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Resumo

Um dos mais investigados problemas na teoria qualitativa dos sistemas dindmicos no
plano ¢ o XVI problema de Hilbert que trata dos ciclos limites. Mais precisamente, a
segunda parte do referido problema questiona sobre o nimero maximo de ciclos limites
de um sistema diferencial polinomial plano de grau n. Por ciclo limite entendemos uma
orbita fechada isolada no conjunto de todas as 6rbitas peridédicas de um sistema diferencial
plano. Uma maneira classica de obter um ciclo limite é perturbando um sistema com uma
singularidade do tipo centro. Nesta dissertagao apresentamos dois métodos utilizados para
a anélise do nimero de ciclos limites que bifurcam de um centro, a saber o método das

integrais abelianas e o método do averaging.

Palavras-chave: Bifurcacao de centros, XVI problema de Hilbert, integral abeliana,

método do averaging.
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Abstract

One of the most investigated problems in the qualitative theory of dynamical systems
in the plane is the XVI Hilbert’s problem which deals with limit cycles. More precisely,
the second part of the problem asks about the maximum number of limit cycles of a
polynomial differential system of degree n. A limit cycle is a single closed orbit on the set
of all periodic orbits of a differential planar system. A classic way to obtain a limit cycle
is perturbing a system with a singularity of center type. In this work we discuss about
two methods used to investigate the number of limit cycles which bifurcate from a center;

they are known as Abelian integrals and averaging theory.

Key words: Bifurcation of centers, XVI Hilbert’s problem, Abelian integral, averaging

method.
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Introducao

O que podemos dizer sobre o numero e a posicao de ciclos limites em sistemas dife-

renciais no plano de grau n?

E bem conhecido que as solucoes de um sistema diferencial sdo pontos, retas ou drbitas
periddicas (|15], Teorema 1.4, p. 4). Quando uma 6rbita periodica for isolada no conjunto
de todas as orbitas periddicas do sistema, sera chamada de ciclo limite. A nocao de ciclo
limite surgiu pela primeira vez nos estudos das equacoes diferenciais no plano realizados
por Poincaré entre os anos de 1880 e 1890, e desde entao os ciclos limites sao o objeto de
estudo de muitos pesquisadores. Por exemplo, Van der Pol em 1926, Liénard em 1928 e
Andronov em 1929 provaram que a solugao periddica de uma oscilacao autossustentada
de um circuito em um tubo de vacuo era um ciclo limite, no sentido definido por Poincaré.
Observada a presenca de um ciclo limite na natureza, pesquisadores de diversas areas da
ciéncia passaram a observar a existéncia ou nao e, ao mesmo tempo, o nimero maximo

de ciclos limites, bem como outras propriedades.

Entretanto, para os matematicos, este problema ja os instigava desde o inicio do século.
Em 1900, durante a Conferéncia Internacional de Matemdticos de Paris, Hilbert |24, 25|
propos uma lista com vinte e trés problemas matematicos para serem resolvidos no século
XX. Dentre eles, destacamos o décimo sexto problema por se tratar exatamente de ciclos
limites em sistemas diferenciais no plano.

Certamente, o XVI problema de Hilbert ¢ um dos mais investigados problemas na
teoria qualitativa dos sistemas dindmicos no plano. Originalmente, Hilbert formulou seu

XVI problema dividindo-o em duas partes. A primeira delas é de interesse da geometria



algébrica, e a segunda questiona sobre o niimero maximo e a posicao relativa de ciclos

limites de sistemas polinomiais no plano

onde P e () sao polindbmios nas varidveis x e y e o0 maximo entre os graus de P e () é n.
Segundo Li em [29], Hilbert apontou possiveis conexoes entre as duas partes do problema,
mas que nao é o foco desta dissertacao.

Apesar do grande ntiimero de trabalhos nessa area, o progresso alcancado na busca
pela resposta a este problema ndo foi grande. Por exemplo, embora Ecalle em [16] e
[I’Yashenko em [27]| terem provado que o nimero de ciclos limites em tais sistemas ¢é
finito, suas demonstragoes nao sao muito acessiveis. Além disso, nem mesmo foi provada
a existéncia de uma cota superior uniforme para o nimero de ciclos limites de sistemas
quadréticos. Suspeita-se que esta cota uniforme exista e seja 4, e que a unica configuracao
de ciclos limites de campos quadraticos com 4 ciclos limites é a (3,1), isto é, trés ciclos
limites ao redor de um foco e um ciclo limite ao redor de outro foco (mais detalhes em
[46]).

Em vista da dificuldade de resolucao do XVI problema de Hilbert como fora proposto,
varios estudiosos foram aprimorando e dando novos enunciados ao problema. Por exemplo,
Arnol’d [2, 4] propos a investigagdo do nimero méximo de ciclos limites que bifurcam de
uma singularidade do tipo centro, conhecida como a versdo fraca do XVI problema de
Hilbert.

Segundo Li, Li, Llibre e Zhang [30], existem diversos métodos para estudar a bifurcagao
de ciclos limites que bifurcam de um centro. A maioria deles sao baseados na aplicacao de
primeiro retorno de Poincaré, como é o caso do método da integral de Poincaré-Melnikov
e do método das integrais abelianas. Recentemente, alguns outros métodos foram apre-
sentados, uns baseados no fator de integragao inverso e outros, na reducao do problema a
uma equagao diferencial em uma variavel, no caso do método do averaging, por exemplo.

Para o plano, os métodos da integral de Poincaré-Melnikov e das integrais abelianas sao

equivalentes (veja [7]). Vale observar que os dois primeiros métodos fornecem as orbitas
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de sistemas nao perturbados que se tornam ciclos limites apos perturbacoes. O método
das integrais abelianas se aplica apenas para dimensao dois. O terceiro e quarto métodos
fornecem o nimero e forma dos ciclos limites dos sistemas obtidos por perturbacoes de

qualquer ordem em todas as dimensoes.

Esta dissertacao propoe-se a apresentar de maneira criteriosa as duas técnicas mais
conhecidas e utilizadas no estudo de ciclos limites que bifurcam de um centro em sistemas
planos, conhecidas como integrais abelianas e a teoria do averaging. Dessa maneira, a
dissertacao tem duas partes distintas, cada uma delas destinada ao estudo de uma das

técnicas mencionadas.

Subdividimos o estudo das integrais abelianas em secoes. Na primeira se¢ao apresen-
tamos uma introducao ao problema e defini¢coes bésicas ao estudo. Em seguida, trata-
mos do Teorema de Poincaré-Pontryagin e, finalmente, descrevemos um dos métodos
utilizados para a estimativa do ntimero de zeros das integrais abelianas. Para concluir
a primeira parte desta dissertacao, investigamos um sistema quadratico com integral
primeira racional de grau trés e descrevemos as dificuldades encontradas durante o es-

tudo.

A segunda parte desta dissertacao, onde tratamos da teoria do averaging também foi
dividida em se¢oes. Na primeira delas apresentamos as defini¢oes e ferramentas basicas
ao estudo. Em seguida, tratamos do averaging de primeira ordem e de ordem mais alta e
descrevemos o que é conhecido como forma padrao do sistema. Finalmente, tratamos do
averaging periddico via grau de Brouwer. Em todas as se¢oes exemplos sao apresentados

visando facilitar a compreensao das técnicas discutidas.

Encerramos a dissertacao com algumas consideragoes finais e com as referéncias bibli-

ograficas utilizadas para a preparacao da mesma.

Vale ressaltar que utilizaremos as palavras averaging, derivada do inglés, e promediado,
derivada do castelhano, assim como estao grafadas. Isso se deve ao fato da impossibilidade
de uma boa tradugao e, também, pelo uso corriqueiro na literatura e por pesquisadores

da area.

Gostariamos de agradecer aos professores membros da banca, Marco Antonio Teixeira

(IME/Unicamp) e Luis Fernando de Osorio Mello (UNIFEI), pelas sugestoes e corregoes



que muito contribuiram para a conclusao desta dissertagao, tornando-a um texto mais

didatico e compreensivel.



Capitulo

1

Integrais Abelianas

Nosso objetivo neste capitulo é apresentar o método conhecido como integral abeliana,
utilizado para estimar o ntimero de ciclos limites que bifurcam de um centro, no estudo

da versao fraca do XVI problema de Hilbert.

Iniciamos o capitulo com defini¢oes e resultados basicos e fundamentais para a com-
preensao da técnica a ser apresentada. Em seguida, apresentamos o Teorema de Poincaré-
Pontryagin, que exibe a relacao entre o nimero de zeros de uma integral abeliana e
o numero maximo de ciclos limites que bifurcam de um centro por uma perturbagao,

seguido de um exemplo e comentarios para casos mais gerais.

Na sec¢ao seguinte, discutimos a respeito de uma técnica associada as integrais abelianas,
o método envolvendo da equacao de Picard-Fuchs. Essa técnica é uma ferramenta auxiliar
na estimativa do nimero de zeros da integral abeliana e, consequentemente, do niimero

de ciclos limites do sistema perturbado.

Finalizamos o capitulo discutindo sobre o estudo do ntimero de ciclos limites que bi-
furcam do centro de um sistema quadratico fixado. Nesse exemplo, as técnicas descritas
na secao anterior foram aplicadas. Discutimos resultados e apresentamos detalhes e difi-

culdades encontradas.



6 Integrais Abelianas

1.1 Sistemas polinomiais quadraticos no plano

Seja R[z,y] o anel de polindmios nas variaveis x e y com coeficientes em R. Con-
sideremos um sistema de equacoes diferenciais polinomiais ou simplesmente um sistema

diferencial em R? definido por
(1.1.1)

onde P,Q € Rz, y]. Dizemos que o maximo dos graus dos polinémios P e @ é o grau do
sistema (1.1.1). Um sistema diferencial quadrdtico ou simplesmente um sistema quadrdtico
é um sistema diferencial polinomial de grau 2. Diremos que o sistema quadratico (1.1.1)
é nao degenerado se os polinomios P e () forem relativamente primos, ou coprimos.

Seja U um subconjunto aberto e denso de R%. Diremos que uma funcio nao constante
H: U—R

é a integral primeira do sistema (1.1.1) em U se H(x(t),y(t)) for constante para todos os

valores de ¢ para os quais (z(t),y(t)) € uma solucao do sistema (1.1.1).

Proposicao 1.1.1. H : U — R serd integral primeira do sistema (1.1.1) se, e somente

se,

OH OH
para todo (x,y) € U.

Demonstracao: Seja (z(t),y(t)) € U uma solugao de (1.1.1). H sera integral primeira
de (1.1.1) se, e somente se, H(xz(t),y(t)) = h, para todo t tal que (x(t),y(t)) é solugao de
(1.1.1) em U.
Logo,
0 OH OH

O sistema diferencial (1.1.1) é dito integrdvel se existir H integral primeira do sistema.
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Dada f € R[z,y|, diremos que a curva f(z,y) = 0 é uma curva algébrica invariante

do sistema (1.1.1) se existir K € Rz, y] tal que

of _of
rliadl -y (1.13)

O nome “invariante” para a curva algébrica f(x,y) = 0 deve-se ao fato que, se uma

trajetoria intercepta a curva f(x,y) = 0, entao toda trajetoria esta contida nela.

A busca por integral primeira para um sistema diferencial planar é uma ferramenta
classica para descrever o retrato de fase do mesmo. Como usual, o retrato de fase de um
sistema diferencial é a decomposicao do dominio de definicao do sistema como uniao de

todas suas oOrbitas, ou trajetorias.

Se a integral primeira H for uma funcao racional, entao diremos que H é uma in-
tegral primeira racional. Para uma integral primeira racional sempre assumimos que os
polindémios do numerador e do denominador sejam coprimos. Se o maximo entre os graus
dos polindmios do numerador e denominador de uma integral primeira racional for m,
entdo diremos que a integral primeira racional H tem grau m. E claro que um caso par-
ticular de integrais primeira racionais sao as integrais primeira polinomaiazis, isto €, quando

o denominador da integral primeira racional for uma constante nao nula.

Notemos que, se um sistema diferencial polinomial tiver uma integral primeira racional,
entao todas as trajetorias desse sistema diferencial estarao contidas em curvas algébricas

invariantes.

Os sistemas de equacoes diferenciais em R?" da forma

: oH
qi o - Bp;
- ’
. OH
pi 0q;
onde (qi,...,qn,P1,---,Pn) sa0 as coordenadas em R?" ¢ H : R*® — R ¢ uma fungao,

serao chamados de sistemas hamiltonianos com n graus de liberdade e H serd chamada
fun¢ao hamiltoniana do sistema.
Uma das técnicas utilizadas na busca por solucoes de equacoes diferenciais é o método

do fator integrante. Uma funcdo M = M(x,y) é um fator de integrante, ou fator de
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integragao, do sistema (1.1.1) se uma das seguintes condigdes equivalentes for satisfeita:

CoMP) _ oMQ)
o 0r oy

2. div(MP, MQ) = 0.

Observagao 1.1.2. A integral primeira H associada ao fator de integracao M é dada de
forma que
0OH OH

Reciprocamente, dada uma integral primeira H do sistema (1.1.1) sempre podemos

encontrar um fator de integragao M para o qual (1.1.4) fique satisfeita.

1.2 O XVI problema de Hilbert

Os problemas de Hilbert [24, 25] formam um rol de vinte e trés problemas em Ma-
tematica que foram propostos pelo matematico alemao David Hilbert (1862-1943) du-
rante o Congresso Internacional de Matemdticos de Paris em 1900. Eles influenciaram
a Matematica do século XX. De acordo com Corry [14], “esse conjunto de problemas
tornou-se um verdadeiro objeto de culto, de maneira que, ao passar dos anos, vérios
matemaéticos dedicaram seus esforcos em resolvé-los, e os que tiveram éxito cobriram-se
de gloria profissional”, como Kurt Gédel (1906-1978), Max Dehn (1878-1952), Andrei
Nikolaevich Kolmogorov (1903-1987) e Vladimir Igorevich Arnol’d (1937-2010).

O XVI problema de Hilbert ¢ um dos poucos problemas que permanecem em aberto.
Ele trata dos ciclos limites em sistemas diferenciais polinomiais e pode ser dividido em
duas partes.

A segunda parte do referido problema (a primeira parte lida com ovais no conjunto de
zeros de fungoes algébricas) pode ser enunciado da seguinte maneira: Qual € o nimero
mdzximo (chamado de nimero de Hilbert e denotado por H(n)) de ciclos limites de (1.1.1)

para todos os P e (Q possiveis? E o que dizer das posicoes relativas dos ciclos limites de

(1.1.1)?
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Definigao 1.2.1. [15] Uma drbita periddica v do sistema (1.1.1) serd chamada de ciclo
limite se existir uma vizinhanga V' de vy tal que v seja a unica orbita periddica contida

em V.

Em muitas aplicagoes o ntmero e as posicoes de ciclos limites sao importantes para
entender o comportamento dindmico do sistema.

Notemos que o problema ¢ trivial para n = 1. Um sistema linear pode ter o6rbitas
periodicas, mas nao possui ciclos limites. Por exemplo, consideremos o sistema

i =
Y (1.2.1)

y:—]ﬁ,

cujas oOrbitas sao circunferéncias concéntricas na origem. Observe que nao ha nenhum
ciclo limite em seu retrato de fase, como mostra a Figura 1.1, pois todas as suas orbitas,

exceto a de equilibrio, sao fechadas. Dessa forma, assumimos n > 2.

7
=

ty

N

Figura 1.1: Retrato de fase do sistema (1.2.1).

Em geral, sabe-se muito pouco sobre o niumero de ciclos limites de (1.1.1), mesmo para
o caso n = 2. Em contrapartida, podemos afirmar que um sistema desse tipo possui um
namero finito de ciclos limites. Existem duas demonstragdes (independentes) para esse
fato que sdo devidas a Ecalle [16] e a II’Yashenko [27] e vale observar que ambas nao foram
ainda completamente compreendidas pela comunidade cientifica. Nao se sabe, entretanto,
nem mesmo para o caso quadrético, se existe um limitante superior uniforme, dependo

do grau do sistema.
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1.2.1 Configuragao de ciclos limites

Além de questionar a existéncia de um limitante superior uniforme, a segunda parte
do XVI problema de Hilbert também questiona sobre uma descri¢ao das possiveis confi-
guracoes de ciclos limites que sistemas polinomiais podem ter. Existem diversos artigos
que investigam as posigdes relativas de ciclos limites para o sistema (1.1.1). Um resultado

geral foi obtido por Llibre e Rodrigues [37] em 2004.

Definicao 1.2.2. Uma configuracao de ciclos limites ¢é wum conjunto finito
C={m, " ,vm} de curvas fechadas simples tais que v; N y; = &, para todo i # j.

O conjunto C' serd chamado wma configuragao de ciclos limites algébricos se
as curvas fechadas ~y; forem ciclos limites algébricos. Uma curva fechada serd chamada
algébrica se for uma componente conexa do conjunto de zeros de alguma funcao polino-

mial.

Dada uma configuragao de ciclos limites C' = {v1, -+ ,ym}, & curva ~; sera primdria
se nao existir nenhuma curva «; de C contida na regiao limitada determinada por ~;.

Duas configuragoes de ciclos limites C' = {7y, -+ , 1} e C" = {1}, -+ ,7,,} sdo (topo-
logicamente) equivalentes se existir um homeomorfismo h aplicando C' em C” tal que
h(U i) = UL, E claro que para configuracoes equivalentes de ciclos limites C' e C”
temos n = m.

Um sistema (1.1.1) realiza a configuracao de ciclos limites C, se o conjunto de todos

os seus ciclos limites for equivalente a C'.

Teorema 1.2.3. [15] Sejam C uma configuracao de ciclos limites e r o nimero de ciclos li-
mites primdrios de C. Entao, C = {v1, -+ ,Ym} € realizdvel como ciclos limites algébricos

por um sistema polinomial (1.1.1) de grau menor ou igual a 2(m +1r) — 1.

1.3 A versao fraca do XVI problema de Hilbert

Devida a dificuldade do problema original, Arnol’d |2, 4| propos o que hoje é conhe-

cida como a versao fraca do XVI problema de Hilbert, que de modo sucinto propoe a
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investigacao do niimero maximo de ciclos limites que bifurcam de uma singularidade do
tipo centro. Esse estudo tem possibilitado a obtencao de resultados interessantes para
casos particulares do problema original.

No entanto, antes de explorarmos esta versao do problema, consideremos algumas

defini¢oes e observagoes que nos ajudarao na sua compreensao.

Definicao 1.3.1. [3/ Uma 1-forma em R" ¢é uma fungao linear w: R™ — R tal que

w(M€1 + Aa2b2) = Mw(&1) + Aaw(Ea),

com A, A2 € R e &,& € R™.

Observacgao 1.3.2. O espaco de todas as 1-formas em R" é um espago vetorial de di-
mensao n chamado de espago dual de R" e denotado por (R™)* cuja operagao de adigao

¢ dada por
(w1 + w2)(§) = wi(§) + wa(8),

e de multiplicacao por escalar, por

(Aw)(&) = Aw(§)-

Escolhamos coordenadas 1, ..., x, € R™ e definimos as projegoes (logo, transforma-

goes lineares)

dx; R™ - R
, 1=1,...,n.
(617"' 7571) = gl
Como as n projegoes dxz;, i = 1,...,n, sao linearmente independentes, formam uma base

de (R™)* e, portanto, qualquer 1-forma em R" pode ser escrita como

W(€) = M (E)dxy + - + A(E)dz,, A iR = R,

Definigao 1.3.3. Uma integral abeliana ¢ a integral de linha de uma 1-forma racional

em R? ao longo de wma orbita periddica algébrica.

Definicao 1.3.4. Uma curva v serd chamada de oval se for uma curva fechada.



12 Integrais Abelianas

Sejam H = H(z,y) um polindémio em z e y de grau m > 2, e as curvas de nivel

= {(z,y) € R*; H(x,y) = h},

formando uma familia continua de ovais {7} para h € (a,b). Consideremos a 1-forma

polinomial

w = f(z,y)dy — g(z,y)dx,

onde max (gr(f), gr(g)) =n > 2.
Arnol’d propos o seguinte problema: para m e n inteiros fizados, encontrar o nimero

mdzximo Z(m,n) de zeros (isolados) das integrais abelianas 1(h) = 7{ w.
Yh

Observagao 1.3.5. A funcao I(h) pode ser multivalente, isto é, é possivel existir duas

ou mais ovais sobre uma mesma curva de nivel {H*(h)}.

Notemos que no problema acima devemos considerar todos os possiveis polinémios H
com todas as possiveis familias de ovais {7}, e arbitrarias f e g.

A principio esse problema parece nao ter relagao com o XVI problema de Hilbert. No
entanto, veremos na proxima segao que a func¢do I(h), a integral abeliana, é a primeira
aproximagao, com respeito a € (suficientemente pequeno), para o niumero de ciclos limites

(pelo menos localmente) para o sistema:

= _8_]—! x x
g = 5@y +eglz.y),

onde H, f e g sdo exatamente as mesmas utilizadas para definir a integral abeliana I(h).

Observemos que, se m = n+1, ent@o o sistema (1.3.1) é uma forma especial do sistema
(1.1.1), proximo ao sistema hamiltoniano para e suficientemente pequeno. Nesse sentido,
a segunda parte do XVI problema de Hilbert é usualmente chamada de o XVI problema
de Hilbert fraco (ou tangencial, ou infinitesimal), e o numero Z(n) = Z(n+ 1,n) (que
é igual ao namero de zeros da integral abeliana) pode ser escolhido como um limitante
inferior do namero de Hilbert H(n).

Varchenko [44] e Khovanskii [28] provaram que para m e n dados, o nimero Z(m,n)



1.4 Integrais abelianas e ciclos limites 13

¢ uniformemente limitado com respeito a escolha do polinémio H, da familia {v,} e da
1-forma w. Esse resultado é certamente importante. Porém, nao nos da informacoes

concretas sobre o numero Z(m,n).

1.4 Integrais abelianas e ciclos limites

Nesta secao discutimos a relacao entre o nimero de zeros das integrais abelianas e o

numero de ciclos limites do sistema diferencial polinomial planar correspondente.

1.4.1 O teorema de Poincaré-Pontryagin

Consideremos um polinémio H(x,y) de grau m como na se¢ao anterior e o campo

vetorial Xy correspondente dado por

. OH
r = _8_(1’,9)7
P (1.4.1)
Yy = %(% Y)-
Sejam X . o sistema perturbado relacionado a Xy
. 0H
r = _a_(xvy)+8f(x7y)7
ah}/ (1.4.2)
) = ——(2,y) +eg(z,y)
y ax 7 ) Y

onde f e g sao polindbmios em x e y de graus no maximo n e € um parametro suficientemente
pequeno. Notemos que, se £ = 0, entao (1.4.2) sera o sistema hamiltoniano (1.4.1) (nao
perturbado) associado ao polinomio H.

Suponhamos que exista uma familia continua de ovais {7,} C H '(h) dependendo
continuamente de um parametro h € (a,b). Entdo, definimos a integral abeliana como

antes:

I(h) = 74 f(e.y)dy — gla,y)da. (1.43)

Observagao 1.4.1. Notemos que, para h € (a,b), as vy, formam um anel de ovais, e cada

uma delas é orbita periodica do sistema Hamiltoniano (1.4.1).
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A questao é: quantas ovais mantém-se e tornam-se as orbitas periodicas do sistema

perturbado (1.4.2) para e suficientemente pequeno?

Se o namero de tais orbitas for finito, entao elas serdo ciclos limites de (1.4.2).

Em outras palavras, questiona-se: € possivel encontrar um valor h € (a,b) e algumas
orbitas periddicas I do sistema perturbado (1.4.2) tais que I tenda a 7y, (no sentido da

distancia de Hausdorff) quando ¢ — 07 E quantas T'. existem para o mesmo h?

Para responder a essa pergunta, tomemos um segmento o, transversal a cada 7. Pa-
rametrizemos o pela fungdo H e denotemos por 7(h,e) o pedago da orbita do sistema

perturbado (1.4.2) entre o ponto inicial A em o e o proximo ponto de intersecao P(h,¢)

com o, como mostra a Figura 1.2.

Y(h,e)

P(h,e)

Figura 1.2: Construgao da fungao sucessao.

A “proxima interse¢ao” é possivel para ¢ suficientemente pequeno uma vez que 7y(h, €)
estd proximo a yy.

Definigao 1.4.2. A diferenca d(h,e) = P(h,e) — h é chamada de fungao sucessao.

Teorema 1.4.3 (Poincaré-Pontryagin). [13] Temos

d(h,e) = e(I(h) + eo(h,¢)),

quando € — 0, onde ¢(h,€) € analitica e uniformemente limitada para (h,€) numa regiao
compacta prozima a (h,0), h € (a,b).

Demonstracao: Por construcgao, a funcao sucessao é dada pela diferenca da funcao H
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entre os pontos inicial e final de y(h,¢), isto é,

dt.

(1.4.2)

OH dx OH dy
d h,g = / dH = (__ + )
= L Ve \ O dt Oy dt

(Omitimos o ponto (z,y), onde as derivadas parciais sao calculadas, para nao carregar a

notagao.)

Substituindo (1.4.2) no lado direito da igualdade, obtemos:

OH 0OH OH (0OH
dh,az/ l—(——+a>+—(—+a>} dt =
(h,2) y(he) L OT dy / dy \ Ox g

(1.4.2)

_/ 8H8H+ aHf+8H8H+ 0H gt —
N y(he) oxr Oy E@x Jy Ox an N

(2,
y(h,e) or 8y

Notemos que v(h, €) converge uniformemente a -y, quando € — 0, ja que 73, é compacto,

(1.4.2)

dt.

(1.4.2)

e que %—fdt =dye %—I;dt = —dz por (1.4.1). Entao,

dh,e) = / Uy i) = <1 (8) + o)

onde o(g?) representa termos de ordem maior ou igual a 2 em &. "

Observacao 1.4.4. O namero de zeros da funcao sucessao é independente da escolha do

segmento transversal o, ja que o consideramos parametrizado pela funcao H.

Definigao 1.4.5. [/3] Um ciclo limite I" diz-se um atrator periodico (respectivamente,
repulsor periddico) (ou orbitalmente estavel (respectivamente, orbitalmente ins-
tavel)) quando I' for o w-limite (respectivamente, a-limite) de todos os pontos numa

vizinhang¢a Vi de T'.
O proximo resultado caracteriza a estabilidade de um ciclo limite.

Teorema 1.4.6. [43] Sejam D C R?* um aberto e x = (P,Q) : D — R? o campo vetorial

relacionado a equacgdao (1.1.1). Sejam T' uma érbita periddica de x de periodoT,p €T ec
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uma secao transversal de I' em p. Definamos a func¢ao sucessao d de I' numa vizinhanga
oo de p. Entao,

1) e | [ ) v O)a]

onde ¥(t) € a parametrizagio de T e div x(z,y) = 2& + %.
Em particular, se fOT div x(T'(t))dt < 0, entiao I' € estdvel, e se fOT div x(I'(t))dt > 0,

I’ € instdvel.
Com a notacao do Teorema 1.4.6, definimos a hiperbolicidade de um ciclo limite.

Definicao 1.4.7. [15] Um ciclo limite I' de (1.1.1) diz-se hiperbdlico se

Trorp 0Q
/0 (8_x+a_y)dt7é0’

onde T é o periodo de I'.

Definicao 1.4.8. Se existirem h* € (a,b) e c* > 0 tais que X tenha um ciclo limite I,
para 0 < |e| < e* e I tenda a yp+ quando € — 0, entio diremos que I'. bifurca-se de
Yn+. Diremos que um ciclo limite I' de Xy . bifurca-se do anel Uhe(mb) v, de Xpg, se

existir h € (a,b) tal que I' bifurca-se de .

O proximo resultado fornece uma caracterizagao do ntimero méaximo de ciclos limites
bifurcados de um centro com relagao ao ntimero méaximo de zeros da integral abeliana

correspondente.

Teorema 1.4.9. [13] Suponhamos que I1(h) nao seja identicamente nula para h € (a,b).

Entao, valem as sequintes afirmagoes.
1. Se Xy, twer um ciclo limite bifurcando-se de v+, entio I(h*) = 0;

2. Se existir h* € (a,b) tal que I(h*) =0 e I'(h*) # 0, entdo Xy terd um tnico ciclo

limite bifurcando-se de ~yp«. Além disso, esse ciclo limite € hiperbdlico;

3. Se existir h* € (a,b) tal que [(h*) = I'(h*) = - = [*"D(h*) = 0 e I®(h*) £ 0,
entao Xy terd no mdzimo k ciclos limites bifurcando-se da mesma v+, levando

em consideracao a multiplicidade dos ciclos limites;
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4. O numero total de ciclos limites de X (contando as multiplicidades), bifurcando-
se do anel Uhe(a,b) vy de Xy, € limitado pelo nimero mdzimo de zeros isolados da

integral abeliana I(h), para h € (a,b) (levando em consideracao as multiplicidades).

Demonstracao:

1. Suponhamos que um ciclo limite I'. de Xy . bifurca-se de ~y;-. Pela Definicao 1.4.8,
segue que existe um €* > 0 e uma sequéncia {h.}. tais que h. — h*, quando ¢ — 0,

e d(he,e) =0, com 0 < |g| < e*.

Assim, pelo Teorema 1.4.3, temos
d(he,e) =e(I(h.) + ep(he,e)) =0, 0<|e| <&,

Logo, fazendo ¢ — 0, teremos h. — h* e, entao, I(h*) = 0.

2. Suponhamos que exista h* € (a,b) tal que I(h*) =0 e I'(h*) # 0. Ja que os ciclos

limites sao considerados para £ # 0 suficientemente pequeno, ao invés da fungao

~ d(h,e
sucessao, estudemos os zeros da funcdo d(h,e) = u
€

Pelo Teorema 1.4.3, temos

d(h,e) = I(h) +ep(h,e),

onde ¢ ¢é analitica e uniformemente limitada em uma regiao compacta préoxima a

(h*,0).

Notemos que

d(h*,0) = I(h*) "2 0

e que
9 - , )
%d(h,€) =1 (h) + 8%925(]1, 6).

Isto implica

aN*_l*
(1, 0) = (%) #0.
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Pelo Teorema da Funcao Implicita, existem €* > 0, n* > 0 e uma tunica fungao

h = h(e) definida em
U =A{(h,e); |h=h"| <n", le] <€}

tais que h(0) = h* e d(h(c),e) = 0 para (h,e) € U*. Consequentemente, a tnica
h(e) fornece um tnico ciclo limite I'. do sistema (1.4.2) para cada ¢ suficientemente

pequeno.

Agora precisamos mostrar que esse ciclo limite ¢ hiperbélico (para e suficientemente

pequeno).

Escrevemos I(h) em (1.4.3) como I1(h) + I5(h), onde

1(h) = ]4 fay)dy o I(h) = — 74 g(z,y)dz.

Na primeira integral consideremos = = z(y, h) como fungao de y e h e, ao longo de

Yn, temos
OH Ox oH
Isso nos da
, B of ox B of 0r OH B of
=9 Gean™ =P eanoc®= P 2"

Analogamente, consideremos y = y(z, h) uma fungdo de x e h na segunda integral
e, ao longo de v, temos

8_H@:1 e dx:—a—Hdt.

Dai,

Th w0y
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of 39) PN
—+ = |dt=1I(h") # 0,
j{h* <8x dy

Consequentemente,

que implica

6211 81 8211 ag I'. Schawrz
1.1-2 — —I— —_— + — . —_

:574 g—l—@ dt #0, 0< |e] <1,
r. \0r Oy

ja que I'c — v+ quando € — 0, e a hiperbolicidade de I'. segue.

3. Assumamos que exista h* € (a,b) tal que I(h*) = I'(h*) = --- = I*D(h*) =0 e
1 (’“)(h*) # 0. Precisamos provar que existem 6 > 0 e n > 0 tais que, para qualquer
(h,e) e U = {(h,e); |h—h*| <mn, le| <}, afungdo sucessao d(h,e) tenha no

maximo k zeros em h, levando em consideragao suas multiplicidades.

Suponhamos que isso nao acontega. Entao, para qualquer inteiro j, existem ¢; > 0
en; >0, come; = 0en — 0 quando j — oo, tais que para quaisquer ¢; a fungao
d(f;_,g) tenha no minimo k + 1 zeros para |h — h*| < ;.

Usarjldo o Teorema de Rolle (sucessivas vezes), encontramos h; tal que |h; —h*| < n;

€

=\ ) k
(d(hpfg)) — [®(h)) +gj%¢(hj,gj) —0.

&j
Fazendo j — oo, teremos €; — 0 e, assim, [(’“)(h*) = 0, o que é uma contradicao.
Portanto, existem no maximo k ciclos limites bifurcando-se de .
4. Esta afirmacao é uma consequéncia das trés anteriores. De fato, para § > 0 su-
ficientemente pequeno, podemos considerar o nimero de ciclos limites bifurcando-
se de v, para h € [a + §,b — 0] e e suficientemente pequeno. Vimos que esse

numero é uniformemente limitado. Tomando o méaximo desse ntiimero quando § — 0,

conseguimos a ciclicidade do anel periodico. [

Exemplo 1.4.10. Consideremos a equacao de Van der Pol

i+ e(u® — i+ u =0,
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que é equivalente ao sistema

T =y,

(1.4.4)
y = —x+e(l—2?y.

Notemos que para ¢ = 0, o sistema (1.4.4) é hamiltoniano cuja familia continua de
ovais é

= {(z,y) € R* H(z,y)=2>+y*=h, h>0}.

Usando coordenadas polares x = hcosf e y = hsenf, e observando que a orientagao

de v, esta no sentido horario, temos:

1(h) :75 (1 - a?)ydz = /02”(1 12 cos? 0) (I sen 0)(— h sen d6) =

2
= —/ (1 — h*cos® §)(h? sen” §)df =
0
2
=— / (h*sen® § — h*sen? ) cos® §)df) =
O27r 27
S - / h? sen? 0df + / h4(sen 0 cos 9)2d9.
0 0

Fazendo a substituicdo 1 — cos 20 = 2sen? 6, obtemos:

2T 1 — cos 26 ht 2" 1 — cos46 h?
_ 12 — 212
I(h) = —h /0 5 do + 3, 5 df = mh (4 1).

Notemos que I(h) = 0 se, e somente se,

h2
h=0 ou 1—1:0 < h =42,

O valor h* = 0 corresponde a singularidade do sistema e h* = 2 é o tinico zero positivo
de I(h).

Por outro lado, vemos que

iy 2o (1)
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implica

I'(2) = 4r <2§2—1> =4 # 0.

Usando o Teorema 1.4.9 concluimos que, para ¢ suficientemente pequeno, o sistema
(1.4.4) possui um tnico ciclo limite hiperbodlico que tende ao circulo de raio v/2 quando

e — 0. n

Observacao 1.4.11. [13] Se ambos os sistemas, hamiltoniano e perturbado, indepen-
derem de parametros, como no Exemplo 1.4.10, entao o Teorema 1.4.9 asseguraré re-
sultados mais definidos. No entanto, ¢ comum encontrarmos sistemas nos quais fungoes
com parametros, e/ou o sistema hamiltoniano, dependam de outros parametros. Esses
parametros podem impossibilitar a utilizacao do Teorema 1.4.9.

Se as perturbagoes dependerem de parametros, os zeros de I(h) também dependerao
dos mesmos parametros. Esses podem tender aos extremos do intervalo (a, b), correspon-
dendo a valores criticos de H. Em tais valores o Teorema da Funcao Implicita nao pode,
em geral, ser aplicado. Se um dos extremos, digamos a, corresponder ao centro de Xg,
entdao I(h) podera ser estendida analiticamente ao valor a, e I(h) terd no maximo um
niamero finito de zeros proximos de a; consequentemente, o item (¢) do Teorema 1.4.9
pode ser estendido a [a,b). Por outro lado, se um extremo, digamos b, corresponder a
um policiclo (6rbita homoclinica ou heteroclinica) de Xy, as melhores conclusdes serao as
seguintes. O item (c) podera ser estendido a [a, b] se b corresponder ao lago homoclinico
e, em geral, certamente ndo se podera estender a [a,b] se b corresponder a conexao hete-
roclinica. Enfim, se b = oo (0 anel tende ao infinito), poderiamos fazer conclusoes sobre
o nimero de ciclos limites somente em regioes compactas do anel.

Se H = H, depender de algum parametro v, entao para alguns valores especiais, diga-
mos v*, H,~ podera ser degenerado, por exemplo ter algumas simetrias. Como Iliev [26]
explicou, a degenerescéncia leva a um limitante menor do que esperado para o nimero
de zeros de I(h). Além disso, a fungao I(h) (mesmo no caso em que I(h) ndo for iden-
ticamente nula) nunca pode gerar o nimero maximo de zeros da fungao sucessao d(h, )
para todas as classes de perturbagoes. Nesse caso, ordens mais elevadas (em ¢) de aproxi-

magoes para d(h, ) sao necessarias, como no estudo da ciclicidade do anel peridédico para
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X € QUN{QFUQLV} (isto é, X um sistema hamiltoniano do tipo reversivel ou Lotka-
Volterra); ou os parametros que quebram a simetria de H e os parametros de perturbagao
deveriam ser considerados juntos em espacos de dimensoes maiores para dar uma “parte

principal” da fungao sucessao.

Observagao 1.4.12. Os Teoremas 1.4.3 e 1.4.9 foram provados para sistemas polinomiais
hamiltonianos (1.4.1) e sua perturbagao polinomial (1.4.2), mas essencialmente podem ser

provados para campos vetoriais analiticos.

1.5 Estimativa do ntimero de zeros das integrais abelianas

Vimos que para estudar a versao fraca do XVI problema de Hilbert usando inte-
grais abelianas ¢ fundamental estimar seu nimero de zeros. Li e Zhang [32] observaram
que a monotonicidade da razao de duas integrais abelianas ¢ um dado importante para
determinar o ntumero de zeros de (h). Existem muitos métodos para estudar essa mono-

tonicidade. Trés deles sao:

1. a utilizacao de equacgoes de Picard-Fuchs;
2. a utilizagao da férmula de Green;
3. estimativas diretas da integral I},(h)Iy(h) — I](h)I2(h).

Cada um desses métodos é aplicavel a alguns casos especiais. No entanto, é necessério
repetir todo o processo de célculos para cada problema individual. Em [32], o objetivo
dos autores foi dar um novo método que seja mais direto, eficiente para problemas mais
amplos e conveniente para ser usado. Em suma, esse método constréi fungoes auxiliares,
definidas a partir da fungao hamiltoniana e das integrais abelianas, cujas propriedades
resultarao na monotonicidade da razao de duas integrais abelianas.

Nesta secao introduziremos o método baseado na equagao de Picard-Fuchs para esti-
mar o ntmero de zeros da integral abeliana I(h).

Apos esse estudo, faremos a abordagem para um caso particular da funcao hamiltoni-
ana proposta em [13]. Ressaltamos que o sistema a ser estudado é conhecido como sistema,

de Bogdanov-Takens.
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1.5.1 O método baseado na equacao de Picard-Fuchs

Consideremos a fun¢ao hamiltoniana eliptica de grau 3 na forma

:L,B

y2
Hiy) =% -2+, (15.1)

com a familia continua de ovais

wﬁ{@w;Mawz,— (15.2)

Wl o
IN
>
IN

Wl b

H_/

como mostra a Figura 1.3.

=V

Figura 1.3: Curvas de nivel de (1.5.1).

Denotemos o sistema hamiltoniano correspondente por Xy, a saber

y = 2 —1.

Quando h — —%, a oval 7y, reduz-se ao centro de Xy em (—1,0), enquanto que se
h — %, a oval vy, resultara no lago homoclinico com sela em (1,0). Consideremos o sistema

perturbado Xy . de Xy da seguinte forma

T o=y,

(1.5.3)
y = 2" —1l+e(a+a)y,

onde « € uma constante e € é um parametro suficientemente pequeno. A integral abeliana
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correspondente é

I(h) = aly(h) + I1(h), onde I;(h) = 7{ pydr, j=0,1,2,.... (1.5.4)

Vh
Desde que a orientacao de 7, estd no sentido horario, usando a férmula de Green
vemos que Iy(h) é a area da regiao delimitada por v, e, consequentemente, Iy(h) > 0 para
h > —%. Sejam (&,0) e (1,,0), com &, < —1 <, < 1, os dois pontos de interse¢ao de

v, com o eixo-z. Entao,

o
I;(h) = 2/ xydx.
&n

Seja H(x,y) = h com y = y(x, h) > 0. Diferenciando H em relagao a h, obtemos

0 0
—H C— h)=1
By (@,9) - pule,h) =1,
o que implica que
0 1 1
Oh s H(zy)  y(zh)
Logo,
=2 [ (15.5)
(h) =2 x. 1.5.5
/ én y(l’,h)
Lema 1.5.1. Nas condicoes acima, temos
. Li(h)
lim =—1.
h——2 Io(h)

Demonstragao: Seja f(z) a fungao tal que f'(x) = zy, isto é, f é a primitiva de gf xydx,
e seja g(r) a primitiva de Ezh ydx, para cada h fixado.
Entao, como f e g sdo continuas em [£,, 1] e derivaveis em (&, n5), segue do Teorema,

de Cauchy que existe z* € (&, m,) C [—2, 1] tal que

- . (1.5.6)
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Logo,
h
[ e = st - i) 2
€}L
= *[g(nn) — 9(&n)] = (1.5.7)
h
= x*/ ydzx.
&h
Portanto,
. Il(h> (1.5.7) ..
1 =71 =1,
h—l>I£1% Iy(h) h—1>r£l§ *
]
Assim, se definirmos a funcao
I, (h) 2 2
; h c(—35 3]
P(h) =4 To(h) (=53] (1.5.8)
_]-7 h = _ga
teremos de (1.5.4) que
I(h) = Iy(h)(a + P(h)). (1.5.9)

No que se segue, provaremos que P’(h) > 0 para h € (—%, %), implicando que P(h)

seja crescente e, assim, que I(h) tenha no méaximo um zero.

Lema 1.5.2. As integrais abelianas Io(h) e I1(h) satisfazem a segquinte equagao de Picard-

Fuchs

) d [ Io(h) gh 7 Io(h)
h? — 4)—— = . 5.
(9 )7 L) - o (1.5.10)

Demonstragao: Usando (1.5.5) e o fato de que y? = 2h + %x?’ — 2x ao longo de 7y,

obtemos:

- Jqy? 1 . 2
Ij(h):% :ijdx—% Y dx:j{ —a’ (2h+—x3—2x> dr =
y Y 3

j+3 j+1
_2hjf e+ 2 ]{ L dx—Qf A (1.5.11)
Yh Yh y Yh y

= ORI(h) + 21}y (h) — 207, ().
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Por outro lado, usando a férmula da integracao por partes e o fato que ydy = (2?—1)dx

ao longo de v, obtemos:

1;(h) 2/% yde =2 | ——(27*y)|" — = /nh 7
j = r’ydr =2 | ——(x - x =
’ G i+ e TG+, !

1 M i+l Mh pd+3
:2[—.—1(/ — dSE—i—/ dz)}:
I Na Y & Y (1.5.12)

1 Nh J+1 M J+3
:,—[2/ v dm—2/ 3: dx]:
VR VR & Y

1 , /
— ﬁ(lj+1(h) — Ii 5(R)).

Removendo I}, 3(h) de (1.5.11) e (1.5.12), temos:
(2§ +5)I;(h) = 6hI;(h) — 41, (h).

Tomando 57 = 0,1, temos:

5Io(h) = GhIi(h) — AL (h),

(1.5.13)
7I,(h) = 6hI{(h) —4IL\(h).
Notemos que, ao longo de 73, vale y?dy = (1 — 2?)ydx. Assim,
h h "
v dy = ydo — 2*ydr = yidy :/ ydx —/ rryde =
h &h &n
Mh Th
:>O:2/ yd:L’—Q/ 2?ydr =
&n 9
Usando [jj(h) ao invés de I}(h) em (1.5.13), temos
5Io(h) = 6hI\(h)—4I;(h),
7I,(h) = 6hI{(h) —4Ii(h),
e resolvendo em I (h) e I{(h) obtemos (1.5.10). n

Teorema 1.5.3. A fung¢io P(h) definida em (1.5.8) € estritamente crescente para



1.5 Estimativa do nimero de zeros das integrais abelianas 27

he(=53)-

Demonstragao: Por (1.5.8), temos

LML) — LWLE) Lk 1)
Pih) = (o(h))? “ o) oy

Substituindo (1.5.10) na igualdade acima, obtemos
(9h? — 4)P'(h) = —7(P(h))? + 3hP(h) + 5, (1.5.14)

que é uma equagao de Ricatti e é equivalente ao sistema

h = 9h?—4,

: (1.5.15)
P = —T7P?43hP+5.

Chamaremos de I' as curvas integrais do sistema (1.5.15), o qual tem {h = +2}
como conjuntos invariantes e todas as quatro singularidades estao localizadas sobre essas
2 _5

retas: uma sela S_ = (=2, —1) e um n6 N_ = (2, —2) no semiplano inferior, e uma sela

Sy =(%,1) eum n6 N, = (=2, 2) no semiplano superior.

A defini¢do de P em (1.5.8) mostra que o grafico da fun¢do P(h) é a variedade estavel
da sela S_. De fato, seja B = {P < 0, —% < h < %} Notemos a existéncia de uma
tnica orbita de (1.5.15) no interior de B tendo S_ como ponto w-limite. Essa érbita é a
separatriz estavel I' de S_, que tende a N_ quanto t — —oo.

Como P(h) — —1 quando h — —%, segue, pela unicidade de solugoes, que o gréfico
de P(h) ¢ igual a T' (implicando que P(h) — —2 quando h — %), como mostra a Figura
1.4.

Por outro lado, da segunda equagao de (1.5.15) vemos que a is6clina horizontal é dada

pela hipérbole de duas folhas @+ (h), onde

_ 3h+V9Rr? + 140
N 14 ’

Q+(h)

As duas folhas dividem a faixa {(h, P); —2 < h < 2} em trés regiGes, e 0 campo ve-

torial aponta para baixo nas regides superior e inferior, e aponta para cima na regiao
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N O
AN \ |
-2/3 O 2/3

Figura 1.4: O comportamento do campo vetorial (1.5.15) e da fun¢ao P(h).

intermediaria.

O objetivo agora é calcular a inclinagdo de P(h) no ponto h = —%. Para isso, de-
terminamos a direcao caracteristica da variedade estavel da sela S_, seguindo as ideias
descritas em [48] (pp. 53-60).

Por meio de uma translacao no sistema (1.5.15) de forma que a sela S_ esteja na

origem, obtemos um novo sistema cuja parte linear é dada por

h = X(h,P)=—12h,
. (1.5.16)
P = Y(h,P)=—3h+12P.

Considerando as coordenadas polares h = rcosf) e P = rsenf e definindo
G(6) = cos0Y (cos @, senf) — sen X (cosd,senf),

a equagao G(f) = 0 é chamada a equacao caracteristica para o sistema (1.5.16). Voltando

as coordenadas (h, P), vemos que a equagao caracteristica de (1.5.16) é dada pela reta

1

invariante —3h + 24P = 0, cujo coeficiente angular ¢ g

Logo, a inclinagdo de P(h) no ponto S_ é P’ (—%) = %, enquanto que a inclinagao de

Q- (h) no mesmo ponto ¢ ;. Consequentemente, a curva P(h) esta localizada abaixo de

@ proximo a S_. Mas, como o campo vetorial é transversal a Q_(h) e é direcionado a
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esquerda, a orbita I' ndo pode cruzar Q)_(h) para t — —oo: a oOrbita I' (grafico de P(h))

estd inteiramente situada em B, abaixo de Q_(h).

a2/ > 0, ja que £ < 0 abaixo de Q_(h) e % < 0 para

todo h € (—%,%) [

Isso implica que P'(h) =

Observacao 1.5.4. Uma equacao Fuchsiana é aquela que possui somente pontos singu-

lares regulares, no sentido definido em [43|, pp. 143-162. Uma vez que a equagao (1.5.14)

possui somente pontos singulares regulares em h = :i:%, ela ¢ do tipo Fuchsiana. Uma
equacao Fuchsiana sera dita ser do tipo Picard-Fuchs se possuir um conjunto fundamental

de solucoes que sao integrais abelianas.

1.6 Estudo do sistema Ps3

Llibre e Oliveira [35, 36] e Artés, Llibre e Vulpe [5] obtiveram uma classificagdo com-
pleta dos sistemas quadraticos com integral primeira racional de grau trés. Nessa classi-
ficacao foram obtidas trinta e uma classes de sistemas das quais sete apresentam centros.
Propomos o estudo das bifurcac¢oes dos ciclos limites de um dos sistemas encontrados cuja

classe foi denominada Phss.

Consideremos sistemas cuja forma candnica seja dada por

T = v,

gy = b+ex+lx?+ 3y

onde (b,e,?) é tal que b, ¢ € {—1,0,1}, e € R* U{0}. Uma integral primeira racional de

grau 3 ¢ dada por
20 + 3ex + 602 + 3y?

3

H(x,y) =

Para a classe de sistemas P,3, temos (b, e, ¢) = (1,1,0). Logo,

T = v,
(1.6.1)
yo= 1+o+3%
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243 3y?
H(z,y) = u (1.6.2)

3

O ponto (zg,yy) = (—1,0) é uma singularidade de (1.6.1) do tipo centro. A Figura

1.5 ilustra o retrato de fase do sistema (1.6.1) no disco de Poincaré.

Figura 1.5: Retrato de fase do sistema (1.6.1) no disco de Poincaré.

Notemos que:

OH 6 3 6
- E—l 2028 = — =9
9 (wy) =—(+a+gy)=——7
e
o 66
y YT AT

Tomando M (x,y) = %4, o sistema (1.6.1) escreve-se na forma

T = - Lot xz, )
- e 398; v) (1.6.3)
Y = "My %(x,y)

A fungao M (z,y) é um fator integrante. Além disso, observemos que M é um fator co-
mum aos polinémios que definem o sistema. Ao multiplicarmos cada um desses polindmios
pelo inverso de M, eles se tornam coprimos e, assim, garantimos a nao existéncia de uma

reta de singularidades.

Consideremos, agora, uma perturbagao do sistema (1.6.3). Estamos interessados so-

mente em perturbagdes polinomiais quadraticas.
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Seja o sistema perturbado

- M(;y).<%—§( ,y)+6f(w,y)>7

1

(1.6.4)
U= e (G (@) +eg(z,y))

2

onde f(x,y) Z a;;x" 'y e g(z,y) Z bija:iyj sao polinomios quadraticos em x e vy,
i+35=0 i+7=0

aij,bij € R, i,j € {0,1,2}, e ¢ > 0 é suficientemente pequeno.

Seja C'= {(x,y) € R* H(z,y) =h, h € R} o conjunto das curvas de nivel de H.

Lema 1.6.1. As curvas de nivel {y,}, para 0 < h < 1, é a familia continua de ovais

contida em C.

Demonstracao: Notemos que

2+ 3(~1)
H(-1,0)= """
Por outro lado,
2+3
lim H(z,0) = lim Ty
r——1 r——1 1‘3
e
2 2
lim H(z,0)= lim =% = jim (2 4+2) =0,
T——00 z——oco 3 z——oco \ 3 1?2
Portanto, a familia continua de ovais ¢ dada por v, = {(z,y) € R* H(z,y) = h,
he(0,1)} cC. "
Consideremos a 1-forma racional w = m y) W~ ((x Y Jz, e a integral abeliana

f(z,y) 9(z,y)
h :j{ dy — dx.
V=P My ™ T My
Dessa forma,

2 2
I(h) = 6% (Z aija:i_‘lyjdy — Z bijxi_4yjdx> ) (1.6.5)
Vh

i+5=0 i+5=0
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Denotemos
%Wz%xMMMe Ji(h) = In(h).
Yh

Como H(x,—y) = H(x,y), temos [;91(h) =0,k =0,1,2,...

Por outro lado, consideremos I};(h) = f'Yh t4yidy, e fazendo § = yit!, temos

dy = (j + 1)y’dy.

Logo,
1 i—4 3~
If(h) = —jI{ ' dy.
Yh

Sendo K} a regiao compacta delimitada por 7, segue do Teorema de Green que

z 4 z 5
Ydxdy = dxdy =
JH//Khax pady = g [ [ @Sy -
4 5 1

= “jdr = 2Py g = (1.6.6)

J+1 J+1wh

1—4
= _ﬁ]i—l,ﬁrl(h)‘

Observemos que, do sistema (1.6.1), obtemos

.dy 1 1 3y?
3 — 4+ =4 1.6.7
v ydx xd + x3 + Qx4 ( )

Multiplicando (1.6.7) por x'y’~2 e integrando ao longo de 7, temos

e 3
]{ :v’_?’yj_ldy—]{ (xz WPy T st )diﬁ =0=
Yh Th 2

1—3 3
o Iij - [i,j72 - Ii+1,jf2 - QIZ']' =0= s
2 +3j— 6 (1.6.8)
- 2—inj =1 j o+ Iig1-20=
2)

T2i1+3/—6 6<Ii,j—2 + Lit1,j-2)-
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Considerando (1.6.5), segue que

I(h) =6(aolgy(h) + aoidf (h) 4 arolty(h) + ann 17, (h) + asolsg(h) + agelgy(h)—

— booloo(h) — borlor(h) — biolio(h) — binl11(h) — bagl2(h) — boaloa(h)) =

1.6.6 3
e )6(4a00[_11(h) + 2a011_12(h) + 3aiolo1(h) + §a11]02(h) + 2a90111(h)+

4
+ §a02]—13(h> —borLo1(h) — b1 l11(h)) =

4
:6(4(IOQJ_1(h) + 3(110J0(h) + 2&20J1(h) + §a02[_13(h) — bmJo(h) — bllJl(h))

Por (1.6.8),

6

sl =~ 55—

(L1 (h) + It (h)) = —6.J_1(h) — 6.Jo(h).

Logo,
](h) = (24@00 — 48&02)J_1(h> + (18@10 — 48@02 + —6601)J0(h) + (12@20 — 6b11)J1(h),

isto é, a integral abeliana I(h) é expressa como uma combinagao linear das trés integrais

abelianas J_1(h), Jo(h) e Ji(h).

Ao iniciarmos o estudo do sistema P53 nosso principal objetivo era de aplicar a teoria
das integrais abelianas para encontrar um limitante superior para o nimero de ciclos
limites do sistema perturbado. Porém, enfrentamos alguns obstaculos durante o nosso

trabalho.

Nosso primeiro passo foi calcular as integrais abelianas J_i(h), Jo(h) e Ji(h). Utili-
zamos como ferramenta auxiliar para os calculos os manipuladores algébrico-numéricos
Maple e Mathematica. Inicialmente, entramos com os dados nos programas para calcular
a primitiva da fungao Jy(h) e, em seguida, utilizando o Teorema Fundamental do Calculo,
avaliamos essa expressao nos extremos do intervalo de integragao (que sao raizes da fungao

y = y(z, h) provinda da expressao de H(z,y)).

O Maple dava-nos como resposta o valor zero. O Mathematica apresentou dificul-

dade na resolucao dos célculos, dando como resposta ao comando a seguinte expressao:
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ComplexInfinity.

Apos trabalharmos com as trés integrais J_1(h), Jo(h) e Ji(h) e verificarmos as mesmas
dificuldades acima, passamos a acreditar (devido a resposta do Maple) que o sistema
Py3 poderia tratar-se de um caso degenerado, isto é, que a integral abeliana I(h) fosse
identicamente nula para h € (0,1) e dessa forma, de acordo com a Observagao 1.4.11, o
limitante superior que fosse obtido seria menor do que o esperado para o nimero de zeros
de I(h) e teriamos de considerar aproximagdes de ordem maior para a fun¢ao sucessao.

Devido a esta incerteza, apresentamos o problema ao professor Joan C. Artés (UAB/
Barcelona), que contribuiu de forma significativa e positiva para o andamento do nosso
estudo. Constatamos que os dois programas apresentam dificuldades algébricas na reso-
lucao dos célculos desejados. Chegamos a esta conclusao apos calcularmos as integrais
numericamente, onde verificamos que a integral abeliana I(h), para um dado valor de
h € (0,1), era distinta de zero e, portanto, nao degenerada.

Buscando compreender melhor as dificuldades apresentadas pelo Maple e pelo
Mathematica para realizar os calculos algébricos, Artés nos mostrou como substituir os
calculos algébricos por calculos numéricos e, através deles, obter os graficos das fungoes
J_1(h), Jo(h) e Ji(h).

Observando o grafico de Jy(h) verificamos o que levou a dificuldade algébrica dos

programas, como ilustra a Figura 1.6.

0.2 0.4 0.6 0.8 1.0

Figura 1.6: Grafico da fungao Jy(h).

Proximo a h = 0, o grafico da fungao Jy(h) oscila, enquanto que para valores de h
entre 0,2 e 1, a fungao Jy(h) comporta-se aproximadamente como uma reta. Dessa forma,

nao conseguimos encontrar uma expressao algébrica que defina essa funcao. Logo, nao
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foi possivel obter uma estimativa para o nimero de ciclos limites bifurcados por meio do
calculo das integrais J_i(h), Jo(h) e Ji(h).

Outra tentativa na busca pelo nimero de ciclos limites que bifurcam do centro ob-
servado em Ps3 foi feita seguindo passos semelhantes aos descritos na Segao 1.5.1 para
o sistema de Bogdanov-Takens. Nesse caso, a barreira a ser transposta é o estudo da
monotonicidade da razao entre duas integrais abelianas, isto ¢, a prova de um resultado
andlogo ao Teorema 1.5.3 para o nosso sistema.

Durante a redacao final desta dissertacao, no més de janeiro, deparamo-nos com o
trabalho de Li e Llibre [31], onde um sistema semelhante ao Pa3 ¢ considerado através do
método envolvendo a equacao de Picard-Fuchs. Pretendemos dar continuidade a nossa

investigacao seguindo as ideias deste trabalho.
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Capitulo

2

A teoria do averaging

Neste capitulo apresentamos o método conhecido como averaging. O método do aver-
aging investiga quao proximas estao as solucoes de um sistema diferencial nao autéonomo
das solugoes do sistema diferencial autéonomo obtido dele. Neste segundo capitulo da
dissertacao apresentamos duas provas do teorema do averaging de primeira ordem para o
caso analitico. Discutimos como reescrever um dado sistema diferencial na forma padrao,
necessaria para o uso do averaging e, em seguida, discutimos sobre a necessidade do
sistema, estar na forma padrao para a aplicagao do método. Ainda neste capitulo, apre-
sentamos o averaging de ordem superior e o averaging topolégico, apresentado por Buica

e Llibre em [9]. Em todas as discussoes acima exemplos sao apresentados.

Para este capitulo, dada f uma funcao vetorial suave na variavel ¢, com & proximo a

zero, escrevemos o k-ésimo polinomio de Taylor de f, ou seu k-jato, como
SEf=f+ef' +o et

onde f7 = % é o coeficiente de Taylor. A série de Taylor de f de grau k com resto é

escrita como

f(e)=foe) +ef(e) + -+ b fie) + ().

Um indice sobrescrito denota o coeficiente de Taylor, enquanto que um indice sobrescrito
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entre colchetes denota o resto. Essa notacao é facilmente estendida a fungoes com variéveis
adicionais. Por exemplo, um campo vetorial f que depende do tempo pode ser expandido

como

flz,t,e) = fOa,t) +ef (w,t) + -+ FfF(a,t) + FHLIFH (2 8 6).

Nessa notacao, é sempre verdade que o O-jato de f é

f(x,t,s) = fo(‘f?t)a

e se fO(x,t) for identicamente nula (como ocorre frequentemente em problemas de aver-
aging), entao

flz,t,e) = 5f[1](:c,t,€).

2.1 Preliminares

2.1.1 Teorema de existéncia e unicidade de solucgoes

As fungoes vetoriais f(z,t,¢) consideradas nesta dissertagao tém certas propriedades
com respeito as variaveis x e t e o parametro €. Com respeito a variavel espacial z, a

funcao f sempre satisfaz a condi¢ao de Lipschitz.
Observagao 2.1.1. Adotemos a seguinte notagao: G = D X [tg,to + T x (0, &g

Definicao 2.1.2. A funcao vetorial f : G — R" satisfaz a condigao de Lipschitz em

x com constante de Lipschitz Ay se

1f (21,8, €) = f w2, t,€)[| < Agller — |

Se f for periodica de periodo T, a condi¢ao de Lipschitz valerd para todo t.

E bem conhecido que se f for de classe C' em um subconjunto aberto U em R” e
D um subconjunto de U com fecho D compacto e convexo, entdo f satisfaz a condicdo
de Lipschitz em D com \; = max{||Df(x)|; = € D}. O préximo lema mostra que a

convexidade nao é necesséria.
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Lema 2.1.3. [{1] Suponhamos que f seja de classe C* em U, como anteriormente, e D

compacto (mas ndao necessariamente convexo). Entao, f ainda é Lipschitz em D.

Estamos agora aptos para formular o bem conhecido Teorema Local de Existéncia e

Unicidade para Problemas de Valores Iniciais.

Teorema 2.1.4 (Existéncia e Unicidade). [41] Consideremos a equagao diferencial

j”’ = f(x7t7€)'

Estamos interessados em solugoes x dessa equagdo com valor inicial x(ty) = a. Sejam

D ={z e R" ||z —a| <d}, G como na Observagao 2.1.1 ¢ f : G — R". Assumamos que
1. f € continua em G;
2. f satisfaz a condicao de Lipschitz como na Definicao 2.1.2.

Entao, o problema de walor inicial tem wuma unica solucao x que existe para

o<t <to+inf (T, &), onde M =supg | fll = |flwp = swp  [f(x.t.2)].

zeD, 0<t<T, 0<e<egg

Observacao 2.1.5. Diferentes enunciados para o Teorema de Existéncia e Unicidade sao
encontrados na literatura. No entanto, optamos pela forma como foi enunciado acima em

funcao dos resultados que seguem.

Notemos que o Teorema 2.1.4 garante a existéncia de uma solu¢ao em um intervalo
de tempo que depende explicitamente da norma de f. Hipoteses adicionais permite-nos
provar teoremas de continuagao, ou seja, com essas suposicoes podemos obter a existéncia

para intervalos maiores, ou até mesmo para todo o tempo. Veja [23].

2.1.2 Funcao ordem, simbolos de Landau e aproximacao assin-
totica
Nesta secao tratamos de alguns conceitos bésicos sobre aproximagao assintotica. Como

destaca [41], técnicas de aproximagao sao tteis no estudo de problemas onde temos fungoes
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definidas por integrais, ou como solucao de uma equacao diferencial ordinéaria, como acon-

tece neste capitulo.

Estamos interessados em problemas de perturbacao do seguinte tipo

&= f(x,te), x(ty) = xo, (2.1.1)

onde z,z9p € R", t € [ty,00) e € € (0,g¢], com gy um pardmetro positivo pequeno. Se o
campo vetorial f for suficientemente suave em uma vizinhanca de (zg,%) € R" X R, o
problema de valor inicial (2.1.1) terd uma tnica solugao z.(t) para pequenos valores de €

fixados.

Alguns problemas que surgem nesse processo de aproximacao podem ser ilustrados

pelos seguintes exemplos. Consideremos a equagao de primeira ordem com valor inicial

t=x+e¢, x:(0) =1

A solugao é z.(t) = (1+¢)e’ —e. Escrevendo essa expressao com respeito a &, obtemos

z.(t) = e +e(e' —1).

Esse resultado sugere que a funcao €' seja uma aproximacao, em algum sentido, para
x(t), se t nao for muito grande. Na definigao do conceito de aproximagao certamente é

necessario considerar o dominio de validade de tal aproximacao.

O segundo exemplo mostra que a solucao nem sempre depende do pardmetro e de

forma suave. Seja

A solugao é dada por

7(t) = (ait)s'

Para caracterizar o comportamento da solucao com relacao a € para t > 0 devemos dividir
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R em dois diferentes dominios. Por exemplo, é possivel escrever
€
z(t)=1+elne—elnt+ O <z> :

onde O($) é pequeno comparado aos outros termos. Essa expansao ¢ possivel quando ¢

estiver contido em um intervalo /. dependente de € com $ pequeno. Tal expansao nao

satisfaz a condigao inicial.

A partir de agora, introduzimos alguns conceitos que nos ajudarao a discutir os pro-

blemas acima citados.

Definigao 2.1.6. Uma fun¢ao 6(¢) serd chamada de fungao ordem se () for continua

e positiva em (0, o] e se liH(l) d(e) existir.
e—

Para comparar fungoes ordem usamos os simbolos de Landau, que também sao conhe-

cidos como O-grande e o-pequeno.

Definigao 2.1.7. Seja ¢(t, <) uma fungao real (ou vetorial) definida parae >0 (oue >0)
e parat € I.. (A expressio “para € — 07 significa dizer que existe um 9 > 0 tal que a
afirmagao valha para todo € € (0,e0]). Definimos os simbolos de Landau O(-) e o(-)

como Se Seque.

1. Diremos que p(t,e) = O(0(¢)) para € — 0 se existirem constantes g > 0 e k > 0
tais que

le(t,e)ll < Klo(e)];

para todo t € I. e para 0 < € < gg.

2. Diremos que p(t,e) = 0(d(¢)) para e — 0 se

el
e

uniformemente parat € I.. (Isto €, para todo o > 0, existe f > 0 tal que % <«

setel.ed<e<f).
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3. Diremos que 01(¢) = 0(d2(¢)) para e — 0 se

51 (8)

e

Exemplo 2.1.8. Os exemplos a seguir ilustram o uso dos simbolos de Landau.

1. €" = o(e™) para ¢ — 0, se n > m. De fato,

n

. 5 . _
lim — =lime"™™ = 0.
e—0 gm e—0

2. esent = O(e) para e — 0. De fato,
1 1
‘6sen—‘ = |€|)sen—‘ < le|l.1 = |e].
£ €

Tome k = 1.
3. €2lne = o(e%In’¢) para e — 0. De fato,

. e%lne o1
hm—2: im— = 0.
e—=0e2n“ e e—=01lne

4. e = o(e"), para todo n € N e para € — 0. De fato,

1

. e . Te . _1_
lim — = lim = lime = "¢ =,
e—=0 gn e—0 enlna e—0

Notemos que d;(¢) = 0(d2(g)) implica d;(g) = O(dy(g)). Por exemplo, €2 = o(e) e
g2 = O(g) quando € — 0. Introduzimos, agora, a nogao de uma estimativa mais fina para

fungoes ordem.

Definicao 2.1.9. Diremos que 61(¢) = Os(d2(g)) para € — 0 se d1(e) = O(ds(€)) e
d1(€) # o(d2(e)) para € — 0.

Exemplo 2.1.10. Temos esen(2) = O,(e) e elne = Oy(2cIlne + &3). u

™ =
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A variavel real ¢t usada no problema de valor inicial (2.1.1) é chamada de tempo.
Devemos também ter varidveis tempo-escala da forma 7 = §(e)t com d(¢) = O(1). Pode-
mos, agora, estimar a ordem de grandeza de fungoes ¢(t, ), também escritas como ¢.(t),

definidas em um intervalo I, € € (0, g¢).

Definigao 2.1.11. Suponhamos que p.(t) : I. — R™ para 0 < ¢ < g9. Sejam || - || a

métrica Euclidiana em R", e | - | definida por

|908(t>| = SUP{H%(t)H; le ]e}'

(Notemos que essa norma depende de € e poderia ter sido escrita mais precisamente como

|- |c.) Seja & uma fungio ordem. Entdo,
1. g = O(E)) em 1. s .| = O((2)) para & — 0;
2. ¢. =o0(d(e)) em I. se lim i
20 0 (e)

3. e =04(d(e)) em I se p. = O(6(¢)) e p- # 0o(d(e)).

= 07‘

E comum dizer que as estimativas definidas nesse sentido sao uniformes ou uniforme-
mente validas em I., devido ao uso de | - |, que faz a estimativa ficar independente de

t.
A Definicao 2.1.11 pode ser adaptada e enunciada para varidveis espaciais.

Exemplo 2.1.12. Desejamos estimar a ordem de grandeza do erro quando aproximamos
sen(t + et) por sent no intervalo I.. Se I. = [0, 2], teremos para a diferenca das duas

funcoes, usando série de Taylor, que

sen(t + et) = sent +r, onde lim Lo
e—0 €&

Dessa forma,

sup |sen(t+ et) — sent| sup ||

sup |sen(t+et) —sent| = sup |r| = telo2n] _ o]
t€[0,27) te[0,27] € €
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sup |sen(t+ et) — sent| sup |sen(t+ et) — sent|
te[0,27] T 5;0 t€[0,2n]

= sup — 0,

€ t€[0,27]

9 €

quando € — 0. Logo, sup |sen(t+ et) —sent| = o(e) e, portanto,
te[0,27]

sup |sen(t+ et) —sent| = O(e).
t€[0,27]

Observacao 2.1.13. Em muitos problemas, a fronteira de I, depende de ¢ de tal forma
que o tempo nao seja uniformemente limitado (o intervalo se torna ilimitado quando &
tender a 0). Por exemplo, se comparassemos sen(t-+¢t) com sent no intervalo I, = [O, 2?“} ,

obteriamos, na norma do supremo, que

sen(t + et) —sent = O4(1).

Suponhamos que 6(¢) = o(1) e desejamos estimar ¢, em [, = [0, @] com L uma

constante independente de . Tal estimativa sera dada como
v = O(0(g)), quando € — 0 em [,
ou ainda como

we(t) = O(4(¢)), quando € — 0 em I..

A primeira maneira, sem a varidvel ¢, é preferivel, mas é dificil de ser usada em um
exemplo como

sen(t +et) —sent = O(1)
quando € — 0 em I.. Expressaremos essas estimativas como se segue.

Definigao 2.1.14. Diremos que ¢.(t) = O(d(g)) quando € — 0 no tempo escala §(¢)~!

se a estimativa for vilida para 0 < §(e)t < L, com L uma constante independente de €.

Uma definicdo analoga pode ser dada para estimativas de ordem o(d(g)). Ja que
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sabemos estimar funcoes em termos de fungoes ordem, podemos definir o conceito de

aproximacao assintotica.
Definigao 2.1.15. Definimos aproximacgoes assintoticas como se seque.

1. .(t) € uma aproximagao assintdtica de @.(t) no intervalo I. se

pe(t) — e(t) = o(1)
quando € — 0, uniformemente parat € I.. Ou reescrito em termos de tempo escala:

2. -(t) € uma aproxvimagdo assintdtica de p.(t) no tempo escala 5(e)™" se

Pe — l/Jé - 0(1)

quando € — 0 no tempo escala §()™'.

Em geral, é possivel obter séries (ou expansoes) como aproximagoes assintoticas em

algum intervalo I.. Uma série assintdtica é uma expressao da forma

plte) = 5;(e)¢(t,e) (2.1.2)
j=1
na qual d;(¢) sdo funcées ordem com 0,41 = o(d;).

Nas proximas secoes tratamos do método do averaging que se resume em investigar
quao proximas estao as solugoes de um sistema diferencial nao auténomo das solugoes do

sistema diferencial autonomo obtido dele.

2.2 Averaging periddico de primeira ordem analitico

O método do averaging é um método que visa encontrar solucoes aproximadas para

sistemas de equagoes diferenciais que tenham, ou que possam ser colocadas, na forma

i =cefYx,t) +2fB(x,t,e), 2(0)=a, (2.2.1)
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onde f!e f1 sdo T-periddicas em t, chamada de forma padrio.
Queremos comparar a solugao da equagao na forma padrao com a do sistema prome-
diado, definido por
2 =cfY(2), 2(0)=a, (2.2.2)

onde

fi(z) = %/0 (2, s)ds (2.2.3)

¢ a média de f'(z,t) sobre seu periodo T em t. O sistema promediado (2.2.2) é mais
simples do que (2.2.1), pois é auténomo, mas em geral permanece nao linear e nao é
necessariamente soltvel. Por outro lado, como lembra Murdock [40], em muitas aplica¢oes
(principalmente no caso de dimensao dois) ele pode ser resolvido explicitamente utilizando
fungoes elementares e, assim, é razoavel investigar quando solugoes de (2.2.2) podem ser
aproximagoes para solugoes de (2.2.1). Todavia, mesmo quando o sistema promediado nao
puder ser resolvido explicitamente, veremos que ainda é possivel obter conclusoes sobre
as solugoes do sistema original a partir das equagoes promediadas.

Introduzindo uma nova variavel (ou escala de tempo) T = et em (2.2.2), removemos &

e obtemos o chamado sistema de orientacgao

dw - B
L= Pw), w0)=a 22.4)

Se a solugao de (2.2.4) for w(7), entao a solucao de (2.2.2) sera

z(t,e) = w(et). (2.2.5)

Isto é, o tempo t entra em z(¢,¢) somente na combinagao t. Consideramos o ponto
inicial a fixado.

Nesta secao apresentamos duas provas de cardter analitico para o teorema bésico do
averaging de primeira ordem, que descreve condicoes suficientes para que a solucao de
(2.2.2) seja uma boa aproximagao para a solugao do sistema (2.2.1). A primeira demons-
tragao é mais recente e mais curta, segue de uma desigualdade devida a Besjes [6] e utiliza

o Lema de Gronwall. A segunda demonstragao é mais antiga (e muito provavelmente mais
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natural), com raizes no trabalho de Bogoliubov e é mais longa, pelo menos se todos os
detalhes forem tratados cuidadosamente. Assumimos que as equagoes diferenciais estejam
definidas em todo R"™, embora seja facil adaptar os argumentos para subconjuntos abertos
de R™.

Todos os argumentos nesta secao requerem, como um passo preliminar, a escolha de
um conjunto D aberto, limitado e conexo (com fecho D compacto) contendo a, uma
constante L > 0, e uma constante gy > 0, tais que as solugoes z(t,¢) e z(t,e) de (2.2.1)
e (2.2.2), respectivamente, com 0 < & < gy permanecam em D para 0 < ¢t < % Vale

ressaltar que existem duas formas de alcangar este objetivo.

1. Podemos escolher D e ¢y arbitrariamente e escolher L em resposta a isso. Desde que
as fungoes dos membros direitos de (2.2.1) e (2.2.2) séo limitadas por uma constante
vezes ¢ (para 0 < € < gy e para ¥ ou z em D), a existéncia de um L adequado é

6bvia.

2. Alternativamente, L pode ser escolhido arbitrariamente e D e ¢y escolhidos ade-
quadamente. Por exemplo, se a solugao de (2.2.4) existir para 0 < 7 < L, e se D for
uma vizinhanca dessa solugao, entao existira um gy tal que as solugoes de (2.2.1) e

(2.2.2) permanecerao em D para 0 <t < %, se 0 <e<eg.

Tudo isso é usualmente abreviado quando se diz que desde que as solugoes x e z
movem-se a uma velocidade de O(g), elas permanecem limitadas para tempo de O(%)
Sabemos que um campo vetorial periédico de classe C! satisfaz uma condicao de

Lipschitz em conjuntos compactos para todo tempo. Veja Lema 2.1.3.

2.2.1 Primeira prova do teorema do averaging de primeira ordem

O resultado que queremos demonstrar descreve uma condicao suficiente para que a
solucdo z(t,¢) do sistema promediado seja uma boa aproximacao para a solugao x(t,¢)
do sistema original. Para a primeira prova do teorema do averaging de primeira ordem
analitico precisaremos enunciar e provar trés lemas que terao papéis fundamentais na

demonstragao.
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Lema 2.2.1 (Besjes). Suponhamos que o(x,s) seja periddica em s com periodo T, tenha
média zero em s para x fizado, seja limitada para todo s e x € D, e tenha constante de
Lipschitz A\, para x € D. Suponhamos ainda que x(t,c) pertenca a D para 0 < e < gg e

0<t< % e satisfaca & = O(e). Entao, eziste uma constante ¢y > 0 tal que

| st <

para 0 < e <grpel <t <

o It

Demonstragao: Primeiramente observemos que, se x fosse constante, o resultado seria

trivial, pois, como T é o periodo de ¢,

/ " o(a(s,2),5)ds

¢ a média de ¢ em s e, portanto, seria nula. Como a integral é periddica, ¢; poderia ser

tomada como seu valor maximo, isto é, sua amplitude.

No entanto, x nao é constante, pois varia lentamente. Dividamos o intervalo [0, ] em
periodos: [0,T], [T,2T], ..., [(m — 1)T,mT] e [mT,t], que é menor do que um periodo.
Entao:

H/ (5,¢) dSH—ZH/ (s,2) ds\+H/ (a(s,¢), 5)ds|.

Cada integral sobre o periodo pode ser estimada como segue (veja os argumentos

abaixo):

T 1)
| [ tatsiesias| @
(i—1)T (i—1)T

T
<A [ falsie) — el - DT o)ds <
(i—1)T

(s,€),s) —p(z((i — 1)T,¢e),s dsH <

(2) il
< )\SD/ coeds = A,ycoeT.
(

i—1)T
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A igualdade (1) é valida, pois:

" x((t —1)T,¢),s)ds = o x(ug,€),s)ds =0,
[ et =re. i = [ e,

i—1)T uo

j& que representa a média para x fixo.
Em (2), a limitagao

(s, e) — (i = DT, e)|| < e,

para algum c,, segue do movimento lento de x.
A ultima integral sobre um periodo parcial é limitada por ¢z = ||¢||T.
Entao,

t
H/ o(x(s, ), s)dsH <mAyeoTe + cs.
0

Mas, pela construgao,

™ |

entao

mApcaT'e + c3 < Apeol + ca.
Tomemos ¢; = A,coL + cs. n

Lema 2.2.2 (Gronwall Geral). Suponhamos que para to <t <ty+ T tenhamos

t
o) <a+ [ Bl)es)ds
to
onde ¢ e ( sao continuas e 5(t) > 0. Entao,
o(t) < aelio s,

paraty <t <tg+T.

Demonstragao: Seja
t
wit) = a+ [ Be)els)ds
to

Entio, o(t) < 0(t) e $(t) = Bt)p(t). Assim, ja que B(t) > 0, ¥(t) — BE)(E) < 0
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Essa inequagao diferencial pode ser tratada exatamente como se resolvéssemos a

equagao diferencial correspondente. Isto é, ela pode ser reescrita como

d

= (v Tty <o,

e integrada de ¢y a t, com 1(tg) = «, para obtermos
Blt)e 0P o <,
levando-nos ao resultado desejado. [

Lema 2.2.3 (Gronwall Especifico). Suponhamos que para to <t < to+ T tenhamos

o(t) < 0ot — to) + 4 /t ©(s)ds + 63,

to

com (t) continua para ty <t < tg+T e constantes §; > 0, 6o > 0 e I3 > 0. Entao,

t) < ehlt=to) _ =
o0 <5, 5
para ty <t <tg+T.
Demonstracao: Este lema tem a forma do Lema 2.2.2 com o = 51‘263 e B(t) = 0, para
todo t, e o resultado segue como anteriormente. [

Enfim, enunciamos e provamos o teorema do averaging de primeira ordem.

Teorema 2.2.4. Suponhamos que f' seja Lipschitz continua, & seja continua, e g9, D

e L sejam como acima. Entao, existe uma constante ¢ > 0 tal que

||flf(t,€) - Z(t,€)” < Cg,

para 0 < e <egy e0<t <L ondex(te) ésolucio do sistema original (2.2.1) e z(t,e) €

— g’

solugdo do sistema promediado (2.2.2).
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Demonstracao: Seja
E(t,e) =x(t,e) — z(t,e) = x(t, ) — w(et)

o erro entre as solugoes z(t,¢) e z(t,e). Calculando E a partir das equagoes diferenciais

de = e z e integrando-as com respeito a t, obtemos

Blt) = g/o [ (@ (5,), ) + efP(a(s, ), 5,¢) — F(w(es))] ds.

Omitindo os argumentos de x e w, o integrando pode ser reescrito como

[fl(x7 S) - fl(w,s)} + Ef[Q](x’3’€> + [fl(wv S) - f1<w)} )
levando-nos a

IE &) ga/ot P, s) — L (w, s) ds+52‘/otf[2](x,s,s)ds +

+€H /Ot [ (w, s) = 1 (w)] dsH.

Na primeira integral, usamos a constante de Lipschitz Ay Como f 2 ¢ continua
e periddica, ela é limitada em D para todo tempo. Segue do Lema 2.2.1, aplicado a
¢ = f' — f' e x = w(et), que a terceira integral é limitada por cie, onde ¢; é uma

constante. Assim, temos
t
|E(t, )] <eAp / |E(s,€)|lds + coe’t + ¢,
0

para ¢y e c¢; constantes adequadas.
Segue do Lema de Gronwall Especifico (Lema 2.2.3) que

2
IE(t, )] € ——2 et —
B <€>\f1 + e 8)\f1

o AL
SE_:)\fl“—Cl (ef 1)7

2
ETC
-0~
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para0 <e<gyel<t<ZL
€o
>\f1+Cl

15
_ AL
Tomando ¢ = (e e — 1) , 0 teorema fica provado. [

2.2.2 Segunda prova do teorema do averaging de primeira ordem

A segunda e mais tradicional demonstragao do teorema do averaging de primeira ordem
analitico introduz a nocao de uma perturbacao da identidade e também necessita de uma
preparagao e resultados auxiliares. Para evitar hipoteses adicionais, assumimos que todas
as funcoes sao suaves, isto é, infinitamente diferenciaveis. Uma perturbacao da identidade
é na verdade uma familia de transformacoes dependendo de £ que se reduz a identidade

quando € = 0 e tem a seguinte forma:
r=U(y,t,e) =y +eull(y,t,e), (2.2.6)

onde ul" é periddica em t com periodo T e y é a nova variavel vetorial que substituira z.

O objetivo & escolher u! de forma que (2.2.6) leve a equacdo original
i =cft(x,t) + 2P (x,t,e) (2.2.7)
na equacao promediada completa

y=cf'(y)+2 Py, t,e), (2.2.8)

para alguma fiQ], induzida pela mudanca de coordenadas e periddica em t. Dessa forma,

a equacao promediada (ou equagdo promediada truncada)
i =cfl(2) (2.2.9)

é obtida suprimindo o ultimo termo de (2.2.8) e mudando o nome da variavel de y para
z. A nova variavel z nao esta relacionada a z ou a y por uma férmula; em vez disso, z é
introduzida apenas para distinguir as solugoes de (2.2.8) e (2.2.9).

A prova do Teorema 2.2.4 usando essas equagoes serd dividida em lemas. O primeiro
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estabelece a validade das transformacgoes proximas a identidade, o segundo, a existéncia
de uma perturbacao da identidade particular que precisaremos, e o terceiro estima o erro

devido ao truncamento.

Lema 2.2.5. Consideremos (2.2.6) como uma aplica¢ao
y=Uly,t.e)

dependendo de t e €. Para qualquer aberto limitado e conexo D C R"™, existe € tal que,
para todo t € R e para todo € satisfazendo 0 < € < gq, essa aplicagao leva D injetivamente

em sua imagem U(D,t,€). A aplica¢io inversa tem a forma
y=V(z,te)=x+el(x 1t ¢), (2.2.10)

e € suave em (z,t,¢).

A seguinte prova usa o fato de que a aplicacdo ul'l, presente na equacdo (2.2.6), é
Lipschitz em D com alguma constante de Lipschitz \,u). Alternativamente, o Lema 2.2.7

1]

mostrara que se f' for Lipschitz com constante A1, entao ul!! podera ser tomada como

sendo Lipschitz com constante A,u = 2ApnT.

Demonstracao do Lema 2.2.5: Primeiramente, mostramos que U é injetiva em D para

¢ suficientemente pequeno. Sejam y,y. € D tais que

U(yb ta 5) = U(y27 t? 5)

com 0 <e < Alm . Entdo, yy +cull(y,t,e) = yo + cul(yy, t,€).

Assim,

Y1 — Y = —eum(yl,t, ) + eull! (y2,t,€) =
= ||y1 - yQ” = 5||u[1](y17t75) - U[l](y2at75)|| < 8/\u[1]||y1 - y2||

Se eA,n < 1, acabamos de mostrar que, a menos que ||y; — yo|| se anule, ele é menor

1
A’

u

do que si proprio. Portanto, y; = 2, e U € injetiva para 0 < e < Segue que U aplica

D bijetivamente sobre U(D,t,¢). Resta-nos verificar a suavidade e a forma da inversa.
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Como D,U(y,t,0) é a matriz identidade, o Teorema da Fungao Implicita implica que
x = Ul(y,t,¢e) élocalmente suavemente invertivel na forma (2.2.10), para ¢ suficientemente
pequeno. Mais precisamente, para cada y, € R" existe uma vizinhanca na qual U é

invertivel para € em um intervalo que depende de 1. Como o fecho de D é compacto,

esse pode ser coberto por um nimero finito k£ dessas vizinhangas, com raios €1, ..., &, em
. _ . 1 ~ . . ~

e. Seja gg = mm{m,gl, ...,ext. Entao, para 0 < e < gg, as inversas locais (que sao

suaves e tém a forma desejada) existem a devem coincidir com a inversa global. [

Observagao 2.2.6. Usamos a notagao Df - g para indicar a multiplicagao de g pela

derivada de f em relagao a variavel espacial.

Lema 2.2.7. Euxiste aplicacao U (nao tnica) tal que a transformacao (2.2.6) leva a
equagio (2.2.7) & equagdo (2.2.8). Em particular, ul') pode ser tomada com constante

de Lipschitz 2ApnT' (onde T € o periodo).

Demonstragao: Se as equacoes & = ¢ fl(z,¢,e) ey = egl(y, , €) estiverem relacionadas

pela mudanga de coordenadas z = U(y, t, €), entao pela Regra da Cadeia temos

S T — DU - eglVl
T y dt + % @ = ¢cf U-eg”' + U,

ou mais rigorosamente
FUUy, t,e),t,) = Usly. t,e) + DU(y, t.) - g (y, 1, ).

Substituindo as formas de U, fl!l e gl!l dadas em (2.2.6), (2.2.7) e (2.2.8), temos:

& =g+ eDull(y, t)-g + cu)(y, 1) =

= effy+eull(y,t),t,6) + 2Py + eull(y, 1) t.e) = e f'(y) + 2Py, t.e)+

+eDull(y, 1) - (] () +> Py, t,€)) + eui’ (y, 1),
e extraindo o termo de maior ordem em ¢ e fazendo € — 0, obtemos:

u(y,t) = fly.t) — FLy). (2.2.11)
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A equagao (2.2.11) é chamada de equag¢ao homoldgica do averaging.

Assumindo que a funcéo ul, como desejada, existe, a prova segue invertendo os passos.
Consideremos (2.2.11) como uma equacao a ser resolvida em ul). Como o lado direito de

(2.2.11) tem média zero, a fungao

t
ulll(y, t) = / [y, 5) — ' (y)] ds + K'(y) (2.2.12)
0
seré periodica em t para qualquer escolha da funcao s'.

Agora, voltemos para o calculo da regra da cadeia do inicio da demonstracao, tomando
U como em (2.2.7), ul) como em (2.2.12), e considerando g/l a ser determinada. Mos-

tremos que ¢ = £g!!! tem a forma (2.2.8) para alguma fP].

De fato,
z=y+eull(y,t) =
= omyre | [P0 - Puls+ 0] =
= &=g+elf'(y,t)— [ ()
e, entdio,

ef'(y+eulll(y, 1), ) + & Py + ey, t),t.e) = g+ elf' (v, t) — f ()] =

= g=cf'(y) +elf (y+euly, t),t) = 1y, )] + Py + el (y, 1), 1, 2).

Como f!(y,t) é a parte linear de f!(y + culll(y,t),t) em relagio a ¢, entdo
FHly +eul(y, 1)) = fiy.1) = O(e).
Tomemos f2(y,t,) = [f}(y + cul(y,1), 1) — f1(y. 1) + e fP(y + cull(y, 1), 1, 2).

Continuando a prova, vejamos agora que f! tem a mesma constante de Lipschitz que
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/1, a saber A1, Entao, para yi,ys € D,

170 = Pl = |3 [ Fonsris =5 [ 7m0 =
T
=7 | 178 = s <
1 T
<7 | 10 = Pl olds <
<7 [ Al - valis =

= )‘f1||yl - y2||.

Finalmente, verifiquemos que, se £'(y) = 0, entdo ul'l tera constante de Lipschitz igual

a 2ApT'. De fato, como ulll ¢ periédica em ¢, para cada t existe um ¢ € [0, 7] tal que
ull(y, 8) = ull(y, ).

Entao,

[ul (1, t) = ul (o, )| = uM (g1, 7) — (o, 1) =

= | [ 1) P — [ 17 ns) - P

= H /Of[fl(yl,S) — [ (y2,8) = 1) +f1(y2)]dsH <

t
0

< / (17 s 8) — £ )]+ 1 F () — )] ds <

t
< [ Dl = all + Apllon el s =
0

t -
= 2l = el < 22y = I T,

= 2Xpillyr — uells
0 que prova o lema. [
O modo mais simples de resolver a ambiguidade de (2.2.12) ¢ escolher x'(y) = 0.

Fazendo esta escolha, teremos U(y,0,e) = y, de modo que as condigoes iniciais (em

t = 0) ndo precisam ser transformadas quando se muda da coordenada z para y. Além
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disso,

Uly,mT,e) =y

em cada tempo estroboscopico mT (m € Z). Por essa razao, escolhendo x!(y) = 0 temos

o conhecido averaging estroboscopico.

Observacao 2.2.8. A palavra “estroboscopio” é de origem grega, onde strébos significa
girar e skopéin, observar, e refere-se a um instrumento utilizado para estudar os corpos
em movimento. Murdock [40] afirma que o termo “tempo estroboscopico” refere-se ao
fato de que, se uma solu¢ao ¢(«,t) de um campo vetorial, considerada como um ponto
movendo-se no espaco n-dimensional, fosse iluminada pela luz de um estroboscopio nos
tempos 0, T, 27, ..., obteriamos a sequéncia de pontos «, p(a,T), ¢(«,2T), .... Esta
sequéncia de pontos pode ser obtida como as iteradas da funcao ® que aplica pontos em
pontos, chamada de aplicacio periodo. A saber, se ®(a) = p(a,t), entdo a sequéncia

citada seria a, ®(a), ®*(a), .. ..

Agora, introduzimos as seguintes solugoes especificas:
1. z(t,e) denota a solugao de (2.2.7) com condigao inicial z(0,¢) = a.

2. y(t,e) denota a solucao de (2.2.8) com condigao inicial
¥(0,¢) = V(a,0,e) = a+ cvltl(a,0,¢) = a + eb(e). (2.2.13)

Se o averaging estroboscopico for utilizado, (2.2.13) reduz-se a y(0, ) = a. Notemos
que

z(t,e) = U(y(t,e),t,¢). (2.2.14)

3. z(t,e) denota a solugao de (2.2.9) com condigao inicial z(0,e) = a. Observemos o
truncamento duplo envolvido aqui: tanto a equacao diferencial quanto a condicao
inicial para y (no caso nao estroboscopico) foram truncadas para obter a equagao
diferencial e a condi¢do inicial para z. Esta solugao z(t,e) é tradicionalmente

chamada de primeira aproximagdo para x(t, ).
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4. U(z(t,¢),t,¢e) é geralmente chamada de primeira aprozimagao melhorada para x(t, €).
E natural considerar z(¢,) como uma aproximacdo para y(t,c), e em vista de
(2.2.14) parece natural utilizar U(z(t,¢),t,¢) como uma aproximagcao para x(t,e).
Mas, z(t,€) ja é uma aproximagao de O(g) para x(t,e) para tempo de (’)(%) Apli-
cando U temos uma mudanga de O(e) e, assim, a ordem da aproximagao nao é

melhorada.
Os seguintes resultados estimam certas diferencas entre essas solugoes.

Lema 2.2.9. As solugoes y(t,€) e z(t,e) definidas acima satisfazem

||y(t7 8) - Z(t7€)|| = 0(5)
para tempo de O(%).

Demonstragao: Temos

y(t.e) = a+ 2b(e) + / e (y(s,2)) + 2P (y(5,2), 5,0)ds

z(t,e) =a+ /Ot ef'(2(s,e))ds.
Fazendo E(t,e) = y(t,e) — z(t,€), segue que
1B = b0+ [ <Putsds + [ (s, s s — [ o (e, s <
< b+ [ 17 5.2 - et s+ [ .25, 905] <

t
<elb@l +ehn | I, 2)lds + <t
0

onde M é um limitante superior para flz} em D.

Aplicando o Lema de Gronwall Especifico (Lema 2.2.3), obtemos

IE(, )l <

20 At 20 . ( eM At 5M)
e - =c| ——€ -—.
exp +€||b(e) || AL A+ |b(e) | A
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Como o tempo é de O(%), existe L tal que et < L. Entao,

eM eM
1Bt &) < e (— - —) |
)\Ja + ||1b(e)|| )\f_'l

0 que prova o lema. [

Teorema 2.2.10. As solugoes z(t,e) e z(t, &) definidas acima satisfazem a estimativa
lz(t,€) — 2(t, €)l| = O(e) (2.2.15)

para tempo de O(2).

Demonstracgao: Pela desigualdade triangular,
||I(t, 5) - Z(tv 5)” < HIE(t, 6) - y(tv 5)” + ||y(t7 8) - Z(ta 6) H

O primeiro termo é de O(¢g) para todo tempo por (2.2.14) e (2.2.6), e o segundo termo
¢ de O(e) para tempo de O(1) pelo Lema 2.2.9. n

O Teorema 2.2.10 refere-se ao teorema do averaging de primeira ordem analitico e foi
demonstrado seguindo as linhas de Bogoliubov. Definimos uma transformagao de coorde-
nadas que estivesse proxima a identidade e utilizamo-la para converter a equacao original
na equacao promediada. Dessa forma, obtivemos uma solugao (da equagao promediada)
que estivesse tao proxima quanto se quisesse da solucao da equagao original, para um in-
tervalo de tempo longo, limitado e dependente de um parametro suficientemente pequeno.

A Figura 2.1 ilustra o comportamento das solugoes do sistema original e do sistema
promediado.

Uma importante variacao do teorema bésico do averaging lida com a uniformidade da
estimativa com relagao as condigoes iniciais: se a variar em D, poderemos usar o mesmo
c e o mesmo L? Uma resposta ¢ dada pelo Teorema 2.2.12. Utilizamos a notagao de [40].
A expressao z(a,t,e) denotara a solu¢ao z(t, ) de (2.2.1) com condicao inicial z(0) = a.

No entanto, antes de enunciarmos e demonstrarmos o Teorema 2.2.12, enunciaremos

o seguinte lema cuja demonstragao encontra-se em [40], p. 151.
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a

Figura 2.1: Tlustracao esquematica das solugoes do sistema original e do sistema prome-
diado. A solucao promediada de primeira ordem move-se lentamente ao longo de um arco
suave, enquanto que a solugao original sofre pequenas oscilagoes e afasta-se gradualmente.

Lema 2.2.11. Seja r(t) uma fungao vetorial diferencidvel de uma varidvel real. Entao,
lr(t)|| € diferencidvel em cada ponto onde r(t) # 0, e diferencidvel pela direita em todo

ponto. Além disso, vale que

D)) < [ )|

com a deriwada da direita sendo usada quando necessdria.

Teorema 2.2.12. Seja K um subconjunto compacto de R" e seja D um subconjunto
aberto, compacto e conexo contendo K em seu interior. Seja €1 tal que a perturba¢ao da
identidade (2.2.6) seja vdlida (invertivel) paray € D e 0 < e < e&y. Seja L > 0 arbitrdrio,
e para cada a € K, seja L, o maior numero real que seja menor ou igual a L tal que

w(a,7) (= z(a,t,e)) pertenca a K para 0 < 17 < L,. Entdo, existem c e g tais que
lz(a,t,e) — z(a,t,e)|| < ce (2.2.16)

pamogtg%e()gagso.

Demonstracao: Como D é compacto, todas as fungoes sao suaves e todas as fungoes de
t que estao no lado direito de (2.2.6)—(2.2.9) sao periodicas, segue que todas essas fungdes
sao limitadas e tém constantes de Lipschitz em D. Essas constantes serao introduzidas
livremente quando forem necessarias nos seguintes argumentos.

Primeiramente, consideremos a solu¢ao w(a, 7) = z(a, t, ) do sistema promediado para
qualquer a € K fixo. Ou essa solugao permanece em K para todo tempo 7, ou deixa K
em algum tempo 7 = L.

No primeiro caso, seja L, = L (onde L é como na hipdtese do teorema), e no ultimo



2.2 Awveraging periddico de primeira ordem analitico 61

caso, seja L, o minimo entre L e L!. Entao, para 0 < 7 < L,, w(a, ) pertence a K e,
assim, para ) <t < %, z(a,t,e) pertence a K. Para entender a construcao desse intervalo
de tempo, notemos que, se a estiver préoximo a fronteira de K, entao L, provavelmente
serd inferior a L porque a solucao do sistema promediado pode sair de K antes que 7 atinja
L, enquanto que, se a estiver “distante” da fronteira de K, entao L, serd provavelmente L,
j& que esse limite absoluto no tempo 7 possivelmente sera alcangado antes que w atinja a
fronteira. Se todas as solugoes do sistema promediado passarem por K no tempo 7 menor
do que L, entao todos os valores de L, serao menores do que L. Se, por outro lado, o
campo vetorial lento apontar para dentro de K em todos os pontos da fronteira, entao
todas as solugoes da equacao lenta permanecerao em K para todo tempo. Nesse caso,
L, sera igual a L para todo a. Mesmo nesse caso nao é (em geral) possivel estender a
estimativa do erro (2.2.16) para todo tempo, e embora L seja arbitréario, é necessério ter

um tal limite para obter constantes c e ¢y adequadas.

O proximo passo na demonstracao é estimar a diferenca entre y e z, solugoes de
(2.2.8) e (2.2.9), respectivamente. Sejam Aj a constante de Lipschitz de f! em D e M
um limitante superior para HfE] (y,t,e)|l, paray € D,0 <t <Te0<e<e¢e. Entao, por

(2.2.8), (2.2.9), pela desigualdade triangular e pelo Lema 2.2.11, temos:

d
%Hy(aatag) - Z(aata 5)” < H@)(G,t,€) - z'(a,t,a)H =
= llef'(y) + 2 fA(y. t.e) —ef' ()] <

< el (y) = P+ 211yt o)l <

<ednly(a,t e) — z(a,t,e)|| + > M,

o que implica que

t
lofat.2) = s(at. o) < exp [ lota,s.2) = s(as.e) s + 200

Pelo Lema de Gronwall Especifico (Lema 2.2.3),

M
||y(a7 t75) - Z(a7t7 6)” S 5)\_ (egAfjt - ]-) ) (2217)
fl
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enquanto y e z permanecerem em D. Ja que z permanece em K (e, consequentemente,
em D) para 0 <t < %, e uma vez que o lado direito de (2.2.17) é crescente em t, segue
que

M M
ly(a,t, e) — z(a,t,e)|| < W (eMre — 1) <e— (M — 1) = e, (2.2.18)

f1 )\fl

enquanto y permanecer em D e () <t < %, com ¢; = L (e)‘flL — 1).

Agora, escolhamos ¢y de forma que 0 < eg < ey e gy < g, onde d é a menor distancia
entre as fronteiras de K e D. Para € no intervalo 0 < ¢ < g, consideremos as solugoes
para y e z comecando em a € K. A estimativa (2.2.18) vale de t = 0 até t = % ou até y
deixar D, o qual ocorrer primeiro. Mas, desde que z pertenca a K atét = % e desde que
c1e < d, a estimativa (2.2.18) impede que y se afaste suficientemente de z para deixar D
antes do tempo % Portanto, (2.2.18) é valida para 0 <t < % e 0 < e <gp. Pela teoria
geral de existéncia de solucoes de equacoes diferenciais, a solucao para y somente pode
deixar de existir apos deixar o compacto D). Portanto, essa solucao existe pelo menos até
o0 tempo %

O ultimo passo nesta prova é comparar x com y. Mas, isso segue do fato dessas solugoes
estarem relacionadas pela transformagao de mudanca de coordenadas (2.2.6). Denotemos

por ¢, o valor maximo de ||ull(y,t)||, paray € D e 0 <t < T. Entao, ¢ claro que
lz(a,t.€) —y(a,t,e)] = eu(y, )] < cae, (2.2.19)

comy € De(<e<eg. Contudo, ja sabemos que y pertence a D quando 0 < t < % e
0<e<eg.

Fazendo ¢ = ¢; + ¢y e colocando (2.2.18) e (2.2.19) juntas, obtemos (2.2.16). n

O Teorema 2.2.12 forneceu-nos um critério do tipo de uniformidade que a estimativa
de erro possui com respeito a condicao inicial a. Fagamos, agora, uma nova demonstracao

do Teorema 2.2.10, mas visto como uma consequéncia do Teorema 2.2.12.

Outra demonstragao para o Teorema 2.2.10: Lembremo-nos que, neste teorema, a

condicao inicial a e o limitante superior do tempo L sao dados fixados.
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L

Z, ¢ D um

Sejam K o conjunto dos pontos tragados por z(a,t,e), para 0 < t <
conjunto compacto contendo K em seu interior. Entao, L é precisamente L,, como
definido no Teorema 2.2.12, para o valor inicial a; isto é, L é a quantidade de tempo
T = et para a qual a solucao inicia-se em a e permanece em K. Portanto, a equagao

(2.2.15) é apenas um caso especial de (2.2.16). n

Guckenheimer e Holmes em [21] complementam o Teorema 2.2.10 com o seguinte

resultado.

Teorema 2.2.13. [21] Se py for um ponto hiperbélico fizado de (2.2.2), entao existird um
go > 0 tal que, para todo 0 < € < &g, a equagio (2.2.1) terd uma unica orbita periddica
hiperbdlica v-(t) = po + O(e) de mesma estabilidade de py (v- poderd ser uma orbita
periddica trivial, v-(t) = po).

Demonstracao: A demonstracdo deste teorema pode ser encontrada em [21]. ]

Exemplo 2.2.14. [21| Consideremos o sistema
i =cf(x,t ) =cwsen’t. (2.2.20)

Reescrevemos a equagao (2.2.20) na forma & = £ (£ — £cos2t). Definindo ull(y,t) de
Oultl

ot

z
2

forma que (y,t) = —% cos 2t, isto &,
1) =Y
u(y,t) = 7 e 2t, (2.2.21)
a equagao (2.2.6) fica definida como
o o Y
r=U(yt,e) =y — Zseth.
Logo, a equacao promediada completa,
of

g =ef(y) +&* [Dyfy.t,0)u(y,1,0) = Dyull(y, £,0)f(y) + 5= (:,0) | + O(),
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tem a expressao dada por

g=c? 1Y sendt + O3, (2.2.22)
2 16
Notemos que a equacao promediada truncada autonoma é simplesmente

i=e=. (2.2.23)

Vemos que a solugao exata de (2.2.20) com condigao inicial 2(0) = a tem a expressao

x(t) = aes(275*) (2.2.24)
Comparando (2.2.24) com a solu¢ao da equagao promediada truncada,
2(t) = ae’z, 2(0) = a, (2.2.25)

observamos que

aea(%fy) — ae

EORFOIRY -

= H(l + O(¢)) (—62@8611 2t + (’)(82)) H = O(e).

Pelo Teorema 2.2.13, a fonte hiperbolica z = 0 de (2.2.23) corresponde & érbita periddica,
hiperbolica trivial = 0 de (2.2.20). A Figura 2.2 ilustra os retratos de fase das equagoes
(2.2.20) e (2.2.23), enquanto que a Figura 2.3 exibe os graficos das solugbes (2.2.24) e
(2.2.25). ]

2.3 A forma padrao

Vimos na Secao 2.2 que os resultados envolvendo o método do averaging de primeira

ordem foram todos construidos e demonstrados para equagoes na forma padrao

i=cft(w,t)+ -+ fF(x,t) + T (2t e), (2.3.1)
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Figura 2.2: (a) Retrato de fase da equagao (2.2.20) com condigao inicial z(0) = 1 e
e =0,1. (b) Retrato de fase da equagao (2.2.23) com condicao inicial z(0) =1 ee =0, 1.

Figura 2.3: O trago em azul indica a solugao (2.2.24) e o trago em vermelho, a solugao
(2.2.25). Observemos que a solucao x(t) oscila & medida que z(t) movimenta-se lenta-
mente.

onde z € R", t € R e e >0 ¢éum pardmetro pequeno.

Nesta secao, estabelecemos a necessidade e importancia da equacao estar na forma
padrao para estuda-la através do método do averaging.

E muito comum depararmo-nos com equacoes que nio estejam em tal forma. O
objetivo desta secao é abordar algumas técnicas utilizadas para escrever uma equacao di-
ferencial na forma padrao, salvo algumas particularidades. Tais métodos estao descritos
em [41].

Com a finalidade de estudarmos tais métodos, alguns exemplos sao abordados. No
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entanto, vale ressaltar que nesta secao nao estamos focados a exemplos de equagoes que
tenham singularidades somente do tipo centro, pois, a principio, estamos preocupados em

estudar as transformacoes que colocarao as equagoes na forma padrao.

2.3.1 A reformulacao na forma padrao
Consideremos um problema de perturbacao da forma
i = fO>x,t) +efl(a,t,¢), x(ty) = a, (2.3.2)
e o problema nao perturbado
= f%z,1), 2(t) = a. (2.3.3)

Assumamos que (2.3.3) possa ser resolvido explicitamente. Como a solu¢ao dependera do

valor inicial a, denotemos por z(&,t) a solu¢ao de (2.3.3) com condicao inicial &, isto &,

= Z(£7t)7 2(67{:0) :§7 56 R™.

Agora, consideremos a equagao acima como uma transformagao (método da varia¢ao dos

pardmetros ou variagao das constantes):
r = z(,t). (2.3.4)

Usando (2.3.2) e (2.3.3) e derivando a equacao diferencial com relacdo a &, teremos

0

54@&+D@@¢ﬁ%=f%4&mﬂ+fﬂW4&w¢¢)

Como z satisfaz a equacgao nao perturbada, os primeiros termos de ambos os lados da

igualdade cancelam-se. Assumindo que Dgz(€,t) é uma matriz ndo singular, temos

£ =e(Dez(&,1)) 7 - fU(2(&,1), L, 2). (2.3.5)
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A equagao (2.3.5) é chamada de problema de perturba¢ao na forma padrao. Notemos

que esse sistema esta escrito na forma de (2.3.1).

Apesar de ser chamada “forma padrao”, a equacao obtida nao é simples e de facil
estudo e nem sempre nos leva a uma equacao cuja solugao seja uma boa aproximagao

para o sistema desejado. Os proximos exemplos visam explicar tal comentario.

Exemplo 2.3.1. Consideremos a equacao do péndulo perturbado

¢ +seno = eg(o,t,¢).

Nesse caso, a equagao (2.3.5) necessariamente envolvera fungoes elipticas, pois as solugoes
da equagao nao perturbada giﬁ—i— sen ¢ = 0 é composta por funcoes elipticas, o que dificulta

os calculos. n

Exemplo 2.3.2. Consideremos duas espécies vivendo em uma regiao com uma oferta
restrita de alimentos e uma pequena interagao entre elas afetando sua densidade popula-

cional x1 e x5. Descrevemos o crescimento populacional pelo modelo

T, = By — 22 +efi(x, x2), 71(0)

.1"2 = 621'2 — .1'% + €f2($1, 1’2), 332(0)

ay,

a2,

onde as constantes (;,a; > 0 e x;(t) > 0 para ¢ = 1,2. Consideremos o sistema nao

perturbado na variavel z = (z1, 29). Sua solugao é dada por

Bl
T Bita(eft—1)

(1) i=1,2.

Queremos calcular a inversa da matriz

0z1 (t) 0z1 (t)

_ 961 3 . — i
DgZ(f,t) - 0z2(t)  Dza(t) s 61(0) A, 1 172

31 3
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0z1(t) _ Oza(t) __
Notemos que 5= = BL& =0e que
0:(t) _ (8™ (8.4 € (¢ = 1)) - B (#— 1) s
= . 3 = Ok, 1 = s .
0% (Bi + & (efit — 1)) (1 + & (it — 1))

Assim, aplicando (2.3.5), obtemos

2
fi = ce Pt (1 + % (eﬁit - 1)) fil), i=1,2,

na qual abreviamos a expressao para f;.

Essa transformacao nao teve um efeito pratico neste exemplo, pois o lado direito da
expressao cresce exponencialmente, mesmo se tomarmos f; constante. O crescimento
exponencial implica que quanto maior for o tempo, mais rapido a solucao crescera, e
isso podera implicar no afastamento entre as solu¢oes do sistema nao perturbado e do

perturbado, o que nao ¢ a finalidade do método do averaging. [

Existe uma classe de problemas na qual essa técnica funciona adequadamente e trata-

mos dela na Secao 2.3.2.

2.3.2 A forma padrao no caso quasilinear

O problema de perturbagao (2.3.2) sera chamado quasilinear se a equagao puder ser

escrita como

i = A(t)z +efY(z,t,¢), (2.3.6)

na qual A(t) é uma matriz n X n continua. Nesse caso, se o problema nao perturbado

y=Alt)y

possuir n solugdes linearmente independentes, construiremos a matriz fundamental (),
de forma que ®(ty) = I (matriz identidade de ordem n) e aplicaremos o processo de

variagao das constantes, chamando
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Assim obtemos, a partir de (2.3.5),
5= () fI(D(t)2, t,€). (2.3.7)
Se A for uma matriz constante para todo ¢, a matriz fundamental tera a forma
O(t) = eAlt=to),
A forma padrao neste caso fica
5 = ge~All=to) flll(gAl=to) ¢ o), (2.3.8)

Observacao 2.3.3. Vale observar que, se os autovalores de A nao forem todos imaginarios

—A(t—to)

puros, podemos nao conseguir uma limitacao para e e, mesmo que f! seja limitada,

a equagao perturbada (2.3.8) podera apresentar solugdes que nao sejam limitadas.

Na teoria de osciladores nao lineares for¢ados o problema de perturbacao pode ser da

forma

i = fOx,t) +efW(z,t,e), (2.3.9)

onde fY(z,t) = Az + h(t), com A uma matriz constante. A transformacao da variacao

das constantes torna-se

t
z = eAll=t) 5 4 eAlt=to) / e~ A=) (s5)ds. (2.3.10)

to

E, entao, o problema de perturbacao na forma padrao é escrito como
g =ee M (2 1),

na qual x ainda precisa ser substituido pela equagao (2.3.10).
Vejamos um exemplo no qual utilizamos a transformacao da variacao das constantes

tal qual a descrevemos nesta secao.

Exemplo 2.3.4. Ao estudar osciladores nao lineares, frequentemente consideramos o
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problema de valor inicial perturbado
i+ wir =eg(x,i,t,¢), x(ty) = ay, ©(ty) = a. (2.3.11)

Duas solugoes independentes do problema nao perturbado, 4 +w?y = 0, sao cos(w(t —tg))

e sen(w(t — tg)). Dessa forma, a matriz fundamental ¢ dada por

B(1) = cos(w(t —to))  Lsen(w(t—to))
—wsen(w(t —tg))  cos(w(t —to))

Observemos que esta matriz é tal que ®(ty) = I. Entao, a transformagao da variagao das

constantes torna-se

v = zcos(w(t—ty)) + Zsen(w(t —to)),

(2.3.12)
T = —zwsen(w(t —to)) + 22 cos(w(t — to)).
A equagao na forma padrao (2.3.8) neste caso ¢é
21 = —ESsen(w(t—t o te), z1(ty) = aq,
1 S sen(w(t —1o))g( ), z1(to) = a (2.3.13)
Zy = ecos(w(t —t9))g(:, - t,e), 2z2(ty) = as,
onde as expressoes para = e & de (2.3.12) devem ser substituidas em g, nos pontos. [

Vejamos outra maneira de utilizar solucoes independentes do sistema e o processo
da variacao das constantes utilizando equacgoes que permitam a variacao da amplitude
r e da fase ¢ da solugdo de um sistema linear. Definindo x = rsen(wt — ¢), entao
& =1y = rwcos(wt — @) e obtemos a chamada transformag¢ao amplitude-fase. Dessa forma

as equacoes perturbadas serao

P Lcos(wt — )g(-, -, t,¢)
£
¢ Lsen(wt — ¢)g(-, -, t,€)

(2.3.14)

Os valores iniciais para r e ¢ podem ser calculados pela substituicao anterior.

Nos Exemplos 2.3.5 e 2.3.7 utilizaremos as transformacoes acima descritas.
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Exemplo 2.3.5. Consideremos a equacao diferencial de segunda ordem
¥+x=cg(x, 1), (2.3.15)

com valores iniciais x¢ e @y dados, e ¢ uma funcdo suficientemente suave em D C R2.
Esse é um sistema quasilinear e usaremos a transformacao amplitude-fase para colocar

(2.3.15) na forma padrao. Sejam

x = rsen(t — ¢),
T = rcos(t — ).

Dessa forma, as equagoes perturbadas (2.3.14) ficam

r) [ cos(t—@) g(rsen(t —¢),rcos(t - ¢)) , (2.3.16)

) %sen(t — @) g(rsen(t — ¢),rcos(t — ¢))

e notemos que ela esta na forma

i =cfl(z t),

com x = (r, ).

Além disso, observemos que o campo vetorial é 27-periddico em t e, como visto no
Teorema 2.2.4, se g € C'(D), poderemos calcular a média de f!, exceto para uma vi-
zinhanga da origem (onde as coordenadas polares falham). Como a equagao original é
autonoma, a equacao promediada dependerd somente de r, e as duas componentes do

campo vetorial promediado sao

fi(r) = %/o ’ cos(s — @) g(rsen(s — @), rcos(s — ¢))ds =

= % i ﬂcos(s) g(rsen(s),rcos(s))ds,
5 (r) = 1L Fsen(s) g(rsen(s),rcos(s))ds.

T2 Jo
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Uma aproximacgao assintotica pode ser obtida resolvendo o sistema

RSN
(I
™ ©)
SR Th
— —~
=3 =
N— SN—

com valores iniciais apropriados.

Se g(x, 1) = (1 — 2%)Z, temos a conhecida equacdo de Van der Pol
i+x=e(l-a%,

sendo neste caso
=
r=3
¢ = 0.
Se o valor inicial da amplitude rq for 0 ou 2, a amplitude 7 serd constante para todo

o tempo. O valor o = 0 corresponde ao ponto critico instavel na origem, enquanto que

ro = 2 fornece uma solugao periddica dada pela expressao
7(t) = 2sen(t — ¢o) + O(e) (2.3.17)

no tempo escala % Portanto, obtemos a solugao geral

1
roe2ct

R(t) = sen(t — ¢o) + O(e) (2.3.18)
(14 376 (e = 1))

N

no tempo escala =. Além disso, as solugoes tendem para a solugao periddica (2.3.17) que

M =

é um ciclo limite (estavel). A Figura 2.4 traz seu retrato de fase. n

Observagao 2.3.6. Com o estudo apresentado acima, podemos fazer uma comparac¢ao
dos resultados obtidos com a aplicacao das duas técnicas estudadas nesta dissertagao para
a investigacao dos ciclos limites que bifurcam de um centro. No Exemplo 1.4.10, aplicamos
o método das integrais abelianas na equagao de Van der Pol, obtendo a existéncia de um
ciclo limite bifurcando-se da circunferéncia de raio v/2. No Exemplo 2.3.5, aplicamos o

método do averaging e constatamos a existéncia de um ciclo limite estavel cuja equagao
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T _ T 3

Figura 2.4: Retrato de fase da equacao de Van der Pol, & + z = &(1 — %)%, com € = 0, 1.
A origem é um ponto critico instével do fluxo; o ciclo limite (curva fechada, em vermelho)
corresponde & solugao periddica estéavel.

aproximada é dada por

7(t) = 2sen(t + ¢o) + O(e)

no tempo escala %

Dessa forma, aplicando ambos os métodos, obtemos o mesmo ntimero de ciclos limites
que bifurcam da equacdo # + x = 0 ap6s uma perturbacao do tipo g(z, 1) = (1 — 2?1,
com a vantagem de que no método do averaging obtemos a expressao analitica de uma

aproximacao da solucao periodica.

Passemos, agora, para o tltimo exemplo desta secao.

Exemplo 2.3.7. Consideremos a equacgao de um oscilador linear com modulagao de
frequéncia, também conhecida como equacao de Mathieu, dada por

Z+ (1+ 2ecos(2t))z =0,

com valores iniciais 2(0) = 2 e ©(0) = @. Podemos proceder como no Exemplo 2.3.5;

no entanto, a equagao (2.3.15) agora depende explicitamente do tempo ¢. Nessa tltima
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equagao, tomando g(z, &) = 2 cos(2t)z, a transformagao amplitude-fase fornece-nos

7 = —2ersen(t — ¢)cos(t — ¢) cos(2t),

2.3.19
¢ = —2esen?(t — ¢)cos(2t). ( )

O lado direito da equacao acima é 27-peridédica em t. Assim, calculando a média dessas

fungoes periddicas com respeito a t, obtemos o sistema

=
Il

Lersen(29),
1ecos(29).

2

[\

(2.3.20)

-1
I

Com o intuito de aproximar as solugoes de um sistema linear que seja dependente do
tempo (equagao (2.3.19)), teremos de resolver um sistema auténomo nao linear (equagao
(2.3.20)). Nesse caso a integracao pode ser realizada, mas é mais pratico escolhermos uma
transformacao diferente para obter a forma padrao, permanecendo ainda na categoria de
sistemas lineares com transformagoes lineares. Utilizemos, entdo, a transformagao (2.3.12)

comw=1ety=0:

T = zyc08t+ z9sent,

T = —zisent+ zgcost.

Logo, a equagao (2.3.13) fica na forma

% = 2esentcos(2t)(z; cost + zgsent),

Zy = —2ecostcos(2t)(z cost + zpsent).

As equagodes do lado direito sao 2m-periddicas, e o averaging fornece-nos

AR —1522, 21(0)

B Zo,

9 = —%éle, 22(0) .7.50.

Esse é um sistema linear cujas solugoes sao

2(t) = L(wo+do)e 2% + L(xg — do)er,
Zg(t) — %(;po + j’o)@_%et _ %(900 . fo)eéat.
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A aproximagao assintotica para a solugao z(t) da equagdo de Mathieu é

1 1
z(t) = 5(:1:0 + @g)(cost +sent) + 5(3:0 — Zo)(cost —sent).

A Figura 2.5 mostra o grafico de Z(t) para valores inicias especificos.

1

AAAAA

AAAAA
e

-1

il

Figura 2.5: Gréafico da solugao aproximada Z(t) para zo = 0,1; g = 0,2 e ¢ = 0, 1.

Notemos que o equilibrio x = & = 0 é instavel.

2.3.3 A importancia da forma padrao

Até o momento analisamos exemplos nos quais estivemos preocupados em transpo-los

para a forma padrao. Segundo Murdock [40], é absolutamente essencial para a utilizagao

do averaging que o sistema original esteja na forma padrao. Para que nos convengamos

disto, consideremos o problema de valor inicial

io= 1, 21(0) = 0,
! 10 (2.3.21)
Ty = ecos(ry —1), x2(0) =0,
que nao esta na forma padrao.
Este sistema tem solucdo exata x1(t) = t, x3(t) = et. Se calcularmos o sistema
promediado, obteremos
z1 = 1, z(0)=0,
! 1(0) (2.3.22)
Z"g = O, 22(0) =0



76 A teoria do averaging

com solugao exata z1(t) =t, z9(t) = 0. O erro na segunda componente é £t, que é igual a
1 quando t = %; se o averaging fosse valido para este sistema (da forma que é valido para
sistemas na forma padrao), o erro nesse tempo seria da ordem de ¢ (isto &, O(¢)).

O problema esta na primeira equagao de (2.3.21). Nela, x; varia com o tempo de tal
forma que cos(x; — t) permanece em seu valor maximo 1, que ndo é bem aproximado
pelo seu valor médio 0. Isso cria uma diferenca de ¢ entre os lados direitos das segundas
equagoes de (2.3.21) e (2.3.22). Embora essa discrepancia seja pequena, ela gera um erro
em 2o que cresce para 1 no tempo %

Se @ fosse € ao invés de 1, (2.3.21) estaria na forma padrao. Nesse caso, z; variaria
lentamente e, durante o periodo 0 < ¢ < 27, o termo cos(z; — t) comportaria-se como
se xy fosse constante: realizaria uma oscilagao quase senoidal e seria melhor aproximada
pelo seu valor médio 0 comparado ao caso atual (2.3.21).

Portanto, a importancia da forma padrao periddica é que para e suficientemente pe-
queno, r é quase constante, de modo que faz sentido calcular a média do lado direito da

equagao ao longo de um periodo em que x mantém-se constante.

Observacao 2.3.8. Nos Exemplos 2.3.4, 2.3.5 e 2.3.7, discutimos e analisamos alguns

casos particulares da equacao polinomial generalizada de Liénard, a saber
i+ f(z)t +g(z) =0,

onde f e g sao polindmios na variavel x de graus n e m, respectivamente, nos quais
queriamos obter uma forma padrao da equacao utilizando algumas transformagoes, com
a finalidade de aplicarmos o método do averaging.

H&4 uma vasta quantidade de publicagoes envolvendo algum estudo sobre a equacgao
de Liénard, e dentre elas existem os trabalhos envolvendo o estudo de suas solugoes
periodicas. Por exemplo, Gasull, Giacomini e Llibre [20] desenvolveram um novo critério
para verificar a existéncia ou nao de ciclos limites da equacao de Liénard via o controle
do sinal de uma fun¢ao de uma variavel.

Além disso, existem também trabalhos que trazem uma anélise da quantidade de

ciclos limites da equacao de Liénard utilizando o método do averaging, como Mereu [39] e
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Llibre, Mereu e Teixeira [34], que aplicaram o método do averaging de primeira, segunda e
terceira ordens a equagao polinomial generalizada de Liénard. Na Secao 2.5 apresentamos

alguns exemplos estudados por Mereu em [39] através do método do averaging.

Apos o estudo do método do averaging de primeira ordem e dessa breve discussao
sobre a forma padrao e sua importancia, voltemos nossa atencao ao método do averaging
de alta ordem. Na Secao 2.4 adaptamos os resultados vistos na Secao 2.2 para equacoes
diferenciais que possuem ordem mais elevada na variavel € e investigamos quao proximas
estao as solugoes dos sistema original e as solucoes do sistema promediado para intervalos

de tempo mais longos.

2.4 Averaging periddico de alta ordem analitico

O averaging de ordem k descrito nesta se¢ao pode ser utilizado para obter estimativas
de erro de O(e*) vélidas para tempo de O(1), com k > 1, e (sob suposi¢Ges mais restritas)
obter estimativas de erro de O(e*77) (mais fraco) para tempo de O(4r) (mais longo). No
altimo caso, diremos que trocamos j ordens de exatidao por um maior tempo de validade.

Nesta dissertagao tratamos do primeiro caso e enunciamos o Teorema 2.4.3 que trata
do segundo caso. Os resultados desta segdo podem ser encontrados em [41].

Consideremos todas as fungoes suaves e definidas em R". Como no averaging de
primeira ordem, existem duas maneiras de demonstrar o teorema principal. A primeira
demonstragao ¢ devida a Ellison, Sdenz e Dumas [17] e utiliza a desigualdade de Besjes
(Lema 2.2.1), e a ultima é mais tradicional e segue as linhas de Bogoliubov. No entanto,
desta vez, ambas as provas utilizam transformacoes proximas a identidade.

O proximo lema generaliza o Lema 2.2.7 e é formulado para incluir o que for necessério

para ambas as provas.
Lema 2.4.1. Dado o sistema

i=cft(x,t)+ -+ fF(x,t) + T (2t e), (2.4.1)
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com periodo T em t, existe uma transformacao
r=U(y,te)=y+eu(y,t) +cu"(y,t), (2.4.2)

também periodica, tal que

g=cg'(y) + -+ gk (y) + Mgl (y, 1, 2). (2.4.3)

Aqui, g* € igual & média f' de f', e g%, ..., g® sdao independentes de t, mas néio sao
inicas (jd que elas dependem de escolhas feitas para obter os u'). Existe um algoritmo
para calcular essas funcoes na sequinte ordem: g', u', ¢2, u?, ..., ¢*, uF. Em particular,

€ possivel calcular a equagdo promediada truncada (auténoma)
t=egt(z) + - +"gF(2) (2.4.4)
sem calcular o ultimo termo de (2.4.2). Se a transformagao “menor”
E=Ulzt,e) =z +eu'(z,t) + -+ W (2, t) (2.4.5)

for aplicada a (2.4.4), o resultado serd a sequinte modificagcao da equagao original, na qual

h*(-,t) tem média zero:

E=cf 1) 4+ PR ) + P D] + FH (e 1 e). (2.4.6)

Demonstracgao: Indicaremos os passos da demonstragao. Como no Lema 2.2.5, a trans-
formagao (2.4.2) é invertivel e define uma mudanga de coordenadas. Quando essa mudanga
de coordenadas for aplicada a (2.4.1), o resultado tera a forma (2.4.3), exceto que, em

geral, ¢/ dependera de t. Os calculos sao complicados e estao melhores descritos na Secao

3.2 de |41]; mas para cada j, o resultado tem a forma ¢ = K7 + 83—1?, onde K’ é uma

funcao construida a partir de f1, ..., f7, de u!, ..., w/~! previamente calculadas, e de
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suas derivadas. As duas primeiras funcoes K’ sao dadas por

Kl(y:t) | _ iy, 1) (24

K*(y,t) fA(y,t) + Dy fH(y, 1) - ul(y, 1) — Dyu'(y,t) - g*(y)
(Essa expressao recursiva assume que g' tenha sido calculada antes que K2 seja obtida.

Isto &, g' pode ser substituida por f! —wu;). Assim, se ¢’ for independente de ¢, teremos

ou?

S Wt =K (yt) = ¢ (y). (2.4.8)

Essa equagao homolégica tem a mesma forma que (2.2.11) e pode ser resolvida da mesma
maneira: tomemos ¢/ = K7 de forma que o lado direito de (2.4.8) tenha média zero e
integremos com respeito a t. Isso determina u’, a menos de uma “constante” k2(y); apos
o primeiro caso j = 1 (onde K' = f! e a equagao homolégica ¢ a mesma do averaging de
primeira ordem), as constantes previamente escolhidas compdem K7, fazendo com que ¢’
nao seja unica. O restante da demonstragao consiste em inverter os passos e checar que,
com ¢’ e v/ construidas dessa maneira, a transformacao (2.4.2) realmente leva (2.4.1) em
(2.4.3), para alguma g**'). No caso de (2.4.5) e (2.4.6), a tltima equacdo homolégica é
substituida por

0= K"+ hn"—g"

(Isso depende da estrutura interna de K*. Na verdade, K* ¢ igual a f* mais termos
independentes de f*, de modo que, quando h* for adicionada a f*, também sera adicionada

a K*). Tomando g* = K* segue que h* = K* — K* tem média zero. [

Escolhendo 7 (y) = 0, para todos os j, mais uma vez temos o averaging estroboscopico,
no qual ambas as transformacoes U e U reduzem-se a identidade nos tempos estroboscopi-
cos. Se o averaging estroboscopico for utilizado, a maneira mais natural de construir uma
aproximagao para a solugao z(a,t,¢) de (2.4.1) com valor inicial z(a,0,e) = a sera re-
solver a equagao promediada truncada (2.4.4), com z(a,0,e) = a, e aplicar essa solugdo

z(a,t,€) na transformagcao U para obter

E(a,t,e) = U(z(a, t,e),t,¢). (2.4.9)
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Esta é uma importante diferenca entre o averaging de primeira ordem e o de ordem
maior: nao é possivel utilizar z(a, t, ) diretamente como uma aproximagao para x(a,t, ¢).
(No caso de primeira ordem, nao precisamos definir U porque ela reduz-se a identidade).
Se o averaging estroboscopico nao for utilizado, a equacao em z deverd ser resolvida
nao com condi¢ao inicial a, mas com uma condi¢ao inicial que seja dependente de &,
V(a,0,¢), onde y = V(x,t,¢) é a aplicacao inversa da mudanca de coordenadas U. (Nao
é necessério calcular a expressao exata de V', mas somente sua série de poténcias em ¢ de

ordem suficiente, que pode ser feito recursivamente).

Nas demonstragoes seguintes assumimos o averaging estroboscépico por conveniéncia,

mas os teoremas continuam vélidos no caso geral.

Teorema 2.4.2. A solugdo exata z(a,t,e) e sua aproximacao &(a,t,¢), definida acima,

estao relacionadas por

||:1c(a,t,5) - f(CL?t,&)H = O(gk)

para tempo de (’)(%) e € pequeno.

Demonstragao: Para a demonstracao utilizando a desigualdade de Besjes, escrevemos
W = e f Y t) + - 4 R R (1),
de forma que (2.4.6) fica reescrita como
€= JEfU(E b e) + eRhR (g ) + M FIEHI(E 1 e,

Seja E(t,e) = x(a,t,e) — &(a,t,e). Entao,
IE® o)l =llz(a,t, €) = &(a,t,)]| =
—H/ [ef!(z,s) R R, s) PR (s e)]ds—

- / PG, 5,2) 4+ R RE(E, ) 4+ 4 T (E 5, 2))ds | =

0
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_H/ e, s) - f[l](5>575)]d3—/ts’“hk(§,s)ds+

0

+/ €k+1[f[k+1]<x’8’g) — fl (&, s,¢)]ds
0

t t
ggAJ,gfm/ \|E(s,€)||ds+ekH/ hk(g,s)dsH+
0 0

t
0

Pelos mesmos argumentos utilizados na demonstracao do Teorema 2.2.4, existem cons-

tantes ¢y e cq tais que

t
[E(t, )] < ey / |E(s,€)||ds + coe®t + c1e"
0

Pelo Lema 2.2.3,

k k
Co€ EX k111t Co€
E(t e)] < e et — -
H ( ) )” = 8)\ka[1] +016k+1 € 5)\ka[1]
Ju £

— gkl S =gt _ ),
)\Jl;f[l] + Cl€k )\Jl;f[l]

(2.4.10)

Para a conclusdo da prova faz-se necessario aplicar os resultados de [17]. Este trabalho
tem por objetivo demonstrar que a estimativa de ordem k, enunciada neste teorema, pode

ser alcancada a partir da estimativa de ordem k — 1 obtida em (2.4.10).

Facamos, agora, a demonstracao tradicional ao longo das ideias do Lema 2.2.9 e

Teorema 2.2.10. Segue do Lema de Gronwall Especifico que
ly(a,t,e) — 2(a,t,e)|| = O(e*)

para tempo de O(2).

Agora, escrevendo U(y) para U(y(a,t,€),t,¢) e similarmente para outras expressoes,

temos x = Ul(y), & = U(z) e, portanto,

lz =&l = 11U = U < 1U) = Ul +10@y) = UE).
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Notemos que
1U(y) = U)ll = llg¥u" (g, )| = *l|u* (g, £)]| = O("),
ja que uF(y,t) é limitada em D para tempo de O(é), e que
1U(y) =) < Nly - 2l = OEH),

pela afirmacao anterior.

O resultado segue. [

Por conveniéncia, enunciamos novamente esse teorema no caso de segunda ordem com

formulas completas. Comecando com o sistema
i=cft(x,t) + 2 f (x,t) + 2 fB(x,t, ),
coloquemos ¢*(y) = f*(y). Entdo, seja
t
W) = [ 179 =g s, (24.11)
definamos K? como em (2.4.7) e seja ¢%(y) = K?(y). Seja z(t, ) a solugao de
2 =eg'(2) +%¢*(2), 2(0)=a.
Entao, a solucao do problema original é
w(t,e) = z(t,e) + eu' (2(t, €),t) + O(e?)

1
para tempo de O(3).

Para obter estimativas para intervalos de tempo mais longos, é necessario assumir que
parte das equagoes promediadas anulam-se.

Teorema 2.4.3. Com a notacdo do Lema 2.4.1, suponhamos que ¢* = ¢> = --- = ¢g'~ ! =
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= 0, onde ¢ < k. Entao, as solugdes de (2.4.1), (2.4.3) e (2.4.4) existem para tempo
de (’)(E%) e, para cada inteiro j = 0,1,...,0 — 1, a solu¢ao exata x(a,t,c) e a solugao

aprozimada &(a,t,€) definida por (2.4.9) satisfazem a estimativa
z(a,t,€) — &(a,t,e)| = O(F)

para tempo de O(Fr).

Demonstragao: Para uma demonstragao deste resultado veja [41]. [

O caso mais importante do Teorema 2.4.3 é quando ¢ = k e j = £ — 1. Nesse caso,
a equacgao (2.4.4) reduz-se a ¢ = ‘g*(2) e estamos trocando o mais de exatidao possivel

pelo aumento do tempo de validade, de forma que o erro seja de O(g) para tempo de

O(%).

Exemplo 2.4.4. [41] Consideremos a equa¢ao de Van der Pol modificada definida por
i+x—ex® =e*(1—2)i,
a qual é equivalente ao sistema

T =y,

2.4.12
o 2 | 201 _ .2 ( )
y = —x+ex®+e*(l—a%)y.

Escolhemos a transformacao amplitude-fase com w = 1, isto é,

(z,y) — (r,¢), com x =rsen(t — ¢) e y = rcos(t — ¢),
para obter a equacao perturbada na forma padrao:

7= erfcos(t — ¢)sen®(t — ¢) + e?rcos?(t — ¢)[1 — r?sen®(t — ¢)],
¢ = ersen’(t —¢) +e%sen(t — ¢) cos(t — ¢)[1 — r2sen?(t — ¢)].
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Se definirmos

fl(T’7 ¢) - fll (7’, ¢) _ r? COS(t — ¢) SenQ(t _ ¢>
fa(r,9) rsend(t — o)
e
fQ(T, gb) _ TCOSQ<t — Qb)[l — 2 Sen2(t - ¢)] |
sen(t — @) cos(t — ¢)[1 — r2sen?(t — ¢)]
vemos que a hipdtese do Teorema 2.4.3 esta satisfeita para ¢ = k = 2 e j = 1, pois

gt (r,,t) = fl(r,¢) = 0. Dessa forma, a equacao promediada descreve um fluxo no

tempo escala % com um erro de O(e). Pela equagdo (2.4.11), obtemos

ul(T’ 5t) = %rQ sen®(t — ¢)
—1rcos(t — ¢)(2 + sen’(t — ¢))

Um calculo simples nos fornece

2r cos(t — ¢)sen?(t — @) r?sen(t — ¢)[sen?(t — ¢) — 2 cos®(t — ¢)]

Df'(r,0,t) = 5
sen®(t — ¢) —3rcos(t — ¢) sen’(t — ¢)

Ap6s o calculo de Df1 - ul, K2 pela expressao (2.4.7) e calcular a média, obtemos

(2.4.13)

-
I
e

[Q}
[
=3I

Entao, concluimos que, como na equacao de Van der Pol, temos uma solucao periédica
estavel com amplitude r = 2 + O(g). A funcdo do termo de O(g) na equagao original é
somente induzir um deslocamento do angulo de fase ¢. Para uma aproximagao da solugao

periddica temos a expressao
i 5,
7(t) =2cos | t — 3 t)+0()

no tempo escala %. A Figura 2.6 ilustra o retrato de fase de (2.4.12). ]
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Figura 2.6: Retrato de fase da equagao (2.4.12) para ¢ =0, 1.

O método do averaging discutido até esta secao foi de carater analitico, no qual foram
utilizados os conceitos de aproximagao assintética para realizar as estimativas de erro das
solugoes do sistema original com as solugoes do sistema promediado. Entretanto, h& outro
tipo de abordagem para o método do averaging: a topologica. Nessa versao do averaging

precisamos do conceito do grau de Brouwer.

2.5 Averaging peridédico via grau de Brouwer

Do estudo realizado até esta se¢ao, podemos dizer que o método do averaging fornece
uma relagao quantitativa entre solugoes de sistemas diferenciais nao auténomos e solugoes
de sistemas diferenciais promediados, que sao autonomos. Aplicamos o averaging & variavel
independente e os lados direitos dos sistemas estudados sao suficientemente pequenos,
dependendo de um parametro pequeno €. Além disso, utilizando o Teorema da Funcao
Implicita, o método do averaging garante a existéncia de solugoes periddicas para sistemas
periodicos. No trabalho de Buica e Llibre [9], a abordagem do averaging é feita por
métodos topologicos e tem como objetivo a resolucao de equagoes com operadores, o que
se torna equivalente ao problema de encontrar solugoes T-periddicas.

O resultado principal desta se¢ao é o Teorema 2.5.1. O primeiro passo na sua demons-
tracao é substituir nosso problema aquele de encontrar zeros de uma funcao relacionada

diretamente ao sistema diferencial dado. Na verdade, temos de estudar a bifurcacao dos
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zeros dessa fungao com respeito ao parametro € em torno de € = 0. Ao invés do Teorema
da Funcao Implicita, Buica e Llibre utilizaram a teoria do grau de Brouwer.

Aqui, enunciamos o resultado principal de [9] sobre o método do averaging de primeira
ordem. Por conveniéncia, algumas equacoes que definem o método do averaging serao

repetidas a partir do proximo resultado.

Teorema 2.5.1 (Averaging de primeira ordem via grau de Brouwer). Consideremos o

sequinte sistema diferencial
i =cef(z,t) +2fP(x,t,e), (2.5.1)

onde f' : DxR = R*, f2: DxRx (—ef,e5) = R™ sao fungoées continuas, T-periddicas

emt e D é um subconjunto aberto de R™. Definimos f': D — R™ como

_ 1 (T
P =1 / Sz, 8)ds, (25.2)
T 0
e assumamos que:

(1) f' e f13 sdo localmente Lipschitz com respeito a x;

(ii) para a € D com f'(a) = 0, existe uma vizinhanga G de a tal que f*(z) # 0 para
todo z € G\ {a} e dp(f*,G,0) # 0.

Entao, para || > 0 suficientemente pequeno, existe uma solugao T-periodica p(-,€) do

sistema (2.5.1) tal que @(-, ) — a quando € — 0.

O Teorema 2.5.1 tem hipoteses mais fracas quando comparadas a um resultado analogo

de Verhulst [45] (Teorema 11.5, p. 168), onde ao invés de (i) é assumido que

() Y, f D,f', D2f! e D, f1 sdo definidas, continuas e limitadas por uma constante

M (independente de €) em D X [0,00), —¢5 < € < ¢y,
e ao invés de (i) assumimos que

(jj) para a € D com f'(a) =0 temos Js(a) # 0.
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A partir de agora, denotemos por D,f a matriz jacobiana de f com respeito a va-
riavel = e por D2f a matriz das derivadas de segunda ordem. Por J;(a), denotemos o
determinante da jacobiana de f calculada em a.

Facamos uma preparagao para a demonstracao deste resultado.

2.5.1 Teoria do grau em espaco de dimensao finita

Nesta secao queremos abordar tao intuitivamente quanto possivel as propriedades
fundamentais do grau topologico cléssico assim como foram formuladas por Brouwer em
1912.

Seguindo as ideias de Browder [8], comecemos com algumas convengoes na notagao.
Consideremos aplicagoes com dominio em um espago topolégico X e com valores em um
espaco topolégico Y. Se G for um subconjunto aberto de X, sejam G seu fecho em X e
OG sua fronteira em X. Assim, f : G — Y sera o prototipo das aplicacoes para o qual
uma fungio grau serd definida. Se f : Gy — Y for tal aplicacdo e G um subconjunto

aberto de Gy, entdo fo denotaré a restricao de f a G.

Teorema 2.5.2. Sejam X =Y = R" para um dado inteiro positivo n. Para subconjuntos
abertos e limitados G de X, consideremos aplicacées continuas f : G — Y e pontos
yo €Y tais que yo ¢ f(OG). Entao, para cada tripla (f,G,vyo), corresponde-se um inteiro
d(f,G,yo) tendo as sequintes propriedades:

(1) Sed(f,G,yo) # 0, entao yo € f(G). Se fo for a aplicac¢ao identidade de X em Y,

entao, para cada conjunto aberto e limitado G e yy € G, teremos

d(fO,Gv Ga yO) = +]'

(ii) (Aditividade) Se f : G — Y for uma aplicag¢do continua com G um subconjunto
aberto e limitado em X, e Gy e Gy formarem um par de subconjuntos abertos dis-

juntos de G tais que

o ¢ f(G\ (G1UGy)),
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entao

d(f? G? yO) = d(fGI7 G17 yO) + d(fG27 Gg,yo)-

(13i) (Invaridncia por homotopia) Seja G um subconjunto aberto e limitado de X e con-
sideremos uma homotopia continua {f;; 0 <t < 1} de aplicagées de G em Y. Seja
{ye; 0 <t < 1} wma curva continua em Y tal que y, ¢ f:(0G), para qualquer
t €10,1]. Entao, d(f,G,y:) € constante em t € [0,1].

Teorema 2.5.3. A funcao grau d(f, G, yo) € unicamente determinada pelas trés condigées

do Teorema 2.5.2.

O Teorema 2.5.2 ¢ uma versao devidamente formalizada das propriedades do grau de
Brouwer classico.

Intuitivamente, essa fungao grau que é descrita nos Teoremas 2.5.2 e 2.5.3 destina-se
a ser uma contagem algébrica do nimero de solugdes x em G para a equagao f(z) = yo.
Falamos de contagem algébrica porque algumas solugoes sao contadas positivamente e
outras, negativamente.

O caso ideal é de uma aplicacao f de classe C' com somente pontos regulares x como
solugbes da equagao f(x) = yo, ou seja, em cada solucao, f'(x) é uma transformagao linear
nao singular do R™. Desta forma, o ntimero de tais solugoes torna-se finito, e diremos
que sao positivas, se f'(x) preservar sua orientacdo, e negativas, se reverté-la. Entao,
d(f,G,yo) éigual ao namero de solu¢oes positivas menos o nimero de solugoes negativas.
Assim definida, a funcao grau para tais aplicagoes é certamente um inteiro. Em [8] vemos
uma descricao dos fatos de que a funcao grau é extensivel para todas as aplicacoes e é

invariante por homotopia.

Exemplo 2.5.4. Sejam G = (—1,1) C R e a fungdo f : G = [-1,1] — R dada por

f(z) = x2. Analisemos dois casos.

1. Sey < 0, entao f~'(y) = @. Logo, d(f,G,y) = 0.

2. Sey>0ey#1,entdo f(y) = {—/¥, U}

Temos, para z; = \/y, f'(v1).h = 2,/yh > 0, para todo h > 0, e f'(x1).h < 0, para

todo h < 0, isto ¢, f'(z1) preserva a orientacao da solucao. E, finalmente, para z, = —,/y,
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['(x2).h = =2,/yh < 0, para todo h > 0, e f'(x2).h > 0, para todo h < 0, ou seja, f'(zr2)
reverte a orientagao da solugao.

Portanto, d(f,G,0) =1—1=0. n

Exemplo 2.5.5. Consideremos a funcdo f : G — R definida por f(z) = senx com

G:(O,%r)eyoz‘/?i.

Vejamos que 0G = {0,57” e f(0G) = {0,1}. Assim, yy = ‘/75 ¢ f(0G). Logo,
d f,G,Li esta bem definido.
2

Dalf,
! @ _Jr 3_7r 9_7r
2 447 4
Temos f'(z) : R — R dada por f'(z).h = (cosz).h.

Logo, f’ (E) e f’ (%’r) preservam a orientagao, enquanto que f’ (%’r) reverte-a. Por-

4
d(f,G,?)zl—lJrl:l.

tanto,

2.5.2 Algumas observagoes sobre o grau de Brouwer

Para subconjuntos G abertos e limitados de R", tais que G C D e 0 ¢ f(0G, ) para
algum e, denotamos por dg(f(-,¢),G,0) o grau de Brouwer da fungao f(-, &) com respeito
ao conjunto G e o ponto 0, como definido na Segao 2.5.1.

Uma das principais propriedades do grau topologico é que, se dg(f(-,¢),G,0) # 0,
entao a equacao

f(z,e) =0 (2.5.3)

tera solugdo em G (veja novamente a Segao 2.5.1).

O principal resultado desta se¢ao é o seguinte

Lema 2.5.6. Consideremos as funcées continuas f* : G — R™, para i = 0,--- ,k, e

f,g,7: G x [—¢&0,20] — R™ dadas por

g(e) = fL) +efH () +2f20) + -+ R, (2.5.4)
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f(e) =g(,e) +e"r(,e). (2.5.5)

Assumamos que

g(z,e) #£0, para todo z € G, € € [—eg,e0] \ {0}. (2.5.6)

Entao, para |e| > 0 suficientemente pequeno, dg(f(+,€),G,0) estd bem definido e
dg(f(-,¢),G,0) =dg(g(-,¢),G,0).

Demonstracao: Usaremos a propriedade da invaridancia por homotopia do grau de

Brouwer. Para cada € € [—&g, g¢] \ {0}, consideremos a homotopia continua
hi(-e) =g(-,e) +t(f(,e) —g(-,¢)), para 0 <t < 1.

O que temos que provar ¢ que, quando ¢ for suficientemente pequeno, 0 ¢ h,(0G,¢)
para todo 0 < ¢t < 1. Suponhamos, por contradi¢do, que, para algum ¢, € (0, 1] e algum
xy € 0G, tenhamos hy, (g, ) = 0. Sendo r uma fungao continua em um compacto, existe

M > 0 tal que |r(z,¢)| < M, para cada z € G e cada € € (0, ).

Entao, hy,(zo,e) = 0 implica que
9(zo,€) + to(f (w0, €) — g(w0,€)) =0 =

= g(zo,€) + to(e"'r(z0,8)) =0 = g(xo,8) = —to(e"'r(z0,8)) =
= |g(xo,€)| < " r(zo,6)| = |g(wo,e)] < Me*,

0 que nao ocorre para ¢ suficientemente pequeno, pois

|9(wo, )] = [ (o) + £ f* (z0) + ° f*(20) + -+ + " f*(wo)| # 0.
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Sejam f : D — R™ uma funcdo de classe C!, com G C D, e Z; = {z € G; f(z) = 0}.
Assumimos também que

Js(2) # 0, para todo z € Zy,

onde Js(z) é o determinante da jacobiana de f em z. Dessa forma, obtemos que Zy é

finito. Entao,

dp(f,G,0) =" sign (J5(2)),

ZEZf

onde n + signn ¢é a fungao sinal.

Observagao 2.5.7. Seja g : D — R" uma funcao de classe C', com g(a) = 0, onde D
¢ um subconjunto aberto de R™ e a € D. Segue do Teorema da Funcao Implicita que,
quando J,(a) # 0, existird uma vizinhanca G de a tal que g(z) # 0, para todo z € G\ {a}.
Entao, dp(g,G,0) € {—1,1}.

Exemplo 2.5.8. O grau de Brouwer da fungao fy(2) = 2? ¢ 0 em qualquer vizinhanga da
origem. De fato, a func¢do fo tem um tnico zero, a saber z; = 0, e temos f}(0) = 0. Para
calcularmos seu grau consideremos A > 0 dado arbitrariamente, o intervalo G = (—2X, 2))
e a fungao g(z) = 2% — A% Dessa forma, g tem dois zeros em G: —\ e A. O sinal da matriz
jacobiana de g é negativo em —A\ e positivo em \. Portanto, dg(g,G,0) = 0 e, pelo Lema

256, dB(f(), G, O) =0. L]

O objetivo de Buica e Llibre em [9] ¢ descrever um método no qual se utilize o Lema
2.5.6 a fim de obter respostas ao problema principal de encontrar zeros de uma funcao
conveniente f : D x (—ey, ) — R™

Assumindo que D seja um subconjunto aberto de R” e f seja da forma (2.5.5) com g
dada por (2.5.4) e r: D x (—¢ef,e5) — R" continua. O primeiro passo é encontrar todos
os zeros de f°. Dado a € D tal que f°(a) = 0, se existir uma vizinhanca G de a tal que
dg(f° G,0) # 0, entao, para |e| > 0 suficientemente pequeno, f(-, &) possuira pelo menos
um zero em G.

Entretanto, se o grau de Brouwer de f° for zero em pequenas vizinhancas de a, ou
se nao puder ser calculado (o que inclui a possibilidade de fY ser identicamente nula),

prosseguiremos com o estudo de f° + £f! em alguma vizinhanca pequena de a e para e
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suficientemente pequeno.
Primeiramente, suponhamos que exista a;. que seja um zero de f° + ef! e um sub-
conjunto aberto e limitado G tais que a;. € G para cada ¢ # 0 suficientemente pequeno

(S

dp(f°+ef',G,0) #0. (2.5.7)

Assim, pelo Lema 2.5.6, f(+, ) possui pelo menos um zero em G. Notemos que hé a
possibilidade de existir outros zeros de f° + ¢ f! na mesma vizinhanca de a, além de a;..
No caso de (2.5.7) nado for satisfeita, continuamos com um estudo andlogo para a

funcao fO +ef! + 22, e assim por diante.

Exemplo 2.5.9. Consideremos a funcao f : R? — R dada por

flz,e) = 22 — e + % (z,¢).

Vamos estimar seu niimero de zeros. Usando a notagao do Lema 2.5.6, temos f%(z) = 22,

fiz)=0¢e f2(z) = -1.
Em qualquer vizinhanga de 0, o grau de f° ¢ 0 (como visto no Exemplo 2.5.8). Assim,

continuamos com o estudo de

(fP+efl+2f)(z) = 22 — &

Essa funcao tem dois zeros: —e e €. Fixemos ¢y > 0 e consideremos os intervalos

abertos I = (0,g9) e J = (—&,0). Pela Observagao 2.5.7, obtemos que

dB(fO_I'gfl_l'sQan]vO) %07

para algum 0 < € < gy, e a mesma relagao vale para J em vez de /. Entao, pelo
Lema 2.5.6, para ¢ > 0 suficientemente pequeno, f(-,¢) tem no minimo dois zeros, um
em [ e outro em J.

Vamos supor que r seja de classe C*°. Usaremos o Teorema da Preparacao de Mal-

grange (veja [12]|) para estimar o nimero de zeros que f(-, ) pode admitir.
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Teorema 2.5.10 (Teorema da Preparacao de Malgrange). Suponhamos que U C R™ x R
seja um conjunto aberto com (0,0) € U, e f € C*(U,R) satisfaca

f(@,0) = a*g(z),

para algum inteiro k > 1, onde g é suave em uma vizinhan¢a de x =0 e g(0) # 0. Entao,
existem uma fungdo suave q definida em uma vizinhang¢a V' de (0,0) em R" X R e fungoes
aop(e), -+ ,ax—1(¢) de classe C* em uma vizinhanga da origem em R™ tais que q(0,0) # 0,

ap(0) =+ =a;_1(0)=0e

q(z,e) f(z,e) = 2% + Zai(e)xi, (x,e) € V.

Notemos que a fun¢ao f é de classe C*™ e, tomando g(z) = 1, estamos nas condigdes

do Teorema 2.5.10. Logo, existe uma funcao ¢ tal que

1
q(z,8)f(z,e) = 2> + Z ai(e)z' = 2* + a;(e)z + ag(e)
i=0
em uma vizinhanga da origem.
Como ¢(z,¢)f(z,€) é uma fungao polinomial de segundo grau, ela admite no maximo
dois zeros e, portanto, f admite no maximo dois zeros.

Logo, f(z,&) = 2% — &% + &3r(z, €) possui exatamente dois zeros. "

Corolario 2.5.11. Suponhamos que as hipoteses do Lema 2.5.6 estejam satisfeitas para
k =0 e que, além disso, para a € D com f°(a) = 0, exista uma vizinhan¢a G de a tal
que f°(z) # 0, para todo z € G\ {a}, e dp(f°,G,0) # 0. Entdo, pelo menos um ramo de

zeros bifurca-se de a.

Demonstragao: Como f°(2) # 0, para todo z € G\ {a}, segue da propriedade de excisao
do grau de Brouwer (ver [1], p. 40) que dg(f° G\ {a},0) = dp(f°, G,0). Deduzimos,
entao, que dp(f° G,,0) # 0, para toda vizinhanga G, C G de a. Escolhamos G, de
forma que G, — {a}, quando p — 0.

Logo, para ¢ suficientemente pequeno, f(-,¢) possui no minimo um zero a. € G, e
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podemos escolher a. de modo que a. — a, quando ¢ — 0. Além disso, se Jpo(a) # 0,

segue do Teorema da Funcgao Implicita que esse ramo de zeros a. ¢ tnico. [

Observagao 2.5.12. Notemos que no enunciado do Teorema 2.5.1 a tnica exigéncia
sobre o subconjunto D C R™ é que ele seja aberto. Para a definicao e propriedades do
grau topologico, como feito nas Segoes 2.5.1 e 2.5.2, é necessario considerar subconjuntos
G C R™ abertos e limitados para que a equagdo f(r) = 0 possua um ndmero finito
de solucoes e, assim, ser possivel calcular o grau para a funcao f em G. No Teorema
2.5.1 a hipotese mais importante esta contida no item (ii) e que se refere a existéncia
de zeros isolados da funcao promediada. Como é preciso calcular o grau de Brouwer,
certamente é necessaria alguma limitagao dos conjuntos envolvidos, mas essa limitacao
nao necessariamente recai sobre o conjunto D. O resultado do teorema esté relacionado
aos pontos contidos em cada vizinhanga dos zeros a da fungao promediada. Sendo D um
aberto, essas vizinhancas podem ser consideradas limitadas, sendo possivel o calculo do

grau nesses pontos. O Teorema 2.5.1 é um resultado local.

2.5.3 Averaging via grau de Brouwer

Iniciamos esta se¢ao com a justificativa do fato de que o problema de encontrar solugoes
T-periodicas para um sistema diferencial é equivalente ao de encontrar zeros de uma

funcao correspondente.

Consideremos o sistema diferencial

&= f(z,t,¢), (2.5.8)

onde f: D x R x (—¢f,e7) — R” ¢ uma funcao continua, T-periédica em ¢, localmente
Lipschitz em x e D um subconjunto aberto de R™. Para cada z € D, denotemos por

x(z,-,¢€) :[0,t,) = R™ a solugao de (2.5.8) com x(z,0,c) = z. Assumimos que

t, > T, para todo z € D. (2.5.9)
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Consideremos, agora, a funcio f : D x (—ef,e7) — R™ dada por

Fz.e) = %/OT F(@(2,5,2), 5,2)ds. (2.5.10)
Toda solugao de (2.5.8)
z:[0,7] - R", com z(0) = z(T), (2.5.11)
pode ser estendida a R devido a sua periodicidade e, portanto, temos a relagao
x(2,T,¢) — 2(2,0,¢) = f(z,¢).

Entéao, todo par (z.,¢) tal que
f(ze,6) =0 (2.5.12)

produz uma solugao periddica x(z., -, ) de (2.5.8).
A reciproca também é verdadeira, ou seja, para toda solugao T-periodica de (2.5.8), se
denotarmos por z. seu valor em ¢ = 0, entdo (2.5.12) ficara satisfeita. Consequentemente,

o problema de encontrar uma solu¢io T-periddica de (2.5.8) pode ser substituido pelo

problema de encontrar zeros da fungdo f(-,€) dada por (2.5.10).

Para aplicarmos o Lema 2.5.6 precisamos da férmula de Mac-Laurin de f. Quando

f:D x (—¢e4,e5) — R" for continua e de classe C* em ¢, escrevemos

f(z,e) = g(z,e) +"r(z, ), (2.5.13)
com g dada por
B of L LORf
g(z,€) = f(2,0) + € (2,0)+---+¢ 1ok (2,0). (2.5.14)

Exceto em ¢ = 0, a fungao r estd bem definida e é continua. Se provarmos que r é
limitada em algum conjunto da forma K X [—&g,&0|, com K um subconjunto compacto

de D, entao teremos r continua em D X (—&y,er). A continuidade de r é necessaria no
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Lema 2.5.6 e, nesse caso, de agora em diante, ao invés de escrevermos a formula (2.5.13)
com a fungao r dada explicitamente, usaremos o simbolo de Landau e escreveremos em
K x [—80,60]

f(z,€) = g(z, )+ 10O(1).
Por exemplo, se % for Lipschitz em K X [—&g, £¢], entao r serd limitada nesse conjunto.
Provemos, agora, o Teorema 2.5.1.

Demonstracao do Teorema 2.5.1: Para todo z € G, existe 5 > 0 tal que, quando
e € [—¢0,&0), a solucdo x(z,-,€) esta definida em [0, 7], ou seja, a relagdo (2.5.9) é va-
lida. Entao, pelo Teorema 2.1.4, existe t, tal que t, > h,, com h, = inf (T, %),
M(e) > |efY(x,t) + 2 fRl(x,t,¢)|, para todo t € [0,T)], para cada z com |z — z| < b e
para todo z € G. Quando |¢| for suficientemente pequeno, M (&) pode ser arbitrariamente

grande, de forma que h, = T para todo z € G.

Para todo t € [0,T], z € G e € € [—&¢, &) a seguinte relagio esta satisfeita

x(z,t,e) = Z+8/0 fl(x(z,s,e),s)ds+62/0 f(x(z,5,¢), 5,¢)ds, (2.5.15)

e a funcdo f dada por (2.5.10) torna-se para o nosso sistema

T T
f(z,¢) za%/o fl(m(z,s,g),s)ds—i-aQ%/O fA(x(z,5,¢), 5,¢)ds.

Provemos agora que

f(z,e) = ef'(2) + £20(1) em G x [y, €0], (2.5.16)

com f! dada por (2.5.2). Notemos que existe K um subconjunto compacto de D tal que

x(2,t,e) € K paratodot € [0,T], 2 € G e ¢ € [, €]

Pela continuidade de f em K x [0,7] x [—¢o, o], existe Mg > 0 tal que
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ou seja,

T T
/ fA((z,5,2),5,6)ds < / Myds = MgT = O(1).
0 0

Por outro lado,

5/0 fH(z(z,8,€),5)ds 5/0 [ (z(z,8,€),8) — fH(z,8) + fH(z,8)]ds =

8/0 [fl(x(z,s,a),s)—fl(z,s)]ds—l—e/o f(z,s)ds.

Entao,
f(z,e) —eft(z) = 5/0 [f1(z(z,8,€),5) — f1(z,8)]ds +2O(1). (2.5.17)

Como f! é Lipschitz com respeito a x em [0,7] x K e usando a férmula (2.5.15),

obtemos a seguinte relacao
‘f1<l'(2,8,€),8) - fl('z?S)' < LK‘.T(Z,S,S) - Z’ <ebLg = 80(1>

Portanto, (2.5.16) ¢é satisfeita. Usando o Corolario 2.5.11, obtemos que o item (i)
deste teorema assegura a existéncia de z. tal que f(z.,e) =0 e 2. — a, quando € — 0.
Entao, ¢(-, &) = x(z., -,€) € uma solu¢ao periodica de (2.5.1) e ¢(-, &) = a, quando £ — 0
(isso ¢ valido pela propriedade de continuidade das solugdes de (2.5.1) com relagao ao

parametro e a condigao inicial). n

Exemplo 2.5.13. [39] Neste exemplo aplicamos o teorema do averaging de primeira
ordem a fim de estimar o nimero maximo de ciclos que podem bifurcar do centro linear

perturbado segundo a equagao de Liénard:

T =y,

(2.5.18)
y = —x—e(f(x)y+g(x)),

onde f e g sao polinémios na variavel x com graus 7 e 4, respectivamente. O primeiro

passo, neste caso, é colocar o sistema (2.5.18) na forma padrao. Para isto, escolhemos as
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coordenadas polares (r,6), onde x = rcosf e y = rsenf, r > 0. Se escrevermos
7 4
flz) = Z ax’ e g(x)= Z b’
i=0 i=0
entdo o sistema (2.5.18) escreve-se na forma

7 4
r = —c ( E a;r " cost fsen? O + E b;r* cos' 0 sen 9) ,
i=0

=0

7 4
. I ) . . ,
g = —1—-= E a;r ™ cos™™ fsen d + E bricost™1 o | .
r (i:O

(2.5.19)
i=0
Tomando 6 como a nova variavel independente, reescrevemos o sistema (2.5.19) como
dr ! !
5= € (; a;7" cos' fsen? 0 + ; b;r' cos' @ sen 9) + O(?).
A correspondente funcao f!, dada por (2.2.3), tem a forma
B 1 2w 7 4
fiir) = p /0 (; a;r"! cos’ fsen? O + ; bir' cos’ § sen 9) do.

Percebendo algumas regularidades nas parcelas de f!(r), consideremos as seguintes

expressoes:

2
/ cos? ™ fsen?0dh =0, k=0,1,...,
0
2
/ cos?F @sen?0df = o, #0, k=0,1,...,
0

2
/ cos*fsenfdd =0, k=0,1,....
0

Dessa forma, obtemos

= )

2.5.2
2 8 16 128 (25.20)

Observemos que f'(0) = 0 e que f!(r) é uma fungdo fmpar. Logo, se ry for raiz de

f1, entdao —ry também serd. Portanto, o polinomio f!(r) possui no méaximo trés raizes
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positivas.

Pelo Teorema 2.5.1, a equagao (2.5.18) possui no maximo trés ciclos limites. ]

Os proximos resultados referem-se ao método do averaging de segunda e terceira ordens
via grau de Brouwer. Embora suas demonstracoes sejam semelhantes a prova do Teorema

2.5.1, estes resultados serdo somente enunciados. Sugerimos [9] para uma demonstragao

detalhada.

Teorema 2.5.14 (Averaging de segunda ordem via grau de Brouwer). Consideremos o

sequinte sistema diferencial
#(t) = ef (x,t) + 2 f*(x,1) + 2 P (x, 1, ), (2.5.21)

onde f1,f? : D xR — R e fBl 1 D x R x (—¢f,6;) — R" sdo funcdes continuas,

T-periodicas em t e D um subconjunto aberto de R™. Assumamos que

(i) f1(-,t) € CH(D), para todo t € R, f', f2, fB e D, f' sejam localmente Lipschitz com

respeito a x e B seja diferencidvel com respeito a €.
Definimos f', f>: D — R" por
Pe=g [ Fe
(2.5.22)
(= [ (z,8) /f (z,t)dt + f*(z, s)
0
e assumamos ainda que

(i1) para G C D um subconjunto aberto e limitado e para cada € € (—ey,e5)\ {0}, exista
a. € G tal que f'(a.) +ef*(a.) =0 e dg(f' +ef? G,0) #£0.

Entao, para || > 0 suficientemente pequeno, existe uma solugao T-periodica p(-,€) do

sistema (2.5.21).

Exemplo 2.5.15. Neste exemplo queremos aplicar a conclusao do Teorema 2.5.14 na
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equagao de Van der Pol modificada, dada por

T =y,

- o (2.5.23)
y = —x+ex®+e*(l—a%)y.

Como no Exemplo 2.4.4, utilizamos a transformacao amplitude-fase e o sistema (2.5.23)

é reescrito na forma

r = erfcos(t — ¢)sen’(t — @) + £%r cos?(t — @)[1 — r¥sen?(t — ¢)],
¢ = ersen’(t —¢) +e%sen(t — ¢) cos(t — ¢)[1 — r2sen?(t — ¢)].

Considerando a equacdo acima escrita na forma (7, ¢) = ef(r, ¢,t) + e2f2(r, ¢, t), as

funcoes f! e f2, descritas no Teorema 2.5.14, sdo expressas por
0 B 1
fir) = e fPr)=| *

Dado G um subconjunto aberto e limitado de R e € # 0, existe rg = 0 € G tal que

f(ro) +ef*(ro) = 0. Além disso, a transformagao

D(F + PO [ hal = | 2 ) [y b | =egh

S W=

preserva a orientacao das solucdes e, assim, dp(f! +¢f%,G,0) =1 # 0.
Portanto, pelo Teorema 2.5.14, para |¢| > 0 suficientemente pequeno, existe uma

solugao 2m-periddica de (2.5.23). n

Observacao 2.5.16. Nos Exemplos 2.4.4 e 2.5.15, nos quais estudamos a equacao de Van
der Pol modificada, obtemos a mesma conclusao: existe uma tinica 6rbita periddica que
se bifurca do anel periodico da equacao nao perturbada. Foram aplicadas as duas aborda-
gens do método do averaging de segunda ordem estudadas nesta dissertacao: de carater
analitico no Exemplo 2.4.4 e via grau de Brouwer no Exemplo 2.5.15. Concatenando
os resultados de ambos os exemplos, podemos concluir que o problema de perturbagao

(2.5.23), para ¢ > 0 suficientemente pequeno, possui uma solu¢ao 2m-periddica cuja ex-
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pressao algébrica é dada por

2(t) = 2cos (t _ ge%) +0().

Exemplo 2.5.17. [39] Fazemos novamente referéncia a equagao de Liénard dada por

T =y,
2 2.5.24
y = —x—Zs’“ (fi(x)y + gh(x)), | )

onde os polinémios fﬁf e gfjl tém graus n e m, respectivamente, com n,m > 1. O objetivo
deste exemplo é destacar os passos que Mereu realizou em [39] ao aplicar o Teorema 2.5.14

para obter o ntimero méaximo de ciclos limites do sistema (2.5.24).

Se definirmos

Zax Az chx a'( be e g*( id ',
1=0

entdo o sistema (2.5.24), em coordenadas polares (r, ), r > 0, escreve-se como

n m
F=—¢ ( E a;r" " cost @ sen? 0 + E b;r* cos” @ sen 9) —
i—0

=0

n m
— g2 ( E e cost fsen? O + g d;r* cos' 8 sen 0) ,
i=0

=0

. € " ) : U . .
0=—1—- E a;r ™ cos™ fsend + E biricost o | —
" (i:O

1=0

2 n m
€ . . . .
- — ( E e cos™ Osen 6 + g d;rt cost! 9) )
r

i=0 =0

(2.5.25)

Tomando € como a nova variavel independente, o sistema (2.5.25) é escrito como

dr

de-&f (r,0) +2f2(r,0) + O(%),
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onde

f(r,0) = Z a;r"™ cos' @ sen? 6 + Z bir* cos' O sen

=0 i=0

f2(r,0) = (Z c;r ™ cost fsen’ O + Z d;r* cos® O sen 9> —
i=0

=0

n m 2
—rsenf cos 6 (Z a;rt cos® 0 sen 6 + Z b1 cos’ 9) )
i=0 i=0
O préximo passo é calcular as expressoes das funcdes f' e f? definidas em (2.5.22).

Obtemos, entao, as seguintes formulas

onde f027r cos?® @sen?0df = a5 # 0,0 =0,1,..., ¢

JAr) =r (Ploa1bo + (pr2a1by + p3oasbo)r? 4 (praaiby + pazasby + psoasbo)r + - - -

N pwazb(;reﬂs*l + AOCO + AQCQT’z +---+ ABCBT"B) 5

onde

¢ ¢ o maior nimero impar menor ou igual a n;
£ é o maior nimero par menor ou igual a n;
~ L, 9 .
a;; sao constantes que aparecem nos cdlculos de fo cos® @ sen? ¢dao;

fozﬂ cos? Osen?0df = Ay; A0,i=0,1,...;

fo% cos? fsen O sen((2k + 1)0)df = B+ £0,4,k=0,1,.. ;
pij = Qi +2Ai4541,%,7=0,1,.. ;e
a= _%Aiﬂ‘ﬂ +J (0412'3} + agBf - + Oz#iB;H), i,7=0,1,....

O polinémio f! tem até [g} (parte inteira de %) raizes positivas e sera identicamente

nulo se, e somente se, a; = 0 para todo i par. Para encontrar as raizes positivas de f? de-
46-1 b

2 227

vemos encontrar os zeros de um polinémio na variavel r? de grau igual ao max {

Sabendo que% = [g] e MT_l = [%]%—[%], segue que f2 tem até max { [”T_l} + [%] ; [g}}
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raizes positivas. Além disso, podemos escolher os coeficientes a;, b; e ¢s de tal modo que

f? tenha exatamente max { [%1} + [%] , [%}} raizes positivas.

Todos os detalhes desta demonstracao podem ser encontrados em [39], pp. 24-27. =

Observacao 2.5.18. O Teorema 2.5.14 tem hipéteses mais fracas quando comparadas
ao resultado analogo apresentado em [33| (Corolario 6) por Llibre, ou em [22] (Teorema
2.2) por Hartono e van der Burgh, onde D é um dominio limitado de R™ e ao invés de (i)

¢é assumido que
(5) fY f% fBL Duft, D2f', D,f? D,fB! sio definidas, continuas e limitadas em
D x [0,00) x (—¢f,€¢),
e ao invés de (1) assume-se que
() f'(z) =0, para todo z € D, e para a € D com f?(a) = 0, temos Jj(a) # 0.
Embora seja vélido para sistemas de dimensao arbitraria, enunciaremos o resultado

do averaging de terceira ordem para n = 1 a fim de evitar a escrita de féormulas muito

complicadas.

Teorema 2.5.19 (Averaging de terceira ordem via grau de Brouwer). Consideremos o

sequinte sistema diferencial
#(t) = ef ' (x,t) + 22 (w,t) + 2 (w,t) + & fH(w, 1, ), (2.5.26)

onde f' 2,2 : DxR = Re f4 : D xR x (—ef,e5) — R sao fungdes continuas,
T-periodicas em t, e D um intervalo aberto de R. Assumamos que

(i) f'(t) € C}(D), f*(.t) € CY(D) para todo t € R, f', f* f% . D;f', D, f?

sejam localmente Lipschitz com respeito a x e f¥ seja duas vezes diferencidvel com

respeito a €.

Definimos f*, f?: D — R por (2.5.22) e f>: D — R por

_ T 82 1 0 1
P =1 [ |55 e + 5O et
of?

+ g(z,s)yl(z,s) + f3(2,5)|ds,
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onde

yi(z,s) = /03 iz t)dt e ip(z,s) = /OS {%—J:(z,t) /Ot fH(z,r)dr + f2(z,t)| dt.

Além disso, assumamos que

(i7) para G C D um intervalo aberto e limitado e para cada € € (—cf,e4) \ {0}, exista

a. € G tal que ft(a.) +ef?(a.) +e2f3(a.) =0 e dp(ft +ef? + 22, G,0) #0.

Entao, para |e| > 0 suficientemente pequeno, eziste uma solugao T -periddica ¢(-,€) do

sistema (2.5.26).

Até este ponto da dissertacao estudamos e aplicamos o método das integrais abelianas
e o método do averaging, que sao utilizados no estudo das bifurcagoes de ciclos limites em
sistemas diferenciais polinomiais de grau n. Ambos os métodos sao aplicéveis para o caso
de dimensao dois, mas apenas o averaging pode ser utilizado para dimensoes maiores. Em
[39], pp. 45-62, Mereu aplica o método do averaging de primeira ordem para investigar o
nimero de ciclos limites que surgem das érbitas periédicas de um centro em R* apés uma
perturbagao de uma classe de sistemas diferenciais polinomiais.

Observamos que o método das integrais abelianas é utilizado para um estudo local, ja
que é necessério considerar uma vizinhancga do ponto singular do tipo centro que contenha
o anel periodico ao redor da singularidade para que a técnica seja aplicada. Por outro
lado, Sanders, Verhulst e Murdock [41] afirmam que a teoria do averaging ¢ utilizada nao
somente para construir solugoes perioddicas e estimar seu erro, mas também para provar
a existéncia de orbitas periddicas e determinar sua estabilidade. Além disso, o averaging
possibilita estudar propriedades qualitativas mais gerais [33]. Enquanto que usando as
integrais abelianas estudamos quais 6rbitas do sistema nao perturbado se tornam ciclos
limites do sistema perturbado, através do averaging temos conhecida a configuragao global
dos ciclos limites obtidos apos bifurcacao; a cada zero da funcao promediada temos uma
orbita periddica do sistema perturbado e sabemos sua distribui¢cao no plano.

Na proxima secao apresentamos, dentre outros, um resultado de equivaléncia entre
os métodos das integrais abelianas e do averaging topoldgico para sistemas polinomiais

integraveis no plano.
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2.5.4 Awveraging versus integrais abelianas em sistemas integraveis

Seguindo as ideias de Buica e Llibre [9], nesta se¢ao estudamos a relagdo entre o
método do averaging com a fungao sucessao para sistemas autonomos e integraveis no
plano.

Mais especificamente, consideremos o sistema planar

(2.5.27)

onde P, : R? — R sao funcoes continuas.

Consideremos o sistema (2.5.27) sob a seguinte hipotese:

(hip) O sistema (2.5.27) possui um anel periédico em torno do ponto singular (0,0) dado
por

Y= {(z,y) € R* H(z,y) =h, he <h < hg}.

A fungao H é a integral primeira de (2.5.27), h. é o nivel do ponto critico de H
correspondendo ao centro (0,0) e hy denota o valor de H para o qual o anel periddico
termina. Sem perda de generalidade, podemos assumir que hs > h. > 0. Denotamos por
M = M(x,y) o fator de integragao do sistema (2.5.27) correspondente & integral primeira

H.

Consideremos, agora, perturbagoes de (2.5.27) da forma

(2.5.28)

onde p, ¢ : R?> — R sao funcoes continuas.

Buica e Llibre propuseram uma maneira de aplicar o método do averaging para estudar
ciclos limites de (2.5.28), para ¢ suficientemente pequeno, que bifurcam em ¢ = 0 de
trajetorias do anel periodico de (2.5.27).

O primeiro objetivo é escrever o sistema (2.5.28) na forma padrao para aplicarmos o

método do averaging, ou seja, na forma (2.5.1). O sistema diferencial nessa forma padrao
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descrevera a dependéncia entre a raiz quadrada da energia, R = v/h, e o angulo p das
coordenadas polares. O campo de vetores dessa equagao nas coordenadas (R, ) sera

2m-periodico e suas solugdes 2m-periodicas serao trajetorias periodicas de (2.5.28).

Teorema 2.5.20. Assumamos que (hip) seja vdlida para o sistema (2.5.27) e que

rQ(z,y) —yP(z,y) # 0, para todo (x,y) € V. (2.5.29)
Seja p i (Vhe, Vhs) % [0,27) = [0,00) uma fung¢io continua tal que
H(p(R, @) cos ¢, p(R, ¢) sen @) = R, (2.5.30)

para todo R € (Vhe,Vhs) e todo ¢ € [0,27). Entdo, a equagio diferencial que descreve
a dependéncia entre a raiz quadrada da energia, R = Vh, e o angulo ¢ para o sistema
(2.5.28) ¢ dada por

AR _ M(a? +y*)(Qp — Pq)

ot _ , 2.5.31
dp €2R(Qx — Py) + 2Re(qx — py) ( )

onde x = p(R,p)cosp ey = p(R,p)senp.

Tomemos ¢ > 0 suficientemente pequeno e D = Uhc*<h<h8* Vi, onde he < hex < hge <
< hg sao fivados arbitrariamente proximos de h. e hg, respectivamente. O campo de
vetores da equagao (2.5.31) é bem definido e continuo em D X (—ey,e¢) e € 2m-periddico

com respeito a .

Demonstracao: Consideremos as seguintes relagoes:

0H OH OH OH
6_17P+6_y —O,a—y——MPe%—MQ,

que sao validas no anel periodico, j& que H é uma integral primeira e M é um fator

integrante de (2.5.27). Definimos a fungao
G(r,R, ) = H(rcos p,rsen ) — R?,

em cada ponto (r,¢) do anel periddico (que é um conjunto aberto) e para cada
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€ (Vhe, Vhs). Aqui, (1, ) denota as coordenadas polares. Assim, temos

oG (9H OH M(z,y)

or oz © <,p+a—yseng0—

(Q(z,y)x — P(z,9)y),

onde z = rcosp e y = rsenp. Para cada (rg, o) no anel periodico, existe um Ry tal
que G(rg, Ro, ¢o) = 0. A hipotese (2.5.29) assegura que (7’0, Ry, o) # 0. Pelo Teorema
da Fungao Implicita, em torno de todo ponto (R, ¢p), existe uma tnica fungdo continua
p = p(R,p) tal que (2.5.30) seja verdadeira. Consequentemente, essa funcao p = p(R, p)
é bem definida em todo dominio (v/he, vhs) X [0,27) e satisfaz (2.5.30).

A dependéncia entre a raiz quadrada da energia e o tempo é dada por
R(t) = \/H(x(t),y(t)), e entre o angulo ¢ e o tempo é (t) = arctan ygt;, quando

(x(t),y(t)) € v, t € R. Logo, obtemos

1 1 d | [oH. o]
- S 0 = g |+ 5] -
%[MQ(PJrep) — MP(Q +¢2q)] = EM(Q];—R—PC])
S Sy 710 W |k 7
v = 1+ (%)th (x(t)) x2+y2 { 2 1
- #[(Q—Faq)x— (P +ep)y] = (Qx_ngiZ(qm—py)

Eliminando o tempo das duas equagdes acima, obtemos a equagao (2.5.31).
A condigao (2.5.29) implica que o campo vetorial (2.5.31) esteja bem definido em
D x (—ey,e¢), para 5 suficientemente pequeno. Além disso, o campo é continuo e

2m-periddico em . [

Um resultado importante é o que se segue, o qual afirma que a aplicagao do método
do averaging para sistemas planares nas condi¢oes desta se¢ao é equivalente ao estudo da
funcao sucessao. Em particular, o método do averaging de primeira ordem é equivalente
ao estudo da fungao de Melnikov (integral abeliana) de primeira ordem. Buica e Llibre

[9] dao referéncias para mais detalhes nesta diregao.
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Teorema 2.5.21. A funcdo f: (Vhe, Vhe) x (—¢5,65) = R descrita por (2.5.10) para
a equagao (2.5.31) € dada por

. 1 M@ +y%)(Qp— Pg)
f(Re) =eq /0 SR(Qx — Py) + 2Re(gz —py) " (2:5.32)

e a funcio f': (Vhe,V/he) — R descrita por (2.5.2) para a equagdo (2.5.30) € dada por

. 1 (%" M(2? +y*)(Qp — Pq)

fH(R) = o |, 2R(Or — Py) ©, (2.5.33)

onde M = M(z,y) € o fator de integragao do sistema (2.5.27) correspondente & integral
primeira H, e x = p(R, ) cosp ey = p(R, ) sen p.
Além disso, a fungao (2.5.32) € a funcao sucessao e (2.5.33) € a correspondente fungao

de Melnikov (integral abeliana) de primeira ordem do sistema (2.5.28).

Demonstragao: Escrevendo (2.5.31) utilizando a féormula de Mac-Laurin de f com res-

peito a e, obtemos
dR

o 2 ¢[2]
e ef (R, @) + e [7(R, ¢,¢),

M (22442 —P .
onde fY(R,p) = (21;(%:2(_%%) 9 ¢ 121 & o resto de Lagrange.

As equagoes (2.5.32) e (2.5.33) s@o imediatas. Resta-nos mostrar que o numero de
zeros da integral abeliana de primeira ordem e da funcao promediada de primeira ordem

Sa0 0S mesmos.

Seguindo a notagao de [38], consideremos o sistema original na forma padrao
i =cfl(x,t) + 2P (x,t, ), 2(0) = o, (2.5.34)

onde as funcoes f! e f@ sdo analiticas e T-periodicas em ¢. Essa transformacio ¢ feita
usando coordenadas polares, ou escrevendo o sistema como a equagao (2.5.31) que descreve
a dependéncia entre o angulo e a raiz quadrada da energia. Denotemos por z(t, ) a solugao

de (2.5.34), e expandindo essa solugao em série de poténcias em &, obtemos

z(t,e) = xg + e (t) + 2aa(t) + - - -
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A condigao inicial z(0) = zo implica que z;(0) = 0, ¢ > 1. Notemos que
z(T,e) — xg

é o primeiro termo em ¢ da fungao sucessao e z;(T") é a integral abeliana de ordem i > 1.

Substituimos a solugao x(t,e) em (2.5.34) e obtemos
ety + O(e?) = ef(zo,t) + O(e?).

Até os termos de O(e?), temos &1 = f'(z¢,t), da qual obtemos a relagao

/OT i1 (s)ds = /OT (0, 5)ds.

Sabendo que x1(0) = 0, segue-se que
T —_
x1(T) :/ fH(zo,8)ds =: f(xp).
0

Desta equagao, segue que o nimero de zeros da funcao promediada de primeira ordem
f(zo) corresponde ao ntimero de zeros da fungao sucessio e, consequentemente, com o
nimero de zeros da primeira funcao de Melnikov, que corresponde com a integral abeliana

do sistema perturbado no anel peridédico em torno da origem. [
Exemplo 2.5.22. [18] Consideremos a equacao de Van der Pol dada por

i =y
Y (2.5.35)

y = —x+e(l—za?y.

Nosso objetivo neste exemplo é obter os mesmos resultados descritos nos Exemplos 1.4.10

e 2.3.5 utilizando o método apresentado na Secao 2.5.4. Para isso, identificamos:
P(z,y) =y, Q(z,y) = —=, p(z,y) =0 e g(z,y) = (1 - 2°)y.

Desta forma, a fun¢ao hamiltoniana relacionada & equagao nao perturbada é expressa
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por
[L’Q y2

H - 4L

(z,y) 5+t 5

e seu fator de integragao é constante e igual a M (x,y) = 1. O anel periddico em torno da

origem ¢é dado por
v = {(z,y) € R*, H(x,y)=h, hc (0,00)}.
Observemos que
rQ(x,y) —yP(z,y) = —2® —y* # 0, para todo (z,y) € .
Resolvendo a equagio H(pcos @, psen p) = R? na varidvel p, obtemos
p=p(R, @) = V2R,

com R>0e ¢ € [0,2m).

Logo, pelo Teorema 2.5.20, a equagao (2.5.31) correspondente é escrita como

dR
= eR(1 — 2R? cos® p) sen® p + e Rcos (1 — 2R? cos® ) sen® ¢ + O(e?).
¥
Chamando

fY(R,) = R(1 —2R*cos® p)sen® g e f*(R,p) = Rcosp(l — 2R* cos® p)?sen® ¢,
e aplicando o método do averaging & equacao anterior, a funcao promediada tem sua
- 1 R3
1
R)==-|R——

cujos zeros sao —v/2, 0 e v/2. Como Ry = 0 indica a origem do sistema, consideremos

Ry = V/2, que ¢ a tnica raiz positiva de f'. Como Df'(R) = 1 (1 —3R?) # 0, segue

expressao dada por

do Teorema da Funcdo Implicita, existe uma vizinhanca V de Ry = v/2 em R tal que

fHR) # 0, para todo R € V' \ {/2}. Além disso, Df'(v/2).h = —h, h € R, reverte a
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orientacdo das solucdes. Dessa forma, dp(f*,V,0) = —1 # 0.
Portanto, pelo Teorema 2.5.1, para |¢| > 0 suficientemente pequeno, existe uma solugao

2m-periodica do sistema (2.5.35) que tende a circunferéncia de raio V2 quando e — 0. =
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Capitulo

3

Consideracoes finais

Esta dissertacao foi motivada pelo conhecido XVI problema de Hilbert. Este proble-
ma, proposto em 1900, que questiona sobre o nimero maximo e a posigao de ciclos limites
em sistemas diferenciais polinomiais no plano, vem intrigando e desafiando a comunidade
cientifica, principalmente os matematicos. Com o passar do tempo, varias outras versoes
do problema foram enunciadas e, em 1977, Arnol’d propés o que ficou conhecida como a
versao fraca do XVI problema de Hilbert. O objetivo principal do problema de Arnol’d é
de investigar o nimero maximo de ciclos limites que bifurcam de centros em sistemas dife-
renciais polinomiais no plano. Nesta dissertacao o objetivo foi destacar a importancia do
problema proposto e enfatizar a utilizacao de dois métodos que nos permitissem estimar
o nimero maximo de zeros de ciclos limites em tais sistemas.

Para cumprir o objetivo desta dissertagao estudamos e analisamos varios livros e arti-
gos de pesquisadores da area que foram citados ao longo do texto e encontram-se descritos
nas referéncias bibliograficas deste trabalho. Vale ressaltar que foram realizadas algumas
visitas de campo com o intuito de nos reunirmos com profissionais mais experientes,
como Claudio A. Buzzi (IBILCE/Unesp) e Joan C. Artés (UAB/Barcelona), que visitou
o ICMC/USP durante o més de julho de 2010. Além disso, participamos de congressos e
workshops onde pudemos divulgar nossa pesquisa e, ao mesmo tempo, entrar em contato
com outros pesquisadores de areas afins.

O método das integrais abelianas, exposto no Capitulo 1, foi basicamente estudado
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a partir da referéncia [13|, uma publicagdo do Centro de Pesquisas Matemaéticas de
Barcelona, e o contetido foi complementado pelas referéncias citadas no mesmo. Fize-
mos uma abordagem do método das equagoes de Picard-Fuchs, utilizado para estimar do
nimero de zeros da razao de duas integrais abelianas.

Ainda sobre o método das integrais abelianas, selecionamos um sistema diferencial
polinomial, denominado Ps3, que tem uma singularidade do tipo centro. Seguindo as
mesmas ideias descritas em [47] (onde os sistemas estudados sao mais genéricos do que
0 Pa3), fizemos uma tentativa de estimar o nimero maximo de ciclos limites para esse
sistema. Contudo, nao obtivemos resultados satisfatérios para o nosso objetivo. O que
destacamos desse estudo foi a possibilidade de aproximacao e interagao com Artés, que
nos ensinou técnicas de manuseio com os softwares Maple e Mathematica.

No Capitulo 2 descrevemos o método do averaging. Analisamos duas abordagens do
método: uma de carater analitico e outra, topologico. Para o primeiro caso, seguimos as
ideias contidas em [41, 40] e referéncias ali citadas. Destacamos, também, a importéancia
de uma equacao diferencial estar na forma padrao para que o método do averaging seja
aplicado e propomos algumas técnicas para que tal forma seja obtida. Em relacao ao
averaging topologico, em [9] faz-se uma abordagem do método via grau de Brouwer.
Para sua compreensao, foi feita uma descricao da teoria do grau elaborada por Brouwer
em 1912 e, em seguida, um estudo da técnica apresentada em [9]. Na tltima se¢ao do
capitulo expomos a relagao existente entre o método das integrais abelianas com o método
do averaging para sistemas diferenciais integréaveis.

Cabe ressaltar que pretendemos avancar com o estudo do sistema P,3. Recentemente,
deparamo-nos com o artigo [31] onde Li e Llibre estudam um sistema semelhante ao Py3
pelo método envolvendo a equacao de Picard-Fuchs. Nossa intengao é seguir os mesmos
passos e buscar uma estimativa para o nimero de ciclos limites do sistema FP»3 com uma
pertubagao polinomial quadréatica. Dessa forma, estaremos contribuindo com o estudo de

um sistema particular dentro do XVI problema de Hilbert.
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