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Abstract

Nowadays, many of the health care systems are large and complex environments and quite dynamic,

speci�cally Emergency Departments, EDs. It is opened and working 24 hours per day throughout

the year with limited resources, whereas it is overcrowded. Thus, is mandatory to simulate EDs

to improve qualitatively and quantitatively their performance. This improvement can be achieved

modelling and simulating EDs using Agent-Based Model, ABM and optimising many di�erent

sta� scenarios.

This work optimises the sta� con�guration of an ED. In order to do optimisation, objective functions

to minimise or maximise have to be set. One of those objective functions is to �nd the best or

optimum sta� con�guration that minimise patient waiting time. The sta� con�guration comprises:

doctors, triage nurses, and admissions, the amount and sort of them. Sta� con�guration is a

combinatorial problem, that can take a lot of time to be solved.

HPC is used to run the experiments, and encouraging results were obtained. However, even with

the basic ED used in this work the search space is very large, thus, when the problem size increases,

it is going to need more resources of processing in order to obtain results in an acceptable time.
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Chapter 1

Introduction.

1.1 Context.

It is stated that modelling and simulation is the third way of doing science

[1], complementary to observation and direct experimentation, �rst and second

way, respectively. Usually, classical sciences as physics, chemistry, and astron-

omy use the three of them, but specially computer simulation when collected

data and experimentation become a challenge to calculate. For the last 20

years, simulation is also applied, succesfully, in other disciplines as economics,

ecology, psychology, anthropology, education, health care and biology, amongst

other social sciences. At the present time, modelling and simulation of di�erent

kind of complex social systems, like the �elds previously cited, is quite common

and promising research. By complex systems, it is mean systems that exhibit

nontrivial emergent and self-organising behaviour [2].

Health care systems, as well of many social sciences, lack of standard models

that characterised them. Hospitals, as core member of health care systems, are

1



2 CHAPTER 1. INTRODUCTION.

made of many independent distributed complex departments [3], one of these

complex units is Emergency Department (ED), that could be the most dynamic

department of hospitals, and so can be modelled and simulated isolated.

Due to the absence of any formal description for EDs, alternative methods

must be used to characterise them. Therefore, Agent-Based Model (ABM)

or Individual-oriented Model (IoM) is used, since this framework describes

the dynamic of systems in which agent behaviour is complex, non-linear, the

combined interaction of all the agents can create rich emergent behaviour and

agents show memory [4].

1.1.1 Computational science.

Computational science is neither computer science, mathematics, engineer-

ing, social science, nor a discipline of humanities. It is a blend, the intersection

between applied mathematics, computer science and application sciences as it

is shown in Figure 1.1. It is a �eld that concentrate on the e�ective use of com-

puter software, hardware and mathematics to solve real problems. It is a useful

concept when it is desirable to distinguish the more pragmatic aspects of com-

puting from computer science, theory concepts, from computing or engineering,

design and construction of computers. Mathematics set up the algorithm or the

formal model, while the physical model or application is provided by the ap-

plied �eld, which is the science objective of study, that could be any as physics

or chemistry, and, �nally, computer science adds the software i.e., the imple-
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mentation of the mathematical model, and hardware where the simulation will

take place.

Another de�nition according to The Society of Industrial and Applied Math-

ematics (SIAM):

Computational science and engineering is a rapidly growing multidis-

ciplinary area with connections to the sciences, engineering, math-

ematics and computer science. It focuses on the development of

problem-solving methodologies and robust tools for the solution of

scienti�c and engineering problems.

Thus, in the broad sense, it is Science, done computationally.

This work is an interdisciplinary one, since there is a relationship between

health science and health care systems, computer science, engineering and soci-

ology. It belongs to Computational Science applications in Individual Oriented

Behaviour, speci�cally. Thus, computers are used to simulate the model, which

is not a mathematical or standard one of an ED, as it is said above, in order

to optimise its sta� con�guration to enhance its performance.

1.2 Motivation.

Nowadays, many of the health care systems are large and complex environ-

ments and quite dynamic, speci�cally EDs. The ED is a sui generis unit of

hospitals. On the one hand, it is opened and working 24 hours per day through-
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Figure 1.1: Computational Science as a multidisciplinary �eld.

out the year with limited resources, specially with the present �nancial crisis,

when there are several budget reductions that could compromise health care

systems, but on the other hand, is under a huge and growing demand of ser-

vices, i.e., it is overcrowded. Such critical service must be satis�ed with the best

quality and e�ort. Emergency Department is supposed to be the unit where

severe illness and injury, emergent cases, is handle, but due to the high demand

of services, it is no longer anymore. As a matter of fact, EDs has become a unit

where converge urgent, nonurgent, and severe cases, which decrease the amount

of time, quality and resources given to the patients. Therefore, is mandatory to

simulate EDs to improve qualitatively and quantitatively the performance of

such crucial department, because health is one of the most appraised gift to hu-

man life. Such improvement can be achieved simulating EDs using ABM and

optimising many di�erent sta� scenarios, that includes di�erent amount and

sort of doctors, nurses, and admissions, amongst others, with huge demand of
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heterogeneous service, in order to �nd the best or optimum sta� con�guration.

Moreover, High Performance Computing HPC has been associated and

utilised mainly in classical sciences as physics, astronomy and chemistry or

hard di�cult engineering problems, but now social sciences are becoming to

use it lately. The systems modelled by these sciences are quite complex and

demand huge amount of data space, and to preserve the data new �le systems

must be develop; furthermore, the simulation of such systems has long run-

time on convential computers. In addition, the models and the phenomena

being modeled are inherently probabilistic. Hence, social sciences and EDs

are demanding HPC, in order to simulate, analyse, understand and generate

knowledge.

1.3 The Problem.

An almost steady stream of patients arrives into EDs, speci�cally nonurgent

or urgent cases, but also serious ones too. The latter cases are, or at least it is

supposed to be, the main target of EDs, even though all cases have to be re-

ceived and addressed. Patients can arrive either by their own or by ambulance.

Moreover, there are days, periods or extreme events which modify such almost

steady stream of patients and increase the demand of services that compromise

the whole department and the ad hoc or ideal patient care. Nevertheless, pa-

tient input cannot be modi�ed, i.e., it is a fact, even if it is steady or not.

EDs are units constituted by the place, physical resources as beds, test
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equipments, and, �nally, but the most important, patients and their compan-

ions, and sta� members, which includes nurses, doctors, and admission sta�,

amongst others.

Usually, patients have the following �ow in the EDs: arrive by walk in, if

no require immediate care they proceed to the admission place, whereas both

of those who need immediate attention, and those that arrive by ambulance

are sent directly to a treatment area, if admission sta� is busy patients wait;

thus, patients go to a triage area, if triage nurses are busy patients wait, again,

but in another area -in this step patients are evaluated for the seriousness or

acuity of their condition, and a priority level is assigned based on it; �nally,

patients wait for a diagnosis and treatment room and a doctor. At last, pa-

tients could be admitted into the service or discharge. All these phases depend,

not only on the distribution stream of patients, but also on the con�guration

of the sta� members. That is, the human resources of EDs. These human

resources imply cost, because of their income, as well as the costs related to the

tests that have to be taken to the patient, since the budget is a major constraint.

Optimise this sta� con�guration: doctors, triage nurses, and admission,

which includes the sort of the members �junior or senior, less and more expert,

respectively� and the amount of them �from 1 to 3 or 4� that are shown in

the table 1.1 represents a combinatorial problem, that can take a lot of time

to be solved. This implies that speci�c scenarios or con�gurations have to be

simulated several times, changing parameters to show di�erent probabilities,
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for the purpose of generate set of results from which particular e�ects can be

conclude.

Even with this simple setting of an Emergency Department the search space

is big. The search space has 4536 combinations to �nd out which is the best

or optimum that minimise or maximise a desire index, under some restrictions.

The initial indexes, or objective functions in which this work is concerned are:

to �nd the best or the optimum that minimise patient waiting time, under

certain costs, and minimise sta� cost con�guration, restricted to some waiting

patient time.

Table 1.1: Sta� con�guration parameters of a basis Emergency Department

Junior / Senior

Doctor 1-4

Triage nurse 1-3

Admission 1-3

1.4 Objectives.

• The �rst and general objective is to create a Decision Support System

(DSS ) to help Emergency Departments in order to set up strategies and

management guidelines to enhance the performance of the EDs.

• The second and main objective of this work is to optimise the sta� members

of Emergency Departments, which includes admission sta�, triage nurses,

and doctors, in order to get the best or optimum solution to minimise or

maximise objective functions.
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1.5 Organisation of this dissertation.

This dissertation is organised as follows:

• In the next Chapter, concepts of modelling are discussed. Also the frame-

work used Individual Oriented Behaviour or ABM is presented, as well

as brie�y the model of the Emergency Department. Topics about simula-

tion and its importance are outlined, also the simulator used is presented.

Finally, the related works are also presented in this Chapter.

• In Chapter 3 topics of optimisation are explained. They include de�nitions,

numerical methods, taxonomy of optimisation approaches for single and

multiple objectives. Finally, concepts and examples of metaheuristics are

sketched.

• Experimental Evaluation and results are shown and discussed in Chapter

4, according to the objectives posed.

• Finally, in Chapter 5 the �nal conclusions and future works are stated.



Chapter 2

Individual Oriented Behavioural.

2.1 Introduction.

This framework is de�ned by the behaviour of the individuals, their inter-

actions between each other, as well as the interactions between the individual

and the environment. This modelling is used on complex systems that are dif-

�cult to tackle by classical or formal methods, which are unable to de�ne such

problems.

Concepts about what modelling is, its purposes, and characteristics are out-

lined in this chapter. The de�nition and vindication on using an alternative

method, the Agent Based Model ABM, to model complex systems is presented

later. The present Agent Based Model of Emergency Department ED is brie�y

shown, as well as concepts of simulation and related works are discussed.

9
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2.2 Modelling.

It is said that models are only an abstract representation of a real system.

The model can be de�ned as a set of assumptions or approximations about how

the system works, i.e., it describes the system. It is of paramount importance

remembering that the model is not the reality, but merely a human construc-

tion to help to better understand real world systems.

What are the purposes of modelling? Amongst them are the following:

• allow to study, and analyse the model instead of the real system. It is

easier, faster, cheaper, and safer.

• to training or for educational aim merely.

• can generate new insights.

• testable predictions can be made.

• can help to proof the hypothesis.

• rule out a particular explanation for an experimental observation.

• can try wide-range of ideas or experimental; rather than to make the mis-

takes for real make them on the computer model.

Models can be either mental, that are subjective, incomplete, lack a of for-

mal statement, e.g., ideas and concepts, or formal, which are based on rules,

and are easy transmitable, for example diagrams, and planes. Models can be
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characterised as: deterministic, stochastic, static, dynamic, continous, and dis-

crete [5]. This taxonomy is shown in Figure 2.1

Figure 2.1: Classi�cation of models.

The overall modelling process is usually iterative, and comprise the following

methodology:

1. Determine the goals and objectives.

2. Build a conceptual model.

3. Convert into a speci�cation model.

4. Transform into a computational model.

5. Verify.

6. Validate.
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Before entering the modelling process, there are some questions that have

to be made: are the expected savings from using the model greater than the

cost of developing and implementing it? Is there enough time to develop and

implement it before the recommendation is needed? Is it more easy doing an

experiment on the real system than to build the model? In general, if the pur-

poses as well as the objectives are satis�ed.

However, answering previous questions is not only one the most di�cult task

when doing the conceptual model, but also it is to identify the simpli�cations

that ought to be made without sacri�cing the needed or useful accuracy of the

model. If unimportant details are kept out of the model, it would be more

easier to change and to use. Another, key part of this conceptual and abstract

process is how comprehensive should the model be?

The speci�cation phase comprise equations and pseducode of the conceptual

model of the prior step; whereas the computational model is the numerical im-

plementation, i.e., a computer program.

Veri�cation implies that computational model must be consistent with the

speci�cation model. Finally, the model is validated if it is consistent with the

system being analized. Moreover, if an expert cannot be able to distinguish

simulation output from system output, thus, it is the right the model. Never-

theless, if the output model di�ers from what happened in the real world, it is

necesary to recall that the model is not the reality. Hence, the model still has

some �aws. As an iterative process if any phase is not satis�ed it has to back

to the previous steps.

Usually, models are stochastic, dynamic and discrete. They are complex [2],
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di�cult to analyse and their results could be only valid over a range. The next

section deals with these kind of models, that specially lack of a formal model.

2.3 Agent Based Model.

Although, there is no a general accepted de�nition, it can be said that an

Agent Based Model ABM is a computational model of a heterogeneous popula-

tion of agents and their interactions. The result of the micro-level interactions

can produce macro-level behaviour like cooperation, segregation, and culture,

amongst others. This framework describes the dynamic of the systems in which

agent behaviour is complex, stochastic, non-linear, the combined interaction of

all the agents can create rich emergent behaviour and shows memory [4]. ABM

are fundamentally decentralised. The behaviour is de�ned at individual level,

and the global behaviour emerges as a result of many individuals, each follow-

ing its own behaviour rules. Hence, ABM is also called bottom-up modelling.

An agent is a discrete entity with its own goals and behaviours. It is also

autonomous, with a capability to adapt and modify its behaviours.

ABM can be a useful tool of analysis complementary to mathematics when

a model is either not totally solved mathematically or apparently insoluble.

This is the case for social sciences where usually there is a lack of mathematical

model which de�nes the problem.
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2.3.1 Agents Based Models in Social Sciences.

ABM is widely used in social science . The three �elds in which agent-

based models are most utilised are economics, social sciences, and biology [6].

ABMs are used in social sciences in situations where human behaviour cannot

be predicted using classical methods such as qualitative or statistical analysis

[7]. Human behaviour is also modelled with ABMs in the �elds of psychology[8],

epidemiology[9], and tourism planning[10], amongst a long list of others.

Before enter the discussion about the Emergency Department Model, in the

next section 2.4, some suggestions about the relevance of using ABM [11] are

listed following:

• When there is a natural representation as agents.

• When there are decisions and behaviours that can be de�ned discretely

(with boundaries).

• When it is important that agents adapt and change their behaviours.

• When it is important that agents learn and engage in dynamic strategic

behaviours.

• When it is important that agents have a dynamic relationships with other

agents, and agent relationships form and dissolve.

• When it is important that agents have a spatial component to their be-

haviours and interactions.
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2.4 The Emergency Department Model.

The Emergency Department model de�ned by this work is a pure Agent-

Based Model, and so is formed entirely of the rules governing the behaviour of

the individual agents which populate the system.

Through the information obtained during the interviews carried out with

ED sta� of the Hospital of Mataró and the Hospital of Sabadell, two kind

of agents have been identi�ed, these are active and passive agents. The ac-

tive agents represent people and other entities that act upon their own initia-

tive (patients, companions of patients, admission sta�, sanitarian technicians,

triage and emergency nurses, sta� emergency doctors, and others specialists,

and social workers). These are described by state machines, speci�cally Moore

machines. A Moore machine has a single output for each state; transitions

between states are speci�ed by the input. On the other hand, passive agents

represent systems that are solely reactive, such as loudspeaker system, patient

information system, pneumatic pipes, and central diagnostic services (radiology

service and laboratories).

Even though the model is not the aim of this work, it is sketched in the rest

of this section.

2.4.1 Active agents.

The current state of an active agent is represented by a collection of state

variables, known as the state vector (T). Each unique combination of values

for these variables de�nes a distinct state.
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Every time step the state machine moves to the next state as de�ned by the

current state and the input vector as described below.

Table 2.1: Some active state variables, and their values.

Variable Values Observability

Name / Identi�er Unique per agent I

Personal details Gender; Medical history; Allergies;

Origin

I

Location Department entrance, Admissions,

Waiting room, Triage, Consultancy

room, Treatment box

E

Action Idle, Requesting information from

<id>, Giving information to <id>,

Searching, Moving to <location>

E

Physical condition Healthy, Hemodynamic-Constant;

Barthel Index

E / I / N

Symptoms None; Level 1 - Resuscitation; Level

2 - Emergent; Level 3 - Urgent ;

Level 4 - Less Urgent; Level 5 Non

Urgent

E/ I

Level of communi-

cation

Low, Medium, High E

Level of experience

(doctor)

None, Resident, Junior, Senior and

Consultant

I

Level of experience

(triage and emer-

gency nurses)

None, Low, Medium, High I

Level of experience

(admissions)

None, Low, Medium, High I
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2.4.1.1 State variables.

In order for the state machine to function, all state variables must be enumer-

able in some manner. This may be discrete variables or variables representing

continuous quantities which have had their possible values divided into ranges.

Variables also have another property, observability. A variable that is ex-

ternally observable (E) indicates that any agent can discern the value of that

variable merely by being within a certain proximity of the agent in question.

An internally observable (I) variable is one where the agent is aware of the value

of the variable, but other agents are not. An unobservable variable (N) is one

which no agent, and thus nothing within the system, knows the value of.

It is possible that a variable may have some values which are observable, and

others which are not or a group of values which will all appear the same to an

observer, this is a partly observable variable. In the case of an agent representing

a person and a variable representing their physical condition certain values

may be externally observable (for instance a broken arm), others may be only

internally observable (a stomach ache).

This observability is represented as implicit 1-to-location communication,

each agent in the location receives, for instance, a message that another agent

has a broken arm. Most agents will not respond to this input, but it is available

to all as in the corresponding real life situation all people in a room would be

able to see that a patient has a broken arm without the need to speci�cally ask

this person about it.

Through the round of interviews an initial set of state variables has been

de�ned, based on the minimum amount of information required to model each
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patient and member of sta�. The variables, their values and their kind of

observability are shown in Table 2.1. Some of the state variables will have

a potentially very large set of possible values, e.g. the symptoms or physical

condition.

2.4.1.2 Inputs, outputs, and state transitions.

Upon each time step the state machine moves to the next state. This may

be another state or the same one it was in before the transition. The next state

the machine takes is dependent on the input during that state. The input may

be more accurately described as an input vector (I) that contains a number of

input variables, each one of which may take a number of di�erent values. As

this is a Moore machine, the output depends only on the state, so each state has

its own output, although various states may have outputs that are identical.

Again, the output is more accurately described as an output vector (O), a

collection of output variables, each with a number of de�ned possible values.

Transitions between states are dependent on the current state at time t (St) and

the input at time t (It). Following the transition the state machine will be in

a new state (St+1). The state machine can be represented as a state transition

table, as shown in Table 2.2, where each row represents a unique state-input

combination, showing the output (de�ned solely by the current state) and the

state in the next time step (de�ned by the current state and the input).



2.4. THE EMERGENCY DEPARTMENT MODEL. 19

Table 2.2: State transition table.

Current state / Input Next state /

output output

S0 / O0 I0 Si / Oi

S0 / O0 I1 Sj / Oj

S0 / O0 I2 Sk / Ok

...
...

...

Sx / Ox I0 Sy / Oy

Sx / Ox I1 Sz / Oz

...
...

...

2.4.1.3 Probabilistic state transitions.

In some speci�c cases the state machine involves probabilistic transitions,

where a given combination of current state and input has more than one possible

next state. Which transition is made is chosen at random at the time of the

transition, weights on each transition provide a means for specifying transitions

that are more or less likely for a given individual. Each one of the input variable

of the input vector (I) ) may take a number of di�erent values with a certain

probability. In these cases our state transition table is de�ned with probabilities

on the input as shown in Figure 2.2b. An agent in state Sx receiving input Ia

may move to either one of states Sy, Sz or remain in the same state, with a

probability of p1, p2, and p3 respectively. One of these transitions will always

occur, which is to say p1 + p2 + p3 = 1. The state diagram would then have

three di�erent transitions for that state-input combination as shown in Figure

2.2a.
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(a) Probabilistic state transition

graph

(b) Probabilistic state transition table

Figure 2.2: Probabilistic state transition graph and its corresponding table.

Probabilities may be di�erent for each agent, in this way heterogeneity is

provided to agents as people, since agent behaviour can be probabilistically

de�ned external to their state.

2.4.2 Passive agents.

Passive agents represent services within the hospital system such as the IT

infrastructure that allows patient details to be stored, radiology services and

other laboratory tests as well as specialist systems such as pneumatic tube

networks that some larger hospitals use to quickly transfer samples from one

part of the department to another.

2.4.3 Communication model.

The communication model represents three basic types of communication.

First type is 1-to-1 communication, such between two individuals, for instance

admission sta� and patient, where a message has a single source and a sin-
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gle destination. Second is 1-to-n communication, where a message has a single

source and a speci�c set of recipients, for example when a doctor communicates

with both patient and his companion. The �nal type is 1-to-location commu-

nication, where a message has a single source, but is received by every agent

within a certain area or location. This occurs when triage nurse call send a

message to the patients of the waiting room, through the loudspeaker system.

Implicit, or passive, communication also exists, where an agent may be pro-

ducing communication just be remaining in a certain area. This is the manner

in which agent vision, what each agent sees, can be represented using the same

model. An agent is continuously emitting messages with regard to its visible

physical status and location, other agents receive these 1-to-location messages

and may act upon them in certain circumstances. For instance, an agent wait-

ing for another agent in a certain area will receive communication that the

agent has entered and act upon it, representing, for instance, a nurse seeing a

patient, enter a triage room and attending to them.

Each message is comprised of a number of components. The source and des-

tination of the message, where the source is the individual and the destination

is either de�ned as an individual, a group of individuals, or location (where all

individuals within that location will receive the message). The actual content

of the message is the �nal part, creating a message tuple of the form (<src>,

<dst>, <content>).

The <dst> component of the message is the implicit destination of the mes-

sage, in the real world case of 1-to-1 or 1-to-n communication is communicated

via body language such as an individual facing another and making eye contact
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while talking. In the case of a 1-to-location message the implicit destination is

the location. In some cases, a 1-to-location message is actually only meant for

a certain agent, in which case the <content> component of the message will

need to contain an explicit destination. A real world example of this is a loud

speaker, all individuals within hearing distance of the loud speaker will hear

it, but if it is only directed at a certain individual their name or some other

identi�er will need to be used, so the speci�c individual knows it is for them

and the remaining individuals know it is not for them.

2.4.4 Environment.

All actions and interactions modelled take place within certain locations,

collectively known as the environment. The environment itself can be de�ned

to di�erent levels depending on the positional precision required of the model.

Figure 2.3: Simpli�ed emergency department layout.

The environment in which the agents move and interact is passive and dis-

crete. There is little distinction made between agents in the same location, a
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patient in the waiting room does not have any more speci�c sense of position

than that they are in the waiting room. Certain locations may be physically

distinct, but functionally identical, for instance there are usually a number of

triage rooms, an agent in any one of these will act as if they are in any triage

room, however they are distinct in order to represent that each available room

may only be used by one nurse-patient group at a time. The environment

also contains representations of the relative distances between di�erent discrete

locations.

The Figure 2.3 illustrates a representation of topographical distribution of

the emergency department.

2.5 Simulation.

It is quite di�cult, even almost impossible, to separate modelling from sim-

ulation, since why taking too much time in modelling if that model is not going

to be tested? The word simulation comes from the Latin verb simulare and

means to imitate, to simulate the operations of di�erent kinds of some real thing

or processes. Simulation is quite important since it allows us to understand the

behaviour of a system, and to evaluate di�erent strategies within a given struc-

ture. Computer simulation utilises the computers to carry out experimentation

on a model of the system of interest.

Simulation is ad hoc or mandatory when: It is almost impossible to do ex-

perimentation in reality, because either the system does not exist, or would be
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dangerous or quite expensive. Also, when the system cannot be interrupted,

and time scale have to be changed.

Amongst the advantages of doing simulation are:

• Cost, experiments on real systems might be quite expensive.

• Time, it is possible to simulate weeks, months, or even years in seconds.

• Safety, e�ects of extreme conditions can be studied.

• Replication, simulations are exactly replicable.

There are di�erent sort of simulations as:

• Static or Dynamic; does the time play an important role in the model?

• Continuous or Discrete; the state of the system changes all over the time

or only at speci�c or discrete times?

• Deterministic or Stochastic; is everything for sure or is there uncertainty?

The Figure 2.4 shows di�erent ways to study a system [5].

Most of the time the systems as well as the simulation are dynamic, discrete,

and stochastic, which is the case of the ED.

2.5.1 Agent Based Emergency Department Simulator.

The simulator for this work is used as a black box, but the more realistic

the simulator is, the better results and optimisations are. It is implemented in

NetLogo.
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Figure 2.4: Ways to study a system.

The present version of the simulator is illustrated in Figure 2.5. It has up

to 4 diagnostic rooms, 3 triaje rooms, 2 waiting rooms, an area of admissions,

the entrance, and the exit. Some parameters can be set from the GUI, they are

amount and sort of sta� members: doctors, triaje nurses, and admissions, and

senior or junior, respectively. Also, the input arrival patient, in percentage, as

well as the maximum number of iterations can be set. Finally, also it can be

selected if information about times, costs, and debugging is needed.

One of the most useful tools that NetLogo has, is the BehaviorSpace, which

allows doing experiments without using the GUI. BehaviorSpace runs a model

many times, systematically varying the settings of the model and recording the

results of each model run. This process is sometimes called parameter sweeping.

It lets you explore the space of the model of possible behaviours and determine
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Figure 2.5: Present version of the simulator.
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which combinations of settings cause the behaviours of interest.

2.6 Related works.

The interest on simulating healthcare systems is not new, in 1979 computer

simulation was applied to hospital systems to improve the scheduling of sta�

members [12], and in [13] the aim was to quantify the impact that the amount

of sta� members, and beds had on patient throughput time. Moreover, a survey

of discrete-event simulation in health care clinics was presented in [14].

Although, discrete-event simulation is widely used in simulating healthcare

systems, agent technology is a good option to be used in healthcare applica-

tions, since it characterise better the operation of complex systems as EDs.

Previous works modelling healthcare systems have focused on patient schedul-

ing under variable pathways and stochastic process durations, the selection of

an optimal mix for patient admission in order to optimise resource usage and

patient throughput [15]. Work has been performed evaluating patient waiting

times under the e�ects of di�erent ED physician sta�ng schedules, and the only

one found until now that utilises real data [16] or patient diversion strategies

[17], both using di�ering degrees of agent-based modelling.

There is a relevant article which uses ABM for simulaton the work�ow in

ED [18], it focus on triaje and radiology process, but not real data is used,

the acuity of patients are not consider, and healthcare providers do not always

serve patients in a �rst-come-�rst-serve basis.
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This proposal addresses many of the issues surrounding the modelling and

simulation of a hospital emergency department using agent-based technologies.

The basic rules governing the actions of the individual agents are de�ned, in

an attempt to understand micro level behaviour. The macro level behaviour,

that of the system as a whole, emerges as a result of the actions of these basic

building blocks, from which an understanding of the reasons for system level

behaviour can be derived [19].

Simulation optimisation is used to improve the operation of ED in [20],

using a commercial simmulation package, and in [21] combines simulation with

optimisation, which involves a complex stochastic objective function under to

deterministic and stochastic set of restrictions.

Finally, an evolutionary multiobjective optimisation approach is using for

dynamic allocation of resources in hospital practice [22], while in [23] found

that combining agent-based approaches and classical optimisation techniques

complement each other, and multiobjective evolutionary optimisation of agent-

based models is found in [24], in order to obtain approximated Pareto fronts.



Chapter 3

Optimisation.

3.1 Introduction.

Optimisation is a common sense process, but di�cult to specify neatly and

rigorously, due to misconceptions or super�cial knowing of the �eld. Optimi-

sation, in general, is de�ned as �nding the best solutions for a given problem

under some conditions. Optimisation is applied in quite di�erent �elds, so, it

makes hard to express an exact de�nition. For example, in engineering the aim

is to maximise the performance of a system with minimal resources and run-

time, while the objective of mathematics is to �nd the minimum or maximum

of a real function from within an allowable set of variables, and in industries the

goal is to enhance the quality and e�ciency of the production process. Even

into dayly life, there are many cases where the maximum pro�t with minimal

e�ort is search. Optimisation is a widely used process and di�cult to de�ne

and �nd truly optimal solution, which could be for a particular application or

period, but not for all cases.

The purpose of this chapter is to present the terminology used, basic mathe-

29



30 CHAPTER 3. OPTIMISATION.

matical concepts, as well as the classi�cation, and utilisation of some algorithms

about this useful, and challenging �eld. Finally, metaheuristics are concisely

presented.

3.2 Optimisation.

Mathematically an optimisation problem can be stated as:

max / min f(x)

subject to x ∈ C

where x is the variable, f is a function (f : C → R), C is the constraint

set, and ∃x0 ∈ C such that f(x0) ≤ f(x) ∀x ∈ C for minimisation, and

f(x0) ≥ f(x) ∀x ∈ C for its counterpart, maximisation.

The function f : C → R is known as the objective function or performance

index, and it is not necesarily pure mathematical formulation, but could be a

complex algorithm. The objectives are general statements of what to optimise

under some restrictions, where the optimisation process is going to apply.

Usually, the domain C ⊆ Rn represents the problem or search space that can

be any sort of elements, e.g. arrays, numbers or equipments, amongst others.

The domain is quite common speci�ed by a set of conditions or constraints that

its elements have to satisfy. These elements are known as candidate solutions,

which de�ne a feasible region. The Figure 3.1 illustrates these de�nitons.
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Figure 3.1: Optimisation problem under constrains C1 and C2 .

In order to de�ne the process of optimisation, at least, the next three ele-

ments ought to be determined [25]:

• the system description or the model,

• objective function or the performance index, and

• the optimisation method.

And last, but not least important, one more concept requires to be de�ne, the

level of optimisation, which express the degree of precision in a formal or mathe-

matical formulation, and imposes or speci�es the desired implementation. This

concept shows the accuracy or practical reason rather than analytical. Because

sometimes a quick answer is desired even with loss of generality or rigorous-

ness, but on the other hand, when there is no space to impreciseness, an exact
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solution, which implies high degree of accuracy, is desired, even though it takes

lots of time to get it.

The model of the problem is described in section 2.4, whereas the objective

function or performance index is detailed following.

3.2.1 Objective function.

It is stated that the objective is a general statement about what to opti-

mise subject to certain restrictions or constraints, which implies the degree of

searched solution as well as how this solution should be computed. The perfor-

mance index or objective function is a rigorous mathematical expression, which

allows quantitative comparisons. These comparisions depend on the level or de-

gree of the optimisation. The more level of optimisation, the higher the quality

of the solution is. The performance index or objective function is also known,

amongst others, as cost function or criterium, in economy and control theory,

respectively.

Setting the objective function is a hard task, but control theory helps to assign

it, without loss of generality, to one of two categories [25]:

1. A time (to be minimised or maximised).

2. An amplitude (range or a bene�t to be maximised or an error to be min-

imised).
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3.2.2 Constraints.

Constraint is a limitation, restriction, and, in general, a condition which any

solution to an optimisation problem have to satisfy. It can be either an:

• equality constraint, or

• inequality constraint

And, as it stated above, feasible region ( illustrated on Figure 3.1), is com-

posed by those candidate solutions that satisfy all restrictions.

3.3 Numerical methods.

To solve an equation analitically is quite di�cult in most cases, unless such

equation is extremely simple. These di�culties could be the following:

• exists an analytical solution, but the order of equations is of high order,

• geometry is very complex,

• there is no solution or analytical procedure,

• algorithm exists, but do not has polynomial time solution.

Engineers and scienti�cs have chosen experimental approches to many of

the hard real systems. Although, there are limitations of those approximations,

such as inherent method, or experimental errors, and coarse accuracy of the

results. In the present time, it is almost imposible to separate the utilisation of
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computers throughout the design, analysis, and simulation processes. Numer-

ical methods belongs to numerical analysis, which is part of mathematics and

computer science that creates, analyses, and implements algorithms for solving

numerically the problems of continuous mathematics using computers.

3.3.1 Optimisation methods.

One of the �elds which concern to numerical analysis is optimisation theory,

and before entering into the methods some topics should be discuss. In order

to choose an optimisation method some properties ought to be demanded to

such method or technique that solve the model using a system of algebraic

or di�erential equations, or any other mathematical model if it is available.

However, there are some techniques available when there is no possibility of

mathematical treatment. These characteristics can be divided whether the

solution is analytical or numerical [25].

Mathematical qualities are:

• Existence of the solution, is there any solution?

• Uniqueness of the solution, is there only one?

• Necessary conditions, that have to be satis�ed in all cases.

• Su�ciency conditions, if are satis�ed guarantee an extremum.

• Absolute or local extremum, is the solution valid over a small are or over

the whole search space?

• Weak and strong extremum.
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While computational characteristics are (more practical rather than mathe-

matical):

• Existence of a numerical computing method.

• Kind of computer used.

• Convergence, if the method uses an iterative procedure.

• Computing time.

Convergence is quite important property, it is a condition sine qua non for

any numerical method. It is said that it is convergent if the numerical solution

approaches the exact solution as the step size goes to zero.

Since optimisation inherently implies control, controllability and observabil-

ity are de�ned. It is said that a system is controlable at the instant t0 if it is

possible to take from any initial state, x(t0) to any other state in �nite time.

And, a system is observable at time t if, with the system at state x(t), it is

possible to determine such state in �nite time using only its outputs. Control-

lability and observability are dual aspects of the same problem.

Once the problem is characterised, the objective function and the constraints

are set. Thus, the next step is to pick up a method to solve the de�ned problem.

Such method will depend on whether [25]:

• These settings are static or dynamic.

• The objective function is restricted or not.
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• These settings are linear or nonlinear.

• These settings are one-dimensional or multidimensional.

Whithout loss of generality, it can be stated that the static version is the

simpli�ed form of the dynamic method, as well as the linear problem is the

simpli�ed form of the nonlinear problem.

3.4 Optimisation taxonomy.

The optimisation methods can be broadly classi�ed as analytical or not.

This taxonomy, shown in Figure 3.2, is based on the possibility to solve the

problem using a mathematical model. The analytical method imposes the ex-

istence of the derivates of the objective function; unfortunately, not always the

function has such property. Therefore, alternative methods have to be used.

The classical optimisation methods can be seen as search methods. If the size

of the search space is little, or its computational search time is polynomical and

not NP-hard or NP-complete, then an exhaustive search can be used. This ap-

proach allows to �nd the best solution, even though, it takes too much time to

do it, and can be the �rst approximation or classical method utilised to tackle

search problems, which lack of mathematical model.

Generally, optimisation algorithms can be divided in another two classes:

deterministic and probabilistic algorithms [26]. The former is used if the search

space can be e�ciently explored. To solve a problem deterministically could

be quite di�cult or hard if the dimension of the search space is very large, as

stated above. It is when probabilistic methods appear. The Monte Carlo-based
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Figure 3.2: Optimisation classi�cation.

approach is one of the most relevant of them. Its purpose is to o�er a solution,

which could be not the global optima, in a short time. The Figure 3.3 illustrates

this classi�cation.

Before continuing the discussion over optimisation algorithms, it is needed

to de�ne what an optimum is.

3.5 Optimum.

Global optimisation, that is about �nding the best possible solutions for

given problems, can be done over a single or multiple functions.

3.5.1 Single objective functions.

When optimise a single function f , an optimum can be either a maximum,

if it is a maximisation problem, otherwise a minimum, when a minimisation

problem is. It can be local or global optimum. The latter is an optimum of

the whole domain, whereas the former is an optimum of only a subset of such
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Figure 3.3: Taxonomy of some global optimisation algorithms.
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domain. Usually, the maximum and minimum of a set are the greatest and least

values in such set. The Figure 3.4 shows both local and global maximum.

Figure 3.4: Global and local maximum.

Hence, following are the de�nitions for di�erent sort of optima in single

objective functions.

De�nition 1. A local maximum ~xl ∈ X of one objective function f : X → R

is an input element with f(~xl) ≥ f(x)∀x neighboring ~xl.

If X ⊆ R, it can be write as

∀~xl∃ε > 0 : f(~xl) ≥ f(x)∀x ∈ X, | x − ~xl |< ε

De�nition 2. A local minimum ~xl ∈ X of one objective function f : X → R

is an input element with f(~xl) ≤ f(x)∀x neighboring ~xl.
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If X ⊆ R, it can be write as

∀~xl∃ε > 0 : f(~xl) ≤ f(x)∀x ∈ X, | x − ~xl |< ε

De�nition 3. A local optimum x∗l ∈ X of one objective function f : X→ R is

either a local maximum or a local minimum.

De�nition 4. A global maximum x̂ ∈ X of one objective function f : X → R

is an input element with f(x̂) ≥ f(x)∀x ∈ X.

De�nition 5. A global minimum x̌ ∈ X of one objective function f : X → R

is an input element with f(x̌) ≤ f(x)∀x ∈ X.

De�nition 6. A global optimum x∗ ∈ X of one objective function f : X → R

is either a global maximum or a global minimum.

Even a one-dimensional function f : X = R → R may have more than one

global maximum, multiple global minima, or even both in its whole domain X.

3.5.2 Multiple objective functions.

Even though single objective optimisation methods models lots of real prob-

lems, there are many applications where these models are unsuitable, since it

is almost impossible to get a single solution that at the same time optimises all

the objectives. To overcome this case multiobjective optimisation comes into

play.

Problems with two or more objectives functions, known as multiobjective

functions, are quite common in many �elds. The solution of those problems is
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very hard since their objectives tend to be in con�ict with each other. Nev-

ertheless, to simplify, many of these problems are modelled as single objective

using only one of the original functions, and handle the others as constraints.

The multiple optimisation problem can be stated as following

optimise [f1(~x), f2(~x), . . . , fk(~x)]

subject to m inequality constraints:

gi(~x) ≤ 0 i = 1, 2, . . . ,m (1)

and the p equality constraints:

hi(~x) = 0 i = 1, 2, . . . , p (2)

;where k is the number of objective functions

fi : Rn → R and

~x = [x1, x2, . . . , xn]
T

is the vector of decision variables, and it is desired to determine from amongst

the set PF of all vectors which satisfy (1) and (2) the particular set of values

x∗1, x
∗
2, . . . , x

∗
n which yield the optimum values of all the objective functions.

The optimality concept is quite di�erent, since it is very rare that exists a sin-

gle point, which at the same time, optimises all such objective functions. Hence,

when dealing with multiobjective optimisation problems, instead of seeking sin-

gle solutions it is usual to look for trade-o�s.
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3.5.2.1 Pareto optimality.

The more accepted notion of optimum into the multiobjective optimisation

problems was originally propposed by Francis Ysidro Edgeworth in 1881 [27],

and then generalised by Vilfredo Pareto in 1896 [28]. It is well known as Pareto

optimality [29].

It is say that a vector of decision variables ~x∗ ∈ PF is a Pareto optimal if @

another ~x ∈ PF such that fi(~x) ≤ fi(~x
∗) ∀i = 1, . . . , k y fj(~x) < fj(~x

∗)

for at least one j.

This de�nition says that x∗ is Pareto optimal if there exists no feasible vector

of decision variables x ∈ PF which would decrease some criterion without caus-

ing a simultaneous increase in at least one other criterion. Unfortunately, this

concept almost always gives not a single solution, but rather a set of solutions

known the Pareto optimal set. The vectors x∗ corresponding to the solutions

included in the Pareto optimal set are called nondominated. The plot of the

objective functions whose nondominated vectors are in the Pareto optimal set

is called the Pareto front.

The Figures 3.5 and 3.6 graphically describes the Pareto-dominance con-

cept for a minimisation problem with two objectives (k1, k2). The Figure 3.5

illustrates the location of several solutions. The �lled circles represent non-

dominated solutions, while the non-�lled ones symbolize dominated solutions.

In Figure 3.6 is shown the relative distribution of the solutions in reference to

x. There exist solutions that are worse (in both objectives) than x, better (in

both objectives) than x, and indi�erent (better in one objective and worse in

the other).
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Figure 3.5: Pareto front with non-dominated, and dominated solutions.

Figure 3.6: Pareto front, di�erent sort of solution in reference to x.
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Classical techniques for multiobjective optimisation tend to generate ele-

ments of the Pareto optimal set one at a time, this implies that many runs,

using di�erent starting points, are required in order to generate lots of those

elements. Moreover, most of these techniques are quite sensitive to the shape

of the Pareto front, and might not work when the Pareto front is non convex.

Therefore, there is needed for techniques that overcome these di�culties.

3.6 Metaheuristics.

Metaheuristic, which are the most general of stochastic optimisation or algo-

rithms, combines objective functions or heuristics commonly by treating them

as black-box procedures. A heuristic, as a part of an optimisation algorithm,

helps to decide which solution candidate should be tested next or how the next

individual can be generated. Many current heuristics are population-based,

which means that can generate many elements of the Pareto optimal set in a

single run.

There are two main types of multi-objective evolutionary algorithms:

1. Algorithms that do not incorporate the concept of Pareto dominance in

their selection mechanism.

2. Algorithms that rank the population based on Pareto dominance.

Amongst all of the plenty of multiobjective algorithms evolutionary, only one

of the so-called second generation, from the beginning of 2000s, is presented.

This second generation introduced the concept of elitism either by using (µ+λ)
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selection, and using a secondary (usually external) population. Also, this second

generation emphasises on computational e�ciency both at an algorithmic level,

and at the data structures level.

3.6.1 Nondominated Sorting Genetic Algorithm II (NSGA-II).

[30] It is an improved version of the NSGA. In the NSGA-II, for

each solution one has to determine how many solutions dominate it

and the set of solutions to which it dominates.The NSGA-II estimates

the density of solutions surrounding a particular solution in the popu-

lation by computing the average distance of two points on either side

of this point along each of the objectives of the problem. This value

is the so-called crowding distance. During selection, the NSGA-II

uses a crowded-comparison operator which takes into consideration

both the nondomination rank of an individual in the population and

its crowding distance (i.e., nondominated solutions are preferred over

dominated solutions, but between two solutions with the same non-

domination rank, the one that resides in the less crowded region is

preferred). The NSGA-II does not use an external memory as the

other MOEAs previously discussed. Instead, the elitist mechanism

of the NSGA-II consists of combining the best parents with the best

o�spring obtained (i.e., a (µ+ λ) selection). Due to its clever mech-

anisms, the NSGA-II is much more e�cient (computationally speak-

ing) than its predecessor, and its performance is so good.

Finally, four more alternatives of stochastic optimisation algorithms are
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sketched [31].

3.6.2 Simulated Annealing.

Based on an algorithm originally to simulate the evolution of a solid in a

heat bath until it reaches its thermal equilibrium. It generates local movements

in the neighborhood of the current state, and accepts a new state based on a

function depending on the current temperature t. The two main parameters

of the algorithm are NITER (the number of iterations to apply the algorithm)

and CS (the cooling schedule), since they have the most serious impact on the

performance of the algorithm. The key in extending simulated annealing to

handle multiple objectives lies in determining how to compute the probability

of accepting an individual ~y′ where f(~y′) is dominated with respect to f(~y).

3.6.3 Ant System.

It is inspired by colonies of real ants, which deposit a chemical substance

on the ground called pheromone. This substance in�uences the behavior of

the ants: they tend to take those paths where there is a larger amount of

pheromone. Pheromone trails can thus be seen as an indirect communication

mechanism among ants. From a computer science perspective, it is a multi-

agent system where low level interactions between single agents (i.e., arti�cial

ants) result in a complex behaviour of the entire ant colony.

It was originally proposed for the traveling salesman problem (TSP), and

most of the current applications of the algorithm require the problem to be

reformulated as one in which the goal is to �nd the optimal path of a graph. A
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way to measure the distances between nodes is also required in order to apply

the algorithm.

3.6.4 Particle Swarm Optimisation.

It is inspired by the choreography of a bird �ock. The idea of this approach is

to simulate the movements of a group (or population) of birds which aim to �nd

food. The approach can be seen as a distributed behavioural algorithm that

performs multidimensional search. In the simulation, the behaviour of each in-

dividual is a�ected by either the best local (i.e., within a certain neighborhood)

or the best global individual.

It is worth mentioning that it is an unconstrained search technique. Thus, it

is also necessary to develop an additional mechanism to deal with constrained

multiobjective optimisation problems.

To extend it for multiobjective optimisation, it is necessary to modify the

guidance mechanism of the algorithm such that nondominated solutions are

considered as leaders. Note however, that it is important to have a diversity

maintenance mechanism. Also, an additional exploration mechanism (e.g., a

mutation operator) may be necessary to generate all portions of the Pareto

front (mainly in disconnected fronts).

3.6.5 Tabu Search.

It is composed by the three following elements:

• A short-term memory to avoid cycling.
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• An intermediate-term memory to intensify the search.

• A long-term memory to diversify the search.

The basic idea of tabu search is to create a subset T ofN , whose elements are

called tabu moves (historical information of the search process is used to create

T ). Membership in T is conferred either by a historical list of moves previously

detected as improductive, or by a set of tabu conditions (e.g., constraints that

need to be satis�ed). Therefore, the subset T constrains the search and keeps

tabu search from becoming a simple hillclimber. At each step of the algorithm,

a best movement (de�ned in terms of the evaluation function opt()) is chosen.

It is worthy mentioning that this approach is more aggressive than the gradual

descent of simulated annealing.

Tabu search tends to generate moves that are in the area surrounding a

candidate solution. Therefore, the main problem when extending this technique

to deal with multiple objectives is how to maintain diversity so that the entire

Pareto front can be generated. The proper use of the historial information

stored is another issue that deserves attention.



Chapter 4

Experimental Evaluation.

4.1 Introduction.

The purpose of the experiments is to reach the objectives stated for this

work, that is to optimise the amount of sta� con�guration of an ED, in order

to enhance the performance of such department. It means doctors, triaje nurses

and admissions. It also includes some characteristics of sta�, that belongs to

the model itself, like sort of sta� as �junior or senior, less and more expert,

respectively, time and cost of each sort. This is shown in Table 4.1, and rep-

resents a combinatorial problem. This can be appreciated in Tables 4.2, 4.3,

and 4.4 given a total of 1134 scenarios 14 ∗ 9 ∗ 9 (14D, 9N, and 9A) for sta�

allocation, but when four di�erent patient arrival probabilities, de�ned in Table

4.5, are taken into account the total amount of scenarios is 4536.

The period simulated was 24 hrs., one day, which are 25000 ticks for all

experiments, as well as the same random seed.

All simulations were done using the simulator previouly explained, utilising

the BehaviorSpace tool, serially and using the cluster IBM of the department,

49
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Table 4.1: Sta� members with their associated costs, and time according to their sort.

Cost Time (ticks) #

Senior Junior Senior Junior

Doctor 1000 500 260 350 1 � 4

Nurse 500 350 90 130 1 � 3

Admin 200 150 20 35 1 � 3

which has 32 Compute nodes with 2 x Dual-Core Intel(R) Xeon(R) CPU 5160

running at 3.00GHz, with 12 GB of RAM, and 4MB of L2 share cache (2x2).

Three di�erent indexes were set in order to evaluate the utility of the Agent

Based Emergency Department simulator for optimising resources.

4.2 First Experiment.

4.2.1 Index 1.

The �rst objective set was to minimise patient service stay time in the ED,

with cost con�guration less than 3500 euros. Thus, the �rst index expressed

mathematically is in equation (1):

Min. waiting patient time f(D,N,A)

subject to Dcost +Ncost + Acost ∈ Cost < 3500 euros.
(1)

The results are shown in Figures 4.1, 4.2, 4.3, and 4.4; where the blue points

are the sta� con�guration that satisfy the restriction, while the green and red

points are the minimum for each case. Each sta� con�guration that got the
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Table 4.2: 14 Doctor cases (D). DJ means Doctor Junior. DS is Doctor Senior, and DRi

Diagnostic Room.

DR DR2 DR3 DR4

DJ - - -

DS - - -

DJ DJ - -

DS DS - -

DJ DJ DJ -

DS DS DS -

DJ DJ DJ DJ

DS DS DS DS

DJ DS - -

DJ DJ DS -

DJ DJ DS DS

DJ DJ DJ DS

DJ DS DS DS

DJ DS DS -

Table 4.3: 9 Triaje nurse cases (N). NJ means Triaje Nurse Junior. NS is Triaje Nurse

Senior, and TRi Triaje Room.

TR1 TR2 TR3

NJ - -

NS - -

NJ NJ -

NS NS -

NJ NJ NJ

NS NS NS

NJ NS �

NJ NJ NS

NJ NS NS
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Table 4.4: 9 Admission cases (A). AJ means Admission Junior. AS is Admission Senior, and

ARi Admission Space.

A1 A2 A3

AJ - -

AS - -

AJ AJ -

AS AS -

AJ AJ AJ

AS AS AS

AJ AS �

AJ AJ AS

AJ AS AS

Table 4.5: Probability of incoming patients.

Patient Arrival (P)

20%

40%

60%

80%
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minimum is presented in Tables 4.6, 4.7, 4.8, and 4.9.

Figure 4.1: Average waiting patient time with P = 20%. Red and green points are the

minimum.

From Figure 4.1 and Table 4.6, there are three di�erent sta� con�gurations

that got the minimum time, but with di�erent cost. Also, in Figure 4.1 can

appreciate that there are many other sta� con�gurations that are quite close

to the minimum time, but with much less cost.

In the other cases, where the patient arrival increases there are only few

sta� con�gurations around the minimum, or clearly only one. But not only

the patient arrival increases, but also the minimum average patient stay time,

as expected, but also the standard deviation, patients at waiting rooms, both

WR0 and WR1 at times t1, t2, t3, and t4, and �nally the amount of unattended

patients increases too. In Table 4.10 all these results are shown. In Figure 4.5
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Table 4.6: Sta� con�gurations, where S is Senior and J is Junior, that got the average

minimum time with P = 20%. They are shown in green and red in Figure 4.1.

Min Euros Time (ticks) # sta� D N A

1 3200 428 5 2 S 2 S 1 S

2 2900 428 5 2 S 1 S 2 S

3 2850 428 5 2 S 1 S 1 S, 1 J

Figure 4.2: Average waiting patient time with P = 40%. Red and green points are the

minimum.
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Table 4.7: Sta� con�gurations, where S stands for Senior and J for Junior, that got the

minimum time with P = 40%. They are shown in green and red in Figure 4.2.

Min Euros Time (ticks) # sta� D N A

1 3150 514 5 2 S, 1 J 1 S 1 J

2 3200 514 7 4 J 2 S 1 S

Figure 4.3: Average waiting patient time with P = 60%. The red point shows the minimum.

Table 4.8: Sta� con�guration, where S is Senior and J is Junior, that got the minimum time

with P = 60%. It is shown in red in Figure 4.3.

Min Euros Time (ticks) # sta� D N A

1 3400 790 7 1 S, 3 J 2 J 1 S
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Figure 4.4: Average waiting patient time with P = 80%. The red point indicates the mini-

mum.

Table 4.9: Sta� con�guration, where S stands for Senior and J for Junior, that got the

minimum time with P = 80%. It is represented in red in Figure 4.4.

Min Euros Time (ticks) # sta� D N A

1 3350 3266 7 1 S, 3 J 2 J 1 J
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the amount of patients in WR are shown, WR0 plus WR1, at four di�erent

moments, t1=6500, t2=12500, t3=18750, t4=25000, during the simulation for

all the seven cases reported. It is noticed when the patient arrival is high, 80%,

patients at waiting rooms increased.

Figure 4.5: Amount of patients at WR, WR0 plus WR1, at four di�erent moments, during

the simulation for all the seven cases reported.

4.3 Second Experiment.

4.3.1 Index 2.

The second objective set was to �nd out, when patient arrival is high, 80%,

which sta� con�guration with the minimum cost, guarantee less or the same

waiting patient time than that was gotten when the patient arrival is low, 20%

4.6, time = 428. Thus, this second index expressed mathematically is in (2):
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Table 4.10: Results for the best average minimum for each of the four presented scenarios.

P T1 σ Euros# attended patients# unattended patients WR0 WR1

t1, t2, t3, t4 t1, t2, t3, t4

20 428 48 (11%) 2850 83 1 0,0,0,0 0,0,0,0

40 514 81.5 (15.9%) 3150 182 4 0,0,0,1 0,0,0,0

60 790 174.5 (22.1%) 3400 290 8 1,1,0,1 3,2,4,1

80 3266 1670.4 (51.2%) 3350 294 100 8,19,32,43 12,25,37,51

Minimise sta� cost con�guration f(D,N,A)

subject to Time < 428.
(2)

The results are shown in the Figure 4.6, where the blue points are the sta�

con�guration that satisfy the restriction, while the red point is the minimum.

Its con�guration is presented in Table 4.11. It order to get the same time

or less, the superior limit for sta� members was increased to: doctors < 9;

nurses < 7, and admissions < 5. This index can be seen as looking for a sta�

con�guration that guarantee, at least, the same quality for high patient arrival,

80%, as the same that was gotten for low patient arrival, 20%.

Table 4.11: Minimum sta� con�guration cost that guarantee the same, at least, quality of

service.

Min Euros Time (ticks) # sta� D N A

1 6200 421 8 5 S 2 S 1 S

Once the sta� con�guration has gotten, it was test with the others patient
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Figure 4.6: Costs of sta� con�gurations, which guarantee same quality. The red point is the

minimum sta� cost.
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arrival , 20%, 40%, and 60%. Each sta� con�guration with minimum cost is

presented in Table 4.12.

Table 4.12: Results for each sta� con�guration with minimum cost are presented for the four

scenarios.

P T2 σ Euros# attended patients# unattended patients WR0 WR1

t1, t2, t3, t4 t1, t2, t3, t4

20 408 2.7 (0.6%) 6200 102 1 0,0,0,0 0,0,0,0

40 408 2.8 (0.7%) 6200 203 3 0,0,0,0 0,0,0,0

60 411 11.7 (2.8%) 6200 300 5 0,0,0,0 0,1,0,0

80 421 18 (4.3%) 6200 394 7 0,0,0,0 1,0,1,0

From the results in Table 4.12 it is worthy to notice that when the cost is

increased less than two times the minimum time is reduced almost eight times,

and the standard deviation is almost only 4%, as well as patients at waiting

rooms is nearly zero.

4.4 Third Experiment.

4.4.1 Index 3.

The third objective set was to minimise a compound index: cost×time, CT,

without any restriction. This index is expressed mathematically in equation (3)

as:

Minimise cost× time(CT) f(D,N,A) (3)
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Figure 4.7: Results y = cost× time. Red and black points are minimum, and a worthy sta�

con�guration.

Table 4.13: Minimum sta� con�guration cost that guarantee the same, at least, quality of

service.

Best Euros Time (ticks)Cost× Time# attended patients σ # sta� D N A

1 3550 1725 6123750 340 602.4 (34.9%) 9 5 J 2 J 1 S, 1 J

0 4000 585 2342835 378 58.6 (10%) 9 6 J 2 J 1 J
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The Figure 4.7 shows all the search space, 16632 sta� con�gurations, but

there are two of them that are the most important, and also they are reported

and in Table 4.13. Although, both sta� con�guration are almost the same, they

have quite di�erents average minimum time, this is the reason that explains

why the sta� con�guration label as Best 1, despite its lower cost has a worst

index evaluation. It is important to notice that a sta� con�guration a bit more

expensive has less than, almost, 15% of standard desviation.

4.5 Performance.

So far, only all the experiments and their results have been presented, but not

the execution time of each experiment. All the execution times are presented

in Table 4.14, except the very �rst approach, which was done on my personal

computer, using the GUI of the simulator. It had an execution time of 480

secs., per one case. So, approximately 604 hrs. must be needed, in order to run

the 4536 sta� con�guration cases.

Table 4.14: Execution time.

20% 40% 60% 80% Problem size

divided by patient arrival (4 cases) 1.03 hrs. 2.19 hrs. 4.55 hrs. 8.06 hrs 4536

parametric aproach, split con�gurations ( 64 cases ) 0.19 hrs 0.63 hrs. 1.5 hrs. 2.7 hrs 4536

parametric aproach, split con�gurations ( 64 cases ) 13.01 hrs 16632

In the �rst case, where the search space was divided by the patient arrival,

4 independent runs were gotten. The best only last almost an hour, but the

worst last almost eight hours. For the second approach, the search space was

divided by both the patient arrival, and the sta� con�gurations, 64 independent
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runs, and for the same problem size it last 4 times less than the previous

one. However, there are clearly imbalance cases, in both experiments, since the

runnings for 20%, 40%, and 60% have quite short execution times. The last

experiment was run only for one case of patient arrival, 80%, the worst case, it

had an execution time of thirteen hours using 64 independent runs.

These quite small con�gurations of an ED demand a lot of time to simulate

and optimise only one day, without doing statistical sensitivity analysis. The

bigger and the more detail an ED is, the longer the execution time is.

4.6 Experiment conclusions.

Three di�erent indexes were set to evaluate the operation of the Agent Based

Emergency Department simulator. The results were encouraging, since not only

they showed what it was expected, the more amount and experienced sta�, the

less average waiting patient time is. It is, simulation allows to understand, and

analyse better the problem.

However, even with this pretty small problem size the amount of combina-

tions are large, as well as the execution time. Moreover, the resources that this

problem will demand in order to do statistical sensitivity analysis for longer

periods, �rst to reproduce, and then to foretell are huge. Therefore, a better

scheme must be done in order to use more processors, but e�ciently, since, at

the present time, the imbalance is great and so the wasted of resources.
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Chapter 5

Conclusions and future work.

5.1 Conclusions.

• Agent Based Model naturally suits modelling and simulating Emergency

Departments, due to the absence of any formal description for EDs, and

their fundamentally decentralised, complex, and non-linear characteristics.

• Modelling and simulation is a powerful tool to imitate real systems, that

cannot be stopped, or experiment in situ, and specially for those systems

that lack of a formal or mathematical model.

• To optimise is not an easy task, specially if the problem is multiobjective,

or the parameter space is very large.

• Even with a very little con�guration of the problem, as is the present sta-

tus of the Emergency Department utilised, and simple objective functions

the parameter space is quite large. This is because of the nature of the

problem, that is a combinatorial one.

• As a �rst approach, exhaustively search throughout the problem space was

65
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done, and too much time is consumed, even with the minimum con�gura-

tion that has the present Emergency Department.

• Three experiments were done sucesfully, in each of them the index set

was di�erent: minimise minimum time of service restricted to some cost;

minimise a compound index (cost times time) without constraints, and

minimise cost sta� con�guration that guarantee the same quality service

for high ratio of incoming patient as it did when such ratio ws low.

• Dividing the parameter space reduced the execution time of the simula-

tions, but it is not enough, since imbalance showed up, and the processors

used were wasted or subutilised.

• The results of the experiments were encouraging, since they showed what

common sense said, the more amount and experienced sta�, the less aver-

age waiting patient time is.

• Simulation allows to understand, and analyse better the problem.
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5.2 Future work.

• Do sensitivity statistically analisys of the variables of the simulator, to �nd

out which are the most important parameters?

• Utilise a better approach to search the optima in the problem space, that

inevitable includes metaheuristics.

• Set more indexes together with the people from the Emergency Department

of the Hospital of Sabadell (Parc Tauli Health Corporation).
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