control del rendimiento (CPS). Esta interfaz es usada para intercambiar
informacion de rendimiento y comandos de rendimiento. Un CPS es responsable del control
local de su componente asociado. La entidad que tiene el control sobre todo el conjunto de la
aplicacién es el director del rendimiento de la aplicacion (APS). EI APS recibe datos de
rendimiento desde los CPSs y contiene un repositorio de informacion que almacena datos
histéricos de rendimiento. EI APS puede invocar a un predictor de rendimiento para determinar
configuraciones de componentes mejoradas. La figura 2.11 muestra los distintos mddulos que

componen la funcionalidad de PerCo.

ﬂ Interfaz de control de rendimiento

' - J
1 = m Interfaz de unién de componentes
/ataf Fa N+1
S | (| CPS))

(o]
[cps) [cPs | [CPS

s o = e N s

I}‘ Componentel l!(—)”‘ Componente 2 ‘I](—)l] Componente N m
Loader 1 Loader 2 Loader N
Plataforma 1 Plataforma 2 Plataforma N

Figura 2.11 Arquitectura del sistema PerCo

Este sistema se adapta a los cambios en el rendimiento de la aplicacion desarrollando
politicas de balanceo de carga y tolerancia a fallos [39]. La interaccion del usuario no se
requiere en el proceso ya que las decisiones de reimplementacion no se basan en conocimiento
humano experto, si no en una politica que ha sido construida en el APS. La politica se basa en
predicciones de rendimiento. EI modelo de predicciones combina series de tiempo y técnicas de

ajuste de datos para predecir el tiempo de ejecucion. Las series de tiempo son usadas para

33

Capitulo 2. Analisis de rendimiento

predecir el rendimiento del siguiente paso de tiempo dada la actual implementacion. Las
técnicas de ajuste de datos se usan para predecir el rendimiento del siguiente paso de tiempo
dada una nueva implementacion. En tiempo de ejecucion se emplean las dos técnicas para
producir dos predicciones. La prediccion de mayor calidad es la que se usa. Sin embargo, la

diferencia entre las dos predicciones proporciona una estimacion de la calidad de la prediccion.

2.5.14 MATE

MATE [40] (Monitoring, Analysis and Tuning Environment) €S una herramienta que
implementa una sintonizacion automatica y dinamica de aplicaciones paralelas. Su objetivo es
mejorar el rendimiento de una aplicacién paralela en tiempo de ejecucion, adaptandola a las
condiciones variables del sistema sobre el que se ejecuta. MATE constituye el eje en el cual se
basa el presente trabajo de investigacién, de modo que en el capitulo 3 se detalla dicha

herramienta desde un punto de vista conceptual y funcional.

34

Capitulo 3. MATE

Capitulo 3

MATE

3.1 Introduccidén

Actualmente, las aplicaciones informéticas son usadas para resolver complejos problemas en
distintos ambitos cientificos como ciencia e ingenieria. Muchos de estos problemas necesitan
una alta potencia de calculo que s6lo puede ser abordada por medio del procesamiento
paralelo/distribuido, el cual permita aprovechar la potencia de distintos tipos de arquitecturas
hardware en las que se dispone de mas de un procesador. Por lo tanto, el rendimiento se

convierte en uno de los aspectos mas importantes en el procesamiento paralelo/distribuido.

Conseguir y mantener un buen rendimiento en aplicaciones paralelas/distribuidas es una
tarea compleja, mas aun cuando dichas aplicaciones o los entornos de ejecucion tienen un
comportamiento dindmico. Muchas aplicaciones tienen un comportamiento diferente segun los
datos de entrada o incluso pueden variar durante la misma ejecucion. En tales casos, no merece
la pena realizar un analisis de rendimiento y sintonizacion postmortem, ya que las conclusiones
basadas en una ejecucién podrian ser erroneas para otra. En estos casos actualmente se plantea
realizar una sintonizacion dindmica y automaética de la aplicacion durante su ejecucion sin

pararla, recompilarla o reejecutarla.

Bajo este propdsito se desarrollo la herramienta MATE. MATE (Monitoring, Analysis
and Tuning Environment) [41] [42] proporciona una sintonizaciéon dinamica y automaética de
aplicaciones paralelas/distribuidas. Fue disefiada y desarrollada en el grupo de Entornos para la

evaluacion de rendimiento y sintonizacion de aplicaciones dentro del Departamento de

35

Capitulo 3. MATE

Arquitectura de Computadores y Sistemas Operativos de la Universidad Auténoma de
Barcelona. Inicialmente fue creada para sintonizar aplicaciones PVM paralelas/distribuidas
desarrolladas en C/C++ ejecutandose en plataformas UNIX y actualmente también esta siendo
desarrollada para sintonizar aplicaciones basadas en la libreria de paso de mensajes MPI. Hace
unos afios también se desarroll6 una version orientada para entornos Grid, denominada GMATE
[43].

La sintonizacién dindmica implementada por MATE, en concreto el uso de modelos de
rendimiento en su fase de analisis, es el nucleo de este trabajo. De tal modo, en las siguientes
secciones, se describen en mayor detalle las principales caracteristicas, funcionalidad y
arquitectura de MATE [7] [40].

3.2 Vision general

En el capitulo 2, se mostraron las diferentes aproximaciones sobre analisis de rendimiento.
Como se comentd, MATE implementa una sintonizaciéon dinamica y automatica del
rendimiento. En la presente seccion se exponen las principales consideraciones y caracteristicas

de MATE que hace de él un sistema de sintonizacion en tiempo de ejecucion, Gtil y eficiente.
3.2.1 Sintonizacion dindmica y automatica

El principal objetivo de MATE es mejorar el rendimiento de una aplicacion paralela,
adaptandola a las condiciones variables del sistema sobre el que se ejecuta. Su potencia radica

en dos caracteristicas principales:

- Sintonizacion dinamica, es til especialmente cuando las aplicaciones son ejecutadas
en entornos heterogéneos o sistemas de tiempo compartido, porque las decisiones para
ajustar el comportamiento de una determinada aplicacion se realiza sobre la marcha,
teniendo en cuenta el estado actual del sistema.

- Sintonizacion automatica, es Util porque los usuarios no deben preocuparse o participar
en el proceso de blsqueda de problemas de rendimiento o en la introduccion de

modificaciones en la aplicacion para mejorar su rendimiento.

Las decisiones de como mejorar el rendimiento de la aplicacién se realizan mediante el
conocimiento de los posibles problemas de la aplicacion. Este conocimiento debe ser
proporcionado por el usuario, indicando qué medidas que determinan el comportamiento de la
aplicacion deberian ser monitorizadas (puntos de medida), como detectar y resolver posibles
problemas de rendimiento (funciones de rendimiento) y qué pardmetros criticos en la aplicacion

son necesarios modificar para mejorar el rendimiento (puntos de sintonizacion). Dicho

36

Capitulo 3. MATE

conocimiento define un modelo de rendimiento, el cual sera integrado en MATE mediante su

codificacion en un componente de software llamado tunlet.

Cuando MATE se ejecuta, carga un conjunto de tunlets los cuales proporcionan el
conocimiento para mejorar y adaptar la aplicacion. De este modo, un tunlet representa un
modelo de rendimiento y su informacién es usada a lo largo del proceso de mejora de
rendimiento para dirigir las fases de monitorizacion, analisis y sintonizacion. Cada tunlet es una
libreria compartida escrita en C/C++ que debe ser implementada usando la API de sintonizacién
dinamica proporcionada por MATE (DTAPI).

De este modo, tal y como se muestra en el esquema de la figura 3.1, mediante la
monitorizacion dindmica de la ejecucion de la aplicacion, la instrumentaciéon se inserta de
acuerdo al modelo de rendimiento definido de manera automatica en la aplicacién recopilando
informacidn sobre el comportamiento de la aplicacién. El analisis de la informacion recopilada
se hace evaluando las formulas analiticas del modelo y las soluciones son autométicamente
insertadas en la aplicacién, y la aplicacion no necesita ser recompilada, reenlazada o
reejecutada. Para modificar la aplicacion en tiempo de ejecucion, MATE usa la técnica Ilamada

instrumentacion dinamica [8].

Usuario

D N] M N N E'ecud(_’:ﬂ Metaria de W W N N] S N D R M W
] la splicacion | %

- N N I Modificaciones

Medidas de rendimiento .

MATE Simtorizacidn de rendimiento

-------- Instrumentacion s Problema/Solucion

y

Maritori zacion Aralisis de rendimiento

Eventos

Figura 3.1 Proceso de mejora de rendimiento de MATE

La realizacion de estas 3 fases de forma automatica hacen mas facil las tareas del
usuario si se considera su intervencion en el proceso de sintonizacion. La aproximacion de la

sintonizacion dinamica que MATE desarrolla libera al usuario de:

- Instrumentar la aplicacién a mano o semiautomaticamente.

- Hacer un seguimiento de la traza de ejecucién de la aplicacion.

37

Capitulo 3. MATE

Analizar analitica o automaticamente el rendimiento.

Modificar y recompilar el cédigo fuente de la aplicacion.

3.2.2 Caracteristicas funcionales

Desde un punto de vista funcional, en MATE se distinguen tres fases basicas y continuas que

conforman el proceso de mejora de rendimiento: monitorizacion, andlisis y modificaciones.

Como se comenté anteriormente, todas estas fases se realizan continla, automatica y

dindmicamente mientras el programa esta en ejecucion.

Para realizar correctamente el proceso de mejora de rendimiento, MATE presenta una

serie de caracteristicas afiadidas que permiten el funcionamiento de la herramienta como un

todo integrado. Estas caracteristicas son:

38

Control paralelo de la aplicacion.
El proceso de mejora de rendimiento debe actuar sobre todas las tareas
ejecutadas en las distintas maquinas que conforman la aplicacion con el objetivo de

poder gestionar o controlar la aplicacion completa.

Analisis global.
El comportamiento de la aplicacion debe ser evaluado de forma global, de
forma que la informacion recopilada de las distintas tareas que componen la aplicacion

debe estar centralizada para poder realizar un andlisis de rendimiento global.

Conocimiento de la aplicacién.

La sintonizacién dindmica para que sea Util y eficiente precisa, como se
comentd anteriormente, que el proceso de analisis sea simple para poder tomar
decisiones en un corto periodo de tiempo y que las modificaciones que se realicen en
la aplicacion sean claras y concisas. De tal manera, no poseer un determinado
conocimiento de la aplicacion, puede hacer que el proceso de sintonizacion pierda
efectividad.

Por tanto, es necesario proporcionar informacién sobre qué deberia ser medido
(puntos de medida), como detectar y resolver posibles problemas de rendimiento
(funciones de rendimiento) y qué es necesario modificar para ello (puntos de
sintonizacion). Asi, para el correcto funcionamiento de MATE, se precisa no solo la
cooperacion del usuario para definir como analizar el comportamiento de la aplicacion,
sino que el usuario debe de conocer también los detalles de implementacion de MATE
para poder desarrollar o implementar las soluciones a los posibles problemas de

rendimiento de su aplicacion.

Capitulo 3. MATE

- Bajaintrusion.
El overhead que causa el proceso de mejora de rendimiento debe ser minimo
para evitar afectar al rendimiento de la aplicacion, ya que ambos son ejecutados

concurrentemente.

- Solventar los cuellos de botella.

Para solucionar los posibles problemas de rendimiento, las distintas fases del
proceso de sintonizacion necesitan un periodo de tiempo para determinar una
solucion. Sin embargo, puede ocurrir que una vez que se haya aplicado la solucion para
un el cuello de botella, éste haya desaparecido. En este caso, la sintonizacion dindmica
es especialmente recomendable para aquellos problemas que presenta una cierta

persistencia a lo largo del tiempo.
3.2.3 Instrumentacion dindmica mediante Dyninst

El principio de la instrumentacién dindmica consiste en postponer la instrumentacion de la
aplicacion hasta que ésta esté siendo ejecutada e insertar, alterar o eliminar estas modificaciones
en tiempo de ejecucion. Esta aproximacién fue inicialmente usada en la herramienta Paradyn
descrita en la seccidn 2.4.1.1 del capitulo 2. De modo que, el grupo de Paradyn como resultado
de su investigacion desarroll6 una libreria que permitia la instrumentacién dindmica; esta

libreria recibe el nombre de Dyninst [44].

Dyninst es una APl (dpplication Program Interface) que genera c6digo en tiempo de
ejecucion y esta dirigida a aplicaciones escritas en los lenguajes C/C++. La API esté basada en
una tecnologia orientada a objetos, y proporciona un conjunto de clases y métodos que permiten

al usuario la realizacion de una serie de acciones:

- Maodificar un proceso en ejecucién o comenzar un nuevo proceso.
- Crear un nuevo fragmento de cédigo.

- Acceder y usar codigo y estructuras de datos existentes.

- Insertar codigo creado en el proceso en ejecucion.

- Eliminar cédigo previamente insertando en el programa en ejecucion.

El cddigo insertado a través de Dyninst en una aplicacién, serd ejecutado cuando el
programa ejecute la seccion de codigo modificada. Para que esto ocurra, la aplicacion no
necesita ser recompilada, ni reenlazada ni reejecutada y ademas Dyninst no necesita acceder al
codigo fuente de la aplicacidn, ya que todo el proceso de instrumentacion lo realiza gestionando
la imagen del espacio de direcciones del proceso. El Gnico requisito precisado por Dyninst es la

necesidad de informacion de depuracion sobre el programa instrumentado para ser capaz de

39

Capitulo 3. MATE

localizar los procedimientos y variables necesarias, de tal modo que éste debe ser compilado

con la correspondiente opcion habilitada.

Esta libreria es usada por MATE para lograr de manera dindmica y automatica dos de
los procesos principales de la aproximacion de mejora de rendimiento que dicha herramienta

desarrolla:

- La fase de monitorizacion dinamica, de tal modo que mediante la instrumentacion
dindmica se puede afadir o eliminar cddigo en el programa para recopilar informacién
sobre el comportamiento de la aplicacion.

- La fase de sintonizacion dinamica, en la cual el codigo de la aplicacién es cambiado

para mejorar su rendimiento.

Abstracciones
La libreria Dyninst estd basada en las siguientes abstracciones:

- Mutatee o aplicacion, es el programa que va a ser instrumentado.

- Mutator, es el programa que controla y modifica la aplicacion mediante Dyninst.

- Punto, es un especifico punto de la aplicacion donde algin nuevo fragmento de codigo
puede ser insertado.

- Snippet, es una representacion de un fragmento de codigo ejecutable, el cual puede ser
insertado en el programa en un punto determinado.

- Proceso, corresponde a la ejecucion de una proceso.

- Imagen, constituye la representacion estatica del programa en disco. Cada hebra esta

univocamente asociada a una imagen.

Las abstracciones usadas por Dyninst y sus interacciones se muestran en la figura 3.2.

Mutator Aplicacién
dowv arkiint a int by |
i
o inti;
whilefi= 100
Ed
Puntos <.___.. i |
]
API | o i— Proceso
Snippets
Caédigo Dyninst
Libreria tiempo de
ejecucion .
= Disco

Figura 3.2. Abstraccién usada en Dyninst

40

Capitulo 3. MATE

Para poder emplear Dyninst en el proceso de sintonizacién dindamica, MATE actla
como mutator Yy la aplicacion a sintonizar actla como mutatee. L0S snippets y 10S puntos

dependen de la informacion necesaria para evaluar el comportamiento de la aplicacion.

3.3 Arquitectura

MATE, estd compuesto por varios modulos cooperativos, que controlan e intentan mejorar el

rendimiento en la ejecucion de la aplicacién. Los principales componentes son los siguientes:

- Controlador de Aplicacion (AC).

Es un proceso que controla la ejecucion de la aplicacion MPI. Su labor
principal es gestionar los cambios que dindmicamente se realizan en las tareas
individuales que componen la aplicacion. Para ello se encuentra enlazado con la
libreria de instrumentacién dindmica Dyninst, y emplea su APl para generar la
instrumentacion y modificaciones propias de la sintonizacion. Como se detall6 en la
seccion X, el codigo generado e insertado recibe el nombre de snippet. De este modo,
en tiempo de ejecucion, el controlador de aplicacion inserta o elimina los

correspondientes snippets en la tarea en ejecucion.

- Libreria de monitorizacién dindmica (DML.ib).

La DMLib tiene como objetivo facilitar la instrumentacién y recoleccion de
datos de rendimiento. Es una libreria compartida cargada de manera dinamica por el
Controlador de Aplicacién en las tareas que componen la aplicacion paralela. Para
realizar su objetivo, la libreria contiene funciones responsables del registro de los
eventos con todos los atributos requeridos, asi como funciones encargadas del envio

de dichos eventos para el analisis.

- Analizador.
Es un proceso que realiza el analisis de rendimiento de la aplicacion paralela,
detectando automaticamente los problemas de rendimiento existentes y solicitando

los cambios necesarios para mejorar el rendimiento de la aplicacion.

En las siguientes secciones se describen con detalle todos los modulos que componen

MATE, presentando su funcionalidad, requerimientos y limitaciones.
3.3.1 Controlador de aplicacién

Como se introdujo anteriormente, cada controlador de aplicacion es un Unico proceso que
controla una Unica tarea MPI ejecutandose en una maquina local. Este proceso proporciona los

siguientes servicios:

41

Capitulo 3. MATE

- Control distribuido de la aplicacion.

o Iniciay finaliza cada tarea MPI.

- Gestidn de la instrumentacion de la aplicacion.
0 Gestiona la instrumentacion de las tareas en ejecucion.

o Permite remotamente al Analizador afadir/eliminar instrumentacion.

- Monitorizacion del rendimiento.
o Carga la libreria de monitorizacién compartida en las tareas de la aplicacién.
o0 Genera los snippets de monitorizacion.

0 Inserta/elimina los snippets.

- Sintonizacion del rendimiento.
o Carga la libreria de sintonizacién compartida en las tareas de la aplicacion.
0 Genera los snippets de sintonizacion.

0 Inserta/elimina los snippets.

El Controlador de Aplicacién estd compuesto por varios médulos que cooperan entre si,
los cuales se muestran en la figura 3.3.

Analizador
L

Controlador de Aplicacion

H Sintonizador
b 4

[Comunicador] Tarea

.-"
\—{ Monitor]7

Figura 3.3. Arquitectura interna del Controlador de Aplicacion

Dyninst API

Tarea de la
aplicacidn

El comunicador es el modulo del Controlador de Aplicacion que gestiona la
comunicacion con el mundo exterior usando el protocolo TCP/IP. Este despacha los
mensajes que le llegan hacia componente correspondiente, Monitor o Sintonizador, los
cuales actuaran de la manera indicada sobre la tarea de la aplicacion mediante la API

proporcionada por Dyninst. Méas detalles pueden ser encontrados en [7].

42

Capitulo 3. MATE

Los modulos Monitor y Sintonizador son los que mayor funcionalidad presenta dentro
del Controlador de Aplicacion ya que participan en las fases claves del proceso de

sintonizacién. En las siguientes secciones se describen con mas detalle estos componentes.

Monitor

El Monitor es el modulo responsable de la monitorizacién de la ejecucion de la aplicacion. La
monitorizacion estd basada en eventos que se generan mediante Ilamadas a funciones. La
aplicacion es instrumentada dindmicamente en tiempo de ejecucion y la instrumentacion
insertada genera eventos. Cuando MATE es lanzado, el Analizador indica al Monitor el
conjunto de eventos que deben ser trazados. Conceptualmente, estos eventos reciben el nombre
de puntos de medida. De este modo, cuando la aplicacion comienza su ejecucion, el Monitor

inserta el codigo necesario para capturar los eventos en la aplicacion en ejecucion.

El Monitor ofrece una API que permite el Analizador afiadir o eliminar dindmicamente
un evento. En la API un evento queda definido mediante el identificador del proceso donde se
afiade/elimina, el identificador de dicho evento, el nombre de la funcidn en la que se generard, el
punto del codigo que determina donde el evento seria generado, el nimero de atributos que se

almacenarian en dicho evento y las propiedades de tales atributos.

Para realizar la traza dindmica de eventos, el Monitor usa la libreria Dyninst para
insertar el codigo de instrumentacion, snippet, que genera eventos para ser trazados. Para
recopilar estos eventos y enviarlos al Analizador, el Monitor usa la DMLib cargada en cada

tarea durante el proceso de arranque.

La instrumentacion puede variar durante la ejecucion. Para encontrar cuellos de botella
el Analizador puede necesitar alguna informacion adicional, o puede necesitar eliminar alguna
instrumentacion que no utilice habitualmente. Cuando ocurre esto, el Analizador notifica al
Monitor y como consecuencia éste Ultimo modifica el conjunto de eventos monitorizados. Es de
destacar que la comunicacion entre el Monitor y el Analizador es establecida usando un

protocolo de bajo nivel de recoleccion de eventos basado en TCP/IP.

Sintonizador

El Sintonizador es el médulo responsable de aplicar las acciones de sintonizacion sobre las
tareas de la aplicacién. Los cambios necesarios son determinados por las soluciones propuestas
por el Analizador a partir de las cuales el Sintonizador modifica la aplicacion empleando de

nuevo Dyninst, cambiando la memoria asociada a la misma.

Tras la fase de analisis y para realizar la sintonizacion de la aplicacion, el Analizador

puede requerir de un conjunto de acciones que le permite llevar a cabo la modificacion de los

43

Capitulo 3. MATE

pardmetros criticos de forma correcta. Estas acciones puede ser cargar una libreria, establecer
el valor de una variable, insertar la llamada a una funcion, etc. Para llevar a cabo este conjunto
de acciones el Sintonizador proporciona una APl al Analizador a través de la cual llevarlas a

cabo.

Cada una de las acciones de sintonizacion incluye un parametro de sincronizacién o
breakpoint, el cual se inserta en un punto determinado de la aplicacion, de modo que determina
cuando la accion de sintonizacion podria ejecutarse para asegurar que el comportamiento de la
aplicacion siga siendo correcto. Cuando la ejecucion de la aplicacion alcanza el breakpoint, la

accion de sintonizacion se ejecuta y el breakpoint queda eliminado.
3.3.2 Libreria de Monitorizacién Dindmica (DML.ib)

DMLib es una libreria dindmica que proporciona la funcionalidad necesaria para realizar la
traza de eventos y estd implementada como una libreria compartida. EI Controlador de
Aplicacion carga esta libreria en el espacio de direcciones de cada proceso de la aplicacion para

simplificar la instrumentacidn y recoleccion de datos.

Esta libreria ofrece una API que contiene funciones que son responsables del registro de

eventos con todos los atributos requeridos y de su envio para el andlisis:

- Inicializar la libreria, proporcionando informacion sobre el proceso que va a ser
monitorizado y la localizacion del host donde se aloja el Analizador.

- Finalizar la libreria, con el objetivo de liberar todos los recursos adquiridos y notificar
al Analizador que los procesos de aplicacion han terminado y cerrado la conexion con
él.

- Registrar eventos. En este caso el identificador o nombre del evento y los atributos del
mismo deben ser proporcionados, asi como la funcién o punto especifico en el cual el
evento seria capturado. Cuando el registro de un evento finaliza, significa que esta

preparado para ser enviado al Analizador.

Para evitar la sobrecarga de la red, la implementacion de DMLib usa un mecanismo de
buffering para gestionar los eventos. En lugar de enviar cada evento de manera individual,
existe un buffer interno usado para agrupar eventos y enviarlos en mensajes de tamafio mas
elevado. Esto permite la reduccion del nimero de mensajes generados y limita la intrusion.
Dicho envio es controlado mediante marcas de tiempo con el fin de evitar una espera excesiva

en la cola de envio para eventos individuales.

44

Capitulo 3. MATE

3.3.3 Analizador

El Analizador es el mddulo que dirige la sintonizacion de la aplicacion. Para ello solicita las
métricas necesarias, que le permiten llevar a cabo el analisis de rendimiento, e indica los

cambios en la aplicacién.

Para ser capaz de evaluar al comportamiento de una aplicacion dada, el Analizador
necesita algin tipo de conocimiento sobre la aplicacion y traza de eventos online. Desde un
punto de vista funcional, el Analizador se divide en dos modulos diferenciados: la API de

Sintonizacién Dindmica (DTAPI) y los tunlets.

API de Sintonizacion Dinamica (DTAPI)

Esta API presenta la funcionalidad que permite gestionar el proceso de mejora de rendimiento
de la aplicacién. En ella se encuentran todos los aspectos de bajo nivel relacionados con la
administracion de los eventos entrantes, la gestion necesaria para el comienzo y la terminacion
de una tarea, informacion descriptiva de las tareas en ejecucion de la aplicacion, la informacion
necesaria para sintonizarlas, etc. Como se explicara en la siguiente seccion los tunlets usan
DTAPI como interfaz a través de la cual establecen la instrumentacion necesaria para evaluar el

modelo de rendimiento.
Esta libreria es implementada como un sistema distribuido y asincrono donde:

- Las peticiones de monitorizacion y sintonizacion son delegadas en los Controladores de
Aplicacién distribuidos que en su lugar instrumenta y sintoniza las tareas de la
aplicacion.

- Los eventos recibidos procedentes de la libreria de Sintonizacion Dinadmica y los
Controladores de Aplicacion son recopilados y despachados hacia los manejadores de

eventos.

Tunlets

Los tunlets son el nicleo de la sintonizacion dindmica y automética implementada por MATE,
en términos de representacion del conocimiento. Cada tunlet define e implementa una particular
técnica de sintonizacion, por ejemplo, la l6gica necesaria para superar un particular problema de
rendimiento mediante la encapsulacion del conocimiento sobre el problema de rendimiento en

los siguientes términos:

- Un conjunto de puntos de medida, los cuales indican que es necesario medir en la
aplicacion para evaluar su comportamiento. Esta definicion incluye valores de variables,

parametros, marcas de tiempo, etc.

45

Capitulo 3. MATE

- Un conjunto de funciones de rendimiento, que son expresiones matematicas que
determinan como evaluar la informacién recopilada para detectar cuellos de botella.
- Un conjunto de acciones de sintonizacion, que indican qgue, donde y cuando cambiar

en la ejecucion de la aplicacion con el objetivo de adaptar su comportamiento.

Los tunlets usan la API de Sintonizacion Dinamica para dirigir el proceso de analisis de
rendimiento de la aplicacion. Al inicio del proceso de sintonizacion el tunlet mediante la API,
indica el conjunto de eventos de monitorizacion que deben ser insertados en una determinada
tarea. Cuando el mensaje de la generacion de un determinado evento llega al Analizador, es
redirigido al tunlet, el cual analiza los parametros existentes en dicho evento que describen el
comportamiento de la aplicacion. Cuando el tunlet detecta un posible problema de rendimiento
usa la DTAPI para cambiar algin tipo de instrumentacion realizada anteriormente o bien
realizar la modificacion de algin parametro critico para mejorar el rendimiento. Cuando el

proceso de sintonizacién termina, el tunlet finaliza y se descarga de la memoria.

La DTAPI se dispone como un conjunto de clases C++, que los tunlets emplean como

interfaz para trabajar correctamente integrados en MATE.

3.4 Metodologia de funcionamiento

La figura 3.4 muestra la ejecucién de una aplicacion bajo MATE, identificando los distintos

componentes de su arquitectura que participan y la funcionalidad de los mismos.

Cuando la ejecucidn de la aplicacién comienza, un particular tunlet indica al Analizador
cual es el conjunto de puntos de medida necesarios. El Analizador envia estos requerimientos a
cada Controlador de Aplicacidn, concretamente al médulo Monitor, los cuales se encuentran
distribuidos con cada tarea de la aplicacion paralela. Cuando la ejecucién de la aplicacion o de
alguna tarea en concreto alcanza un punto de instrumentacion, se produce la creacién de un
evento. El evento posee determinados atributos que lo caracterizan, los cuales contienen
informacidn relacionada con el entorno de ejecucion y con la aplicacion, como puede ser marcas
de tiempo, valores de variables, etc. Esta informacion es clave para poder calcular los
pardmetros de rendimiento del modelo matematico y evaluar las expresiones de rendimiento

asociadas. Una vez generado el evento, la DML.ib lo envia junto con sus atributos al Analizador.

46

Capitulo 3. MATE

Tunlet

Puntos de medida
Funciones de rendimiento
Puntos/Acciones de sintonizacion

Maquina 0

Figura 3.4 Arquitectura de MATE sintonizando dinamicamente para MPI

A lo largo de la ejecucion, el Analizador va recibiendo los eventos solicitados
procedentes de los distintos procesos de la aplicaciéon paralela, lo cual se le notifica al tunlet
correspondiente. Los eventos recibidos son clasificados de acuerdo a un tipo en concreto

definido en el tunlet.

Cuando el tunlet recibe mediante los eventos toda la informacion necesaria, evalUa las
funciones de rendimiento y determina el rendimiento actual y 6ptimo. Si el tunlet detecta un
cuello de botella, decide si el actual rendimiento puede ser mejorado bajo las actuales
condiciones. En caso positivo, el tunlet informa al Analizador de los posibles cambios
necesarios, y en consecuencia este solicita las correspondientes acciones de sintonizacién. La
solicitud determina que deberia ser cambiado (punto/accién/sincronizacion de sintonizacién) y
esto es enviado a la instancia del Controlador de Aplicacion correspondiente, en concreto es

reenviado al mdédulo Sintonizador.

Como se muestra conceptualmente en la figura 3.4, cada tunlet proporciona los
elementos para dirigir las fases de monitorizacion, analisis y sintonizacion. Es de destacar, que
los cambios que se realizan en la aplicacion paralela en tiempo de ejecucion, en los procesos de
monitorizacion y sintonizacién, son implementados mediante la libreria de instrumentacion

dinamica Dyninst.

47

Capitulo 3. MATE

3.5 MATE y otras herramientas de sintonizacion dindmica

MATE presenta una aproximacion para la sintonizacion dindmica del rendimiento en
aplicaciones paralelas. Esta aproximacion se fundamenta en los principios empleados en
técnicas de andlisis dinamico de rendimiento basadas en la instrumentacion dindmica mediante

el uso de la libreria Dyninst [8], como la desarrollada en la herramienta Paradyn [33].

MATE comparte algunas caracteristicas con las herramientas de sintonizacién
anteriormente comentadas en el capitulo 2, aunque también existen aspectos que las diferencian.
En lo referente a los entornos de ejecucién, MATE inicialmente estaba pensada para sintonizar
aplicaciones PVM paralelas/distribuidas desarrolladas en C/C++ ejecutdndose en plataformas
UNIX y actualmente estd siendo desarrollada para sintonizar aplicaciones basadas en MPI.
También se desarrollé en 2008 una version orientada para entornos Grid, denominada GMATE
[43]. Por su parte, Autopilot [35] y PerCo [37] han sido disefiadas con el fin de ser empleadas

especialmente en sistemas de computacidn heterogéneos.

En el proceso de monitorizacion, MATE monitoriza la aplicacion mediante la
instrumentacion dindmica insertando puntos de medida los cuales generan eventos que seran
enviados al analizador. De forma semejante a MATE en Autopilot, el proceso de monitorizacion
se basa en la insercion dindmica de sensores, los cuales son procesos que permiten extraer
informacidn de rendimiento de la aplicacion sintonizada. En el caso de Active Harmony [36], se
realiza una continua monitorizacion del rendimiento de las distintas implementaciones de
librerias subyacentes, de modo que basandose en la informacion recopilada, se redireccionan las

llamadas de las funciones del programa a las de la libreria subyacente seleccionada.

Por otro lado, en lo relacionado con el analisis de rendimiento, MATE usa reglas
normales y modelos de rendimiento en los cuales se formalizan posibles problemas de
rendimiento. Mientras que Autopilot emplea légica difusa para automatizar el proceso de toma
de decisiones, Active Harmony usa técnicas heuristicas mediante las cuales explora el espacio
de optimizacidn del patrén de la aplicacion teniendo en cuenta las librerias subyacentes y ajusta
los valores en la sintonizacidn basandose en el rendimiento observado. PerCo basa su analisis en
el empleo de técnicas para predecir el rendimiento, combinando series de tiempo y métodos de
ajuste de datos. Las series de tiempo generan predicciones aplicando una férmula matemaética al
historico de datos; por su parte el ajuste de datos es aplicado a los datos historicos para obtener
una formula matemaética con muchas variables, de manera que evaluando dicha formula con los
valores actuales (numero de procesadores, tamafio de los datos de la aplicacion, etc) se generan

las predicciones.

48

Capitulo 3. MATE

Finalmente, si se considera la preparacion de la aplicacion para la sintonizacion, usando
MATE la sintonizacion se basa en la instrumentacion dindmica donde los puntos de
sintonizacion son determinados por el modelo de rendimiento; éstos dltimos actualizando su
valor sobre la marcha cuando el analizador lo determina. Para realizar esta accion en ocasiones
es necesario adaptar la aplicacion o poseer un mayor conocimiento de la aplicacion que va a ser
sintonizada. lgual que en MATE, en Autopilot los actuadores son insertados de manera
dindmica en el proceso de sintonizacion pero para ello se requiere conocimiento sobre la
aplicacion. En Active Harmony el mecanismo se basa en la integracion y eleccion de diferentes
librerias con la misma funcionalidad. Y en PerCo, en el proceso de sintonizacion no se requiere
la interaccién directa del usuario ya que las decisiones de reimplementacion se basan en una

politica que ha sido construida en el médulo que dirige el rendimiento de la aplicacion.

3.6 Limitaciones de MATE como entorno de sintonizacion

En MATE, el anélisis de rendimiento es realizado de forma centralizada, ya que existe un Gnico
Analizador responsable de recibir y procesar todos los eventos que le llegan directamente desde
la aplicacion, mas especificamente desde las Librerias de Monitorizacion Dinamica asociadas a
cada tarea MPI, tal y como se explico en la seccion 3.4. ElI Analizador es ejecutado en una
méaquina independiente para reducir la sobrecarga causada por el continuo proceso de analisis en

méaquinas donde la aplicacion se esta ejecutando.

Sin embargo, aunque esta aproximacion centralizada funciona, presenta algunos

problemas relacionados con dos factores diferentes:

- El nimero de maquinas involucradas en la ejecucion de la aplicacion.

- La persistencia de problemas de rendimiento.

Con respecto al primero de los factores, se puede asumir que conforme el nimero de
tareas involucradas en la aplicacion aumenta, el nimero de eventos también se incrementa de
manera proporcional. Como consecuencia el Analizador se convierte en un cuello de botella que

afecta a la efectividad del sistema.

El Analizador posee una hebra que recolecta los eventos recibidos desde la aplicacion.
Independientemente de la cantidad de eventos entrantes, éstos son gestionados siguiendo una
politica FIFO (first in, first out). En consecuencia, el tiempo gastado en procesar la informacion
es proporcional a la cantidad de eventos. Ademads, en ocasiones ocurren olas de eventos; esto
quiere decir que cada tarea de la aplicacion genera eventos aproximadamente al mismo tiempo,

causando la sobrecarga del analizador en unos instantes determinados, tales como el final de la

49

Capitulo 3. MATE

iteracion, cuando todos los procesos de la aplicacion terminan. Ademas, mientras el Analizador

estad procesando datos de la iteracion i continlia su ejecucion por la iteracion i+1.

En lo relacionado con la persistencia de problemas de rendimiento, se deberia tener en
cuenta que la sintonizacion dinamica esta basada en asumir que los problemas de rendimiento
surgen en mas de una iteracion. Esta es la razén de porqué el andlisis de rendimiento para
detectar problemas y encontrar soluciones deberia ser rapido. En el caso de MATE, el analisis
queda reducido a la evaluacion de un conjunto de expresiones analiticas. Sin embargo, para
evaluar estas expresiones, es necesario procesar todos los eventos que llegan para obtener los
valores de los parametros del modelo de rendimiento. De forma similar, cuando el nimero de

eventos crece, el tiempo de procesamiento de la informacién asociada aumenta también.

Por lo tanto, si consideramos estas dos situaciones al mismo tiempo, el cuello de botella
causado por la recoleccién de eventos y su posterior procesamiento puede significar que cuando
la solucion para un problema existente esté lista para ser insertada, tal vez el problema de

rendimiento haya cambiado o desaparecido.

Se concluye que estos problemas limitan las propiedades de escalabilidad de MATE.
Por ello, con el objetivo de aumentar la usabilidad de MATE, en el trabajo expuesto en [45] [46]
se realiza un estudio para proporcionar a MATE la escalabilidad necesaria. Se propone una
nueva aproximacién de recoleccion y preprocesado de eventos jerarquica-distribuida, cuyo
objetivo es resolver el cuello de botella que significa el Analizador. Esta aproximacion se basa
en la distribucion de la recoleccion de eventos lo cual disminuye la sobrecarga con respecto a la
manera original centralizada en la que dicha recoleccidn era llevada a cabo, y el preprocesado

de operaciones acumulativas o de comparacién siempre que sea posible.

Los resultados de este trabajo muestran la resolucion del cuello de botella que
presentaba la aproximacion centralizada empleada por MATE originalmente. Ademas se
presenta una mejora en la sincronizacion del proceso de andlisis con la ejecucion de la
aplicacion ya que la estructura jerarquica de recoleccion de eventos aumenta la probabilidad de
detectar y procesar cada evento tan rapido como es recibido. Este hecho logra ademés un
decremento en el tiempo de procesamiento del Analizador debido al preprocesado de eventos
realizado. De tal modo, las ideas establecidas en este trabajo, suponen una buena base de partida

para escalar el proceso de anélisis en MATE.

50

Capitulo 4. Modelo de rendimiento para aplicaciones Master/Worker

Capitulo 4

Modelo de rendimiento para

aplicaciones Master/Worker

4.1 Introduccidén

La prediccion de rendimiento es un aspecto importante para conseguir ejecuciones eficientes en
programas paralelos. Conseguir un buen rendimiento de un cddigo paralelo es una tarea ardua y
dificil debido a la complejidad de los sistemas multiprocesador y a las dificultades en el analisis
de su rendimiento. Por ello, la prediccion del rendimiento es una utilidad esencial para la
depuracion de programas paralelos ya que ofrece informacién interesante para aumentar la

eficiencia de los mismos.

Actualmente existen varias alternativas para obtener un modelo de rendimiento de las
aplicaciones usando diferentes aproximaciones. En general estas aproximaciones se pueden

clasificar en tres categorias:

- Modelado por simulacion.
Un simulador, construido como una aplicacién software, es un sistema completo
gue emula el comportamiento de cada uno de los subsistemas de una arquitectura
paralela. No s6lo emula el comportamiento temporal de cémo se ejecuta en él un

determinado algoritmo, sino que también es capaz de extraer otros parametros de la

51

Capitulo 4. Modelo de rendimiento para aplicaciones Master/Worker

arquitectura del sistema multicomputador: fallos de caché, instrucciones de procesador
ejecutadas, parametros de la red de interconexion, etc.

Esta técnica de evaluacion de rendimiento estd especialmente indicada para
desarrollar nuevas arquitecturas paralelas ya que permite observar el comportamiento de
aplicaciones en sistemas que todavia no han sido implementados. Sin embargo, simular
el comportamiento de aplicaciones enteras puede ser muy costoso y por tanto no es
adecuado para utilizar estos modelos en herramientas de evaluacion de rendimiento

interactivas.

- Modelado analitico.

La idea basica de los modelos analiticos consiste en modelar tanto la
arquitectura paralela como el algoritmo usando métodos analiticos. ElI programa
paralelo que estd siendo desarrollado puede analizarse independientemente de la
arquitectura en que va a ser implementado, lo que permite incluso analizar las posibles
arquitecturas o sistemas futuros que todavia estén en disefio y que podamos modelar por
una serie de parametros.

Los modelos analiticos son métodos rapidos y efectivos comparados con otras
técnicas de modelado, ya que utilizan soluciones eficientes basadas en ecuaciones
matematicas. Sin embargo, el grado de fiabilidad con respecto a la realidad puede
quedar mermado por las caracteristicas de los parametros elegidos para el modelo y es
inherente a las suposiciones y simplificaciones que se hacen del sistema paralelo y del

algoritmo.

- Modelado por obtencion de métricas y trazas.

La mejor forma de obtener resultados precisos para modelar una aplicacion es
medir su comportamiento en un sistema paralelo real. Analizando los datos de traza
obtenidos, el usuario puede identificar y corregir los cuellos de botella en la aplicacion,
pero esto significa tener a disposicidn un sistema paralelo para realizar el desarrollo de
los programas. Ademas se necesitan herramientas especificas de medida como librerias
de instrumentacién y herramientas de analisis de traza, como las expuestas en la seccion
2.21 del capitulo 2. Estas técnicas se usan normalmente para extraer los parametros que
luego se utilizaran en los modelos analiticos, en las simulaciones, para validar un

modelo de rendimiento determinado, etc.
En el presente trabajo de investigacién se ha estudiado el modelo de rendimiento

expuesto en [9] para aplicaciones desarrolladas bajo un paradigma Master/Worker. Se trata de

un modelo analitico cuyos parametros corresponden a medidas de rendimiento que determinan

52

Capitulo 4. Modelo de rendimiento para aplicaciones Master/Worker

el comportamiento de la aplicacién en un sistema paralelo real; tiene como objetivo mejorar el
rendimiento de aplicaciones construidas bajo el citado paradigma atacando los problemas de

rendimiento que las caracterizan.

Las aplicaciones Master/Worker pueden sufrir dos cuellos de botella de rendimiento
relacionados con su estructura y funcionalidad: el primero de ellos es el desbalanceo de carga de
los workers, lo cual puede producir largos periodos de inactividad para workers rapidos o
bajamente cargados; y el segundo es el uso de un inadecuado nimero de workers para procesar
el conjunto de tareas. De este modo, el modelo de rendimiento estudiado intenta solventar los
citados problemas siguiendo una estrategia de actuacion sobre la aplicacion basada en 2 fases:
una primera fase que emplea una estrategia para balancear la carga de manera que los recursos
se usan de forma eficiente y una segunda para predecir el nimero de workers mas adecuado

para mejorar el rendimiento de la aplicacion.

Una vez introducida la problematica y conceptos principales, en las siguientes secciones
se expone de manera detallada el modelo de rendimiento para aplicaciones Master/Worker. En
concreto se describe aquellas expresiones y conocimientos que se han aplicado directamente en
el presente trabajo de investigacion. Primeramente se planteard la estrategia seguida para
alcanzar el balanceo de la carga computacional y a continuacion se describird los indices
empleados para predecir el nimero de workers que optimizan tiempo de ejecuciéon y uso de

recursos.

4.2 Balanceo de la carga entre los workers

El tiempo de ejecucion para una aplicacion Master/Worker con N workers y un conjunto de
tareas que pueden ser secuencialmente procesadas en un tiempo 7, se encuentra limitado en un
rango comprendido entre 7/N (limite inferior), y 7 (limite superior), teniendo en cuenta que en
dichas expresiones queda omitido el tiempo de comunicacién. De tal modo, que conseguir un
tiempo de ejecucion cercano al limite inferior depende principalmente de la existencia de un
buen balanceo de carga entre los workers, lo cual a su vez se basa en una buena politica de

distribucién de datos.

En general las técnicas de balanceo de carga intentan compensar el desbalanceo
asignando mas trabajo a aquellos workers que terminan su trabajo antes. Para lograr el balanceo
estas técnicas realizan una distribucion parcial dividiendo el conjunto de tareas en diferentes
porciones llamadas batches, cuyo tamafio queda determinado por un factor de particion. De tal
modo, que el nimero de tareas asignadas a cada batch depende de la estrategia de distribucion
seguida, y es posible que sea diferente de un batch a otro. La idea es distribuir el primero de

esos batches entre los workers en trozos o chunks del mismo tamarfio, y cuando un worker

53

Capitulo 4. Modelo de rendimiento para aplicaciones Master/Worker

termine el procesamiento de su chunk asignado el master le enviard un nuevo chunk del Batch
que corresponda. Este proceso, mostrado en la figura 4.1, continGa hasta que todos los batches
han sido distribuidos. Partiendo de esta idea se obtiene que aquellos workers que han recibido
tareas méas pesadas no reciban mas carga y workers que han recibido tareas méas ligeras sean
empleados para realizar méas trabajo.

Conjuntoinicial de tareas

Master
Factor R :
Division en un conjunto de batches
Master Batch 0 Batch 1 Batchn
Reparto de los chunks
Master
Worker 0 Worker 1 Worker N

Figura 4.1 Técnica de balanceo de carga

Existen diferentes estrategias para determinar el tamafio de un batch con el propdsito de
obtener un buen balanceo de carga con costes minimos en computacion y comunicacion. En el

trabajo estudiado expuesto en [9] se plantean 3 principales técnicas de balanceo de carga:

- Fixed Size Chunking (FSC), el cual consiste en dividir el conjunto de tareas en un
determinado nimero de batches de igual tamafio. En este caso, para una aplicacion en
concreto, se debe intentar encontrar cual es el mejor nimero de batches para mejorar el
balanceo de carga.

- Dynamic Predictive Factoring (DPF), parte de la idea de construir el primer batch con
alguna porcion del conjunto de tareas, el segundo batch con la misma porcion de las
tareas restantes, y asi de manera sucesiva hasta alcanzar un limite fijado en el tamafio de
los batches.

54

Capitulo 4. Modelo de rendimiento para aplicaciones Master/Worker

- Dynamic Adjusting Factoring (DAF), presenta las mismas caracteristicas que DPF pero
empleando un factor variable para ir calculando el tamafio de los batches teniendo en

cuenta las condiciones actuales de carga en la aplicacion.

En el presente trabajo de investigacion se ha implementado DAF como estrategia para
alcanzar el balanceo de carga dentro del modelo de mejora de rendimiento para aplicaciones
Master/Worker.

4.2.1 Dynamic Adjusting Factoring (DAF)

Dynamic Adjusting Factoring [47] es una politica de distribucion de datos que dindmicamente
intenta adaptar el factor de particién a las actuales condiciones de la aplicacién. La politica de
Factoring original [48] en la que se basa, destinada a la gestion de bucles paralelos, intenta
asignar a los procesadores los chunks mas grandes posibles de las iteraciones paralelas del bucle

minimizando la probabilidad de exceder el tiempo de ejecucion 6ptimo (7/N).

Este Factoring para bucles paralelos asume que el tiempo de ejecucion de un chunk es
una variable aleatoria obtenida como la suma de variables aleatoria idénticas, cada una de las
cuales representa una iteracion del bucle paralelo. Este modelo original tiene en cuenta el
comportamiento independiente de todas las iteraciones porque su tiempo de ejecucion puede ser

determinado.

Este modelo puede ser facilmente adaptado a aplicaciones Master/Worker sustituyendo
las iteraciones del bucle paralelo por tareas. En este caso, la variable aleatoria queda definida
como el tiempo de procesamiento de una tarea (C), el cual es inferido dividiendo el tiempo de

ejecucidn de un chunk entre el nimero de tareas presentes en ese chunk.

La formulacién matematica de este modelo asume que el entorno presenta N workers
disponibles para ejecutar M tareas (M>>N), cada una de las cuales queda modelada mediante
una variable aleatoria C caracterizada por sus parametros estadisticos de media (uc) y
desviacion estandar (o). Ademdas se considera que el entorno es homogéneo, todos los
procesadores tendran la misma media y desviacion estandar del tiempo de procesamiento de

tarea.

Aceptando que inicialmente todos los workers estan ociosos, el tiempo de ejecucion de
N chunks de Fy tareas en paralelo puede ser modelado por un estadistico de orden N, siendo F,
el numero de tareas asignadas en cada chunk del primer batch. El valor esperado para el
estadistico de orden P para cualquier distribucion de media x4 y desviacion estandar o se

encuentra limitada por la expresion:
p+o((N-1/VZN=1) < u+0N/2 (4.1)

55

Capitulo 4. Modelo de rendimiento para aplicaciones Master/Worker

Si el primer batch tiene chunk de tamafio F, tareas, el tiempo de ejecucion de un worker
puede ser modelado como una nueva variable aleatoria obtenida por el producto de la variable
aleatoria del tiempo de procesamiento por tarea, y el nimero de tareas FO. Esta nueva variable
tendrd una media uc F, y una desviacion estandar ocF). Asi, el valor esperado del estadistico de

N chunks paralelos (cada uno con F, tareas) en el primer batch es:

‘LlcFO + O-CFOV N/Z (42)

Siendo el propo6sito no superar el tiempo éptimo de ejecucidn, el cual viene expresado

por uc(M/N), que se cumpla la condicion impuesta por la expresion

UcFo + O-CFO\/W = uc(N/2) es el objetivo de la politica de ajuste dinamico para el nimero
de workers. Para alcanzar ese fin, se necesita calcular Fy, el cual seria la porcion del conjunto
completo de tareas a ser distribuidas en el primer batch dividido entre el nimero de procesos,
M /(xyN), donde x, es el inverso del factor de particién usado por la politica para generar el

primer batch a ser distribuido. Se obtiene que:

xo =1+ (UC\/N_/Z)/MC (4.3)

Para el calculo de los siguientes batches, los chunks presentan un tiempo de ejecucion
de media uc F; y desviacion estandar ocF;, pero ahora se necesita otra aproximacion ya que no
se puede asumir que todos los workers estan ociosos y por tanto el tiempo de comienzo de cada
chunk es distinto. Tal y como se expone en la politica de Factoring original [48], el nimero de
tasks F; se determina partiendo de la idea de que queda suficiente trabajo para solventar el
desbalanceo. De aqui se deduce las siguientes expresiones que permiten obtener x;, es decir, el

inverso del factor de particion para calcular el resto de los batches:
R;
ek + 0cF\N/2 = p¢ (ﬁ) —F

R;
F=—_
J XJN

xj =2+ (0cy/N/2) ke (4.4)

Finalmente, se obtiene que mediante el uso de las ecuaciones (4.1) y (4.2) y empleando
una estrategia de sintonizacion dinamica es posible adaptar a las actuales condiciones de la
aplicacion el factor de particion que determina el tamafio de los batches a lo largo de la

iteracion.

56

Capitulo 4. Modelo de rendimiento para aplicaciones Master/Worker

El algoritmo de distribucion que se propone en [9] y que seré el implementado en el

presente trabajo de investigacidn corresponde a los siguientes pasos:

1. Con el objetivo de acumular suficiente informacion para calcular el factor adaptativo de
distribucién, la primera iteracion de la aplicacion es ejecutada empleando un factor fijo
de 0.5 para la creacién de todos sus batches. Este valor inicial de factor es
empiricamente escogido porque en general es el que mejor comportamiento presenta.

2. Al principio de las restantes iteraciones se calcula x, mediante la ecuacion 4.1 y
empleando la informacion empleada en el pasado. De tal modo, a partir de x, se obtiene
el valor del factor adaptativo para el primer batch. Seguidamente, empleando los
mismos datos histéricos y la ecuacion 4.2, calculamos x; y por tanto el factor adaptativo
para el batch 7. De tal modo que los batchs 0 y I ya estdn preparados para ser
distribuidos.

3. A lo largo del proceso de distribucion de tareas, cuando el nimero de chunks
disponibles del batch que actualmente esta siendo repartido cae por debajo de un umbral
definido (el cual en nuestro trabajo ha sido fijado a la mitad del nimero de workers), se
usa la ecuacion 4.2 para calcular x;, de manera que se obtiene el nimero de tareas del
batch j y éste se encuentra preparado para su distribucion.

4. Si el nimero de tareas por chunk alcanza un limite minimo predefinido, las restantes
tareas son distribuidas entre los Gltimos chunks creados, y el proceso de distribucion

finalizada.

Tal y como se deduce de la ldgica del algoritmo presentado, los valores
correspondientes a los tiempos de computo por tarea empleados para calcular x; se deben de ir
acumulando a lo largo de la iteracion y de una iteracién a otra con el objetivo de que los valores
de los factores de distribucion se vayan adaptando a las condiciones de balanceo que presenta la

aplicacion.

En el presente trabajo de investigacion, con el objetivo de que en los factores de
distribucion no influyan iteraciones previas en las cuales el estado de la aplicacion era distinto al
gue se presenta en la iteracién actual, se ha definido una ventana que delimita el histérico de

acumulacion de los tiempos de coémputo comentados.

57

Capitulo 4. Modelo de rendimiento para aplicaciones Master/Worker

4.3 Determinacion del nUmero de workers

Como se comento en la seccion 4.2, en una aplicacion Master/Worker ideal el tiempo total de
ejecucidn seria igual el tiempo secuencial de ejecucion dividido por el nimero de workers. Esto

hecho ocurriria si:

- No hubiese coste de comunicacion.
- Laaplicacion se estéa ejecutando sobre una plataforma dedicada y homogénea.
- Se ha alcanzado un balanceo de la carga.

- Lacomputacién escala computacionalmente.

En el entorno de computacion definido por las anteriores caracteristicas, cualquier
recurso disponible que pueda ser asignado a la aplicacion debe serlo, porque sera eficientemente
usado para mejorar el rendimiento. Sin embargo en el mundo real, se observa que el speedup de
una aplicacion usualmente decrece cuando se afiaden nuevos recursos, poniendo de manifiesto
una pérdida de eficiencia, ya que los costes introducidos (aumento del volumen de

comunicaciones) son mayores que las ventajas que 10s nuevos recursos proporcionan.

Consecuentemente el modelo de rendimiento estudiado, tiene en cuenta todos estos
parametros e intenta evaluar el comportamiento de la aplicacion cuando se esta ejecutando y
decidir si merece la pena cambiar el nimero de workers para mejorar el rendimiento de la
misma. En el desarrollo de dicho modelo se ha asumido que existe un solo worker por elemento
de procesamiento, y que la aplicacion esta balanceada. El desarrollo detallado del modelo asi

como su discusion, se muestra y comentan en [9].

En nuestro trabajo de investigacion para determinar y sintonizar el nimero de workers
de la aplicacién, se ha empleado un indice de rendimiento Pi que directamente permite
relacionar rendimiento con eficiencia en el uso de recursos. La principal ventaja de este indice
es que puede ser automaticamente optimizado porque permite encontrar la mejor relacion

posible entre eficiencia y ganancia de rendimiento.

La eficiencia de una aplicacion se encuentra definida como la porcion de tiempo que los
workers estan realizando trabajo Util sobre el tiempo que éstos han estado disponibles para
realizar trabajo provechoso. Mas formalmente, para x workers el indice de eficiencia E(x) queda

.. T,
definido como —=

, donde T, es el tiempo de procesamiento total de todos los workers, T,,qi1

avail

es Y24 tavail;, y tavail; es el tiempo que el worker i ha estado disponible para hacer trabajo
atil, lo cual para una aplicacion como las que se pretende modelar, sera el tiempo de una
iteracion completa (T;). De tal modo, el indice de eficiencia para x workers viene dado por la

siguiente expresion:

58

Capitulo 4. Modelo de rendimiento para aplicaciones Master/Worker

E(x) =T./xT:(x). (4.5)
Consecuentemente, el indice de rendimiento para x workers seria:
Pi(x) = Te(x)/E(x) = xT¢(x)? /T, (4.6)

Basandonos en las expresiones definidas en el modelo de rendimiento para describir el
comportamiento de una aplicacion Master/Worker, y suponiendo que el protocolo de
comunicacioén de la aplicacion a modelar es asincrono (el master realiza una operacion de envio
y los datos son almacenados en un buffer intermedio de forma que el siguiente envio puede
realizarse antes que el envio previo haya finalizado), el tiempo de una iteracion completa viene

definido por la siguiente expresion:
Te(x) = 2m, + [((x — Da + 1)AV + T, /x 4.7

En la anterior expresion analitica, se identifican los siguientes parametros que

caracterizan el modelo de rendimiento:

- m,: latencia de la red, en milisegundos (ms).

- A coste de comunicacién por byte (inverso del ancho de banda), en ms/byte.
- V:volumen total de comunicacion, en bytes.

- a:porcion de V' enviado a los workers.

- T,:tiempo total de procesamiento, en ms.

- n: nimero de workers actual de la aplicacion.

En conclusién, el indice de rendimiento Pi permitira obtener para una aplicacion
Master/Worker el nimero de workers que maximiza el rendimiento, minimizando tiempo de
gjecucién, sin desperdiciar recursos, independientemente del valor de los pardmetros que

caracterizan a dicha aplicacion.

4.4 Definicion del modelo de rendimiento para sintonizacion
dinamica

Los problemas de rendimiento que resuelven las dos estrategias planteadas en las secciones
anteriores se caracterizan porque dependen de condiciones dindmicas, tales como la cantidad de
tareas disponibles o la carga de los procesadores; de modo que, dichos problemas son
apropiados para ser resueltos dindmicamente. Por tanto, la integracién en MATE del modelo de
rendimiento que contiene las dos estrategias descritas, permitird, mediante el proceso de
sintonizacién dinamica, intentar resolver esos problemas partiendo de la situacién mas

adecuada.

59

Capitulo 4. Modelo de rendimiento para aplicaciones Master/Worker

Dicha integracion se ha realizado mediante el disefio e implementacion del tunlet
adecuado. Como se comento en la seccion 3.3.3 del capitulo 3, los tunlets son el nicleo de la
sintonizacion automatica y dindmica implementada por MATE, en términos de representacion
del conocimiento y constituyen el mecanismo inteligente empleado por MATE en la fase de
andlisis. Cada tunlet define e implementa una particular técnica de sintonizacién, de tal modo
gue en nuestro caso de estudio, el tunlet que se ha disefiado plantea la I6gica de analisis

necesaria para aplicar el modelo de rendimiento estudiado para aplicaciones Master/\WWorker.

Es de destacar que el modelo de rendimiento planteado en las secciones previas fue
desarrollado en el mismo grupo de investigacion que ha disefiado e implementado el entorno de
sintonizacion dindmica MATE y se encuentra estrechamente asociado con dicha herramienta.
Por eso, la definicion y estructura del modelo de rendimiento se adapta a la organizacién del
conocimiento requerida por MATE en la fase de andlisis durante el proceso de sintonizacion.
Es decir, en las estrategias definidas se pueden distinguir (a) el conjunto de puntos de medida
gue deben ser monitorizados, (b) las expresiones de rendimiento a evaluar con dichos puntos de

medida y (c) los parametros criticos a modificar para mejorar el rendimiento de la aplicacion

En el caso de la estrategia de balanceo de carga detallada anteriormente, MATE como
entorno de sintonizacion dindmica, para poder modificar de forma automatica y dindmica el
factor de distribucion solo necesita monitorizar el tiempo (tc;) que emplea cada worker en el
procesamiento del chunk asignado para poder estimar de este manera la media uc y la
desviacion estandar oc. De este modo, en la tabla 4.1 se presenta la definicion formal de esta

primera estrategia del modelo de rendimiento.

Puntos de Medida - tc;: tiempo de computo de cada worker, en ms.

primer batch de la iteracién:

Xo =1+ (UC\/N—/Z)/MC

Expresiones de rendimiento
resto de los batches a lo largo de la iteracion

Xj=2+ (UC\/N_/Z)/.“C

Expresién analitica para obtener el factor de distribucion del

Expresién analitica para obtener el factor de distribucion del

Puntos/Acciones de El factor de distribucion sera el elemento a sintonizar. Su valor

sintonizacion puede ser modificado a lo largo de toda la iteracion.

Tabla 4.1 Definicién de la estrategia de balanceo de carga para su uso bajo sintonizacién dindmica

Por otro lado, para determinar el nimero de workers que maximiza el rendimiento,

60

Capitulo 4. Modelo de rendimiento para aplicaciones Master/Worker

MATE necesita monitorizar la latencia de la red (mg) y el coste de comunicacién por
byte (1) como pardmetros que caracterizan el sistema de cémputo. Ademas para calcular el
volumen total de comunicacién ¥ que tiene lugar en la aplicacion, es necesario determinar el
tamafio de las comunicaciones establecidas entre el master y los workers (v; y vy). Y
finalmente el tiempo de cdmputo total 7, sera calculado mediante el tiempo de procesamiento
(tc;) de cada uno de los workers que participan en la ejecucion. La siguiente tabla 4.2 muestra

la definicion formal de la segunda estrategia que compone el modelo de rendimiento estudiado.

- mo: latencia de la red, en ms.

- A: coste comunicacion por byte, en ms/byte.

- v;: tamafio de las tareas enviadas al worker i, en bytes.

- v, tamafio de los resultados enviados al master desde
cada worker, en bytes.

- tc;: tiempo de computo de cada worker, en ms

Puntos de Medida

La expresion que se ha de evaluar es el indice de rendimiento
para distinto nimero de workers:

. xTe(x)?
. . Pi(x) = ———
Expresiones de rendimiento Y
Donde el tiempo de ejecucion de una iteracion Ty (x) es
[((x = Da+ 1)V +T,]

T:(x) =2m, + .

El nimero de workers de la aplicacion sera el elemento a
sintonizar. El nuevo valor serd aquel que prediga un menor
tiempo de ejecucion y mejor aprovechamiento de los recursos.

Puntos/Acciones de
sintonizacion

Tabla 4.2 Definicién de la estrategia de determinacion del nimero de workers para su uso bajo

sintonizacién dinamica

61

62

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

Capitulo 5

Desarrollo del modelo de
rendimiento en MATE

5.1 Introduccidén

En el trabajo de investigacion expuesto hasta el momento, se ha presentado la metodologia de
investigacion seguida para conseguir el objetivo establecido inicialmente: sintonizar mediante
MATE una aplicacion empleada en computacion de altas prestaciones desarrollada bajo un

paradigma Master/Worker.

Inicialmente se comenz6 por un estudio en profundidad de la herramienta MATE.
Recordando lo expuesto en el capitulo 3, MATE (Monitoring, Analysis and Tuning
Environment) es, como su nombre indica, una herramienta creada para adaptar y controlar la
ejecucion de aplicaciones paralelas. Este entorno, trabaja sobre la aplicacion en tres fases
diferentes y continuas: monitorizacion, andlisis y sintonizacion. Inicialmente instrumenta una
aplicacion durante el tiempo de ejecucion de forma dinamica y automatica para obtener
informacion sobre el comportamiento de dicha aplicacion. La fase de andlisis busca los
problemas, detecta sus causas y proporciona las soluciones para eliminar esos problemas de
rendimiento. Finalmente, MATE sintoniza la aplicacion aplicando las soluciones

dindmicamente.

63

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

Para que la fase de analisis tenga lugar, MATE necesita poseer el conocimiento sobre
el/los problemas de rendimiento que se quieren resolver. Los modelos de rendimiento
constituyen dicho conocimiento empleado por MATE para conducir el proceso de analisis,
determinando la informacion que se necesita recopilar durante la ejecucion (puntos de medida),
como evaluar la informacion recogida (funciones de rendimiento) y que cambios se necesitan

para sintonizar la aplicacion (puntos/acciones/sincronizaciones de sintonizacion).

De tal modo, el segundo paso realizado en nuestra metodologia ha sido el estudio de un
modelo de rendimiento para aplicaciones Master/Worker, cuyo principal objetivo es resolver los
problemas de rendimiento que en ellas se presentan: desbalanceo de carga entre los workers y
empleo del adecuado numero de workers. En la seccion 4.4 del capitulo 4, se presenta la
representacion de dicho modelo en los términos los puntos de medida, funciones de rendimiento

y puntos de sintonizacion.

Por tanto, una vez conocida la herramienta de sintonizacion y estudiados los problemas
de rendimiento que se desean resolver y su representacion, el tltimo paso para lograr el objetivo

del presente trabajo, es el disefio y desarrollo del tunlet para ser integrado en MATE.

Los tunlets constituyen el nidcleo de la sintonizacién dinamica y automaética
implementada por MATE, en términos de representacién del conocimiento. Técnicamente, un
tunlet es una libreria que condensa la informacion sobre un determinado problema de
rendimiento que puede afectar a un tipo de aplicaciones paralelas, implementando una particular
técnica de sintonizacion. En el presente trabajo, el tunlet implementado encapsulard toda la

informacion necesaria derivada del modelo de rendimiento estudiado.

El conocimiento presente en el tunlet serd usado para las fases de monitorizacion,
analisis y sintonizacion a lo largo de la ejecucion de la aplicacion bajo MATE. Para ser capaz de
cooperar con MATE, la implementacion del tunlets estara basada en la APl de Sintonizacion

Dinamica proporcionada por el médulo de analisis de la herramienta.

Para poder aplicar el modelo de rendimiento estudiado para aplicaciones
Master/Worker, encapsularlo en un tunlet e integrarlo en MATE, se realiz6 una compleja
bisqueda de aplicaciones situadas bajo dicho paradigma y empleadas en computacion
paralela/distribuida. Esta busqueda permitio llegar a la conclusién de que actualmente las
aplicaciones Master/Worker no presentan un uso muy extendido en computacion de altas
prestaciones debido al cuello de botella que supone la comunicacion establecida entre un Gnico

master y todos los workers.

A pesar de ello, y con el fin de poder obtener los conocimientos deseados en el presente

trabajo de investigacion, se opté por una aplicacion paralela/distribuida desarrollada en el

64

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

Departamento de Arquitectura de Computadores y Sistemas Operativos de la Universidad
Auténoma de Barcelona. Se trata de un simulador de incendios forestales, denominado Xfire
[10].

En el presente capitulo, se presenta el desarrollo del modelo de rendimiento en MATE.
En la siguiente seccion se presenta detalladamente la aplicacion que va ser objeto de la
sintonizacion. Seguidamente se plantea la metodologia seguida en el disefio y desarrollo del
tunlet, la cual se concreta con la interpretacion de las dos técnicas de mejora de rendimiento de
aplicaciones Master/Worker bajo dicha metodologia. Finalmente se presentan las pruebas

experimentales realizadas y los resultados obtenidos.

5.2 Xfire

5.2.1 Simuladores de incendios forestales

Los fuegos forestales son uno de los mayores riesgos medioambientales, especialmente en el sur
de Europa. El diagnostico de la variabilidad y propagacion espacial de los mismos en un
territorio requiere de la disponibilidad de una base cientifico-técnica, desde la cual se pueda
ayudar y/o sustentar la toma de decisiones. La disponibilidad de aplicaciones informéticas en
los que se integran el conjunto de variables que identifican la propagacién y emision energética
de las llamas, constituye un elemento de apoyo para las estrategias de defensa de la superficie

forestal ante grandes incendios forestales.

En los ultimos afios, los simuladores de la propagacion de los incendios forestales se
han afincado como un instrumento mas para la toma de decisiones de los gestores forestales,
Gtiles para decidir qué acciones son las mas adecuadas para minimizar los riesgos o dafios de un

fuego.

La simulacion de la propagacién de los incendios forestales mediante las aplicaciones
informaticas se fundamenta en la modelizacion de combustibles y en las formulas semi-
empiricas desarrolladas por Rothermel [49]. El modelo de Rothermel es uno de los modelos méas
utilizados para prediccion del comportamiento del fuego. La mayoria de los simuladores de
comportamiento del fuego basan sus célculos en este modelo. Sus operaciones calculan el indice
de méaxima propagacion y la intensidad de reaccion del fuego conociendo ciertas propiedades

del combustible y del ambiente donde se desarrolla el incendio.

En la literatura existen varios modelos de propagacion de fuegos forestales [50] los
cuales parten de la idea de que la propagacion de un fuego es un problema muy complejo que
involucra varios aspectos que deben ser considerados relacionados con caracteristicas

meteoroldgicas (viento, temperatura, etc), de vegetacion y topografia.

65

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

En el presente trabajo se ha seleccionado para ser objeto de sintonizacion dindmica la
aplicacion de simulacion de la propagacion de incendios forestales Xfire. Esta aplicacion parte
su analisis de la geometria actual del frente del incendio, para evaluar su posible avance
considerando los diferentes aspectos climaticos, vegetacion y topografia del terreno. En el

siguiente apartado se expone con mayor detalle las principales caracteristicas de este simulador.

5.2.2 Vision general de Xfire

Xfire [10] [51] es una aplicacién paralela de computo intensivo que simula la propagacion de

incendios forestales.

Xfire simula la propagacién de la linea de fuego basadndose en el modelo de Andre-
Viegas [52] [53], cuyo ciclo de operacion se muestra en la figura 5.1. Xfire define la linea de
fuego como un conjunto de secciones donde cada seccion contiene un conjunto de puntos. Cada
seccion debe ser desglosada para calcular el progreso individual de cada punto en cada paso de
tiempo. Cuando el progreso de todos los puntos ha sido calculado, es necesario agregar las

nuevas posiciones de los puntos para reconstruir la linea de fuego.

Lineadefuego
—1 Calculo delavelocidad en la direccidn de maxima propagacion =—
v

Froceso de [
divisian - >
Calculo deladifersncia entre las direcciones

| develocidad maximay normal

,, i

Descripcion de Wodelo
saecciones local I Calculodelacurvaturade Uunaparticular Seccidn
Mueva I Proceso de Lnidn
seccion | l Modelo Global [T

MNuevalineade
fuego

Figura 5.1 Ciclo de operacién del modelo de André-Viegas

Para simular la propagacion de la linea de fuego, Xfire divide el frente de fuego
empleando dos modelos: uno global y otro local. EI modelo global permite la particion de la
linea de fuego en secciones y la union de estas secciones en la siguiente posicion del frente
aplicando algoritmos numéricos. Mientras se calcula una nueva posicion de la linea de fuego, el

frente del fuego puede expandirse y bajo determinadas circunstancias se pueden afiadir mas

66

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

puntos. Se debe tener en cuenta que las secciones son independientes, pero los puntos finales de
cada seccion son compartidos entre secciones vecinas. EI modelo local calcula el movimiento de
cada punto individual. Mientras se evalta un punto, se usan algoritmos numéricos y se tiene en
cuenta condiciones estaticas y dindmicas definidas en el modelo numérico (caracteristicas

meteoroldgicas, vegetacion y topografia).

La simulacién de la propagacion de incendios forestales implica diferentes pasos que
requieren complejos calculos que hacen que el proceso sea costoso computacionalmente en lo
referente al tiempo consumido. La primera implementacion de proyecto Xfire fue secuencial y
se ejecutd en un PC. Sin embargo, debido al pobre rendimiento, los desarrolladores de Xfire
decidieron implementarla de forma paralela. Para ello emplearon paralelismo de datos, mediante
el cual el movimiento de cada seccion que compone la linea de fuego puede ser calculado
independientemente. De esta forma la linea de fuego se divide en N secciones, y cada seccion es

ejecutada por distintos procesos que forman parte de la méaquina paralela.

Inicialmente Xfire se implementé empleando como libreria de comunicacién paralela
PVM. Posteriormente, y debido al avance en el uso de la libreria de paso de mensajes MPI,
también fue implementada bajo dicha libreria. Ambas implementaciones seguian un paradigma
de implementacion paralela Master/Worker. El algoritmo general de esta aplicacion usando un

paradigma Master/Worker es el siguiente:

- Proceso master
0 Obtienen la linea de fuego inicial.
0 Genera una particion de la linea de fuego y la distribuye entre los workers.
0 Espera la respuesta de los workers.
o Si el tiempo de simulacion ha terminado entonces finaliza la ejecucion, en caso
contrario, compone una nueva linea de fuego, afiadiendo puntos si es necesario y

vuelve al segundo paso.

- Proceso Worker
0 Obtiene la seccidn de linea de fuego enviada por el master.
o0 Calcula la propagacidn local de cada punto de la seccién (para calcular la posicién
de un punto del modelo necesita conocer sus vecinos).

o Devuelve la nueva seccién al master.

Tal y como se muestra, el proceso de simulacion de fuegos realizado por Xfire es
iterativo, de manera que en el algoritmo se realizan tantas iteraciones como el tiempo de

simulacién establecido permita.

67

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

Como datos de entrada, Xfire precisa de informacion que describa el terreno y las

condiciones en las que se produce el incendio y la linea de fuego inicial. Para ello, durante el

proceso de inicializacion del algoritmo, Xfire toma los siguientes datos de entrada:

5.2.3

Frente o linea de fuego inicial.
Se caracteriza por la forma que puede presentar el frente (punto, linea, curva
abierta o curva cerrada), el nimero de puntos que componen dicho frente y las

coordenadas UMT de los mismos.

Caracteristicas meteoroldgicas.
Se trata basicamente de informacion sobre la situacion del viento. Se
proporciona las coordenadas UMT del viento, su direccidn en grados y su velocidad en

kilémetros por hora.

Vegetacion.
Se determina el tipo de modelo de vegetacidn que se encuentra sobre el terreno
donde se produce el incendio y los distintos parametros que lo caracterizan, los cuales

seréan utilizados en el modelo de simulacidn que emplea Xfire.

Topografia.
El terreno donde tiene lugar el incendio queda determinado por el conjunto de
puntos que caracterizan el modelo de vegetacion. Estos puntos quedan establecidos por

coordenadas x, y, zy C.

Tiempo de simulacion.
Para especificar el tiempo de simulacién, la aplicacion necesita tomar como
datos de entrada el tiempo inicial de simulacion, el tiempo final y el incremento de

tiempo a simular en cada iteracién del proceso.

Adaptacién de Xfire al modelo de rendimiento

Como se comentd anteriormente, Xfire sigue un paradigma Master/Worker que explota el

paralelismo de datos presente en la funcionalidad del simulador de incendios. Para ello, el

master distribuye la linea de fuego entre todos los workers sin emplear ninguna técnica de

balanceo de carga; de tal modo que en cada iteracion el frente de fuego es dividido en secciones

de igual tamafio que seran procesadas por los workers.

En nuestro trabajo de investigacion, se ha estudiado y adaptado Xfire para poder

sintonizarla siguiendo el conocimiento proporcionado por el modelo de rendimiento

Master/Worker expuesto en el capitulo 5, el cual intenta resolver los problemas de rendimiento

relacionados con el desbalanceo de la carga entre los workers y el uso de un apropiado nimero

68

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

de workers en la aplicacion. Para ello ha sido necesario realizar un analisis del cddigo fuente de
la misma; en concreto nuestro estudio se ha centrado en la seccion de cddigo del proceso master
encargada de la distribucion del frente de fuego entre los workers. La adaptacion realizada

gueda caracteriza por dos aspectos principales:

- Transformacién de la logica seguida en el proceso de distribucion de trabajo de forma
gue permita la gestion de la linea de fuego como un conjunto de batchs de tamafio

variable que se iran creando a lo largo de la iteracién.

- La determinacion del tamafio de los batchs, tal y como se coment6 en la seccidn X,
varia a lo largo de una iteracion de la simulacién dependiendo de un factor de particion
cuyo valor refleja las condiciones actuales de balanceo de carga de la aplicacion. Por
tanto, es necesaria la introduccién de dicho factor como variable que forma parte de la
I6gica de reparto del frente de fuego entre workers y que seré sintonizada en el proceso

de mejora de rendimiento seguido por MATE.

Es de destacar el hecho de que si la aplicacion Xfire hubiese sido creada empleando un
framework conocido de disefio y programacion paralela, se reduciria la complejidad que alcanza
el proceso de sintonizacidn, ya que se conoceria de antemano el paradigma de programacion de

la aplicacién y su estructura funcional.

5.3 Metodologia de disefio y desarrollo del tunlet

5.3.1 Metodologia

El objetivo que se persigue en este capitulo es encapsular en un tunlet toda la informacion de
cémo resolver los problemas de rendimiento definidos en el modelo estudiado. Este tunlet ser&
usado a lo largo de la ejecucion de Xfire para dirigir su monitorizacion, analisis y sintonizacion

a través de la herramienta MATE.

Para realizar un correcto disefio y desarrollo del tunlet, hay que tener en cuenta que su
definicion debe incluir la identificacion e interpretacion de una serie de elementos vinculados
principalmente con el modelo de rendimiento y la aplicacion bajo estudio. La interdependencia

entre estos componente se refleja en la figura 5.2.

69

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

Aplicacion £ N Tunl
e uniet
Modelo de rendimiento

rTT T T TN £ ’ :
I siioge I/ Parametros Puntos de medida
: RIEERE P1, pa, ..., Pn > P, P2, ..., Pn
I : Modelo matem atico Funciones de rendimiento
] Problemade X

rendimiento ! e1r..g > fi.. fj
| 1 9 :
A = Puntos/Acciones de

_____ sintonizacion

< y di... aj

P51... P§j

Figura 5.2 Interrelacién entre la aplicacion, el modelo de rendimiento y el tunlet

En lo referente al modelo de rendimiento para aplicaciones Master/Worker en nuestro
caso de estudio, constituye la base del tunlet que se ha definido, debido a que proporciona
informacidn relativa a qué deberia ser medido en la aplicacion, cémo detectar y resolver los
posibles problemas de rendimiento y qué es necesario modificar para ello en dicha aplicacion.

Entonces desde el punto de vista del modelo de rendimiento es necesario definir:

- Los puntos de medida.
- Las funciones de rendimiento analiticas.

- Puntos/Acciones/Sincronizaciones de sintonizacion.

Sin embargo, para instrumentar la aplicacion en los procesos de monitorizacion y
sintonizacion, el modelo de rendimiento no es suficiente, se necesita algin conocimiento
adicional sobre la aplicacion, tal como las variables las cuales serdn usadas como métricas, los
valores que van a ser cambiados, y el modelo de programacion, entre otros, para tener una
vision conceptual de la aplicacion. Por tanto, desde el punto de vista de la aplicacion, en nuestro

trabajo hemos tenido en cuenta:

- El modelo de programacién que sigue la aplicacion, identificando los diferentes tipos de
procesos involucrados en el esquema.

- Las variables o valores que se puede manipular, con el objetivo de localizar las
variables a sintonizar.

- Las funciones cuya ejecucion necesitamos detectar para recopilar informacion sobre el

comportamiento de la aplicacion y enviarla como eventos.

Con el proposito de poder modelar correctamente todas las interrelaciones existentes
entre la aplicacion Xfire, el modelo de rendimiento para aplicaciones Master/Worker y el
mecanismo de encapsular el conocimiento en MATE, en el presente trabajo de investigacion se
ha seguido una metodologia de disefio y desarrollo del tunlet. El proceso que ésta describe

estimamos que es el mas adecuado para culminar con un tunlet que guie el proceso de

70

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

sintonizacion deseado, de tal manera que puede ser generalizable para la sintonizacién bajo

MATE de cualquier aplicacion empleando cualquier modelo de rendimiento adecuado a ésta.
La metodologia definida consta de los siguientes pasos:

- Proporcionar un modelo de rendimiento.
En nuestro trabajo de investigacion se trata del modelo de rendimiento detallado
en el capitulo 4. Tal y como se expuso, se trata de un modelo preexistente desarrollado

en anteriores investigaciones para aplicaciones bajo paradigma Master/Worker.

- Comprension del modelo de rendimiento.

Una vez que el modelo de rendimiento se ha determinado, la comprensién del
mismo es un requerimiento basico debido a que el modelo debe de ser interpretado en
concordancia con la aplicacidn, en este caso Xfire.

En nuestro caso, el proceso de comprension del modelo ha permitido establecer
la correspondiente relacion entre dicho modelo y el tunlet a desarrollar, mediante la

caracterizacion de los parametros y las funciones de rendimiento del mismo.

- Interpretacion del modelo de rendimiento.
Este es la fase que conlleva establecer que valores, variables y funciones de la
aplicacion se empleardn para interpretar los pardmetros del modelo de rendimiento,
definir los eventos que se deben capturar, la informacién asociada a los mismos y los

distintos procesos que participan en la ejecucién de la aplicacion.

Como se puede observar, las dos primeras fases de la metodologia han sido ya
desarrolladas y expuestas en el capitulo precedente. De modo que el procedimiento de
interpretacién del modelo de rendimiento es el proceso requerido para completar el disefio y

desarrollo del tunlet. Esta es la fase que se pretende mostrar en las siguientes secciones.

53.1.1 Interpretacion del modelo de rendimiento

Cuando el modelo de rendimiento ha sido determinado y especialmente los distintos parametros
de rendimiento se han comprendido, la fase de interpretacion del modelo es fundamental ya que
en ella se identifican qué entidades de la aplicacion se corresponden con los parametros de

rendimiento.

Este proceso incluye una serie de pasos relacionados con el estudio de la
correspondencia entre los distintos componentes del modelo de rendimiento y la estructura y

variables de la aplicacion. Estos pasos son los siguientes:

71

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

72

Identificacion de los actores en la aplicacion.

En general, cada aplicacion paralela posee distintos tipos de procesos
ejecutdndose en paralelo y cooperando para resolver el problema. De modo que cada
tipo de proceso en el modelo de programacidn representa un actor.

El tunlet que se disefie necesita poseer esta informacidn porque en general cada
tipo de proceso debe ser instrumentado de forma diferente dependiendo del papel que
juega en la ejecucién de la aplicacion. Es decir, para cada actor, se necesitan capturar
eventos distintos, de tal modo que la instrumentacion insertada en los mismos también

variara.

Identificacion de la informacion/variables/valores.

Los pardmetros de rendimiento que caracterizan el modelo tienen que ser
interpretados de acuerdo a las variables, valores y funciones de la aplicacion bajo
estudio, en este caso Xfire.

El concepto de variable, corresponde a variables presentes en la aplicacion;
mientras que un valor es el contenido de un determinado parametro de una funcién o el
resultado de la misma. Tanto las variables como los valores pueden ser requeridos para
cambiar su valor o bien obtenerlo, es decir, son los elementos de la aplicaciéon que
pueden ser instrumentados o sintonizados.

En funcidn de las caracteristicas o naturaleza de cada parametro de rendimiento,
en nuestro proceso de disefio debemos determinar como constituir su valor y cual es el
evento que se debe definir para obtener la informacion asociada.

En el desarrollo del tunlet el empleo de variables requiere una especial
importancia, ya que aquellas variables de las que se decida que es necesario requerir su
valor o cambiarlas, tienen que ser variables globales, condicion expuesta por la libreria
Dyninst al utilizarla como método de instrumentacion dindmica. De tal modo, puede
ocurrir que se necesitan determinados cambios en la implementacién de la aplicacion

definiendo algunas variables como globales.

Identificacion de los eventos.

Los eventos constituyen el mecanismo empleado por MATE para recopilar
informacidn sobre el comportamiento de la aplicacion. Los eventos son capturados en
las entradas o salidas de funciones y pueden contener informacion adicional asociada a
ellos.

Entonces, de acuerdo a la seméantica de los distintos parametros que componen

nuestro modelo de rendimiento, debemos determinar cuéles son las entradas y salidas

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

de las funciones que tienen que ser capturadas, es decir, localizar aquellos puntos de

nuestra aplicacion en los cuales se tiene disponible la informacion que se requiere.

- Determinacion de cuando y bajo qué circunstancias evaluar las funciones de
rendimiento y ejecutar el cambio de los puntos de sintonizacién.

La recopilacién de los eventos no solo permite al tunlet ir recopilando la
informacién necesaria para evaluar las funciones de rendimiento asociadas a la
estrategia de sintonizacion, sino que también determina cuando se debe evaluar dichas
condiciones y, bajo determinadas condiciones, ejecutar el cambio de los pardmetros

criticos que permitiran la mejora de rendimiento de la aplicacion.

Esta metodologia serd la empleada para la interpretacién de las dos técnicas de

sintonizacion estudiadas para mejorar el rendimiento de aplicaciones Master/Worker.

5.3.1.2 Requerimientos de MATE

Las fases de la metodologia de disefio del tunlet expuestas en la seccion 5.3.1, presentan
aspectos que son muy dependientes de los detalles de implementacion de MATE, ya que se
encuentran muy relacionados con la manera en la que el Analizador representa y usa el

conocimiento.

Si recordamos lo expuesto en el capitulo X (MATE), desde un punto de vista funcional,
el Analizador esta dividido en dos partes principales que son la API de Sintonizacion Dindmica
(DTAPI) y los tunlets.

La DTAPI constituye la interfaz que emplea el Analizador para comunicarse con las
fases de Monitorizacion y Sintonizacion. Esta API proporciona al Analizador una vision global
de la aplicacion, las tareas y los eventos. Con respecto a los tunlets, ellos usan la API de
Sintonizacién Dindmica para gestionar la aplicacién e invocar las peticiones de monitorizacion
y sintonizacién, y para manejar los eventos recopilando la informacién de la aplicacion
necesaria para el analisis. Por tanto, la DTAPI constituye la interfaz que el tunlet debe emplear

para trabajar de forma coordina con MATE.

Para la implementacion del tunlet, en el estudio realizado se ha considerado tener

presente ademas los siguientes aspectos:

- Coémo capturar la informacion. Se han considerado los métodos proporcionados por la
DTAPI para instrumentar la aplicacion, y en particular, para determinar las propiedades

que definen un evento. Hay que tener presente que para insertar un evento en un

73

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

proceso particular, se necesita un nombre para identificar el evento, donde se debe
insertar dicho evento en el cddigo fuente y los atributos asociados a él.

- Como gestionar la informacion recopilada. Cuando un evento es insertado en un
proceso, es necesario determinar una entidad que controle ese evento cuando éste ocurre
y es recibido en la fase de analisis. Generalmente, los tunlets son los que controlan los
eventos, debido a que en ellos se encapsula la 16gica para procesar la informacién e
interpretarla de acuerdo al modelo de rendimiento.

- Como y donde manejar la informacién. En el presente trabajo el tunlet desarrollado
gestiona una compleja estructura de datos para cada iteracion de la aplicacion. En tal
estructura, la informacién recopilada es almacenada en funcién de su procedencia:
informacidn sobre la iteracidn, sobre los batches repartidos en la iteracién y sobre los
workers.

- Cémo modificar la aplicacion. De forma similar a la instrumentacion para la
monitorizacion, cuando se requiere alguna informacion de sintonizacién se han de
considerar los métodos proporcionados por la DTAPI para introducir algunas
modificaciones en la aplicacion. En nuestro trabajo, la modificacion de la aplicacién

Unicamente se realizard mediante el cambio del valor de alguna variable.

Teniendo en cuenta los conceptos expuestos en la fase de interpretacion del modelo de
rendimiento y su dependencia con la implementacion, en las proximas secciones se exponen la
especificacion del tunlet creado a partir del modelo de rendimiento expuesto en el capitulo Xy

la aplicacién Master/Worker Xfire.

5.4 Desarrollo del tunlet

En la presente seccion se muestra la especificacion del tunlet que integrara las dos estrategias de

sintonizacién para mejorar el rendimiento en aplicaciones Master/Worker:

- Balanceo de la carga entre los workers.

- Adaptacion del nimero de workers.

La especificacion del tunlet se realizara teniendo en cuanta la especificacion de cada
una de las estrategias de sintonizacion, las cuales fueron expuestas detalladamente en el capitulo
4. Ademas la generacion del tunlet se detallara partiendo de la metodologia disefiada y

presentada en la seccion 5.3.1.1.

En la presente seccion se aplica la metodologia detallada en la seccién previa para

definir y disefiar cada una de las técnicas de sintonizacion que componen el tunlet desarrollado,

74

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

teniendo en cuenta las interrelaciones entre el modelo de rendimiento, la aplicacion Xfire y la

herramienta de sintonizacion MATE.

5.4.1 Balanceo de la carga entre workers

El desbalanceo de carga en sistemas paralelos puede ser causado por la heterogeneidad de los
procesadores, interferencias con el sistema operativo o irregularidad en las tareas asignadas a los

procesadores.

El balanceo de carga dindmico es una técnica cuyo propdsito es distribuir la carga entre
los procesos para evitar que algunos procesos se mantengan 0ciosos mientras que otros esperan
recibir trabajo y no hacen nada més. Esto se consigue asignando mas trabajo a los procesadores

gue terminan antes el trabajo asignado.

Factoring es una estrategia de balanceo de carga que divide el nimero total de tareas a
procesar en bacthes. Cada batch tiene tantos chunks como procesadores estan ejecutandose y

cada chunk contiene la misma cantidad de tareas.

Tal y como se expuso en la seccion X, en el presente trabajo de investigacion se ha
estudiado una aproximacion de la técnica de Factoring denominada Dynamic Adjusting
Factoring (DAF). Esta estrategia permite ajustar dindAmicamente el tamafio de los batches a lo
largo de la ejecucion teniendo en cuenta las condiciones actuales de balanceo de carga de la

aplicacion.

5.4.1.1 Interpretacion de la técnica de sintonizacion

Recopilando la informacién detallada en la seccion X, los términos y conceptos que forman

parte de la técnica de sintonizacion para balancear la carga entre los workers son:

- N:numero de workers.

- x; inverso del factor de particién, porcion de tareas incluidas en el batch .

- C:tiempo de procesamiento medio por tarea (ms/tarea).

- u(C): media del tiempo de procesamiento por tarea.

- o(C): desviacion estandar del tiempo de procesamiento por tarea.

- Batch: cada una de las partes en las que M es dividida a lo largo de la implementacion

mediante el algoritmo DAF. Cada batch constituye un subconjunto de tareas.

El objetivo de esta técnica es ajustar a lo largo de la ejecucién de la aplicacion el factor
de particion que determina el tamafio de los distintos batches en los que se va dividiendo el
conjunto total de tareas. Por tanto, dicho factor de particion constituye el punto de

sintonizacion de esta estrategia.

75

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

Tal y como se detall6 en la seccion 4.3.1 del capitulo 4, el valor del factor de particion

se determina a partir del valor de x;. Este se calcula mediante las siguientes expresiones:
1+ (ac,/N/Z)/uc , sii=0
2+(0C\/N/2)/llc) sii#0

Xi =

Ambas férmulas analiticas constituyen las funciones de rendimiento de la técnica de
sintonizacion. La diferencia entre ambas expresiones radica en el hecho de que en el caso de la
creacion del primer batch (cuando i = 0) los workers estan sincronizados ya que se encuentran el
inicio de la iteracion en espera de datos para ser procesados, mientras que para el resto de los
batches la disponibilidad de los workers depende de la velocidad con la que los previos batches

fueron procesados.

Asi, para el célculo de x; necesitamos obtener el tiempo medio de procesamiento por

tarea (C), el cual es necesario para calcular u. y a¢, y el nimero de workers N de la aplicacion.

Identificacién de actores.

La aplicacion que va a ser sintonizada, tal y como se expuso en secciones previas, esta
implementada bajo un paradigma Master/Worker. De tal modo, que en su ejecucién podemos

identificar dos tipos de procesos que cooperan entre si: un proceso master y N procesos worker.

Identificacion de variables y valores.

Para esta técnica de sintonizacion, se necesitan interpretar xi, C'y N, identificando las variables

y valores que en la aplicacion representan estos pardmetros.

- C tiene que ser calculado como la media del tiempo de computo empleado por un
worker en procesar cada una de las tareas recibidas. De tal modo, el pardmetro puede
calcularse como C = media(tc;/NTareas), donde:

0 fc; equivale el tiempo que el worker i ha estado procesando las tareas asignadas.
Este tiempo se calcula tomando los instantes en los que el Worker comienza y
termina la fase de computo.

O NTareas es una variable en el proceso master que indica cuantas tareas son
enviadas a cada uno de los workers. También es empleada en el proceso de
recepcion que realiza el master a lo largo de toda la iteracidn, con el objetivo de
comprobar que al final de la misma se han recibido todas las tareas que han sido
enviadas.

- N es obtenido de la variable N del proceso master. Esta variable permite al master

controlar la cantidad de workers a lo largo de la iteracion. Tiene que ser medida al

76

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

inicio de la iteracion de la aplicacion, y debe ser periddicamente actualizada en el caso
de que el nmero de workers pueda cambiar a lo largo de la ejecucion.

- x; es el inverso del valor que tomard la variable que va a ser sintonizada (F0, F1y F2),
es decir, el factor de distribucion que determina el nimero de batchs. Esta variable se
sitla en el proceso master ya que éste es el encargado de realizar la distribucion de las
tareas entre los workers. Desde el punto de vista de la aplicacion ha sido necesaria la
definicion de 3 variables que actian como factores de distribucion, denominadas F0, F'1
y F2. Esto se debe principalmente a la adaptacion de la aplicacion Xfire a la logica del
proceso de sintonizacion:

o La variable FO representa el factor de distribucion para el primer batch de la
iteracion.

o La variable F1 representa el factor de distribucion para el segundo batch de la
iteracion.

o0 La variable F2 representa el factor de distribucién para el resto de los batches

de la iteracion.

Por dltimo hay que tener en cuenta que son necesarias una serie de variables de control
que permiten crear el flujo propio de la l6gica de analisis que corresponde a la técnica de

sintonizacion. Estas variables son:

- workerld, esta variable es usada por el proceso master para identificar el proceso worker
al que esta enviando o de que proceso worker esta recibiendo.

- batchld, esta variable esta presente en el proceso master. Es necesaria porque existen
eventos cuya informacion esté relacionada con un determinado batch. En concreto, esta
variable es usada por el proceso master bajo dos circunstancias:

o Para identificar cada uno de los batches que se van creando a lo largo de la
iteracion en funcion del factor de particién.

o Para identificar a que batch pertenece las tareas que estd enviando a un
determinado proceso worker o que recibe de un determinado proceso worker.

- numChunk, esta variable es empleada por el proceso master para tener conocimiento
sobre el nimero de chunks que componen los batches que se van creando.
Generalmente, los batches tienen tantos chunks como workers estan implicados en la
ejecucion de la aplicacion pero existe la excepcion de los Gltimos batches de la
iteracion.

- TheTotalWork, esta variable empleada en el proceso master representa en la aplicacion
al nimero total de tareas de una iteracion, es decir, el nimero de puntos totales de la

actual linea de fuego.

77

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

iterld, esta variable esta presente en el proceso master y en el proceso Worker. Para el
master esta variable se requiere para identificar cuando se recibe un evento a que
iteracion pertenece para asociar la informacién a una correspondiente iteracion. De
manera semejante, en el caso del proceso Worker, la identificacion de la iteracion es
necesaria para asociar a una iteracion determinada la informacién de los eventos

generados en dichos procesos.

Identificacién de eventos

El siguiente paso consiste en determinar como, cuando y dénde capturar las variables y valores

previamente enumerados. Para ello se han definido una serie de eventos que serdn insertados en

los procesos correspondientes y proporcionardn la informacion requerida por la técnica de

sintonizacion. Los eventos definidos son los siguientes:

78

Inicio de iteracion.

Este evento se genera cada vez que el proceso master comienza una nueva
iteracion en la aplicacion, es decir, cuando comienza la distribucion de la nueva linea de
fuego entre los workers.

La informacién que presenta asociada es el nimero de iteracion en la que se
encuentra la aplicacion, el numero de tareas totales a distribuir a lo largo de esa
iteracion y el nimero de workers que participan.

Para obtener estos datos, el evento se debe de insertar en la entrada de la

funcion global_sendreceive que realiza el proceso de distribucion de datos.

Fin de iteracion.

Este evento es capturado cuando el proceso master termina la recepcién de los
resultados obtenidos por los workers.

La informacidn que presenta asociada es el nimero de la iteraciéon que termina.
Y de la misma forma que el evento anterior es insertado en la funcidn

global sendreceive, pero en este caso a la salida de la misma.

Envio de datos del master al worker.

Este evento se genera cada vez que el proceso master envia el conjunto de tareas
que debe computar a un proceso worker.

Este evento permite recopilar informacion relacionada con el identificador del
worker al que se le envia las tareas, el identificador del batch al que pertenecen dichas

tareas y el nimero de tareas enviadas. Para ello, el evento debe ser insertado en la

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

entrada del método global sendwork, en el cual se realiza el empaquetado y envio de

todos los datos necesarios al worker determinado.

Recepcidn de datos de los workers en el master.

Este evento tiene lugar cada vez que el proceso master recibe el resultado del
procesamiento realizado por un worker determinado.

Tiene asociada la misma informacion que el evento anterior, pero en este caso
debe ser insertado a la salida de la funcion global receivework, en la cual se realiza la

recepcion y desempaquetado de la informacion recibida por el master.

Inicio coémputo de worker.

Este evento se genera cuando un worker comienza el procesamiento del
conjunto de tareas recibidas.

Mediante este evento se requiere recopilar informacién relacionada con la
iteracion en la cual se encuentra computando el worker, el identificador del batch al
cual pertenece el chunk sobre el que va a computar, y la marca de tiempo asociada a
dicho comienzo de computo.

Para obtener correctamente dicha informacion, el evento debe ser insertado a la
entrada de la funcion arcStepKernel, la cual funcionalmente representa el proceso de

coémputo realizado por cada worker.

Fin de computo de Worker.

Este evento complementa al evento anterior, y se genera cuando un worker
finaliza el computo del chunk enviado.

Se recopila la misma informacion que en evento de inicio de computo, pero en

la salida de la funcion arcStepKernel.

Creacion de un nuevo batch

Este evento se genera cada vez que el proceso master durante la fase de reparto
de tareas entre los workers calcula un nuevo batch con un determinado factor de
distribucion.

La informacion asociada a este evento es el identificador del nuevo batch creado
y su tamafio, es decir, el nimero de chunks que lo componen. Para recopilar dicha
informacion el evento debe ser insertado en la funcion Factoring SetNumTuples, que
forma parte del procedimiento de factoring, en la cual se van inicializando las

estructuras de datos que representan a los batches.

79

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

La tabla 5.1 resume la informacidn mas importante relacionada con cada evento.

Evento Atributos Actor Método Lugar
- iterld
Inicio Iteracién - NW master global_sendreceive entrada
- TheTotalWork
Fin Iteracion - iterld master global_sendreceive salida
- workerld
EnvioMW - batchld master global_sendwork entrada
- NTareas
- workerld
RecepcionMW - batchld master global_receivework salida
- NTareas
Inicio - Marca de tiempo
Computo - iterld worker arcStepKernel entrada
Worker - batchid
. - Marca de tiempo
A G - iterld worker arcStepKernel salida
Worker
- batchld
Creacion de un - batchld . .
nuevo batch -~ numChunks master | Factoring_SetNumTuples | salida

Tabla 5.1 Informacidn sobre los eventos para la técnica de sintonizacién de balanceo de carga
Determinacion de cuando y bajo qué condiciones realizar el proceso de sintonizacion

La recepcion de determinados eventos desencadena en la ldgica de sintonizacion implementada
en el tunlet la evaluacion de las funciones de rendimiento propias de la estrategia de balanceo de

carga.

En el caso bajo estudio, el ajuste del factor de distribucion tiene lugar cuando se reciben

los siguientes eventos:

80

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

- Inicio de iteracién

Cuando el proceso master comienza la ejecucion de una nueva iteracion, el
tunlet ya posee la informacion sobre los tiempos de computo por tarea de la iteracion
anterior ya completada.

Este hecho permite la evaluacion de las formulas analiticas de la estrategia de
balanceo de carga, de tal manera que se actualizan los valores de los factores de
distribucion F0 'y F1 para determinar el tamafio de los batches 0y / de la iteracion, tal y
como se expone en el paso 2 del algoritmo planteado en la seccion 4.2.1 del capitulo 4.

- Fin de computo de un worker.

Cuando un proceso worker termina el computo del chunk que le ha sido
enviado, la informacion sobre el tiempo de computo es recopilada por el tunlet.

En el caso de que, tras recibir la informacion de este chunk, se compruebe que
se ha completado el procesamiento del batch al cual pertenece dicho chunk, se actualiza
el histérico de informacion acumulada sobre los tiempos de computo por tarea con los
datos asociados al batch finalizado; y entonces tiene lugar la actualizacion del valor del
factor de distribucion £2 teniendo en cuenta las condiciones actuales de la aplicacion en

cuanto a balanceo de carga.

La modificacion o sintonizacion de las variables F0, F1 y F2 en la aplicacion puede
tener lugar en cualquier momento a lo largo de las distintas iteraciones que componen la

ejecucidn de la aplicacion.
5.4.2 Adaptacion del niumero de workers

La ejecucion de una aplicacion con el nimero de workers mas apropiado no es una decision
trivial. En la mayoria de los casos las condiciones cambian durante la ejecucion de la aplicacion
(por ejemplo en sistemas con carga compartida) y el namero correcto de workers no es fijo, por

lo que debe evolucionar durante la ejecucion de la aplicacion.

En estos casos, la determinacion del numero de workers debe ser sintonizado sobre la
marcha en tiempo de ejecucion de la aplicacién. Con este objetivo, en el presente trabajo de
investigacion se ha estudiado una técnica de sintonizacion que permite mejorar el rendimiento

de la aplicacion ajustando el nimero de workers.

Para conseguir este objetivo, tal y como se expone en la seccion X, se emplea un indice
de rendimiento que relaciona tiempo de ejecucion con eficiencia en cuanto al uso de los
recursos, determinando el nimero de workers que proporciona un mejor rendimiento en la

aplicacion.

81

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

5.4.2.1 Interpretacion de la técnica de sintonizacion

Recopilando la informacién detallada en la seccion X, los términos y conceptos que forman

parte de la técnica de sintonizacion para adaptar el nimero de workers en la aplicacién son:

- m,: latencia de la red, en milisegundos (ms).

- A coste de comunicacién por byte (inverso del ancho de banda), en ms/byte.
- V:volumen total de comunicacion, en bytes.

- a:porcion de V' enviado a los workers.

- T,: tiempo total de procesamiento, en ms.

- n:numero de workers actual de la aplicacion.

- Ty tiempo total de la iteracion, en ms.

El objetivo de esta técnica es adaptar el nUmero de workers de la aplicacion a aquel
valor que represente un mejor ajuste del rendimiento teniendo en cuenta el tiempo de ejecucion
y la eficiencia en el uso de los recursos. Por tanto, dicho nimero de workers constituye el punto

de sintonizacion de esta estrategia.

Tal y como se expuso en la seccién 4.3 del capitulo 4, el namero de workers, n, es
obtenido a partir de un indice de rendimiento Pi(n) expresado mediante la siguiente expresion
analitica:

nTg(n)?

Pi(n) = — donde 7, es

N [((n—Da+1)AV + T,]

Ty(n) = 2m, n

Ambas férmulas analiticas constituyen las funciones de rendimiento de la técnica de
sintonizacion. De modo que el namero de workers que buscamos sera aquel que maximice el

rendimiento sin desperdiciar recursos en la aplicacion.

Asi, para el calculo de n necesitamos obtener el volumen total de comunicacion (7), el
tiempo total de procesamiento (7,), la porcion del volumen total de comunicacion enviado a los
workers (a), la latencia de la red (m,), el coste de comunicacion por byte (1) y el nimero actual
de workers (n).

Identificacion de actores.

De nuevo la aplicacién que va a ser sintonizada bajo esta estrategia es Xfire. Coincidiendo con
lo expuesto para la especificacion de la estrategia de balanceo de carga, en la ejecucion de la
aplicacién se pueden identificar dos tipos de procesos que cooperan entre si: un proceso master

y N procesos worker.

82

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

Identificacion de variables y valores.

Para esta técnica de sintonizacion, se necesitan interpretar V, T,, m,, Ay n identificando las

variables y valores que en la aplicacion representan estos parametros.

-V tiene que ser calculado como la suma del tamafio de las tareas enviadas desde el
master a todos los worker o recibidas desde los workers. De tal modo, el parametro
puede calcularse como V = Y (v; + vy,), donde:

0 v; equivale al tamafio total de las tareas enviadas a cada worker i, en bytes. Para
obtener este valor se necesita:

= El nimero de tareas enviadas a cada worker.
Este valor puede ser capturado en el proceso de envio del master a los
workers, en concreto a partir de la variable NTareas que indica el
numero de tareas enviadas al worker .

= El tamafio en bytes de cada tarea.
En la aplicacion, en concreto en el proceso master, existe una variable
denominada TheWorkSizeUnitBytes que indica el tamafio en bytes de
cada tarea.

0 v, equivale al tamafio total de tareas recibidas por el master. Este valor puede
ser capturado cuando el master recibe las tareas de los workers. Y el tamafio en
bytes de cada tarea se obtiene de forma equivalente a v;.

- o puede ser calculado directamente una vez obtenido el valor vi para cada worker i y el
volumen total de comunicacion ¥, a partir de la siguiente expresion a = Y13 v;/V.

- T, tiene que ser calculado como la suma del tiempo de computo de cada Worker a lo
largo de la iteracion. De tal modo, el parametro puede calcularse como T, = Y™ }(tc;),
donde:

0 tc; equivale al tiempo de computo total de cada worker i, en ms. Este valor
puede ser obtenido a partir de los tiempos de comienzo y fin de la fase de
computo de cada uno de los workers.

- my Yy A deberian calcularse al principio de la iteracion y deberian ser periédicamente
actualizados para permitir la adaptacion del sistema a las condiciones de la red. En
nuestro caso de estudio se han dejado como valores constantes.

- n es el valor actual de workers de la aplicacion, que se puede obtener mediante la

variable NW. Este es el valor que sera empleado para sintonizar la variable NW.

En el disefio de esta técnica de sintonizacién son de nuevo necesarias una serie de
variables de control que permiten crear el flujo propio de la l6gica de analisis que corresponde a

la técnica de sintonizacion para adaptar el namero de workers. Estas variables son:

83

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

workerld, esta variable es usada por el proceso master para identificar el proceso worker
al que esta enviando o de que proceso worker esta recibiendo.

TheWorkSizeUnitBytes, esta variable empleada en el proceso master representa cual es
el tamario en bytes de cada una de las tareas a ser procesadas.

iterld, esta variable esta presente en el proceso master y en el proceso Worker. Para el
master esta variable se requiere para identificar cuando se recibe un evento a que
iteracion pertenece para asociar la informacién a una correspondiente iteracion. De
manera semejante, en el caso del proceso Worker, la identificacion de la iteracion es
necesaria para asociar a una iteracion determinada la informacion de los eventos

generados en dichos procesos.

Identificacién de eventos

De nuevo, una vez determinadas las variables y valores requeridos de la aplicacion, se deben

definir los eventos que permitan obtener la informacidn que represente los datos requeridos. Los

eventos definidos son los siguientes:

84

Inicio de iteracion.

Este evento se genera cada vez que el proceso master comienza una nueva
iteracion en la aplicacion, es decir, cuando comienza la distribucion de la nueva linea de
fuego entre los workers.

La informacion que presenta asociada es el numero de iteracion en la que se
encuentra la aplicacién, el tamafio en bytes de las tareas que se van a distribuir a lo
largo de esa iteracion y el nimero de workers que participan.

Para obtener estos datos, el evento se debe de insertar en la entrada de la

funcion global sendreceive que realiza el proceso de distribucién de datos.

Fin de iteracion.
Este evento es coincidente con el detallado en la anterior técnica de

sintonizacion.

Envio de datos del master al worker.

Este evento se genera cada vez que el proceso master envia el conjunto de tareas
que debe computar a un proceso worker.

Este evento permite recopilar informacion relacionada con el identificador del
worker al que se le envia las tareas y el nimero de tareas enviadas. Para ello, el evento
debe ser insertado en la entrada del método global sendwork, en el cual se realiza el

empaguetado y envio de todos los datos necesarios al Worker determinado.

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

Recepcidn de datos de los workers en el master.

Este evento tiene lugar cada vez que el proceso master recibe el resultado del
procesamiento realizado por un worker determinado.

Tiene asociada la misma informacién que el evento anterior, pero en este caso
debe ser insertado a la salida de la funcion global receivework, en la cual se realiza la

recepcion y desempaquetado de la informacion recibida por el master.

Inicio computo de worker.

Este evento se genera cuando un worker comienza el procesamiento del
conjunto de tareas recibidas.

Mediante este evento se requiere recopilar informacién relacionada con la
iteracion en la cual se encuentra computando el Worker y la marca de tiempo asociada a
dicho comienzo de computo.

Para obtener correctamente dicha informacion, el evento debe ser insertado a la
entrada de la funcidn arcStepKernel, la cual funcionalmente representa el proceso de

computo realizado por cada worker.

Fin de cobmputo de worker.

Este evento complementa al evento anterior, y se genera cuando un worker
finaliza el cobmputo del chunk enviado.

Se recopila la misma informacion que en evento de inicio de computo, pero en

la salida de la funcion arcStepKernel.

La tabla 5.2 resume la informacidon mas importante relacionada con cada evento.

Determinacién de cuando y bajo qué condiciones realizar el proceso de sintonizacién

Bajo esta estrategia de sintonizacion, el ajuste del nimero de workers se realiza el inicio de una

iteracion, es decir, cuando se ha recibido un evento de inicio de iteracion. La actualizacion del

valor que corresponde al de workers tiene lugar en este instante ya que es cuando el tunlet ha

podido recopilar toda la informacién procedente de la iteracion anterior y por tanto puede

obtener todos los parametros necesarios para evaluar la funcion de rendimiento.

La modificacion o cambio del nimero de workers en Xfire se realiza exclusivamente al

inicio de una iteracion.

85

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

Evento Atributos Actor Método Lugar
Inicio - Ee

iy - NwW master | global_sendreceive | entrada
Iteracion

- TheWorkSizeUnitBytes

Fin Iteracion - iterld master | global_sendreceive | salida
EnvioMW - Ll master | global_sendwork | entrada
- NTareas
RecepcionMW - benedk master | global_receivework | salida
- NTareas
el - Marca de tiempo
Computo . P worker arcStepKernel entrada
- iterld
Worker
07 i o e e worker arcStepKernel salida
Worker - iterld

Tabla 5.2 Informacidn sobre los eventos para la técnica de sintonizacion para adaptar el nimero de

workers

5.4.3 Integracion de las estrategias de sintonizacion en el tunlet

Tras interpretar las dos técnicas de sintonizacion siguiendo la metodologia desarrollada, se
obtiene un tunlet que contiene el conocimiento para resolver los problemas de rendimiento

presentes en aplicaciones Master/Worker.

El tunlet combina la légica de analisis de las dos estrategias de sintonizacién y los

eventos definidos en cada una de ellas, tal y como se muestra en la tabla 5.3.

En anteriores trabajos realizados con MATE [7] [54], se aplicaban varias técnicas de
sintonizacién de forma separada. Durante la ejecucion de la aplicacion, MATE intentaba aplicar
todos los escenarios de optimizacion, pero cada uno de manera individual. MATE cargaba todos
los tunlets disponibles y cada uno de ellos llevaba a cabo su particular mejora de rendimiento de
la aplicacidn. Su objetivo era identificar e investigar distintas técnicas de sintonizacién. De tal
modo, que se centraban en los efectos de las técnicas individuales, sin considerar el rendimiento
total de la aplicacion. Pero, bajo ciertas condiciones es necesario considerar dependencias entre

diferentes problemas de rendimiento y las técnicas de sintonizacion asociadas a ellos.

86

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

Por ello, hay que destacar que en el presente trabajo de investigacion se ha desarrollado
un tunlet, cuya complejidad es méas elevada, ya que contiene el conocimiento necesario sobre
dos técnicas de sintonizacién que intentan resolver los problemas de rendimiento que se
observan en las aplicaciones Master/Worker ya comentados en la seccion X. En este caso, la
técnica de sintonizacion que ajusta el nimero de workers considera el rendimiento total de la
aplicacién ya que su funcion de rendimiento se basa en un indice que permite obtener el nimero
de workers que no sélo minimiza el tiempo de ejecucion, sino al mismo tiempo maximiza el
rendimiento aprovechando de la forma mas eficiente los recursos, siendo esto ultimo también el

objetivo de la estrategia de factoring implementada.

Evento Atributos Actor Método Lugar
- iterld
Inicio - NW .
el - TheTotalWork master global_sendreceive entrada

- TheWorkSizeUnitBytes

Fin Iteracion - iterld master global_sendreceive salida
- workerld
EnvioMW - batchld master global_sendwork entrada
- NTareas
- workerld
RecepcionMW - batchld master global_receivework salida
- NTareas
Inicio - Marca de tiempo.
Computo - iterld worker arcStepKernel entrada
Worker - batchld

Fin Computo - Marca de tiempo.

Worker - iterld worker arcStepKernel salida
- batchld
Creacion de un - batchld . .
e R e master | Factoring_SetNumTuples | salida

Tabla 5.3 Informacidn sobre los eventos para las 2 técnicas de sintonizacién implementadas

87

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

5.5 Resultados experimentales

Una vez obtenido el tunlet que contiene el conocimiento para desarrollar el proceso de
sintonizacién sobre aplicaciones Master/Worker y adaptada la aplicacion bajo estudio Xfire, el
siguiente paso consiste en validar la eficiencia y utilidad del citado tunlet cuando es integrado

en MATE para realizar el proceso de sintonizacion dinamica.

Tal y como se detall6 en las secciones previas, el tunlet desarrollado contiene la logica
de andlisis de las dos estrategias de sintonizacién que cubren los problemas de rendimiento de
aplicaciones Master/Worker: balanceo de la carga de la aplicacién entre los workers y
determinacion del nimero de workers que obtiene un buen rendimiento y eficiencia en la
aplicacién. Sin embargo, por motivos de tiempo, la experimentacion planteada sélo cubre el
estudio de rendimiento obtenido mediante la aplicacion de la estrategia de balanceo de carga

sobre Xfire.

Los experimentos expuestos a continuacion tienen como objetivo general comprobar la
mejora de rendimiento en la aplicacion Xfire cuando es ejecutada y sintonizada bajo la

herramienta MATE empleando el tunlet desarrollado.

Las pruebas experimentales han sido llevadas a cabo en un clister homogéneo y

dedicado compuesto por 10 nodos cuya configuracion se muestra en la tabla 5.4.

La configuracion hardware disponible ha sido determinante a la hora de plantear
nuestros experimentos. Estos requieren una unidad de procesamiento para cada proceso worker,
para el proceso master y para el componente Analizador de MATE. Por tanto, debido a la
existencia de 8 nodos de computo, se han podido ejecutar configuraciones Master/Worker
formadas por 2, 3, 4,5, 6 y 7 workers. En el caso de los experimentos realizados con 7 workers,
es de destacar que alguna unida de procesamiento ha sido compartida entre un proceso master o

worker y el médulo Analizador de MATE.

Como se comentd en la seccion 5.2, Xfire toma como datos de entrada distintos ficheros
de configuracion que describen el terreno, las condiciones en las que se produce el incendio y la
linea de fuego inicial. En las pruebas experimentales realizadas, la linea de fuego esta formada

por 786420 puntos que forman una curva cerrada o elipse.
Se han planteado tres escenarios de ejecucion de Xfire:

1. Ejecucidn de Xfire en su versién original.
2. Ejecucion de Xfire junto con MATE pero sin aplicar la estrategia de sintonizacion.

3. Ejecucion de Xfire junto con MATE aplicando la estrategia de sintonizacion.

88

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

- Maquina cloénica con placa base Asus.
- Procesador Intel Pentium 4 @3.0GHz.
- 1MBL21GBDDR.

- HD60GB.

Nodo Front-End

- Maquina clonica con placa base Asus.

- Procesador Intel Pentium 4 @3.0GHz.

. - 1MBL21GBDDR.

Nodo File-Server | _ 441D 60 GB: el 1° para sistema y los 3 siguientes formando un
RAID-5 para alojamiento de $SHOME compartido por NFS de
111 GB.

- HP dc7100sff.
- Procesador Intel Pentium 4 @3.0GHz.
8 Nodos de - 1MBL21GB DDR.

computo - HD 80 GB.

- Tarjeta de red Broadcom NetXtreme.

Red Toda la red interna del cluster funciona a 1 Gbps

Tabla 5.4 Caracteristicas del entorno donde se han realizado las pruebas experiementales

El planteamiento de distintos escenarios de ejecucion tiene como objetivo lograr obtener
conclusiones acerca de la sobrecarga introducida por MATE y la mejora de rendimiento o no
generada por el proceso de sintonizacion. Cada experimento fue desarrollado muchas veces y se
calculd la media para el tiempo de ejecucion de la aplicacion. La tabla 5.5 muestra los tiempos

de ejecucidn obtenidos para cada uno de los escenarios ejecutados.

Escenario Numero de workers 2 3 4 5 6 7
1 Xfire 5206 | 381,61 | 305,06 | 264.95 | 22927 | 209.94
2 Xfire+MATE (sin 55000 | 4145 | 3365 | 299,46 | 261.46 | 242,27
sintonizar)
3 Xfire+MATE 54514 | 391,83 | 305,96 | 257.9 | 226.27 | 203,59
(sintonizando)

Tabla 5.5 Tiempos de ejecucion de Xfire considerando distinto nimero de workers en los tres escenarios
de ejecucion presentados (en segundos).

El primer escenario muestra los tiempos de ejecucién obtenidos cuando la aplicacion es
ejecutada en su version original, es decir, sin la intrusion o control de la herramienta de
sintonizacion. Los resultados presentados muestra que, para los mismos datos de entrada, el
tiempo de ejecucién de la aplicacion disminuye al aumentar el nimero de workers. Se puede

concluir que Xfire escala, pero las ganancias generadas no son las ideales.

89

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

El segundo escenario de ejecucién muestra los resultados logrados cuando Xfire es
ejecutada bajo el control de MATE, sin realizar sintonizacion, es decir, solo tiene lugar la
insercion de la instrumentacién en los distintos procesos, la generacion de los eventos que son
enviados al analizador, el procesamiento de dichos eventos y la evaluacion las funciones de

rendimiento pero no se aplica sobre Xfire el resultado de dicha evaluacion.

En cuanto a la sobrecarga generada por MATE en la ejecucion de Xfire, si comparamos
los resultados obtenidos de los escenarios 1 y 2, se observa que ésta es constante
independientemente del nimero de workers implicados en el desarrollo de la aplicacion
(sobrecarga absoluta) situandose en torno a los 32 segundos. Esto se debe a que cada proceso

(master o worker) emiten el mismo nimero de eventos, y éstos son generados en paralelo.

Sin embargo hay que destacar que si la aplicacion escala, sin cambiar el tamafio de los
datos de entrada, cuando se aumenta el nimero de workers disminuyendo el tiempo de
ejecucion, el overhead que introduce MATE aumenta en proporcion a dicho tiempo de
ejecucion de la aplicacion (sobrecarga relativa), tal y como se muestra en la figura 5.3. Por tanto
seria interesante estudiar la posibilidad de intentar reducir la intrusion por defecto de MATE,
especialmente cuando debido al reducido tiempo de computo tal overhead deja de ser aceptable

en el proceso de sintonizacion.

b= sobrecarga relativa e=il=sobrecarga absoluta

16% _:O n
K 14% - F® g
S 12% 30 &
5 10u 53
5 8% -0 32
5 6% 15 &
% 4% - - 10 go
v 2% - L 5 §

0% - L0 §

2 3 4 5 6 7
N2 Workers

Figura 5.3 Sobrecarga relativa (%) y absoluta (segundos) introducida por MATE (sin aplicar
sintonizacion) en la ejecucion de Xfire.

El tercer escenario de ejecucion aplica todo el funcionamiento de MATE sobre Xfire.
Los resultados obtenidos en este entorno nos permite concluir que, una vez analizada y teniendo
en cuenta la sobrecarga introducida por MATE, se observa una mejora de rendimiento cuando
se aplica la estrategia de balanceo de carga a la aplicacion Xfire. A lo largo de la ejecucidn de la

aplicacién MATE va adaptando el factor de distribucién de datos a las condiciones actuales de

90

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

balanceo de la aplicacién generando una mejora en el rendimiento. Dicha mejora es
especialmente patente cuando el nimero de workers es mayor, ya que la division del conjunto
de tareas totales en batches de menor tamafio permite un mayor solapamiento de los procesos de

computo y comunicacion.

Para entender mejor el comportamiento de la aplicacion, se realizé un estudio en

profundidad del algoritmo de procesamiento del master y de los workers.

master

worker 1

worker 2

Figura 5.4 Comportamiento de la aplicacion Xfire durante tres iteraciones.

El master a lo largo de la ejecucion de la aplicacion es el encargado de dividir la linea
de fuego actual en fragmentos, preparar cada fragmento para su envio, enviar cada uno de ellos
a un workers, recibir los resultados de los workers, combinarlos y finalmente generar la nueva
linea de fuego. Una traza de la ejecucion, mostrada en la figura 5.4, nos permitioé ver que este
comportamiento del proceso master genera tiempos de espera en los procesos workers,
especialmente las fases de preparacion de los fragmentos para el envio y la combinacién de los
fragmentos tras su recepcion, lo cual provoca que la aplicacion se encuentre un poco

desbalanceada.

Para el caso del proceso worker, se observé que independientemente de cuél sea el
punto de la linea de fuego el cobmputo que se realiza es el mismo. Por lo tanto no existen puntos
0 tareas mas pesadas que otras y todos requieren la misma potencia de procesamiento. Ademas
partimos de la premisa de que las ejecuciones se estan realizando en un entorno homogéneo y
controlado, por lo que no existen workers méas lentos que otros ni tareas ejecutandose de otros

usuarios que dificulten el procesamiento del los workers.

91

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

Por ultimo, es de destacar que la ganancia introducida por la técnica de sintonizacion,
en algunos casos no solo es capaz de reducir el overhead introducido por MATE, sino que
también se iguala o mejora el tiempo de ejecucion obtenido respecto a la ejecucion de la version

original de Xfire. Estos resultados se muestran en la figura 5.5.

Estas conclusiones muestran por tanto la efectividad del proceso de sintonizacion

realizado a partir del tunlet desarrollado e integrado en MATE.

H Tiempo de ejecucion Xfire original

L1 Tiempo de ejecucion de Xfire+MATE (sin sintonizar)

M Tiempo de ejecucion de Xfire+MATE (sintonizando)

600
500
400
300
200
100

Tiemop de ejecucion (segundos)

N2 Workers

Figura 5.5 Comparativa de los tiempos de ejecucion obtenidos para los distintos escenarios planteados.

Con el objetivo de poder observar de manera mas clara, los beneficios que proporciona
la estrategia de analisis desarrollado, y lograr unas mejoras de rendimiento mas significativas,
se decidio introducir un desbalanceo sintético en la aplicacion, en concreto en los procesos
worker. Este desbalanceo se ha simulado suponiendo que determinados puntos de la linea de

fuego requieren un mayor computo que otros, es decir, constituyen tareas mas pesadas.

Si se analiza la linea de fuego inicial, se puede observar que esta es una curva cerrada,
en concreto una elipse. De tal modo, que para simular la existencia de tareas mas pesadas, se ha
establecido un umbral o frontera en dicha linea de fuego, mostrado en la figura 5.6, de manera
que todos los puntos de la linea de fuego situados debajo de ese umbral corresponde a tareas que

necesitan un mayor tiempo de computo.

Para reproducir esa idea el propdsito era dejar ocioso cada proceso worker una cantidad
de tiempo igual al tiempo de computo que el worker ha empleado para procesar su fragmento de
la linea de fuego por la proporcion de puntos de dicho fragmento que se sitlan por debajo del
umbral. De esta manera, se logra introducir un desbalanceo variable a lo largo del tiempo, ya

que depende de la linea de fuego y ésta se va reconstruyendo en cada iteracion.

92

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

J l Puntolsdelalirteadeﬂljego
Umbral
1450 —
1400 = -
:;—
A8
w
[43]
=
m -
= - -
= 1350
g
|
o
o
()
1300 = =
1250 = | | | [— I | | =

1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460

Coordenada eje X

Figura 5.6 Estructura de la linea de fuego inicial y el umbral de desbalanceo empleado en las pruebas
experimentales con Xfire.

Los resultados en cuanto a tiempo de ejecucion obtenidos ejecutando Xfire en su
version original y Xfire siendo sintonizada a través del balanceo de carga para distintas
combinaciones de numero de workers introduciendo la desbalanceo sintético se muestran en la
tabla 5.6.

Numero de workers 2 3 4 5 6 7
Xfire+desbalanceo sintético 648,28 | 460,34 | 393,37 | 322,82 | 276,17 | 252,74
Xfire+MATE
(sintonizando)+desbalanceo sintético Gl || AE0 || SIS | Al | | AN
Ganancia % 2,9 15 8,4 10,09 | 10,57 | 12,63

Tabla 5.6 Tiempos de ejecucion de Xfire considerando distinto nimero de workers con y sin desbalanceo
sintético en los workers, y de Xfire bajo MATE con desbalanceo sintético (en segundos). Ganancia sobre
el tiempo de ejecucidn de Xfire+desbhalanceo sintético obtenida aplicando la sintonizcion

Como se puede observar en la tabla, el tiempo de ejecucion de Xfire aumenta cuando la
carga es inyectada. En este caso, gracias al desbalanceo introducido, la mejora que proporciona
la técnica de sintonizacion desarrollada en este trabajo es méas acusada ya que dicho desbalanceo
es en general corregido debido a que MATE detecta los cambios en las condiciones del sistema
y adapta los factores de particion de los datos para distribuir el trabajo. Como se puede observar

la ganancia aumenta conforme aumenta el nimero de workers, lo cual se debe a que el mayor

93

Capitulo 5. Desarrollo del modelo de rendimiento en MATE

particionado de datos, permite que haya mas solapamiento entre los procesos de cdmputo y
comunicacién al haber un mayor nimero de workers. Por tanto, seria interesante realizar en
futuros estudios estas pruebas aumentando el nimero de workers con el objetivo de observar si

nuestra técnica de balanceo sigue siendo efectiva.

94

Capitulo 6. Conclusiones y trabajo futuro

Capitulo 6

Conclusiones y trabajo futuro

6.1 Conclusiones

La computacion paralela/distribuida proporciona la potencia necesaria para resolver problemas
complejos. El rendimiento de las aplicaciones escritas para tales entornos de ejecucion es un

aspecto muy relevante.

Hoy en dia existen distintas aproximaciones y herramientas que ayudan al usuario en el
proceso de mejora de rendimiento proporcionandoles la informacion suficiente y apropiada
sobre el comportamiento de la aplicacion. Una de estas aproximaciones es la sintonizacion
dindmica cuya principal caracteristica es que realiza todo el proceso de analisis de prestaciones
de aplicaciones paralelas/distribuidas de forma dinamica; es decir, monitoriza la aplicacién para
obtener informacion sobre su comportamiento, identifica los cuellos de botella y realiza las
modificacion de los pardmetros criticos de la aplicacion para mejorar el rendimiento, todo esto
en tiempo de ejecucion. Una de las herramientas que se sitdan bajo este enfoque es MATE, la

cual ha sido el eje del presente trabajo.

El principal objetivo de esta investigacion era sintonizar dinamicamente mediante
MATE una aplicacion MPI empleada en computacion de altas prestaciones que siga un

paradigma Master/Worker.

Para conseguir el fin propuesto, el trabajo comenz6 estudiando otras aproximaciones y
herramientas conocidas en el campo de la monitorizacion, andlisis y sintonizacion de

rendimiento de aplicaciones. Este analisis sirvié para observar como otros grupos o centros de

95

Capitulo 6. Conclusiones y trabajo futuro

investigacion afrontan el problema de mejora de rendimiento, y poder contextualizar nuestro

trabajo claramente en el &rea de la sintonizacion dinamica.

Seguidamente, se procedié a estudiar la herramienta de sintonizacion dindmica MATE.
Este estudio ha permitido tener una vision conceptual clara de la arquitectura que presenta la
herramienta asi como adquirir conocimientos sobre la funcionalidad de cada uno de los
componentes de la citada arquitectura. Una tarea compleja fue lograr la comprension global de
cémo MATE realiza de forma dinamica todo el proceso de andlisis de rendimiento, ya que para
ello fue necesaria una inmersion en el cédigo fuente de MATE. Este cometido llevé a tener el
primer contacto con la técnica de instrumentacioén dinamica en la que se basa MATE para la

realizacion del proceso de analisis en tiempo de ejecucidn.

El proceso de sintonizacion que se pretendia realizar en este trabajo estaba encaminado
a solventar los cuellos de botella que presentan las aplicaciones Master/Worker. Para ello,
MATE necesita poseer el conocimiento sobre dichos problemas de rendimiento. Los modelos de
rendimiento constituyen la base del conocimiento empleado por MATE para conducir el
proceso de andlisis, determinando la informacidn que se necesita recopilar durante la ejecucion
(puntos de medida), como evaluar la informacion recogida (funciones de rendimiento) y que
cambios se necesitan para sintonizar la aplicacion (puntos/acciones/sincronizaciones de
sintonizacion). Para poder integrar este conocimiento en MATE, el siguiente paso fue el estudio
de un modelo de rendimiento para aplicaciones Master/Worker, cuyo principal objetivo es
resolver los problemas de rendimiento que en ellas se presentan aplicando una estrategia basada
en dos fases: una primera fase en la se emplea una estrategia dindmica para el balanceo de carga
y una segunda para adaptar el nimero de workers teniendo en cuenta las caracteristicas actuales

en las que se encuentra el sistema.

Por tanto, una vez que se estuvo el conocimiento sobre la herramienta de sintonizacion
y estudiados los problemas de rendimiento que se desean resolver y su representacion en el
modelo de rendimiento, el dltimo paso para lograr el objeto de esta investigacion, fue el disefio
y desarrollo del tunlet para ser integrado en MATE. EIl tunlet es el componente software o
libreria que constituyen el mecanismo inteligente empleado por MATE en la fase de andlisis.
Cada tunlet define e implementa una particular técnica de sintonizacion, de tal modo que en
nuestro caso de estudio, el tunlet que se ha disefiado plantea la I6gica de analisis necesaria para
aplicar el modelo de rendimiento estudiado para aplicaciones Master/Worker. En este punto es
de destacar que los tunlets desarrollados en anteriores trabajos de investigacion implementaban
una Unica técnica de sintonizacién, sin embargo, en nuestro caso de estudio, el tunlet creado
presenta una complejidad mas elevada ya que el conocimiento representado en él integra las dos

estrategias de sintonizacion representadas en el modelo de rendimiento. La aplicacion elegida

96

Capitulo 6. Conclusiones y trabajo futuro

para ser sintonizada mediante la logica integrada en el tunlet es un simulador de incendios

forestales desarrollado bajo un paradigma Master/Worker, denominado Xfire.

Para el desarrollo del modelo de rendimiento en MATE, en el capitulo 5 se propone una

metodologia para la obtencion del tunlet. Siguiendo esta metodologia se ha logrado establecer:

- Aquellos valores y variables de Xfire que se requerian para interpretar los parametros
del modelo de rendimiento. Se determind que las variables en Xfire que debian ser
modificadas para mejorar el rendimiento eran: 1) el factor de particién adaptativo que
indica el tamafio de los subconjuntos en los que sera dividida la linea de fuego y 2) el
namero de workers de la aplicacion. Ademas se dedujo cémo obtener todos los

parametros necesarios para evaluar la funcion analitica del modelo de rendimiento.

- Los eventos que se debian capturar y la informacion asociada a los mismos. L0OS
eventos constituyen el mecanismo empleado por MATE para recopilar informacién
sobre el comportamiento de la aplicacion. Por tanto, nuestro trabajo fue determinar en
gue funciones de Xfire debian ser insertados los eventos para conseguir recopilar toda la

informacion requerida.

- Identificar los distintos procesos que participan en la ejecucion de Xfire. En este caso,
al tratarse de una aplicacion Master/Worker, Gnicamente habia dos actores participando

en la aplicacién: procesos workers y un master.

El procedimiento que describe la metodologia presentada estimamos que es el mas
adecuado para culminar con un tunlet que guie el proceso de sintonizacion deseado, de tal
manera que puede ser generalizable para la sintonizacion bajo MATE de cualquier aplicacion

empleando cualquier modelo de rendimiento adecuado a ésta.

Hay que destacar que para poder aplicar sobre Xfire las técnicas de sintonizacion
estudiadas fue necesario el estudio y la adaptacion de dicha aplicacién a las caracteristicas
requeridas por el modelo de rendimiento; en concreto las modificaciones se han realizado en la
l6gica de procesamiento del proceso master en la fase de distribucion de datos entre workers. Si
Xfire hubiese sido realizada empleando un framework conocido de disefio y programacion
paralela, el proceso de disefio del tunlet hubiera tenido una complejidad menos elevada.
Ademas, dicho tunlet podria ser usado para mejorar el rendimiento de otra aplicacion, que

presente el mismo paradigma que Xfire y haya sido construida empleando el mismo framework.

Finalmente, una vez desarrollado el tunlet e integrado en MATE, procedimos a realizar
pruebas experimentales. Hay que comentar que dichas pruebas, por motivos de tiempo, sélo

cubrieron el estudio de rendimiento obtenido mediante la aplicacion de la estrategia de balanceo

97

Capitulo 6. Conclusiones y trabajo futuro

de carga sobre Xfire. Se plantearon varios escenarios de ejecucién, con distintas combinaciones
del nimero de workers, con el objetivo de obtener conclusiones sobre la sobrecarga que
introduce MATE en la ejecucion de la aplicacion y sobre la ganancia obtenida en cuanto a

rendimiento al aplicar las técnicas de sintonizacian.

Con respecto a la sobrecarga generada por MATE, se concluyd que ésta es constante
independientemente del nimero de workers que participa en la ejecucién de la aplicacién, ya
que la cantidad de instrumentacion insertada y el nimero de eventos generados por proceso es

siempre el mismo, y ademas estos son generados en paralelo.

Por otro lado, el andlisis de la ganancia obtenida en el tiempo de ejecucién de Xfire
cuando ésta es ejecutada bajo el control de MATE muestra que las mejoras en el rendimiento
aumentan conforme aumenta el nimero de workers, lo cual se debe a que el divisién adaptativa
y dindmica del conjunto de tareas que realiza la técnica de factorizacion desarrollada permite

gue se produzca un mayor solapamiento entre los procesos de computo y comunicacion.

Tras estos resultados, finalmente podemos concluir que la técnica de sintonizacion
implementada e integrada en MATE es efectiva ya que la ejecucion de Xfire bajo el control
dindmico de MATE ha permitido observar la adaptacién del comportamiento de dicha
aplicacién a las condiciones actuales del sistema donde se ejecuta, obteniendo asi una mejora de

su rendimiento.

6.2 Trabajo futuro

En cuanto al trabajo futuro, queda pendiente la depuracién de la técnica de sintonizacion que
permite adaptar el nimero de workers en la aplicacién empleando un indice de rendimiento que
directamente permite relacionar rendimiento, en cuanto a tiempo de ejecucion, con eficiencia en

el uso de recursos.

Lograr el funcionamiento de esta estrategia serd una labor compleja ya que se necesita
crear y eliminar procesos worker de forma dinamica en tiempo de ejecucién; de modo que el
estudio de la légica de implementacion que permita obtener esta funcionalidad se plantea como

un gran reto.

Una vez estén funcionando de manera coordinada las dos técnicas de sintonizacion
planteadas en el presente trabajo, se pretende realizar experimentacién a partir de la cual poder
obtener conclusiones sobre el comportamiento que presenta el tunlet desarrollado y las posibles

influencias mutuas entre dichas estrategias de sintonizacion.

98

Capitulo 6. Conclusiones y trabajo futuro

También se pretender llevar a cabo pruebas experimentales en entornos de computo que
presenten un mayor nimero de nodos. Estas pruebas nos permitirdn obtener de nuevo
conclusiones sobre el comportamiento del tunlet, y ademas nos posibilitaran estudiar las
caracteristicas de escalabilidad de MATE. Tal y como se comentd en la seccion 3.6 del capitulo
3, la escalabilidad de MATE se encuentran reducidas cuando aumenta el nimero de méaquinas
involucradas en la ejecucion de la aplicacion ya que el andlisis centralizado que MATE lleva a
cabo se convierte en un cuello de botella que hace que la deteccion de los problemas de
rendimiento no sea rapida y por tanto los problemas de rendimiento no se resuelvan de manera

adecuada.

Las conclusiones que se obtenga sobre el estudio de la escalabilidad, nos posibilitaran
sentar las bases para comenzar con el trabajo futuro de la tesis doctoral que se centra en estudiar
y mejorar la escalabilidad de MATE. Esta mejora inicialmente se centra en el empleo de un
esquema de comunicacién jerarquizado en la arquitectura de MATE y en un mecanismo de
analisis de rendimiento distribuido. El fin que se persigue es poder hacer eficiente y Gtil el uso

de MATE en el &mbito de la computacion de altas prestaciones.

99

100

Bibliografia

Bibliografia

[1] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to Parallel Computing.:
Pearson Addison Wesley, 2003.

[2] R. Jain, The Art of Computer Systems Performance Analysis: Techniques for Experimental

Design, Measurement, Simulation, and Modeling.. Wiley-Interscience, New York, 1991.

[3] W. E. Nagel, A. Arnold, M. Weber, H.-Ch. Hoppe, and K. Solchenbach, "VAMPIR:
Visualization and Analysis of MPI Resources,” Supercomputer, vol. 12, pp. 69-80, 1996.

[4]J. Jorba, T. Margalef, and E. Luque, "Search of Performance Inefficiencies in Message
Passing Applications with KappaPl 2 Tool,” in Proceedings PARA Conference, 2006, pp.
409-419.

[5] C. Tapus, I. Chung, and J.K. Hollingsworth, "Active Harmony: Towards Automated
Performance Tuning," in Proceedings from the Conference on High Performance
Networking, 2003, pp. 1-11.

[6] R.L. Ribler, H. Simitci, and D.A. Reed, "Autopilot Performance-Directed Adaptive Control
System," in Proceedings Future Generation Computer Systems Conference, 1997, pp. 175-
187.

[71 A. Morajko, "Dynamic Tuning of Parallel/Distributed Applications,” Universidad
Auténoma de Barcelona, Barcelona, Tesis doctoral 2003.

[8] J. K. Hollingsworth, "An API for Runtime Code Patching," The International Journal of
High Performance Computing Applications, vol. 14, pp. 317-329, 2000.

[9] E. Cesar, A. Moreno, J. Sorribes, and E. Luque, "Modeling master/worker applications for

automatic performance tuning," Parallel Comput., vol. 32, no. 7, pp. 568-589, 2006.

[10] J Jorba, T Margalef, and E Luque, "Simulation of Forest Fire Propagation on Parallel and
Distributed PVM Platforms,"” in Proceedings of the 8th European PVM/MPI Users' Group

Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface,

2001, pp. 386-392.

101

Bibliografia

[11] P.H. Worley. (Accedida Junio 2010) Portable Instrumentation Library for MPI (MPICL).
[Online]. http://www.netlib.org/mpicl/

[12] M. T. Heath and J. E. Finger. (Accedida Junio 2010) ParaGraph: A Performance

Visualization Tool for MPI. [Online]. http://www.csar.illinois.edu/software/paragraph/

[13] P.H. Worley, "A new PICL trace file format," Oak Ridge National Laboratory, Oak Ridge,
TN, ORNL Technical Report ORNL/TM-12125 September 1992.

[14] A. Geist, T.M. Heath, B.W. Peyton, and P.H. Worley, "A User's Guide to PICL: A Portable
Instrumentation Communication Library,” ORNL Technical Report ORNL/TM-11616,
October 1990.

[15] D.A. Reed et al.,, "Scalable Performance Analysis: The Pablo Performance Analysis
Environment," in Proceedings of the Scalable parallel libraries conference, 1993, pp. 104-
113.

[16] R.A. Aydt, "SDDF: The Pablo Self-Describing Data Format," University of Illinois at

Urbana Champaign, Department of Computer Science, Technical Report. 1993.

[17] D. Reed et al., "Scalable Performance Environments for Parallel Systems," in Proceedings
of the Sixth Distributed Memory Computing Conference, 1991, pp. 562-569.

[18] H. Brunst, H.-C Hoppe, W. E. Nagel, and M. Winkler, "Performance Optimization for
Large Scale Computing: The Scalable VAMPIR Approach," in Proceedings International
Conference on Computational Science, 2001, pp. 751-760.

[19] S.S. Shende and A.D. Malony, "The Tau Parallel Performance System," Int. J. High
Perform. Comput. Appl., vol. 20, no. 2, pp. 287-311, 2006.

[20] F. Wolf and B. Mohr, "Automatic performance analysis of hybrid MPI/OpenMP
applications,” Journal of Systems Architecture, vol. 49, no. 10-11, pp. 421-439, 2003.

[21] M. S. Muiller et al., "Developing Scalable Applications with Vampir, VampirServer and
VampirTrace," Parallel Computing: Architectures, Algorithms and Applications, vol. 38,
pp. 637-644, 2007.

[22] H. Brunst, D.K. Miller, M.S. Muller, and E.N. Wolfgang, "Tools for scalable parallel
program analysis: Vampir NG, MARMOT, and DeWiz," Int. J. Comput. Sci. Eng., vol. 4,
no. 3, pp. 149-161, 2009.

102

Bibliografia

[23] M. Geimer et al., "The SCALASCA Performance Toolset Architecture,” in Proceedings
International Workshop on Scalable Tools for High-End Computing (STHEC), 2008, pp.
51-65.

[24] Brian J. N., "The Scalasca performance toolset architecture,” Concurrency and

Computation: Practice and Experience, Vol. 22, pp. 702-719, 2010.

[25] K. Furlinger and M. Gerndt, "Periscope: Performance Analysis on Large-Scale Systems,"

Innovatives Supercomputing in Deutschland, vol. 3, no. 2, pp. 26-29, 2005.

[26] M Gerndt, K. Furlinger, and E. Kereku, "Periscope: Advanced Techniques for Performance
Analysis," in Proceedings PARCO Conference, 2005, pp. 15-26.

[27] S. Benedict, V Petkov, and M. Gerndt, "PERISCOPE: An Online-based Distributed
Performance Analysis Tool," in Proceedings 3rd International Workshop on Parallel Tools
for High Performance, 2009.

[28] B. Mohr, D. Brown, and A.D. Malony, "TAU: A Portable Parallel Program Analysis
Environment for pC++," in Proceedings CONPAR, 1994, pp. 29-40.

[29] TAU (Tuning and Analysis Utilities). (Accedida en Junio 2010) [Online].

http://www.cs.uoregon.edu/research/tau/home.php

[30] V. Pillet, J. Labarta, T. Cortes, and S. Girona, "PARAVER: A Tool to Visualize and
Analyze Parallel Code," Departament d'arquitectura de Computadors, Barcelona, Technical
Report 1995.

[31] J. Labarta, S. Girona, and T. Cortes, "Analyzing Scheduling Policies Using Dimemas,"

Barcelona, Technical Report 1997.

[32] A. Espinosa, T. Margalef, and E. Luque, "Automatic detection of parallel program
performance problems,” in SPDT '98: Proceedings of the SIGMETRICS symposium on
Parallel and distributed tools, New York, NY, USA, 1998, pp. 149.

[33] Barton P. Miller et al., "The Paradyn Parallel Performance Measurement Tools," IEEE
COMPUTER, vol. 28, pp. 37-46, 1995.

[34] P.C. Roth, D.C. Arnold, and B.P. Miller, "MRNet: A Software-Based Multicast/Reduction
Network for Scalable Tools," in SC '03: Proceedings of the 2003 ACM/IEEE conference on
Supercomputing, Washington, DC, USA, 2003, pp. 21.

103

Bibliografia

[35] R. Ribler, J. Vetter, H. Simitci, and D.A. Reed, "Autopilot: Adaptive Control of Distributed
Applications,” in Proceedings of the 7th IEEE Symposium on High-Performance
Distributed Computing, 1998, pp. 172-179.

[36] A. Tiwari, V. Tabatabaee, and J.K. Hollingsworth, "Tuning parallel applications in
parallel,”" Parallel Computing, vol. 35, no. 8-9, pp. 475-492, 2009.

[37] G. D. Riley and J. R. Gurd, "Towards Performance Control on the Grid," Philosophical
Transactions: Mathematical, Physical and Engineering Sciences, vol. 363, no. 1833, pp.
1793-1805, 2005.

[38] M. Hussein, K. Mayes, M. Lujan, and J. Gurd, "Adaptive performance control for
distributed scientific coupled models,” in ICS '07: Proceedings of the 21st annual

international conference on Supercomputing, New York, NY, USA, 2007, pp. 274-283.

[39] K. Chen, K. R. Mayes, and J. R. Gurd, "Autonomous performance control of distributed
applications in a heterogeneous environment," in Autonomics '07: Proceedings of the Ist
international conference on Autonomic computing and communication systems, ICST,

Brussels, Belgium, Belgium, 2007, pp. 1-5.

[40] A. Morajko, P. Caymes-Scutari, T. Margalef, and E. Luque, "MATE: Monitoring, Analysis
and Tuning Environment for parallel/distributed applications," Concurr. Comput. : Pract.
Exper., vol. 19, no. 11, pp. 1517-1531, 2005.

[41] A., Morajko, O., Jorba, J., Margalef, T., Luque, E. Morajko, "Dynamic Performance
Tuning of Distributed Programming Libraries,"” in ICCS'03: Proceedings of the 2003
international conference on Computational science, vol. 2660, Melbourne, Australia, 2003,
pp. 191-200.

[42] A. Morajko, O. Morajko, T. Margalef, and E. Luque, "MATE: Dynamic Performance
Tuning Environment," in Proceedings Euro-Par Conference, 2004, pp. 98-106.

[43] G. Costa, J. Jorba, A. Morajko, T. Margalef, and E. Luque, "Performance models for
dynamic tuning of parallel applications on Computational Grids,” in Proceedings 2008
IEEE International Conference on Cluster Computing, Tsukuba, 2008, pp. 376-385.

[44] Dyninst Library. (Accedido en Mayo 2010) [Online]. http://www.dyninst.org

104

Bibliografia

[45] P. Caymes-Scutari, "Extending the usability of a Dinamic tuning environment,”

Universidad Auténoma de Barcelona, Barcelona, Tesis Doctoral 2007.

[46] P. Caymes-Scutari, A. Morajko, T. Margalef, and E. Luque, "Scalable dynamic
Monitoring, Analysis and Tuning Environment for parallel applications,” J. Parallel
Distrib. Comput., vol. 70, no. 4, pp. 330-337, 2010.

[47] I. Banicescu and V. Velusamy, "Load Balancing Highly Irregular Computations with the
Adaptive Factoring," in Proceedings IPDPS Conference, 2002.

[48] S. F. Hummel, E. Schonberg, and L. E. Flynn, "Factoring: A Method for Scheduling
Parallel Loops," Commun. ACM, vol. 35, no. 8, pp. 90-101, 1992.

[49] R.C. Rothermel, "How to Predict the Sperad and Intensity of Forest and Range Fires," ,
vol. INT-143, 1983, pp. 1-5.

[50] Fire Software. (Accedido en mayo de 2010.) [Online]. http://fire.org

[51]J.C.S. André, E. Luque, and D.X. Viegas, "Application of parallel processing to the
simulation of forest fire propagation,” in Proceedings International Conferencie on Forest

Fire Research, vol. 11, Coimbra, Portugal, 1998.

[52] J.C.S. André and D.X. Viegas, "A Strategy to Model the Average Fireline Movement of a
light-to-medium Intensity Surface Forest Fire," in Proc. of the 2nd International
Conference on Forest Fire Research, 1994, pp. 221-242.

[53] J.C.S André, "A theory on the propagation of surface forest fire fronts," Universidade de

Coimbra, Portugal, Tesis doctoral 1996.

[54] A. Morajko, P. Caymes-Scutari, T. Margalef, and E. Luque, "Automatic Tuning of Data
Distribution Using Factoring in Master/Worker Applications,” in Proceedings
International Conference on Computational Science, 2005, pp. 132-139.

105

