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Introduccion

En el afio 1964 Sharkovskil enuncié y demostré un célebre teorema que supuso, entre otros
aspectos, el inicio del estudio de lo que hoy conocemos como dindmica combinatoria en el in-

tervalo. En dicho teorema se introduce la siguiente ordenacién de los ntimeros naturales:

3=5=T=9»...»
2:3=2-5=2-7=2-9> ...

22.3-22.5-92.7-922.9%» ... =

2" .3 =20 .5 =2 .7 = 2" 9 = ... >

2% =2 =23 922 v 20 1.

El teorema en cuestién afirma lo siguiente:

Teorema 0.0.1 (Sharkovskii) Sea I un intervalo en la recta real. Sea f € C°(I, I) una funcién conti-
nua que tiene una 6rbita periédica de periodo q. Entonces, f también tiene una 6rbita periédica de periodo
p € N para cada p < q. Reciprocamente, para cada ¢ € N U {2} existe una funcién f, € C°(I,1) tal
que el conjunto de puntos periédicos de f, es {p € N: p < ¢}.

Este resultado afirma que la existencia de orbitas periédicas de un determinado periodo en
una aplicacién del intervalo “fuerza” la existencia de érbitas periédicas de otros periodos. Un
refinamiento de este teorema es lo que conocemos como teorfa del forcing de 6rbitas periddicas en
el intervalo.

Fijado un periodo, es inmediato observar que hay distintos tipos combinatorios de 6rbitas
del mismo periodo. Sea P = {p1 < ... < p,} una Orbita periédica de periodo n de una funcién
f del intervalo. Podemos asociar a la érbita periédica una permutacién o, de orden n (a partir
de ahora, n-ciclo) dada por o (i) = j siy solo si f(p;) = p;. Asociamos asi a una 6rbita periédica
P de periodo n un n-ciclo ¢ al que llamamos pattern de P.
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Diremos que un pattern o fuerza otro pattern 7 si toda funcién del intervalo que tiene una
orbita peridédica con el pattern o tiene también una drbita periédica con el pattern 7. La teoria
del forcing en el intervalo prueba que la anterior relaciéon es una relacién de orden parcial y
describe con exactitud el conjunto de patterns forzados por un pattern prefijado.

En el articulo [7] el Teorema de Sharkovskii fue extendido a una clase de funciones triangu-
lares en el cilindro. Concretamente funciones continuas 7' : S* x I — S' x I donde T'(0,x) =
(0 +w, f(0,2)) conw € R\ Q. A esta clase de funciones se las conoce en la literatura como
skew-product en el cilindro.

Los objetos invariantes considerados en este caso, no son ya 6rbitas periédicas (ni tan solo
objetos minimales) sino una generalizacioén de curvas invariantes, que los autores llaman bandas
periddicas. Intuitivamente una banda es un subconjunto compacto del cilindro tal que sus fibras
en un conjunto residual de S! son intervalos. Una banda n-periédica es un conjunto de n bandas
disjuntas que se aplican por la funcién de manera periddica entre ellas.

El Teorema de Sharkovskil se enuncia en [7] de la siguiente manera:

Teorema 0.0.2 Sea T: S* x I — S x I una funcion skew-product. Si T tiene una banda q-periédica

yp € Nes tal que p < q, entonces T tiene también una banda p-periédica.

El trabajo que presentamos en esta memoria tiene dos objetivos. El primero de ellos, es re-
finar el resultado obtenido en [7] para obtener una teoria del forcing entre patterns de bandas
periddicas. En particular demostraremos que para una clase muy general de patterns la relacién
de forcing en el intervalo y en nuestra clase coinciden.

El otro objetivo es responder a la pregunta natural de si existe un andlogo del teorema ante-
rior para curvas periddicas. Obtenemos una respuesta negativa al construir un ejemplo de una
funcién skew-product con una pareja de curvas 2-peridédica pero sin curvas invariantes. Hasta
donde nosotros sabemos este es el primer ejemplo explicito de funcién skew-product sin curvas
invariantes.

La memoria estd organizada de la siguiente forma. En la Seccién 1.1 desarrollamos el con-
cepto de niicleo de un conjunto. E1 Lema 1.1.10 es el resultado central de dicha seccién, por su
utilidad, pues establece la manera en que podemos obtener el nicleo de un conjunto a partir
de la funcién fibra. En la Seccién 1.2 estudiamos la nocién de pseudo-curva, que no es mas que
una reformulacién de lo que se denomina banda pinchada nticleo en [7]. El Corolario 1.2.13 es
muy importante ya que relaciona ambos conceptos. En la seccién 1.3 inroducimos el concepto de
banda tal como es considerado en [7]. Finalmente, el Teorema de Sharkovskii lo demostramos
en la Seccién 1.5 como un corolario de nuestro teorema principal, Teorema 1.5.2 en el cual, de-
mostramos la equivalencia de la relacién de forcing introducida por nosotros y la definida en el
intervalo.

En el segundo Capitulo, presentamos la construccién de una funcién con la propiedad de
que el tnico subconjunto propio, compacto y conexo del cilindro invariante por la funcién es

una pseudo-curva que no es una curva. La primera secciéon de este capitulo estd dedicada a la
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construccién topolégica de la pseudo-curva citada. En el Teorema 2.1.10 estan enunciadas las
propiedades bdsicas de este objeto. La tiltima seccién estd dedicada a construir la funcién que lo

dejard invariante. Las propiedades de dicha funcién se resumen en el Teorema 2.2.10.






1

Teoria del Forcing para Bandas

Denotaremos por (2 al cilindro S! x I, donde S! e I denotan a R/Z y [—2,2] C R, respec-
tivamente. Un punto en {2 se escribird en coordenadas como (6,z), donde 6§ € S'y = € I.
Denotamos también por 7: 2 — S! la proyeccién respecto de la primera componente. Clara-
mente 7 es continua. Nuestro objetivo en este capitulo es estudiar ciertos conjuntos invariantes

para una familia de funciones del cilindro. En toda la memoria denotaremos por
T={T:S"xI—S"x1I, continua : T(0,z) = (f +w, f(,2)) conw € R\ Q}.

Llamaremos a esta clase de funciones skew-product del cilindro

Sean A un subconjunto compacto de 2y 0 € S'. La fibra de A sobre 0 se define como A N
771(0) = AN ({0} x [~2,2]) y serd denotada por A°.

Denotaremos por G a la familia de todos los subconjuntos residuales de S'. Recordemos que
un conjunto es residual en S! si es la interseccién de una familia numerable de subconjuntos
abiertos y densos en S'. Es bien conocido que un subconjunto residual en S es denso.

Nuestro primer objetivo es definir con precisién la nocién de conjunto ntcleo y dar una

caracterizaciéon de dichos conjuntos (Corolario 1.1.12).

1.1. Ntcleo de un conjunto

La nocién de ntcleo de un conjunto compacto juega un papel esencial en la construccién de
los conjuntos invariantes de una funcién skew-product. Esta seccién estd dedicada al estudio de
las propiedades elementales del nticleo de un conjunto. Dado A C {2, denotaremos su clausura

por A.
Definicién 1.1.1 Sea M C (2. Diremos que el nicleo de M es

() Mnx1(G),
Geg

y lo denotamos por M™°. Si en particular M = M™°, diremos que M es niicleo.
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Observemos que todos los conjuntos nticleo son subconjuntos compactos de (2. Para trabajar

con ellos introducimos las definiciones siguientes.

Definicién 1.1.2 Sea X un espacio métrico compacto. Definimos 2% como el espacio de los subconjuntos

compactos de X, diferentes del vacio.
Equipamos al espacio anterior con una métrica, intimamente ligada con la métrica de X.

Definicién 1.1.3 Dado un espacio métrico compacto X, con una métrica d, definimos la métrica Hgq del
espacio 2, por:
HAB.C) — mé (o (o b
4(B,C) max{rgleaéi min d(e,b), méx min d(e,b)}

ok p p BN
max{rgleaé( d(b, C), méx d(c, B)}
A esta métrica se le denomina métrica de Hausdorff inducida por d.
Los siguientes resultados son bien conocidos (véase por ejemplo [1, 5]).
Teorema 1.1.4 Si X es un espacio métrico compacto, el espacio (2, Hy) es compacto.

Proposicién 1.1.5 Si X es un espacio métrico compactoy T : X — X es continua, entonces la funcion
. . T .
inducida 2% — 2% es continua.

El siguiente resultado relaciona la convergencia en 2% respecto a la métrica de Hausdorff

con la convergencia en X.

Lema 1.1.6 Sea {K,,}2° | una sucesién convergente en 2% y sea K = lim K,,. Entonces p € K si y solo

si existe una sucesion de puntos {p, }°>, en X tal que p,, € K,, para todan € Ny limp,, = p.

Demostracion. Sea p € K. En virtud de la compacidad de Kj;, para cada i € N existe p; € K,
tal que d(p,p;) = d(p, K;). Dichos puntos nos definen la sucesién {p;}32,. Demostraremos que
limp; = p. Dado ¢ > 0 existe N € N tal que para cada n > N se tiene Hq(K,K,,) < . Ob-
servemos que d(p,p,) = d(p,K,) < Hq(K,K,) < € para toda n > N. Luego, limp; = p.
Ahora supondremos que limp; = p, con p; € K; para cada i € N y demostraremos que
p € K. Por la compacidad de K, existe k; € K tal que d(p;, ki) = d(pi, K). Observemos que
d(pi, ki) = d(pi, K) < Hq(K;, K).La convergencia de K; a K nos asegura que lim H;(K;, K) = 0,
lo que implica lim d(p;, k;) = 0. Entonces limk; = py p € K dado que K es cerrado. 0O

La caracterizacién de los conjuntos ntcleo que buscamos viene dada por los puntos de con-

tinuidad de una funcién de S! a 2 semicontinua superiormente. En lo que sigue recordaremos

esta nocién y enunciaremos algunos resultados técnicos asociados.

Definicién 1.1.7 Sean X y Y dos espacios métricos compactos. Diremos que F: Y — 2% es semi-
continua superiormente en p € Y, si para todo abierto U en X, tal que F(p) C U se cumple que
V ={y: F(y) C U} es abierto en Y. Diremos que la funcién es semicontinua superiormente si lo es

paratodap €Y.
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Usaremos también la siguiente propiedad de las funciones semicontinuas superiormente

(véase por ejemplo el Teorema 7.10 en [4]).

Proposicion 1.1.8 Sean X y Y compactos. Si F: X —s 2Y es semicontinua superiormente, entonces

los puntos de continuidad de F forman un conjunto residual en X.
Ahora definiremos una funcién que es ttil para encontrar el niicleo de un conjunto.

Definicién 1.1.9 Sea M € 29, tal que (M) = S*. Definimos ¢, : St — 2% como ¢,,(0) := M y
G, ={0€S": ¢, escontinuaen §}.

Lema 1.1.10 Sea M € 2 con m(M) = S'. Entonces, la funcién p,, es semicontinua superiormente y

el conjunto G, es residual. Ademds

Mnr(G,)= | M0z (G) =M™
Geg

Demostracion. En primer lugar, veremos que la funcién ¢,, es semicontinua superiormente. Sean
0 € S' y U abierto en (2, tales que ¢,,(f) C U. Demostraremos que el conjunto V = {y € S! :
©,,(7) C U} es un abierto en S'. Por definicién v € V si y solo si ¢,,(y) € 7~ 1(y) N M C U, lo
que a su vez es equivalente ay ¢ m(M N (2 \ U)). Consecuentemente, V = S' \ (M N (2\ U))
es abierto y ¢,, es semicontinua superiormente. De la Proposicién 1.1.8 deducimos que G,, es
residual.

Para demostrar la tiltima afirmacién del lema, veremos primero que

Mnr(G,) c MOr1(G)

para cada G € G. Sean G € Gy (6, ) un punto arbitrario de M N7~ 1(G,,) (es decir, 0 € Gy
y (0,2) € M%). Como G es residual, es denso en S'. Por lo tanto, podemos tomar una sucesién
{0,}52, contenida en G, tal que lim 6,, = 6. Por la continuidad de ¢,, en 0, lim¢,, (6,,) = ¢,, (6).
Por el Lema 1.1.6, existe una sucesion {(6,,, z,) }2, tal que (6,,,x,,) € p,,(0,) C M N7~ 1(G) tal
que lim(6,,, z,) = (8, z). Por lo tanto, (6, z) € M N7—1(G). Consecuentemente, M N7~ (G,,) C
M N7=1(G)y, por tanto, M N7=1(G,,) € M N7—1(G).

Dado que GG,, € G, de lo demostrado anteriormente se deduce

Mnr=1(G,,) C ﬂ Mnr=YG) cMnnYG,,). O
Definicién 1.1.11 Dado M € 29 tal que 7(M) = S* el conjunto residual Gy de la Definicion 1.1.9
(Lema 1.1.10) se denominard residual de continuidad de la funcién fibra para M.

El siguiente resultado, que usaremos frecuentemente, es una consecuencia inmediata del
Lema 1.1.10.

Corolario 1.1.12 Sea M C (2 compacto tal que w(M) = S'. Entonces las siguientes nociones son

equivalentes:
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(a) M es niicleo.
b) M=Mnnr"1(G,,)
(c) M = M N7~1(G) para todo residual G en S*.

Demostracion. La equivalencia entre (a) y (b) es inmediata a partir del Lema 1.1.10. Supongamos

que M = M N7—1(G) para todo residual G en S?, entonces claramente

(N Mnr1G) =M.
Geg

Si M es nicleo y G’ es un residual en S!, es inmediata la relacién

M= Moz (G) cMnx (G,
Geg
por otro lado, la compacidad de M nos garantiza que M N7—1(G’') C M, concluimos pues la
igualdad deseada. O

1.2. Pseudo-curvas

Recordemos que nuestro objetivo es caracterizar los objetos invariantes de ciertas funciones
skew-product. Los conjuntos ntcleo que cumplen la siguiente propiedad son un objeto especial

de esta caracterizacién.
Definicién 1.2.1 Sea A € 2. Diremos que A es pinchado, si el conjunto
Py :={0ecS': Card(A%) =1}
es denso en S*.
Observacion 1.2.2 Observemos que si A es pinchado, en particular w(A) = S*.
El siguiente lema caracteriza al conjunto P4, cuando A es pinchado.

Lema1.2.3 Si A € 29 ¢s pinchado, entonces Py = G4 (es decir Pa es el conjunto de puntos de

continuidad de la funcién ¢ , ). En particular P4 es residual.

Demostracion. En primer lugar veremos que P4 C G 4. Para ello fiamos # € P4 y denotamos
A% = {(,a)}. Para ver que 0 € G 4 es suficiente demostrar que ¢, es continua en 6.

Sea {6,,}5°; una sucesi6n en S tal que lim6,, = 6. Hay que ver que lim A% = A% Como
2 es compacto basta ver que cualquier subsucesién convergente de {A%}°° , converge a A”.
Supongamos sin pérdida de generalidad que {A%"}2° | es convergente y sea B = lim A%". Por el
Lema 1.1.6, B C A?. Ademas, B = AY dado que |A?| = 1.

Veremos ahora que G4 C P4. Para ello, mostraremos que |A9| = 1 para cada 6 € G4. Como
P4 es denso en S!, existe una sucesion 6,, € P4, tal que lim 6,, = 0y ¢, (0,) = A% = {(0,,a,)}.
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Por la continuidad de ¢, en 6, tenemos que {(6,,,a,)} = ¢, (6,,) convergea ¢, (§) = A?. Lo ante-
rior implica que {{(6y,a,)}}5%; es una sucesién de Cauchy en 2. Luego, {(0,, an)}3; es tam-
bién una sucesién de Cauchy en {2 dado que Hy({(0n, an)}, {(0m,am)}) = d((On, an), (Om, am)).
Porel Lema 1.1.6,|A| = 1. O

El resultado anterior nos motiva a estudiar los conjuntos pinchados ntcleo como objetos
“cercanos” a curvas (denotados pseudo-curvas en este trabajo). Para ello introducimos la defini-

cién siguiente.
Definicién 1.2.4 Definimos

€= {(p,G): Gesresidualen S' y p : G — I continua }.
Para (¢,G), (¢',G") € € definimos

doo((0, G), (¢, G")) = S d(p(),¢'(0)).

La funcién d tiene la siguiente propiedad que nos sera ttil para demostrar que es una

pseudométrica.

Lema 1.2.5 Dadas (¢, G), (¢',G') € €y G” un denso de S tal que G" C G N G’ entonces

Ao ((0), ' (0)) = sup d((6), ¢'(0)-

Demostracion. Sea
s = doo(0(0),¢'(9))-
La desigualdad

s = sup d(p(0), ¢'(9)).
e

se sigue de que G” C G N G'. Esto muestra que s es una cota superior del siguiente conjunto de
distancias {d(p(0), ¢’ (9)) : 8 € G"}. Para mostrar que s es el supremo, demostraremos que para
toda 8 > 0 existe o € G” tal que s — 3 < d(¢(a), ¢’ («)). Por la definicién de s existe § € G N G’
tal que s — 5 < d(p(0),¢'(0)) < s.Seae < w. Como ¢ y ¢’ son continuas en 6
existe § > 0 tal que si 6’ € Bs(0) se tiene d(¢(8),0(8")) < ey d(¢'(0),¢'(0")) < e. Entonces se

cumplen las siguientes desigualdades
d(p(0), ' (0)) — 2 < d(@(6"),4'(0")) < d((0), ¢'(0)) + 2e.
En virtud de la densidad de G” en S, existe a € Bs(f) N G”. Consecuentemente
d((0),¢'(0)) — 22 < d(p(a), ¢'(@)).

La definicién de € nos garantiza que s—f < d(¢(6), ¢'(0))—2¢. Entonces s— 3 < d(p(a), ¢'(a)) <
s. 0O
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Ahora podemos demostrar que d, es una pseudométrica.

Lema 1.2.6 La funcion do : € X € — R" es una pseudométrica y cumple:
deo (0, G), (¢',G")) = 0siy solosi p(0) = ' (0) para toda 6 € GNG'.

Demostracién. La segunda afirmacién es inmediata a partir de la definicién de d... Probaremos

ahora que d., es una pseudomeétrica. Para ello basta probar que

dos((: G). (¢, ") < doo (9, G), (¢", G")) + doo((¢", G"), (¢, G)).

para cualquier terna (¢, G), (¢', G"), (¢”,G") € €. Dados (¢, G), (¢',G’), (¢",G") € € definimos
G"" = GNG'NG". Entonces es inmediato que G cumple

doo((@, G///)v (QO/, Gm)) S doo((@, Gm)) (30//7 Gm)) + dOO((SO//7 Gm)) (90/’ G///))
y, en virtud del Lema 1.2.5, concluimos la desigualdad deseada. O

Introducimos ahora la nocién de pseudo-curva. Dicha nocién esta contenida implicitamente
en [7], bajo la nocién de banda pinchada ntcleo.
Dados G C S'y ¢ : G — S! una funcién continua denotamos

Grafo(p, G) := {(0,¢(0)) € 2:0 € G}.

Definicién 1.2.7 Dado (¢, G) € €, llamaremos pseudo-curva asociada a (¢, G) al conjunto Grafo(p, G).

Dicho conjunto serd denotado por A .

Observacién 1.2.8 Si (¢, G) € Centonces m(A, . ) = St.

El siguiente lema establece que al momento de clausurar los elementos de ¢ no afiadimos

puntos en las fibras que tenemos sobre el conjunto G.

Lema 1.2.9 Para toda (p,G) € € se cumple

A N7 Y(G) = Grafo(yp, G).

(¢,G)

Demostracion. La inclusion Grafo(p,G) C A N 7~ Y(G) es trivial. Para la otra tomaremos

(¢,G)
0 € G de manera que

(0,z) € A, ., = Grafo(p,G).

G

Sea {(0n, p(0n))}22, C Grafo(p,G) tal que lim(8,, ¢(6,)) = (0, ). La continuidad de ¢(#) en G
implica que = € ¢(6). De donde (0, z) € Grafo(y,G). O
Corolario 1.2.10 Sea (p, ) € €. Entonces A, c) es pinchada, G C Pa, o, Y

A =A Nr=YG).

(#,G) (,G)

En particular A, ) es niicleo.
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Demostracion. Por el Lema 1.2.9 tenemos que Grafo(p,G) = A . N 7~1(G). Entonces AZ@ o =
{(6,0(0))} si 6 € G. Consecuentemente A _, es pinchado en G que es denso en S'. Por otro
lado, 4, ., = Grafo(p,G) = A , N7 1(G). Concluimos por el Corolario 1.1.12 que 4 _ ., es

nucleo. O

El siguiente colorario establece que toda pseudo-curva A también se puede obtener co-

(#.6)
mo la clausura del grafo de ¢ pero restringida a un subconjunto denso contenido en el residual

original.
Corolario 1.2.11 Sean (¢, G) € €y G’ un denso en S' tal que G’ C G. Entonces
Aoy = Grafo(g0|G,,G’).

Demostracion. Sea B = Grafo(y| o»G'). Por la densidad de G’ se cumple que 7(B) = St.
Claramente B C A, ) dado que G’ C G. Por tanto si A, ) es pinchado en #, B tam-
bién lo sera y A, ) N7 1 (0) = BN a (). En virtud del Lema 1.2.9 A, ¢ es pinchado en

Aoy N 7~Y@G) = BN 7~ Y(G). Entonces

A(LP,G) = A(LP,G) N 71'71((;) =BnN 7T71(G) Cc BcC A(%G).
En consecuencia B = A, ). O

Observacion 1.2.12 Una consecuencia del Corolario 1.2.11 es que hace mds intuitiva la definicién de
pseudo-curva. La familia € también se puede definir como el conjunto de funciones continuas en un
subconjunto denso de S'.

Como se ha apuntado anteriormente, en [7] la nocién de pseudo-curva se formula como la
de un conjunto pinchado y ntcleo. Veremos que, efectivemente, ambas definiciones coinciden.

Este resultado, ademads de su interés en relacién a [7], serd cémodo en las siguientes secciones.
Teorema 1.2.13 Un conjunto de 2? es una pseudo-curova si y solo si es pinchado y niicleo.

Demostracion. Sea B € 29 y supongamos que B es una pseudo-curva. Entonces existe (¢, G) €
¢ tal que B = Grafo(yp, G). En virtud del Corolario 1.2.10, B es pinchado y G C P,. Por el
Lema 1.2.3 tenemos que la funcién fibra es continua en P, . Luego, por los Lemas 1.1.10y 1.2.9,

B=Bnz(G)c BNz 1(Ps) = B™ C B.

Concluimos entonces que B es niicleo. Supongamos ahora que B es pinchado y ntcleo. Sea P,
el residual en el que B es pinchado (Lema 1.2.3). Para toda 6 € P, denotaremos B? = {(6,bp)}.
Sea

w(&) = bg.

Demostraremos que (¢, P,) € € y B = Grafo(y, P,). Para ello veremos que si § € P, en-
tonces 1 es continua en 6. Sea {0,,}52, C P, una sucesioén tal que lim6,, = 6. Sea {¢(0,)}>2,
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la correspondiente sucesién de imagenes. Por la compacidad de {2 podemos suponer, sin pérdi-
da de generalidad, que la sucesion {1 (6,,)}52; converge a z. Como {(6,,%(6,))}5>, C By B
es compacto (§,z) € B. Por lo tanto (6,z) € BY y en virtud de que B es pinchado en 0, te-
nemos que z = by = (). Esto muestra la continuidad de ¢ en P,. Finalmente, la igualdad

B = Grafo(v, P,) es consecuencia directa del Corolario 1.2.11. O
El siguiente lema nos relaciona la pseudométrica d y la métrica de Hausdorff.
Lema 1.2.14 Sean (p,G), (¢',G') € €ye > 0. Sidoo((0, G), (¢',G')) < € entonces

Hy(A <e.

(¢,G)? A(so’-,G’) ) -

En particular do ((¢, G), (¢, G")) = 0si y solo si

A =A

(¢,G) (¢".G")"

Demostracion. Sean (¢, G), (¢',G') € €y € > 0. Supongamos que

doo((SD, G)7 (90/7 Gl)) <e.

Haremos la demostracién por reduccién al absurdo. Supongamos que Hq(A, ), 4, o) > €

En virtud de la Definicién 1.1.3 y la compacidad de 4 , yde 4 , ., existe (0,2) € 4, tal
que d((6,z),A, .,,) > . Sea {(0n, p(0n))}72 C A, , talque 6, € GNG' paratodan € Ny

lim(6,,, p(0r)) = (0, x) (Definicién 1.2.7). Como

d((On; o (6n)), (On, ¢ (0n))) < doo((, G), (', G)) <&

entonces d((0,,, v(0)), (0, ¢’ (0,))) < € para todan € N. En virtud de la compacidad de A

(¢",G")

existe una parcial convergente {(0y(n), ¢ (0a(n))) }nz1 C 4, o, tal que

Hm(ea(n)7@1(9a(n))) = (97 y) € A@/_g/) .

Entonces d((0, x), (6,y)) < e contradiciendo que d((0, =), A
Demostramos ahora la segunda afirmacién. Supongamos primero que d ((¢, G), (¢', G")) =

(w’vG")) > E.

0. Entonces doo ((¢, G), (¢',G')) < € para toda ¢ > 0. Por la primera afirmacién en este lema,
también Hy(A, q), Ar,ay) < € para toda e. En consecuencia Hq(A, qy, Ar,gry) = 0. De
donde A, o) = Ay q. Para concluir supondremos A, o) = Ay, qy. Sea G = G NG
Entonces en virtud de la igualdad y el Lema 1.2.9

Grafo(p, G) N~ HG") = Aoy N1 HG") = Ay gy N H(G") = Grafo(¢', G') N7~ (G").

Entonces supgc g d(¢(0), ¢(6)) = 0y por el Lema 1.2.5 tenemos que d((¢, G), (¢, G")) = 0.
O

Definimos ahora una relacién de equivalencia en el conjunto € inducida por sus pseudo-

curvas asociadas.
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Definicién 1.2.15 Dadas (p,G), (¢',G') € € diremos que (p,G) ~ (¢',G’) si y solo si A
A

(¢".G")"

e =

Lema 1.2.16 Sean (¢, G), (¢',G') € €. Sea G” un denso en S tal que G C GNG'. Si p(0) = ¢'(0)
para toda 0 € G" entonces (¢, G) ~ (¢',G’)

Demostracion. Si () = ¢'(6) para toda 6 € G” el Lema 1.2.5 nos implica

doo((9, G), (90,7 G/)) =0
y en virtud del Lema 1.2.14 tenemos que A, o) = Ay ,ay- O
Lema 1.2.17 La relacion “ ~" es una relacion de equivalencia.

Demostracion. Es claro que (¢, G) ~ (¢, G), esto muestra la reflexividad. Probaremos la simetria
de la siguiente manera. Sean (¢,G),(¢',G') € € Si (p,G) ~ (¢',G’) entonces A, ) =
Ay, y consecuentemente (¢’,G’') ~ (¢, ). Finalmente probaremos la transitividad. Sean
(0, G), (¢, G),(¢",G") € € tales que (¢,G) ~ (¢,G")y (¢,G) ~ (¢",G"). Entonces
Ay = Awran Y Awrary = Ager,ary en consecuencia A, gy = A(pr,gry. Concluimos
(p,G) ~ (¢",G"). O

Observacion 1.2.18 El espacio cociente (€, d,)/ ~ es un espacio métrico.
Lema 1.2.19 El espacio métrico (€, d)/ ~ es completo.

Demostracion. Sea {(¢n,Gn)}or, una sucesiéon de Cauchy en €. Sea G = N2, G,. En virtud
del Lema 1.2.5, la sucesién {(¢n,G)}22, también es de Cauchy en €. Sea § € G. La sucesion
{on(0)}52, C I es también una sucesién de Cauchy, por la definicién de do.. Sea ¢ : G — I tal
que ¢(8) = lim ¢, (#) para toda # € G. Demostraremos que (¢, G) € €. Sean 6 € G y la sucesién
{0,}22, C Gtal que lim#6,, = 6. Dada ¢ > 0, existe n(e) € N tal que

d(pr(0n), 0(0n)) <
d(@k (97,,), Pk (9)) <

d(pr(0),¢(0)) <

, paratoda k > n(e), por la definicién de ¢

, paratodan > n(e), pues gy, es continua

| Wl mw| M

3 Para toda k > n(e), por la definicién de ¢.

Entonces tendremos

para toda n > n(e). Concluimos pues la continuidad de ¢ en 6. Entonces (¢, G) € € y en conse-

cuencia € es completo. [
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Definicién 1.2.20 Sea A una pseudo-curva. Sea P4 el residual de continuidad de la funcion fibra para

A (Lema1.2.3). Sea ¢, , la funcion definida univocamente por el residual P, de manera que
A
7N (Pa)NA= Grafo(gpPA , Pa).
Diremos que (¢, , Pa) es el representante candnico de su clase de equivalencia.
A

Notacién 1.2.21 Llamaremos arco de curva a la grifica, de una funcién continua f: A — I, donde
A C S! es un conexo distinto de un punto. Si A = S* entonces diremos que la grifica de f es una curva.

En particular una curva C cumple que P, = S' entonces e, =Ty (f,SY e e.
(@]
Lema 1.2.22 Si A es una pseudo-curva que contiene una curva C, entonces A = C.

Demostracion. Como C' C A entonces ¢ (0) = ¢, (0) para toda ¢ € Pa. En virtud del
e}

Lema 1.2.16, concluimos A = C. 0O !

Finalizamos esta seccién estudiando el comportamiento de las pseudo-curvas bajo la accién

de las aplicaciones skew-product.
Lema 1.2.23 Sean A una pseudo-curvay T € T. Entonces T'(A) es también una pseudo-curva.

Demostracién. En virtud del Corolario 1.1.12 y el Lema 1.2.3, A = An7—!(P,). La continuidad
de T nos garantiza T(A) = T(A)Nnn—YR,(P,)). Sea G = P_ , N R,(P,). Como G es un

T(A)

residual contenido en P, tendremos

T(A)

L |G ec
T(A)

Finalmente por el Corolario 1.2.11, T'(A) = Grafo((gpPT(A) | o+ @)). Concluimos pues que 7'(A) es
una pseudo-curva. O

Sea T' € T, recordemos que un conjunto A es T-invariante (respectivamente fuertemente T-
invariante) siT(A) C A (respectivamente T'(A) = A). Ademds observemos que cualquier conjun-
to A, invariante por una funcién de 7, cumple que 7(A4) = S'. Un conjunto cerrado e invariante
es T-minimal si no tiene ningtin subconjunto propio cerrado e invariante.

Los siguientes resultados caracterizan las pseudo-curvas fuertemente invariantes por fun-

ciones de T; el primero dindmicamente y el segundo desde un punto de vista topoldgico.

Lema 1.2.24 Sea T € T. Toda pseudo-curva T-invariante por una funcién de T es fuertemente T-

invariante y T-minimal.

Demostracién. Sean T € T, A una pseudo-curva fuertemente T-invariante y B C A cerradoy 7T-
invariante. En estas condiciones tenemos (B) = S! porque T € Ty n~}(P4)NA =71 (Pa)NB
porque A es pinchada.

Por otro lado, como B es cerrado y A es ntcleo,

BCcA=n 1 (PO)NA=r1(P)NBCB. O
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Lema 1.2.25 Una pseudo-curva fuertemente T-invariante por una funcién de T, o bien es una curva o

bien no contiene ningtin arco de curva.

Demostracion. Sean T € T, A una pseudo curva fuertemente T-invariante y S C A un arco de
curva. Podemos suponer que S es maximal respecto de la relaciéon de inclusién. Es decir, no
existe ningtn arco de curva S’ tal que S C S’ C A. Si n(S) = S! entonces el Lema 1.2.22 nos
garantiza que S es una curva. Por otro lado, si 7(S) # S!, existe n € N tal que 7(S)NR"(7(9)) #
0y n(S) € «(S)U R™"(w(S)) ya que R es una rotacién irracional. Dado que T'(4) = Ay A

es pinchada, F"(S) NS # 0y T™(S) U S es un arco de curva contenido en A. Claramente
S C T™(S)US, lo que contradice la maximalidad de S. O

1.3. Bandas

En esta seccién introducimos el concepto de Banda. Es para dichos objetos para los que se
demuestra el Teorema de Sharkovskii. Retomamos las ideas fundamentales contenidas en [7],

pero haremos una reinterpretacién en términos de pseudo-curvas.

1.3.1. Definicién y propiedades elementales

La definicién en cuestion es:

Definicién 1.3.1 Sea A € 2% tal que n(A) = S. Diremos que A es unabandasi A = AN7~1(0) es
un intervalo para cada 0 en un subconjunto residual de S*. Si en particular todos los conjuntos A® son
intervalos y §(A) = inf{|A%| : € S'} > 0 diremos que A es una banda sélida.

Observacion 1.3.2 Una pseudo-curva es una banda niicleo.
Demostramos ahora un lema que implica la conexidad de las bandas sélidas.

Lema 1.3.3 Sea K € 2% tal que m(K ) = S'. Supongamos que K es conexo para toda § € S'. Entonces,
K es conexo.

Demostracion. Supongamos que K no es conexo. Existen U y V cerrados de K disjuntos y dife-
rentes del vacio tales que UUV = K. Nétese que U y V son compactos en (2. Consecuentemente,
7(U) y (V) son cerrados en S' y 7(U) U (V) = n(K) = S. Como S! es conexo existe § €
7(U) N7(V) y para dicha 0 tenemos

K =x Y (0)n(UUV) = (=" (0)nU)U (=1 (#) N V).

Los conjuntos 7~ 1(9) N U y 7—1(#) NV son cerrados, disjuntos y diferentes del vacio. Entonces
K? no es conexa, lo que contradice la hipétesis. O

Corolario 1.3.4 Sea A una banda sélida. Entonces A es conexa.
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Demostracién. Si A es una banda sélida, entonces A? es un intervalo para toda 6 € S!. Por el

Lema 1.3.3 A es conexa. O
El siguiente lema establece que el conjunto de bandas es cerrado bajo la operacién ntcleo.

Lema 1.3.5 Si A es una banda, entonces A™° también lo es. Mds concretamente, si G 4 es el residual de
continuidad de la funcién fibra para A, entonces A% = (A")? para toda 6 € G 4.

Demostracion. Sea A una banda y sea G 4 el residual de continuidad de la funcién fibra asociada
a A (Definicién 1.1.11). En virtud del Lema 1.1.10, A™¢ = Ugeq, A? y por lo tanto A% C (Anue)?
para toda § € G 4. Por otro lado A™¢ C A garantiza (A*)? C A’. Concluimos pues que
A% = (A"©)? para toda 6 € G 4. Si A es una banda, por definicién existe un residual G’ tal que
A? es un intervalo para toda § € G'. Sea G = G4 N G'. Entonces G es un residual en S! que

cumple que A? = (A™)? es un intervalo para toda § € G. Por tanto A" es una banda. O

Definimos a continuacién el concepto de funcién semicontinua superior e inferiormente.
La definicién es diferente de la Definicién 1.1.7. La diferencia radica en que la que daremos a
continuacién es para funciones con valores reales y la primera que dimos era para funciones

multivaluadas.

Definicién 1.3.6 Sea f : S' — I. Diremos que f es semicontinua superiormente (resp. inferiormen
te) si para toda 0 € S* y para toda sucesion {0,,}°>, C S! tal que lim 6,, = 6, se cumple lim f(0,,) <
£(0) (resp. lim f(6,,) > f(0)).

La prueba del siguiente lema puede encontrarse en [3] y/o [6]
Lema 1.3.7 Las siguientes afirmaciones son ciertas.

(a) La funcion f : S' — I es semicontinua inferiormente (resp. semicontinua superiormente) si y solo si
el conjunto {0 € S' : f(0) > A} (resp. {0 € S' : f(0) < \}) es abierto para toda X € I.

(b) La funcién f : St — I es semicontinua inferiormente (resp. semicontinua superiormente) si y solo si
el conjunto {(0,z) € 2: x> f(0)} (resp. {(0,x) € 2:x < f(0)}) es cerrado en (2.

(c) Las funciones semicontinuas superiormente (resp. inferiormente) son continuas en un residual en S*.

Las siguientes funciones nos serdn de mucha utilidad.
Definicién 1.3.8 Dado A € 2 tal que w(A) = S!, definimos las funciones
M,(0) :=méx{zel:(0,z)€c A}
m,(0) :=min{z € I:(0,x) € A},
y los conjuntos At := Grafo(M ,,S!) y A~ := Grafo(m,,, S?).

Lema 1.3.9 Sea A € 2%, tal que m(0) = S*. La funcion M , es semicontinua superiormente y la funcién

m., es semicontinua inferiormente.
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Demostracién. Demostraremos que M , es semicontinua superiormente. Sean 6 € S'y {(0,,, z,)}5°;
una sucesién contenida en A tal que lim6,, = 6. Si (0, z) es un punto limite de la sucesién, la
compacidad de A nos garantiza que (0, z) € A, por lo tanto, z < M, (#). Entonces por la Defini-
cién 1.3.6 M, es semicontinua superiormente. La semicontinuidad inferior de la funcién m , se

demuestra de manera andloga. O

Las bandas nticleo no son necesariamente conexas en todas sus fibras, pero el siguiente lema

nos da una condicién suficiente para que si lo sean.

Lema 1.3.10 Sea A una banda niicleo. Sea Sy := {0 € S' : M, _(0) < m ,_(0)}. Entonces A% es un

intervalo, no degenerado, para toda 6 € 8}4.

Demostracion. Demostraremos que A’ = {0} x [ma(0), Ma(0)] si & € S4. Dado que A es una
banda nucleo, por el Lema 1.1.10 existe un conjunto residual G C S' tal que la funcion fibra es
continua y A* es un intervalo para toda o € G. Por el Corolario 1.1.12(c), A = AN 7=1(G).
Tomemos (6, M, (0)) con § € SY. En virtud de la observacién anterior, existe una suce-
sion {(0,,2,)}2, € AN 77 Y(G) tal que lim(6,,,z,) = (0, M,()). Tomando si es necesario
una parcial, podemos suponer que la sucesién m, (6,,) es convergente y tendremos que a =
limm, (6,) < M,_(0). Veamos ahora que {6} x [M,_(0),M,(0)] C A°.Siy € [M, (), M,(0)]
entonces existe ¢ € [0, 1] tal que y = ta — (1 — t)M, (). Tendremos entonces que la sucesién
{(On,tm,(0) — (1 — )M ,(0,))}22, converge a (6,y). Observemos que (6,,,tm,(0,) — (1 —
tyM

A

(0,)) € A% ya que 0, € G,y por lo tanto (6,y) € A’. De manera andloga se prueba

que {0} x [m,(0),m ., (0)] € A® y comom ., (f) > M, _(0) obtenemos

At
A? = {0} x [m,, (0), M, (9)]
Paratodaf €SY. O

Los siguientes tres resultados prueban que toda banda nticleo estd limitada por dos pseudo-

curvas que la determinan.
Lema 1.3.11 Si A una banda niicleo entonces A+ y A~ son pseudo-curvas.

Demostracién. Sea A una banda nticleo. Sea G, el residual donde la funcién fibra es continua
(Definicién 1.1.11) y G/ el residual en que los conjuntos A? son intervalos. Tendremos entonces
A% = [m,(0),M,(0))], para todo § € G4 = G’y N G’}. Como la funcién fibra es continua en G4
obtenemos que las funciones M, (¢) y m , (f) son continuasen G, .

Para probar que A* y A~ son pseudo-curvas bastara con ver que A* = Grafo(M,,G,)y
A = Gralo(m . G,

Es inmediato que Grafo(M,,G,) C A*. Veamos el reciproco. Sea (6,z) € A+. Como que
A esntcleo y AT C A, para todo entorno B.((6,z)) existe un punto (¢', M, (0")) € B:((6,z)).
Como B.((6, x)) es un abierto, existe ¢’ tal que B,/ ((¢', M, (0"))) C B:((6,x)). En virtud de que A
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es nucleo existe (o, M, (o)) € B (¢, M ,(9"))) tal que (o, M, (a)) € AN 7~1(G4). Por lo tanto,
(0,z) € Grafo(M,,G ) y en consecuencia At C Grafo(M,,G ). La demostracion de que A~ es

una pseudo-curva es anadloga. 0O

Corolario 1.3.12 Si A es una pseudo-curva, entonces At = A- = A Reciprocamente, si A es una

banda niicleo y AT = A~ entonces A = AT = A~ y A es una pseudo-curva.

Demostracion. Sea A una pseudo-curva y P4 su residual de continuidad. Entonces la funcién
M, es continua en Py4. Por lo tanto A’ = A*% para todo § € Py, esto implica que A = A*
(Lema 1.2.16). Un argumento andlogo prueba que A~ = A. Veamos el reciproco. Por hipétesis
tenemos que como P4+ = P4- entonces P4 = P4+ y por lo tanto A es pinchado. Dado que A es

nucleo, el Teorema 1.2.13 nos garantiza que A es una pseudo-curva. O

Las bandas nticleo estdn determinadas por las pseudo-curvas que las limitan. Demostramos

esta idea intuitiva en el siguiente lema.
Lema 1.3.13 Sean Ay B bandas niicleo tales que At = BT y A~ = B~ entonces A = B.

Demostracion. Sea G el residual obtenido al intersecar los residuales de continuidad de la fun-
cién fibra en AT, A=, A, B y los residuales donde las fibras de A y B son intervalos. Entonces
tendremos que A’ = B? = {0} x [m,(0), M, (0)] para toda 6 € G. Como que A y B son bandas
nucleo esto implica que A = B. O

Las funciones de 7 cumplen diferentes propiedades ligadas a las bandas y a los ntcleos.

Demostramos a continuacién algunas de ellas.
Lema 1.3.14 Sea A € 29, tal que w(A) = S! entonces las cuatro afirmaciones siguientes son ciertas.

(a) n(T(A)) =S

(b) Si A es una banda entonces T'(A) también lo es.
(c) Si A es niicleo entonces T (A) también lo es.

(d) T(A™e) =T(A)™e.

Demostracion. Dado que la funcion T' € T, 0 + w € w(T(A)) para todo § € w(A). Por lo tanto
S' € #n(T'(A)). Esto prueba (a).

Si A es una banda, entonces por la Definicion 1.3.1 existe un residual G C S! tal que A? es
un intervalo para toda § € G. Como que R, es una rotacién, R, (G) es también un residual
en S'. Observemos que la funcién R,, nos envia conjuntos residuales en conjuntos residuales de
manera biyectiva. La continuidad de 7' nos garantiza que T'(4)? = T'(A%~%) es un intervalo para
toda 6 € R, (G). Esto prueba (b).

Supondremos ahora que A es ntcleo. Sea G un residual de S'. Por el Corolario 1.1.12 ten-

dremos que A = AN 7~ (R~Y(G)), y por la continuidad de T" obtenemos

TA) N7 1(G) = T(ANTLR-1(G))) = T(AN 7 L(R-1(G))) = T(A).



1.3 Bandas 19

Otra vez por el Corolario 1.1.12, T'(A) es ntcleo. Esto prueba (c).
Para demostrar (d), observemos que como A™¢ C A tenemos T (A™¢) C T'(A). Asi, para

todo residual G en S! se cumple
T(A™)Na (G) c T(A) N7 H(G).

Si tomamos el residual G'7(4) en donde la funcion fibra es continua para el conjunto 7'(A) tene-

mos que

T(A™e) N m=1(Gr(a)y) C T(A) N7 (Gra)) = T(A)™.

Por (c) T(A™°) es nticleo. Como A™° C A, por el Lema 1.1.10 y el Corolario 1.1.12 tenemos

T(AnuC) _ T(Anuc) N 7T71(GT(A)) C T(A) N 7T71(GT(A)) = T(A)nuc.

Veamos la inclusién inversa. Se tiene

T(A)™ = T(Ae N1 LR, (G)) C T(A) N1 L(Ro(G))
=TANTHG)) = T(AN71(G)) = T(A™®).

Esto acaba la demostraciéon del lema. O

El siguiente teorema es importante, pues podremos restringir nuestro estudio solo a bandas

minimales con respecto a la inclusién.

Teorema 1.3.15 Sea T' € T. Toda banda T-invariante, contiene una banda minimal (respecto a la
relacién de inclusion) T-invariante. Toda banda minimal T-invariante es niicleo y fuertemente T-

invariante.

Demostracion. Sea A una banda T-invariante y sea 2 = {A4; : ¢ € I} una familia anidada
de bandas T-invariantes contenida en A (es decir si 4,j € I entonces, o bien 4; C A; o bi-
en A; C A;). Si A = Nicr4;, entonces es inmediato que A, es compacto, no vacio, T-
invariante y m(A.) = S'. Como A, es compacto, para toda k € N, existe 4;;) € 2 tal que
Ay C B%(Aoo) ={z € 2:d(z, Ax) < +} entonces, para la sucesién {A;)}72, tenemos:

A C ﬂ Aiay C ﬂ(B%(Aoo)) = A
k=1 k=1

de donde podemos concluir que Ao = M, A(r). Definamos ahora G4, := M2, G4, Como
cada G 4, ,, es un conjunto residual (Lema 1.1.10) y la interseccién numerable de residuales es un
residual, tenemos que G 4 es residual en S' y la funcion fibra es continua para toda 4; ;). Como
{Af( }) }he1 €S una sucesion anidada de intervalos para toda 6 € G4, entonces A% = ﬁ;‘;lAf( k)
es también un intervalo para toda § € G4_ . Consecuentemente A, es una banda. Por lo que
hemos demostrado que la cadena 2 tiene cotas inferiores. Entonces por el Lema de Zorn existen

bandas T-invariantes minimales.
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Demostraremos ahora la segunda afirmacién del teorema. Si B es una banda minimal, en-
tonces en virtud del Lema 1.3.5, B™° C B es también una banda. Si B es T-invariante, tenemos
que T'(B) C By porel Lema 1.3.14(d), T'(B""°) = T'(B)""® C B™"°. Asi pues, B""° es una banda
T-invariante. La minimalidad de B implica B¢ = B, por tanto, B es ntcleo. Finalmente si B
es una banda ntcleo T-invariante que no es fuertemente 7T-invariante, entonces 7'(B) C B es
también una banda nticleo T-invariante (Lema 1.3.14(b,c)). Por tanto B no es minimal con esta
propiedad. Por tanto T'(B) = B. O

El siguiente lema nos garantiza que la familia de bandas nticleo T-invariantes es cerrada bajo

intersecciones no vacias.
Lema 1.3.16 La interseccion de dos bandas T-invariantes es o bien vacia, o bien una banda T-invariante.

Demostracién. Si Ay B son dos bandas T-invariantes tales que A N B # () entonces m(A N B) es
un compacto no vacio. Ademds A y B son T-invariantes. Entonces, 7(A N B) es R,,-invariante
y como R, es una rotacion irracional tenemos que 7(A N B) = S!. Sean G4 y G los residuales
en donde las fibras de A y B son intervalos. Si § € G4 N Gp la fibra (A N B)? es también un

intervalo, entonces las fibras de A N B son intervalos en un residual. 0O

La importancia del siguiente teorema, radica en que nos da una dicotomia en la “estructura”
de las bandas nticleo fuertemente invariantes, solo pueden ser de dos tipos, o bien sélidas o bien
pseudo-curvas. Lo cual simplifica notablemente el estudio de dichos objetos. Recordemos que
Sk fue definido en el Lema 1.3.10.

Teorema 1.3.17 Sea T € T y sea A una banda niicleo fuertemente T-invariante. Entonces S, es abierto

y una y solo una de las dos afirmaciones siguientes se cumple.

(a) SY es vacioy A es una pseudo-curva T-minimal, o

(b) SY es denso en S' y A es una banda sélida.

Demostracion. Por el Lema 1.3.9 m . es una funcion semicontinua inferiormente y M, es una

+
funcién semicontinua superiormente. Entonces m ,, — M _ es una funcién semicontinua infe-
riormente. Por tanto, por el Lema 1.3.7(a), S} es un abierto en S!.

Supongamos ahora que g # S'. Bajo esta hipotesis, S\ @ es un abierto en S! tal que
sif € St\ @ entonces M, 0) > m,, (0). Sean G y G2 los residuales donde las funciones
M, y m, son continuas. Claramente las funciones M, ,M, ,m, ,m, _soncontinuasenG =
G1 N Gy (Lema 1.3.7(c)). Tendremos entonces que para toda § € G, A™? = {(6, M ,(0))} y A% =
{(8,m,,(0))} y por tanto m,,_ (§) = M,(0) y M,_(#) = m, (). De donde, si § € G N (S \@)
tendremos

M, (6) = m.(6) < M, (6) = m,(0).

Por otra parte como M, () > m,(0) para toda § € S' obtenemos M, () = m,(0) para toda
§ € G (S'\SL). Por lo tanto A es pinchado en G N (S' \ S}). Ahora bien, dado que A es
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fuertemente invariante, si A es pinchado en 6 lo es también en R.(6) para cada n con lo que
A es pinchado en un subconjunto denso de S' y es una pseudo-curva. Sea P4 su residual de

continuidad. Tendremos entonces que P4 C S' \ S} y por lo tanto

St =Py c ST\ SL =S'\ S}
de donde SY = ). La minimalidad de A es consecuencia del Lema 1.2.24.

Supongamos ahora que S, = S'. Sea @’ = {# € S! : A’ es un intervalo}. Por ser A fuerte-
mente invariante tendremos que R, (6’) C ©'. Por otra parte, como S} es abierto y por el
Lema 1.3.10, S}, C @' y existiraun k € N tal que S' = U} (R (©') C ©'. Esto prueba que
todas las fibras de A son intervalos.

Finalmente veremos que A es una banda sélida. Definamos
1
Sh(k):={0eSy: M, () <m  (0)— E}

Por ser m () — M ,_(f) semicontinua inferiormente S}, (k) es abierto para toda k € N. Como
S = UkenSY4 (k) es no vacio, existe £’ tal que S’ (k) # 0. Por ser w un irracional, existe N de
manera que S' = UY_, R;"(SY (K')). Como que T* es uniformemente continua para toda i € N,
sea 9; > 0 tal que

d((0,z),(0',2") <& = d(T"(0,z),T"(¢,2)) < %
Finalmente sea § = min{di,...,dx}. Probaremos que para todo 6 € S, M, () —m,(0) > 4.
Tomemos § € S'y 1 < j < N talque & € R77(S4(k")). Sean x1, 5 € A? tales que

T9(0,2,) = (0 +jw, M, (0 + jw)),
T9(0,29) = (0 +jw,m (0 + jw)).

Como R, (w) € S%(k'), tendremos que d(T7 (0, z1), T (6, z2)) > 7 y por lo tanto d((6, 1), (6, z2))
d; > 0. Asipues |[M,(0) —m,(0)| > |z1 — 22| >6. O

Corolario 1.3.18 Sea A una banda niicleo sélida T-invariante. Si A* y A~ también son T-invariantes,
entonces ATN A~ =0.

Demostracién. Por el Lema 1.3.16 tenemos que si A™ N A~ # () entonces AT N A~ es una banda
T-invariante. Por otra parte el Lema 1.2.24 nos asegura que A" y A~ son conjuntos minimales y
por lo tanto AT N A~ = AT = A~. Del Corolario 1.3.12 deducimos que A es una pseudo-curva,

lo que contradice la hipétesis. O

1.3.2. Ordenacién y recubrimientos entre bandas

En esta secciéon también hacemos uso de las definiciones dadas en [7], nuevamente las rein-
terpretamos en funcién de las pseudo-curvas y de los resultados que hemos obtenido en la
seccién anterior. Estd subseccion finaliza con un teorema que puede ser entendido como la gen-

eralizacién teorema de punto fijo, claro esta en el contexto de bandas nticleo.

Y
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Definicién 1.3.19 Diremos que dos bandas A y B satisfacen A < B si existe un residual G en S* tal
que para toda 0 € G, M, (0) < m__(0). Diremos que dos bandas son ordenadas si se cumple que
A<BoA>B.

Definicién 1.3.20 Diremos que las bandas A y B estin debilmente ordenadas, A < Bsi M, (0) <
m __(0) para toda 6 en un residual en S'.

Observacion 1.3.21 Si A y B son bandas niicleo, las siguientes propiedades son verdaderas.

(a) A= < AT,
(b) A< Bsiysolosi AT < B~.
(c) Si B C Aentonces A~ < B~ < Bt < A*.

En lo que sigue veremos que dos pseudo-curvas debilmente ordenadas, definen una tinica

banda nticleo que las tiene como tapas. Empecemos observando el siguiente resultado.

Lema 1.3.22 Sean A y B dos pseudo-curvas tales que A < B. Entonces m ,(0) < M, (0) para toda
€St

Demostraciéon. Sea

Q0 {(0,z) : 2 >m,(0)}.

A
Si (0, M,(#)) € 2, paratodad € S', tendremos que m,(#) < M,(f) para toda 6 < S".
Dado que B es una pseudo-curva, en particular es compacto y M, () € B para toda 6 € S!.
Por lo anterior es suficiente demostrar que B C QmA, lo hacemos como sigue. Como m, es
semicontinua inferiormente (Lema 1.3.9), El Lema 1.3.7(b) nos implica que QmA es cerradoen 2.
Como Ay B son pseudo-curvas, el Corolario 1.3.12 nos garantiza M, (0) = M, (0) y m,(0) =
m__(0) paratoda § € S'. Sea G el residual en S', tal que M, (0) <m__(0) paratoda 6 € G. En
consecuencia
m, (0) < M, (0) =M, (0) <m, (0)=m,(0) < M,(6),

para toda 6 € G. De donde {(0, M, (0)) : 0 € G} C £2,, . Envirtud de que {2, es cerradoy B
es una pseudo-curva, el Corolario 1.3.12 nos implica {(0, M, (0)) : 0 € G} C £2,, . O

Asf pues, tiene sentido la siguiente definicion.
Definicién 1.3.23 Sean Ay B dos pseudo-curvas tales que A < B. Definimos
Lip = ( U [m. (), M,, (9)]> :
fest

Lema 1.3.24 Las siguientes afirmaciones son ciertas

(a) Si Ay B son pseudo-curvas tales que A < B entonces I, ,, es una banda niicleo.
(b) Sean Ay B dos pseudo-curvas tales que A < B entonces I, = Ay I = B.
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(c) Sean Ay B dos pseudo-curvas tales que M ,(0) < m, (0) para toda 6 € S' entonces I, es solida y

I, = U [mA(9)7MB(9)]'

oest

(d) Si A, A’, B', B son pseudo-curvas tales que A < A’ < B' < B, entonces I,,,, C 1.
(e) Si C es una banda niicleo entonces I, = C.
(f) Sean C'y D dos bandas solidas niicleo disjuntas tales que C' < D, entonces I ,,  es también una

banda sélida nticleo.

(g) Sean C'y D dos pseudo-curvas disjuntas tales que C' < D, entonces I, es una banda niicleo con

CcD

interior diferente del vacio.

Demostracién. Empezamos demostrando el apartado (a). Denotamos I,,, = |J, est M, (0), M, (0)]
y veremos que es compacto. Sea {(0,,,2,)}°%, C I, una sucesién convergente con limite (6, z).
Como

m, (0n) < an < My (6n)

para toda n € N, la semicontinuidad inferior de m , y la semicontinuidad superior de M, impli-
canm, () < z < M, (6). Entonces (0,z) € I,,. Por lo tanto I,,, es compacto. Dado que todas
las fibras de I,,, son intervalos, I,, es una banda. Luego, por el Lema 1.3.5, I, = (I,,)™ es
una banda ntcleo. Esto termina la prueba de (a).

Veamos (b). Por el Lema 1.3.5

B
( U 1. (0), M, <9>]) = [ma(8), Mo (8)] = I,
fest
para toda S en un residual G de S'. Sea G’ el residual de continuidad de la funcion fibra en
I,y (cpPA , P) el representante canonico de la pseudo-curva A. Tendremos entonces 19 = =
[goPA (0), Mp(9)] para toda # € G NG' N P4. Como que m,  es continua en G’ obtenemos que
(I7,)? =1, 9 (0))} = AY paratoda 6 € GN G’ N Pa. Por el Lema 1.2.16 obtenemos I, = A.
La prueba de que I'7, = B es anéloga. Esto termina la prueba de (b).

Vamos ahora a probar (c). La hip6tesis de que M (6) < mp () para toda 6 € S! implica que
Ay B son disjuntas. Sea

k =inf{d(z,y) :x € A,y € B}.

Por ser Ay B compactos disjuntos existen z € A ey € B tales que k = d(z,y) > 0. Tendremos
entonces que diam(1? ) > k > 0 para toda § € S'. Ahora veremos que 1Y _ es un intervalo para
toda 0 € S'. Notemos que en virtud del Lema 1.3.10, S%IAB)
toda 6 € S'. Consecuentemente I, ,, es una banda sélida nucleo. Asi, hemos demostrado (c).

= S', y I?  es un intervalo para

Veamos ahora (d). Por (b) tenemos

I, =AIf =BT, =AI =B.

YT AB A’ B/ A B!
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Por el Lema 1.3.5 I = [m,, (6), M, (6)] para 6 en un residual Gy I, = = [m ,(0), M, (0)] para

0 en un residual G’. Sea G” = G N G’, entonces

19, = m, (6), M, (8)] C [m,(6), M, (6)] = I',,

A’ B’

para toda 6 € G”. Por lo tanto por el Corolario 1.1.12, tenemos

I, =1, neiGNcl,,nr (G =1I,,.

A’'B’ A’ B’

Esto muestra (d).

Ahora veremos (e). Por (b) tenemos que I = C"y I;'_ o = C* y por el Lema 1.3.13
=C.

Ahora demostraremos (f). Sean C'y D bandas sélidas nticleo disjuntas verificando C' < D.
En virtud de la conexidad de D (Corolario 1.3.4)

obtenemos que I,

2\D={(0,x) e 2:x<m,(0)}U{(0,z) € 2:2>M,(0)},

los cuales son conjuntos ajenos. Como que M, es semicontinua superiormente y m, es semi-
continua inferiormente, el Lema 1.3.7(b) nos implica que dichos conjuntos son abiertos. La
condicién C' < D combinada con la conexidad de C' en cada fibra (Definicién 1.3.1), establece
Ct cCc{x)ecR:x<m,(0))} Enconsecuencia M_, (¢') < m__(f') paratoda ¢’ € G'.

Esto implica que estamos en las hipétesis de (c). Por lo tanto /_, /= es una banda sdlida, esto

muestra (f).

Finalmente demostraremos (g). Sea
Q' ={0,z)eR:x<M.0)}u{(0,x) € 2:x>m,(0)}

Como que M, es semicontinua superior y m, es semicontinua inferior, el Lema 1.3.7(b) nos
implica que 2" es cerrado en 2. En consecuencia {2 \ 2’ es un abierto en {2 y la condicién
C < D nos garantiza que es diferente del vacio. Entonces basta demostrar que 2\ 2 C I_,.

Demostraremos este hecho de la siguiente manera. Observemos que
2\ ={0,2) € 2: M, <m,(0)}

Sea (0, z) € £2\ {2’ entonces forzosamente M (0) < m,(0), por (b) MIED 0) < My (0). Luego,
por el Lema 1.3.10 0 € Sy I? | = {6} x [m(8), M, (6)]. Por lo tanto (2 \ ') C I . Esto
prueba (2\ £2/)% C I, paratodad € S'y 2\ ' C I, . Esto demuestra (g). Asf concluimos la

demostracion. O

Definicién 1.3.25 Sean T' € T, B y A bandas niicleo. Diremos que T' envia a A en B en sentido positivo
siT(A™) < B~ yT(A") > B*. Lodenotaremos como A *s B. Diremos que T envia A en B en sentido
negativosi T(A~) > Bt y T(A") < B~. Lo denotaremos como A — B. Usaremos el simbolo A ENy ]

si no estamos interesados en aclarar cual de ellas se satisface.
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Observacion 1.3.26 Sea T' € T. Supongamos que A, B y C son bandas niicleo. Si T envia A en B en
sentido positivo (resp. negativo), entonces T(A™) < T(A™) (resp. T(A") < T(A™)). Esto implica que
si T envia A en C lo hard también en sentido positivo (resp. negativo).

Lema 1.3.27 Sea T' € T. Sean A, D y B bandas niicleo. 5i A =B y D C B entonces A = D.

Demostracion. Supongamos que A %5 B entonces combinando la hipétesis D C B y la Obser-
vacion 1.3.21(a)(c) las desigualdades T(A~) < B~ < D~ < Dt < BT < T(A") son ciertas.
Concluimos pues A & D.Si A = Bla demostracion es andloga. O

Notacién 1.3.28 Cuando T(A) = B y ademds T(A') = BT (T(A*) = B7)yT(A™) = B~
(T(A™) = B™*), diremos que T(A) = B.

Lema 1.3.29 Sean T € T, Ay B dos bandas niicleo. Si A =, Beon respecto a T, entonces B C T'(A).

Demostracion. Supongamos A &5 B. Como A es una banda nticleo, por el Lema 1.3.14, T'(A)
también lo és. Del Lema 1.3.11 tenemos que A*, A=, T(A)*,T(A)~ son pseudo-curvas y el
Lema 1.2.23 nos garantiza que T'(A"), T(A~) también son pseudo-curvas y cumplen T' (A1), T(A™) C
T(A). En virtud de A - B tenemos T(A™) < B~ y BT < T(A"). Las seis pseudo-curvas
cumplen:

T(A)” <T(A")<B <BT"<T(A")<T(A™ .

Entonces por el Lema 1.3.24(d) y el Lema 1.3.24(e) tenemos que

B=1 cl cl =T(A).

B— B+ T(A—)T(AT) T(A)—T(A)T

La demostracion del otro caso es anadloga. O

Corolario 1.3.30 Sea T' € T. Si A es una pseudo-curvay A =, B entonces B es una pseudo-curva y
T(A) =B.

Demostracion. Como A es una pseudo-curva, por el Lema 1.2.23, T(A) también lo és. En virtud
del lema anterior B C T(A) y como B es una banda nticleo B es una pseudo-curva y por lo
tanto B=T(A4). O

Lema1.3.31 Sea T € T y A, By B’ bandas niicleo.

(a) Si A S B, entonces existe una banda niicleo C' C A tal que T(C) = B.
(b) Supongamos que A = B yA =, B'. Entonces si B y B’ estdn debilmente ordenadas las bandas
niicleo C'y C', obtenidas en (a), también se pueden construir debilmente ordenadas, es decir: si B <

B’ entonces C' < C' siempre que A = By C > C' cuando A = B.

: +
Demostracion. Demostramos el lema en el caso en que A — B. El otro caso se demuestra de

manera andloga.
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Primero demostraremos (a). Por el Lema 1.3.29 tenemos que Bt ¢ B C T(A). Como B*
es compacto 7' (BT) es también compacto, y A N T~!(B™) es compacto, no vacio y m(A N
T~Y(B%)) =S!. Sea
o) =m, . (0):
Por el Lema 1.3.9 la funcién ¢ es semicontinua inferiormente. Sea G, el residual de S* en donde

 es continua. Por tanto
+ .
C7 = Apa,)

es una pseudo-curva. Claramente A~ < C*. Consideremos ahora I o
Por el Lema 1.3.24(b) tendremos que Ij_c
Lema 1.3.24(e) tendremos C A.

A-ct
Por el Lema 1.2.23 T(C™") es una pseudo-curva y por construcciéon T(C*) y B* se cortan en

. =C*t. Porotraparte I, . C I,  ydel

un residual y por lo tanto T(C*) = B*. Como que T(A~) < B~ tendremos que I = B.

A-ct
Consideremos el compacto no vacio 7-'(B~) NI, _ o - Definimos la funcién:

O =M, iy, ()

—c+

De manera andloga a C™, la funcién ¢ nos define la pseudo-curva C~. Sea C' := I Con

c—ct’

los mismos argumentos que usamos para las propiedades de I,- -+ podemos concluir que C

cumple:
CcC IA—C+ C A, IC_‘_C+ = C_, I:—C+ = C-’r’
I ., 5B T(CY)=BYT(C )=B".

Solo resta demostrar que 7'(C') C B para obtener T'(C') = B. Supongamos que existe un punto
(0,c) € C tal que T'((A,c)) ¢ B. Como B es compacto, existe un entorno B:((6,c)) tal que
T(B:((8,¢)))NB = 0. Como que C es una banda ntcleo, existe G un residual tal que para todo
¢ € G lafibra de C' es un intervalo y la funcion fibra es continua (Lema 1.3.5). Dado que G, es
residual B:((0,¢))N(CNn~1(G,)) # 0.Sea (B,b) € B((8,c))Nn(CN7~1(G,)). Para dicho punto
se cumple m(5) <b < M_(B) yT((8,b)) = (8 +w,b') ¢ B. Supongamos que b’ > M, (8 + w).
Como T(CT) =BT yT(C~)=C" setiene

T8, M. (B)) = (B+w, My (8 +w)),
T(B,me(B) = (B+w,my (8 +w)).

Ademis T(C?), es un intervalo. Luego, la continuidad de la funcién 7 restringida a la fibra j3

implica que existe a € [m (), b] tal que

T((B,a)) = (B +w, M, (B +w)).

contradiciendo que M, (8 + w)) = ¢(8 +w) = m (0 + w). Para el caso en que b’ <

ANT—1(B+)
M, (B + w) la demostracién es andloga. Esto concluye la demostracién de (a).
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Para demostrar (b), supongamos que B y B’ son dos bandas ntcleo tales que A B AL
B’y B < B'. Sea C' una banda ntcleo construida como en (a) tal que T(C’) = B’. Tendremos
pues T(C'~) = B'~ > B™. Por otra parte T(A~) < B~ por hipétesis. Tendremos asi [, __,_ x5
B. Aplicando (a) alasbandas I, _, y B, obtendremos que existe una banda ntcleo C tal que
Cc I ..y T(C)=B.ComoC C I, ., por la Observacién 1.3.21(c) tenemos que C* < C'~
de donde C < (. Asi pues hemos acabado la parte del lema en que A =5 B. Como hemos dicho

anteriormente el otro caso es andlogo. Esto concluye la demostraciéon. O

Teorema 1.3.32 Sea T’ € T. Sea A una banda niicleo tal que A =y A. Entonces existe una banda niicleo
As C Atal que T(Ax) = Aco.

Demostracién. Supongamos que A — A. Definiremos inductivamente una sucesién de bandas
nucleo. Por el Lema 1.3.31 y el Lema 1.3.27 existe una banda nticleo A; C Atalque T'(4;) = Ay
A 5 A).SeaieN y supongamos que para cada j < ¢ hemos definido bandas nticleo A; tales
que A; C Aj_1,T(Aj)) = A1y A st A;. Entonces aplicando el Lema 1.3.31 y el Lema 1.3.27
al conjunto A; tenemos que existe 4,41 tal que A;11 C A;, T(Ait1) = Ay Aita + A;i1. Sea
goo = N52,A;. Como cada A; es una banda, existe un residual G;, tal que si 6 € G; entonces Af es
un intervalo. Sea el conjunto residual G = N, G;. Entonces AY es un intervalo para toda § € G.
Por lo tanto A% = N2, A? que es una interseccién anidada de intervalos. Por consiguiente AP

es un intervalo para toda § € G'y A, es una banda. También tenemos

Sea An, = (Ao )™ entonces por el Lema 1.3.14,
T(Ax) = T((Aoo)nuc) — (T(Am))nuc — (Aoo)nuc — A

Para verificar que T'(Ax) = Ao solo resta demostrar que T(AL) = Al y T(AL) = AL.

Demostraremos que T'(A%) = AL . Sea
P ={0csS"': A esunintervaloy A’ es pinchado para toda i > 1}.

Claramente P es residual. Por otro lado, como que T(A%) = A%T% y T(A}?) = A" para

toda i > 1 tendremos que P +w C P. Sea
Q = {0 € S' : la funcién fibra para A, y para A, es continua en }.

Demostraremos que @ +w C Q. Sea § € Q). Veremos que 0 +w € Q. Consideremos {6,,}22; una
sucesion tal que lim 6,, = § + w. En consecuencia, lim 6,, — w = . En virtud de la continuidad de

la funcién fibra para A en 6 tenemos que lim A% =% = A% . Tenemos entonces

lim(A%) = m T(A% ) = T(lim A% ) = T(A%) = A%,

oo oo
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donde la igualdad 1im T'(A% ~«) = T(lfim A% ~“) es una consecuencia de la continuidad de la
funcién T en 2 (Proposicién 1.1.5). Esto demuestra la continuidad de la funcién fibra de A,
en 6 + w. Un argumento analogo prueba la continuidad de la funcién fibra de A, en 6 + w.
Obtenemos asi que # 4w € Q. Observemos que si a € P, entonces la fibra A2, es un intervalo, ya
que es una interseccién anidada de intervalos. Siademds a € PNQ tendremos por el Lema 1.3.5,
A% = A2 y por tanto A% es un intervalo. Sea S = P N Q. El conjunto S también es residual
yS+w C S Seaa € S. Como que AS es un intervalo y la funcién fibra en A, es continua
tendremos que la funcién M,  es continua en a 'y por lo tanto A%, es pinchado en a. Pongamos

AT* = {(a,a(«a))}. Por otra parte, como que

Ago = Ago = ﬂazoAia = m(xA? = {04} X [bi(a)7ai(a)]’

tendremos que a(a) = lima;(a). Ahora bien, como o + w € S, las mismas consideraciones
son ciertas para a + w. Asi pues, A%+ es un intervalo y AX“™) es pinchado y a(or + w) =

lim a; (o + w). Por otro lado T(a, a;(a)) = (a + w,a;—1(a + w)), ya que T(A]) = Af | y ambas

son pinchadas en a y a + w. Asi,
T(a,a(a)) =lmT (e, a;(e)) =lim(a + w,a;—1(a +w)) = (o + w, a(a + w)).

Tendremos entonces que AY y T(AZL) se cortan en S + w y en virtud del Lema 1.2.16, T'(AL)) =
A% . Laigualdad para A se demuestra de manera anédloga y concluimos 7' (A ) = A. Cuando

A; — A;_1 la demostracion es anédloga. Esto termina la demostracion del lema. O

Corolario 1.3.33 Sea T' € T y A una banda niicleo tal que T (A) = A. Entonces las siguientes situa-

ciones son ciertas:

(a) Si A cumple que A L5 A, entonces A contiene una pseudo-curva T-invariante y minimal.
(b) Si A cumple que A — A, y no contiene una pseudo-curva T-invariante, entonces contiene una banda
solida niicleo T-invariante Ao para la cual AL y A son permutadas por T. Ambos conjuntos son

invariantes y minimales para la funcién T?.

Demostracién. Si A <5 A entonces T(AL) = AL y por el Lema 1.2.24 AL es minimal. Esto
demuestra (a). Si A — A tenemos que T'(AL) = AL y T(AL) = AL de donde T?(AL) = AL

y T?(AL) = AL por lo tanto por el Lema 1.2.24 serdn minimales para 72. O

1.4. Teoria del Forcing

El objetivo de esta seccién es introducir y estudiar la relacién de forcing de los patterns de
las funciones en 7. La razén que nos mueve a hacerlo es que podemos obtener mucha informa-
cién de la dindmica de las funciones. Como consecuencia se puede obtener una caracterizacién

de los conjuntos de periodos y cotas inferiores de la entropia topolégica. Demostraremos que
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dicha teoria para una subclase de patterns que definiremos mds adelante, coincide con la de
las funciones continuas en el intervalo. Suponiendo que la relacién de forcing en el intervalo y
para las funciones de 7 coincide en la clase de todos los patterns, obtendremos el teorema de
Sharkovskii como un corolario. El caso general es analogo al del intervalo aunque técnicamente
més complejo y serd objeto de estudio més adelante.

Recordaremos, en primer lugar, dichos conceptos para el intervalo, luego introduciremos los
conceptos andlogos para las funciones de 7 vy, finalmente, enunciaremos y demostraremos el

resultado principal de esta seccion.

1.4.1. Dinamica combinatoria en el intervalo

Denotaremos el intervalo [0, 1] por I, la clase de funciones continuas de I en si mismo por
C(1,I). Dada una funcién f € C(I,I), diremos que p € I es un punto n-periddico de f si
f"(p)=py fi(p) # pparatoda j = 1,2,...,n — 1. Al conjunto de puntos {p, f(p),..., [ (p)}
le llamamos 6rbita f-periédica. Dada una 6rbita periédica P = {p,,p,, ..., p, } diremos que esta
ordenada espacialmente si p, < p,,, paratodai =,1,2,...,n — 1. Siempre supondremos que las
Orbitas periddicas estan ordenadas espacialmente.

Una herramienta crucial para estudiar la dindmica combinatoria del intervalo son los grafos
de Markov.

Un grafo combinatorio con signo es un par G = (V, F') donde V es el conjunto de vértices y F
el conjunto de flechas, es un subconjunto de V' x V' x {+, —}. Una flecha (I, J,s) con I,J € V' y
s € {+, —} serd denotada por I —> J.

Un camino de G es una sucesion de flechas o = (u1,ug,...,uy) con u; = (v;,v},s,) para
i=1,2...,myv, = v parai = 1,2,...,m — 1. Es decir, un camino de G es una sucesién
de flechas tal que cada una empieza en el vértice donde termina la anterior. El ntimero m se
denomina longitud del camino. Cuando v}, = v; (es decir cuando el camino termina y empieza
en el mismo vértice) « se llamara un lazo de longitud m.

Observemos que si « es un lazo, entonces (uz, us, . . . , U, 41) €s también un lazo de G. Este
lazo se denominard un desplazado de o y serd denotado por R(«). Para el iterado n-ésimo de
R usaremos el simbolo R". Es decir, R™ () = (U14n (méd m)s U24n (méd m)s -+ » Um+n (méd m))-
Notemos que R¥"(a) = o para todo k > 0.

Dados dos caminos o = (u1,ug,...,um)y S = (w1, ws,...,w;) tales que u,, termina en el
mismo vértice donde empieza w;, se define la concatenacién de o y 5 denotada por af3, como
el camino (w1, ug, . .., Um, W1, Wa, . .., w;). Cuando « es un lazo denotaremos por o™, n > 1, la
concatenacién de a con si mismo n-veces. o’ se denomina una n-repeticion de a.

Dado un camino a = vy —5 vy —25 -+ U~ vy,41 e define el signo de o, denotado Sign(a),

como
m

I
i=1
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donde, en esta expresion, se usan las reglas obvias de multiplicacién:

+ot ===,
y 4+ —=—+=-.

Sea o un lazo de un grafo combinatorio con signo G. Diremos que « es simple si no existe un
lazo g tal que a = ™ conn > 2. Es decir, si a no es una n-repeticiéon de 5 conn > 2. Observemos

que, en este caso, o = ... 8y que la longitud de § divide a la de «.
——

Sea f € C(I,I) donde I es un intervalode Ry sea P = {p, < p, < ... < p, } una 6rbita

peritédica de f. Cada intervalo de la forma [p,,p,.,],i = 1,2,...,n—1 serd denominado un inter-

i+1 ]
valo P-bdsico de f. A dicha érbita P le asignamos un grafo combinatorio con signo, denominado
P-grafo de f, de la siguiente manera. El conjunto V' de vértices del P-grafo de f es exactamente
el conjunto de intervalos bésicos. Asimismo si I = [a,b] y J son intervalos bdsicos, I — J es

una flecha del P-grafo de f si y solo si

s=+,fla) <f(b)y JC[f(a),f(D)]
obien s = —, f(a) > f(b)y J C [f(b), f(a)].

Observacién 1.4.1 Sean I; — J; y I BT flechas del P-grafo de f que empiezan en el mismo

vértice. Entonces s, = s,.

Sm—1

Unlazoa =1, 2% 1, 25 - [ =5 I, enun P-grafo de f se llamara delgado si de cada

intervalo I; sale una dnica flecha en el P-grafo de f. Es decir, si I; = [a;, b;] entonces

I = { [f(ai)7 f(b7)], cuando s, = +
Z [£(b;), f(a;)], cuando s, = —

parai=0,1,2,...,m — 1. Por el Lema 2.6.3(a) de [2], a es negativo.
Sea f € C(I,I) y P una 6rbita de f. Diremos que f es P-monétona si para cada intervalo

P-basico I, f } ; es estrictamente monoétona.

Definicién 1.4.2 Sea o = Ip =% I, =% ... 1, 1 2= Iy un lazo de longitud n de un P-grafo de
[ y sea x un punto periédico de periodo n de f. Diremos que oy x estdan asociados si f'(z) € I; para
i=1,2,...,n—1.

Observacion 1.4.3 Si a y x estdn asociados entonces f™(x) y R™(a) también estdn asociados para
todam > 1.

El siguiente resultado relaciona lazos con puntos peridédicos. Es una reescritura del Teore-
ma 2.6.4 y del Lema 1.2.12 de [2].

Teorema 1.4.4 Sea f € C(I,I) y sea P una 6rbita periddica de f. Supongamos que f es P-monétona.
Sea © una 6rbita periddica de f tal que ©N P = (). Entonces cada punto de © tiene un tinico lazo asociado

en el P-grafo de f. Sea ademds o un lazo en el P-grafo de f. Entonces:
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(a) Si o es un lazo simple o una 2-repeticion de un lazo delgado, entonces o tiene un punto periédico
asociado. En este tiltimo caso, dicho punto pertenece a P.
(b) Si « tiene un punto periédico asociado, entonces o es simple o bien es una 2-repeticion de un lazo

simple negativo.

En el conjunto de vértices de un P-grafo de f se puede definir el siguiente orden natural.
Dados I = [a,b] y J = [c, d] tales que I # J escribimos I < J siy solo sib < c. Estd ordenacién
induce un orden lexicogréfico en el conjunto de caminos del P-grafo de f. Mds precisamente,

. S0 S1 Sm—1 do d1 di—y
dados dos caminos o = v9g — V1 — V1 —> VUV VB = wo —> w1 — - -wWi—1 — Wy
. . . dm, dm+1 di—y . .
diremos que a < fsiysolosil > my 8 = a(wp — Wmy1 — ---wj—1 —> w;) 0 bien existe

j<mtalquev;, =w;parai=0,1,2,...,j -1y

. S0 S1 Sj—1
vj < wj; cuando Sign(vg == vy — - vj_] —> V) = +
d S, S0 S1 Sj—1 _
v; > w; cuando Sign(vg —= vy — - Vj_1 —> V;) = —
Observemos que v; = w; parai = 0,1,2,...,j — 1, por la Observacién 1.4.1 implica s; = d;

parai=0,1,2,...,5 — 1. Luego,
S. So S1 Sj—1 _ S. do dy dj—l
ign(vg — v1 — - --vj_1 — v;) = Sign(wy — w1 —> -+ Wj_1 — Wj).

El siguiente lema relaciona los iterados de un punto periédico con los desplazados de su lazo

asociado.

Lema 1.4.5 Sea f € C(I,I)y sea P una érbita periédica de f. Supongamos que f es P-monétona y que
x e y son puntos periddicos de f de periodo n asociados a los lazos o y B respectivamente. Supongamos

x #yy o [. Entonces x <y siysolosioa < f.

., EN) S1 Sn—1 do dy dn_1
Demostracién. Sean o = vg — v1 — - Up—1 — Up Y B = Wg — W1 — - Wp—1 — Wo.
Como o # fexistel <n—1talque v; = w; parai =0,1,...0l — 1y v # w.

Observemos que si I = [a,b] es un intervalo bésico de f y z,¢t € I con z < t entonces la

P-monotonia de f implica que
f(z) < f(t) sif(a) <f(b) y
f(z) > f(#) sifla) > f(b).
Iterando esta observacién, se tiene que, = < y es equivalente a
fix) < fl(y) siSign(vo "% v 5 vy ) =+ y
Flx) > fiy) si Sign(vo =% vy =L - ovpg 3 y) = —.

En cualquier caso  # y implica f!(z) # f!(y). Dado que f!(z) € v,y fl(y) € wi y v # w; se
tiene que f!(z) < f!(y) es equivalente a v; < w;. Por tanto el lema se sigue de la definicién de

orden en el conjunto de caminos bésicos del P-grafode f. O
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Observacion 1.4.6 En las mismas hipétesis que el Lema 1.4.5. Por la Observacion 1.4.3 se tiene que
dadom > 1, f™(x) < f™(y) siy solosi R™(a) < R™(fS).

Daremos ahora la definicién de pattern, primero damos notacién que nos seré ttil.

Notacién 1.4.7 En esta memoria una permutacion de orden n se representard como una aplicacion biyec-
tivade {1,2,...,n} en simismo. Es decir o = (s,,$,,...,s,)siysolosio(i) =s,parai =1,2,...,n,

como es usual, 0°(i) = iy o™ (i) = o(c™1(i)) para todan > 1.

Definiciéon 1.4.8 Sea f € C(I,I),sea P = {p, < p, < ... < p,} una 6rbita periédica de f y sea

o una permutacion ciclica de orden n. Diremos que P tiene pattern o si y solo si f(p,) = p,,, para

o (i)
i = 1,2,...,n. Llamaremos a n el periodo del pattern. Si una funcion f € C(I,I) tiene una 6rbita

f-periédica con pattern o diremos que f exhibe a 0. Observemos que cualquier permutacién ciclica es el

pattern de alguna 6rbita periddica de alguna funcion lineal del intervalo (ver la Definicién 1.4.11).

El siguiente lema nos da una definicién equivalente de pattern en términos de los iterados

del punto minimo de la 6rbita periddica, que usaremos mds adelante.

Lema1.4.9 Sea f € C(I,I)ysea P = {p, <p, <...<p,} una érbita periédica de f. Entonces P
tiene pattern o si y solo si f™(p,) = p, . ,, para todan > 0.

Demostracién. Demostraremos primero la parte “solo si”. Supongamos que P tiene pattern o.

Claramente f'(p,) =p, = D0y, Supongamos ahora que f"(p,) = p,.,, paran > 0. Entonces,

fn+1(p1) = f(fn(pl)) = f(pa"(l))

y, de la definicién de pattern, se tiene,

f(pa"u)) = Poonay = Pontiay:

Supongamos ahora que f"(p,) = p,.,, paracadan > 0, demostraremos que f(p,) = p, ,, para
cadai = 1,2,...,n. Dado que P es una orbita periddica, para cada i € {1,2,...,n} existe una
j = j(i) tal que

p.=FP)=p,,-

Luego, 07 (1) = 4. Por tanto,

Fw)=F0) =0, 50, =Pooy

Ahora, definimos la relacién de forcing entre dos patterns.

Definicién 1.4.10 Dados dos patterns o y v, diremos que o fuerza a v si y solo si toda f € I que exhibe

el pattern o también exhibe el pattern v.
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La relacién de forzamiento de patterns del intervalo serd denotada por ¢ =1 v. Es una
relacién de orden parcial (ver [2]) y se caracteriza mediante las funciones o-lineales.

i—1
n—1

Definicién 1.4.11 Sea o un pattern de periodo n y sea P = {*==1}"_, un conjunto de cardinalidad n
en [0,1]. Definimos la funcién o-lineal f, como la funcion continua que es lineal entre los puntos de
Py tal que f5(p,) = p,,, parai = 1,2,...,n. Observemos que la funcion o-lineal, en particular, es

P-monédtona.

El siguiente teorema caracteriza la relacién de forzamiento en términos de funciones o-

lineales (vease por ejemplo [2]).

Teorema 1.4.12 Sean o y v patterns de Orbitas lineales del intervalo y sea f, la funcién o-lineal. En-

tonces o =1 v si y solo si f, exhibe el pattern v.

Presentamos ahora una versién del Teorema de Sharkovskii, aplicado a las funciones o-
lineales, en términos de la relaciéon =1 . En primer lugar, definimos el orden de Sharkovskit

para los nimeros naturales.
3=5=Tx9»...»

2:3=2-5=2-7=2-9= ...

22.3-922.5-92.7-922.9%» ... =

2.3 =27 .5 =27 = 2" 9 = ... >

2% =2 =23 922 v 25 1.

El teorema de Sharkovskii dice:

Teorema 1.4.13 (Sharkovskil) Sea I un intervalo en la recta real. Sea f € C(I,I) una funcién contin-
ua que tiene un punto periodico de periodo q. Entonces, f también tiene un punto periodico de periodo
p € Npara cada p < g. Reciprocamente, para cada g € NU {2°°} existe una funcion f, € C(I,I) tal que
el conjunto de puntos periédicos de f, es {p € N: p < ¢}.

Una particularizacién de dicho teorema en términos de la relacién =1 es (ver [2]):

Teorema 1.4.14 Sean m,n € N. Entonces n = m si y solo si para todo pattern o de periédo n existe un

pattern v de periodo m tal que 0 =1 v.

Demostracion. Supongamos que n > m. Sea ¢ un pattern de periodo n. Sea f, € C(I,I) la
funcién o-lineal. Como que n estd en el conjunto de periodos de f,,, tendremos que m esta en el
mismo conjunto. Entonces existe un pattern v de periodo m tal que f, exhibe a v. Concluimos

o =1 v. La otra implicacién es inmediata. Esto concluye la demostracién. O
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1.4.2. Dindmica combinatoria de funciones de T~

Enunciaremos ahora los conceptos basicos que nos serdn de utilidad para la dindmica com-

binatoria {2, los mismos serdn una extensién de los definidos para el intervalo.

Definicién 1.4.15 Sea p > 1 un entero. Una banda A C (2 se llama p-periédica si TP(A) = A y si
A, T(A),...,TP~Y(A) son disjuntas y ordenadas por pares. Al conjunto {A,T(A),..., TP~ (A)} le
llamamos érbita T-periddica de bandas.

Observacién 1.4.16 A partir de ahora, por el Teorema 1.3.15, supondremos que las Orbitas T-periddi-
cas de bandas con los que trabajaremos tienen como elementos tinicamente bandas minimales y por el

Teorema 1.3.17, estan formados por bandas sélidas niicleo o pseudo-curvas.

Tendremos como hipétesis general que una 6rbita T-periédica debandas P = {B1, Bs, ..., By}
cumple By < By < ... < B,,. Es decir, estd ordenado espacialmente.
Ahora definiremos el grafo de Markov para las funciones en 7. En primer lugar, damos un

concepto analogo al de intervalo bésico.

Definicién 1.4.17 Dado P = {Bi, B, ..., By} una érbita T-periédica de bandas. Cada banda de Ia

forma

BB,
serd denominada banda bésica. Observemos que por el Lema 1.3.24g cada banda bdsica tiene interior no

vacio.
Observacién 1.4.18 Si I, N Ij, # 0 entonces |i — k| = 1.

Observacion 1.4.19 Todas las bandas bésicas de una 6rbita T-periédica de bandas P = {B1, Ba, . .., By, },
estdn contenidasen I , _
B1 B

n

De manera andloga a como lo hicimos para el intervalo, definiremos los grafos combinatorios
con signo, asociados a las funciones en 7. En este caso el conjunto de vértices es el conjunto de

bandas bésicas y existe una flecha consignosde/ . = al ., _ siysolosi
B.'B

i Bipa BiBjta

S
=TI _
i+1 BiBjt1

Bf B

en el sentido de la Definicién 1.3.25. Notemos que por la Definicién 1.3.25 y el hecho que
T(I;)) < T(I}) o T(I;") < T(I, ) tenemos que todas las flechas que salen de un vértice tienen
el mismo signo. También entenderemos las nociones de camino, lazo, lazo simple, desplazado de un
lazo, concatenacion de dos lazos, signo de un camino, lazo delgado y el orden en el conjunto de caminos

del P-grafo de manerd andloga a como lo hicimos en el intervalo.
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Lema 1.4.20 Sea T' € T. Supongamos que existen bandas bdsicas Jo, J1, . .., Jn—1, tales que

Sn_1

Joi>Jli>-'-Jn,1 — Jo.

Sn_1

Sea s = Sign(Jy LN PN Jo). Entonces existe una banda niicleo C tal que T"(C) = C
yTHC) C J; paratodai =0,1,2,...,n — 1. En particular C =~ C, por T".

Demostracion. En primer lugar por el Lema 1.3.31 existe una banda ntcleo K, C J,—; tal que
T(K,-1) = Jo. Como Int(Jy) # 0 tenemos Int(K,_1) # 0. Ahora supongamos que tenemos
construida la banda nucleo K; C J; paral <! <n—1yInt(K;) # 0. Entonces como J;_ 2 Ji
y K; C J; por el Lema 1.3.27 J;_4 2y K. Por lo tanto existe una banda nticleo K;_; C J;_; tal
que Int(K;_1) #0y K;—1 2 K; y T(K;—1) = K;. Iterando este procedimiento obtenemos una
familia de bandas Ky, K1, ... K,—1. Como que Jy =5 Jo por T" y ademds K, C Jy, tenemos
que Ky -2y K, de donde, por el Teorema 1.3.32 existe una banda nticleo C' tal que 7" (C) = C'y
en particular C -5 C. O

Observacion 1.4.21 En las mismas hipétesis que Lema 1.4.20. Existe una familia Ko, K1, ..., Kp—1.

de bandas sélidas, que cumple las siguientes propiedades

(a) Ky C Jyparatodal =1,2,...,n—1.

(b) T(K;—1) = K;.

© K = K.

(d) Int(K;) # 0.paratodal =0,1,...,n— 1.

Ahora generalizamos la Definicién 1.4.2.

Definicién 1.4.22 Sea T € T. Sea B = {By,B,, ..., By} una orbita T-periddica de bandas y sea
m € N. Sea A una banda m-periddicay o = (Jo, J1, Jo, ..., Jm) un lazo de longitud m en el B-grafo
de T Diremos que A y o estian asociados si A C Joy T*(A) C Jiparai=0,...,m.

El siguiente lema es la extensién del Teorema 1.4.4 a funciones de 7.

Lema 1.4.23 Sea T € T y sea P una orbita T-periédica de bandas. Entonces cada lazo simple del P-grafo
de T tiene una orbita T-periddica de bandas asociado a él.

S1 Sn—1

Demostracién. Sea o« = Jy =% J; =X - Ju_1 == Jp un lazo simple en el P-grafo de T
Por el Lema 1.4.20 existe una banda ntcleo C tal que T"(C) = C y TC) C J; para toda
1=0,1,2...,n — 1. Sea k el periodo de C'y supongamos que k # n. Entoncesn = k-m,m > 1
y, claramente, T°(C) = T"*(C) = - .. = T =1(0) i = 1,2,... k.

Si C'N B; = () para toda B; € P entonces {C,T(C),T?(C),..., T*(C)} c U, Int(J;). Por
tanto

I, = Ii+k: == ditk(m-1),

paratodai =0,1,2,...,k — 1. En consecuencia « es una m repeticién del lazo
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dy—
I &[1 i%..]k_l = 1o,

contradiciendo que sea un lazo simple. Por tanto C estd asociada a a.

Supongamos ahora que C' N B; # () para alguna B; € P. Veremos que « no es simple. Para
ello reordenamos el lazo, si es necesario, de manera que C' N By # (). También observemos que
como C'y By son T"-invariantes, el Lema 1.3.16 implica que C'N By es una banda T™"-invariante.
Dado que C C Iy,

CNByCIyNBy=1;.

Por lo tanto C' N By = I, = C~ es una pseudo-curva. En virtud de la Observacién 1.4.21, existe
una banda ntcleo K, C Iy tal que C C Koy T(C) C T'(Ky) C I; paratodai=1,2,...,n — 1.
Como que C = T*(C) C T*(Ky) tenemos T*(Kj) C Iy. Consecuentemente I, = I,. Las bandas
nucleo Ko y T*(Kj) estdn contenidos en I y contienen a C, atin mas C~ = K, = (T*(Kj))~.
Por el Lema 1.3.24d K; = Ko N T*(K,) es una banda nticleo contenida propiamente en I.
Claramente T°(K) C T*(Ky) C I; y T*(K1) C T**(Ky) C I;i. En consecuencia I; = I, para
i=0,1,....k =1y TF(K;) C T*(Ky) C Iy. Como K; C T*(Ky) tenemos T*(K;) C T?(Ky) C

I, y por tanto Iy = I5;. Repitiendo este proceso encontramos, como en el caso anterior, un lazo

d d di—1
Io _0>1—1 —1> '--I]C,1 — .[0,

del cual a es una m repeticién, contradiciendo que « es simple. O

Lema1.4.24 Sea T € T y sea P una 6rbita periédica de bandas de T. Supongamos que X e Y son
bandas periédicas de T de periodo n asociados a los lazos o y (B respectivamente. Supongamos X # Y y
a # . Entonces X <Y siysolosi o < .

.z So S1 Sn—1 do dy dn_1
Demostracion. Sean o = vg — v1 — - Up—1 — Up Y B = Wg — W1 — - Wp_1 — Wo.
Como a # Jexistel <n —1talquev; = w; parat =0,1,...0 — 1y v # w.

Observemos quesil , _ esunintervalobéasicodeTy A,C'Cl ., _ conA < C entonces
3 P+t 7 Pit1
el Lema 1.3.31 implica que podemos asegurar

T(A)<T(C) siT(B)) <T(Bj,,) y
T(A)>T(C) siT(B])>T(Bj,,).

Iterando esta observacion, se tiene que, X < Y es equivalente a

THX) < TY) si Sign(vg -2 v; 5 --cv 1 “Su)=+ y
THX) > THY) si Sign(vo =% vy 5 -0y b)) = —.
En cualquier caso X # Y implica T/(X) # T'(Y). Dado que TY(X) € v, y TH(Y) € wy y v # w;

se tiene que T'(X) < T'(Y) es equivalente a v; < w;. Por tanto el lema se sigue de la definicién

de orden en el conjunto de caminos bésicos del P-grafode 7. O
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Observacion 1.4.25 En las mismas hipétesis que el Lema 1.4.24. Por la Observacion 1.4.3 se tiene que
dadom > 1, T™(X) <T™(Y) siysolosi R™(a) < R™(B).

Como en el intervalo, el pattern de una 6rbita periédica de bandas P = {B1, Bo, ..., By},
de una funcién de 7T, es la permutacion ciclica asociada. Es decir, Diremos que P tiene pattern
o siysolosi T(B;) = By parai = 1,2,...,n. Llamaremos a n el periodo del pattern. Si una
funcién T € 7T tiene una 6rbita T-periédica de bandas con pattern o diremos que T exhibe a o.
Por tultimo, el Lema 1.4.9 y la relacién de forcing (Definicién 1.4.10) son también vélidos para los
patterns definidos en (2, denotaremos la relacién de forcing para {2 como = o . En particular
notemos que una permutacién ciclica se puede ver tanto como un pattern del intervalo como
una pattern de una funcién T' € 7. En el Lema 1.4.27 veremos que toda permutacion ciclica es
un pattern de una funcién de 7.

El siguiente lema relaciona los dos grafos combinatorios con signo definidos anteriormente.

Lema 1.4.26 Sea o un pattern y sea f, la funcién o-lineal asociada. Sea T € T, tal que existe una
orbita T-periddica de bandas P' = {By, B1, ..., B,,_1} con pattern o. Entonces el f,-grafo con signo y
el T-grafo con signo asociados a f» y a T respectivamente son iguales, en particular, los signos de todas

sus flechas coinciden.

i—1 i i+l : :
—, n71:| un intervalo basico.

n
Demostracion. Sea P = {nil} la 6rbita f,-peridédica. Sea [
i=1

Supongamos que f, es creciente en { : ﬂ} . Entonces f,, (ﬁ) < fs <ﬂ> . En virtud de

n—1’n—1 n—1

que Py P’ tienen el mismo pattern,

1 o(i t+1 o(t+1) . .
fo (n—l) = n(—)l y fo (n—l) = 7(1_1) siysolosiT(B,) = B, y T'(B,,,) = Bo(it+1)-

Por lo tanto,

ioj+1 i i1 R P _
- < : . < . .
{n—l’n—l} Cfa([n—l’n—l]) siysolosi B <T(B;")y B, <T(B;},)

En consecuencia, existe una flecha {ﬁ, :iﬂ — {ﬁ, %} si y solo si existe una flecha

+ c .
I, . — 1 _ . Hacemos uso de un argumento andlogo en el caso en que la funcién f,
i Titl Jj i+l

es decreciente. Esto concluye la demostracion. O
Lema 1.4.27 Sea f € C(I,I). Sea Ty € T tal que Tf(0,x) = (R (8), f(x)). Entonces las siguientes

afirmaciones son ciertas.

(a) Si © = {p1,p2,...,pn} €s una orbita periédica de f con pattern o entonces S' x O es una 6rbita
periddica de Ty con pattern o.

(b) Si B es una orbita periédica de Ty con pattern o entonces existe una 6rbita periddica © de f con
pattern o tal que S' x © es una 6rbita periédica de Ty con pattern o y S* x © C B. En particular

toda permutacion ciclica es un pattern de una funcién de T .
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Demostracion. Primero demostraremos (a). Supongamos que o = (ig, i1, ..., in—1) €S €l pattern

asociado a ©. Entonces f(p,) = p,, - Definimos B; = S x p,,i = 1,2,...,n. Es inmediato que

0N
P’ = {By,Bs,...,B,} es una 6rbita Ty-periddica de bandas. Por otro lado, por la definicién de
Ty,
Ty(Bi) = Ty(S' x {p,}) =S" x {f(p.)} =S" x {p, )}

por lo tanto © tiene asociado el pattern ¢ = (g, ?1,...,%,—1). Ahora demostraremos (b). Sea
B = {By, Bs, ..., B, } una T-orbita periodica de bandas con pattern ¢. Entonces T'(B;) = B, ;-
Sea g : £2 — I. Definamos J, = m3(By),k = 1,...,n y observemos que los intervalos J; son
disjuntos dos a dos. Como T (0,z) = (R, (0), f(x)) tenemos que f(J;) = J, ;) por lo tanto .J;
cumple que f*(J;) = sk(1),k = 1,...,n — 1. En particular, f"(J;) = Ji. Por el teorema de
Bolzano existe un punto p, € Ji tal que f"(p,) =p, y f*(p,) € f*(1) = Jor), k =01,2,...,n—
2. Como los intervalos son disjuntos dos a dos, p, tiene periodo n. Definamos ahora p,_, =
f%(p,). Entonces © = {p,,p,,...,p, } es una orbita periédica de f, tal que f(p,) = P, para
todai = 0,...,n — 1. Concluimos pues que la orbita periédica © tiene asociado el pattern o y

S' x © C B. Esto termina la demostracién. O

1.5. Demostracion del Teorema 1.5.2

Sean o y v patterns tales que 0 # vy 0 =1 v. Observemos que el Teorema 1.4.12 implica
que f, tiene una orbita periddica © de pattern v. Como que o # v entonces P N © = () donde
P es la 6rbita periédica de pattern o de f,. Entonces por el Teorema 1.4.4 el min © tiene un lazo
a asociado que es simple o bien es una 2-repeticién de un lazo simple negativo. El lazo « se

denominara lazo (o, v)-minimal.

Definicién 1.5.1 Diremos que v es simple si para todo pattern o # v tal que 0 =1 v el lazo (o, v)-

minimal es simple.

El teorema principal de este capitulo muestra que las relaciones de forcing =1y = ¢

coinciden en la clase de patterns simples.

Teorema 1.5.2 Sean o y v patterns del intervalo y supongamos que v es simple. Entonces el pattern o

fuerza al pattern v en I siy solo si el pattern o fuerza al pattern v en (2.

Demostracion. Supondremos primero que ¢ = o v. Sea f, la funcién o-lineal. En virtud del
Lema 1.4.27a, la funcién T, € T definida como 7, = (R,, f,) también exhibe el pattern o.
Entonces, por hipétesis, T,, también exhibe el pattern v y en virtud del Lema 1.4.27b f, exhibe
el pattern v. Esto concluye la primera implicacién.

Para la segunda, supondremos que ¢ = o v. Demostraremos que toda funcién T’" € 7 que
exhibe el pattern o también exhibe el pattern v. Si ¢ = v no hay nada que demostrar, supon-

dremos pues o # v. Sea T' una funcién que tiene una 6rbita periédica B = {B;, Bs,..., By}
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con pattern o. Sea f, la funcién o-lineal. Por el Teorema 1.4.12, f, tiene una O6rbita periédi-
ca® = {q,,4,,--,qm} de pattern v. Como o # v tenemos que ©® N P = ) donde P es la
6rbita periédica de pattern o en f,. Por el Teorema 1.4.4 ¢, tiene un tinico lazo asociado o'y
dado que v es simple, podemos suponer que « es simple. En virtud del Lema 1.4.26, Ty f,
tienen el mismo grafo con signo, por lo que el Lema 1.4.23 nos garantiza que existe una ban-
da periédica X asociada al lazo . Veremos que {X,T(X),..., 7™ 1 (X)} = {A1, Ao, ..., Ay}
tiene pattern v. Para ello, demostraremos en primer lugar que X = A; es el minimo de su
orbita. Observemos que dado que ¢, tiene periodo m y a es simple se tiene que ¢, # f7(gq,)
y a # R/(a) para todo j = 1,2,...,m — 1, (en caso de que « = R’(a) para alguna j, se
puede ver que se puede construir un lazo 5 de manera que o es una repeticién de 3). Luego,
como « y ¢, estan asociados, la minimalidad de g, combinada con el Lema 1.4.5 y la Obser-
vacion 1.4.3 nos garantiza que o < R'(a) paratoda i = 1,...,m — 1. Ahora, el Lema 1.4.24
y la Observacién 1.4.3 nos implica que X < T%(X), paratodai = 1,...,m — 1 pues ay X
estdn asociados. Concluimos pues la minimalidad de X. La segunda propiedad que deseamos
verificar es que T'(A;) = Ay(;) paratodai = 1,2,...n. Dadoque ¢, < ¢, < ... < gq,, la Ob-
servacién 1.4.6 nos garantiza que a < R (a) < ... < R°™(a) y la Observacién 1.4.25 nos
garantiza A; < 772 (4) < ... < TU(”)(Al) por tanto, como A; < Ay < ... < A, se tiene
Ay = T(A;), paratodai = 1,2,...,n, luego, T también exhibe el pattern v. Esto concluye la

demostracion del teorema. O

La extension del Teorema 1.5.2 a la clase de todos los patterns sigue las mismas lineas que la
correspondiente demostracién en el intervalo. Dicha generalizacién es el objetivo de un trabajo
posterior.

Suponiendo cierto el teorema anterior para la clase de todos los patterns obtenemos como

corolario el Teorema de Sharkovskii para funciones de 7 a partir del Teorema 1.4.14.
Corolario 1.5.3 El Teorema de Sharkouvskil es cierto para las funciones T € T

Demostracion. Sea I' € T tal que tiene una 6rbita periddica de bandas de periodo n. Sea o el
pattern de dicha 6rbita y sea m =< n. Por el Teorema 1.4.14 existe un pattern v de periédo m tal
que 0 =1 vy en virtud del Teorema 1.5.2 ¢ = v consecuentemente la funcién 7" tiene una

orbita periddica de pattern v y, un punto de periédom. 0O
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Una aplicacion skew-product sin curvas invariantes

El objetivo de este capitulo es la construccién explicita de una funciéon 7' € 7T sin curvas
invariantes y con una pareja de curvas dos periédica. La idea basica es construir una aplicacién
T € T exhibiendo una pseudo-curva conexa e invariante que divide el cilindro en dos zonas
permutadas por 7.

La primera seccién de este capitulo estd dedicada a la construccién de la pseudo-curva
conexa invariante mientras que el segundo estd dedicado a la construccién de la funcién que

tiene a dicha pseudo-curva como subconjunto invariante.

2.1. Construccion de A

Antes de iniciar la construccién formal de nuestro ejemplo, presentamos una idea rdpida de
la construccién:

Dada la curva S' x {0}, la construccién del conjunto se hard inductivamente, poniendo
alrededor de la fibra de iw,7 € Z la clausura de la grafica de la funcién sin(%), conveniente-
mente reescalada obteniendo de esta manera una sucesién A,, de pseudo-curvas de 2.

Probaremos que la sucesién A,, converge con la métrica H,y (Definicién 1.1.3) a un conjunto
A que tiene las propiedades deseadas.

Los dos primeros elementos de nuestra sucesiéon se muestran en la Figura 1.

2.1.1. Construccién de los conjuntos {A;}$°

La construccién de los elementos de la sucesion la hacemos por induccién. Damos en primer
lugar notacién que usamos en la misma.

Fijando w € [0, 1] \ Q, usaremos O*(w) para denotar la 6rbita completa de w (es decir, tanto sus
iterados positivos como negativos) bajo la rotacién de dngulo w (mod 1). Ademads escribiremos
estos elementos asf: {* = lw (mdd 1), para toda ! € Z. En esta notacién, O*(w) = {I* : | € Z}.
Dado B C S!, denotaremos por B + w al conjunto {b+w (méd 1) : b € B}.
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2 -2

Figura 2.1. Primeros 2 pasos

Dado 6 € S'y § < § sea ¢, : [-0,6] = Bs(0) el homeomorfismo ¢, (z) = 2z + z (méd 1)
donde z (mdd 1) = . Denotaremos ¢, (—d) por 8§ — § y ¢, () por 6 + 6. También denotaremos
la bola cerrada de centro 6 y radio 8, Bs(0) por [ — 6,0 + 6. Finalmente denotaremos por 1, :
[0 — 6,0+ 6] — [0, 5] el homeomorfismo inverso de ¢, .

Definimos las funciones g : [-1,1] — [-1,1]y ¢ : [-1,1] \ {0} — [-1,1], de la siguiente
manera:

B =1ty o) = felsen ().

Notemos que —f(z) < ¢(z) < B(x), para toda x € [—1,1] \ {0}. Las gréficas de —3, 8 y ¢ son.

Figura 2.2. Gréficas de ¢ y =4

Observemos que las graficas de —( y S intersectan a la clausura de la grafica de ¢ en (0, —1)
y (0,1).
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Seanahoral € Z,n €« Ny a,f € Rtalesque 0 < a < 27"y I* — a,l* + o ¢ O*(w). También,
seanp, = (I*,a),p; = (I* —a,a”) yp} = (I* —a,a™) € 2,donde a™,a™ € (a —27",a+27").

En vista de la definicién de 3 existe §(p;", p; ) < « tal que para toda § < ¢ se tiene

at,a” € [a— 27" B (" — 8)),a+ 2 "B (l" — )]
Cla—=27"B(h(" = 6)),a+ 27" B (I" —0))]
Cla—2"",a+27").

Definimos una curva cerrada 9R(I*,n,a,d,p,,p,, p;) en §2 que consiste en las graficas de las

funciones a + 27" 5(¢1) | ;54 5y @ —=27"B(Y1)
puntos

(- — 8.1 +6] unidas con los arcos que unen a los

Ahora definimos el conjunto R(I*,n, o, d, p,, p;*, p;”) como la clausura de la componente conexa
de 2\ OR(I*,n,, 6, p,,p, p;") que contiene al punto p, = (I*, a).
También I'R(I*,n, a, 6, p,,p,", p;) serd la clausura de la gréfica de la funcion

pr+ (1) 27" ¢(vn)

[1*—5,1%+6]

y los segmentos que unen
p,y ("= 0p+ (127" (I = 9)))

Py (I +6,p+ (1) 27" p(wu(I* +9))) .

Observacién 2.1.1 Los conjuntos R(1*,n, o, 6,p,,p,p;) y T'R(I*,n, o, 0,p,,p,p;) cumplen las

propiedades siquientes

(a) TR(I*,n,,6,p,,pf,p7) C R(I*,n,a,8,p,,p},p7 )y
R(I*,n,a,8,p,pf,p7) C[I* —a,l* +a] x[a—27",a+27"].
(b) TR(I*,n,a,8,p,,p},p; ) y OR(I*) coinciden solo en los puntos p;”, p,
(*;a—2"")y (*,a+277).
(c) diam(R(I*,n,c,0,p,,p,p;)) = 2-27", que es la distancia entre los extremos de la vertical.
(d) Paratodol € Z, R(I*,n, a, 4, pl,pl‘",pl_) es un compacto de {2. Por tanto, dado que m es continua,
por construccion
T(R(I*,n,0,8,p,,pF,p7)) = [I* —a, 1" +q]

es un compacto conexo propio de S*.
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F—al*—6 1" U"+6 1"+« I I"46 "+«

Figura 2.3. R(I*,n,a,0,p,,p,,p; ) y TR(I*,n, a0, 8,p,, 0, p,)

Ahora denotaremos por R(0*) a R(0*, 1, ap, 50, po, Py s Py ), donde pg = (0*,0), py = (0* —
a,0)y pg = (0" + o, 0) y ademds «y es suficientemente pequefio para que

(0.2) (—=1)*,1%,(=2)*,2* ¢ S"\ 7(R(0%)).
(0.b) 3* ¢ 7(R(0%)).
(0.0) (m(R(0%)) — w) N7(R(0%)) = 0.

Definimos
Ag = T'R(0%) U (S*\ m(R(0%)) x {0}).
Notemos que en particular, A es una pseudo-curva y tiene asociada un representante canénico
(94,, Ps,) € €donde Py, = S"\ {0*}.
En lo que sigue, para cada j € N U {0}, denotaremos por Z; el conjunto {i € Z : |i| < j} =
{4 —j+1,...,-1,0,1,...,5 — 1,5} y por Z; el conjunto {i* : i € Z;}.
Para definir los conjuntos A; supongamos que para j € {0,...,i — 1} hemos construido

conjuntos A; y parejas de conjuntos

R((_])*) = R((_j)*’nj’ O‘j’éjvp—japtj,p:j)
R(")

R(j*,nj,ajv 5j,pj7p;rvp;)
con las propiedades siguientes:

(A.1) Dados z1, 22 € Z;_ tales que |z1] > |22| y R(27) N R(z5) # 0, entonces |z1| > |22] y R(2])

221 )

(A.2) Cada A; es una pseudo-curva y tiene asociada un representante canénico (¢ ;0 P )ec
donde Pa, = S'\ Z;.

(A.3) Paracada j # 0, los conjuntos A; y A;_; coinciden en el complemento de

estd contenido en una de las dos componentes conexas de Int (R(zg) \A

7! (Int(r(R(j%))) U Int(r(R((=5)")))) -
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(A4) Para z € {j, —j} se tiene que A; N7 (7 (R(2*))) = 'R(z*).
(A.5) Ademas
(A5.) 277 < 0,
(A5D) (G +1)" (=G +1)" (G +2)" (=0 +2)" ¢ 7(R(G")) Um(R((=4)"))-
(A5.0) (+3)" ¢ m(R((=5)"))-
(A5.d) (m(R((=4)")) —w) Nm(R(j")) =
)

(A5.e) Siparaalgink € Z;_, se tiene que

m(R(K)) N (r(R((=4)")) —w) # 0

entonces (m(R((—7)*))—w) estd contenido en una de las dos componentes conexas
de Int (7(R(k)) \ k).

(A.5.f) Paracadai € Z;_; se tiene que (O(m(R(i*))) + w) NR(k*) = () para toda k tal que
k] > Ji] + 1.

Ahora sea » € {i,—i}. Como z* ¢ Z} , en virtud de la propiedad (A.2), A?", es un tnico
punto que denotaremos por p, = {(z* ,az)}.

Tomemos ahora n; € Ny a; € R demanera que o;; < 27™ < §;—; y se cumplen las siguientes
propiedades para z = iy para z = —i. En primer lugar z* + «;, 2" — o; ¢ O*(w), para toda
u € Z;_qsetieneu* ¢ [2* —ay, 2" + o]y Aima N Y([2* — au, 2* + ay]) C (@, — 27", a, +27™).

Sip, ¢ R(u) para toda u € Z; ;, tomamos «; de manera que ademds, [z* — a;,2* + a;] N
7(R(u)) = 0 para toda u € Z,;_,. En caso contrario existe k € Z;_; tal que p, € R(k*) y |k| es

maximal con estas propiedades. En este caso tomaremos «; y n; de manera que
[2" — g, 2" + ] X [a, — 27 a4, +27™] C Int(R(K*) \ A% ).

Adicionalmente a las propiedades anteriores, tomemos «; suficientemente pequefio para

que, ademds, se cumpla

M @+1)7 (=G +1)7 @ +2)7, (= +2)" ¢ m(R(E")) Um(R((=1)")).
(m (i +3)" ¢ m(R((=4)))-
() (r(R((=i)")) —w)Nw(R(i*)) =0

Observese que para todo entero k € Z;_; se tiene k* £+ oy, ¢ O*(w). Por tanto si (—(i +1))* €
[k* — ok, k* + ] se tiene (—(i + 1))* € (k* — o, k* + o). Luego, tomando ¢; suficientemente

pequerio, se puede conseguir también

(Iv) Siparaalgunk € Z* , se tiene que 7(R(k))N(7(R((—i)*))—w) # 0 entonces m(R((—%)*))—

w estd contenido en una de las dos componentes conexas de Int (7(R(k)) \ k).

Por construccién, para z € {i,—i} se tiene z* + «;, 2* — ; ¢ O*(w) y, por la propiedad (A.2),
AfiJfo‘ y Afif(’ son un unico punto que denotaremos por p} y p; respectivamente.

Definimos entonces
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R((_Z)*) = R((—Z)*7 NG, g, §i7p7i7p—_‘ri7p:i)
R(l*) = R(l*v N, A,y 51‘7]91‘7172—7]91'_)
donde §; < min{&(p;",p; ), 6(pF;,p~;)} y A; de manera que

(a) Los conjuntos A; y A;_1 coinciden en el complemento de
m =t (Int(m(R(i*))) U Int(m(R((—i)"))))

(b) Para z € {j,—j} se tiene que A; N7~ (7(R(z*))) = I'R(z*).

Por tanto hemos construido conjuntos 7(R((—%)*)), 7(R(i*)) y A; tales que las propiedades
A.(1-5) se verifican paratoda j = 0, 1,. .., 4. Esto termina la construccién inductiva de la sucesiéon
A;.

Lema 2.1.2 La sucesion {n;}5°, es estrictamente creciente y lim diam R(i*) = lim diam R((—#)*) =
0. Ademds, si {ix}32, C Z es una sucesion estrictamente creciente en valor absoluto tal que R (i}, ) C
R(i}) para todo k, entonces

oo
( RGx)
k=1

se reduce a un solo punto.

Demostracion. El hecho que la sucesion n; es creciente se sigue de la propiedad (A,5.a) y de la

definicién de los conjuntos R(z*):
2T < <y < 27

La afirmacién siguiente se deduce de la Observacién 2.1.1 (c) y del hecho de que la sucesién n;

es creciente. La tltima afirmacién es inmediata a partir de lo dicho anteriormente. O

Las siguientes observaciones son consecuencia inmediata de la definicién de los conjuntos

A; y R(i*), omitimos sus demostraciénes por ser obvias.

Observacion 2.1.3 Los conjuntos R(i*) y A,, cumplen:

(P1) AL = Aﬁl para todon > |I|. En particular AL es un intervalo para todo n > |l|.

(P.2) Si 0 € Bd(w(R(i*))) entonces 0,0 + w ¢ w(R(k*)) para toda k tal que |k| > |i| y se cumple
AY = A%y A%Fw = A% para todan > i.

(P.3) Cada A,, es una pseudo-curva y tiene asociada un representante canénico (p, ,P, ) € € donde
Py, = S'\ Z. En particular A,, es pinchada en toda 6 € S' \ Z}. y se denota por A% =
{(0,a;(0))}. Ademis si
0 € [I* — &y, 1" + o)) entonces

ap(0) = ap—1 (1) + (—=1)27"1 6 (1 (9)).
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(P.4) Sivy ¢ n(R(k*)) para toda k € N tal que N < |k| < L entonces A} = A7 para todan € N tal
que N <n < L.

(P.5) Para toda i se cumple A; N7~ (m(R(i*))) C R(i*).

(P.6) Paratoda N € N se cumple UY_,7(R(i*)) # S!.

(P.7) Dada j € Z paratoda 6 € [j* — d|;,j* + 0;|] se cumple

R(5*)? = {0} x [ajj—1 (%) — 2791 B(05(6)), ap;—1 (5*) + 279 B(1h; (9))]-

El siguiente lema, nos da la propiedad mas importante, para nosotros, que tienen los conjun-
tos Ai.

Lema 2.1.4 Para toda i € Z tenemos que Ap N7 (m(R(i*))) C R(i*) si k > |i| — 1.

Demostracién. Basta que observemos que si R(j*) N R(i*) # 0, entonces R(j*) C R(i*) para
jE€Ztalqueli| <|j|<k. O

Lema 2.1.5 El conjunto A, es una pseudo-curva para toda i € N.

Demostracion. Fijemos i € N, por la Observacién 2.1.1,

1

" . 1
AL =" < ey = ey + o

para toda j € N tal que |j| < |i].

Por otro lado, por (P. 3) en la Observacién 2.1.3, tenemos que la fibra sobre toda 6 # j* tal
que |j| < 4, es un punto.

Ahora, sea P, = {0 € St : 6 # j*, || < i}, entonces por (P. 3) en la Observacién 2.1.3 cada
A; esla clausura de una funcién continua de S'\ Z; en [—2, 2]. Lo anterior implica que A; es una

pseudo-curva. O

Ahora demostraremos unos resultados que nos seran de utilidad para la demostracién del
Teorema 2.1.10.

Lema 2.1.6 Seani € Zy 0 € Int(n(R(i*))). Entonces, A% C R(i*).

Demostracion. Por el Lema 1.1.6, para cada (6,a) € A existe una sucesion {(6,,z,)} con
(O, ) € Ay, tal que lim(6,, z,) = (6, a). En particular lim#6,, = 6 y como 6,, € Int(7(R(i*))),
existe N € N tal que 6,, € 7(R(i*)) para todan > N. Por el Lema 2.1.4, A% C R(i*) para todo
n > N. Consecuentemente, (6,a) € R(i*) dado que R(i*) es cerrado. O

Lema 2.1.7 Sea € S para el cual existe Ny € N tal que AY = Afvg para toda n > Ng. Entonces
A9 = A9
Ng*

Demostracién. Por el Lema 1.1.6 tenemos que A’ C A°. Para demostrar la inclusion contraria
6

consideraremos dos casos.
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Case2.1.16 =1" € O*(w) paraalgtn! € Z.

En este caso podemos tomar Ny = |I| y tenemos que 6 € Int(R(I*)). Por el Lema 2.1.6, A’ C
T ({H NR@T) = Al

Case2.2.2 60 ¢ O*(w).

Entonces en virtud de la Observacién 2.1.3 (P. 3), existe a € I tal que Aie = {(6,a)}. De-
mostraremos que (,b) ¢ A? para todo (6,b) # (0, a). Fijemos (6,b) # (0,a) y sea 3 = d(b, a).

Si (0,a) € R(k*) para una infinidad de k’s, por la Observacién 2.1.3 (P. 2), existe m € Z tal
que (0,a) € R(m*), 0 € Int(r(R(m*))) y diam(R(m*)) < § (y, por tanto, (6,b) ¢ R(m*)). Por el
Lema 2.1.6, A’ C R(m*) y, por tanto, (6,b) ¢ A°.

Supongamos ahora que existe un numero finito de enteros & tales que (#,a) € R(k*). Sin
pérdida de generalidad podemos suponer que Ny es mayor que el valor absoluto de dichos
enteros k, y sea M > Ny tal que 2~y —1) < % (dicho M existe en virtud del Lema 2.1.2).

En virtud de la Observacién 2.1.1(4) y de la Observacién 2.1.3 (P.6),

M
S = (U{z‘*, (—z‘)*}) ul U #RGY)
i=0 No<|j|l<M
es un cerrado propio de S! y, por hipétesis, 8 ¢ S. Por tanto, existe un cerrado conexo V tal que
0 € Int(V)y VNS = . Ademés en virtud de la Observacién 2.1.3 (P. 3), A,, N7~ 1(V) es un arco
de curva continua que contiene al punto (6, a). Adicionalmente, reduciendo V' si es necesario,

podemos suponer que

7 (V)NA, CV x {a— ﬁ,a—i— é} .
4 4
Queremos demostrar que
B B
Y — = —
AT C {~} x [a 2,a+ 5

paratoday e Vyn>M.

Seay € V.S5iv ¢ n(R(k*)) para toda k tal que |k| > M, entonces en virtud de la Obser-
vacién 2.1.3 (P.4) A) C {v} x |a — g,a + %} para todan > M.

En caso contrario, existe m € Z tal que |m| > M, v € 7(R(m*)) y |m| es minimal con
estas propiedades. De la Observacion 2.1.3 (P. 4) A} = A) paran = M, M + 1,...,|m| — 1.
Consecuentemente, por el Lema 2.1.4, AY C R(m*) paratodon > M. Ademds, porel Lema2.1.2,

diam(A}) < diam(R(m*)) < 27"mi=D < 2= =1 < %

Por consiguiente, dado que A7), C {v} x {a - g, a+ g} NR(m*), se tiene

AY C {~} x [a—g,a—i—g]
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para toda n > M. Esto termina la demostracién de la afirmacién anterior.
Por el Lema 1.1.6, todo punto de AY es limite de una sucesién {(v,,, z,)}2; tal que (v, ) €

A,, para toda n. Claramente existe M > M tal que v, € V paratodan > M. Luego,

(VYn, n) € AT C{yn} X [a—g,a—i—g] cVx [a—g,a—i—g}

para toda n > M. Dado que V x [a — g,a+ g} es cerrado, se tiene A? C {0} x [a — g,a—i— g ,
conlo cual (,b) ¢ A°. O

Tenemos la siguiente proposicion.
Proposicion 2.1.8 La sucesion {A;}2°, es convergente en 2.

Demostracion. Para cadai € NU{0} sea (¢4, P, ) el representante canénico de la pseudo-curva

A;. Mostraremos que la sucesion {(p4,, Pa,)}2, es una sucesién de Cauchy en €, por que lo
que calcularemos doo (0 4,_,,%4,)-

doo (SDA/L'71 ) @Ai) = eepméfé |90Ai—1 (9) — PA; (9)|
Ag Aj—1

Por (A.3) pa,_,(0) = ¢a,(0) si
6 €S\ (r~" (Int(r(R(i%))) U Int(n(R((—i)*)))))-
En virtud del Lema 2.1.4,
AN (x(R(E)) C R(E) y Ay N~ (w(R(EY))) € R(E")
para k € {i, —i}. Por lo que toda
[pa,_1(0) — @a,(0)] < diam(R(i")) = 27™,

si
6 c 7 (Int(r(R(i*))) UInt(r(R((—i)*))))
de donde
doo (9,1 pa,) <27

Concluimos entonces que
{(90141' ’ PA,; )}fio

es una sucesioén de Cauchy y por el Lema 1.2.19 convergente. Por lo tanto por el Lema 1.2.14 la

sucesion {4;}52, es convergente. O
Concluimos esta subseccién con la siguiente definicién.

Definicién 2.1.9 Denotamos por A al limite de la sucesion A; en 2.



50 2 Una aplicacién skew-product sin curvas invariantes

2.1.2. Demostraciéon del Teorema 2.1.10.

El siguiente teorema, sumariza las propiedades fundamentales del conjunto A. El Teore-

ma 2.1.10 es central en este capitulo.
Teorema 2.1.10 El conjunto A es una pseudo-curva conexa que no contiene arcos de curoa.

Demostracién. Por el Lema 2.1.8 A es una pseudo-curva, por lo que solo debemos mostrar que
es conexa. Por el Lema 1.3.3 bastard ver que A% és conexo para todo f € S'. Si § € P, Por ser A
una pseudo-curva, |[A%| = 1y por lo tanto A? és conexo. Si § ¢ P, entonces § = [* para cierto
| € Z.Por el Lema 2.1.7 A" es un intervalo y es por tanto conexo.

Probaremos finalmente que A no contiene segmentos de curva. Supongamos que existen U
un abierto conexo en S' y una funcién continua p: U — I tal que Grafo(p) C A. Como O*(w) es
denso en S', podemos tomar I* € U, € Z. Dado que Grafo(p) es un arco de curva se verifican las
siguientes dos propiedades. Primero, p(1*)NA'" es un solo en punto que denotamos por (I*, z;-).
Segundo, para toda sucesion {6,} € GNU tal que lim0,, = I*, se cumple que lim(8,,, p(6,,)) =
(I*, 24+ ). Por otro lado, como A es nticleo tenemos que (I*,a) € A siysolosi (I*,a) = lim(6,, a,)
para una sucesién {(6,,a,)} C A tal que {6,} C G. Como A es pinchado en G, tenemos A? =
Grafo(p)? = {(0, p(#))} para toda § € UNG. Obtenemos asi que A" = {(I*,z;-)} contradiciendo
el hecho observado anteriormente que A!" = Afz*\ que, por construccién, és un intervalo no

degenerado. Esto termina la demostracién del Teorema. O

2.2. La Funciéon

2.2.1. Preliminares

Las siguientes definiciones, las podemos enunciar en virtud de (A. 5.a).
Definicién 2.2.1 Sea i € N. Definimos g_, : R((—1)*) — R((—i + 1)*) en tres diferentes casos:

1. gfi es la funcion A\(0)(—1)2™ ™~ (x — a;(0)) + ai—1(0 +w) si 0 € [(—i)* — v, (—9)* — ;).
2. g% eslafuncion (—1)2" "=t (z — a;—1 ((—i)*) + ai—2((—i)* + 1) si 0 € [(—i)* — &;, (—i)* + ).
3. g% esla funcion A(0)(—1)2" "= (z — a;(6)) + a;—1 (0 + w) si 6 € ((—i)* + &, (—i)* + ).

Paraly 3 A(0) : [(—9)* — s, (—i)* — &;] U [(—9)* + &;, (—i)* + ;] — [0, 1] es una funcién continua
que en los valores frontera, cumple A((—i)* + ;) = 1, A((—¢)* £ ;) = 0y en los otros puntos

A(B) < min { a1 (0 +w) —aia(0+w) af(0+w)—ai1(f+w) }

@) @7 (6) — aa(8) ' (27 ) (o; (6) — ai9))

donde R((—i)") = [a (). a; ()] y R((~i + 1))+ = [}, (0 + w). a;_, (0 + w)).

Definicién 2.2.2 Sea i € N. Definimos g, : R(i*) — R((i + 1)*) en cinco diferentes casos
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1. gf es la funcion constante al punto a;41(0 + w) si 0 € [i* — o, i* — ayt1].

2. g% es la aplicacion connected the dots map que envia O(R(i*)) en O(R((i + 1)*)) invirtiendo
orientacion y a;(0) en a;+1(0 +w) si 6 € (i* — aq1,7" — diy1)

3. g% es (—1)2m i1 (2 — ;1 (i%)) + a; (i + 1)*) si 0 € [i* — Gi41,4* + §i1]

4. g% es la aplicacion connected the dots map que envia O(R(i*)) en O(R((i + 1)*)) invirtiendo
orientacion y a;(0) en a;+1(0 + w) si 0 € (* + Jit1,0* + it1)

5. gf es la funcion constante al punto a;11(6 + w) si 0 € [i* + qip1, 1" + o).

Notemos que 1 y 5 se pueden definir, pues en virtud de (A. 2) y (A. 5.b) el conjunto A;; N
7L ((7(R(i*)) + w) \ 7(R((i + 1)*))) es una curva.

Demostraremos ahora el Lema 2.2.3
Lema 2.2.3 Sea i € N. Las funciones g_, y g, cumplen:
(-i.1) El conjunto =1 ([(=4)* — &;, (—i)* + &;]) N R((—i)*) es homeomorfo al conjunto
(=i + 1) =6, (=i + 1)+ 6]) NR((—i +1)7)

mediante la funcion g_; que dilata uno en el otro.
(-1.2) El conjunto g_, (m=* ([(—i)* — o, (—i)* — &;]) N R((—4)*)) es un subconjunto propio de

T ([(—i 4+ 1)* — o, (i + 1)* = &) NR((—i + 1)*).
El conjunto g_, (7= " ([(=i)* + 6, (—i)* + u]) NR((—4)*)) es un subconjunto propio de
(=i + 1)+ 6, (i + 1) 4+ o)) NR((—i + 1)%).
(-i3) g, (Ain7 ' (x(R((—1)")))) = Aima N7 Y (7 (R((—1)*)) + w).
(i.1) El conjunto 7= ([i* — i1, + 8;11] NR(i*)) es homeomorfo al conjunto
([ 4+ 1) = 851, (0 1)+ 0ia]) NR(( +1)%)

mediante la funcion g, que dilata uno en el otro.
(i.2) El conjunto 7= ([i* — ai1,i* — i41]) NR(i*) es homeomorfo a
[+ 1)* = @i, (04 1)* = 0ip1]) NR(
El conjunto 71 ([i* + 8;41,1* + cip1]) NR(i*) es homemomorfo a
7 L[+ 1)* + i1, (0 + 1) + 1)) NR((i + 1)*) mediante la funcion g,.
(i.3) g, (A N7 Y (7 (R(i*)))) = Aipr N7 (7T (R(*)) + w).

(i + 1)*) mediante la funcion g,.

y en particular son continuas.

Demostracion. La demostracién de (—i,1) la hacemos de la siguiente manera. Primero observe-
mos que como 6 € [(—i) — df, (—i) + 6] en consecuencia 6 + w € [(—i + 1) — d], (—i + 1) + 67].
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Ahora bien, de la Observacién 2.1.3 7 y de que las funciones coordenadas son funciones lineales,
basta demostrar que los extremos de R((—i)*)? son enviados a los de R((—i + 1)*)¢F«.

Aplicando la funcién al extremo a;_1 ((—)*) — 27" 5(¢)—;(0)), tendremos que

9% (ai—1((=0)") =27 B(y-i(0))) = 27" B(v-i(0)) + as—a((—i +1)").

Por hipétesis B(1—;(6)) = B(¥—i+1(6 + w)) en consecuencia, la imagen de dicho extremo es
ai—2((—t +1)*) + 271 B(¢_;41(0 + w)). Procediendo de manera andloga para el otro extremo
tendremos lo que deseabamos demostrar.

De la definicién de g_; es inmediato que para demostrar (—i,3), solo resta ver

9o (T ([(=0)" = 85, (=) + &) N Ay) = 7 H([(=i +1)" = 6, (=i + 1)" + 6:]) N Ai1.

—i41)*
ATy

71—

Es inmediato que g_, (Agfi)*) =
0 € [(—i)* — d;, (—9)* + &;] \ {(—i)*}. Tenemos pues que

por lo que supondremos

(0, ai(0)) = (6, ai—1((—0)") + (=1)"27"(v_, (6))),

por lo tanto ¢%(a;(0)) = (—1)"F127"-1¢(¢_,(0)) + a;—2((—i + 1)*) pero por hipétesis ¢_,(0) =
¥_,., (0 +w) de donde ¢%(a;(0)) = ai—1(0 + w).
Para (—i,2), hemos visto que ¢ (a;(0)) = a;—1(8 + w) por lo que podemos reescribir la
funcién ¢? asi
9% (x) = (12" (@ — ai1) + a2 (0 + w),

lo cual nos muestra que las contenciones se cumplen y también la continuidad de g_,.

La demostracién de (7,1) y la de (7,3) son andlogas a la manera en que demostramos (—i,1) y
(—1,3). La demostracion de (i,2) se sigue de que g es una funcion lineal a dos trozos. Finalmente,
la continuidad de g, se sigue de que las funciénes lineales a dos trozos tienen como limite, por
un lado la funcién lineal definida en los extremos del intervalo central [¢* — §;41,* + d;41] Y en

los otros, tiene como limite la funcion constante definida en

W(R(l*)) \ [Z* — Oéi+1,i* + ai+1]- O

2.2.2. Definicién y Propiedades

Definicién 2.2.4 Dada | € Z, diremos que A(R(1*)) = k si R(I*) estd contenido en exactamente k
conjuntos R(j*), 1 # j por lo que |j| < |l|. Definiremos 3 = {i € Z : A(R(i*)) = k} y 3, serd el
elemento con valor absoluto minimo en 3.

La siguiente observacién es inmediata.
Observacion 2.2.5 La sucesion {3, }7°, cumple que lim 3, = oo

Diremos que By, = [J;c3, m(R(i*))
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Lema 2.2.6 El conjunto By, es denso en S* para toda k € N U {0}.

Demostracion. Demostraremos este lema por induccién. Es inmediato que B, es denso pues
O*(w) es denso y O*(w) C By. Supongamos ahora que B,, es denso en S'. Demostraremos
que By,41 es también denso.

Observemos primero que para toda i € Z tenemos que

(r(R(i)) N O* (W) \ {i*} = m(R(i")).

Seai € 3,y 7" € (w(R(#*)) N O*(w)) \ {i*} entonces j* € B,y por lo tanto B, C B,11 ¥y
entonces B,y =S!'. O

Notacién 2.2.7 Fijado un conjunto R(i*), para cada 0 € w(R(i*)) diremos que R(i*)? = {0} x
[m;(0), M;(9)], escribimos

Iy = [=2,m;(0)] U [my(0), M;(6)] U [Mi(6),2].
En particular m;, M, son funciones continuas y m;, M; : m(R(i*)) — I.

Definiremos inductivamente una sucesiéon de funciones F,, : 2 — (2.

Definimos Fy como:

(Fo.1) F¢ es la aplicacion connected the dots map que envia —2 a 2, a(f) a a(f + w) y 2 a —2 si
0 eSt\ By

(Fo-2) F{ esla funcién lineal a tres o a dos trozos, tal que F§(2) = -2, F{(-2) = 2y Ff(z) =
g?(x) para toda (6,z) € R(j*)%, donde § € By y j € 30 es el tinico entero tal que 6 €
m(R(J"))-

Suponiendo que hemos construido la funcién F), : {2 — (2 definiremos la funcién

F’ﬂ(gvx)v (0755) ¢ 7T71(Bn+1)
Fos(0.0) = 4 %00 (6.2) € R(i*),i € 3011
n+1\Y, = —g.((6,m; (6 .
Tl L (B (0,2) = 2) +2 0 € 7(R(i7)), (6,2) € [~2,mi(0)]

249 ((8,M,(0 Y
2 O (Fu(0,2) +2) — 20 € 7(R(i%)), (6,) € [Mi(0),2]

Claramente F), € 7 paratodan € N.

Lema 2.2.8 La sucesién de funciones F,, cumple las propiedades

(a) Cada F,, es una funcion continua.
(b) Cada F es una funcién lineal a trozos y mondtona decreciente.

(c) Lasucesion {F,}>2 es convergente.

Demostracion. La continuidad de las F}, la mostramos por induccién.
Dado que F{ es continua para toda 6 € S para demostrar que F} es continua basta ver que

para toda sucesién 6,, convergente a ¢ se tiene que Eon converge uniformemente a Fy.
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Si 6 € Int(By), existe i € 3¢ de manera que § € Int(r(R(i*))). Entonces, para toda sucesiéon
{6,}22, tal que lim0,, = 6 existe N € N tal que 0,, € n(R(i*)) para toda n > N, en virtud

de la definicién de Fp, tenemos que F0| es continua, en consecuencia Fg " converge

T (R(i)))
uniformemente a F¢.

Si6 ¢ Int(Bj) observemos primero que sif € d(w(R(i*))) paraalguna i € 3¢ y consideramos
solo sucesiones ¢,, contenidas en Int(7(R(i*))) tenemos que por la definicién de Fy }rl (x(R(G*)))
se cumple que lim F/* = F{ 1a cual es una funcién lineal a dos trozos.

Ahora en virtud de Lema 2.2.6 Int(By) es denso. Entonces, calcularemos las funciones limite
en 2\ 7~ !(Int(By)) y veremos que coinciden con la definicién de Fy, en dicho conjunto.

Sea § € S*\ Int(By) y 0, € Int(By) tal que lim 6,, = 6. En virtud de que 6,, € Int(By) tenemos
0, € T(R((jn)*)) para algan j, € 3¢. Por otro lado, por la observacién anterior y de que 6 ¢ By
podemos suponer que lim |j,,| = co consecuentemente lim diam(R((j,)*)) = 0.

Veamos ahora que d(F¢, Fi ) < 2 - diam(R((i + 1)*)) = 4 - 2™i+1, paratodai € 39y 0 €
7(R(i*)). En virtud de que 6 € 7(R(i*)) la grafica de g¢ estd contenida en el cuadrado R(i*)"" x

R((i +1)*)0+D7, un simple célculo muestra
Fg* (x) — 4. oMl < Fg(x) < FS* (x) + 4.9

para toda x, pues las graficas de éstas funciones intersectan a dicho cuadrado en un solo punto,
consecuentemente d(F{, F)) < 4 -2™+11 para toda 0,y € m(R(i*)).

Ahora demostramos que lim F;" = F¢ donde v, € 9(n(R(j))) para toda j,,. En virtud de la
Propiedad (A. 5f), la grafica de F"™ son dos trozos de recta con interseccion en (a(a,), a(oy, +w)).
Entonces, en virtud de (P.2) en la Observacién 2.1.3 y el Lema 2.1.7, tenemos que A es pinchado
en los puntos en cuestion y tenemos que lim(a(ay,), a(a, + w)) = (a(),a(d + w)) y lim F5™
serd una funcién lineal a dos trozos, de donde lim F;'" = F¢.

Asi pues, dado que d(F", F§™) < 4 - 2™+ y nj  — oo cuando n — oo obtenemos el
resultado deseado.

Suponiendo ahora que F,, es continua, demostraremos que F,,;; también lo es. Es claro
que para toda § € Int(7(R(j*))) y j € 3n+1 la funcién F | es continua y toda sucesion que
converge a 6 totalmente contenida en m(R(j*)) cumple que la correspondiente sucesion de
funciones converge a F? . Solo nos resta ver que pasa en la frontera de 7(R(j*)). Tomemos
0 € Int(m(R(5*))) y im0, = o; € Om(R(j*)) entonces en virtud de que j € 3,41 existe i € 3,
tal que R(j*) C R(i*) como (a;, Mj(e;)) = (a5, mj(e;)) € R(i*) N A; tenemos que

g, (aj,mj(ay))

9, (aj, Mj(aj)) = Fn(az,mj(aj))
(o, Mj(y)) = g, (aj,m;(ay))

= g, (o, mj(aj))

por la definicién de F;, luego,
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lim F, (0, m, (0k)) — g, (0, m, (0k))

i

0
lim F, (Ox, M, (0x)) — g,(0k, M, (01)) = 0

Entonces
- 2—yg,((6,m;(6k)))
2—F, ((6,m;(6k)))
i 2T 9 ((Ok, M;(0r)))
2+ F, (0r, M;(61)))

If (Fn(Ok, ) —2)+ 2 = F(a;, )

(Fn(Ok,x) +2) — 2 = F,(a;,x),

concluimos pues que la funcién F,,; es continua.
Por otro lado, cada F es monétona decreciente y lineal a pedazos por construccién.

Ahora demostraremos que la sucesién F;, converge.

Sea i € 3,41, entonces la distancia entre F}, y F,,+1 en 7 Y (m(R(i*))) serd
F, ((0,mi(0))) — g, ((6,mi(0)))
(Fui0.0) —2) (PO O )
e (6, M:00))) — g, (6, Mi(6))
E, ) M; R 7Mi
(E0.2)+2) (PO RGO )

siz > M;(0)y|Fn(0,z) —g,(0,2)| si(0,z) € R(i*).

Observemos que |, ((i*, mi(i*))) — g, (6%, ma(i*)| y [Fu (i, Mii7))) — g, (%, M;(i*))] son
los valores méximos de las dos primeras distancias.

Se verifica entonces que |F, ((i*,m;(i*))) — g, (%, m; (%)), |Fn(0,2) — g,(0,2)| y
|F (2%, M;(i%))) — g, ((i*, M;(i*))| son menores que diam(R((j 4+ 1)*)) = 27 ™i+11. Concluimos

entonces que la sucesién es de Cauchy y por lo tanto convergente. O
Definicién 2.2.9 Denotamos por F' al limite de la sucesion F,,.
Observemos que F' € T y que no es un homeomorfismo.

Teorema 2.2.10 La funcién F : 2 — (2 satisface que F(A) = A, y A es el tinico conjunto conexo

compacto invariante por la funcion F. En particular, la funcion F no tiene curvas invariantes en 2.

Demostracién. Observemos que por definicién, si i € 3; entonces F,, (A" ) = AUt para toda

n > k, consecuentemente F(A”") = AU*1)" paratodar € Zy en virtud de que |, ., A" es
denso en A, tenemos que F'(A) = A.

Por dltimo, como A es conexo y m(A) = S!, 2\ A es disconexo. Como F(A) = A dichas
componentes conexas son imagen la una de la otra, de donde concluimos que si existiera una
curva fija contenida en {2 ésta intersectaria a A y por lo tanto estarfa contenida en A. Como A no

contiene curvas, concluimos que no existen curvas fijas en {2, bajo la funcién F. O

En general las pseudo-curvas invariantes no son conexas. De manera similar a nuestra cons-
truccién, podemos exhibir pseudo-curvas invariantes (por una funcién 7' € 7') que sean total-

mente disconexas.
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