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Introducción

En el año 1964 Sharkovskiı̆ enunció y demostró un célebre teorema que supuso, entre otros

aspectos, el inicio del estudio de lo que hoy conocemos como dinámica combinatoria en el in-

tervalo. En dicho teorema se introduce la siguiente ordenación de los números naturales:

3 ≻ 5 ≻ 7 ≻ 9 ≻ . . . ≻
2 · 3 ≻ 2 · 5 ≻ 2 · 7 ≻ 2 · 9 ≻ . . . ≻
22 · 3 ≻ 22 · 5 ≻ 22 · 7 ≻ 22 · 9 ≻ . . . ≻

...

2n · 3 ≻ 2n · 5 ≻ 2n · 7 ≻ 2n · 9 ≻ . . . ≻
...

2∞ . . . ≻ 2n ≻ . . . ≻ 23 ≻ 22 ≻ 2 ≻ 1.

El teorema en cuestión afirma lo siguiente:

Teorema 0.0.1 (Sharkovskiı̆) Sea I un intervalo en la recta real. Sea f ∈ C0(I, I) una función conti-

nua que tiene una órbita periódica de periodo q. Entonces, f también tiene una órbita periódica de periodo

p ∈ N para cada p ≺ q. Reciprocamente, para cada q ∈ N ∪ {2∞} existe una función fq ∈ C0(I, I) tal

que el conjunto de puntos periódicos de fq es {p ∈ N : p � q}.

Este resultado afirma que la existencia de orbitas periódicas de un determinado periodo en

una aplicación del intervalo “fuerza” la existencia de órbitas periódicas de otros periodos. Un

refinamiento de este teorema es lo que conocemos como teorı́a del forcing de órbitas periódicas en

el intervalo.

Fijado un perı́odo, es inmediato observar que hay distintos tipos combinatorios de órbitas

del mismo periodo. Sea P = {p1 < . . . < pn} una órbita periódica de perı́odo n de una función

f del intervalo. Podemos asociar a la órbita periódica una permutación σ, de orden n (a partir

de ahora, n-ciclo) dada por σ(i) = j si y solo si f(pi) = pj . Asociamos ası́ a una órbita periódica

P de perı́odo n un n-ciclo σ al que llamamos pattern de P.



2 Índice general

Diremos que un pattern σ fuerza otro pattern τ si toda función del intervalo que tiene una

órbita periódica con el pattern σ tiene también una órbita periódica con el pattern τ. La teorı́a

del forcing en el intervalo prueba que la anterior relación es una relación de orden parcial y

describe con exactitud el conjunto de patterns forzados por un pattern prefijado.

En el artı́culo [7] el Teorema de Sharkovskiı̆ fue extendido a una clase de funciones triangu-

lares en el cilindro. Concretamente funciones continuas T : S1 × I −→ S1 × I donde T (θ, x) =

(θ + ω, f(θ, x)) con ω ∈ R \ Q. A esta clase de funciones se las conoce en la literatura como

skew-product en el cilindro.

Los objetos invariantes considerados en este caso, no son ya órbitas periódicas (ni tan solo

objetos minimales) sino una generalización de curvas invariantes, que los autores llaman bandas

periódicas. Intuitivamente una banda es un subconjunto compacto del cilindro tal que sus fibras

en un conjunto residual de S1 son intervalos. Una banda n-periódica es un conjunto de n bandas

disjuntas que se aplican por la función de manera periódica entre ellas.

El Teorema de Sharkovskiı̆ se enuncia en [7] de la siguiente manera:

Teorema 0.0.2 Sea T : S1 × I −→ S1 × I una función skew-product. Si T tiene una banda q-periódica

y p ∈ N es tal que p ≺ q, entonces T tiene también una banda p-periódica.

El trabajo que presentamos en esta memoria tiene dos objetivos. El primero de ellos, es re-

finar el resultado obtenido en [7] para obtener una teorı́a del forcing entre patterns de bandas

periódicas. En particular demostraremos que para una clase muy general de patterns la relación

de forcing en el intervalo y en nuestra clase coinciden.

El otro objetivo es responder a la pregunta natural de si existe un análogo del teorema ante-

rior para curvas periódicas. Obtenemos una respuesta negativa al construir un ejemplo de una

función skew-product con una pareja de curvas 2-periódica pero sin curvas invariantes. Hasta

donde nosotros sabemos este es el primer ejemplo explı́cito de función skew-product sin curvas

invariantes.

La memoria está organizada de la siguiente forma. En la Sección 1.1 desarrollamos el con-

cepto de núcleo de un conjunto. El Lema 1.1.10 es el resultado central de dicha sección, por su

utilidad, pues establece la manera en que podemos obtener el núcleo de un conjunto a partir

de la función fibra. En la Sección 1.2 estudiamos la noción de pseudo-curva, que no es más que

una reformulación de lo que se denomina banda pinchada núcleo en [7]. El Corolario 1.2.13 es

muy importante ya que relaciona ambos conceptos. En la sección 1.3 inroducimos el concepto de

banda tal como es considerado en [7]. Finalmente, el Teorema de Sharkovskiı̆ lo demostramos

en la Sección 1.5 como un corolario de nuestro teorema principal, Teorema 1.5.2 en el cual, de-

mostramos la equivalencia de la relación de forcing introducida por nosotros y la definida en el

intervalo.

En el segundo Capı́tulo, presentamos la construcción de una función con la propiedad de

que el único subconjunto propio, compacto y conexo del cilindro invariante por la función es

una pseudo-curva que no es una curva. La primera sección de este capı́tulo está dedicada a la
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construcción topológica de la pseudo-curva citada. En el Teorema 2.1.10 están enunciadas las

propiedades básicas de este objeto. La última sección está dedicada a construir la función que lo

dejará invariante. Las propiedades de dicha función se resumen en el Teorema 2.2.10.





1

Teorı́a del Forcing para Bandas

Denotaremos por Ω al cilindro S1 × I , donde S1 e I denotan a R/Z y [−2, 2] ⊂ R, respec-
tivamente. Un punto en Ω se escribirá en coordenadas como (θ, x), donde θ ∈ S1 y x ∈ I .

Denotamos también por π : Ω −→ S1 la proyección respecto de la primera componente. Clara-

mente π es continua. Nuestro objetivo en este capı́tulo es estudiar ciertos conjuntos invariantes

para una familia de funciones del cilindro. En toda la memoria denotaremos por

T = {T : S1 × I −→ S1 × I, continua : T (θ, x) = (θ + ω, f(θ, x)) con ω ∈ R \Q}.

Llamaremos a esta clase de funciones skew-product del cilindro

Sean A un subconjunto compacto de Ω y θ ∈ S1. La fibra de A sobre θ se define como A ∩
π−1(θ) = A ∩ ({θ} × [−2, 2]) y será denotada por Aθ .

Denotaremos por G a la familia de todos los subconjuntos residuales de S1. Recordemos que

un conjunto es residual en S1 si es la intersección de una familia numerable de subconjuntos

abiertos y densos en S1. Es bien conocido que un subconjunto residual en S1 es denso.
Nuestro primer objetivo es definir con precisión la noción de conjunto núcleo y dar una

caracterización de dichos conjuntos (Corolario 1.1.12).

1.1. Núcleo de un conjunto

La noción de núcleo de un conjunto compacto juega un papel esencial en la construcción de

los conjuntos invariantes de una función skew-product. Esta sección está dedicada al estudio de

las propiedades elementales del núcleo de un conjunto. Dado A ⊂ Ω, denotaremos su clausura

por A.

Definición 1.1.1 SeaM ⊆ Ω. Diremos que el núcleo deM es

⋂

G∈G
M ∩ π−1(G),

y lo denotamos porMnuc. Si en particularM =Mnuc, diremos queM es núcleo.
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Observemos que todos los conjuntos núcleo son subconjuntos compactos deΩ. Para trabajar

con ellos introducimos las definiciones siguientes.

Definición 1.1.2 SeaX un espacio métrico compacto. Definimos 2X como el espacio de los subconjuntos

compactos deX , diferentes del vacı́o.

Equipamos al espacio anterior con una métrica, ı́ntimamente ligada con la métrica deX .

Definición 1.1.3 Dado un espacio métrico compactoX , con una métrica d, definimos la métricaHd del

espacio 2X , por:

Hd(B,C) = máx{máx
b∈B

mı́n
c∈C

d(c, b),máx
c∈C

mı́n
b∈B

d(c, b)}

= máx{máx
b∈B

d(b, C),máx
c∈C

d(c, B)}.

A esta métrica se le denominamétrica de Hausdorff inducida por d.

Los siguientes resultados son bien conocidos (véase por ejemplo [1, 5]).

Teorema 1.1.4 Si X es un espacio métrico compacto, el espacio (2X , Hd) es compacto.

Proposición 1.1.5 Si X es un espacio métrico compacto y T : X → X es continua, entonces la función

inducida 2X
T−→ 2X es continua.

El siguiente resultado relaciona la convergencia en 2X respecto a la métrica de Hausdorff

con la convergencia enX.

Lema 1.1.6 Sea {Kn}∞n=1 una sucesión convergente en 2X y seaK = ĺımKn. Entonces p ∈ K si y solo

si existe una sucesión de puntos {pn}∞n=1 en X tal que pn ∈ Kn para toda n ∈ N y ĺım pn = p.

Demostración. Sea p ∈ K . En virtud de la compacidad de Ki, para cada i ∈ N existe pi ∈ Ki

tal que d(p, pi) = d(p,Ki). Dichos puntos nos definen la sucesión {pi}∞i=1. Demostraremos que

ĺım pi = p. Dado ε > 0 existe N ∈ N tal que para cada n ≥ N se tiene Hd(K,Kn) < ε. Ob-

servemos que d(p, pn) = d(p,Kn) ≤ Hd(K,Kn) < ε para toda n ≥ N . Luego, ĺım pi = p.

Ahora supondremos que ĺım pi = p, con pi ∈ Ki para cada i ∈ N y demostraremos que

p ∈ K . Por la compacidad de K , existe ki ∈ K tal que d(pi, ki) = d(pi,K). Observemos que

d(pi, ki) = d(pi,K) ≤ Hd(Ki,K). La convergencia deKi aK nos asegura que ĺımHd(Ki,K) = 0,

lo que implica ĺım d(pi, ki) = 0. Entonces ĺım ki = p y p ∈ K dado que K es cerrado. ⊓⊔

La caracterización de los conjuntos núcleo que buscamos viene dada por los puntos de con-

tinuidad de una función de S1 a 2Ω semicontinua superiormente. En lo que sigue recordaremos

esta noción y enunciaremos algunos resultados técnicos asociados.

Definición 1.1.7 Sean X y Y dos espacios métricos compactos. Diremos que F : Y −→ 2X es semi-

continua superiormente en p ∈ Y , si para todo abierto U en X , tal que F (p) ⊂ U se cumple que

V = {y : F (y) ⊂ U} es abierto en Y . Diremos que la función es semicontinua superiormente si lo es

para toda p ∈ Y .
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Usaremos también la siguiente propiedad de las funciones semicontinuas superiormente

(véase por ejemplo el Teorema 7.10 en [4]).

Proposición 1.1.8 Sean X y Y compactos. Si F : X −→ 2Y es semicontinua superiormente, entonces

los puntos de continuidad de F forman un conjunto residual en X .

Ahora definiremos una función que es útil para encontrar el núcleo de un conjunto.

Definición 1.1.9 SeaM ∈ 2Ω , tal que π(M) = S1. Definimos ϕ
M
: S1 −→ 2Ω como ϕ

M
(θ) := Mθ y

GM := {θ ∈ S1 : ϕM es continua en θ}.

Lema 1.1.10 SeaM ∈ 2Ω con π(M) = S1. Entonces, la función ϕ
M

es semicontinua superiormente y

el conjunto G
M

es residual. Además

M ∩ π−1(G
M
) =

⋂

G∈G
M ∩ π−1(G) =Mnuc.

Demostración. En primer lugar, veremos que la función ϕ
M
es semicontinua superiormente. Sean

θ ∈ S1 y U abierto en Ω, tales que ϕ
M
(θ) ⊂ U . Demostraremos que el conjunto V = {γ ∈ S1 :

ϕ
M
(γ) ⊂ U} es un abierto en S1. Por definición γ ∈ V si y solo si ϕ

M
(γ) ∈ π−1(γ) ∩M ⊂ U, lo

que a su vez es equivalente a γ /∈ π(M ∩ (Ω \ U)). Consecuentemente, V = S1 \ π(M ∩ (Ω \ U))

es abierto y ϕ
M

es semicontinua superiormente. De la Proposición 1.1.8 deducimos que G
M

es

residual.

Para demostrar la última afirmación del lema, veremos primero que

M ∩ π−1(GM ) ⊂M ∩ π−1(G)

para cada G ∈ G. Sean G ∈ G y (θ, x) un punto arbitrario de M ∩ π−1(GM ) (es decir, θ ∈ GM

y (θ, x) ∈ Mθ). Como G es residual, es denso en S1. Por lo tanto, podemos tomar una sucesión

{θn}∞n=1 contenida en G, tal que ĺım θn = θ. Por la continuidad de ϕ
M

en θ, ĺımϕ
M
(θn) = ϕ

M
(θ).

Por el Lema 1.1.6, existe una sucesión {(θn, xn)}∞n=1 tal que (θn, xn) ∈ ϕ
M
(θn) ⊂M ∩ π−1(G) tal

que ĺım(θn, xn) = (θ, x). Por lo tanto, (θ, x) ∈M ∩ π−1(G). Consecuentemente,M ∩ π−1(G
M
) ⊂

M ∩ π−1(G) y, por tanto,M ∩ π−1(G
M
) ⊂M ∩ π−1(G).

Dado que G
M

∈ G, de lo demostrado anteriormente se deduce

M ∩ π−1(G
M
) ⊂

⋂

G∈G
M ∩ π−1(G) ⊂M ∩ π−1(G

M
). ⊓⊔

Definición 1.1.11 Dado M ∈ 2Ω tal que π(M) = S1 el conjunto residual GM de la Definición 1.1.9

(Lema 1.1.10) se denominará residual de continuidad de la función fibra paraM.

El siguiente resultado, que usaremos frecuentemente, es una consecuencia inmediata del

Lema 1.1.10.

Corolario 1.1.12 Sea M ⊂ Ω compacto tal que π(M) = S1. Entonces las siguientes nociones son

equivalentes:
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(a) M es núcleo.

(b) M =M ∩ π−1(GM )

(c) M =M ∩ π−1(G) para todo residual G en S1.

Demostración. La equivalencia entre (a) y (b) es inmediata a partir del Lema 1.1.10. Supongamos

queM =M ∩ π−1(G) para todo residualG en S1, entonces claramente

⋂

G∈G
M ∩ π−1(G) =M.

SiM es núcleo y G′ es un residual en S1, es inmediata la relación

M =
⋂

G∈G
M ∩ π−1(G) ⊂M ∩ π−1(G′),

por otro lado, la compacidad de M nos garantiza que M ∩ π−1(G′) ⊂ M , concluimos pues la

igualdad deseada. ⊓⊔

1.2. Pseudo-curvas

Recordemos que nuestro objetivo es caracterizar los objetos invariantes de ciertas funciones

skew-product. Los conjuntos núcleo que cumplen la siguiente propiedad son un objeto especial

de esta caracterización.

Definición 1.2.1 Sea A ∈ 2Ω . Diremos que A es pinchado, si el conjunto

PA := {θ ∈ S1 : Card(Aθ) = 1}

es denso en S1.

Observación 1.2.2 Observemos que si A es pinchado, en particular π(A) = S1.

El siguiente lema caracteriza al conjunto PA, cuando A es pinchado.

Lema 1.2.3 Si A ∈ 2Ω es pinchado, entonces PA = GA (es decir PA es el conjunto de puntos de

continuidad de la función ϕ
A
). En particular PA es residual.

Demostración. En primer lugar veremos que PA ⊂ GA. Para ello fijamos θ ∈ PA y denotamos

Aθ = {(θ, a)}. Para ver que θ ∈ GA es suficiente demostrar que ϕA es continua en θ.

Sea {θn}∞n=1 una sucesión en S1 tal que ĺım θn = θ. Hay que ver que ĺımAθn = Aθ . Como

2Ω es compacto basta ver que cualquier subsucesión convergente de {Aθn}∞n=1 converge a Aθ .

Supongamos sin pérdida de generalidad que {Aθn}∞n=1 es convergente y sea B = ĺımAθn . Por el

Lema 1.1.6,B ⊂ Aθ . Además, B = Aθ dado que |Aθ| = 1.

Veremos ahora que GA ⊂ PA. Para ello, mostraremos que |Aθ| = 1 para cada θ ∈ GA. Como

PA es denso en S1, existe una sucesión θn ∈ PA, tal que ĺım θn = θ y ϕA(θn) = Aθn = {(θn, an)}.
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Por la continuidad deϕ
A
en θ, tenemos que {(θn, an)} = ϕ

A
(θn) converge a ϕA

(θ) = Aθ . Lo ante-

rior implica que {{(θn, an)}}∞n=1 es una sucesión de Cauchy en 2Ω . Luego, {(θn, an)}∞n=1 es tam-

bién una sucesión de Cauchy en Ω dado que Hd({(θn, an)}, {(θm, am)}) = d((θn, an), (θm, am)).

Por el Lema 1.1.6, |Aθ| = 1. ⊓⊔

El resultado anterior nos motiva a estudiar los conjuntos pinchados núcleo como objetos

“cercanos” a curvas (denotados pseudo-curvas en este trabajo). Para ello introducimos la defini-

ción siguiente.

Definición 1.2.4 Definimos

C = {(ϕ,G) : G es residual en S1 y ϕ : G→ I continua }.

Para (ϕ,G), (ϕ′, G′) ∈ C definimos

d∞((ϕ,G), (ϕ′, G′)) = sup
θ∈G∩G′

d(ϕ(θ), ϕ′(θ)).

La función d∞ tiene la siguiente propiedad que nos será útil para demostrar que es una

pseudométrica.

Lema 1.2.5 Dadas (ϕ,G), (ϕ′, G′) ∈ C y G′′ un denso de S1 tal que G′′ ⊂ G ∩G′ entonces

d∞(ϕ(θ), ϕ′(θ)) = sup
θ∈G′′

d(ϕ(θ), ϕ′(θ)).

Demostración. Sea

s = d∞(ϕ(θ), ϕ′(θ)).

La desigualdad

s ≥ sup
θ∈G′′

d(ϕ(θ), ϕ′(θ)).

se sigue de que G′′ ⊂ G ∩G′. Esto muestra que s es una cota superior del siguiente conjunto de

distancias {d(ϕ(θ), ϕ′(θ)) : θ ∈ G′′}. Para mostrar que s es el supremo, demostraremos que para

toda β > 0 existe α ∈ G′′ tal que s− β < d(ϕ(α), ϕ′(α)). Por la definición de s existe θ ∈ G ∩ G′

tal que s − β < d(ϕ(θ), ϕ′(θ)) ≤ s. Sea ε < d(ϕ(θ)ϕ′(θ))−(s−β)
2 . Como ϕ y ϕ′ son continuas en θ

existe δ > 0 tal que si θ′ ∈ Bδ(θ) se tiene d(ϕ(θ), ϕ(θ′)) < ε y d(ϕ′(θ), ϕ′(θ′)) < ε. Entonces se

cumplen las siguientes desigualdades

d(ϕ(θ), ϕ′(θ)) − 2ε ≤ d(ϕ(θ′), ϕ′(θ′)) ≤ d(ϕ(θ), ϕ′(θ)) + 2ε.

En virtud de la densidad de G′′ en S1, existe α ∈ Bδ(θ) ∩G′′. Consecuentemente

d(ϕ(θ), ϕ′(θ))− 2ε ≤ d(ϕ(α), ϕ′(α)).

La definición de ε nos garantiza que s−β < d(ϕ(θ), ϕ′(θ))−2ε. Entonces s−β < d(ϕ(α), ϕ′(α)) ≤
s. ⊓⊔
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Ahora podemos demostrar que d∞ es una pseudométrica.

Lema 1.2.6 La función d∞ : C× C → R+ es una pseudométrica y cumple:

d∞((ϕ,G), (ϕ′, G′)) = 0 si y solo si ϕ(θ) = ϕ′(θ) para toda θ ∈ G ∩G′.

Demostración. La segunda afirmación es inmediata a partir de la definición de d∞. Probaremos

ahora que d∞ es una pseudométrica. Para ello basta probar que

d∞((ϕ,G), (ϕ′, G′)) ≤ d∞((ϕ,G), (ϕ′′, G′′)) + d∞((ϕ′′, G′′), (ϕ′, G′)),

para cualquier terna (ϕ,G), (ϕ′, G′), (ϕ′′, G′′) ∈ C. Dados (ϕ,G), (ϕ′, G′), (ϕ′′, G′′) ∈ C definimos

G′′′ = G ∩G′ ∩G′′. Entonces es inmediato que G′′′ cumple

d∞((ϕ,G′′′), (ϕ′, G′′′)) ≤ d∞((ϕ,G′′′), (ϕ′′, G′′′)) + d∞((ϕ′′, G′′′), (ϕ′, G′′′))

y, en virtud del Lema 1.2.5, concluimos la desigualdad deseada. ⊓⊔

Introducimos ahora la noción de pseudo-curva. Dicha noción esta contenida implı́citamente

en [7], bajo la noción de banda pinchada núcleo.

Dados G ⊂ S1 y ϕ : G→ S1 una función continua denotamos

Grafo(ϕ,G) := {(θ, ϕ(θ)) ∈ Ω : θ ∈ G}.

Definición 1.2.7 Dado (ϕ,G) ∈ C, llamaremospseudo-curva asociada a (ϕ,G) al conjuntoGrafo(ϕ,G).

Dicho conjunto será denotado por A
(ϕ,G)

.

Observación 1.2.8 Si (ϕ,G) ∈ C entonces π(A
(ϕ,G)

) = S1.

El siguiente lema establece que al momento de clausurar los elementos de C no añadimos

puntos en las fibras que tenemos sobre el conjunto G.

Lema 1.2.9 Para toda (ϕ,G) ∈ C se cumple

A
(ϕ,G)

∩ π−1(G) = Grafo(ϕ,G).

Demostración. La inclusión Grafo(ϕ,G) ⊂ A
(ϕ,G)

∩ π−1(G) es trivial. Para la otra tomaremos

θ ∈ G de manera que

(θ, x) ∈ A
(ϕ,G)

= Grafo(ϕ,G).

Sea {(θn, ϕ(θn))}∞n=1 ⊂ Grafo(ϕ,G) tal que ĺım(θn, ϕ(θn)) = (θ, x). La continuidad de ϕ(θ) en G

implica que x ∈ ϕ(θ). De donde (θ, x) ∈ Grafo(ϕ,G). ⊓⊔

Corolario 1.2.10 Sea (ϕ,G) ∈ C. Entonces A(ϕ,G) es pinchada,G ⊂ PA(ϕ,G)
y

A
(ϕ,G)

= A
(ϕ,G)

∩ π−1(G).

En particular A(ϕ,G) es núcleo.
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Demostración. Por el Lema 1.2.9 tenemos que Grafo(ϕ,G) = A
(ϕ,G)

∩ π−1(G). Entonces Aθ
(ϕ,G)

=

{(θ, ϕ(θ))} si θ ∈ G. Consecuentemente A
(ϕ,G)

es pinchado en G que es denso en S1. Por otro
lado, A

(ϕ,G)
= Grafo(ϕ,G) = A

(ϕ,G)
∩ π−1(G). Concluimos por el Corolario 1.1.12 que A

(ϕ,G)
es

núcleo. ⊓⊔

El siguiente colorario establece que toda pseudo-curva A
(ϕ,G)

también se puede obtener co-

mo la clausura del grafo de ϕ pero restringida a un subconjunto denso contenido en el residual

original.

Corolario 1.2.11 Sean (ϕ,G) ∈ C y G′ un denso en S1 tal que G′ ⊂ G. Entonces

A(ϕ,G) = Grafo(ϕ
∣∣
G′ , G′).

Demostración. Sea B = Grafo(ϕ
∣∣
G′ , G′). Por la densidad de G′ se cumple que π(B) = S1.

Claramente B ⊂ A(ϕ,G) dado que G′ ⊂ G. Por tanto si A(ϕ,G) es pinchado en θ, B tam-

bién lo será y A(ϕ,G) ∩ π−1(θ) = B ∩ π−1(θ). En virtud del Lema 1.2.9 A(ϕ,G) es pinchado en

A(ϕ,G) ∩ π−1(G) = B ∩ π−1(G). Entonces

A(ϕ,G) = A(ϕ,G) ∩ π−1(G) = B ∩ π−1(G) ⊂ B ⊂ A(ϕ,G).

En consecuencia B = A(ϕ,G). ⊓⊔

Observación 1.2.12 Una consecuencia del Corolario 1.2.11 es que hace más intuitiva la definición de

pseudo-curva. La familia C también se puede definir como el conjunto de funciones continuas en un

subconjunto denso de S1.

Como se ha apuntado anteriormente, en [7] la noción de pseudo-curva se formula como la

de un conjunto pinchado y núcleo. Veremos que, efectivemente, ambas definiciones coinciden.

Este resultado, además de su interés en relación a [7], será cómodo en las siguientes secciones.

Teorema 1.2.13 Un conjunto de 2Ω es una pseudo-curva si y solo si es pinchado y núcleo.

Demostración. Sea B ∈ 2Ω y supongamos que B es una pseudo-curva. Entonces existe (ϕ,G) ∈
C tal que B = Grafo(ϕ,G). En virtud del Corolario 1.2.10, B es pinchado y G ⊂ P

B
. Por el

Lema 1.2.3 tenemos que la función fibra es continua en P
B
. Luego, por los Lemas 1.1.10 y 1.2.9,

B = B ∩ π−1(G) ⊂ B ∩ π−1(PB) = Bnuc ⊂ B.

Concluimos entonces que B es núcleo. Supongamos ahora que B es pinchado y núcleo. Sea P
B

el residual en el que B es pinchado (Lema 1.2.3). Para toda θ ∈ P
B
denotaremos Bθ = {(θ, bθ)}.

Sea

ψ(θ) := bθ.

Demostraremos que (ψ, P
B
) ∈ C y B = Grafo(ψ, P

B
). Para ello veremos que si θ ∈ P

B
en-

tonces ψ es continua en θ. Sea {θn}∞n=1 ⊂ PB una sucesión tal que ĺım θn = θ. Sea {ψ(θn)}∞n=1
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la correspondiente sucesión de imagenes. Por la compacidad de Ω podemos suponer, sin pérdi-

da de generalidad, que la sucesión {ψ(θn)}∞n=1 converge a x. Como {(θn, ψ(θn))}∞n=1 ⊂ B y B

es compacto (θ, x) ∈ B. Por lo tanto (θ, x) ∈ Bθ y en virtud de que B es pinchado en θ, te-

nemos que x = bθ = ψ(θ). Esto muestra la continuidad de ψ en PB . Finalmente, la igualdad

B = Grafo(ψ, P
B
) es consecuencia directa del Corolario 1.2.11. ⊓⊔

El siguiente lema nos relaciona la pseudométrica d∞ y la métrica de Hausdorff.

Lema 1.2.14 Sean (ϕ,G), (ϕ′, G′) ∈ C y ε > 0. Si d∞((ϕ,G), (ϕ′, G′)) ≤ ε entonces

Hd(A(ϕ,G)
, A

(ϕ′,G′)) ≤ ε.

En particular d∞((ϕ,G), (ϕ′, G′)) = 0 si y solo si

A
(ϕ,G)

= A
(ϕ′,G′) .

Demostración. Sean (ϕ,G), (ϕ′, G′) ∈ C y ε > 0. Supongamos que

d∞((ϕ,G), (ϕ′, G′)) ≤ ε.

Haremos la demostración por reducción al absurdo. Supongamos que Hd(A(ϕ,G)
, A

(ϕ′,G′)) > ε.

En virtud de la Definición 1.1.3 y la compacidad de A
(ϕ,G)

y de A
(ϕ′ ,G′) existe (θ, x) ∈ A

(ϕ,G)
tal

que d((θ, x), A
(ϕ′ ,G′)) > ε. Sea {(θn, ϕ(θn))}∞n=1 ⊂ A

(ϕ,G)
tal que θn ∈ G ∩ G′ para toda n ∈ N y

ĺım(θn, ϕ(θn)) = (θ, x) (Definición 1.2.7). Como

d((θn, ϕ(θn)), (θn, ϕ
′(θn))) ≤ d∞((ϕ,G), (ϕ′, G′)) ≤ ε.

entonces d((θn, ϕ(θn)), (θn, ϕ
′(θn))) ≤ ε para toda n ∈ N. En virtud de la compacidad de A

(ϕ′,G′)

existe una parcial convergente {(θα(n), ϕ′(θα(n)))}∞n=1 ⊂ A
(ϕ′,G′) tal que

ĺım(θα(n), ϕ
′(θα(n))) = (θ, y) ∈ A

(ϕ′,G′) .

Entonces d((θ, x), (θ, y)) ≤ ε contradiciendo que d((θ, x), A
(ϕ′ ,G′)) > ε.

Demostramos ahora la segunda afirmación. Supongamos primero que d∞((ϕ,G), (ϕ′, G′)) =

0. Entonces d∞((ϕ,G), (ϕ′, G′)) ≤ ε para toda ε > 0. Por la primera afirmación en este lema,

también Hd(A(ϕ,G), A(ϕ′,G′)) ≤ ε para toda ε. En consecuencia Hd(A(ϕ,G), A(ϕ′,G′)) = 0. De

donde A(ϕ,G) = A(ϕ′,G′). Para concluir supondremos A(ϕ,G) = A(ϕ′,G′). Sea G
′′ = G ∩ G′.

Entonces en virtud de la igualdad y el Lema 1.2.9

Grafo(ϕ,G) ∩ π−1(G′′) = A(ϕ,G) ∩ π−1(G′′) = A(ϕ′,G′) ∩ π−1(G′′) = Grafo(ϕ′, G′) ∩ π−1(G′′).

Entonces supθ∈G′′ d(ϕ(θ), ϕ(θ′)) = 0 y por el Lema 1.2.5 tenemos que d∞((ϕ,G), (ϕ′, G′)) = 0.

⊓⊔

Definimos ahora una relación de equivalencia en el conjunto C inducida por sus pseudo-

curvas asociadas.
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Definición 1.2.15 Dadas (ϕ,G), (ϕ′, G′) ∈ C diremos que (ϕ,G) ∼ (ϕ′, G′) si y solo si A
(ϕ,G)

=

A
(ϕ′ ,G′) .

Lema 1.2.16 Sean (ϕ,G), (ϕ′, G′) ∈ C. Sea G′′ un denso en S1 tal que G′′ ⊂ G ∩ G′. Si ϕ(θ) = ϕ′(θ)

para toda θ ∈ G′′ entonces (ϕ,G) ∼ (ϕ′, G′)

Demostración. Si ϕ(θ) = ϕ′(θ) para toda θ ∈ G′′ el Lema 1.2.5 nos implica

d∞((ϕ,G), (ϕ′, G′)) = 0

y en virtud del Lema 1.2.14 tenemos que A(ϕ,G) = A(ϕ′,G′). ⊓⊔

Lema 1.2.17 La relación “ ∼′′ es una relación de equivalencia.

Demostración. Es claro que (ϕ,G) ∼ (ϕ,G), esto muestra la reflexividad. Probaremos la simetrı́a

de la siguiente manera. Sean (ϕ,G), (ϕ′, G′) ∈ C. Si (ϕ,G) ∼ (ϕ′, G′) entonces A(ϕ,G) =

A(ϕ′,G′) y consecuentemente (ϕ′, G′) ∼ (ϕ,G). Finalmente probaremos la transitividad. Sean

(ϕ,G), (ϕ′, G′), (ϕ′′, G′′) ∈ C tales que (ϕ,G) ∼ (ϕ′, G′) y (ϕ′, G′) ∼ (ϕ′′, G′′). Entonces

A(ϕ,G) = A(ϕ′,G′) y A(ϕ′,G′) = A(ϕ′′,G′′) en consecuencia A(ϕ,G) = A(ϕ′′,G′′). Concluimos

(ϕ,G) ∼ (ϕ′′, G′′). ⊓⊔

Observación 1.2.18 El espacio cociente (C, d∞)/ ∼ es un espacio métrico.

Lema 1.2.19 El espacio métrico (C, d∞)/ ∼ es completo.

Demostración. Sea {(ϕn, Gn)}∞n=1 una sucesión de Cauchy en C. Sea G = ∩∞
i=1Gn. En virtud

del Lema 1.2.5, la sucesión {(ϕn, G)}∞n=1 también es de Cauchy en C. Sea θ ∈ G. La sucesión

{ϕn(θ)}∞n=1 ⊂ I es también una sucesión de Cauchy, por la definición de d∞. Sea ϕ : G → I tal

que ϕ(θ) = ĺımϕn(θ) para toda θ ∈ G. Demostraremos que (ϕ,G) ∈ C. Sean θ ∈ G y la sucesión

{θn}∞n=1 ⊂ G tal que ĺım θn = θ. Dada ε > 0, existe n(ε) ∈ N tal que

d(ϕk(θn), ϕ(θn)) <
ε

3
, para toda k ≥ n(ε), por la definición de ϕ

d(ϕk(θn), ϕk(θ)) <
ε

3
, para toda n ≥ n(ε), pues ϕk es continua

d(ϕk(θ), ϕ(θ)) <
ε

3
, para toda k ≥ n(ε), por la definición de ϕ.

Entonces tendremos

d(ϕ(θn), ϕ(θ)) ≤ d(ϕ(θn), ϕk(θn)) + d(ϕk(θn), ϕk(θ)) + d(ϕk(θ), ϕ(θ))

<
ε

3
+
ε

3
+
ε

3
= ε

para toda n > n(ε). Concluimos pues la continuidad de ϕ en θ. Entonces (ϕ,G) ∈ C y en conse-

cuencia C es completo. ⊓⊔
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Definición 1.2.20 Sea A una pseudo-curva. Sea PA el residual de continuidad de la función fibra para

A (Lema 1.2.3). Sea ϕ
P
A

, la función definida unı́vocamente por el residual PA, de manera que

π−1(PA) ∩ A = Grafo(ϕ
PA
, PA).

Diremos que (ϕ
PA
, PA) es el representante canónico de su clase de equivalencia.

Notación 1.2.21 Llamaremos arco de curva a la gráfica, de una función continua f : Λ −→ I , donde

Λ ⊂ S1 es un conexo distinto de un punto. Si Λ = S1 entonces diremos que la gráfica de f es una curva.

En particular una curva C cumple que P
C
= S1 entonces ϕ

P
C

= f y (f, S1) ∈ C.

Lema 1.2.22 Si A es una pseudo-curva que contiene una curva C, entonces A = C.

Demostración. Como C ⊂ A entonces ϕ
P
C

(θ) = ϕ
P
A

(θ) para toda θ ∈ PA. En virtud del

Lema 1.2.16, concluimos A = C. ⊓⊔

Finalizamos esta sección estudiando el comportamiento de las pseudo-curvas bajo la acción

de las aplicaciones skew-product.

Lema 1.2.23 Sean A una pseudo-curva y T ∈ T . Entonces T (A) es también una pseudo-curva.

Demostración. En virtud del Corolario 1.1.12 y el Lema 1.2.3, A = A ∩ π−1(PA). La continuidad

de T nos garantiza T (A) = T (A) ∩ π−1(Rω(PA
)). Sea G = P

T (A)
∩ Rω(PA

). Como G es un

residual contenido en P
T (A)

tendremos

(ϕ
P
T (A)

∣∣
G
, G) ∈ C.

Finalmente por el Corolario 1.2.11, T (A) = Grafo((ϕ
P
T (A)

∣∣
G
, G)). Concluimos pues que T (A) es

una pseudo-curva. ⊓⊔

Sea T ∈ T , recordemos que un conjunto A es T -invariante (respectivamente fuertemente T -

invariante) si T (A) ⊂ A (respectivamente T (A) = A). Además observemos que cualquier conjun-

to A, invariante por una función de T , cumple que π(A) = S1. Un conjunto cerrado e invariante

es T -minimal si no tiene ningún subconjunto propio cerrado e invariante.

Los siguientes resultados caracterizan las pseudo-curvas fuertemente invariantes por fun-

ciones de T ; el primero dinámicamente y el segundo desde un punto de vista topológico.

Lema 1.2.24 Sea T ∈ T . Toda pseudo-curva T -invariante por una función de T es fuertemente T -

invariante y T -minimal.

Demostración. Sean T ∈ T , A una pseudo-curva fuertemente T -invariante y B ⊂ A cerrado y T -

invariante. En estas condiciones tenemos π(B) = S1 porque T ∈ T y π−1(PA)∩A = π−1(PA)∩B
porque A es pinchada.

Por otro lado, como B es cerrado y A es núcleo,

B ⊂ A = π−1(PA) ∩ A = π−1(PA) ∩B ⊂ B. ⊓⊔
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Lema 1.2.25 Una pseudo-curva fuertemente T -invariante por una función de T , o bien es una curva o

bien no contiene ningún arco de curva.

Demostración. Sean T ∈ T , A una pseudo curva fuertemente T -invariante y S ⊂ A un arco de

curva. Podemos suponer que S es maximal respecto de la relación de inclusión. Es decir, no

existe ningún arco de curva S′ tal que S ( S′ ⊂ A. Si π(S) = S1 entonces el Lema 1.2.22 nos

garantiza que S es una curva. Por otro lado, si π(S) 6= S1, existe n ∈ N tal que π(S)∩Rn(π(S)) 6=
∅ y π(S) ( π(S) ∪ Rn(π(S)) ya que R es una rotación irracional. Dado que T (A) = A y A

es pinchada, Fn(S) ∩ S 6= ∅ y T n(S) ∪ S es un arco de curva contenido en A. Claramente

S ( T n(S) ∪ S, lo que contradice la maximalidad de S. ⊓⊔

1.3. Bandas

En esta sección introducimos el concepto de Banda. Es para dichos objetos para los que se

demuestra el Teorema de Sharkovskiı̆. Retomamos las ideas fundamentales contenidas en [7],

pero haremos una reinterpretación en términos de pseudo-curvas.

1.3.1. Definición y propiedades elementales

La definición en cuestión es:

Definición 1.3.1 Sea A ∈ 2Ω tal que π(A) = S1. Diremos que A es una banda si Aθ = A ∩ π−1(θ) es

un intervalo para cada θ en un subconjunto residual de S1. Si en particular todos los conjuntos Aθ son

intervalos y δ(A) := ı́nf{|Aθ| : θ ∈ S1} > 0 diremos que A es una banda sólida.

Observación 1.3.2 Una pseudo-curva es una banda núcleo.

Demostramos ahora un lema que implica la conexidad de las bandas sólidas.

Lema 1.3.3 SeaK ∈ 2Ω tal que π(K) = S1. Supongamos queKθ es conexo para toda θ ∈ S1. Entonces,
K es conexo.

Demostración. Supongamos que K no es conexo. Existen U y V cerrados de K disjuntos y dife-

rentes del vacı́o tales que U∪V = K . Nótese que U y V son compactos enΩ. Consecuentemente,

π(U) y π(V ) son cerrados en S1 y π(U) ∪ π(V ) = π(K) = S1. Como S1 es conexo existe θ ∈
π(U) ∩ π(V ) y para dicha θ tenemos

Kθ = π−1(θ) ∩ (U ∪ V ) = (π−1(θ) ∩ U) ∪ (π−1(θ) ∩ V ).

Los conjuntos π−1(θ) ∩ U y π−1(θ) ∩ V son cerrados, disjuntos y diferentes del vacı́o. Entonces

Kθ no es conexa, lo que contradice la hipótesis. ⊓⊔

Corolario 1.3.4 Sea A una banda sólida. Entonces A es conexa.
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Demostración. Si A es una banda sólida, entonces Aθ es un intervalo para toda θ ∈ S1. Por el
Lema 1.3.3 A es conexa. ⊓⊔

El siguiente lema establece que el conjunto de bandas es cerrado bajo la operación núcleo.

Lema 1.3.5 Si A es una banda, entonces Anuc también lo es. Más concretamente, si GA es el residual de

continuidad de la función fibra para A, entonces Aθ = (Anuc)θ, para toda θ ∈ GA.

Demostración. Sea A una banda y seaGA el residual de continuidad de la función fibra asociada

a A (Definición 1.1.11). En virtud del Lema 1.1.10, Anuc = ∪θ∈GAA
θ y por lo tanto Aθ ⊂ (Anuc)θ

para toda θ ∈ GA. Por otro lado Anuc ⊂ A garantiza (Anuc)θ ⊂ Aθ . Concluimos pues que

Aθ = (Anuc)θ para toda θ ∈ GA. Si A es una banda, por definición existe un residual G′ tal que

Aθ es un intervalo para toda θ ∈ G′. Sea G = GA ∩ G′. Entonces G es un residual en S1 que

cumple que Aθ = (Anuc)θ es un intervalo para toda θ ∈ G. Por tanto Anuc es una banda. ⊓⊔

Definimos a continuación el concepto de función semicontinua superior e inferiormente.

La definición es diferente de la Definición 1.1.7. La diferencia radica en que la que daremos a

continuación es para funciones con valores reales y la primera que dimos era para funciones

multivaluadas.

Definición 1.3.6 Sea f : S1 → I . Diremos que f es semicontinua superiormente (resp. inferiormen

te) si para toda θ ∈ S1 y para toda sucesión {θn}∞n=1 ⊂ S1 tal que ĺım θn = θ, se cumple ĺım f(θn) ≤
f(θ) (resp. ĺım f(θn) ≥ f(θ)).

La prueba del siguiente lema puede encontrarse en [3] y/o [6]

Lema 1.3.7 Las siguientes afirmaciones son ciertas.

(a) La función f : S1 → I es semicontinua inferiormente (resp. semicontinua superiormente) si y solo si

el conjunto {θ ∈ S1 : f(θ) > λ} (resp. {θ ∈ S1 : f(θ) < λ}) es abierto para toda λ ∈ I .

(b) La función f : S1 → I es semicontinua inferiormente (resp. semicontinua superiormente) si y solo si

el conjunto {(θ, x) ∈ Ω : x ≥ f(θ)} (resp. {(θ, x) ∈ Ω : x ≤ f(θ)}) es cerrado en Ω.

(c) Las funciones semicontinuas superiormente (resp. inferiormente) son continuas en un residual en S1.

Las siguientes funciones nos serán de mucha utilidad.

Definición 1.3.8 Dado A ∈ 2Ω tal que π(A) = S1, definimos las funciones

M
A
(θ) := máx{x ∈ I : (θ, x) ∈ A}

m
A
(θ) := mı́n{x ∈ I : (θ, x) ∈ A},

y los conjuntos A+ := Grafo(M
A
, S1) y A− := Grafo(m

A
, S1).

Lema 1.3.9 Sea A ∈ 2Ω , tal que π(θ) = S1. La funcionM
A
es semicontinua superiormente y la función

mA es semicontinua inferiormente.
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Demostración. Demostraremos queM
A
es semicontinua superiormente. Sean θ ∈ S1 y {(θn, xn)}∞n=1

una sucesión contenida en A tal que ĺım θn = θ. Si (θ, x) es un punto lı́mite de la sucesión, la

compacidad de A nos garantiza que (θ, x) ∈ A, por lo tanto, x ≤M
A
(θ). Entonces por la Defini-

ción 1.3.6MA es semicontinua superiormente. La semicontinuidad inferior de la funciónmA se

demuestra de manera análoga. ⊓⊔

Las bandas núcleo no son necesariamente conexas en todas sus fibras, pero el siguiente lema

nos da una condición suficiente para que sı́ lo sean.

Lema 1.3.10 Sea A una banda núcleo. Sea S1A := {θ ∈ S1 : M
A− (θ) < m

A+ (θ)}. Entonces Aθ es un

intervalo, no degenerado, para toda θ ∈ S1A.

Demostración. Demostraremos que Aθ = {θ} × [mA(θ),MA(θ)] si θ ∈ S1A. Dado que A es una

banda núcleo, por el Lema 1.1.10 existe un conjunto residual G ⊂ S1 tal que la función fibra es

continua y Aα es un intervalo para toda α ∈ G. Por el Corolario 1.1.12(c),A = A ∩ π−1(G).

Tomemos (θ,M
A
(θ)) con θ ∈ S1A. En virtud de la observación anterior, existe una suce-

sión {(θn, xn)}∞n=1 ∈ A ∩ π−1(G) tal que ĺım(θn, xn) = (θ,MA(θ)). Tomando si es necesario

una parcial, podemos suponer que la sucesión m
A
(θn) es convergente y tendremos que a =

ĺımmA(θn) ≤ M
A− (θ). Veamos ahora que {θ} × [M

A− (θ),MA(θ)] ⊂ Aθ. Si y ∈ [M
A− (θ),MA(θ)]

entonces existe t ∈ [0, 1] tal que y = ta − (1 − t)M
A
(θ). Tendremos entonces que la sucesión

{(θn, tmA(θn) − (1 − t)MA(θn))}∞n=1 converge a (θ, y). Observemos que (θn, tmA(θn) − (1 −
t)M

A
(θn)) ∈ Aθn ya que θn ∈ G, y por lo tanto (θ, y) ∈ Aθ . De manera análoga se prueba

que {θ} × [mA(θ),mA+ (θ)] ⊂ Aθ y comom
A+ (θ) > M

A− (θ) obtenemos

Aθ = {θ} × [m
A
(θ),M

A
(θ)]

Para toda θ ∈ S1A. ⊓⊔

Los siguientes tres resultados prueban que toda banda núcleo está limitada por dos pseudo-

curvas que la determinan.

Lema 1.3.11 Si A una banda núcleo entonces A+ y A− son pseudo-curvas.

Demostración. Sea A una banda núcleo. Sea G′
A
el residual donde la función fibra es continua

(Definición 1.1.11) y G′′
A
el residual en que los conjuntos Aθ son intervalos. Tendremos entonces

Aθ = [mA(θ),MA(θ)], para todo θ ∈ GA = G′
A ∩ G′′

A. Como la función fibra es continua en GA

obtenemos que las funcionesM
A
(θ) ym

A
(θ) son continuas en G

A
.

Para probar que A+ y A− son pseudo-curvas bastará con ver que A+ = Grafo(M
A
, G

A
) y

A− = Grafo(m
A
, G

A
).

Es inmediato que Grafo(M
A
, G

A
) ⊂ A+. Veamos el recı́proco. Sea (θ, x) ∈ A+. Como que

A es núcleo y A+ ⊂ A, para todo entorno Bε((θ, x)) existe un punto (θ′,M
A
(θ′)) ∈ Bε((θ, x)).

ComoBε((θ, x)) es un abierto, existe ε′ tal queBε′((θ
′,M

A
(θ′))) ⊂ Bε((θ, x)). En virtud de queA
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es núcleo existe (α,M
A
(α)) ∈ Bε′((θ

′,M
A
(θ′))) tal que (α,M

A
(α)) ∈ A ∩ π−1(GA). Por lo tanto,

(θ, x) ∈ Grafo(MA , GA) y en consecuencia A+ ⊂ Grafo(MA , GA). La demostración de que A− es

una pseudo-curva es análoga. ⊓⊔

Corolario 1.3.12 Si A es una pseudo-curva, entonces A+ = A− = A. Reciprocamente, si A es una

banda núcleo y A+ = A− entonces A = A+ = A− y A es una pseudo-curva.

Demostración. Sea A una pseudo-curva y PA su residual de continuidad. Entonces la función

M
A
es continua en PA. Por lo tanto Aθ = A+θ para todo θ ∈ PA, esto implica que A = A+

(Lema 1.2.16). Un argumento análogo prueba que A− = A. Veamos el recı́proco. Por hipótesis

tenemos que como PA+ = PA− entonces PA = PA+ y por lo tanto A es pinchado. Dado que A es

núcleo, el Teorema 1.2.13 nos garantiza que A es una pseudo-curva. ⊓⊔

Las bandas núcleo están determinadas por las pseudo-curvas que las limitan. Demostramos

esta idea intuitiva en el siguiente lema.

Lema 1.3.13 Sean A y B bandas núcleo tales que A+ = B+ y A− = B− entonces A = B.

Demostración. Sea G el residual obtenido al intersecar los residuales de continuidad de la fun-

ción fibra en A+, A−, A,B y los residuales donde las fibras de A y B son intervalos. Entonces

tendremos que Aθ = Bθ = {θ} × [m
A
(θ),M

A
(θ)] para toda θ ∈ G. Como que A y B son bandas

núcleo esto implica que A = B. ⊓⊔

Las funciones de T cumplen diferentes propiedades ligadas a las bandas y a los núcleos.

Demostramos a continuación algunas de ellas.

Lema 1.3.14 Sea A ∈ 2Ω , tal que π(A) = S1 entonces las cuatro afirmaciones siguientes son ciertas.

(a) π(T (A)) = S1.
(b) Si A es una banda entonces T (A) también lo es.

(c) Si A es núcleo entonces T (A) también lo es.

(d) T (Anuc) = T (A)nuc.

Demostración. Dado que la función T ∈ T , θ + ω ∈ π(T (A)) para todo θ ∈ π(A). Por lo tanto

S1 ⊂ π(T (A)). Esto prueba (a).

Si A es una banda, entonces por la Definición 1.3.1 existe un residual G ⊂ S1 tal que Aθ es

un intervalo para toda θ ∈ G. Como que Rω es una rotación, Rω(G) es también un residual

en S1. Observemos que la función Rω nos envia conjuntos residuales en conjuntos residuales de

manera biyectiva. La continuidad de T nos garantiza que T (A)θ = T (Aθ−ω) es un intervalo para

toda θ ∈ Rω(G). Esto prueba (b).

Supondremos ahora que A es núcleo. Sea G un residual de S1. Por el Corolario 1.1.12 ten-

dremos que A = A ∩ π−1(R−1(G)), y por la continuidad de T obtenemos

T (A) ∩ π−1(G) = T (A ∩ π−1(R−1(G))) = T (A ∩ π−1(R−1(G))) = T (A).
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Otra vez por el Corolario 1.1.12, T (A) es núcleo. Esto prueba (c).

Para demostrar (d), observemos que como Anuc ⊂ A tenemos T (Anuc) ⊂ T (A). Ası́, para

todo residual G en S1 se cumple

T (Anuc) ∩ π−1(G) ⊂ T (A) ∩ π−1(G).

Si tomamos el residual GT (A) en donde la función fibra es continua para el conjunto T (A) tene-

mos que

T (Anuc) ∩ π−1(GT (A)) ⊂ T (A) ∩ π−1(GT (A)) = T (A)nuc.

Por (c) T (Anuc) es núcleo. Como Anuc ⊂ A, por el Lema 1.1.10 y el Corolario 1.1.12 tenemos

T (Anuc) = T (Anuc) ∩ π−1(GT (A)) ⊂ T (A) ∩ π−1(GT (A)) = T (A)nuc.

Veamos la inclusión inversa. Se tiene

T (A)nuc = T (A)nuc ∩ π−1(Rω(G)) ⊂ T (A) ∩ π−1(Rω(G))

= T (A ∩ π−1(G)) = T (A ∩ π−1(G)) = T (Anuc).

Esto acaba la demostración del lema. ⊓⊔

El siguiente teorema es importante, pues podremos restringir nuestro estudio solo a bandas

minimales con respecto a la inclusión.

Teorema 1.3.15 Sea T ∈ T . Toda banda T -invariante, contiene una banda minimal (respecto a la

relación de inclusión) T -invariante. Toda banda minimal T -invariante es núcleo y fuertemente T -

invariante.

Demostración. Sea A una banda T -invariante y sea A = {Ai : i ∈ I} una familia anidada

de bandas T -invariantes contenida en A (es decir si i, j ∈ I entonces, o bien Ai ⊂ Aj o bi-

en Aj ⊂ Ai). Si A∞ := ∩i∈IAi, entonces es inmediato que A∞ es compacto, no vacio, T -

invariante y π(A∞) = S1. Como A∞ es compacto, para toda k ∈ N, existe Ai(k) ∈ A tal que

Ai(k) ⊂ B 1
k
(A∞) = {z ∈ Ω : d(z, A∞) < 1

k} entonces, para la sucesión {Ai(k)}∞k=1 tenemos:

A∞ ⊂
∞⋂

k=1

Ai(k) ⊂
∞⋂

k=1

(B 1
k
(A∞)) = A∞

de donde podemos concluir que A∞ = ∩∞
k=1Ai(k). Definamos ahora GA∞ := ∩∞

k=1GAi(k)
. Como

cadaGAi(k)
es un conjunto residual (Lema 1.1.10) y la intersección numerable de residuales es un

residual, tenemos queGA∞ es residual en S1 y la función fibra es continua para todaAi(k). Como

{Aθ
i(k)}∞k=1 es una sucesión anidada de intervalos para toda θ ∈ GA∞ , entonces Aθ

∞ = ∩∞
k=1A

θ
i(k)

es también un intervalo para toda θ ∈ GA∞ . Consecuentemente A∞ es una banda. Por lo que

hemos demostrado que la cadena A tiene cotas inferiores. Entonces por el Lema de Zorn existen

bandas T -invariantes minimales.
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Demostraremos ahora la segunda afirmación del teorema. Si B es una banda minimal, en-

tonces en virtud del Lema 1.3.5, Bnuc ⊂ B es también una banda. Si B es T -invariante, tenemos

que T (B) ⊂ B y por el Lema 1.3.14(d), T (Bnuc) = T (B)nuc ⊂ Bnuc. Ası́ pues, Bnuc es una banda

T -invariante. La minimalidad de B implica Bnuc = B, por tanto, B es núcleo. Finalmente si B

es una banda núcleo T -invariante que no es fuertemente T -invariante, entonces T (B) ( B es

también una banda núcleo T -invariante (Lema 1.3.14(b,c)). Por tanto B no es minimal con esta

propiedad. Por tanto T (B) = B. ⊓⊔

El siguiente lema nos garantiza que la familia de bandas núcleo T -invariantes es cerrada bajo

intersecciones no vacias.

Lema 1.3.16 La intersección de dos bandas T -invariantes es o bien vacı́a, o bien una banda T -invariante.

Demostración. Si A y B son dos bandas T -invariantes tales que A ∩B 6= ∅ entonces π(A ∩B) es

un compacto no vacı́o. Además A y B son T -invariantes. Entonces, π(A ∩ B) es Rω-invariante

y como Rω es una rotación irracional tenemos que π(A ∩B) = S1. Sean GA y GB los residuales

en donde las fibras de A y B son intervalos. Si θ ∈ GA ∩ GB la fibra (A ∩ B)θ es también un

intervalo, entonces las fibras de A ∩B son intervalos en un residual. ⊓⊔

La importancia del siguiente teorema, radica en que nos da una dicotomia en la “estructura”

de las bandas núcleo fuertemente invariantes, solo pueden ser de dos tipos, o bien sólidas o bien

pseudo-curvas. Lo cual simplifica notablemente el estudio de dichos objetos. Recordemos que

S1A fue definido en el Lema 1.3.10.

Teorema 1.3.17 Sea T ∈ T y sea A una banda núcleo fuertemente T -invariante. Entonces S1A es abierto

y una y solo una de las dos afirmaciones siguientes se cumple.

(a) S1A es vacio y A es una pseudo-curva T -minimal, o

(b) S1A es denso en S1 y A es una banda sólida.

Demostración. Por el Lema 1.3.9m
A+

es una función semicontinua inferiormente yM
A− es una

función semicontinua superiormente. Entonces m
A+ −M

A− es una función semicontinua infe-

riormente. Por tanto, por el Lema 1.3.7(a), S1A es un abierto en S1.
Supongamos ahora que S1A 6= S1. Bajo esta hipótesis, S1 \ S1A es un abierto en S1 tal que

si θ ∈ S1 \ S1A entonces M
A− (θ) ≥ m

A+
(θ). Sean G1 y G2 los residuales donde las funciones

M
A
ym

A
son continuas. Claramente las funcionesM

A+ ,MA− ,mA+ ,mA− son continuas en G =

G1 ∩G2 (Lema 1.3.7(c)). Tendremos entonces que para toda θ ∈ G, A+θ = {(θ,M
A
(θ))} y A−θ =

{(θ,m
A
(θ))} y por tanto m

A+ (θ) = M
A
(θ) y M

A− (θ) = m
A
(θ). De donde, si θ ∈ G ∩ (S1 \ S1A)

tendremos

M
A
(θ) = m+

A
(θ) ≤M

A− (θ) = m
A
(θ).

Por otra parte como M
A
(θ) ≥ m

A
(θ) para toda θ ∈ S1 obtenemos M

A
(θ) = m

A
(θ) para toda

θ ∈ G ∩ (S1 \ S1A). Por lo tanto A es pinchado en G ∩ (S1 \ S1A). Ahora bien, dado que A es
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fuertemente invariante, si A es pinchado en θ lo es también en Rn
ω(θ) para cada n con lo que

A es pinchado en un subconjunto denso de S1 y es una pseudo-curva. Sea PA su residual de

continuidad. Tendremos entonces que PA ⊂ S1 \ S1A y por lo tanto

S1 = PA ⊂ S1 \ S1A = S1 \ S1A

de donde S1A = ∅. La minimalidad de A es consecuencia del Lema 1.2.24.

Supongamos ahora que S1A = S1. Sea Θ′ = {θ ∈ S1 : Aθ es un intervalo}. Por ser A fuerte-

mente invariante tendremos que Rω(Θ
′) ⊂ Θ′. Por otra parte, como S1A es abierto y por el

Lema 1.3.10, S1A ⊂ Θ′ y existira un k ∈ N tal que S1 = ∪k
i=0R

i
ω(Θ

′) ⊂ Θ′. Esto prueba que

todas las fibras de A son intervalos.

Finalmente veremos que A es una banda sólida. Definamos

S1A(k) := {θ ∈ S1A : M
A− (θ) < m

A+
(θ)− 1

k
}.

Por ser m
A+ (θ) −M

A− (θ) semicontinua inferiormente S1A(k) es abierto para toda k ∈ N. Como

S1A = ∪k∈NS1A(k) es no vacı́o, existe k′ tal que S1A(k′) 6= ∅. Por ser ω un irracional, existe N de

manera que S1 = ∪N
n=1R

−n
ω (S1A(k′)). Como que T i es uniformemente continua para toda i ∈ N,

sea δi > 0 tal que

d ((θ, x), (θ′, x′)) < δi ⇒ d
(
T i(θ, x), T i(θ′, x′)

)
<

1

k′
.

Finalmente sea δ = mı́n{δ1, . . . , δN}. Probaremos que para todo θ ∈ S1, M
A
(θ) − m

A
(θ) ≥ δ.

Tomemos θ ∈ S1 y 1 ≤ j ≤ N tal que θ ∈ R−j(S1A(k′)). Sean x1, x2 ∈ Aθ tales que

T j(θ, x1) = (θ + jω,M
A− (θ + jω)),

T j(θ, x2) = (θ + jω,m
A+

(θ + jω)).

ComoRj
ω(ω) ∈ S1A(k′), tendremos que d(T j(θ, x1), T

j(θ, x2)) >
1
k′ y por lo tanto d((θ, x1), (θ, x2)) ≥

δj ≥ δ. Asi pues |M
A
(θ) −m

A
(θ)| ≥ |x1 − x2| > δ. ⊓⊔

Corolario 1.3.18 Sea A una banda núcleo sólida T -invariante. Si A+ y A− también son T -invariantes,

entonces A+ ∩ A− = ∅.

Demostración. Por el Lema 1.3.16 tenemos que si A+ ∩ A− 6= ∅ entonces A+ ∩ A− es una banda

T -invariante. Por otra parte el Lema 1.2.24 nos asegura que A+ y A− son conjuntos minimales y

por lo tanto A+ ∩ A− = A+ = A−. Del Corolario 1.3.12 deducimos que A es una pseudo-curva,

lo que contradice la hipótesis. ⊓⊔

1.3.2. Ordenación y recubrimientos entre bandas

En esta sección también hacemos uso de las definiciones dadas en [7], nuevamente las rein-

terpretamos en función de las pseudo-curvas y de los resultados que hemos obtenido en la

sección anterior. Está subsección finaliza con un teorema que puede ser entendido como la gen-

eralización teorema de punto fijo, claro esta en el contexto de bandas núcleo.
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Definición 1.3.19 Diremos que dos bandas A y B satisfacen A < B si existe un residual G en S1 tal

que para toda θ ∈ G, M
A+ (θ) < m

B− (θ). Diremos que dos bandas son ordenadas si se cumple que

A < B o A > B.

Definición 1.3.20 Diremos que las bandas A y B están debilmente ordenadas, A ≤ B siM
A+ (θ) ≤

m
B− (θ) para toda θ en un residual en S1.

Observación 1.3.21 Si A y B son bandas núcleo, las siguientes propiedades son verdaderas.

(a) A− ≤ A+.

(b) A ≤ B si y solo si A+ ≤ B−.

(c) Si B ⊂ A entonces A− ≤ B− ≤ B+ ≤ A+.

En lo que sigue veremos que dos pseudo-curvas debilmente ordenadas, definen una única

banda núcleo que las tiene como tapas. Empecemos observando el siguiente resultado.

Lema 1.3.22 Sean A y B dos pseudo-curvas tales que A ≤ B. Entonces m
A
(θ) ≤ M

B
(θ) para toda

θ ∈ S1.

Demostración. Sea

Ωm
A
= {(θ, x) : x ≥ m

A
(θ)}.

Si (θ,M
B
(θ)) ∈ Ωm

A
para toda θ ∈ S1, tendremos que m

A
(θ) ≤ M

B
(θ) para toda θ ∈ S1.

Dado que B es una pseudo-curva, en particular es compacto y M
B
(θ) ∈ B para toda θ ∈ S1.

Por lo anterior es suficiente demostrar que B ⊂ Ωm
A
, lo hacemos como sigue. Como m

A
es

semicontinua inferiormente (Lema 1.3.9), El Lema 1.3.7(b) nos implica queΩm
A
es cerrado enΩ.

Como A y B son pseudo-curvas, el Corolario 1.3.12 nos garantizaM
A
(θ) = M

A+ (θ) y mB
(θ) =

m
B− (θ) para toda θ ∈ S1. SeaG el residual en S1, tal queM

A+
(θ) ≤ m

B− (θ) para toda θ ∈ G. En

consecuencia

m
A
(θ) ≤M

A
(θ) =M

A+
(θ) ≤ m

B− (θ) = m
B
(θ) ≤M

B
(θ),

para toda θ ∈ G. De donde {(θ,MB (θ)) : θ ∈ G} ⊂ Ωm
A
. En virtud de que Ωm

A
es cerrado y B

es una pseudo-curva, el Corolario 1.3.12 nos implica {(θ,M
B
(θ)) : θ ∈ G} ⊂ Ωm

A
. ⊓⊔

Ası́ pues, tiene sentido la siguiente definición.

Definición 1.3.23 Sean A y B dos pseudo-curvas tales que A ≤ B. Definimos

I
AB

=

( ⋃

θ∈S1
[m

A
(θ),M

B
(θ)]

)nuc

.

Lema 1.3.24 Las siguientes afirmaciones son ciertas

(a) Si A y B son pseudo-curvas tales que A ≤ B entonces I
AB

es una banda núcleo.

(b) Sean A y B dos pseudo-curvas tales que A ≤ B entonces I−
AB

= A y I+
AB

= B.
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(c) Sean A y B dos pseudo-curvas tales queM
A
(θ) < m

B
(θ) para toda θ ∈ S1 entonces I

AB
es sólida y

IAB =
⋃

θ∈S1
[mA(θ),MB (θ)].

(d) Si A,A′, B′, B son pseudo-curvas tales que A ≤ A′ ≤ B′ ≤ B, entonces I
A′B′ ⊂ I

AB
.

(e) Si C es una banda núcleo entonces I
C−C+

= C.

(f) Sean C y D dos bandas sólidas núcleo disjuntas tales que C < D, entonces I
C+D− es también una

banda sólida núcleo.

(g) Sean C y D dos pseudo-curvas disjuntas tales que C < D, entonces I
CD

es una banda núcleo con

interior diferente del vacio.

Demostración. Empezamos demostrando el apartado (a). Denotamos ĨAB =
⋃

θ∈S1 [mA(θ),MB (θ)]

y veremos que es compacto. Sea {(θn, xn)}∞n=1 ⊂ Ĩ
AB

una sucesión convergente con lı́mite (θ, x).

Como

m
A
(θn) ≤ xn ≤M

B
(θn)

para toda n ∈ N, la semicontinuidad inferior demA y la semicontinuidad superior deMB impli-

can m
A
(θ) ≤ x ≤ M

B
(θ). Entonces (θ, x) ∈ Ĩ

AB
. Por lo tanto Ĩ

AB
es compacto. Dado que todas

las fibras de ĨAB son intervalos, ĨAB es una banda. Luego, por el Lema 1.3.5, IAB = (ĨAB )
nuc es

una banda núcleo. Esto termina la prueba de (a).

Veamos (b). Por el Lema 1.3.5

( ⋃

θ∈S1
[m

A
(θ),M

B
(θ)]

)β

= [m
A
(β),M

B
(β)] = Iβ

AB

para toda β en un residual G de S1. Sea G′ el residual de continuidad de la función fibra en

I
AB

y (ϕ
P
A

, PA) el representante canónico de la pseudo-curva A. Tendremos entonces Iθ
AB

=

[ϕ
P
A

(θ),MB(θ)] para toda θ ∈ G ∩ G′ ∩ PA. Como que m
IAB

es continua en G′ obtenemos que

(I−
AB

)θ = {(θ, ϕ
P
A

(θ))} = Aθ para toda θ ∈ G∩G′ ∩ PA. Por el Lema 1.2.16 obtenemos I−
AB

= A.

La prueba de que I+
AB

= B es análoga. Esto termina la prueba de (b).

Vamos ahora a probar (c). La hipótesis de queMA(θ) < mB(θ) para toda θ ∈ S1 implica que

A y B son disjuntas. Sea

k = ı́nf{d(x, y) : x ∈ A, y ∈ B}.

Por ser A y B compactos disjuntos existen x ∈ A e y ∈ B tales que k = d(x, y) > 0. Tendremos

entonces que diam(Iθ
AB

) ≥ k > 0 para toda θ ∈ S1. Ahora veremos que Iθ
AB

es un intervalo para

toda θ ∈ S1. Notemos que en virtud del Lema 1.3.10, S1(I
AB

) = S1, y Iθ
AB

es un intervalo para

toda θ ∈ S1. Consecuentemente I
AB

es una banda sólida núcleo. Ası́, hemos demostrado (c).

Veamos ahora (d). Por (b) tenemos

I−
AB

= A, I+
AB

= B, I−
A′B′ = A′, I+

A′B′ = B′.
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Por el Lema 1.3.5 Iθ
AB

= [m
A
(θ),M

B
(θ)] para θ en un residual G y Iθ

A′B′ = [m
A′ (θ),MB′ (θ)] para

θ en un residual G′. SeaG′′ = G ∩G′, entonces

Iθ
A′B′ = [m

A′ (θ),MB′ (θ)] ⊂ [m
A
(θ),M

B
(θ)] = Iθ

AB

para toda θ ∈ G′′. Por lo tanto por el Corolario 1.1.12, tenemos

I
A′B′ = I

A′B′ ∩ π−1(G′′) ⊂ I
AB

∩ π−1(G′′) = I
AB
.

Esto muestra (d).

Ahora veremos (e). Por (b) tenemos que I−
C−C+

= C− y I+
C−C+

= C+ y por el Lema 1.3.13

obtenemos que I
C−C+

= C.

Ahora demostraremos (f). Sean C y D bandas sólidas núcleo disjuntas verificando C < D.

En virtud de la conexidad deD (Corolario 1.3.4)

Ω \D = {(θ, x) ∈ Ω : x < m
D
(θ)} ∪ {(θ, x) ∈ Ω : x > M

D
(θ)},

los cuales son conjuntos ajenos. Como que M
D
es semicontinua superiormente y m

D
es semi-

continua inferiormente, el Lema 1.3.7(b) nos implica que dichos conjuntos son abiertos. La

condición C < D combinada con la conexidad de C en cada fibra (Definición 1.3.1), establece

C+ ⊂ C ⊂ {(θ, x) ∈ Ω : x < m
D
(θ)}. En consecuencia M

C+ (θ
′) < m

D− (θ′) para toda θ′ ∈ G′.

Esto implica que estamos en las hipótesis de (c). Por lo tanto I
C+D− es una banda sólida, esto

muestra (f).

Finalmente demostraremos (g). Sea

Ω′ = {(θ, x) ∈ Ω : x ≤M
C
(θ)} ∪ {(θ, x) ∈ Ω : x ≥ m

D
(θ)}

Como que M
C
es semicontinua superior y m

D
es semicontinua inferior, el Lema 1.3.7(b) nos

implica que Ω′ es cerrado en Ω. En consecuencia Ω \ Ω′ es un abierto en Ω y la condición

C < D nos garantiza que es diferente del vacı́o. Entonces basta demostrar que Ω \ Ω′ ⊂ I
CD
.

Demostraremos este hecho de la siguiente manera. Observemos que

Ω \Ω′ = {(θ, x) ∈ Ω :M
C
< m

D
(θ)}.

Sea (θ, x) ∈ Ω \Ω′ entonces forzosamenteM
C
(θ) < m

D
(θ), por (b)M

I
−
CD

(θ) < m
I
+
CD

(θ). Luego,

por el Lema 1.3.10 θ ∈ S1 y Iθ
CD

= {θ} × [m
C
(θ),M

D
(θ)]. Por lo tanto (Ω \ Ω′)θ ⊂ I

CD
. Esto

prueba (Ω \Ω′)θ ⊂ ICD para toda θ ∈ S1 y Ω \Ω′ ⊂ ICD . Esto demuestra (g). Ası́ concluimos la

demostración. ⊓⊔

Definición 1.3.25 Sean T ∈ T ,B yA bandas núcleo. Diremos que T envia aA enB en sentido positivo

si T (A−) ≤ B− y T (A+) ≥ B+. Lo denotaremos comoA
+−→ B. Diremos que T enviaA enB en sentido

negativo si T (A−) ≥ B+ y T (A+) ≤ B−. Lo denotaremos comoA
−−→ B. Usaremos el sı́mboloA

±−→ B

si no estamos interesados en aclarar cual de ellas se satisface.
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Observación 1.3.26 Sea T ∈ T . Supongamos que A,B y C son bandas núcleo. Si T envia A en B en

sentido positivo (resp. negativo), entonces T (A−) ≤ T (A+) (resp. T (A+) ≤ T (A−)). Esto implica que

si T envia A en C lo hará también en sentido positivo (resp. negativo).

Lema 1.3.27 Sea T ∈ T . Sean A,D y B bandas núcleo. Si A
±−→ B yD ⊂ B entonces A

±−→ D.

Demostración. Supongamos que A
+−→ B entonces combinando la hipótesis D ⊂ B y la Obser-

vación 1.3.21(a)(c) las desigualdades T (A−) ≤ B− ≤ D− ≤ D+ ≤ B+ ≤ T (A+) son ciertas.

Concluimos pues A
+−→ D. Si A

−−→ B la demostración es análoga. ⊓⊔

Notación 1.3.28 Cuando T (A) = B y además T (A+) = B+ (T (A+) = B−) y T (A−) = B−

(T (A−) = B+), diremos que T (A) ≡ B.

Lema 1.3.29 Sean T ∈ T , A y B dos bandas núcleo. Si A
±−→ B con respecto a T , entonces B ⊂ T (A).

Demostración. Supongamos A
+−→ B. Como A es una banda núcleo, por el Lema 1.3.14, T (A)

también lo és. Del Lema 1.3.11 tenemos que A+, A−, T (A)+, T (A)− son pseudo-curvas y el

Lema 1.2.23 nos garantiza que T (A+), T (A−) también son pseudo-curvas y cumplen T (A+), T (A−) ⊂
T (A). En virtud de A

+−→ B tenemos T (A−) ≤ B− y B+ ≤ T (A+). Las seis pseudo-curvas

cumplen:

T (A)− ≤ T (A−) ≤ B− ≤ B+ ≤ T (A+) ≤ T (A)+.

Entonces por el Lema 1.3.24(d) y el Lema 1.3.24(e) tenemos que

B = I
B−B+ ⊂ I

T (A−)T (A+)
⊂ I

T (A)−T(A)+
= T (A).

La demostración del otro caso es análoga. ⊓⊔

Corolario 1.3.30 Sea T ∈ T . Si A es una pseudo-curva y A
±−→ B entonces B es una pseudo-curva y

T (A) ≡ B.

Demostración. Como A es una pseudo-curva, por el Lema 1.2.23, T (A) también lo és. En virtud

del lema anterior B ⊂ T (A) y como B es una banda núcleo B es una pseudo-curva y por lo

tanto B = T (A). ⊓⊔

Lema 1.3.31 Sea T ∈ T y A, B y B′ bandas núcleo.

(a) Si A
±−→ B, entonces existe una banda núcleo C ⊂ A tal que T (C) ≡ B.

(b) Supongamos que A
±−→ B y A

±−→ B′. Entonces si B y B′ están debilmente ordenadas las bandas

núcleo C y C′, obtenidas en (a), también se pueden construir debilmente ordenadas, es decir: si B ≤
B′ entonces C ≤ C′ siempre que A

+−→ B y C ≥ C′ cuando A
−−→ B.

Demostración. Demostramos el lema en el caso en que A
+−→ B. El otro caso se demuestra de

manera análoga.
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Primero demostraremos (a). Por el Lema 1.3.29 tenemos que B+ ⊂ B ⊂ T (A). Como B+

es compacto T−1(B+) es también compacto, y A ∩ T−1(B+) es compacto, no vacio y π(A ∩
T−1(B+)) = S1. Sea

ϕ(θ) := m
A∩T−1(B+)

(θ).

Por el Lema 1.3.9 la función ϕ es semicontinua inferiormente. SeaGϕ el residual de S1 en donde

ϕ es continua. Por tanto

C+ := A(ϕ,Gϕ)

es una pseudo-curva. Claramente A− ≤ C+. Consideremos ahora IA−C+ .

Por el Lema 1.3.24(b) tendremos que I+
A−C+

= C+. Por otra parte I
A−C+

⊂ I
A−A+

y del

Lema 1.3.24(e) tendremos I
A−C+ ⊂ A.

Por el Lema 1.2.23 T (C+) es una pseudo-curva y por construcción T (C+) y B+ se cortan en

un residual y por lo tanto T (C+) = B+. Como que T (A−) ≤ B− tendremos que I
A−C+

+−→ B.

Consideremos el compacto no vacio T−1(B−) ∩ I
A−C+ . Definimos la función:

ψ(θ) :=M
T−1(B−)∩I

A−C+

(θ).

De manera análoga a C+, la función ψ nos define la pseudo-curva C−. Sea C := I
C−C+ . Con

los mismos argumentos que usamos para las propiedades de IA−C+ podemos concluir que C

cumple:

C ⊂ I
A−C+ ⊂ A, I−

C−C+
= C−, I+

C−C+
= C+,

I
C−C+

+−→ B, T (C+) = B+, T (C−) = B−.

Solo resta demostrar que T (C) ⊂ B para obtener T (C) ≡ B. Supongamos que existe un punto

(θ, c) ∈ C tal que T ((θ, c)) /∈ B. Como B es compacto, existe un entorno Bε((θ, c)) tal que

T (Bε((θ, c)))∩B = ∅. Como que C es una banda núcleo, existeG
C
un residual tal que para todo

θ′ ∈ G
C
la fibra de C es un intervalo y la función fibra es continua (Lema 1.3.5). Dado que G

C
es

residualBε((θ, c))∩(C∩π−1(G
C
)) 6= ∅. Sea (β, b) ∈ Bε((θ, c))∩(C∩π−1(G

C
)). Para dicho punto

se cumplem
C
(β) < b < M

C
(β) y T ((β, b)) = (β + ω, b′) /∈ B. Supongamos que b′ > M

B
(β + ω).

Como T (C+) = B+ y T (C−) = C− se tiene

T (β,M
C
(β)) = (β + ω,M

B
(β + ω)),

T (β,m
C
(β)) = (β + ω,m

B
(β + ω)).

Además T (Cβ), es un intervalo. Luego, la continuidad de la función T restringida a la fibra β

implica que existe a ∈ [m
C
(β), b] tal que

T ((β, a)) = (β + ω,MB (β + ω)).

contradiciendo que M
B
(β + ω)) = ϕ(β + ω) := m

A∩T−1(B+)
(θ + ω). Para el caso en que b′ <

MB (β + ω) la demostración es análoga. Esto concluye la demostración de (a).
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Para demostrar (b), supongamos que B y B′ son dos bandas núcleo tales que A
+−→ B,A

+−→
B′ y B ≤ B′. Sea C′ una banda núcleo construida como en (a) tal que T (C′) ≡ B′. Tendremos

pues T (C′−) = B′− > B+. Por otra parte T (A−) < B− por hipótesis. Tendremos ası́ I
A−C′−

+−→
B. Aplicando (a) a las bandas I

A−C′− y B, obtendremos que existe una banda núcleo C tal que

C ⊂ I
A−C′− y T (C) ≡ B. Como C ⊂ I

A−C′− por la Observación 1.3.21(c) tenemos que C+ ≤ C′−

de donde C ≤ C′.Ası́ pues hemos acabado la parte del lema en queA
+−→ B. Como hemos dicho

anteriormente el otro caso es análogo. Esto concluye la demostración. ⊓⊔

Teorema 1.3.32 Sea T ∈ T . Sea A una banda núcleo tal que A
±−→ A. Entonces existe una banda núcleo

A∞ ⊂ A tal que T (A∞) ≡ A∞.

Demostración. Supongamos que A
+−→ A. Definiremos inductivamente una sucesión de bandas

núcleo. Por el Lema 1.3.31 y el Lema 1.3.27 existe una banda núcleo A1 ⊂ A tal que T (A1) ≡ A y

A1
+−→ A1. Sea i ∈ N y supongamos que para cada j ≤ i hemos definido bandas núcleo Aj tales

que Aj ⊂ Aj−1, T (Aj) ≡ Aj−1 y Aj
+−→ Aj . Entonces aplicando el Lema 1.3.31 y el Lema 1.3.27

al conjunto Ai tenemos que existe Ai+1 tal que Ai+1 ⊂ Ai, T (Ai+1) ≡ Ai y Ai+1
+−→ Ai+1. Sea

Ã∞ = ∩∞
i=0Ai. Como cadaAi es una banda, existe un residualGi, tal que si θ ∈ Gi entoncesA

θ
i es

un intervalo. Sea el conjunto residualG = ∩∞
i=0Gi. Entonces A

θ
i es un intervalo para toda θ ∈ G.

Por lo tanto Ãθ
∞ = ∩∞

i=0A
θ
i que es una intersección anidada de intervalos. Por consiguiente Ãθ

∞
es un intervalo para toda θ ∈ G y Ã∞ es una banda. También tenemos

T (Ã∞) = T (∩∞
i=0Ai) = ∩∞

i=0T (Ai) = ∩∞
i=1Ai−1 = Ã∞.

Sea A∞ = (Ã∞)nuc entonces por el Lema 1.3.14,

T (A∞) = T ((Ã∞)nuc) = (T (Ã∞))nuc = (Ã∞)nuc = A∞.

Para verificar que T (A∞) ≡ A∞ solo resta demostrar que T (A+
∞) = A+

∞ y T (A−
∞) = A−

∞.

Demostraremos que T (A+
∞) = A+

∞. Sea

P = {θ ∈ S1 : Aθ
i es un intervalo y A+θ

i es pinchado para toda i ≥ 1}.

Claramente P es residual. Por otro lado, como que T (Aθ
i ) = Aθ+ω

i−1 y T (A+θ
i ) = A

+(θ+ω)
i−1 para

toda i ≥ 1 tendremos que P + ω ⊂ P. Sea

Q = {θ ∈ S1 : la función fibra para A∞ y para Ã∞ es continua en θ}.

Demostraremos que Q+ ω ⊂ Q. Sea θ ∈ Q. Veremos que θ+ω ∈ Q. Consideremos {θn}∞n=1 una

sucesión tal que ĺım θn = θ+ω. En consecuencia, ĺım θn −ω = θ. En virtud de la continuidad de

la función fibra para A∞ en θ tenemos que ĺımAθn−ω
∞ = Aθ

∞. Tenemos entonces

ĺım(Aθn
∞ ) = ĺımT (Aθn−ω

∞ ) = T (ĺımAθn−ω
∞ ) = T (Aθn

∞ ) = Aθn−ω
∞ ,
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donde la igualdad ĺımT (Aθn−ω
∞ ) = T (ĺımAθn−ω

∞ ) es una consecuencia de la continuidad de la

función T en 2Ω (Proposición 1.1.5). Esto demuestra la continuidad de la función fibra de A∞

en θ + ω. Un argumento análogo prueba la continuidad de la función fibra de Ã∞ en θ + ω.

Obtenemos ası́ que θ+ω ∈ Q.Observemos que si α ∈ P, entonces la fibra Ãα
∞ es un intervalo, ya

que es una intersección anidada de intervalos. Si ademásα ∈ P ∩Q tendremos por el Lema 1.3.5,

Ãα
∞ = Aα

∞ y por tanto Aα
∞ es un intervalo. Sea S = P ∩ Q. El conjunto S también es residual

y S + ω ⊂ S. Sea α ∈ S. Como que Aα
∞ es un intervalo y la función fibra en A∞ es continua

tendremos que la funciónMA∞
es continua en α y por lo tantoA+

∞ es pinchado en α. Pongamos

A+α
∞ = {(α, a(α))}. Por otra parte, como que

Aα
∞ = Ãα

∞ = ∩α≥0A
α
i = ∩αA

α
i = {α} × [bi(α), ai(α)],

tendremos que a(α) = ĺım ai(α). Ahora bien, como α + ω ∈ S, las mismas consideraciones

son ciertas para α + ω. Ası́ pues, Aα+ω
∞ es un intervalo y A

+(α+ω)
∞ es pinchado y a(α + ω) =

ĺım ai(α + ω). Por otro lado T (α, ai(α)) = (α + ω, ai−1(α + ω)), ya que T (A+
i ) = A+

i−1 y ambas

son pinchadas en α y α+ ω. Ası́,

T (α, a(α)) = ĺımT (α, ai(α)) = ĺım(α+ ω, ai−1(α+ ω)) = (α+ ω, a(α+ ω)).

Tendremos entonces que A+
∞ y T (A+

∞) se cortan en S + ω y en virtud del Lema 1.2.16, T (A+
∞) =

A+
∞. La igualdad paraA−

∞ se demuestra demanera análoga y concluimos T (A∞) ≡ A∞.Cuando

Ai
−−→ Ai−1 la demostración es análoga. Esto termina la demostración del lema. ⊓⊔

Corolario 1.3.33 Sea T ∈ T y A una banda núcleo tal que T (A) = A. Entonces las siguientes situa-

ciones son ciertas:

(a) Si A cumple que A
+−→ A, entonces A contiene una pseudo-curva T -invariante y minimal.

(b) SiA cumple que A
−−→ A, y no contiene una pseudo-curva T -invariante, entonces contiene una banda

sólida núcleo T -invariante A∞ para la cual A+
∞ y A−

∞ son permutadas por T . Ambos conjuntos son

invariantes y minimales para la función T 2.

Demostración. Si A
+−→ A entonces T (A+

∞) = A+
∞ y por el Lema 1.2.24 A+

∞ es minimal. Esto

demuestra (a). Si A
−−→ A tenemos que T (A−

∞) = A+
∞ y T (A+

∞) = A−
∞ de donde T 2(A+

∞) = A+
∞

y T 2(A−
∞) = A−

∞ por lo tanto por el Lema 1.2.24 serán minimales para T 2. ⊓⊔

1.4. Teorı́a del Forcing

El objetivo de esta sección es introducir y estudiar la relación de forcing de los patterns de

las funciones en T . La razón que nos mueve a hacerlo es que podemos obtener mucha informa-

ción de la dinámica de las funciones. Como consecuencia se puede obtener una caracterización

de los conjuntos de periodos y cotas inferiores de la entropı́a topológica. Demostraremos que
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dicha teorı́a para una subclase de patterns que definiremos más adelante, coincide con la de

las funciones continuas en el intervalo. Suponiendo que la relación de forcing en el intervalo y

para las funciones de T coincide en la clase de todos los patterns, obtendremos el teorema de

Sharkovskiı̆ como un corolario. El caso general es análogo al del intervalo aunque técnicamente

más complejo y será objeto de estudio más adelante.

Recordaremos, en primer lugar, dichos conceptos para el intervalo, luego introduciremos los

conceptos análogos para las funciones de T y, finalmente, enunciaremos y demostraremos el

resultado principal de esta sección.

1.4.1. Dinámica combinatoria en el intervalo

Denotaremos el intervalo [0, 1] por I, la clase de funciones continuas de I en si mismo por

C(I, I). Dada una función f ∈ C(I, I), diremos que p ∈ I es un punto n-periódico de f si

fn(p) = p y f j(p) 6= p para toda j = 1, 2, . . . , n− 1. Al conjunto de puntos {p, f(p), . . . , fn−1(p)}
le llamamos órbita f -periódica. Dada una órbita periódica P = {p

1
, p

2
, . . . , p

n
} diremos que esta

ordenada espacialmente si p
i
< p

i+1
para toda i =, 1, 2, . . . , n − 1. Siempre supondremos que las

órbitas periódicas estan ordenadas espacialmente.

Una herramienta crucial para estudiar la dinámica combinatoria del intervalo son los grafos

de Markov.

Un grafo combinatorio con signo es un par G = (V, F ) donde V es el conjunto de vértices y F

el conjunto de flechas, es un subconjunto de V × V × {+,−}. Una flecha (I, J, s) con I, J ∈ V y

s ∈ {+,−} será denotada por I s−→ J.

Un camino de G es una sucesión de flechas α = (u1, u2, . . . , um) con ui = (vi, v
′
i, si) para

i = 1, 2 . . . ,m y v′i = vi+1 para i = 1, 2, . . . ,m − 1. Es decir, un camino de G es una sucesión

de flechas tal que cada una empieza en el vértice donde termina la anterior. El número m se

denomina longitud del camino. Cuando v′m = v1 (es decir cuando el camino termina y empieza

en el mismo vértice) α se llamará un lazo de longitudm.

Observemos que si α es un lazo, entonces (u2, u3, . . . , um, u1) es también un lazo de G. Este

lazo se denominará un desplazado de α y será denotado por R(α). Para el iterado n-ésimo de

R usaremos el simbolo Rn. Es decir, Rn(α) = (u1+n (mód m), u2+n (mód m), . . . , um+n (mód m)).

Notemos que Rkm(α) = α para todo k ≥ 0.

Dados dos caminos α = (u1, u2, . . . , um) y β = (w1, w2, . . . , wl) tales que um termina en el

mismo vértice donde empieza w1, se define la concatenación de α y β denotada por αβ, como

el camino (u1, u2, . . . , um, w1, w2, . . . , wl). Cuando α es un lazo denotaremos por αn, n ≥ 1, la

concatenación de α con si mismo n-veces. αn se denomina una n-repetición de α.

Dado un camino α = v1
s1−→ v2

s2−→ · · · vm sm−→ vm+1 se define el signo de α, denotado Sign(α),

como
m∏

i=1

s
i
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donde, en esta expresión, se usan las reglas obvias de multiplicación:

+ ·+ = − · − = +,

y + · − = − ·+ = −.

Sea α un lazo de un grafo combinatorio con signo G. Diremos que α es simple si no existe un

lazo β tal que α = βn con n ≥ 2. Es decir, si α no es una n-repetición de β con n ≥ 2.Observemos

que, en este caso, α = ββ . . . β︸ ︷︷ ︸
n

y que la longitud de β divide a la de α.

Sea f ∈ C(I, I) donde I es un intervalo de R y sea P = {p
1
< p

2
< . . . < p

n
} una órbita

periódica de f. Cada intervalo de la forma [p
i
, p

i+1
], i = 1, 2, . . . , n−1 será denominado un inter-

valo P -básico de f.A dicha órbita P le asignamos un grafo combinatorio con signo, denominado

P -grafo de f, de la siguiente manera. El conjunto V de vértices del P -grafo de f es exactamente

el conjunto de intervalos básicos. Asimismo si I = [a, b] y J son intervalos básicos, I
s−→ J es

una flecha del P -grafo de f si y solo si

s = +, f(a) < f(b) y J ⊂ [f(a), f(b)]

o bien s = −, f(a) > f(b) y J ⊂ [f(b), f(a)].

Observación 1.4.1 Sean I1
s
1−→ J1 y I2

s
2−→ J2 flechas del P -grafo de f que empiezan en el mismo

vértice. Entonces s
1
= s

2
.

Un lazo α = I0
s0−→ I1

s1−→ · · · Im−1
sm−1−→ Im en un P -grafo de f se llamará delgado si de cada

intervalo Ii sale una única flecha en el P -grafo de f. Es decir, si Ii = [ai, bi] entonces

Ii+1 =

{
[f(ai), f(bi)], cuando si = +

[f(bi), f(ai)], cuando s
i
= −

para i = 0, 1, 2, . . . ,m− 1. Por el Lema 2.6.3(a) de [2], α es negativo.

Sea f ∈ C(I, I) y P una órbita de f. Diremos que f es P -monótona si para cada intervalo

P -básico I, f
∣∣
I
es estrı́ctamente monótona.

Definición 1.4.2 Sea α = I0
s0−→ I1

s1−→ · · · In−1
sn−1−→ I0 un lazo de longitud n de un P -grafo de

f y sea x un punto periódico de periodo n de f. Diremos que α y x están asociados si f i(x) ∈ Ii para

i = 1, 2, . . . , n− 1.

Observación 1.4.3 Si α y x están asociados entonces fm(x) y Rm(α) también están asociados para

todam ≥ 1.

El siguiente resultado relaciona lazos con puntos periódicos. Es una reescritura del Teore-

ma 2.6.4 y del Lema 1.2.12 de [2].

Teorema 1.4.4 Sea f ∈ C(I, I) y sea P una órbita periódica de f. Supongamos que f es P -monótona.

SeaΘ una órbita periódica de f tal queΘ∩P = ∅. Entonces cada punto deΘ tiene un único lazo asociado

en el P -grafo de f. Sea además α un lazo en el P -grafo de f. Entonces:
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(a) Si α es un lazo simple o una 2-repetición de un lazo delgado, entonces α tiene un punto periódico

asociado. En este último caso, dicho punto pertenece a P.

(b) Si α tiene un punto periódico asociado, entonces α es simple o bien es una 2-repetición de un lazo

simple negativo.

En el conjunto de vértices de un P -grafo de f se puede definir el siguiente orden natural.

Dados I = [a, b] y J = [c, d] tales que I 6= J escribimos I < J si y solo si b ≤ c. Está ordenación

induce un orden lexicográfico en el conjunto de caminos del P -grafo de f. Más precisamente,

dados dos caminos α = v0
s0−→ v1

s1−→ · · · vm−1
sm−1−→ vm y β = w0

d0−→ w1
d1−→ · · ·wl−1

dl−1−→ wl

diremos que α < β si y solo si l ≥ m y β = α(wm
dm−→ wm+1

dm+1−→ · · ·wl−1
dl−1−→ wl) o bien existe

j ≤ m tal que vi = wi para i = 0, 1, 2, . . . , j − 1 y

{
vj < wj cuando Sign(v0

s0−→ v1
s1−→ · · · vj−1

sj−1−→ vj) = +

vj > wj cuando Sign(v0
s0−→ v1

s1−→ · · · vj−1
sj−1−→ vj) = −

Observemos que vi = wi para i = 0, 1, 2, . . . , j − 1, por la Observación 1.4.1 implica si = di

para i = 0, 1, 2, . . . , j − 1. Luego,

Sign(v0
s0−→ v1

s1−→ · · · vj−1
sj−1−→ vj) = Sign(w0

d0−→ w1
d1−→ · · ·wj−1

dj−1−→ wj).

El siguiente lema relaciona los iterados de un punto periódico con los desplazados de su lazo

asociado.

Lema 1.4.5 Sea f ∈ C(I, I) y sea P una órbita periódica de f. Supongamos que f es P -monótona y que

x e y son puntos periódicos de f de periodo n asociados a los lazos α y β respectivamente. Supongamos

x 6= y y α 6= β. Entonces x < y si y solo si α < β.

Demostración. Sean α = v0
s0−→ v1

s1−→ · · · vn−1
sn−1−→ vn y β = w0

d0−→ w1
d1−→ · · ·wn−1

dn−1−→ w0.

Como α 6= β existe l ≤ n− 1 tal que vi = wi para i = 0, 1, . . . l − 1 y vl 6= wl.

Observemos que si I = [a, b] es un intervalo básico de f y z, t ∈ I con z < t entonces la

P -monotonı́a de f implica que

f(z) < f(t) si f(a) < f(b) y

f(z) > f(t) si f(a) > f(b).

Iterando esta observación, se tiene que, x < y es equivalente a

f l(x) < f l(y) si Sign(v0
s0−→ v1

s1−→ · · · vl−1
sl−1−→ vl) = + y

f l(x) > f l(y) si Sign(v0
s0−→ v1

s1−→ · · · vl−1
sl−1−→ vl) = −.

En cualquier caso x 6= y implica f l(x) 6= f l(y). Dado que f l(x) ∈ vl y f
l(y) ∈ wl y vl 6= wl se

tiene que f l(x) < f l(y) es equivalente a vl < wl. Por tanto el lema se sigue de la definición de

orden en el conjunto de caminos básicos del P -grafo de f. ⊓⊔
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Observación 1.4.6 En las mismas hipótesis que el Lema 1.4.5. Por la Observación 1.4.3 se tiene que

dadom ≥ 1, fm(x) < fm(y) si y solo si Rm(α) < Rm(β).

Daremos ahora la definición de pattern, primero damos notación que nos será útil.

Notación 1.4.7 En esta memoria una permutación de orden n se representará como una aplicación biyec-

tiva de {1, 2, . . . , n} en si mismo. Es decir σ = (s
1
, s

2
, . . . , s

n
) si y solo si σ(i) = s

i
para i = 1, 2, . . . , n,

como es usual, σ0(i) = i y σn(i) = σ(σn−1(i)) para toda n ≥ 1.

Definición 1.4.8 Sea f ∈ C(I, I), sea P = {p
1
< p

2
< . . . < p

n
} una órbita periódica de f y sea

σ una permutación cı́clica de orden n. Diremos que P tiene pattern σ si y solo si f(p
i
) = p

σ(i)
para

i = 1, 2, . . . , n. Llamaremos a n el periodo del pattern. Si una función f ∈ C(I, I) tiene una órbita

f -periódica con pattern σ diremos que f exhibe a σ. Observemos que cualquier permutación cı́clica es el

pattern de alguna órbita periódica de alguna función lineal del intervalo (ver la Definición 1.4.11).

El siguiente lema nos da una definición equivalente de pattern en términos de los iterados

del punto mı́nimo de la órbita periódica, que usaremos más adelante.

Lema 1.4.9 Sea f ∈ C(I, I) y sea P = {p
1
< p

2
< . . . < p

n
} una órbita periódica de f. Entonces P

tiene pattern σ si y solo si fn(p
1
) = p

σn(1)
para toda n ≥ 0.

Demostración. Demostraremos primero la parte “solo si”. Supòngamos que P tiene pattern σ.

Claramente f0(p
1
) = p

1
= p

σ0(1)
. Supongamos ahora que fn(p

1
) = p

σn(1)
para n ≥ 0. Entonces,

fn+1(p1) = f(fn(p1)) = f(p
σn(1)

)

y, de la definición de pattern, se tiene,

f(p
σn(1)

) = p
σ(σn(1))

= p
σn+1(1)

.

Supongamos ahora que fn(p
1
) = p

σn(1)
para cada n ≥ 0, demostraremos que f(p

i
) = p

σ(i)
para

cada i = 1, 2, . . . , n. Dado que P es una órbita periódica, para cada i ∈ {1, 2, . . . , n} existe una

j = j(i) tal que

p
i
= f j(p

1
) = p

σj(1)
.

Luego, σj(1) = i. Por tanto,

f(pi) = f j+1(p1) = p
σ(σj (1))

= p
σ(1)

.

⊓⊔

Ahora, definimos la relación de forcing entre dos patterns.

Definición 1.4.10 Dados dos patterns σ y ν, diremos que σ fuerza a ν si y solo si toda f ∈ I que exhibe

el pattern σ también exhibe el pattern ν.
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La relación de forzamiento de patterns del intervalo será denotada por σ =⇒ I ν. Es una

relación de orden parcial (ver [2]) y se caracteriza mediante las funciones σ-lineales.

Definición 1.4.11 Sea σ un pattern de periodo n y sea P = { i−1
n−1}ni=1 un conjunto de cardinalidad n

en [0, 1]. Definimos la función σ-lineal fσ como la función continua que es lineal entre los puntos de

P y tal que fσ(pi) = p
σ(i)

para i = 1, 2, . . . , n. Observemos que la función σ-lineal, en particular, es

P -monótona.

El siguiente teorema caracteriza la relación de forzamiento en términos de funciones σ-

lineales (vease por ejemplo [2]).

Teorema 1.4.12 Sean σ y ν patterns de órbitas lineales del intervalo y sea fσ la función σ-lineal. En-

tonces σ =⇒ I ν si y solo si fσ exhibe el pattern ν.

Presentamos ahora una versión del Teorema de Sharkovskiı̆, aplicado a las funciones σ-

lineales, en términos de la relación =⇒ I . En primer lugar, definimos el orden de Sharkovskiı̆

para los números naturales.

3 ≻ 5 ≻ 7 ≻ 9 ≻ . . . ≻
2 · 3 ≻ 2 · 5 ≻ 2 · 7 ≻ 2 · 9 ≻ . . . ≻
22 · 3 ≻ 22 · 5 ≻ 22 · 7 ≻ 22 · 9 ≻ . . . ≻

...

2n · 3 ≻ 2n · 5 ≻ 2n · 7 ≻ 2n · 9 ≻ . . . ≻
...

2∞ . . . ≻ 2n ≻ . . . ≻ 23 ≻ 22 ≻ 2 ≻ 1.

El teorema de Sharkovskiı̆ dice:

Teorema 1.4.13 (Sharkovskiı̆) Sea I un intervalo en la recta real. Sea f ∈ C(I, I) una función contin-

ua que tiene un punto periódico de periodo q. Entonces, f también tiene un punto periódico de periodo

p ∈ N para cada p ≺ q. Recı́procamente, para cada q ∈ N∪{2∞} existe una función fq ∈ C(I, I) tal que
el conjunto de puntos periódicos de fq es {p ∈ N : p � q}.

Una particularización de dicho teorema en términos de la relación =⇒ I es (ver [2]):

Teorema 1.4.14 Seanm,n ∈ N. Entonces n ≻ m si y solo si para todo pattern σ de periódo n existe un

pattern ν de periodom tal que σ =⇒ I ν.

Demostración. Supongamos que n ≻ m. Sea σ un pattern de periodo n. Sea fσ ∈ C(I, I) la

función σ-lineal. Como que n está en el conjunto de periodos de fσ, tendremos quem esta en el

mismo conjunto. Entonces existe un pattern ν de periodo m tal que fσ exhibe a ν. Concluimos

σ =⇒ I ν. La otra implicación es inmediata. Esto concluye la demostración. ⊓⊔
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1.4.2. Dinámica combinatoria de funciones de T

Enunciaremos ahora los conceptos básicos que nos serán de utilidad para la dinámica com-

binatoria Ω, los mismos serán una extensión de los definidos para el intervalo.

Definición 1.4.15 Sea p > 1 un entero. Una banda A ⊆ Ω se llama p-periódica si T p(A) = A y si

A, T (A), . . . , T p−1(A) son disjuntas y ordenadas por pares. Al conjunto {A, T (A), . . . , T p−1(A)} le

llamamos órbita T -periódica de bandas.

Observación 1.4.16 A partir de ahora, por el Teorema 1.3.15, supondremos que las órbitas T -periódi-

cas de bandas con los que trabajaremos tienen como elementos únicamente bandas minimales y por el

Teorema 1.3.17, estan formados por bandas sólidas núcleo o pseudo-curvas.

Tendremos como hipótesis general que una órbita T -periódica de bandasP = {B1, B2, . . . , Bn}
cumple B1 < B2 < . . . < Bn. Es decir, está ordenado espacialmente.

Ahora definiremos el grafo de Markov para las funciones en T . En primer lugar, damos un

concepto análogo al de intervalo básico.

Definición 1.4.17 Dado P = {B1, B2, . . . , Bn} una órbita T -periódica de bandas. Cada banda de la

forma

I
B

+
i

B
−
i+1

será denominada banda básica. Observemos que por el Lema 1.3.24g cada banda básica tiene interior no

vacio.

Observación 1.4.18 Si Ii ∩ Ik 6= ∅ entonces |i− k| = 1.

Observación 1.4.19 Todas las bandas básicas de una órbita T -periódica de bandasP = {B1, B2, . . . , Bn},
están contenidas en I

B
+
1

B
−
n

.

Demanera análoga a como lo hicimos para el intervalo, definiremos los grafos combinatorios

con signo, asociados a las funciones en T . En este caso el conjunto de vértices es el conjunto de

bandas básicas y existe una flecha con signo s de I
B

+
i

B
−
i+1

a I
B

+
j

B
−
j+1

si y solo si

I
B

+
i

B
−
i+1

s−→ I
B

+
j

B
−
j+1

en el sentido de la Definición 1.3.25. Notemos que por la Definición 1.3.25 y el hecho que

T (I−k ) ≤ T (I+k ) o T (I+k ) ≤ T (I−k ) tenemos que todas las flechas que salen de un vértice tienen

el mismo signo. También entenderemos las nociones de camino, lazo, lazo simple, desplazado de un

lazo, concatenación de dos lazos, signo de un camino, lazo delgado y el orden en el conjunto de caminos

del P -grafo de manerá análoga a como lo hicimos en el intervalo.
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Lema 1.4.20 Sea T ∈ T . Supongamos que existen bandas básicas J0, J1, . . . , Jn−1, tales que

J0
s0−→ J1

s1−→ · · ·Jn−1
sn−1−→ J0.

Sea s = Sign(J0
s0−→ J1

s1−→ · · · Jn−1
sn−1−→ J0). Entonces existe una banda núcleoC tal que T n(C) ≡ C

y T i(C) ⊂ Ji para toda i = 0, 1, 2, . . . , n− 1. En particular C
s−→ C, por T n.

Demostración. En primer lugar por el Lema 1.3.31 existe una banda núcleoKn−1 ⊂ Jn−1 tal que

T (Kn−1) ≡ J0. Como Int(J0) 6= ∅ tenemos Int(Kn−1) 6= ∅. Ahora supongamos que tenemos

construida la banda núcleoKl ⊂ Jl para 1 ≤ l ≤ n− 1 y Int(Kl) 6= ∅. Entonces como Jl−1
sl−1−→ Jl

y Kl ⊂ Jl por el Lema 1.3.27 Jl−1
sl−1−→ Kl. Por lo tanto existe una banda núcleo Kl−1 ⊂ Jl−1 tal

que Int(Kl−1) 6= ∅ y Kl−1
sl−1−→ Kl y T (Kl−1) ≡ Kl. Iterando este procedimiento obtenemos una

familia de bandas K0,K1, . . .Kn−1. Como que J0
s−→ J0 por T n y además K0 ⊂ J0, tenemos

que K0
s−→ K0 de donde, por el Teorema 1.3.32 existe una banda núcleo C tal que T n(C) ≡ C y

en particular C
s−→ C. ⊓⊔

Observación 1.4.21 En las mismas hipótesis que Lema 1.4.20. Existe una familia K0,K1, . . . ,Kn−1.

de bandas sólidas, que cumple las siguientes propiedades

(a) Kl ⊂ Jl para toda l = 1, 2, . . . , n− 1.

(b) T (Kl−1) ≡ Kl.

(c) Kl−1
sl−1−→ Kl.

(d) Int(Kl) 6= ∅. para toda l = 0, 1, . . . , n− 1.

Ahora generalizamos la Definición 1.4.2.

Definición 1.4.22 Sea T ∈ T . Sea B = {B1, B2
, . . . , Bn} una órbita T -periódica de bandas y sea

m ∈ N. Sea A una banda m-periódica y α = (J0, J1, J2, . . . , Jm) un lazo de longitud m en el B-grafo

de T . Diremos que A y α están asociados si A ⊂ J0 y T
i(A) ⊂ Ji para i = 0, . . . ,m.

El siguiente lema es la extensión del Teorema 1.4.4 a funciones de T .

Lema 1.4.23 Sea T ∈ T y sea P una órbita T -periódica de bandas. Entonces cada lazo simple del P -grafo

de T tiene una órbita T -periódica de bandas asociado a él.

Demostración. Sea α = J0
s0−→ J1

s1−→ · · · Jn−1
sn−1−→ J0 un lazo simple en el P -grafo de T .

Por el Lema 1.4.20 existe una banda núcleo C tal que T n(C) ≡ C y T i(C) ⊂ Ji para toda

i = 0, 1, 2 . . . , n− 1. Sea k el periodo de C y supongamos que k 6= n. Entonces n = k ·m,m > 1

y, claramente, T i(C) = T i+k(C) = · · · = T i+k(m−1)(C), i = 1, 2, . . . , k.

Si C ∩Bi = ∅ para toda Bi ∈ P entonces {C, T (C), T 2(C), . . . , T k−1(C)} ⊂ ∪n−1
i=0 Int(Ji). Por

tanto

Ii = Ii+k = · · · = Ii+k(m−1),

para toda i = 0, 1, 2, . . . , k − 1. En consecuencia α es unam repetición del lazo
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I0
d0−→ I1

d1−→ · · · Ik−1
dk−1−→ I0,

contradiciendo que sea un lazo simple. Por tanto C está asociada a α.

Supongamos ahora que C ∩ Bi 6= ∅ para alguna Bi ∈ P. Veremos que α no es simple. Para

ello reordenamos el lazo, si es necesario, de manera que C ∩ B0 6= ∅. También observemos que

como C yB0 son T
n-invariantes, el Lema 1.3.16 implica que C ∩B0 es una banda T

n-invariante.

Dado que C ⊂ I0,

C ∩B0 ⊂ I0 ∩B0 = I−0 .

Por lo tanto C ∩B0 = I−0 = C− es una pseudo-curva. En virtud de la Observación 1.4.21, existe

una banda núcleo K0 ⊂ I0 tal que C ⊂ K0 y T
i(C) ⊂ T i(K0) ⊂ Ii para toda i = 1, 2, . . . , n− 1.

Como que C = T k(C) ⊂ T k(K0) tenemos T k(K0) ⊂ I0. Consecuentemente Ik = I0. Las bandas

núcleo K0 y T k(K0) están contenidos en I0 y contienen a C, aún más C− = K−
0 = (T k(K0))

−.

Por el Lema 1.3.24d K1 = K0 ∩ T k(K0) es una banda núcleo contenida propiamente en I0.

Claramente T i(K1) ⊂ T i(K0) ⊂ Ii y T
i(K1) ⊂ T k+i(K0) ⊂ Ik+i. En consecuencia Ii = Ik+i para

i = 0, 1, . . . , k − 1 y T k(K1) ⊂ T k(K0) ⊂ I0. Como K1 ⊆ T k(K0) tenemos T k(K1) ⊂ T 2k(K0) ⊂
I2k y por tanto I0 = I2k. Repitiendo este proceso encontramos, como en el caso anterior, un lazo

I0
d0−→ I1

d1−→ · · · Ik−1
dk−1−→ I0,

del cual α es unam repetición, contradiciendo que α es simple. ⊓⊔

Lema 1.4.24 Sea T ∈ T y sea P una órbita periódica de bandas de T. Supongamos que X e Y son

bandas periódicas de T de periodo n asociados a los lazos α y β respectivamente. Supongamos X 6= Y y

α 6= β. Entonces X < Y si y solo si α < β.

Demostración. Sean α = v0
s0−→ v1

s1−→ · · · vn−1
sn−1−→ vn y β = w0

d0−→ w1
d1−→ · · ·wn−1

dn−1−→ w0.

Como α 6= β existe l ≤ n− 1 tal que vi = wi para i = 0, 1, . . . l − 1 y vl 6= wl.

Observemos que si I
B

+
j

B
−
j+1

es un intervalo básico de T yA,C ⊂ I
B

+
j

B
−
j+1

conA < C entonces

el Lema 1.3.31 implica que podemos asegurar

T (A) < T (C) si T (B+
j ) < T (B−

j+1) y

T (A) > T (C) si T (B+
j ) > T (B−

j+1).

Iterando esta observación, se tiene que,X < Y es equivalente a

T l(X) < T l(Y ) si Sign(v0
s0−→ v1

s1−→ · · · vl−1
sl−1−→ vl) = + y

T l(X) > T l(Y ) si Sign(v0
s0−→ v1

s1−→ · · · vl−1
sl−1−→ vl) = −.

En cualquier caso X 6= Y implica T l(X) 6= T l(Y ). Dado que T l(X) ∈ vl y T
l(Y ) ∈ wl y vl 6= wl

se tiene que T l(X) < T l(Y ) es equivalente a vl < wl. Por tanto el lema se sigue de la definición

de orden en el conjunto de caminos básicos del P -grafo de T. ⊓⊔
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Observación 1.4.25 En las mismas hipótesis que el Lema 1.4.24. Por la Observación 1.4.3 se tiene que

dadom ≥ 1, Tm(X) < Tm(Y ) si y solo si Rm(α) < Rm(β).

Como en el intervalo, el pattern de una órbita periódica de bandas P = {B1, B2, . . . , Bn},
de una función de T , es la permutación cı́clica asociada. Es decir, Diremos que P tiene pattern

σ si y solo si T (Bi) = Bσ(i) para i = 1, 2, . . . , n. Llamaremos a n el periodo del pattern. Si una

función T ∈ T tiene una órbita T -periódica de bandas con pattern σ diremos que T exhibe a σ.

Por último, el Lema 1.4.9 y la relación de forcing (Definición 1.4.10) son también válidos para los

patterns definidos en Ω, denotaremos la relación de forcing para Ω como =⇒ Ω . En particular

notemos que una permutación cı́clica se puede ver tanto como un pattern del intervalo como

una pattern de una función T ∈ T . En el Lema 1.4.27 veremos que toda permutación cı́clica es

un pattern de una función de T .
El siguiente lema relaciona los dos grafos combinatorios con signo definidos anteriormente.

Lema 1.4.26 Sea σ un pattern y sea fσ la función σ-lineal asociada. Sea T ∈ T , tal que existe una

órbita T -periódica de bandas P ′ = {B0, B1, . . . , Bn−1} con pattern σ. Entonces el fσ-grafo con signo y

el T -grafo con signo asociados a fσ y a T respectivamente son iguales, en particular, los signos de todas

sus flechas coinciden.

Demostración. Sea P =
{

i−1
n−1

}n

i=1
la órbita fσ-periódica. Sea

[
i

n−1 ,
i+1
n−1

]
un intervalo basico.

Supongamos que fσ es creciente en
[

i
n−1 ,

i+1
n−1

]
. Entonces fσ

(
i

n−1

)
< fσ

(
i+1
n−1

)
. En virtud de

que P y P ′ tienen el mismo pattern,

fσ

(
i

n− 1

)
=

σ(i)

n− 1
y fσ

(
i+ 1

n− 1

)
=
σ(i + 1)

n− 1
si y solo si T (B

i
) = Bσ(i) y T (Bi+1

) = Bσ(i+1).

Por lo tanto,

[
j

n− 1
,
j + 1

n− 1

]
⊂ fσ

([
i

n− 1
,
i+ 1

n− 1

])
si y solo si B+

j ≤ T (B+
i ) y B

−
j+1 ≤ T (B−

i+1).

En consecuencia, existe una flecha
[

i
n−1 ,

i+1
n−1

]
+−→

[
j

n−1 ,
j+1
n−1

]
si y solo si existe una flecha

I
B

+
i

B
−
i+1

+−→ I
B

+
j

B
−
j+1

. Hacemos uso de un argumento análogo en el caso en que la función fσ

es decreciente. Esto concluye la demostración. ⊓⊔

Lema 1.4.27 Sea f ∈ C(I, I). Sea Tf ∈ T tal que Tf(θ, x) = (Rω(θ), f(x)). Entonces las siguientes

afirmaciones son ciertas.

(a) Si Θ = {p1, p2, . . . , pn} es una órbita periódica de f con pattern σ entonces S1 × Θ es una órbita

periódica de Tf con pattern σ.

(b) Si B es una órbita periódica de Tf con pattern σ entonces existe una órbita periódica Θ de f con

pattern σ tal que S1 × Θ es una órbita periódica de Tf con pattern σ y S1 × Θ ⊂ B. En particular

toda permutación cı́clica es un pattern de una función de T .
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Demostración. Primero demostraremos (a). Supongamos que σ = (i0, i1, . . . , in−1) es el pattern

asociado a Θ. Entonces f(pi) = p
σ(i)

. Definimos Bi = S1 × pi , i = 1, 2, . . . , n. Es inmediato que

P ′ = {B1, B2, . . . , Bn} es una órbita Tf -periódica de bandas. Por otro lado, por la definición de

Tf ,

Tf(Bi) = Tf (S1 × {p
i
}) = S1 × {f(p

i
)} = S1 × {p

σ(i)}

por lo tanto Θ tiene asociado el pattern σ = (i0, i1, . . . , in−1). Ahora demostraremos (b). Sea

B = {B1, B2, . . . , Bn} una Tf -orbita periodica de bandas con pattern σ. Entonces T (Bi) = Bσ(i).

Sea π2 : Ω → I. Definamos Jk = π2(Bk), k = 1, . . . , n y observemos que los intervalos Jk son

disjuntos dos a dos. Como Tf (θ, x) = (Rω(θ), f(x)) tenemos que f(Ji) = Jσ(i) por lo tanto J1

cumple que fk(J1) = Jσk(1), k = 1, . . . , n − 1. En particular, fn(J1) = J1. Por el teorema de

Bolzano existe un punto p
1
∈ J1 tal que f

n(p
1
) = p

1
y fk(p

1
) ∈ fk(J1) = Jσ(k), k = 01, 2, . . . , n−

2. Como los intervalos son disjuntos dos a dos, p1 tiene periodo n. Definamos ahora p
σ(k)

=

fk(p
1
). Entonces Θ = {p

1
, p

2
, . . . , p

n
} es una órbita periódica de f, tal que f(p

i
) = p

σ(i)
para

toda i = 0, . . . , n − 1. Concluimos pues que la órbita periódica Θ tiene asociado el pattern σ y

S1 ×Θ ⊂ B. Esto termina la demostración. ⊓⊔

1.5. Demostración del Teorema 1.5.2

Sean σ y ν patterns tales que σ 6= ν y σ =⇒ I ν. Observemos que el Teorema 1.4.12 implica

que fσ tiene una órbita periódica Θ de pattern ν. Como que σ 6= ν entonces P ∩ Θ = ∅ donde

P es la órbita periódica de pattern σ de fσ. Entonces por el Teorema 1.4.4 el mı́nΘ tiene un lazo

α asociado que es simple o bien es una 2-repetición de un lazo simple negativo. El lazo α se

denominara lazo (σ, ν)-minimal.

Definición 1.5.1 Diremos que ν es simple si para todo pattern σ 6= ν tal que σ =⇒ I ν el lazo (σ, ν)-

minimal es simple.

El teorema principal de este capı́tulo muestra que las relaciones de forcing =⇒ I y =⇒ Ω

coinciden en la clase de patterns simples.

Teorema 1.5.2 Sean σ y ν patterns del intervalo y supongamos que ν es simple. Entonces el pattern σ

fuerza al pattern ν en I si y solo si el pattern σ fuerza al pattern ν en Ω.

Demostración. Supondremos primero que σ =⇒ Ω ν. Sea fσ la función σ-lineal. En virtud del

Lema 1.4.27a, la función Tσ ∈ T definida como Tσ = (Rω, fσ) también exhibe el pattern σ.

Entonces, por hipótesis, Tσ también exhibe el pattern ν y en virtud del Lema 1.4.27b fσ exhibe

el pattern ν. Esto concluye la primera implicación.

Para la segunda, supondremos que σ =⇒Ω ν. Demostraremos que toda función T ∈ T que

exhibe el pattern σ también exhibe el pattern ν. Si σ = ν no hay nada que demostrar, supon-

dremos pues σ 6= ν. Sea T una función que tiene una órbita periódica B = {B1, B2, . . . , Bn}
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con pattern σ. Sea fσ la función σ-lineal. Por el Teorema 1.4.12, fσ tiene una órbita periódi-

ca Θ = {q1 , q2 , . . . , qm} de pattern ν. Como σ 6= ν tenemos que Θ ∩ P = ∅ donde P es la

órbita periódica de pattern σ en fσ. Por el Teorema 1.4.4 q
1
tiene un único lazo asociado α y

dado que ν es simple, podemos suponer que α es simple. En virtud del Lema 1.4.26, T y fσ

tienen el mismo grafo con signo, por lo que el Lema 1.4.23 nos garantiza que existe una ban-

da periódica X asociada al lazo α. Veremos que {X,T (X), . . . , Tm−1(X)} = {A1, A2, . . . , Am}
tiene pattern ν. Para ello, demostraremos en primer lugar que X = A1 es el mı́nimo de su

órbita. Observemos que dado que q1 tiene periodo m y α es simple se tiene que q1 6= f j(q1)

y α 6= Rj(α) para todo j = 1, 2, . . . ,m − 1, (en caso de que α = Rj(α) para alguna j, se

puede ver que se puede construir un lazo β de manera que α es una repetición de β). Luego,

como α y q
1
estan asociados, la minimalidad de q

1
combinada con el Lema 1.4.5 y la Obser-

vación 1.4.3 nos garantiza que α < Ri(α) para toda i = 1, . . . ,m − 1. Ahora, el Lema 1.4.24

y la Observación 1.4.3 nos implica que X < T i(X), para toda i = 1, . . . ,m − 1 pues α y X

están asociados. Concluimos pues la minimalidad de X. La segunda propiedad que deseamos

verificar es que T (Ai) = Aσ(i) para toda i = 1, 2, . . . n. Dado que q
1
< q

2
< . . . < q

m
la Ob-

servación 1.4.6 nos garantiza que α < Rσ(2)(α) < . . . < Rσ(n)(α) y la Observación 1.4.25 nos

garantiza A1 < T σ(2)(A1) < . . . < T σ(n)(A1) por tanto, como A1 < A2 < . . . < An se tiene

Aσ(i) = T (Ai), para toda i = 1, 2, . . . , n, luego, T también exhibe el pattern ν. Esto concluye la

demostración del teorema. ⊓⊔

La extensión del Teorema 1.5.2 a la clase de todos los patterns sigue las mismas lı́neas que la

correspondiente demostración en el intervalo. Dicha generalización es el objetivo de un trabajo

posterior.

Suponiendo cierto el teorema anterior para la clase de todos los patterns obtenemos como

corolario el Teorema de Sharkovskiı̆ para funciones de T a partir del Teorema 1.4.14.

Corolario 1.5.3 El Teorema de Sharkovskiı̆ es cierto para las funciones T ∈ T .

Demostración. Sea T ∈ T tal que tiene una órbita periódica de bandas de periodo n. Sea σ el

pattern de dicha órbita y sea m � n. Por el Teorema 1.4.14 existe un pattern ν de periódo m tal

que σ =⇒ I ν y en virtud del Teorema 1.5.2 σ =⇒ Ω ν consecuentemente la función T tiene una

órbita periódica de pattern ν y, un punto de periódom. ⊓⊔





2

Una aplicación skew-product sin curvas invariantes

El objetivo de este capı́tulo es la construcción explı́cita de una función T ∈ T sin curvas

invariantes y con una pareja de curvas dos periódica. La idea básica es construir una aplicación

T ∈ T exhibiendo una pseudo-curva conexa e invariante que divide el cilindro en dos zonas

permutadas por T.

La primera sección de este capı́tulo está dedicada a la construcción de la pseudo-curva

conexa invariante mientras que el segundo está dedicado a la construcción de la función que

tiene a dicha pseudo-curva como subconjunto invariante.

2.1. Construcción de A

Antes de iniciar la construcción formal de nuestro ejemplo, presentamos una idea rápida de

la construcción:

Dada la curva S1 × {0}, la construcción del conjunto se hará inductivamente, poniendo

alrededor de la fibra de iω, i ∈ Z la clausura de la gráfica de la función sin( 1x), conveniente-

mente reescalada obteniendo de esta manera una sucesión An de pseudo-curvas de Ω.

Probaremos que la sucesión An converge con la métrica Hd (Definición 1.1.3) a un conjunto

A que tiene las propiedades deseadas.

Los dos primeros elementos de nuestra sucesión se muestran en la Figura 1.

2.1.1. Construcción de los conjuntos {Ai}∞
i=0

La construcción de los elementos de la sucesión la hacemos por inducción. Damos en primer

lugar notación que usamos en la misma.

Fijando ω ∈ [0, 1] \Q, usaremos O∗(ω) para denotar la órbita completa de ω (es decir, tanto sus

iterados positivos como negativos) bajo la rotación de ángulo ω (mod 1). Además escribiremos

estos elementos ası́: l∗ = lω (mód 1), para toda l ∈ Z. En esta notación, O∗(ω) = {l∗ : l ∈ Z}.
Dado B ⊂ S1, denotaremos por B + ω al conjunto {b+ ω (mód 1) : b ∈ B}.
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− 1
2

1
2

-2

2

A0
− 1

2
1
2

-2

2

A1

Figura 2.1. Primeros 2 pasos

Dado θ ∈ S1 y δ < 1
2 sea ϕ

θ
: [−δ, δ] → Bδ(θ) el homeomorfismo ϕ

θ
(x) = z + x (mód 1)

donde z (mód 1) = θ. Denotaremos ϕ
θ
(−δ) por θ − δ y ϕ

θ
(δ) por θ + δ. También denotaremos

la bola cerrada de centro θ y radio δ, Bδ(θ) por [θ − δ, θ + δ]. Finalmente denotaremos por ψ
θ
:

[θ − δ, θ + δ] → [−δ, δ] el homeomorfismo inverso de ϕ
θ
.

Definimos las funciones β : [−1, 1] → [−1, 1] y φ : [−1, 1] \ {0} → [−1, 1], de la siguiente

manera:

β(x) = 1− |x| y φ(x) = (1 − |x|)2 sen
(
1

x

)
.

Notemos que −β(x) < φ(x) < β(x), para toda x ∈ [−1, 1] \ {0}. Las gráficas de −β, β y φ son.

1 1

−1

1

β(θ)

−β(θ)

φ(θ)

Figura 2.2. Gráficas de φ y ±β

Observemos que las gráficas de −β y β intersectan a la clausura de la gráfica de φ en (0,−1)

y (0, 1).
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Sean ahora l ∈ Z, n ∈ N y α, β ∈ R tales que 0 < α < 2−n y l∗ − α, l∗ + α /∈ O∗(ω). También,

sean p
l
= (l∗, a), p−

l
= (l∗ − α, a−) y p+

l
= (l∗ − α, a+) ∈ Ω, donde a+, a− ∈ (a− 2−n, a + 2−n).

En vista de la definición de β existe δ̄(p+l , p
−
l ) < α tal que para toda δ < δ̄ se tiene

a+, a− ∈ [a− 2−nβ(ψl(l
∗ − δ̄)), a+ 2−nβ(ψl(l

∗ − δ̄))]

⊂ [a− 2−nβ(ψl(l
∗ − δ)), a+ 2−nβ(ψl(l

∗ − δ))]

⊂ (a− 2−n, a+ 2−n).

Definimos una curva cerrada ∂R(l∗, n, α, δ, p
l
, p+

l
, p−

l
) en Ω que consiste en las gráficas de las

funciones a+ 2−nβ(ψl)
∣∣
[l∗−δ,l∗+δ]

y a− 2−nβ(ψl)
∣∣
[l∗−δ,l∗+δ]

, unidas con los arcos que unen a los

puntos

p−
l
y
(
l∗ − δ, a− 2−nβ(ψl(l

∗ − δ))
)
,

p−
l
y
(
l∗ − δ, a+ 2−nβ(ψl(l

∗ − δ))
)
,

p+
l
y
(
l∗ + δ, a− 2−nβ(ψl(l

∗ + δ))
)
,

p+
l
y
(
l∗ + δ, a+ 2−nβ(ψl(l

∗ + δ))
)
.

Ahora definimos el conjunto R(l∗, n, α, δ, p
l
, p+

l
, p−

l
) como la clausura de la componente conexa

de Ω \ ∂R(l∗, n, α, δ, p
l
, p+

l
, p−

l
) que contiene al punto p

l
= (l∗, a).

También ΓR(l∗, n, α, δ, p
l
, p+

l
, p−

l
) será la clausura de la gráfica de la función

pl + (−1)i2−nφ(ψl)
∣∣
[l∗−δ,l∗+δ]

y los segmentos que unen

p−
l
y
(
l∗ − δ, pl + (−1)i2−nφ(ψl(l

∗ − δ))
)
,

p+
l
y
(
l∗ + δ, pl + (−1)i2−nφ(ψl(l

∗ + δ))
)
.

Observación 2.1.1 Los conjuntos R(l∗, n, α, δ, p
l
, p+

l
, p−

l
) y ΓR(l∗, n, α, δ, p

l
, p+

l
, p−

l
) cumplen las

propiedades siguientes

(a) ΓR(l∗, n, α, δ, p
l
, p+

l
, p−

l
) ⊂ R(l∗, n, α, δ, p

l
, p+

l
, p−

l
) y

R(l∗, n, α, δ, p
l
, p+

l
, p−

l
) ⊂ [l∗ − α, l∗ + α]× [a− 2−n, a+ 2−n].

(b) ΓR(l∗, n, α, δ, p
l
, p+

l
, p−

l
) y ∂R(l∗) coinciden solo en los puntos p−

l
, p+

l
,

(l∗, a− 2−n) y (l∗, a+ 2−n).

(c) diam(R(l∗, n, α, δ, p
l
, p+

l
, p−

l
)) = 2 · 2−n, que es la distancia entre los extremos de la vertical.

(d) Para todo l ∈ Z, R(l∗, n, α, δ, p
l
, p+

l
, p−

l
) es un compacto de Ω. Por tanto, dado que π es continua,

por construcción

π(R(l∗, n, α, δ, p
l
, p+

l
, p−

l
)) = [l∗ − α, l∗ + α]

es un compacto conexo propio de S1.
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a

l∗ l∗ + αl∗ + δl∗ − α l∗ − δ

b

pl

b

b p+
l

p−
l

a+ 1

2
nj−1 β(ψl(θ))

a− 1

2
nj−1 β(ψl(θ))

b

b

b

b

a

l∗ l∗ + αl∗ + δl∗ − α l∗ − δ

b

b

b p+
l

p−
l

∂R(l∗)

Γ (R(l∗))

b

b

b

b

Figura 2.3. R(l∗, n, α, δ, pl , p
+
l
, p−

l
) y ΓR(l∗, n, α, δ, pl , p

+
l
, p−

l
)

Ahora denotaremos por R(0∗) a R(0∗, 1, α0, δ0, p0, p
+
0 , p

−
0 ), donde p0 = (0∗, 0), p−0 = (0∗ −

α, 0) y p+0 = (0∗ + α, 0) y además α0 es suficientemente pequeño para que

(0.a) (−1)∗, 1∗, (−2)∗, 2∗ /∈ S1 \ π(R(0∗)).

(0.b) 3∗ /∈ π(R(0∗)).

(0.c) (π(R(0∗))− ω) ∩ π(R(0∗)) = ∅.

Definimos

A0 = ΓR(0∗) ∪ (S1 \ π(R(0∗))× {0}).

Notemos que en particular, A0 es una pseudo-curva y tiene asociada un representante canónico

(ϕA0
, PA0

) ∈ C donde PA0 = S1 \ {0∗}.
En lo que sigue, para cada j ∈ N ∪ {0}, denotaremos por Zj el conjunto {i ∈ Z : |i| ≤ j} =

{−j,−j + 1, . . . ,−1, 0, 1, . . . , j − 1, j} y por Z∗
j el conjunto {i∗ : i ∈ Zj}.

Para definir los conjuntos Ai supongamos que para j ∈ {0, . . . , i − 1} hemos construido

conjuntos Aj y parejas de conjuntos

R((−j)∗) = R((−j)∗, nj , αj , δj , p−j, p
+
−j , p

−
−j)

R(j∗) = R(j∗, nj , αj , δj , pj, p
+
j , p

−
j )

con las propiedades siguientes:

(A.1) Dados z1, z2 ∈ Zi−1 tales que |z1| ≥ |z2| y R(z∗1) ∩R(z∗2) 6= ∅, entonces |z1| > |z2| y R(z∗1 )

está contenido en una de las dos componentes conexas de Int
(
R(z∗2) \A

z∗
2

|z2|

)
.

(A.2) Cada Aj es una pseudo-curva y tiene asociada un representante canónico (ϕ
Aj
, P

Aj
) ∈ C

donde PAj = S1 \ Z∗
j .

(A.3) Para cada j 6= 0, los conjuntos Aj y Aj−1 coinciden en el complemento de

π−1 (Int(π(R(j∗))) ∪ Int(π(R((−j)∗)))) .
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(A.4) Para z ∈ {j,−j} se tiene que Aj ∩ π−1(π(R(z∗))) = ΓR(z∗).

(A.5) Además

(A.5.a) 2−nj < δj−1

(A.5.b) (j + 1)∗, (−(j + 1))∗, (j + 2)∗, (−(j + 2))∗ /∈ π(R(j∗)) ∪ π(R((−j)∗)).
(A.5.c) (j + 3)∗ /∈ π(R((−j)∗)).
(A.5.d) (π(R((−j)∗))− ω) ∩ π(R(j∗)) = ∅
(A.5.e) Si para algún k ∈ Z∗

j−1 se tiene que

π(R(k)) ∩ (π(R((−j)∗))− ω) 6= ∅

entonces (π(R((−j)∗))−ω) está contenido en una de las dos componentes conexas

de Int (π(R(k)) \ k).
(A.5.f) Para cada i ∈ Zj−1 se tiene que (∂(π(R(i∗))) + ω) ∩R(k∗) = ∅ para toda k tal que

|k| ≥ |i|+ 1.

Ahora sea z ∈ {i,−i}. Como z∗ /∈ Z∗
i−1, en virtud de la propiedad (A.2), Az∗

i−1 es un único

punto que denotaremos por pz = {(z∗, az)}.
Tomemos ahora ni ∈ N y αi ∈ R de manera que αi < 2−ni < δi−1 y se cumplen las siguientes

propiedades para z = i y para z = −i. En primer lugar z∗ + αi, z
∗ − αi /∈ O∗(ω), para toda

u ∈ Zi−1 se tiene u
∗ /∈ [z∗ − αi, z

∗ + αi] y Ai−1 ∩ π−1([z∗ −αi, z
∗ + αi]) ⊂ (az − 2−ni , az +2−ni).

Si pz /∈ R(u) para toda u ∈ Z∗
i−1, tomamos αi de manera que además, [z∗ − αi, z

∗ + αi] ∩
π(R(u)) = ∅ para toda u ∈ Zi−1. En caso contrario existe k ∈ Zi−1 tal que pz ∈ R(k∗) y |k| es
maximal con estas propiedades. En este caso tomaremos αi y ni de manera que

[z∗ − αi, z
∗ + αi]× [az − 2−ni , az + 2−ni ] ⊂ Int(R(k∗) \Ak∗

i−1).

Adicionalmente a las propiedades anteriores, tomemos αi suficientemente pequeño para

que, además, se cumpla

(I) (i+ 1)∗, (−(i+ 1))∗, (i+ 2)∗, (−(i+ 2))∗ /∈ π(R(i∗)) ∪ π(R((−i)∗)).
(II) (i+ 3)∗ /∈ π(R((−i)∗)).
(III) (π(R((−i)∗)) − ω) ∩ π(R(i∗)) = ∅

Observese que para todo entero k ∈ Zi−1 se tiene k
∗ ±αk /∈ O∗(ω). Por tanto si (−(i+1))∗ ∈

[k∗ − αk, k
∗ + αk] se tiene (−(i + 1))∗ ∈ (k∗ − αk, k

∗ + αk). Luego, tomando αi suficientemente

pequeño, se puede conseguir también

(Iv) Si para algún k ∈ Z∗
i−1 se tiene que π(R(k))∩(π(R((−i)∗))−ω) 6= ∅ entonces π(R((−i)∗))−

ω está contenido en una de las dos componentes conexas de Int (π(R(k)) \ k).

Por construcción, para z ∈ {i,−i} se tiene z∗ + αi, z
∗ − αi /∈ O∗(ω) y, por la propiedad (A.2),

Az∗+αi

i−1 y Az∗−αi

i−1 son un único punto que denotaremos por p+z y p−z respectivamente.

Definimos entonces
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R((−i)∗) = R((−i)∗, ni, αi, δi, p−i, p
+
−i, p

−
−i)

R(i∗) = R(i∗, ni, αi, δi, pi, p
+
i , p

−
i )

donde δi < mı́n{δ̄(p+i , p−i ), δ̄(p+−i, p
−
−i)} y Ai de manera que

(a) Los conjuntos Ai y Ai−1 coinciden en el complemento de

π−1 (Int(π(R(i∗))) ∪ Int(π(R((−i)∗))))

(b) Para z ∈ {j,−j} se tiene que Aj ∩ π−1(π(R(z∗))) = ΓR(z∗).

Por tanto hemos construido conjuntos π(R((−i)∗)), π(R(i∗)) y Ai tales que las propiedades

A.(1-5) se verifican para toda j = 0, 1, . . . , i. Esto termina la construcción inductiva de la sucesión

Ai.

Lema 2.1.2 La sucesión {ni}∞i=1 es estrictamente creciente y ĺım diamR(i∗) = ĺımdiamR((−i)∗) =
0. Además, si {ik}∞k=1 ⊂ Z es una sucesión estrictamente creciente en valor absoluto tal que R(i∗k+1) ⊂
R(i∗k) para todo k, entonces ∞⋂

k=1

R(i∗k)

se reduce a un solo punto.

Demostración. El hecho que la sucesión ni es creciente se sigue de la propiedad (A,5.a) y de la

definición de los conjuntos R(z∗):

2−ni+1 < δi < αi < 2−ni .

La afirmación siguiente se deduce de la Observación 2.1.1 (c) y del hecho de que la sucesión ni

es creciente. La última afirmación es inmediata a partir de lo dicho anteriormente. ⊓⊔

Las siguientes observaciones son consecuencia inmediata de la definición de los conjuntos

Ai yR(i∗), omitimos sus demostraciónes por ser obvias.

Observación 2.1.3 Los conjuntosR(i∗) y An cumplen:

(P.1) Al∗
n = Al∗

|l| para todo n > |l|. En particular Al∗
n es un intervalo para todo n > |l|.

(P.2) Si θ ∈ Bd(π(R(i∗))) entonces θ, θ + ω /∈ π(R(k∗)) para toda k tal que |k| > |i| y se cumple

Aθ
n = Aθ

i y A
θ+ω
n = Aθ+ω

i para toda n > i.

(P.3) Cada An es una pseudo-curva y tiene asociada un representante canónico (ϕAn
, PAn

) ∈ C donde

PAn = S1 \ Z∗
n. En particular An es pinchada en toda θ ∈ S1 \ Z∗

n. y se denota por Aθ
n =

{(θ, ai(θ))}. Además si

θ ∈ [l∗ − δ|l|, l∗ + δ|l|] entonces

a|l|(θ) = a|l|−1(l
∗) + (−1)|l|2−n|l|φ(ψl(θ)).
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(P.4) Si γ /∈ π(R(k∗)) para toda k ∈ N tal que N < |k| < L entonces Aγ
n = Aγ

N
para toda n ∈ N tal

que N < n < L.

(P.5) Para toda i se cumple Ai ∩ π−1(π(R(i∗))) ⊂ R(i∗).

(P.6) Para toda N ∈ N se cumple ∪N
i=1π(R(i∗)) 6= S1.

(P.7) Dada j ∈ Z para toda θ ∈ [j∗ − δ|j|, j∗ + δ|j|] se cumple

R(j∗)θ = {θ} × [a|j|−1(j
∗)− 2−n|j|β(ψj(θ)), a|j|−1(j

∗) + 2−n|j|β(ψj(θ))].

El siguiente lema, nos da la propiedadmás importante, para nosotros, que tienen los conjun-

tos Ai.

Lema 2.1.4 Para toda i ∈ Z tenemos que Ak ∩ π−1(π(R(i∗))) ⊂ R(i∗) si k ≥ |i| − 1.

Demostración. Basta que observemos que si R(j∗) ∩ R(i∗) 6= ∅, entonces R(j∗) ⊂ R(i∗) para

j ∈ Z tal que |i| ≤ |j| ≤ k. ⊓⊔

Lema 2.1.5 El conjunto Ai es una pseudo-curva para toda i ∈ N.

Demostración. Fijemos i ∈ N, por la Observación 2.1.1,

Aj∗

i = {j∗} ×
[
aj∗ − 1

2nj
, aj∗ +

1

2nj

]

para toda j ∈ N tal que |j| ≤ |i|.
Por otro lado, por (P. 3) en la Observación 2.1.3, tenemos que la fibra sobre toda θ 6= j∗ tal

que |j| ≤ i, es un punto.

Ahora, sea P
Ai

= {θ ∈ S1 : θ 6= j∗, |j| ≤ i}, entonces por (P. 3) en la Observación 2.1.3 cada

Ai es la clausura de una función continua de S1 \Z∗
i en [−2, 2]. Lo anterior implica queAi es una

pseudo-curva. ⊓⊔

Ahora demostraremos unos resultados que nos serán de utilidad para la demostración del

Teorema 2.1.10.

Lema 2.1.6 Sean i ∈ Z y θ ∈ Int(π(R(i∗))). Entonces, Aθ ⊂ R(i∗).

Demostración. Por el Lema 1.1.6, para cada (θ, a) ∈ A existe una sucesión {(θn, xn)} con

(θn, xn) ∈ An tal que ĺım(θn, xn) = (θ, a). En particular ĺım θn = θ y como θn ∈ Int(π(R(i∗))),

existe N ∈ N tal que θn ∈ π(R(i∗)) para toda n ≥ N. Por el Lema 2.1.4, Aθn
n ⊂ R(i∗) para todo

n ≥ N. Consecuentemente, (θ, a) ∈ R(i∗) dado que R(i∗) es cerrado. ⊓⊔

Lema 2.1.7 Sea θ ∈ S1 para el cual existe Nθ ∈ N tal que Aθ
n = Aθ

Nθ
para toda n ≥ Nθ. Entonces

Aθ = Aθ
Nθ

.

Demostración. Por el Lema 1.1.6 tenemos que Aθ
Nθ

⊂ Aθ . Para demostrar la inclusión contraria

consideraremos dos casos.
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Case 2.1. 1 θ = l∗ ∈ O∗(ω) para algún l ∈ Z.

En este caso podemos tomar Nθ = |l| y tenemos que θ ∈ Int(R(l∗)). Por el Lema 2.1.6, Aθ ⊂
π−1({l∗}) ∩R(l∗) = Al∗

|l∗|.

Case 2.2. 2 θ /∈ O∗(ω).

Entonces en virtud de la Observación 2.1.3 (P. 3), existe a ∈ I tal que Aθ
Nθ

= {(θ, a)}. De-

mostraremos que (θ, b) /∈ Aθ para todo (θ, b) 6= (θ, a). Fijemos (θ, b) 6= (θ, a) y sea β = d(b, a).

Si (θ, a) ∈ R(k∗) para una infinidad de k’s, por la Observación 2.1.3 (P. 2), existe m ∈ Z tal

que (θ, a) ∈ R(m∗), θ ∈ Int(π(R(m∗))) y diam(R(m∗)) < β
2 (y, por tanto, (θ, b) /∈ R(m∗)). Por el

Lema 2.1.6,Aθ ⊂ R(m∗) y, por tanto, (θ, b) /∈ Aθ.

Supongamos ahora que existe un numero finito de enteros k tales que (θ, a) ∈ R(k∗). Sin

pérdida de generalidad podemos suponer que Nθ es mayor que el valor absoluto de dichos

enteros k, y seaM > Nθ tal que 2
−(n

M
−1) < β

4 (dichoM existe en virtud del Lema 2.1.2).

En virtud de la Observación 2.1.1(4) y de la Observación 2.1.3 (P.6),

S̃ :=

(
M⋃

i=0

{i∗, (−i)∗}
)
∪


 ⋃

Nθ<|j|<M

π(R(j∗))




es un cerrado propio de S1 y, por hipótesis, θ /∈ S̃. Por tanto, existe un cerrado conexo V tal que

θ ∈ Int(V ) y V ∩ S̃ = ∅. Además en virtud de la Observación 2.1.3 (P. 3),A
M
∩π−1(V ) es un arco

de curva continua que contiene al punto (θ, a). Adicionalmente, reduciendo V si es necesario,

podemos suponer que

π−1(V ) ∩ A
M

⊂ V ×
[
a− β

4
, a+

β

4

]
.

Queremos demostrar que

Aγ
n ⊂ {γ} ×

[
a− β

2
, a+

β

2

]

para toda γ ∈ V y n ≥M .

Sea γ ∈ V . Si γ /∈ π(R(k∗)) para toda k tal que |k| ≥ M , entonces en virtud de la Obser-

vación 2.1.3 (P. 4) Aγ
n ⊂ {γ} ×

[
a− β

4 , a+
β
4

]
para toda n ≥M .

En caso contrario, existe m ∈ Z tal que |m| ≥ M, γ ∈ π(R(m∗)) y |m| es minimal con

estas propiedades. De la Observación 2.1.3 (P. 4) Aγ
n = Aγ

M
para n = M,M + 1, . . . , |m| − 1.

Consecuentemente, por el Lema 2.1.4,Aγ
n ⊂ R(m∗) para todo n ≥M . Además, por el Lema 2.1.2,

diam(Aγ
n) ≤ diam(R(m∗)) ≤ 2−(n|m|−1) < 2−(n

M
−1) <

β

4
.

Por consiguiente, dado que Aγ
M

⊂ {γ} ×
[
a− β

4 , a+
β
4

]
∩R(m∗), se tiene

Aγ
n ⊂ {γ} ×

[
a− β

2
, a+

β

2

]
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para toda n ≥M. Esto termina la demostración de la afirmación anterior.

Por el Lema 1.1.6, todo punto deAθ es lı́mite de una sucesión {(γn, xn)}∞n=1 tal que (γn, xn) ∈
An para toda n. Claramente existe M̃ ≥M tal que γn ∈ V para toda n ≥ M̃ . Luego,

(γn, xn) ∈ Aγn
n ⊂ {γn} ×

[
a− β

2
, a+

β

2

]
⊂ V ×

[
a− β

2
, a+

β

2

]

para toda n ≥ M̃ . Dado que V ×
[
a− β

2 , a+
β
2

]
es cerrado, se tiene Aθ ⊂ {θ} ×

[
a− β

2 , a+
β
2

]
,

con lo cual (θ, b) /∈ Aθ . ⊓⊔

Tenemos la siguiente proposición.

Proposición 2.1.8 La sucesión {Ai}∞i=1 es convergente en 2Ω .

Demostración. Para cada i ∈ N∪{0} sea (ϕAi , PAi
) el representante canónico de la pseudo-curva

Ai. Mostraremos que la sucesión {(ϕAi , PAi)}∞i=0 es una sucesión de Cauchy en C, por que lo

que calcularemos d∞
(
ϕAi−1 , ϕAi

)
.

d∞
(
ϕAi−1 , ϕAi

)
= máx

θ∈P
Ai

∩P
Ai−1

|ϕAi−1(θ) − ϕAi(θ)|

Por (A.3) ϕAi−1(θ) = ϕAi(θ) si

θ ∈ S1 \ (π−1 (Int(π(R(i∗))) ∪ Int(π(R((−i)∗))))).

En virtud del Lema 2.1.4,

Ai ∩ π−1(π(R(k∗))) ⊂ R(k∗) y Ai−1 ∩ π−1(π(R(k∗))) ⊂ R(k∗)

para k ∈ {i,−i}. Por lo que toda

|ϕAi−1(θ)− ϕAi(θ)| < diam(R(i∗)) = 2−ni ,

si

θ ∈ π−1 (Int(π(R(i∗))) ∪ Int(π(R((−i)∗))))

de donde

d∞
(
ϕAi−1 , ϕAi

)
< 2−ni.

Concluimos entonces que

{(ϕAi , PAi
)}∞i=0

es una sucesión de Cauchy y por el Lema 1.2.19 convergente. Por lo tanto por el Lema 1.2.14 la

sucesión {Ai}∞i=1 es convergente. ⊓⊔

Concluimos esta subsección con la siguiente definición.

Definición 2.1.9 Denotamos por A al lı́mite de la sucesión Ai en 2Ω .
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2.1.2. Demostración del Teorema 2.1.10.

El siguiente teorema, sumariza las propiedades fundamentales del conjunto A. El Teore-

ma 2.1.10 es central en este capı́tulo.

Teorema 2.1.10 El conjunto A es una pseudo-curva conexa que no contiene arcos de curva.

Demostración. Por el Lema 2.1.8 A es una pseudo-curva, por lo que solo debemos mostrar que

es conexa. Por el Lema 1.3.3 bastará ver que Aθ és conexo para todo θ ∈ S1. Si θ ∈ P
A
Por ser A

una pseudo-curva, |Aθ| = 1 y por lo tanto Aθ és conexo. Si θ /∈ P
A
entonces θ = l∗ para cierto

l ∈ Z. Por el Lema 2.1.7Al∗ es un intervalo y es por tanto conexo.

Probaremos finalmente que A no contiene segmentos de curva. Supongamos que existen U

un abierto conexo en S1 y una función continua ρ : U −→ I tal queGrafo(ρ) ⊂ A. ComoO∗(ω) es

denso en S1, podemos tomar l∗ ∈ U, l ∈ Z. Dado queGrafo(ρ) es un arco de curva se verifican las

siguientes dos propiedades. Primero, ρ(l∗)∩Al∗ es un solo en punto que denotamos por (l∗, xl∗).

Segundo, para toda sucesión {θn} ⊂ G ∩ U tal que ĺım θn = l∗, se cumple que ĺım(θn, ρ(θn)) =

(l∗, xl∗). Por otro lado, como A es núcleo tenemos que (l∗, a) ∈ A si y solo si (l∗, a) = ĺım(θn, an)

para una sucesión {(θn, an)} ⊂ A tal que {θn} ⊂ G. Como A es pinchado en G, tenemos Aθ =

Grafo(ρ)θ = {(θ, ρ(θ))} para toda θ ∈ U ∩G. Obtenemos ası́ que Al∗ = {(l∗, xl∗)} contradiciendo
el hecho observado anteriormente que Al∗ = Al∗

|l| que, por construcción, és un intervalo no

degenerado. Esto termina la demostración del Teorema. ⊓⊔

2.2. La Función

2.2.1. Preliminares

Las siguientes definiciones, las podemos enunciar en virtud de (A. 5.a).

Definición 2.2.1 Sea i ∈ N. Definimos g−i
: R((−i)∗) → R((−i+ 1)∗) en tres diferentes casos:

1. gθ−i
es la función λ(θ)(−1)2ni−ni−1(x− ai(θ)) + ai−1(θ + ω) si θ ∈ [(−i)∗ − αi, (−i)∗ − δi).

2. gθ−i
es la función (−1)2ni−ni−1(x− ai−1((−i)∗) + ai−2((−i)∗ +1) si θ ∈ [(−i)∗ − δi, (−i)∗ + δi].

3. gθ−i
es la función λ(θ)(−1)2ni−ni−1(x− ai(θ)) + ai−1(θ + ω) si θ ∈ ((−i)∗ + δi, (−i)∗ + αi].

Para 1 y 3 λ(θ) : [(−i)∗ − αi, (−i)∗ − δi]∪ [(−i)∗ + δi, (−i)∗ + δi] → [0, 1] es una función continua

que en los valores frontera, cumple λ((−i)∗ ± δi) = 1, λ((−i)∗ ± αi) = 0 y en los otros puntos

λ(θ) < mı́n

{
a−i−1(θ + ω)− ai−1(θ + ω)

(2ni−ni−1) (a+i (θ)− ai(θ))
,
a+i−1(θ + ω)− ai−1(θ + ω)

(2ni−ni−1) (a−i (θ)− ai(θ))

}
.

dondeR((−i)∗)θ = [a+i (θ), a
−
i (θ)] y R((−i+ 1)∗)θ+ω = [a+i−1(θ + ω), a−i−1(θ + ω)].

Definición 2.2.2 Sea i ∈ N. Definimos g
i
: R(i∗) → R((i + 1)∗) en cinco diferentes casos
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1. gθ
i
es la función constante al punto ai+1(θ + ω) si θ ∈ [i∗ − αi, i

∗ − αi+1].

2. gθ
i
es la aplicación connected the dots map que envia ∂(R(i∗)) en ∂(R((i + 1)∗)) invirtiendo

orientación y ai(θ) en ai+1(θ + ω) si θ ∈ (i∗ − αi+1, i
∗ − δi+1)

3. gθ
i
es (−1)2ni−ni+1(x − ai−1(i

∗)) + ai((i+ 1)∗) si θ ∈ [i∗ − δi+1, i
∗ + δi+1]

4. gθ
i
es la aplicación connected the dots map que envia ∂(R(i∗)) en ∂(R((i + 1)∗)) invirtiendo

orientación y ai(θ) en ai+1(θ + ω) si θ ∈ (i∗ + δi+1, i
∗ + αi+1)

5. gθ
i
es la función constante al punto ai+1(θ + ω) si θ ∈ [i∗ + αi+1, i

∗ + αi].

Notemos que 1 y 5 se pueden definir, pues en virtud de (A. 2) y (A. 5.b) el conjunto Ai+1 ∩
π−1 ((π(R(i∗)) + ω) \ π(R((i + 1)∗))) es una curva.

Demostraremos ahora el Lema 2.2.3

Lema 2.2.3 Sea i ∈ N. Las funciones g−i
y g

i
cumplen:

(-i.1) El conjunto π−1 ([(−i)∗ − δi, (−i)∗ + δi]) ∩R((−i)∗) es homeomorfo al conjunto

π−1 ([(−i+ 1)∗ − δi, (−i+ 1)∗ + δi]) ∩R((−i + 1)∗)

mediante la función g−i que dilata uno en el otro.

(-i.2) El conjunto g−i

(
π−1 ([(−i)∗ − αi, (−i)∗ − δi]) ∩R((−i)∗)

)
es un subconjunto propio de

π−1 ([(−i+ 1)∗ − αi, (−i+ 1)∗ − δi]) ∩R((−i+ 1)∗).

El conjunto g−i

(
π−1 ([(−i)∗ + δi, (−i)∗ + αi]) ∩R((−i)∗)

)
es un subconjunto propio de

π−1 ([(−i+ 1)∗ + δi, (−i+ 1)∗ + αi]) ∩R((−i+ 1)∗).

(-i.3) g−i

(
Ai ∩ π−1(π(R((−i)∗)))

)
= Ai−1 ∩ π−1(π(R((−i)∗)) + ω).

(i.1) El conjunto π−1 ([i∗ − δi+1, i
∗ + δi+1] ∩R(i∗)) es homeomorfo al conjunto

π−1 ([(i+ 1)∗ − δi+1, (i+ 1)∗ + δi+1]) ∩R((i + 1)∗)

mediante la función g
i
que dilata uno en el otro.

(i.2) El conjunto π−1 ([i∗ − αi+1, i
∗ − δi+1]) ∩R(i∗) es homeomorfo a

π−1 ([(i+ 1)∗ − αi+1, (i+ 1)∗ − δi+1]) ∩R((i + 1)∗) mediante la función g
i
.

El conjunto π−1 ([i∗ + δi+1, i
∗ + αi+1]) ∩R(i∗) es homemomorfo a

π−1 ([(i+ 1)∗ + δi+1, (i + 1)∗ + αi+1]) ∩R((i + 1)∗) mediante la función g
i
.

(i.3) g
i

(
Ai ∩ π−1(π(R(i∗)))

)
= Ai+1 ∩ π−1(π(R(i∗)) + ω).

y en particular son continuas.

Demostración. La demostración de (−i,1) la hacemos de la siguiente manera. Primero observe-

mos que como θ ∈ [(−i) − δ∗i , (−i) + δ∗i ] en consecuencia θ + ω ∈ [(−i + 1)− δ∗i , (−i+ 1) + δ∗i ].
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Ahora bien, de la Observación 2.1.3 7 y de que las funciones coordenadas son funciones lineales,

basta demostrar que los extremos deR((−i)∗)θ son enviados a los de R((−i+ 1)∗)θ+ω.

Aplicando la función al extremo ai−1((−i)∗)− 2−niβ(ψ−i(θ)), tendremos que

gθ−i
(ai−1((−i)∗)− 2−niβ(ψ−i(θ))) = 2−ni−1β(ψ−i(θ)) + ai−2((−i + 1)∗).

Por hipótesis β(ψ−i(θ)) = β(ψ−i+1(θ + ω)) en consecuencia, la imagen de dicho extremo es

ai−2((−i + 1)∗) + 2−ni−1β(ψ−i+1(θ + ω)). Procediendo de manera análoga para el otro extremo

tendremos lo que deseabamos demostrar.

De la definición de g−i es inmediato que para demostrar (−i,3), solo resta ver

g−i
(π−1([(−i)∗ − δi, (−i)∗ + δi]) ∩ Ai) = π−1([(−i+ 1)∗ − δi, (−i+ 1)∗ + δi]) ∩ Ai−1.

Es inmediato que g−i
(A

(−i)∗

i ) = A
(−i+1)∗

i−1 por lo que supondremos

θ ∈ [(−i)∗ − δi, (−i)∗ + δi] \ {(−i)∗}. Tenemos pues que

(θ, ai(θ)) = (θ, ai−1((−i)∗) + (−1)i2−niφ(ψ−i
(θ))),

por lo tanto gθ
i
(ai(θ)) = (−1)i+12−ni−1φ(ψ−i

(θ)) + ai−2((−i + 1)∗) pero por hipótesis ψ−i
(θ) =

ψ−i+1
(θ + ω) de donde gθ

i
(ai(θ)) = ai−1(θ + ω).

Para (−i,2), hemos visto que gθ−i
(ai(θ)) = ai−1(θ + ω) por lo que podemos reescribir la

función gθ−i
ası́

gθ−i
(x) = (−1)2ni−ni−1(x− ai−1) + ai−2(θ + ω),

lo cual nos muestra que las contenciones se cumplen y también la continuidad de g−i .

La demostración de (i,1) y la de (i,3) son análogas a la manera en que demostramos (−i,1) y
(−i,3). La demostración de (i,2) se sigue de que gθ

i
es una función lineal a dos trozos. Finalmente,

la continuidad de g
i
se sigue de que las funciónes lineales a dos trozos tienen como lı́mite, por

un lado la función lineal definida en los extremos del intervalo central [i∗ − δi+1, i
∗ + δi+1] y en

los otros, tiene como lı́mite la función constante definida en

π(R(i∗)) \ [i∗ − αi+1, i
∗ + αi+1]. ⊓⊔

2.2.2. Definición y Propiedades

Definición 2.2.4 Dada l ∈ Z, diremos que A(R(l∗)) = k si R(l∗) está contenido en exactamente k

conjuntos R(j∗), l 6= j por lo que |j| < |l|. Definiremos Zk = {i ∈ Z : A(R(i∗)) = k} y z
k
será el

elemento con valor absoluto mı́nimo en Zk.

La siguiente observación es inmediata.

Observación 2.2.5 La sucesión {z
k
}∞k=0 cumple que ĺım z

k
= ∞

Diremos que Bk =
⋃

i∈Zk
π(R(i∗))
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Lema 2.2.6 El conjunto Bk es denso en S1 para toda k ∈ N ∪ {0}.

Demostración. Demostraremos este lema por inducción. Es inmediato que B0 es denso pues

O∗(ω) es denso y O∗(ω) ⊂ B0. Supongamos ahora que Bn es denso en S1. Demostraremos

que Bn+1 es también denso.

Observemos primero que para toda i ∈ Z tenemos que

(π(R(i∗)) ∩O∗(ω)) \ {i∗} = π(R(i∗)).

Sea i ∈ Zn y j∗ ∈ (π(R(i∗)) ∩O∗(ω)) \ {i∗} entonces j∗ ∈ Bn+1 por lo tanto Bn ⊂ Bn+1 y

entonces Bn+1 = S1. ⊓⊔

Notación 2.2.7 Fijado un conjunto R(i∗), para cada θ ∈ π(R(i∗)) diremos que R(i∗)θ = {θ} ×
[mi(θ),Mi(θ)], escribimos

Iθ = [−2,mi(θ)] ∪ [mi(θ),Mi(θ)] ∪ [Mi(θ), 2].

En particularmi,Mi son funciones continuas ymi,Mi : π(R(i∗)) → I .

Definiremos inductivamente una sucesión de funciones Fn : Ω → Ω.

Definimos F0 como:

(F0.1) F
θ
0 es la aplicación connected the dots map que envia −2 a 2, a(θ) a a(θ + ω) y 2 a −2 si

θ ∈ S1 \B0

(F0.2) F
θ
0 es la función lineal a tres o a dos trozos, tal que F θ

0 (2) = −2, F θ
0 (−2) = 2 y F θ

0 (x) =

gθj (x) para toda (θ, x) ∈ R(j∗)θ, donde θ ∈ B0 y j ∈ Z0 es el único entero tal que θ ∈
π(R(j∗)).

Suponiendo que hemos construido la función Fn : Ω → Ω definiremos la función

Fn+1(θ, x) =





Fn(θ, x), (θ, x) /∈ π−1(Bn+1)

g
i
(θ, x) (θ, x) ∈ R(i∗), i ∈ Zn+1

2−g
i
((θ,mi(θ)))

2−Fn((θ,mi(θ)))
(Fn(θ, x) − 2) + 2 θ ∈ π(R(i∗)), (θ, x) ∈ [−2,mi(θ)]

2+g
i
((θ,Mi(θ)))

2+Fn((θ,Mi(θ)))
(Fn(θ, x) + 2)− 2 θ ∈ π(R(i∗)), (θ, x) ∈ [Mi(θ), 2]

Claramente Fn ∈ T para toda n ∈ N.

Lema 2.2.8 La sucesión de funciones Fn cumple las propiedades

(a) Cada Fn es una función continua.

(b) Cada F θ
n es una función lineal a trozos y monótona decreciente.

(c) La sucesión {Fn}∞n=0 es convergente.

Demostración. La continuidad de las Fn la mostramos por inducción.

Dado que F θ
0 es continua para toda θ ∈ S1 para demostrar que F0 es continua basta ver que

para toda sucesión θn convergente a θ se tiene que F θn
0 converge uniformemente a F θ

0 .
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Si θ ∈ Int(B0), existe i ∈ Z0 de manera que θ ∈ Int(π(R(i∗))). Entonces, para toda sucesión

{θn}∞n=1 tal que ĺım θn = θ existe N ∈ N tal que θn ∈ π(R(i∗)) para toda n ≥ N , en virtud

de la definición de F0, tenemos que F0

∣∣
π−1(π(R(i∗)))

es continua, en consecuencia F θn
0 converge

uniformemente a F θ
0 .

Si θ /∈ Int(B0) observemos primero que si θ ∈ ∂(π(R(i∗))) para alguna i ∈ Z0 y consideramos

solo sucesiones θn contenidas en Int(π(R(i∗))) tenemos que por la definición de F0

∣∣
π−1(π(R(i∗)))

se cumple que ĺımF θn
0 = F θ

0 la cual es una función lineal a dos trozos.

Ahora en virtud de Lema 2.2.6 Int(B0) es denso. Entonces, calcularemos las funciones lı́mite

en Ω \ π−1(Int(B0)) y veremos que coinciden con la definición de F0 en dicho conjunto.

Sea θ ∈ S1 \ Int(B0) y θn ∈ Int(B0) tal que ĺım θn = θ. En virtud de que θn ∈ Int(B0) tenemos

θn ∈ π(R((jn)
∗)) para algún jn ∈ Z0. Por otro lado, por la observación anterior y de que θ /∈ B0

podemos suponer que ĺım |jn| = ∞ consecuentemente ĺım diam(R((jn)
∗)) = 0.

Veamos ahora que d(F θ
0 , F

i∗
0 ) ≤ 2 · diam(R((i + 1)∗)) = 4 · 2n|i+1| , para toda i ∈ Z0 y θ ∈

π(R(i∗)). En virtud de que θ ∈ π(R(i∗)) la gráfica de gθi está contenida en el cuadradoR(i∗)i
∗ ×

R((i + 1)∗)(i+1)∗ , un simple cálculo muestra

F i∗
0 (x) − 4 · 2n|i+1| ≤ F θ

0 (x) ≤ F i∗
0 (x) + 4 · 2n|i+1|

para toda x, pues las gráficas de éstas funciones intersectan a dicho cuadrado en un solo punto,

consecuentemente d(F θ
0 , F

γ
0 ) ≤ 4 · 2n|i+1| , para toda θ, γ ∈ π(R(i∗)).

Ahora demostramos que ĺımFαn
0 = F θ

0 donde αn ∈ ∂(π(R(j∗n))) para toda jn. En virtud de la

Propiedad (A. 5f), la gráfica de Fαn
0 son dos trozos de recta con intersección en (a(αn), a(αn+ω)).

Entonces, en virtud de (P.2) en la Observación 2.1.3 y el Lema 2.1.7, tenemos que A es pinchado

en los puntos en cuestión y tenemos que ĺım(a(αn), a(αn + ω)) = (a(θ), a(θ + ω)) y ĺımFαn
0

será una función lineal a dos trozos, de donde ĺımFαn

0 = F θ
0 .

Ası́ pues, dado que d(F θn
0 , Fαn

0 ) ≤ 4 · 2n|i+1| y njn → ∞ cuando n → ∞ obtenemos el

resultado deseado.

Suponiendo ahora que Fn es continua, demostraremos que Fn+1 también lo es. Es claro

que para toda θ ∈ Int(π(R(j∗))) y j ∈ Zn+1 la función F θ
n+1 es continua y toda sucesión que

converge a θ totalmente contenida en π(R(j∗)) cumple que la correspondiente sucesión de

funciones converge a F θ
n+1. Solo nos resta ver que pasa en la frontera de π(R(j∗)). Tomemos

θk ∈ Int(π(R(j∗))) y ĺım θk = αj ∈ ∂π(R(j∗)) entonces en virtud de que j ∈ Zn+1 existe i ∈ Zn

tal que R(j∗) ⊂ R(i∗) como (αj ,Mj(αj)) = (αj ,mj(αj)) ∈ R(i∗) ∩ Ai tenemos que

g
j
(αj ,mj(αj)) = g

i
(αj ,Mj(αj)) = Fn(αj ,mj(αj))

= (αj ,Mj(αj)) = g
i
(αj ,mj(αj))

= g
j
(αj ,mj(αj))

por la definición de Fn luego,
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ĺımFn(θk,mi
(θk))− g

i
(θk,mi

(θk)) = 0

ĺımFn(θk,Mi
(θk))− g

i
(θk,Mi

(θk)) = 0.

Entonces

ĺım
2− g

i
((θ,mi(θk)))

2− Fn ((θ,mi(θk)))
(Fn(θk, x)− 2) + 2 = Fn(αi, x)

ĺım
2 + g

i
((θk,Mi(θk)))

2 + Fn ((θk,Mi(θk)))
(Fn(θk, x) + 2)− 2 = Fn(αi, x),

concluimos pues que la función Fn+1 es continua.

Por otro lado, cada F θ
n es monótona decreciente y lineal a pedazos por construcción.

Ahora demostraremos que la sucesión Fn converge.

Sea i ∈ Zn+1, entonces la distancia entre Fn y Fn+1 en π
−1(π(R(i∗))) será

∣∣∣∣(Fn(θ, x)− 2)

(
Fn ((θ,mi(θ))) − g

i
((θ,mi(θ)))

2− Fn ((θ,mi(θ)))

)∣∣∣∣

si x < mi, ∣∣∣∣(Fn(θ, x) + 2)

(
Fn ((θ,Mi(θ))) − g

i
((θ,Mi(θ)))

2 + Fn ((θ,Mi(θ)))

)∣∣∣∣
si x > Mi(θ) y |Fn(θ, x)− g

i
(θ, x)| si (θ, x) ∈ R(i∗).

Observemos que |Fn ((i∗,mi(i
∗)))− g

i
((i∗,mi(i

∗))| y |Fn ((i∗,Mi(i
∗)))− g

i
((i∗,Mi(i

∗))| son
los valores máximos de las dos primeras distancias.

Se verifica entonces que |Fn ((i∗,mi(i
∗)))− g

i
((i∗,mi(i

∗))|, |Fn(θ, x) − g
i
(θ, x)| y

|Fn ((i∗,Mi(i
∗)))− g

i
((i∗,Mi(i

∗))| son menores que diam(R((j + 1)∗)) = 2−n|j+11 . Concluimos

entonces que la sucesión es de Cauchy y por lo tanto convergente. ⊓⊔

Definición 2.2.9 Denotamos por F al lı́mite de la sucesión Fn.

Observemos que F ∈ T y que no es un homeomorfismo.

Teorema 2.2.10 La función F : Ω → Ω satisface que F (A) = A, y A es el único conjunto conexo

compacto invariante por la función F . En particular, la función F no tiene curvas invariantes en Ω.

Demostración. Observemos que por definición, si i ∈ Zk entonces Fn(A
i∗) = A(i+1)∗ para toda

n ≥ k, consecuentemente F (Ar∗) = A(r+1)∗ para toda r ∈ Z y en virtud de que
⋃

r∈ZA
r∗ es

denso en A, tenemos que F (A) = A.

Por último, como A es conexo y π(A) = S1, Ω \ A es disconexo. Como F (A) = A dichas

componentes conexas son imagen la una de la otra, de donde concluimos que si existiera una

curva fija contenida enΩ ésta intersectaria aA y por lo tanto estarı́a contenida en A. Como A no

contiene curvas, concluimos que no existen curvas fijas en Ω, bajo la función F . ⊓⊔

En general las pseudo-curvas invariantes no son conexas. De manera similar a nuestra cons-

trucción, podemos exhibir pseudo-curvas invariantes (por una función T ∈ T ) que sean total-

mente disconexas.
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