

 SISTEMA DE
RECONEIXEMENT DE

VEU PER A DOMÒTICA

 Memòria del projecte

d'Enginyeria Tècnica en
Informàtica de Sistemes

realitzat per
Marta Bocos Hernández

i dirigit per
Javier Serrano Garcia

Escola Universitària d'Informàtica
Sabadell, setembre de 2009

El/la sotasignant, Javier Serrano Garcia,
professor/a de l'Escola Universitària d'Informàtica de la UAB,

CERTIFICA:

Que el treball al que correspon la present memòria
ha estat realitzat sota la seva direcció
per en Marta Bocos Hernández.

I per a que consti firma la present.
Sabadell, setembre de 2009.

.......................................
Signat: Javier Serrano Garcia.

RESUMEN

 En este proyecto se discute y se prueba la viabilidad de un sistema reconocedor

de voz, así como la integración de éste en una aplicación gráfica que simula una

vivienda domótica. Se hace uso de tecnologías de reconocimiento del habla para llevar a

cabo la primera parte del proyecto, aplicándolo al reconocimiento de un conjunto de

frases relacionadas con las tareas que se realizan habitualmente en hogar. En cambio,

para la creación de la interfaz gráfica se utilizan tecnologías gráficas tridimensionales

para dar más realismo al simulador. A lo largo del presente proyecto se estudia el

funcionamiento de una herramienta de código abierto de reconocimiento del habla

llamada HTK, la cual permite generar los modelos acústicos que empleará el

reconocedor. También se presentan otras herramientas utilizadas durante la creación de

la aplicación creada, tales como Julius que permite la integración del reconocedor de

voz obtenido con HTK en una aplicación.

Índice

Capítulo 1: Introducción... 5

1. Presentación. .. 5

2. Motivación. .. 5

3. Objetivos. ... 6

4. Estudio de viabilidad.. 7

4.1 Introducción. ... 7

4.2 Estado del arte. .. 7

4.3 Objetivos. .. 7

4.4 Sistema a realizar. ... 8

4.5 Planificación.. 10

5. Estructura de la memoria. .. 10

Capítulo 2: Reconocimineto automático del habla... 12

1. Reconocimiento del habla.. 12

2. Planteamiento del problema... 14

3. Elementos básicos de un reconocedor. .. 16

3.1 Modelos acústicos. .. 16

3.2 Modelos ocultos de Markov. ... 17

3.3 Modelo de lenguaje o gramática. .. 25

3.4 Diccionario de pronunciación. .. 25

4. Herramienta empleada. .. 25

Capítulo 3: La domótica ... 26

1. Introducción. .. 26

2. Beneficios de la domótica. ... 27

3. Aplicaciones... 28

1

4. La interfaz de voz... 30

5. Especificaciones de un sistema real. .. 30

Capítulo 4: Análisis de especificaciones .. 32

1. Especificaciones del proyecto.. 32

1.1 Requerimientos funcionales para el reconocedor de voz. 32

 1.2 Especificaciones para el simulador de domótica…………………………..33

1.3 Requerimientos no funcionales. .. 34

Capítulo 5: Diseño.. 36

1. Estructura de la aplicación completa ... 37

1.1 Ficheros adicionales. ... 39

1.2 Librerías. ... 40

2. Creación, entrenamiento y prueba de los modelos acústicos............................... 42

2.1 Preparación de los datos. ... 42

2.2 Creación de los modelos de monophones. .. 44

2.3 Creación de los modelos de triphones con estados ligados......................... 48

2.4 Adaptación de los modelos. .. 50

2.5 Evaluación del reconocedor. ... 52

3. Desarrollo de la aplicación... 53

3.1 Adaptación de los modelos acústicos para su uso con Julius...................... 53

3.2 Creación de la aplicación de reconocimiento de voz con Julius. 54

3.3 Creación de la interfaz gráfica. ... 56

4. Conexiones entre hilos. .. 62

5. Control de errores. ... 62

6. Juego de pruebas. ... 64

2

Capítulo 6: Conclusiones.. 66

1. Conclusiones. ... 66

2. Posibles mejoras... 67

Bibliografía... 68

3

Índice de figuras

Figura 2.1: Esquema general de un sistema de reconocimiento de voz. 15

Figura 2.2: Extracción de características. ... 16

Figura 2.3: Mel- frequency cepstral coefficients. ... 17

Figura 2.4: Ejemplo de HMM... 19

Figura 5.1: Diagrama de la aplicación completa. ... 37

Figura 5.2: Diagrama de la aplicación reconocedor de voz.. 37

Figura 5.3: Diagrama de la aplicación gráfica, simulador de domótica. 38

Figura 5.4: Mapa de la vivienda visualizada en el simulador....................................... 57

4

Capítulo 1

INTRODUCCIÓN

1. Presentación.

Este proyecto esta orientado a desarrollar un reconocedor de voz aplicado a la

domótica con fin de que sea capaz de interpretar algunas órdenes sencillas y mostrarlas

en forma de animación gráfica en un simulador de domótica. Para ello se hará uso de

tecnologías de reconocimiento del habla de código abierto con el fin de automatizar

algunas de las tareas más habituales que se llevan a cabo en una vivienda. Además, se

presentan las posibilidades de estas tecnologías en el ámbito de las viviendas

inteligentes y se discute la viabilidad de un sistema de estas características.

2. Motivación.

Hoy más que nunca está a la orden del día tanto los sistemas domóticos como los

de reconocimiento del habla e incluso la combinación de ambos que hace más fácil y

cómodo el uso de los controles de la vivienda. De ahí surge la idea para llevar a cabo

este proyecto que propone una aproximación a un sistema reconocedor de voz orientado

a la domótica que además incorpora un simulador de domótica que recibe y ejecutas las

órdenes.

5

3. Objetivos.

Los objetivos de este proyecto son realizar un sistema de reconocimiento de voz

para domótica, de forma que éste sea capaz de distinguir diferentes frases relacionadas

con las tareas del hogar y también otras cotidianas que se llevan acabo en una vivienda.

Se dispone de un software que permite crear los modelos acústicos que una vez

entrenados son capaces de identificar los rasgos fonéticos y de entonación de cada

persona. Además, actualmente se ha empezado a desarrollar un sistema de

reconocimiento de voz que interpreta algunas frases mediante la identificación de

palabras completas. Con la realización de este proyecto también se pretende mejorar i

ampliar el sistema de reconocimiento de voz ya existente de forma que éste sea capaz de

realizar más acciones con un margen de error mucho menor que el actual mediante

identificación de fonemas y conjunto de algunos de ellos.

Debido a la complejidad y cantidad de recursos necesarios para implementar un

sistema de reconocimiento de voz en una vivienda, éste no se llevará acabo en un

sistema real. Sin embargo, para demostrar su funcionamiento y eficacia, se desarrollará

un simulador virtual. Dicho simulador tiene la interfaz gráfica de la planta de una casa

en la cual se visualizan en forma de animación todas las ordenes dadas por el usuario,

que previamente han sido analizadas y reconocidas como frases válidas por el sistema

de reconocimiento de voz. En caso de pronunciar una frase que no consta en la

gramática del sistema de reconocimiento de voz, también notificará de forma visual al

usuario de lo ocurrido. Finalmente, se desarrollará la comunicación entre los dos

procesos para conseguir una mayor independencia del reconocedor de voz, y así poder

reaprovecharlo para futuros proyectos.

6

4. Estudio de viabilidad.

4.1 Introducción.
El objetivo de este proyecto es diseñar y desarrollar una aplicación de

reconocimiento de voz para domótica. Con la implementación de este software se

pretende automatizar algunas de las tareas cotidianas más habituales en una casa.

 4.2 Estado del arte.

Hoy en día ya existen sistemas de reconocimiento del habla e incluso viviendas

domóticas con la posibilidad de incorporar estos sistemas [PRO2009 y ALH2009]. El

principal inconveniente es el elevado coste de implementación de un sistema completo

de este tipo e incluso en ciertos casos el reconocedor de voz es limitado en cuanto a la

eficacia y robustez ante la gran variedad de usuarios y acciones a realizar.

4.3 Objetivos.

Se dispone de un software de creación de modelos acústicos que una vez

entrenados son capaces de identificar los rasgos fonéticos y de entonación de cada

persona. Además, actualmente se ha empezado a desarrollar un sistema de

reconocimiento de voz que interprete algunas frases mediante la identificación de

palabras completas.

Los objetivos de este proyecto son mejorar i ampliar el sistema de

reconocimiento de voz ya existente, de forma que éste sea capaz de realizar más

acciones con un margen de error mucho menor que el actual. También debe

desarrollarse una aplicación gráfica que reciba las órdenes ya identificadas y muestre

una animación de la orden mencionada por el usuario, ya que se trata de simulador de

domótica, y no se va a implementar en un sistema real.

El abanico de usuarios finales de la aplicación es muy amplio, puede ser

utilizado por cualquier persona siempre y cuando sepa hablar español,

independientemente de la edad, condición social o conocimientos específicos. Sin

embargo, es limitado, ya que antes de poder utilizarlo, el usuario debe entrenar al

programa de reconocimiento de voz para que éste pueda funcionar correctamente. Si no

7

es así, el reconocedor puede fallar con mayor frecuencia al identificar correctamente las

acciones.

Para obtener toda la información necesaria para el desarrollo del nuevo sistema,

las fuentes a las que se recurrirán son:

- El programa de reconocimiento de voz HTK.

- Gramáticas y Lenguajes Independientes del Contexto.

- Software y API de desarrollo Julius.

- Librerías de desarrollo de aplicaciones.

- Manuales y librerías de animaciones y gráficos tridimensionales por ordenador.

4.4 Sistema a realizar.

Aplicación informática de reconocimiento de voz para domótica. El proyecto

consta de dos partes bien diferenciadas: el sistema de reconocimiento de voz y la

interfaz gráfica. La aplicación a desarrollar debe ser capaz de reconocer un amplio

repertorio de frases en español relacionadas con las tareas que se llevan acabo en una

vivienda y ejecutarlas en forma de animación en la pantalla.

Con el objetivo de mejorar el sistema de reconocimiento de voz hay que separar

en fonemas los modelos acústicos con los cuales va a trabajar y así reducir los posibles

errores a la hora de identificar las palabras. Por otro lado, para incrementar el repertorio

de frases que el sistema de voz puede identificar, sólo se tendrá que ampliar la

gramática que define el lenguaje independiente del contexto, la cual incluye todas las

frases a ser interpretadas, siempre teniendo en cuenta que si aparecen nuevos fonemas

también habrá que generar y entrenar su correspondiente modelo acústico. Sin embargo,

la interfaz gráfica y las animaciones deben desarrollarse por completo, además de la

unión de comunicación entre ambas partes del proyecto.

El sistema a realizar seguirá un modelo de desarrollo evolutivo, puesto que se

pueden desarrollar las dos partes del proyecto simultáneamente por separado y luego

crear el nexo de unión.

8

Riesgos asociados al proyecto:

· Problemas con el sistema de reconocimiento de voz, derivados del ruido

ambiental o introducido por el micrófono.

· Problemas con el sistema de reconocimiento de voz, debidos a los diferentes

dialectos del idioma o distintas entonaciones de la persona según su estado

de ánimo.

· No lograr un margen de error inferior al actual.

Recursos necesarios para el desarrollo de la aplicación:

· Un ordenador personal con sistema operativo Ubuntu o similar.

· Micrófono, periférico para el ordenador.

· Aplicación HTK.

· Software de programación gráfica.

· API de desarrollo Julius entre otras.

Análisis coste-beneficio:

· Estudio del estado actual. (30 horas)

· Grabación de las frases de muestra para creación y entrenamiento de los

modelos acústicos. (4 horas)

· Desarrollo y mejora de los modelos acústicos. (20 horas)

· Creación de la aplicación de reconocimiento de voz. (20 horas)

· Creación de la interfaz gráfica del simular de domótica. (100 horas)

· Creación de las animaciones. (8 horas)

· Desarrollo del nexo entre ambas partes. (2 horas)

· Pruebas de la aplicación completa. (5 horas)

· Documentación y memoria (60 horas)

TOTAL: 249 horas x 40€

 9960 €

Alternativas:

Si no es posible reducir el margen de error, una alternativa sería mantener el

margen actual y dedicar el proyecto ampliar el número de ordenes que éste es capaz de

interpretar y a la creación del simulador de domótica.

9

4.5 Planificación.

La creación de la memoria y toda la documentación correspondiente se va

desarrollando simultáneamente al proyecto en si, el cual se desglosa en tareas a

continuación.

a. Estudio del estado actual del sistema de reconocimiento de voz:

Recogida de información sobre sistemas de reconocimiento de voz,

lenguajes independientes del contexto y gramáticas. Estudio de la

aplicación para reconocimiento de voz, HTK (30 horas).

b. Grabar las muestras para la creación de los modelos acústicos para el

reconocedor de voz (4 horas).

c. Desarrollar y mejorar los modelos acústicos para el sistema de

reconocedor de voz y ampliar el lenguaje que éste debe distinguir para

que sea capaz de identificar las características fonéticas del usuario

(20 horas).

d. Realizar test de eficacia y comprobar que realmente se ha conseguido el

objetivo (20 horas).

e. Desarrollar la aplicación de reconocimiento de voz (50 horas).

f. Diseñar y desarrollar la interfaz gráfica e integrar las animaciones 3D.

(58 horas)

g. Desarrollo del nexo de comunicación entre ambas partes (2 horas).

h. Realizar las pruebas necesarias para comprobar el funcionamiento de

todo el sistema (5 horas).

i. Implementación del software.

5. Estructura de la memoria.

El capítulo que prosigue a la introducción está dedicado a los fundamentos del

reconocimiento del habla, donde se habla de los elementos básicos de un reconocedor

de voz y concretamente los empleados en este proyecto, ya que se trata de un tema muy

extenso y con varios métodos para abordarlo. Le sigue un tercer capítulo donde se

comenta de forma resumida que es la domótica, que beneficios aporta y el uso de

sistemas reconocedores de voz en el ámbito de los edificios inteligentes. El resto de la

10

memoria incluye un capítulo de análisis de especificaciones donde se exponen los

requerimientos funcionales y no funcionales del proyecto y los de un sistema real. El

capítulo de diseño cuenta el proceso seguido para llevar a cabo la creación de los

modelos acústicos y del simulador de domótica. Terminamos con el capítulo 6,

dedicado a las conclusiones obtenidas y a las posibles mejoras futuras que se podrían

aplicar al proyecto.

11

Capítulo 2

RECONOCIMIENTO AUTOMÁTICO DEL HABLA

1. Reconocimiento del habla.

El reconocimiento automático del habla (ASR, Automatic Speech Recogntion) es

el proceso por el cual un modelo de cómputo es capaz de traducir fielmente los sonidos

asociados a una unidad de discurso y codificarlos en alguna forma de secuencia

simbólica (habitualmente texto) que representa total o parcialmente la carga conceptual

del mensaje hablado.

Cualquier sistema de reconocimiento automático del habla parte de la hipótesis

de que la señal acústica contiene toda la información necesaria para reconocer el

discurso hablado.

El reconocimiento automático del lenguaje hablado no es una tarea trivial,

resulta extremadamente difícil de realizar a pesar del conocimiento que hay actualmente

de él. El objetivo de las tecnologías ASR es abordar el problema mediante sistemas que

relacionen una señal acústica con una cadena de palabras.

Hasta la fecha todos los sistemas imponen restricciones que permiten abordar

con éxito el reconocimiento del habla en un contexto lingüístico restringido, acorde con

la tecnología existente. Según [CAS87], a pesar de que los resultados con los sistemas

actuales en condiciones de gramática restringida y medio de laboratorio son buenos, las

prestaciones decaen fuertemente en condiciones reales. Hoy en día el trabajo se centra

principalmente en sistemas capaces de tener en cuenta modelos del lenguaje, integrando

entonación y lenguaje natural y capaces de funcionar con robustez frente a variaciones

en los hablantes y condiciones de comunicación adversas.

12

El reconocimiento del habla consiste básicamente en un proceso de clasificación

de patrones que podemos dividir en tres fases: adquisición de datos, preproceso de datos

y clasificación por decisión.

En la fase de adquisición de datos, los datos analógicos del espacio físico se

obtienen a través de algún dispositivo, en este caso un micrófono, y se convierten a un

formato digital apropiado para su tratamiento. En esta etapa, las variables físicas se

convierten a un conjunto de datos medibles. En el caso del reconocimiento del habla,

estos datos medibles son las amplitudes de un sonido a lo largo del tiempo. Estos datos

se utilizan como entrada de la fase de preproceso de datos. En esta segunda fase,

tratamos los datos de entrada para obtener un conjunto discreto de características

distintivas mediante un cambio de espacio (vectorial) de representación, con el que se

trata de obtener aquella representación que mejor caracterice los datos de entrada. La

tercera fase es el clasificador, formado por un conjunto de funciones de decisión que

nos permite clasificar el objeto introducido a partir del conjunto de características

distintivas. La clasificación consiste en asignar una de las clases preestablecidas al

conjunto de características evaluando el modelo acústico correspondiente. Cada clase se

representa del mejor modo posible mediante uno o varios modelos acústicos. En este

caso cada una de las clases es un fonema.

Sin embargo, se tiene la dificultad añadida de la variabilidad de la entrada,

debido a la gran variedad de hablantes (hombres, mujeres, etc.), entonación y timbre de

cada hablante, las variantes de vocabulario y forma de expresión (por la influencia

dialectal) y la posibilidad de que un mismo hablante utilice una entonación, vocabulario

o forma de expresión diferente según la ocasión y el estado de ánimo. Es posible

subsanar este problema disponiendo de un cuerpo de entrenamiento suficientemente

grande y añadiendo una fase de reentrenamiento del sistema.

Concretamente, un sistema de reconocimiento del habla queda determinado por

los siguientes parámetros:

- La elección de la unidad de reconocimiento. Delimitando la naturaleza de los

fragmentos de discurso a reconocer. Las unidades de reconocimiento pueden ser:

13

microfonemas, pseudofonemas, fonemas, difonemas, trifonemas, sílabas,

palabras o incluso frases completas.

- El tamaño del vocabulario. Cuanto mayor es el vocabulario, mayor deberá ser el

tiempo invertido en la búsqueda del candidato idóneo.

- Restricción de la tarea. Un sistema que responda al lenguaje natural o a un

conjunto restringido de frases y palabras.

- Los patrones de referencia son sensibles a las condiciones de adquisición donde

se introduce ruido auditivo (ruido de fondo), y ruido generado como

consecuencia de los medios de registro y transmisión.

Existen varias estrategias fundamentales para abordar el reconocimiento del

habla. Actualmente, la mayoría de los reconocedores en funcionamiento se basan en

técnicas estadísticas que requieren menos memoria física y tienen un mejor tiempo de

respuesta. Sin embargo, necesitan de una fase de entrenamiento que es mucho más lenta

y costosa pero que se realiza una sola vez, por lo que merece la pena realizarlo.

Para la realización de este proyecto se ha empleado el método probabilístico

basado en la utilización de modelos ocultos de Markov (HMM, Hidden Markov Model)

teniendo en cuenta que se busca un reconocedor dependiente del hablante, de habla

continua, con un pequeño vocabulario y en un entorno ruidoso. Los modelos ocultos de

Markov serán explicados detalladamente más adelante.

2. Planteamiento del problema.

 Matemáticamente, el objetivo del reconocimiento del habla puede ser formulado

de la siguiente manera [RAB93]: Dada una observación acústica nx,,x,x=X ...21 , hay

que encontrar la correspondiente secuencia de palabras mw,w2,w1,=W ...ˆ que maximice

la probabilidad a posteriori W)|P(X . Empleando el teorema de Bayes podemos

expresarlo como:

P(X)
W)P(W)|P(X=X)|P(W=W

WW
argmaxargmaxˆ

14

 Puesto que P(X) es la probabilidad a priori de la observación acústica X, éste es

un valor fijo y no influye en el cálculo. Por lo tanto podemos rescribir la ecuación

anterior de la siguiente manera:

W)P(W)|P(X=W
W

argmaxˆ

 La probabilidad P(W) es la probabilidad a priori de observar W

independientemente de la señal acústica observada y es conocido como modelo de

lenguaje. W)|P(X es la probabilidad de observar la señal acústica X dada una

secuencia de palabras específica W, y es determinada por el modelo acústico.

En el proceso de reconocimiento del habla, se postula una secuencia W de

palabras y se determinan sus probabilidades mediante el modelo de lenguaje. Cada

palabra se convierte entonces en una secuencia de fonemas usando un diccionario de

pronunciación, también conocido como léxico y, para cada fonema, hay un modelo

estadístico llamado modelo oculto de Markov (HMM, Hidden Markov Model). La

secuencia de HMMs necesaria para representar la pronunciación es concatenada

formando un único modelo compuesto y se calcula la probabilidad W)|P(X de

generación de este modelo de observación X. Este proceso se repite para toda la

secuencia de palabras y se selecciona la secuencia más probable. Ésta será la salida del

reconocedor.

Figura 2.1: Esquema general de un sistema de reconocimiento de voz.

15

3. Elementos básicos de un reconocedor.

3.1 Modelos acústicos.
Los modelos acústicos se pueden ver como filtros que contienen la variabilidad

acústica de una lengua. A partir de estos modelos y de una señal de entrada se obtiene la

hipótesis de lo que el hablante ha dicho.

Los modelos acústicos toman las propiedades acústicas de la señal de entrada,

obtienen un conjunto de vectores de características que después compararán con un

conjunto de patrones que representan los símbolos de un alfabeto fonético y devuelve

los símbolos que más se parecen. En esto se basa el proceso matemático probabilístico

llamado Modelo Oculto de Markov (HMM). Este tipo de modelo es el que utiliza la

herramienta de trabajo para este proyecto.

 El análisis acústico es el proceso de extracción de un vector de características de

la señal acústica de entrada con el fin de aplicar la teoría del reconocimiento de

patrones. Un vector de características es básicamente una representación paramétrica de

la señal acústica. Contiene la información más importante y almacenada de forma

compacta. La mayoría de los sistemas de reconocimiento del habla preprocesan la señal

para reducir el ruido y la correlación, y así extraer un buen conjunto de vectores de

características. En la figura 2.2 se ilustra el proceso de extracción del vector de

características:

Figura 2.2: Extracción de características.

16

Existen diferentes técnicas de filtrado, dos de las más frecuentes son: LPC

(Linear Predictive Coding) y MFCC (Mel Frequency Ceptral Coefficients). Para la

realización de este proyecto se ha empleado la técnica MFCC.

Mediante esta técnica se calculan una serie de coeficientes llamados MFCC’s

siguiendo una serie de pasos que comprenden la división de la señal en frames de un

determinado número de milisegundos, obtener el espectro de amplitud mediante la

transformada de Fourier, convertir al llamado espectro de Mel, calcular los logaritmos

del espectro y por último la aplicación de la transformada discreta del coseno. Es común

obtener también los vectores de características de Mel derivados para contener el

análisis diferencial de primer y segundo orden, además de la diferencia de coeficientes

estáticos; tal y como se ilustra en la figura 2.3.

Figura 2.3: Mel- frequency cepstral coefficients

3.2 Modelos ocultos de Markov.
Un HMM es un proceso estocástico donde el cambio de estado sólo depende del

estado actual. Consta de una máquina con un número finito de estados y un conjunto de

funciones aleatorias, cada una de las cuales está asociada a un estado. Asociado a cada

transición entre estados se produce un vector de observaciones o parámetros

(correspondiente a un punto del espacio n-dimensional).

17

En un instante de tiempo se asume que el proceso está en un estado determinado

y que genera una observación de un símbolo mediante la función de distribución de

probabilidad que depende únicamente del estado actual. Al instante siguiente, se cambia

de estado siguiendo una matriz de probabilidades de transición entre estados que

dependen del estado anterior, produciendo una nueva observación mediante la función

aleatoria correspondiente. Puede ser que el proceso permanezca en el estado anterior

una vez efectuada la transición. Las funciones de distribución de probabilidad se fijan

para cada estado. Tendremos, por consiguiente, tantas distribuciones de probabilidad de

observación que representan variables aleatorias o procesos estocásticos como estados

tenga el proceso. Una vez que la transición ha sido efectuada se hace una nueva

observación.

Se llaman modelos ocultos debido a que tienen asociado un proceso no

observable directamente correspondiente a las transiciones entre los diferentes estados

internos, y sólo es observable la salida de las funciones aleatorias asociadas a cada

estado, es decir, los vectores de parámetros o secuencia de señales que emiten dichos

estados y que forman el patrón a identificar; permaneciendo así el modelo inaccesible.

 Formalmente, un modelo oculto de Markov se describe como [JEL98]:

• { }NssS ,,1 L= el conjunto de estados, que representa el espacio de estados,

ts denota al estado en el instante t.

• { }To,,o,o=O ...21 el alfabeto de observación de salida. Estos símbolos

corresponden a la salida física del sistema que se está modelando.

•21 ,X,,X,X=X t la salida observada de un HMM.

• { }Nππ ,,1 L=Π el conjunto de probabilidades iniciales para cada estado, asigna

a cada estado una probabilidad inicial tal que i)=P(s=π i 0 , con Ni ≤≤1 y

∑ =
=

N

i i0
1π .

18

• { }ija=A la matriz de probabilidades de transición, donde ija es la probabilidad

de pasar del estado i al estado j independientemente del tiempo

)1 i=s|j=P(s=a ttij − , con N=ji ,,1, K ; 0≥ija y ∑ =
=

N

j ija
1

1.

• { }(k)b=B i la matriz de probabilidades de salida para cada estado, donde (k)bi

es la probabilidad de que se genere símbolo ko estando en el estado i

independientemente del tiempo. (k)bi es diferente para cada estado y símbolo.

i)=s|o=P(X=(k)b tkti con N=j ,,1K ; M=k ,,1K ; 0≥(k)bi y 1
1

=(k)b
M

=k
i∑ .

Es la distribución más importante ya que hace referencia directa a los símbolos

observados.

 Para completar la especificación del HMM, falta definir los parámetros N, M y T

que son, respectivamente, el número de estados, el número de observaciones y la

longitud del alfabeto de salida. El HMM completo se define como: λ=(A, B, Π).

 En la siguiente figura muestra un ejemplo de HMM:

Figura 2.4: Ejemplo de HMM

 El modelo descrito anteriormente es un HMM de primer orden en el cual cada

estado produce un solo símbolo y el conjunto de observaciones coincide con el conjunto

de estados y que asume:

19

- La suposición de Markov:)s|P(s=)s|P(s tt
t

t 1
1

1 −
− , siendo 1

1
−ts la secuencia de

estados 121 ... −ts,,s,s .

- La suposición de independencia de la salida:)s|P(X=)s,X|P(X tt
tt

t 1
1

1
− , es

decir, la probabilidad de emitir un símbolo de salida en el instante t sólo depende

del estado ts y es independiente de observaciones pasadas.

 Una vez obtenida la definición del HMM, dados un modelo λ y una secuencia de

observaciones)X,,X,(X=X t...21 , existen tres problemas básicos que hay que resolver:

1. El problema de la evaluación. ¿cuál es la probabilidad)|P(X λ de que el

modelo λ genere la observación X ?

2. El problema de la decodificación. ¿cuál es la secuencia de estados

)s,,s,(s=S t...21 más probable que produce la observación X ?

3. El problema del aprendizaje: ¿Cómo se pueden ajustar los parámetros del

modelo λ para maximizar la probabilidad conjunta ∏)|P(X λ ?

3.2.1 Evaluación de un HMM.

El primer problema que se plantea es obtener la probabilidad de que aparezca

una serie de observaciones para un modelo dado. El problema puede verse también

como la evaluación del modelo, dada una observación concreta. Elegir un modelo de

entre varios posibles que se ajuste mejor a una observación dada.

El método más directo para calcular la probabilidad)|P(X λ es combinar las

probabilidades de todas las posibles secuencias de estados. En cada instante t = 1, 2,...,T

se tienen N posibles estados alcanzables, por lo tanto NT operaciones, por lo que es

computacionalmente no realizable. Sin embargo, existe un algoritmo más sencillo y

eficiente llamado algoritmo de avance (forward algorithm). La idea básica de este

algoritmo es calcular la probabilidad de la secuencia de observación parcial

)X,,X,(X=X t'...''' 21 , de esta manera el número de operaciones se reduce a N2T.

20

3.2.2 Decodificación de un HMM.

 Para muchas aplicaciones basadas en HMMs, incluido el reconocimiento

automático del habla, encontrar el mejor camino es esencial. Dicho camino es la

secuencia de estados que tiene mayor probabilidad de ser reconocida dada una

secuencia de observaciones. Un algoritmo eficiente para encontrar la mejor secuencia de

estados es el algoritmo de Viterbi.

El algoritmo de Viterbi es un método de programación dinámica y que obtiene la

probabilidad del mejor camino, es decir, dado un modelo de Markov y una secuencia de

símbolos, el algoritmo de Viterbi encuentra la secuencia de estados del modelo de

Markov que con mayor verosimilitud ha podido producir dicha secuencia. El algoritmo

de Viterbi es una simplificación del algoritmo de avance en donde sólo se considera la

probabilidad máxima acumulada entre de los distintos caminos óptimos que llevan a un

mismo estado, es decir, sólo se considera la secuencia de estados que resulta de

maximizar las expresiones del algoritmo de avance. En general, la secuencia es

globalmente óptima una vez garantizada la optimación local. Aún así, la probabilidad es

todavía incompleta porque no consideramos más que las mejores transiciones en cada

estado y tiempo.

A cada posible secuencia de estados le corresponde un camino, y la longitud

total del camino representa (salvo la probabilidad inicial) la inversa de la probabilidad

de que la secuencia a reconocer haya sido producida por la secuencia de estados. Así

pues, el camino de mínima longitud nos proporcionará la secuencia buscada de estados

de máxima probabilidad.

3.2.3 Estimación de los parámetros de un HMM, aprendizaje.

La estimación exacta de los parámetros del modelo es el problema más difícil, y

uno de los primeros problemas del entrenamiento de HMM es conseguir una buena

estimación inicial de los parámetros.

 La estimación de los parámetros consiste en una expresión recurrente de los

parámetros de definición de λ, más la actualización que pretende la adaptación a los

patrones de entrenamiento. Hay que replantear la reescritura de las ecuaciones para cada

uno de los parámetros. Se inventa una nueva cantidad, la probabilidad de transiciones

21

del estado S1 al estado S2 con la observación xt. A partir de estas ecuaciones se escriben

las fórmulas de reestimación de los parámetros de un modelo λ, dado el número de

estados, una descripción de los observables, y una estimación aceptable de las

probabilidades. Así obtenemos un nuevo modelo λ . Para este nuevo modelo se puede

demostrar que o bien λλ = , en cuyo caso estamos en un punto crítico donde todas las

fórmulas de reestimación son exactamente correctas, o bien el nuevo modelo se ajusta

mejor, de modo que () ()λλ XPXP = . Además se puede demostrar que las cantidades

cumplen las restricciones de probabilidad.

 El problema se puede resolver mediante el algoritmo de Baum-Welch (también

conocido como algoritmo de avance y retroceso, forward and backward algorithms),

basado en el algoritmo de maximización de la expectativa (Expectation Maximization).

El algoritmo Baum-Welch permite entrenar las probabilidades de transición entre los

estados y las probabilidades que emite cada estado de manera iterativa.

3.2.4 Alineamiento.

 En el caso concreto de reconocimiento de palabras conectadas es necesario

obtener la secuencia de modelos que maximice la probabilidad de aparición de una

cierta secuencia de palabras. Se realiza el cálculo de la probabilidad de emisión, para

cada HMM, partiendo de un mismo tiempo dentro de la secuencia de observación. La

cadena de modelos se obtiene realizando un rastreo retrospectivo de la cadena con

mayor probabilidad de emisión.

3.2.5 Modelos con transiciones nulas y estados ligados.

 Las transiciones nulas permiten obviar estados de un HMM. No producen salida

y se realizan en un tiempo nulo. Permiten utilizar un mismo conjunto de entrenamiento

para un mismo HMM en el cual se dispone de muestras en las que un determinado

fragmento sonoro puede no aparecer como consecuencia de diferentes pronunciaciones.

Por tanto se convierte en un entrenamiento unificado de dos HMM que de otro modo

habría que entrenar de forma paralela.

En cuanto a los estados ligados, en éstos se permite establecer una equivalencia

entre parámetros de HMM en diferentes estados. Como ventaja, se ofrece una

22

estimación más simple, una reducción de parámetros del modelo y una disminución en

el número necesario de muestras, ya que se utilizan partes ya entrenadas de un HMM

para ser ligadas a otros HMM en los que posiblemente se necesiten muchas más

muestras.

3.2.6 Conectividad de los estados.

 En principio, los procesos Markovianos consideran una matriz de probabilidades

de transición sin restricciones, es decir, cualquier estado se puede alcanzar desde

cualquier otro. En el caso de los HMM reales, al entrenar un modelo con una serie de

muestras de voz, es el proceso de adaptación el que pone de manifiesto la escasa

probabilidad de determinadas transiciones. En la práctica este tipo de modelo no se

utiliza más que en ocasiones especiales.

 Uno de los modelos más utilizados es el que se denomina modelo de izquierda-

derecha, es el actual responsable de la más exitosa tecnología en muchos reconocedores

de habla y otras aplicaciones de procesamiento de voz. Su éxito se debe a su rigurosa

formulación matemática para determinar de manera óptima los parámetros de un

modelo dado. En él se introduce una relación de orden parcial entre los estados en

función de su precedencia temporal de modo que se prohíben las transiciones hacia atrás

y aquellas que introduzcan una compresión excesiva de la escala temporal. La ventaja

de este modelo es el ahorro de tiempo en la etapa de entrenamiento y en la etapa de

obtención de probabilidades de observación.

3.2.7 Aplicación de los HMM en reconocimiento de voz.

Para aplicar la teoría de los HMM´s en reconocimiento de voz, se representa

cada palabra del vocabulario del reconocedor como un modelo generativo (que se

calculará en la fase de entrenamiento) y posteriormente, se calcula la probabilidad de

que la palabra a reconocer haya sido producida por algunos de los modelos del

reconocedor. Para ello, se asume que durante la pronunciación de una palabra el aparato

fonador puede adoptar sólo un número finito de configuraciones articulatorias o estados,

y que desde cada uno de esos estados se producen uno o varios vectores de observación

cuyas características espectrales dependerán del estado en el que se hayan generado.

Vista la generación de la palabra, las características espectrales de cada fragmento de

señal dependen del estado activo en cada instante, y las características del espectro de la

23

señal durante la pronunciación de una palabra dependen de la función de transición

entre estados.

Además existe una gran variedad de tipos de ruido que afectan el ambiente

acústico de un sistema reconocedor de voz, por lo que siempre es bueno tener un

conocimiento a priori de la naturaleza del ruido. Es importante crear, además de los

modelos de las unidades acústicas, uno o más modelos de relleno entre los cuales el

más significativo es el silencio; sin embargo, para evitar confusión entre los sonidos

sordos (principalmente los fricativos) y segmentos sin habla contaminados con ruido,

sólo se usan segmentos de más de 10 milisegundos para entrenar el modelo del silencio.

Así, dado que los sonidos fricativos u otros fonemas sordos no duran más de 10

milisegundos, el sistema rara vez los confundirá con intervalos de ruido puro.

Entre las principales ventajas que trae consigo la aplicación de HMMs al

problema de reconocimiento de palabras conectadas, está la técnica que incluye un

mecanismo intrínseco de separación de palabras basado en una adecuada modelización

del silencio, lo cual elimina la necesidad de realizar una detección de bordes previa.

 Por último hay que mencionar que existe otra alternativa a los modelos

acústicos de fonemas (que suelen usar HMM de 3 o 5 estados para cada unidad

fonética), que es la de los modelos acústicos de palabras. En vez de usar HMM de

fonemas e ir encadenándolos para formar palabras, se puede construir un HMM con

más estados (el número de estados elegido dependerá de la longitud de la palabra). Esta

alternativa tiene ventajas e inconvenientes con respecto a los modelos de fonemas. La

ventaja principal es que la tarea del entrenamiento se simplifica bastante, ya que sólo

hay que entrenar las palabras necesarias, mientras que con los modelos de fonemas hay

que entrenarlos todos, con vistas de que en el futuro se puedan reconocer nuevas

palabra. Pero esta alternativa tiene un gran inconveniente, si se quieren añadir nuevas

palabras a reconocer, hay que volver a entrenar el sistema con las nuevas palabras. Esto

no pasa con los modelos de fonemas que se entrenan una sola vez.

24

3.3 Modelo de lenguaje o gramática.

 Adivinar la siguiente palabra, o lo que se llama predicción de la palabra, es una

subtarea esencial en el reconocimiento de voz. Puesto que la identificación de una

palabra es difícil debido a que la entrada es ruidosa o ambigua, observando la palabra o

palabras previas, nos puede dar una pista importante sobre cual puede ser la palabra que

intentamos reconocer. Para este proyecto se ha empleado una gramática restringida.

Estas gramáticas se definen por medio de maquinas de estados finitos y expresiones

regulares. Este modelo es usado para sistemas de reconocimiento de voz sencillos, en

los cuales los enunciados de entrada son limitados, es decir, al usuario sólo se le permite

decir aquellos enunciados que están explícitamente cubiertos por la gramática. Dado

que a nosotros no nos interesa reconocer solamente algunas frases necesarias para las

tareas cotidianas en una vivienda, optamos por usar este tipo de modelo.

3.4 Diccionario de pronunciación.

Una parte muy importante en el reconocimiento de voz es el diccionario de

pronunciación. En él se especifica la secuencia de sonidos (representados mediante un

conjunto de símbolos) que componen una palabra. Los símbolos pueden ser definidos

específicamente para la tarea de reconocimiento, o bien, obtenidos de un alfabeto

fonético.

4. Herramienta empleada.

Para el presente proyecto se ha empleado la herramienta HTK, una aplicación de

código abierto desarrollada en el Departamento de Ingeniería de la Universidad de

Cambridge. HTK esta orientado al diseño, entrenamiento y evaluación de HMMs

basado en la tecnología izquierda-derecha Con esta herramienta es posible diseñar

HMMs en los que la probabilidad de emisión de símbolos se obtenga por mezclas de

múltiples funciones de densidad de probabilidad continúa.

25

Capítulo 3

LA DOMÓTICA

1. Introducción.

 La domótica es la instalación e integración de varias redes y dispositivos

electrónicos en el hogar, que permiten la automatización de actividades cotidianas y el

control local o remoto de la vivienda o del edificio. La domótica no son servicios o

productos aislados, sino simplemente la implementación e integración de todos los

aparatos del hogar.

La domótica se aplica a la ciencia y a los elementos desarrollados por ella que

proporcionan algún nivel de automatización o automatismo dentro de la casa; pudiendo

ser desde un simple temporizador para encender y apagar una luz o aparato a una hora

determinada, hasta los más complejos sistemas capaces de interactuar con cualquier

elemento eléctrico de la casa.

 La vivienda domótica es, por lo tanto, aquella que integra una serie de

automatismos en materia de electricidad, electrónica, robótica, informática y

telecomunicaciones, con el objetivo de asegurar al usuario un aumento del confort, de la

seguridad, del ahorro energético, de las facilidades de comunicación, y de las

posibilidades de entretenimiento. La domótica, pues, busca la integración de todos los

aparatos del hogar, de manera que todo funcione en perfecta armonía, con la máxima

utilidad y con la mínima intervención por parte del usuario.

En este contexto se suele utilizar también mucho el concepto de hogar

inteligente el cual era empleado antes de que naciese el de domótica. El término

inteligente se utiliza en ámbitos informáticos para distinguir aquellos terminales con

26

capacidad autónoma de procesamiento de datos. La domótica también se suele asociar

actualmente, sobre todo en ámbitos de telecomunicaciones, al denominado hogar digital

u hogar conectado.

En realidad no existen acusadas diferencias entre una vivienda tradicional y otra

con equipamiento domótico. Se trata de la misma vivienda, con equipamiento

semejante, y con el mismo diseño arquitectónico. La diferencia sólo estriba en la

incorporación de una mínima tecnología, que permita gestionar de forma más eficiente e

integrar los distintos equipos e instalaciones domésticas que conforman la vivienda.

2. Beneficios de la domótica.

El principal problema que se encontraba para la introducción de la domótica era

que muy pocas personas estaban dispuestas a pagar los costes adicionales que implica

construir una vivienda inteligente, pero el actual descenso de los precios ha hecho de la

vivienda domótica un sueño asequible. Es necesario agregar fuerzas y ofrecer al usuario

soluciones integradas que le faciliten a vida, pues en otro caso este mercado nunca

acabará de explotar.

La domótica proporciona un sinfín de beneficios para el usuario del edificio, el

principal beneficiado por la incorporación de sistemas inteligentes, englobados en un

incremento de la seguridad, de la comodidad, del ahorro energético y de las

posibilidades de entretenimiento y comunicación, todos ellos personalizados para cada

tipo de usuario e inalcanzables mediante los edificios tradicionales. Además ofrece

nuevas oportunidades de negocio a todos los actores consolidados y abre también las

puertas a nuevas empresas que buscan posicionarse en este atractivo mercado.

 Pero para que la proliferación de edificios inteligentes sea una realidad son

necesarios ciertos cambios en los agentes tradicionales de la construcción y

equipamiento del hogar, así como la incorporación de nuevos actores que permitan la

gestión integrada se ese hogar conectado.

27

El usuario desconoce estos beneficios y piensa que la tecnología es muy cara y

compleja, aunque el coste de está es un porcentaje muy pequeño para el incremento de

la calidad de vida que le reporta a su usuario.

3. Aplicaciones.

 La incorporación e integración de redes y dispositivos en la vivienda domótica

posibilitan una cantidad ilimitada de nuevas aplicaciones y servicios en el hogar,

consiguiendo así un mayor nivel de confort, se aumenta la seguridad, se reduce el

consumo energético, se incrementan las posibilidades de ocio, etc. En definitiva, se

produce un incremento de la calidad de vida de sus habitantes. Las principales

aplicaciones de los edificios inteligentes para sus usuarios son:

Comodidad y confort:

- Control centralizado del hogar accesible a través del teléfono móvil o Internet,

teniendo la posibilidad de controlar remotamente el hogar.

- Control de los dispositivos eléctricos y electrónicos del hogar desde cualquier

sitio.

- Teléfono manos libres.

- Teletrabajo, telecompra, telebanca, , ,…

- Automatización de funciones y programación el sistema para que realice

automáticamente las tareas.

- Integrar el portero automático con el teléfono fijo o móvil.

- Lectura remota de contadores.

- Electrodomésticos y aparatos electrónicos inteligentes.

Seguridad

- Detector de intrusión, simulador de presencia.

- Simular que la vivienda está ocupada.

- Detección de incendios, de escapes de gas y agua, cortes de electricidad

- Configuración de procedimientos de avisos en caso de intrusión o avería.

- Teleasistencia, teleseguridad y video vigilancia.

28

- Instalación de cámaras y micrófonos para ver y escuchar la que pasa, con

posibilidad de grabación.

- Control de acceso a la vivienda.

- Puertas acorazadas y cajas fuertes.

- Sensores de alarma y botones de pánico.

- Seguridad de la comunicaciones, seguridad de los datos informáticos,

cortafuegos, evitar que intrusos accedan a la red interna de nuestro hogar.

Ocio y comunicaciones

- Internet con conexión permanente de banda ancha desde cualquier punto.

- Recursos informáticos, digitales y acceso a Internet compartido por varios

dispositivos

- Visión de canales de televisión en cualquier habitación.

- Televisión digital interactiva, video bajo demanda, cine en casa, …

- Videojuegos en red, videoconferencia, voz sobre IP, …

Ahorro energético

- Programación del encendido y apagado de todo tipo de aparatos (calderas, aire

acondicionado, toldos, luces, etc.), según las condiciones ambientales.

- Programación y zonificación de la temperatura, regulación automática de la

intensidad luminosa según el nivel de luz natural, …

- Acomodación a los planes de tarifas reducidas.

- Automatización de funciones y control de operaciones realizado por el sistema

centralizado.

- Incorporación de electrodomésticos de última generación.

- Contadores electrónicos.

Todos estos ejemplos de cómo la domótica puede mejorar la comodidad en el

hogar son claramente trasladables a otros edificios, incluso en otro tipo de edificios

determinados a un mayor número de personas (hospital, colegio, universidad, hotel,

oficina, residencia de la tercera edad, aeropuerto, supermercados, etc.), las soluciones a

introducir pueden ser aún más avanzadas. El conjunto de todas estas aplicaciones tiene

el objetivo básico de incrementar la calidad de vida de los usuarios, independientemente

del tipo concreto de edificio considerado.

29

4. La interfaz de voz.

 Es fundamental, para que el usuario pueda apreciar estas aplicaciones, que la

tecnología necesaria para hacerlas realidad, le sea totalmente transparente. El usuario no

quiere tener que estar consultando continuamente vastos y aburridos manuales, prefiere

sistemas intuitivos y sencillos. Es más, la verdadera inteligencia de los dispositivos

inteligentes debe residir en su capacidad de liberar al hombre de un esfuerzo continuo

de observación y corrección. Ahí es donde entra en juego la interfaz de voz.

Los sistemas de control centralizado suelen integrar una interfaz de voz, que

permite al usuario conocer o programar el estado del edificio en cualquier momento y

desde cualquier lugar mediante teléfono fijo o móvil.

 La utilización de un reconocedor del habla dentro de un contexto permite que el

sistema sea capaz de entender lo que ha dicho el usuario llevando acabo las acciones

indicadas con una comunicación más intuitiva y natural. El reconocedor de voz, además

de mejorar a comodidad para los usuarios normales que pueden conectarse de forma

remota, también puede ayudar a personas con deficiencias visuales. Asimismo, supone

una mejora de la seguridad por la posibilidad de determinar si una persona es quien dice

ser a través del análisis de su voz.

5. Especificaciones de un sistema real.

Si se tratara de implementar el reconocedor de voz en un sistema físico real, ya

sea una maqueta o una casa, los requerimientos funcionales no variarían demasiado con

respecto a las de este proyecto; ya que la parte del reconocedor de voz y la aplicación

interna serían exactamente las mismas.

Así pues, en el supuesto caso de implementar el sistema de reconocimiento de

voz en una casa real, la aplicación en vez de enviar el valor único de la frase reconocida

a una interfaz gráfica, lo enviaría a un PLC (Programmable Logic Controller o

Controlador lógico programable) que activará y/o desactivará los actuadores

30

correspondientes tales como: interruptores de la luz, electrodomésticos o motores de las

puertas, ventanas y persianas.

En cuanto a los requerimientos no funcionales de un sistema físico real, serían

muy extensos, puesto que se necesita gran variedad de elementos electrónicos anexados

a puertas, ventanas y electrodomésticos entre otros; así como sensores de presencia,

temperatura, etc. un PLC y el software para programarlo además de todo el cableado

necesario y sus protocolos de transmisión.

31

Capítulo 4

ANÁLISIS DE ESPECIFICACIONES

1. Especificaciones del proyecto.

En primer lugar hay que remarcar el hecho de que el reconocedor de voz no se

va a implementar en un sistema físico real, sino que se va a desarrollar un simulador de

una vivienda domótica, ya que esto modifica un poco las especificaciones del proyecto.

Por lo tanto el proyecto se divide en dos partes, el reconocedor de voz y el simulador.

A su vez, el reconocedor también se divide en la creación y entrenamiento de modelos

acústicos y decodificación.

1.1 Requerimientos funcionales para el reconocedor de voz.

A continuación se detallan los requerimientos funcionales del proyecto teniendo

en cuenta sólo el reconocedor de voz. En el siguiente apartado se tratarán los

requerimientos relacionados con el simulador.

1.1.1 Modelos acústicos.

En cuanto al reconocedor de voz, se trata de crear unos modelos acústicos

basados en modelos ocultos de Markov, los cuales han sido explicados con detalle en el

capítulo 2.

Para la creación de los modelos acústicos son necesarios algunos elementos

tales como un diccionario con todas las palabras admitidas por el sistema y su

correspondiente pronunciación, una gramática restringida la cual solamente permite un

conjunto finito de frases y que precisan todas las que el sistema ha de reconocer. Dicha

gramática está definida por un lenguaje independiente del contexto. Junto a todo esto

también son imprescindibles un número elevado de archivos de audio, grabados con los

32

usuarios finales de la aplicación, cuyo formato es mono de 16KHz y 16 bits por

muestra. Es recomendable que haya suficientes muestras de cada una de las palabras

admitidas para un mejor rendimiento del reconocedor de voz.

Llegados a este punto ya se tiene todo lo necesario para la realización de

modelos acústicos para las unidades fonéticas. El primer paso para la creación de los

modelos acústicos se trata de delimitar y etiquetar cada uno de los fonemas que

componen la señal acústica necesarios para identificar todas las posibles palabras que

acepta nuestro reconocedor. Se pueden etiquetar tantos fragmentos de onda como se

desee, habiendo como mínimo tres ejemplos de cada uno. Cuantos más se etiqueten,

más fácil será para el reconocedor identificar cada fonema.

 1.1.2 Requerimientos funcionales para la decodificación.

Una vez obtenidos, el reconocedor de voz ha de ser capaz de analizar en tiempo

real una entrada de audio, compararla con los modelos acústicos obtenidos y tener una

tasa de acierto superior al 95%. Para comprobar su rendimiento, se utilizan nuevas

entradas de audio válidas que no se hayan empleado en el proceso de creación y

entrenamiento de los modelos acústicos, con el mismo formato que las usadas

anteriormente, y se comprueba que más del 95% de ellas hayan sido reconocidas con

éxito. En caso de no ser así hay que mejorar los resultados obtenidos, existen varios

métodos para llevarlo a cabo; se pueden grabar más archivos de audio, etiquetar más

fragmentos de onda y/o reentrenar los modelos acústicos hasta lograr los objetivos.

1.2 Especificaciones para el simulador de domótica.

Una vez logrado un reconocedor de voz robusto para nuestras necesidades, se ha

de desarrollar una aplicación gráfica que simule un edificio domótico y en la cual se

visualicen de forma clara e inmediata las diferentes acciones mencionadas por el

usuario. Se ha de crear una aplicación que muestra la planta de una vivienda en 3D en

la que la aplicación navegara por su interior y con todos los elementos necesarios para

ver que realmente se ejecuta la orden pronunciada.

33

Como se ha expuesto anteriormente, la aplicación incorpora el reconocedor de

voz desarrollado para analizar la orden dicha por el usuario. Pero para poder utilizarlo,

antes hay que adaptarlo según el formato de la librería empleada.

Esta aplicación, en primer lugar, recibe la entrada de audio (frase que pronuncia

el usuario) a través de un micrófono previamente configurado. Mediante el reconocedor

de voz desarrollado, se analiza la señal acústica para identificar la frase formulada por el

usuario.

En caso de ser reconocida y ésta coincide con una de las acciones permitidas, se

analiza en profundidad y se le asigna un valor único en toda la aplicación. Este valor es

enviado a la interfaz gráfica que lo relaciona con una de las animaciones que posee en

su base de datos. Para reproducir la animación correspondiente a la frase dicha, se

posiciona la cámara y el punto de vista en la habitación adecuada y con una orientación

apropiada para ver la reproducción gráfica de la orden mencionada por el usuario.

En caso contrario, cuando una de las frases no ha sido reconocida o bien no

corresponde a ninguna acción válida, se muestra un mensaje en la pantalla para advertir

al usuario de que no se ha podido reconocer la oración formulada.

También existe la posibilidad de que el reconocedor de voz reconozca una frase

diferente a la pronunciada por el usuario. En tal caso la aplicación realiza la orden

interpretada por el reconocedor. Para corregir el fallo, el usuario debe formular otra

acción para corregir la anterior.

1.3 Requerimientos no funcionales.

Para este proyecto se usa la herramienta de software libre HTK que permite la

creación y entrenamiento de los modelos acústicos. También trae integradas

aplicaciones: para grabar los archivos de audio necesarios, para la decodificación y

reconocimiento de frases tanto desde archivos de sonido como en tiempo real y para

comprobar el rendimiento de los modelos acústicos.

34

Asimismo, la herramienta de desarrollo Julius, también de software libre,

permite la integración de los modelos acústicos creados con HTK en nuestras

aplicaciones e incorpora aplicaciones para realizar esta adaptación. Con apoyo de la API

de Julius, la cual esta desarrollada en C, se crea nuestro propio reconocedor de voz, o

decodificador, y se incorpora en el simulador.

El uso de esta API, implica que la aplicación debe desarrollarse con un lenguaje

de programación que admita anexar librerías hechas en C, si no es en toda su totalidad,

como mínimo el software de reconocimiento de voz.

35

Capítulo 5

DISEÑO

Primero recordar que el objetivo de este proyecto es desarrollar un reconocedor

de órdenes sencillas para una aplicación de domótica. Algunos ejemplos de órdenes son:

 - Abre la puerta de la cocina.

 - Cierra la ventana de la habitación.

 - Enciende la luz.

 - Apaga la calefacción.

Todo el proyecto realizado puede ser dividido en cuatro bloques bien diferenciados:

1. Creación, entrenamiento y prueba de los modelos acústicos. En este bloque

se aprendió a crear y entrenar modelos acústicos con HTK. Se obtuvieron

unos modelos para los fonemas que componen nuestras frases y se

observaron las limitaciones que había para conseguir unos modelos robustos.

2. Creación de la aplicación reconocedora de voz utilizando los modelos

acústicos elaborados. En este bloque se creó una aplicación que recibe una

entrada de audio por el micrófono y la analiza para identificar la frase

mencionada por el usuario. Se empleó el software de desarrollo Julius para

integrar en la aplicación los modelos acústicos obtenidos anteriormente.

3. Creación de la aplicación gráfica. En este bloque se creó una aplicación

gráfica que simula una vivienda domótica donde se reproducen las órdenes

enviadas por el reconocedor y que previamente han sido admitidas.

4. Por último, se desarrolló el nexo de comunicación entre ambas partes de la

aplicación.

36

1. Estructura de la aplicación completa

La aplicación desarrollada se estructura en cuatro partes bien diferenciadas, los

modelos acústicos, el reconocedor de voz, la aplicación gráfica que simula una vivienda

domótica y la comunicación entre ambos procesos de la aplicación. El siguiente

diagrama ilustra dicha estructura y a continuación se detalla la estructura del

reconocedor de voz y el simulador de domótica.

Figura 5.1: Diagrama de la aplicación completa.

Para el reconocedor de voz se emplea un único fichero tal y como muestra el

diagrama siguiente.

Figura 5.2: Diagrama de la aplicación reconocedor de voz.

Sin embargo, la parte del simulador de voz incluye varios ficheros, dos de ellos

dedicados exclusivamente para cargar las texturas que utilizadas para la estructura de la

casa. El resto de acciones tales como traslados de la cámara o visualizado de objetos

tridimensionales, están incluidas en el fichero principal. El la figura 4.2 muestra la

estructura de la aplicación gráfica, incluyendo variables, funciones, librerías y

estructuras.

Modelos acústicos

Reconocedor de voz Simulador
de

domótica
socket

error(char *): void
status_recready(Recog *, void *): static void
status_recstart(Recog *, void *): static void
put_hypo_phoneme(WORD_ID *, int , WORD_INFO *): static
void
output_result(Recog *, void *): static void
main(int, char[] *): int

newsockfd: int

RECONOCEDOR DE VOZ

julius/juliuslib.

stdio.h

unistd.h sys/socket.

sys/types.hpthread.h

stdlib.h netinet/in.

netdb.h

LIBRERIAS

<<include>

37

Figura 5.3: Diagrama de la aplicación gráfica, simulador de domótica.

stdlib.h

LIBRERIAS

string.h GL/glut.

error(char *): void
render (Lib3dsNode*): void
dibujaObjeto(): void
dibujar_casa(): void
dibujar_ventanas(): void
spline(float, CPunto*): void
Dspline(float, CPunto*): void
texturas(): void
objetos(): void
iluminacion(): void
inicializacion(): void
trayectorias(): void
acciones(): void
OnTimer(int): void
display(): void
main(int, char[] *): int

texName[4]: GLuint
file: Lib3dsFile*
current_frame: float
Habitacion: int
puertas[6]: int
ventanas[5]: int
frase: int
anima = 1: int
camina = 1: int
Npts = 4: int
t: float
i: int
j: int
CTRs[4]: CPunto
P: CPunto
PT: CPunto
Pts[13]: CPunto
A[4][4]: double

#define h 0.2

INTERFAZ GRÁFICA

x: GLfloat
y: GLfloat
z: Glfloat

Cpunto
typedef

image_destroy(Image*): void
image_load_to_texture(const char*): int

ImageType: _ImageType
Image: Image

IMAGE

my_error_exit(j_common_ptr): void
image_load_jpeg(const char*): Image*

*my error ptr: my error mgr
JPG

IMAGE_TYPE_GRAY
IMAGE_TYPE_GRAYA
IMAGE_TYPE_RGB
IMAGE_TYPE_RGA

_ImageType
typedef enum

width: int
height: int
type: ImageType
data: unsigned char*

_Image
typedef struct

stdio.h

jpeglib.

jerror.h

stdlib.h

setjmp.h

errno.h

LIBRERIAS

string.h

stdio.h

unistd.h

sys/socket.h

sys/types.h

stdlib.h

netinet/in.h

netdb.h

LIBRERIAS

string.h

math.h

lib3ds/mesh.h

lib3ds/file.h

lib3ds/vector.h

lib3ds/matrix.h

lib3ds/camera.h

lib3ds/light.h

lib3ds/node.h

lib3ds/material.h

GL/glu.h

GL/glut.h

GL/gl.h

pub: struct jpeg_error_mgr
setjmp_buffer: jmp_buf

my_error_mgr
typedef struct

38

1.1 Ficheros adicionales.

La aplicación desarrollada necesita información externa, no incluida en el

código, para funcionar y toda la que requiere se encuentra almacenada en ficheros de

texto y ficheros binarios en lugar de bases de datos. Los ficheros empleados son los

siguientes: fichero de configuración de Julius, modelos acústicos y un listado de éstos,

gramática, diccionario, texturas e imágenes. En caso que la aplicación trabaje con

grabaciones de voz en vez de un realizar un reconocimiento en vivo, directamente des

del micrófono, también serán necesarios dichos archivos de audio, un listados de éstos y

las transcripciones.

El fichero de configuración de Julius empleado para que la aplicación de

reconocimiento de voz trabaje con entradas de audio desde un dispositivo de captura de

sonido, especifica a Julius cuales son los ficheros que contienen la gramática, el

diccionario y los modelos acústicos, entre otros parámetros como por ejemplo el uso del

modelo de pausa corta.

Los modelos acústicos utilizados por la aplicación y el listado de éstos, son

exactamente los que se han generado con HTK en la primera parte de este proyecto.

Hay que tener en cuenta que Julius necesita que el fichero que contiene los modelos

acústicos no sea binario, sino que esté escrito en texto plano, por tanto habrá que

generarlo de nuevo teniendo esto en cuenta. En cuanto a la gramática y el diccionario

que definen el lenguaje admitido por el reconocedor, también podemos reaprovechar los

que se generaron con HTK pero adaptándolos al formato de Julius.

Los ficheros de texturas empleados son imágenes cuadradas en formato jpg. Sin

embargo las imágenes tridimensionales que se visualizan en el simulador son objetos en

formato 3ds que a su vez también pueden incluir su propia textura en ficheros jpg o

mapa de bits.

En caso de trabajar con ficheros de audio almacenados en disco, de igual modo

que HTK, se necesita tener las transcripciones de cada uno de los archivos en un fichero

de texto y otro con las rutas a cada uno de éstos archivos. Las grabaciones tienen que

estar grabadas con formato mono de 16KHz y 16bits por muestra, igual que las

utilizadas para la creación y entrenamiento de los modelos acústicos.

39

1.2 Librerías.

Las principales librerías empleadas para el desarrollo de la aplicación, además

de otras librerías estándar de Linux y C, son: Julius, OpenGL + GLUT y Lib3ds.

Julius es una herramienta de código libre, con un alto rendimiento, utilizada para

reconocimiento de voz en discurso continuo, que permite utilizar los modelos acústicos

entrenados con HTK. Para ello incorpora herramientas, también de código libre, para

adaptar los modelos acústicos generados y entrenados con HTK al formato que necesita.

Puede realizar, casi en tiempo real, la decodificación de un discurso de habla continua

en la mayoría de los ordenadores actuales utilizando muy poca cantidad de memoria ya

que incluye las principales técnicas de búsqueda y es independiente de la estructura de

los modelos acústicos. Además, Julius posee su propia API de desarrollo, que nos

permite construir aplicaciones basadas en reconocimiento de voz para aplicaciones

diversas. Con Julius se puede realizar el reconocimiento de archivos de audio, una

entrada de micrófono, una entrada de red y definir distintas características de

configuración mediante un archivo de parámetros. La biblioteca, llamada JuliusLib, está

completamente escrita en ANSI-C portable para lograr más independencia de hardware.

Otras de las principales características de esta librería son:

• Altamente configurable una variedad diversa de parámetros de búsqueda.

• Reconocimiento sobre la marcha para entradas desde micrófono y desde la red.

• Permite el uso del modelo de pausa corta.

OpenGL (Open Graphics Library) es una biblioteca de código abierto para

desarrollo de aplicaciones interactivas y que requieran de computación visual de alta

calidad y rendimiento en 2D y 3D, como por ejemplo animaciones y simulaciones.

Incorpora un amplio conjunto de prestaciones como el mapeo de texturas, efectos

especiales, y otras potentes funciones de visualización. OpenGL es la única librería

verdaderamente abierta, de proveedor neutral, multilenguaje y multiplataforma

totalmente portable, por lo que se puede garantizar una amplia distribución de las

aplicaciones desarrolladas con ésta en gran variedad de sistemas. Aunque oculta la

complejidad de la interfaz presentando al programador una única API uniforme, su

diseño de bajo nivel requiere que los programadores conozcan el funcionamiento de la

40

pipeline gráfica; a cambio ofrece la libertad para implementar algoritmos gráficos. Otras

de las principales características de esta librería son:

• Fácil de usar, bien estructurada y con un diseño intuitivo y comandos lógicos.

• Opera con imágenes así como primitivas geométricas (punto, línea o polígono).

• Usa el sistema de ventanas.

GLUT es una API simple, fácil y pequeña para escribir programas en openGL

generando un sistema sencillo de ventanas independientes e interacción por medio de

teclado y ratón, ya que no es un juego de herramientas con funciones completas ni para

aplicaciones que requieras una interfaz de usuario sofisticada. GLUT no es de código

abierto ni está en el dominio público pero es de libre distribución sin derechos de

licencia y portable a casi todas las implementaciones de OpenGL y plataformas. La

biblioteca GLUT es compatible con las siguientes funcionalidades:

• Varias ventanas de visualización simultáneas.

• Varios dispositivos de entrada.

• Rutina inactiva y temporizadores.

• Menús emergentes.

• Generación de sólidos y objetos de alambre.

• Callbacks de eventos.

Lib3ds es una biblioteca de desarrollo de software de código abierto para la

gestión de archivos 3d-Studio, o dicho de otro modo, archivos con extensión .3ds. Se

trata de una alternativa de software libre a Autodesk 3DS File Toolkit. La biblioteca está

completamente escrita en ANSI-C portable para lograr más independencia de hardware.

Algunas de las principales características de esta librería son:

• Cargar y guardar ficheros 3ds: Ajustes de la atmósfera, el fondo y el viewport;

mapa de la configuración de jerarquía, sombras, materiales, cámaras, luces,

mallas y fotogramas clave entre otros parámetros.

• Fácil manipulación de las estructuras de datos.

• Se integra completamente con OpenGL.

41

2. Creación, entrenamiento y prueba de los modelos acústicos.

La primera fase del proyecto consistió en la creación de unos modelos acústicos

para los fonemas que componen nuestras frases. Para ello se utilizaron las herramientas

para entrenamiento de modelos acústicos que incorpora HTK. Dichas herramientas

necesitan que se les proporcionen grabaciones de audio de las frases, la lista de

fonemas, la gramática, el diccionario de pronunciación y el fichero de transcripciones

de las grabaciones de audio.

 2.1 Preparación de los datos.

 La primera fase consiste en la preparación de todos los datos necesarios para

empezar con el entrenamiento y evaluación del sistema reconocedor.

2.1.1 Gramática de trabajo.

Para que se puedan reconocer todas las órdenes, es necesario especificarlas de

alguna manera. Para ello se utiliza el lenguaje de definición de gramáticas de HTK

donde | corresponde a las distintas alternativas y < > indican que se pueden producir

repeticiones. También se añaden unas etiquetas de INICIO y FINAL a las que se

atribuirá silencio y además se pueden reunir varias palabras en una sola para mayor

comodidad, ya que algunas secuencias de palabras siempre tendrán el mismo orden.

$sala = COMEDOR | HABITACION | COCINA | ESTUDIO | SALADEESTAR | SALON;
$temperatura = VEINTE | EINTIUNO | VEINTIDOS | VEINTITRES | VEINTICUATRO | VEINTICINCO;
$invento = LUZ | LUCES | CALEFACCION;
(INICIO (
 ((ABRE | CIERRA) (LA-S) (VENTANA | PUERTA) (DEL-A) $sala) |
 ((ENCIENDE | APAGA) (LA-S) $invento) |
 ((ENCIENDE | APAGA) (EL) (AIREACONDICIONADO)) |
 ((FIJALATEMPERATURAA) $temperatura))
FINAL)

Aún así esta gramática es tan solo una representación dirigida al usuario para

una mayor facilidad a la hora de su construcción. HTK necesita una red de palabras

definidas utilizando un nivel más bajo de notación llamado SLF (Standard Lattice

Format), donde cada palabra y cada transición palabra-palabra esté incluida

explícitamente. Esta conversión puede hacerse de forma automática mediante la

herramienta HParse que proporciona HTK.

42

2.1.2 Diccionario.

El siguiente paso corresponde a la construcción del diccionario. Este proyecto se

corresponde a una aplicación de voz donde los modelos acústicos modelan fonemas, por

tanto en el diccionario se tienen transcripciones en unidades fonéticas de cada una de las

palabras que detecta el reconocedor. Estas transcripciones de cada palabra en unidades

fonéticas se pueden realizar con símbolos arbitrarios.

Al final de cada transcripción se añade el símbolo sp (short pause), necesario

para pasos posteriores. El diccionario también debe incluir las etiquetas INICIO y

FINAL, que sirven para indicar el silencio que hay al principio y al final de cada frase, y

hay que asegurarse que las palabras aparecen en orden alfabético. Estas son algunas de

las palabras del diccionario empleado en este proyecto:

ABRE a b r e sp
CIERRA T j e rr a sp
COCINA k o T i n a sp
ENCIENDE e n T i e n d e sp
FIJALATEMPERATURA f i x a l a t e m p e r a t u r a sp
FINAL [] sil
HABITACION a b i t a T i o n sp
INICIO [] sil
LA-S l a sp
LA-S l a s sp
SALADEESTAR s a l a d e e s t a r sp
SALON s a l o n
VEITIUNO b e j t i u n o sp

2.1.3 Grabación de los Datos de Voz.

HTK proporciona una herramienta gráfica llamada HSLab para la grabación de

los archivos de audio necesarios para el entrenamiento y la evaluación de los modelos

acústicos. Puesto que hubo problemas al emplear dicha aplicación porque introducía

mucho ruido a la entrada de audio, se optó por la opción de grabar los ficheros de audio

con otra herramienta de captura de sonido, siempre teniendo en cuenta el formato wave

mono de 16KHz y 16 bits por muestra.

Con la herramienta HSGen se genera un fichero donde se indica el contenido que

debe tener cada archivo de audio. Hay que tener en cuenta que cuantas más grabaciones

se utilicen, mejor entrenado estará el sistema. Se realizaron 150 grabaciones,

pronunciadas por un único hablante. A priori se sabe que son pocas grabaciones y

hablantes, pero bastan para aprender los mecanismos de creación de modelos acústicos.

43

2.2 Creación de los modelos de monophones.

 Los modelos de monophones, son aquellos modelos acústicos que se

corresponden con fonemas independientes

2.2.1 Inicialización de los modelos acústicos.

 La inicialización de los modelos acústicos se hace de forma individual para cada

uno de los fonemas omitiendo el modelo sp el cual se genera posteriormente.

Lo primero que se hace para la creación de los modelos de monophones es el

denominado proceso de etiquetaje de los archivos de audio, el cual consiste en delimitar

los diferentes fragmentos de onda pertenecientes a cada uno de los fonemas que

componen la señal de audio. Este proceso se realiza fácilmente con la herramienta

HSLab mencionada anteriormente. Hay que tener en cuenta que para la inicialización de

los modelos acústicos no se emplean todas las grabaciones realizadas anteriormente,

sino sólo las grabaciones que se han etiquetado. Posteriormente, estos modelos

inicializados se irán reestimando utilizando la totalidad de datos de audio.

Una vez etiquetados cada uno de los archivos escogidos, se crea un archivo con

el mismo nombre del archivo de audio pero con extensión .lab, que contiene cada una

de las etiquetas de los modelos que almacena dicho archivo, asociados a unos valores

numéricos correspondientes a los valores de inicio y final. Se pueden crear tantos

archivos .lab como se desee, habiendo como mínimo tres ejemplos de cada uno de los

modelos acústicos que a entrenar. Además, no es necesario etiquetar todos los fonemas

que aparecen en la señal de audio, pudiendo etiquetar tan solo aquellos que nos

interesan. A continuación se muestra un ejemplo de señal etiquetada.

47500 9253750 sil
9448125 10731250 a
12470625 12979375 p
12981250 13727500 a
13763750 14081875 g
14077500 14431875 a
14428125 15516250 l
15515000 16013750 a
16010625 16412500 l
16411875 17419375 u
17414375 17675000 T

44

Una vez completada esta fase, se crea un fichero prototipo para cada uno de los

modelos acústicos (excluyendo el modelo sp) aunque todos los modelos tengan la

misma estructura. Cada uno de los prototipos tiene cinco estados de los cuales el primer

y último estado deben omitirse. A cada estado se le asignan los valores de las medias y

las varianzas, a 0.0 y 1.0 respectivamente, formados por vectores de tamaño 39.

También se define una matriz de dimensión 5x5 de transiciones entre estados (debido a

que estos modelos se componen de 5 estados). Los valores que contengan los estados

inicialmente no son importantes ya que el objetivo es definir la topología. Finalmente,

hay que especificar el nombre de cada uno de los modelos acústicos en la opción h del

prototipo. El prototipo tiene el siguiente aspecto:

~o <VecSize> 39 <MFCC_0_D_A>
 ~h "proto"
 <BeginHMM>
 <NumStates> 5
 <State> 2
 <Mean> 39
 0.0 0.0 0.0 ...
 <Variance> 39
 1.0 1.0 1.0 ...
 <State> 3
 <Mean> 39
 0.0 0.0 0.0 ...
 <Variance> 39
 1.0 1.0 1.0 ...
 <State> 4
 <Mean> 39
 0.0 0.0 0.0 ...
 <Variance> 39
 1.0 1.0 1.0 ...
 <TransP> 5
 0.0 1.0 0.0 0.0 0.0
 0.0 0.6 0.4 0.0 0.0
 0.0 0.0 0.6 0.4 0.0
 0.0 0.0 0.0 0.7 0.3
 0.0 0.0 0.0 0.0 0.0
 <EndHMM>

Antes de poder ejecutar la herramienta HInit de HTK para la inicialización de

cada uno de los modelos acústicos, hay que obtener la conversión de los archivos de

audio en sus correspondientes vectores de características. Este proceso se realiza con la

herramienta Hcopy. A su vez, ésta necesita un archivo cuyo contenido esta formado por

las rutas a los archivos de audio y su correspondiente archivo de vectores de

características, otro con las rutas a los archivos de salida especificados en el anterior y

un fichero de configuración donde se especifican los parámetros de configuración para

llevar a cabo la codificación. El contenido del fichero de configuración necesario este

proyecto es el siguiente:

45

#Parámetros de codificación
TARGETKIND = MFCC_0_D_A
TARGETRATE= 100000.0
SAVECOMPRESSED = T
SAVEWITHCRC = T
WINDOWSIZE = 250000.0
USEHAMMING = T
PREEMCOEF = 0.97
NUMCHANS = 26
CEPLIFTER = 22
NUMCEPS = 12
ENORMALISE = F
#Si las grabaciones son wave
SOURCEKIND = WAVEFORM
SOURCEFORMAT = WAV
ZMEANSOURCE = TRUE

2.2.2 Entrenamiento integrado.

Una vez hemos realizados con éxito los pasos anteriores, ya se dispone de todos

los elementos necesarios para poder realizar el entrenamiento del sistema reconocedor

de voz. La inicialización con HInit sólo sirvió para realizar una primera aproximación

de los modelos acústicos, en cambio, la herramienta HERest permite proceder al

entrenamiento de los mismos. Con HERest se pueden realizar tantas reestimaciones de

los modelos acústicos como se crea conveniente e ir almacenándolas de manera

independiente.

Se crea un fichero llamado hmacs en el cual se añaden las primeras estimaciones

de los modelos acústicos, obtenidas anteriormente con HInit.

~o <VecSize> 39 <MFCC_0_D_A>
~h "a"
...
~h "b"
...
~h "B"
...
...

Seguidamente se procede a realizar las transcripciones de los archivos de audio a

nivel de palabras y a nivel de fonemas. Para ello se utiliza un tipo de fichero llamado

MLF (Maste Label File). Utilizando este formato, no es necesario tener un fichero de

transcripción por cada archivo de audio, sino que se pueden juntar todas las

transcripciones en un solo fichero.

46

HTK incluye la herramienta prompts2mlf que permite realizar una primera

transcripción a nivel de palabra generando un fichero MLF. Las transcripciones a nivel

de fonemas, necesarias para pasos posteriores, se hacen con la herramienta HLEd.

Concretamente se crean dos ficheros MLF con transcripciones a nivel de fonemas: uno

sin incluir el fonema sp y otro incluyéndolo (éste último es necesario más adelante

cuando se inserte el modelo de pausa corta). HLEd precisa unos ficheros que contienen

una serie de instrucciones para expandir las palabras a nivel de fonemas utilizando el

diccionario, insertar el modelo sil al principio y final de cada frase y eliminar o

mantener todas las ocurrencias del símbolo sp, que estaban incluidas en el diccionario

de pronunciación al final de cada una de las palabras.

También se crean dos archivos que contienen la lista de todos los modelos

acústicos. El primero de ellos no incluye el modelo sp, en cambio el otro si lo

incorpora.

Finalmente es necesario obtener todos los vectores de características de todas las

grabaciones de audio y especificar la lista de modelos acústicos para proceder a la

reestimación con HERest. El proceso es el mismo que el realizado para la inicialización

de los modelos, pero ahora hay que considerar todas las grabaciones.

Llegados a este punto ya se tiene todo lo necesario para empezar el

entrenamiento de los modelos acústicos con HERest. Si anteriormente HInit exigía que

los modelos fuesen inicializados de forma individual, HERest permite realizar el

entrenamiento de forma conjunta. Para este proyecto, se empiezan haciendo hasta 6

reestimaciones de los modelos.

2.2.3 Inserción del modelo de pausa corta.

Hasta ahora se han creado HMMs de cinco estados con topología left-to-right

para cada fonema y para el modelo de silencio sil. En este paso se añaden transiciones

entre los estados 2-4 y 4-2 en el modelo de silencio sil y se genera un nuevo modelo de

un único estado para pausas cortas, llamado sp.

Para la creación del modelo sp se copia el archivo hmacs de la última

reestimación, éste se edita y se añade el nuevo modelo sp de tres estados, cuyo estado

47

central es el estado central del modelo sil. Después se ejecuta HHEd para añadir las

transiciones adicionales y ligar el estado de sp con el estado central de sil.

Una vez ya se han creado el nuevo modelo y las nuevas transiciones, se procede

a reestimar dos veces más los parámetros de los modelos acústicos mediante HERest.

 2.2.4 Realineación de los datos de entrenamiento.

Observando el diccionario, se puede apreciar que hay palabras que tienen más de

una pronunciación como es el caso de la palabra LA-S, que tiene dos posibles

transcripciones. Se puede hacer un realineamiento de los datos de entrenamiento usando

los modelos obtenidos hasta ahora y así crear nuevas transcripciones.

Esto se realiza con la herramienta HVite y se obtiene una nueva transcripción a

nivel de fonemas en un fichero distinto. Ahora el reconocedor tendrá en cuenta todas las

posibles pronunciaciones de las palabras del diccionario.

Para terminar con el proceso de creación de modelos de monophones se

reestiman sus parámetros dos veces más mediante HERest.

2.3 Creación de los modelos de triphones con estados ligados.

Hasta ahora se han creado modelos acústicos que se corresponden con fonemas

(llamados modelos de monophones). Estos modelos son independientes del contexto, es

decir, no tienen en cuenta qué fonema ocurrió antes de uno dado ni cual vendrá después

de éste. En esta fase se construyen modelos de triphones, conjuntos de tres fonemas, con

el fin de aumentar la eficacia del reconocedor de voz.

 2.3.1 Creación de triphones a partir de monophones.

Se pueden realizar triphones dependientes del contexto copiando los

monophones y utilizar nuevas transcripciones con triphones para reestimar los

parámetros de los modelos. Con HLEd obtendremos estas nuevas transcripciones. Tras

la ejecución de HLEd se crean dos ficheros, uno contiene la lista de triphones generados

y el otro las transcripciones a nivel de triphones.

48

También se requiere el fichero mktri.hed, que se puede generar con el script

maketrihed, y que tiene la siguiente apariencia, y luego se procede a la copia de los

modelos con HHEd almacenando los modelos editados en formato binario con el fin de

mejorar la eficiencia.

CL triphones1
TI T_a {(*-a+*,a+*,*-a).transP}
TI T_b {(*-b+*,b+*,*-b).transP}
TI T_B {(*-B+*,B+*,*-B).transP}
TI T_d {(*-d+*,d+*,*-d).transP}
TI T_e {(*-e+*,e+*,*-e).transP}
TI T _f{{*-f+*,f+*,*-f}.transP}
TI T _g{{*-g+*,g+*,*-g}.transP}
...

Con estas instrucciones se han generado unos modelos de triphones a partir de

los modelos de monophones. Se vuelve a reestimar estos modelos con HERest dos

veces más.

 2.3.2 Creación de triphones con estados ligados.

Momentáneamente se han creado modelos de triphones que comparten matrices

de transición. El objetivo ahora es que también puedan compartir estados, y así poder

realizar unas estimaciones más robustas de los parámetros. Esto se hace creando los

llamados estados ligados. Una manera de crearlos es mediante los árboles de decisión.

Se genera parte del fichero que contiene el árbol de decisión con mkclsscript, el

resto debe ser escrito manualmente, que utiliza HHEd para crear los estados ligados.

Con esto se obtiene un fichero con la lista de todos los modelos acústicos resultantes, y

los modelos de triphones con estados ligados y ya sólo falta realizar dos reestimaciones

más con HERest para completar el entrenamiento de los modelos acústicos. Aquí se

presenta un fragmento del árbol de decisión:

 RO 100.0 stats
TR 0
QS "L_a" {a-*"}
QS "R_a" {*+a"}
QS "L_b" {b-*"}
...
QS "L_T" {-*"}
QS "L_u" {-*"}
QS "R_u" {*+"}
QS "L_x" {-*"}
QS "R_x" {*+"}
TR 2

49

TB 350.0 "ST_a_2_" {("a","*-a+*","a+*","*-a").state[2]}
TB 350.0 "ST_b_2_" {("b","*-b+*","b+*","*-b").state[2]}
...
TB 350.0 "ST_u_4_" {("u","*-u+*","u+*","*-u").state[4]}
TB 350.0 "ST_x_4_" {("x","*-x+*","x+*","*-x").state[4]}
TR 1
CO "tiedlist"
ST "trees"

2.4 Adaptación de los modelos.

Los pasos anteriores describen las frases necesarias para construir un sencillo

sistema de reconocimiento de voz orientado para aplicaciones concretas, como la

domótica. Hasta el momento sólo se han utilizado grabaciones de un único hablante, sin

embargo, esto puede producir malos resultados si el sistema va a ser empleado por otros

hablantes. Se pueden construir sistemas independientes del hablante, pero se requieren

grandes cantidades de grabaciones provenientes de muchas personas distintas. La

alternativa empleada en este proyecto fue adaptar los modelos actuales a las

características de nuevos hablantes, ya que esto no requiere grandes cantidades de datos.

Normalmente las técnicas de adaptación se aplican a sistemas robustos e independientes

del hablante para conseguir que se comporten mejor ante hablantes particulares.

HTK soporta dos tipos de adaptaciones: la adaptación supervisada, donde se

conocen las transcripciones de los datos, y la adaptación no supervisada, donde las

transcripciones son hipótesis. La herramienta HERest, proporcionada por HTK, permite

realizar la adaptación supervisada en modo offline, mientras que la herramienta HVite

realiza la adaptación no supervisada. Para este proyecto se empleó el método de la

adaptación supervisada.

2.4.1 Preparación de los datos para la adaptación.

De igual modo que en el desarrollo de un reconocedor corriente, se necesita

preparar los datos para la adaptación. Son necesarias grabaciones de los nuevos

hablantes, unas para la adaptación y otras para la evaluación del nuevo sistema

adaptado. Los datos se adquirieron del mismo modo que la obtención de los datos de

entrenamiento y prueba del sistema. Se realizaron 20 grabaciones para el proceso de

adaptación y se codificaron los datos igual que se hizo con los de entrenamiento.

50

Por último se generaron las transcripciones de los datos de adaptación a nivel de

fonemas y a nivel de palabra, teniendo en cuenta que se trata de una gramática

dependiente del contexto.

2.4.2 Generación de las transformadas MLLR.

HERest da soporte para un conjunto de transformadas lineales y permite realizar

la adaptación supervisada en modo offline mediante la aplicación de transformadas

lineales de máxima probabilidad.

Se pueden usar árboles de clases para especificar dinámicamente el número de

transformaciones que hay generar, o bien utilizas un conjunto de clases base. Para este

proyecto, con la ayuda de la herramienta HHed proporcionada por HTK, se construyó

un árbol de clases de regresión utilizando los últimos modelos acústicos reestimados.

Además se almacenaron en un conjunto de clases base con los comandos para cargar el

fichero estadístico de ocupación de estados stats que se generó con la última ejecución

de HERest, y construir un árbol de clases de regresión de 32 hojas usando estas

estadísticas. También son necesarios los ficheros config.global y config.rc, con el

siguiente contenido respectivamente.

HADAPT:TRANSKIND = MLLRMEAN
HADAPT:USEBIAS = TRUE
HADAPT:BASECLASS = global
HADAPT:ADAPTKIND = BASE
HADAPT:KEEPXFORMDISTINCT= TRUE
HADAPT:TRACE = 61
HMODEL:TRACE = 512

HADAPT:TRANSKIND = MLLRMEAN
HADAPT:USEBIAS = TRUE
HADAPT:REGTREE = rtree.tree
HADAPT:ADAPTKIND = BASE
HADAPT:SPLITHRESH = TRUE
HADAPT:KEEPXFORMDISTINCT= TRUE
HADAPT:TRACE = 61
HMODEL:TRACE = 512

A continuación se realiza la adaptación en dos fases con HERest. Primero se

hace una adaptación global y después otra usando la anterior como transformación de

entrada para el conjunto de modelos. Finalmente sólo falta realizar dos reestimaciones

más con HERest para completar la adaptación de los modelos acústicos.

51

2.5 Evaluación del reconocedor.

Una vez concluido el proceso de entrenamiento del sistema, el reconocedor se ha

completado y ya se puede evaluar su eficacia.

 2.5.1 Reconocimiento de los datos de prueba.

Asumiendo que en un archivo se tiene la lista de los ficheros de vectores de

características para la prueba del sistema, se procede al reconocimiento de cada uno de

ellos con la herramienta HVite. El resultado obtenido, almacenado aparte, consta de un

fichero con la transcripción de las frases que ha reconocido.

HTK proporciona otra herramienta llamada HResults, que genera información y

estadísticas sobre la eficacia del reconocedor. Para ello emplea el fichero con la

transcripción de los archivos de audio y éste se toma como referencia para compararlo

con los resultados logrados con el reconocedor.

Se hicieron pruebas de decodificación con los mismos archivos de audio

utilizados para el entrenamiento, obteniendo los siguientes resultados:

====================== HTK Results Analysis =======================
SENTENCES: %Correct = 98.67 [H=148, S=2, N=150]
WORDS: %Correct = 99.62, Acc=99.62 [H=525, D=0, S=2, I=0, N=527]

 2.5.2 Ejecución del reconocedor en vivo.

El reconocedor, además de funcionar en modo offline, puede ejecutarse en modo

online, tomando como señal de entrada la generada por un dispositivo de entrada como

puede ser un micrófono. Este es el modo de ejecución que interesa para este proyecto.

Será necesario escribir otro fichero de configuración que contendrá los parámetros del

anterior más los siguientes:

Waveform capture
SOURCERATE=625.0
SOURCEKIND=HAUDIO
SOURCEFORMAT=HTK
AUDIOSIG=2

Ya sólo basta con ejecutar HVite sin especificarle archivos de entrada ni de

salida. Antes de comenzar a hablar, hay que pulsar la combinación de teclas ctrl. + c.

52

Cuando se termine de pronunciar la frase, se vuelve a pulsar la misma combinación.

Seguidamente se mostrará por pantalla lo que el sistema ha reconocido.

3. Desarrollo de la aplicación.

La aplicación gráfica creada simula una vivienda domótica que incorpora el

reconocedor de voz obtenido para recibir las órdenes del usuario y mostrarlas en forma

de animación gráfica por pantalla.

 Para el desarrollo de la aplicación se ha tenido en cuenta el uso de herramientas

gratuitas, lo que permite grandes ahorros en licencias y por lo tanto abaratamiento

durante el desarrollo del producto final en caso de venta o implantación. El conjunto de

herramientas de trabajo empleadas en este proyecto se componen de software HTK, API

de desarrollo Julius, librería gráfica OpenGL y todo el conjunto de librerías necesarias

para la gestión de ficheros, comunicación entre hilos, entre otras. En este proyecto se

también se ha empleado la interfaz para desarrollo de aplicaciones llamada

Code::Blocks ya que facilita la integración de librerías, especialmente las gráficas.

3.1 Adaptación de los modelos acústicos para su uso con Julius.

Antes de poder realizar acciones de reconocimiento con Julius y empezar el

desarrollo de una aplicación de reconocimiento de voz, debemos preparar el sistema

para ello incluyendo los modelos de lenguaje y modelos acústicos.

Julius necesita que la gramática y el diccionario estén escritos en un formato

específico. Para ello, incorpora una serie de herramientas que permiten convertir la

gramática y el diccionario escritos con HTK en el formato exigido por Julius. Al

finalizar dicha conversión, todos los archivos temporales pueden ser eliminados,

conservando únicamente aquellos que contienen la gramática y el diccionario en el

formato de Julius.

53

Para que Julius pueda realizar acciones de reconocimiento, también necesita los

ficheros que contienen los modelos acústicos entrenados con HTK y otro con un listado

de todos los modelos. A diferencia de los anteriores, éstos no necesitan ser adaptados a

otro formato.

De igual modo que HTK, Julius también necesita su propio fichero de

configuración para poder realizar las acciones de reconocimiento y que se crea de forma

manual. Para comprobar el funcionamiento y rendimiento de los modelos acústicos con

Julius, se configura de modo que trabaje desde ficheros de audio tal y como se hizo

anteriormente con HTK. Pero para trabajar directamente con la aplicación es necesario

especificar el tipo de entrada externa con mic en el parámetro input. Por lo tanto el

fichero de configuración para este proceso tendrá el siguiente contenido:

-dfa domotica.dfa
-v domotica.dict
-h hmacs
-hlist hmmlist
-penalty1 5.0
-penalty2 20.0
-iwcd1 max
-gprune safe
-b2 200
-sb 200.0
-iwsp
-iwsppenalty -70.0
-smpFreq 16000
-input mic
-walign

Se puede configurar el archivo anterior con muchas más opciones. Todas ellas

las podemos encontrar en el manual de Julius.

 Una vez finalizados con éxito todos los pasos anteriores, el Julius ya está listo

para ejecutarse como herramienta de reconocimiento de voz desde el Terminal. Hay que

tener en cuenta que la eficacia del reconocimiento depende en gran medida de la

precisión de los modelos acústicos generados.

3.2 Creación de la aplicación de reconocimiento de voz con Julius.

 Julius no es solamente una aplicación de reconocimiento de voz, también

incluye su propia API de desarrollo programada en C.

54

Julius nos suministra un código de ejemplo, llamado julius-simple, utilizando las

llamadas a las funciones de la API que incorpora. Julius-simple tan solo sirve de

referencia para crear una aplicación. La aplicación de reconocimiento de voz de este

proyecto se ha creado basándose en las llamadas a las funciones de la API que aparecen

en el código de dicho ejemplo.

La idea principal de esta aplicación es recibir una entrada de audio y empleando

los modelos acústicos y los algoritmos necesarios, programados e incluidos en la API de

Julius, identificar la orden a ejecutar.

Antes de nada hay que indicar que tipo de información se suministra a la

aplicación, esto se hace mediante la función j_config_load_file_new(), a la cual se le

proporciona el fichero de configuración de Julius, que posee principalmente los

parámetros para especificar si se van a realizar acciones de reconocimiento sobre

archivos de audio almacenados en disco, o bien un reconocimiento en vivo a través de

un micrófono y todos los ficheros necesarios para llevar a cabo el reconocimiento de las

frases. Se hace tal distinción porque la forma de procesar los datos en cada uno de los

casos es distinta. En lo referente a archivos de audio, el programa recorre la lista de

archivos también nombrada en el fichero de configuración con la bandera -filelist.

Inicialmente la aplicación de reconocimiento de voz crea el canal de

comunicación con el simulador y lo ejecuta para que éste pueda conectarse a dicho

canal. A continuación se crean las instancias para el reconocimiento según sea el modo

de ejecución del programa, indicado en el fichero de configuración, y se cargan todos

los archivos necesarios para llevar acabo el reconocimiento. Seguidamente, se registran

las funciones callback necesarias y se inicializa el dispositivo y la entrada de audio que

se va a utilizar.

Llegados a este punto la aplicación ya está preparada para empezar el

reconocimiento de voz. El procedimiento que sigue a dicho proceso se realiza con las

funciones que incluye la API de Julius, así nuestra aplicación sólo ha de esperar en un

bucle infinito a que el usuario mencione una acción. Esto es posible dado que julius

incorpora un detector de silencio, de modo que el usuario, a diferencia de trabajar con

HTK, no ha de hacer nada antes de pronunciar la frase que va a ser reconocida.

55

Luego, una vez ha sido procesada la información y se han obtenido los datos

derivados del proceso de reconocimiento, se almacena un valor único en toda la

aplicación que identifica cada una de las frases que admite el reconocedor. Dicho valor

será enviado a la aplicación gráfica para reproducir la animación correspondiente.

En una ejecución normal de la aplicación, es decir, con el reconocimiento en

vivo desde el micrófono, el programa no finaliza nunca. Si se desea terminar su

ejecución el usuario debe forzarla. Sin embargo, cuando la aplicación trabaja desde

ficheros de audio, la aplicación se cierra automáticamente al terminar el reconocimiento

del último fichero cerrando la comunicación con el simulador y avisándole que también

debe finalizar.

Las funciones de callback son llamadas automáticamente cuando se produce el

evento asociado a ellas. Dichas funciones son: en la espera de una entrada de audio, al

iniciar la entrada de audio y cuando ya se tiene el resultado del reconocimiento. La

primera de ellas prepara el dispositivo de entrada de la señal acústica. La segunda

recoge la señal y la prepara para su reconocimiento. La última de ellas realiza el

reconocimiento en si y se comunica con el simulador para enviar el código

correspondiente a la frase identificada.

3.3 Creación de la interfaz gráfica.

 La interfaz gráfica desarrollada permite al usuario visualizar una vivienda

tridimensional donde se reproducen en forma de animación gráfica las órdenes

previamente identificadas por el reconocedor de voz.

 Para la creación de dicha interfaz se parte del plano de una casa situándola en el

cuadrante positivo del eje de coordenadas del mundo virtual generado. Con esto se

simplifica la situación de objetos, luces y el punto de vista, eliminando cualquier

posición con coordenadas negativas. La imagen 5.1 muestra la planta de la vivienda y

las medidas empleadas para este proyecto.

56

Figura 5.4: Mapa de la vivienda visualizada en el simulador.

 Basándose en el plano anterior, la aplicación tiene un procedimiento dedicado

para dibujar todo el conjunto de paredes, puertas, ventanas y muebles; asignándoles a

todos ellos la textura más adecuada, las cuales han sido cargadas en memoria

anteriormente con los parámetros correspondientes. Para un mayor control del dibujo de

paredes, puertas y ventanas; éste se traza mediante polígonos simples, especificando a

OpenGL las coordenadas de los vértices de dichos polígonos. Al mismo tiempo, en cada

vértice se hace referencia a la coordenada de textura correspondiente para así generar un

mosaico uniforme de la textura empleada en cada momento.

Para las puertas y ventanas, existe un vector que controla el estado en el que se

encuentran, abiertas o cerradas. Inicialmente se encuadran todas cerradas. De igual

modo, las luces inicialmente también se encuentran apagadas, excepto la luz ambiental

necesaria para visualizar la escena y que no es accesible al usuario. En cambio, los

aire acondicionado

100

100

100

80

110

80

10

100

100

100

230 230 40 60 40

230 230 30 80 30

80

120

120

10
10

57

muebles que se visualizan, en general no sufren ninguna transformación, simplemente

sirven para ubicar al usuario dentro de la casa y comprobar que también se ha

identificado correctamente la habitación donde el usuario quiere que se realice su

acción.

Una vez se visualiza toda la escena, desde el exterior de la casa, la cámara y el

campo de vista se desplazan uniformemente hacia el interior de la vivienda y se

detienen en el pasillo a la espera de recibir una orden para ser ejecutada.

De igual modo, cuando el simulador recibe una acción para ser ejecutada la

cámara se dirige a una ubicación idónea para ver por pantalla la orden mencionada por

el usuario. Si la posición y orientación de la cámara ya son buenas, no se realizará

ningún desplazamiento. Para el control de la luces no es necesario ningún

desplazamiento, puesto que se enciende o apaga el foco de luz de la sala en la que se

encuentra el usuario.

Una vez está situado el punto de vista se procede a la reproducción de la

correspondiente animación gráfica o cambio en la escena. En este proyecto los únicos

objetos que pueden sufrir cambios son, las luces, puertas, ventanas, radiador, aparato de

aire acondicionado y termostato. Al finalizar el cambio o animación gráfica, la

aplicación se queda en espera de recibir una nueva acción.

En una ejecución normal de la aplicación, es decir, con el reconocimiento en

vivo desde el micrófono, el programa no finaliza nunca. Si se desea terminar su

ejecución el usuario debe forzarla. Sin embargo, cuando la aplicación trabaja desde

ficheros de audio, la aplicación se cierra automáticamente al terminar el reconocimiento

del último fichero.

La secuencia de ejecución del simulador cuando trabaja con reconocimiento en

vivo consta de un bucle infinito y con una serie de funciones que se ejecutan según un

temporizador. El siguiente esquema muestra una secuencia de ejecución simple del

programa.

58

1. Comprobar que la aplicación recibe los parámetros correctos para la conexión con el
proceso reconocedor (nombre del terminal y puerto). Sino, detener la aplicación.

2. Crear el socket y conectarlo con el proceso reconocedor. Si se produce algún error,
detener la aplicación

3. Creación de la ventana de usuario.
4. Inicializar y cargar los valores predeterminados de la escena tales como iluminación,

texturas y objetos tridimensionales.
5. Pintar la escena.
6. Iniciar el temporizador.
7. Cargar el trayecto adecuado para el movimiento inicial de la cámara.
8. Desplazar la cámara siguiendo el trayecto inicial.
9. Esperar la recepción de una nueva acción a reproducir. Si se produce algún error durante

la transmisión de dicha información, ignorarlo.
10. Cargar el trayecto adecuado según la acción a reproducir y trasladar la cámara.
11. Reproducir la acción recibida.
12. Activar de nuevo el temporizador.
13. Volver al punto 9.
99. Cuando finaliza el proceso reconocedor, cerrar socket y finalizar la aplicación.

3.3.1 Imágenes y animaciones.

Como se ha mencionado anteriormente, la interfaz gráfica de usuario consta de

un mundo virtual donde se simula una vivienda domótica. Al tratarse de una aplicación

gráfica, el usuario ve por pantalla un entorno virtual de una vivienda. Como las posibles

acciones que se pueden realizar son recibidas en formato acústico mediante un

micrófono, la aplicación no tiene ningún formulario ni menú donde el usuario pudiese

interactuar con la aplicación.

De este modo para que la aplicación sea más real, visual, dinámica e intuitiva, se

han empleado variedad de imágenes tridimensionales y bidimensionales (o texturas)

además de las animaciones gráficas que se reproducen automáticamente cuando el

usuario formula una frase.

En cuanto a las imágenes tridimensionales, se han empleado ficheros con

extensión .3ds, ficheros generados con la aplicación 3D Studio Max y que representan

objetos complejos, con información de los vértices, caras, texturas, materiales, luces,

cámaras y punto de vista entre otros. La estructura resumida de estos ficheros es la

siguiente:

MAIN CHUNK 0x4D4D
 3D EDITOR CHUNK 0x3D3D
 OBJECT BLOCK 0x4000
 TRIANGULAR MESH 0x4100
 VERTICES LIST 0x4110
 FACES DESCRIPTION 0x4120
 FACES MATERIAL 0x4130
 MAPPING COORDINATES LIST 0x4140

59

 SMOOTHING GROUP LIST 0x4150
 LOCAL COORDINATES SYSTEM 0x4160
 LIGHT 0x4600
 SPOTLIGHT 0x4610
 CAMERA 0x4700
 MATERIAL BLOCK 0xAFFF
 MATERIAL NAME 0xA000
 AMBIENT COLOR 0xA010
 DIFFUSE COLOR 0xA020
 SPECULAR COLOR 0xA030
 TEXTURE MAP 1 0xA200
 BUMP MAP 0xA230
 REFLECTION MAP 0xA220
 [SUB CHUNKS FOR EACH MAP]
 MAPPING FILENAME 0xA300
 MAPPING PARAMETERS 0xA351
 KEYFRAMER CHUNK 0xB000
 MESH INFORMATION BLOCK 0xB002
 SPOT LIGHT INFORMATION BLOCK 0xB007
 FRAMES (START AND END) 0xB008
 OBJECT NAME 0xB010
 OBJECT PIVOT POINT 0xB013
 POSITION TRACK 0xB020
 ROTATION TRACK 0xB021
 SCALE TRACK 0xB022
 HIERARCHY POSITION 0xB030

Dado que estos ficheros tienen una estructura compleja, se ha utilizado la API de

desarrollo de la librería lib3ds, de código abierto y programada en C, para leer los

objetos tridimensionales y presentarlos por pantalla.

A continuación se listan todos los objetos que se visualizan en la aplicación

gráfica:

. Mesa de comedor y sillas.

. Cama.

· Cocina.

· Cuarto de baño.

· Sofá.

· Televisor.

· Lámparas.

· Radiador.

· Aparato de aire acondicionado.

· Termostato.

 Sin embargo, las distintas acciones que permite la aplicación gráfica se reciben a

través del micrófono y una vez identificadas son visualizadas en forma de animación

gráfica tridimensional para que el usuario vea que realmente el sistema entendió lo que

60

él dijo. Las posibles animaciones que se visualizan son apertura y cierre de puestas y

ventanas, las cuales se generan en el momento de recibir la orden incrementando o

recudiendo el ángulo de apertura progresivamente y empleando las funciones que

proporciona OpenGL para aplicar transformaciones geométricas.

Asimismo, antes de reproducir una animación o realizar algún cambio en la

escena, la cámara y el punto de vista se trasladan, des del punto donde se había

reproducido la acción anterior, hasta la nueva ubicación donde se podrá visualizar

correctamente la nueva orden. De igual modo, al iniciar la aplicación también se

desplaza la cámara hacia el interior de la vivienda y se queda en el pasillo a la espera de

recibir una acción.

El procedimiento que se encarga de los trayectos, para generar los caminos que

realiza la cámara, se basa en el cálculo de splines. Éste tiene preestablecidos los puntos

de control y el parámetro de la curva, solo debe cargarlos en memoria antes de empezar.

Finalmente, calculando la derivada de cada una de las posiciones por las que se desplaza

la cámara, se obtiene el punto de vista correspondiente en cada instante.

Si la posición y orientación de la cámara ya son buenas, no se realizará ningún

desplazamiento. Para el control de la luces no es necesario ningún desplazamiento,

puesto que se enciende o apaga el foco de luz de la sala en la que se encuentra el

usuario.

Las luces se controlan con las funciones que incorpora OpenGL para ello. Hay

que tener en cuenta que los focos de luz son fijos y están definidos en la aplicación con

unos parámetros adecuados para una buena visualización. El único cambio que sufrirán

las luces durante la ejecución del programa es el hecho de estar activadas o desactivadas

según las acciones que emita el usuario.

El radiador y el aparato de aire acondicionado son objetos tridimensionales que

no tiene asignadas ninguna textura. Estos cambian su aspecto en función del estado en

que se encuentran, ya sea apagado o encendido, y con ayuda de las herramientas que

proporciona OpenGL es sencillo hacer que cambien de color para que sea más intuitivo

para el usuario. Sin embargo, los cambios en el termostato se realizan cambiando la

61

textura vinculada al objeto y así ver con mayor claridad que la temperatura fijada es la

mencionada por el usuario.

Finalmente, cuando una frase no está incluida en la gramática, el simulador

recibe un valor que identifica como tal y el cual muestra un mensaje informativo por

pantalla para que el usuario sea consciente de lo ocurrido y pueda repetir la orden o

mencionar una frase permitida.

4. Conexiones entre hilos.

La aplicación, como se ha mencionado anteriormente consta de dos partes bien

diferenciadas, el reconocedor de voz y el simulador de domótica. Ambas se ejecutan en

dos procesos independientes el uno del otro. El primer proceso o proceso padre es el

que incorpora el reconocedor de voz, y el proceso hijo es el simulador.

Para interconectar ambos procesos se ha utilizado una conexión por sockets

donde sólo se envía información en un único sentido, servidor-cliente. Cuando el

proceso padre recibe una entrada de audio procede a su interpretación. Tanto si se trata

de una frase reconocida como si no, el proceso padre envía un código único para cada

situación y frase válida al proceso hijo a través del socket. El proceso hijo espera a

recibir la orden que le envía el proceso padre a través del socket, y ejecuta la animación

gráfica correspondiente al valor recibido, sin enviar confirmación ni cualquier otro tipo

de mensaje al proceso padre.

5. Control de errores.

Como en toda aplicación informática, ésta también puede generar errores y por

lo tanto deben ser tratados como tales y actuar en consecuencia para que no interfieran

en la ejecución normal de la aplicación.

Los principales errores que pueden darse en la aplicación sólo pueden ser

debidos a no reconocer correctamente una de las acciones mencionadas por el usuario.

62

Entonces diferenciamos dos posibles casos: que el reconocedor de voz no entienda la

frase como una acción válida, y que el reconocedor interprete una frase distinta a la

formulada por el usuario.

 En el primer caso, el reconocedor de voz no entiende la frase como una acción

válida. En este case es el mismo reconocedor de voz el que recoge el error y lo gestiona

como si se tratara de una frase correcta. Para que el usuario sea consciente del error

producido, la aplicación gráfica, al descifrar el valor recibido, interpreta correctamente

el error que se produjo durante el proceso de reconocimiento; y en lugar de ejecutar una

animación muestra un mensaje de texto al usuario informándole que la frase

mencionada no corresponde con ninguna de las acciones permitidas.

 En cambio, la segunda situación es un tanto peculiar, puesto que el reconocedor

sí que interpretó la frase, pero en este caso la interpretación no es correcta. Es un error

muy difícil de tratar ya que durante una ejecución del reconocedor en vivo no tenemos

ningún método para comparar el resultado obtenido por el mismo con el resultado que

debiera ser; como sí ocurre en el caso de las grabaciones, donde disponemos de un

fichero de texto con las transcripciones de cada una de las grabaciones. Puesto que la

aplicación se ejecuta mayoritariamente en vivo, ésta no interpreta la situación como un

error y por lo tanto la aplicación gráfica recibe el código de la frase reconocida (aunque

no sea la correcta) y ejecuta la animación correspondiente a ésta.

 También existen otros tipos de errores que puede detectar la aplicación como el

caso de no poder leer un fichero, bien de textura u objeto 3ds, la conexión de los sockets

y la transmisión de datos a través de ellos. Todos ellos son controlados por la aplicación

e informan al usuario en caso de producirse.

 La lectura de ficheros, sean del tipo que sean, no suele generar errores a no ser

que el fichero esté corrupto, el formato no corresponda al adecuado o no se encuentre en

la ruta especificada. Tales errores no pueden ser corregidos desde la aplicación una vez

se está ejecutando. Para no interrumpir la aplicación en caso de producirse un error,

cuando se trata de un fichero de imagen o textura, directamente se omite dicho fichero y

se pasa al siguiente. En cambio, si el error se produce al leer el fichero de configuración

63

de Julius, se comunica tal error al usuario y la aplicación se detiene puesto que no se

podrá llevar a cabo el reconocimiento de las distintas frases.

 En cuanto a los sockets, si el error se produce durante la conexión, se informa al

usuario del problema ocurrido y se detiene la aplicación, ya que no se podrán recibir las

acciones a reproducir en la interfaz gráfica. Tal error es solucionado automáticamente

por el sistema operativo transcurrido un cierto tiempo, por lo que el usuario podrá

reejecutar la aplicación de nuevo y ésta funcionará perfectamente. Sin embargo, cuando

el error se produce al escribir datos en el socket, se notifica del problema al usuario y la

aplicación seguirá su ejecución. Pero, en este caso la interfaz gráfica no recibirá ningún

dato y no se ejecutará la orden, por lo que el usuario deberá mencionar la frase de

nuevo.

6. Juego de pruebas.

 Las primeras pruebas necesarias fueron la evaluación de los modelos acústicos

obtenidos y el funcionamiento del reconocedor en vivo. Para una primera evaluación se

emplearon nuevas grabaciones de voz de los hablantes con los que fue entrenado el

sistema. En cambio, el reconocimiento de voz en vivo fue testeado con cinco nuevos

hablantes para comprobar su robustez. Todos pronunciaron una media de 25 frases

aceptadas y 5 no reconocidas. Con todos ellos se obtuvieron resultados muy

satisfactorios ya que en el 90% de las ocasiones el reconocedor de voz entendía la

acción mencionada.

 Posteriormente se llevaron a cabo una serie de pruebas relacionadas con la

interfaz gráfica para comprobar que todas las acciones reproducidas las realizaba

correctamente. Para simplificar un poco la complejidad del simulador, solo se han

incorporado al simulador 4 habitaciones de las 6 que admite el reconocedor. Aun así, las

dos no representadas en el simulador se han considerado sinónimos de otras que si

están. Llegados a este punto se testearon todas las acciones que permite el reconocedor

(teniendo en cuanta la gramática del reconocedor y la simplificación hay 30 acciones

64

distintas), comprobando que realmente se identificaba la frase con la acción

reproducida.

Otro juego de pruebas que se hizo relacionado con la aplicación gráfica fue

comprobar que todos los trayectos que realizaba la cámara llevaban el punto de vista al

punto adecuado y de forma uniforme desde la posición anterior. Igual que ocurría

anteriormente con la reproducción de las acciones, el número de posibles trayectos

también era muy elevado (del orden de 400) así que también se optó por simplificarlos.

Inicialmente se agruparon las acciones complementarias, como por ejemplo apagar y

encender las luces, reduciendo a más de la mitad el número de trayectos. Aun así,

seguía siendo bastante elevado y se simplificó un poco más aprovechando en un mismo

punto de vista el radiador y el termostato, la venta del comedor y el aire acondicionado,

y el pasillo inicial y los controles de las puertas. Con esto se consiguió simplificar de

aproximadamente 150 trayectorias a tan sólo 31, pero que hubo que comprobar.

65

Capítulo 6

CONCLUSIONES

1. Conclusiones.

 A lo largo de este proyecto se han ido consiguiendo los diferentes objetivos que

se habían marcado al principio. También se han adquirido nuevos conocimientos acerca

del reconocimiento del habla por computador y su integración con otras aplicaciones,

además de aprender otros métodos de programación gráfica.

 Después de elegir la herramienta de trabajo HTK, se han a construido y

entrenado unos modelos acústicos para las unidades fonéticas que componen nuestra

gramática. Ha surgido la dificultad del número de hablantes y de grabaciones necesarias

para generar modelos robustos, por lo que finalmente se ha optado por un reconocedor

más limitado, es decir, para los usuarios con los que no se han entrenado los modelos

acústicos la tasa de aciertos es inferior.

 Tras conseguir un reconocedor suficientemente robusto para las necesidades de

este proyecto, se prosiguió a la creación de la aplicación incorporando el reconocedor ya

creado y desarrollando desde cero toda una interfaz gráfica tridimensional que simula

una vivienda domótica. Cabe destacar que la única interacción del usuario con la

aplicación es mediante comandos de voz, el resto se gestiona automáticamente desde el

propio programa. A continuación se han generado todas las acciones que recibe la

aplicación des de el reconocedor.

 Finalmente, se han realizado gran variedad de pruebas para comprobar que el

funcionamiento de todo el sistema es correcto y no se producen fallos en ningún punto

de la ejecución. Desgraciadamente, se ha detectado algún fallo durante el proceso de

reconocimiento de las frases; especialmente si el usuario no es uno de los hablantes con

66

los que se entrenó el sistema. A pesar de ello, se puede afirmar que se han conseguido

los objetivos propuestos al principio y que los resultados obtenidos han sido

satisfactorios.

2. Posibles mejoras.

Como en la mayoría de proyecto, a éste también se pueden añadir mejoras y

ampliaciones. En un sistema domótico real existen muchas más acciones posibles a

realizar de las contempladas en este proyecto. Además, puede ser utilizado por

cualquier persona aunque el sistema no haya sido entrenado con su voz. Con el fin de

aumentar la eficacia y aplicabilidad del sistema, podrían llevarse a cabo varias mejoras.

En cuanto a reconocimiento del habla una de estas mejoras, sería ampliar el

lenguaje que acepta el reconocedor de voz y con ello todas las animaciones gráficas y

cambios en la escena, además de mejorar la tasa de aciertos para todos los usuarios

habituales y esporádicos entrenando los modelos acústicos con grabaciones de muchos

más hablantes y más variados. También se podría utilizar otra tecnología distinta de

reconocimiento de voz e implementar la identificación del hablante. Con la detección

del orador podemos añadir un filtro de manera que si el hablante no es uno de los

autorizados no se realice la acción.

Otra mejora para el simulador de domótica sería añadir más efectos a las

animaciones que ya hay. Por ejemplo un efecto de onda de aire caliente encima de los

radiadores; cintas que se mueven en función de la potencia del aire acondicionado; o

cambio gradual de los dígitos del termostato. Incluso se puede mejorar la interacción

entre el usuario y la aplicación añadiendo la posibilidad de explorar la casa libremente

manejando el ratón o el teclado, y así prescindir de los desplazamientos automáticos de

la cámara. Asimismo se podría aumentar el tamaño de la casa y añadirle más

habitaciones, e incluso espacios exteriores donde también actuaría la aplicación.

67

BIBLIOGRAFIA

Alhena. “Domótica x10 por voz”. Web de la empresa Alhena, distribuidor de productos

domóticos. http://www.alhenaing.com/index.php

Último acceso el 11 noviembre de 2009.

Bernal Bermúdez, Jesús; Bobadilla Sancho, Jesús; Gómez Vilda, Pedro.

“Reconocimiento de voz y fonética acústica”. Ra-ma, 2000.

Bristol, Greoff. “Electronic speech recognition. Techniques, technology and

applications”. Collins, 1986. First edition.

Casacuberta Nolla, Francisco; Vidal Ruiz, Enrique. “Reconocimiento automático del

habla”. Marcombo. Boixareu editores, 1987.

Code::Blocks Team. “Code::Blocks”. Web oficial del programa Code::Blocks.

http://www.codeblocks.org/

Último acceso el 11 noviembre de 2009.

Colás Pasamontes, José. Web del proyecto de un sistema de comprensión del habla.

http://elies.rediris.es/elies12/cap241.htm

Último acceso el 11 noviembre de 2009.

CUED and Entropic. “HTK3” Web oficial de HTK. http://htk.eng.cam.ac.uk/

Último acceso el 11 noviembre de 2009.

Hidobro Moya, Jose Manuel; Millán Tejedor, Ramón Jesús. “Domótica. Edificios

inteligentes”. Creaciones copyright, 2004.

Jelinek, Frederick. “Statistical methods for speech recognition”. Cambridge, Mass. MIT

Press, 1998.

68

Julius development team. “Open-Source Large Vocabulary CSR Engine Julius”. Web

oficial de Julius. http://julius.sourceforge.jp/en_index.php

Último acceso el 11 noviembre de 2009.

Julius development team. “JuliusLib API ”. Web oficial de la API de Julius.

 http://www.sp.nitech.ac.jp/~ri/julius-dev/doxygen/julius/4.0/en/group__jfunc.html

Último acceso el 11 noviembre de 2009.

Keller, Eric. “Fundamentals of speech systhesis and speech recognition. Basic concepts,

state-of-the-art and future challenges”. Jhon Wyley & Sons, 1994.

Kyprianidis, Jan Eric. “Lib3ds 2.0”. Web oficial de la librería lib3ds.

http://www.lib3ds.org/

Último acceso el 11 noviembre de 2009.

Lin, Dekang. “Intelligent Systems: Introduction to Artificial Intelligence”. Web de un

curso de inteligencia artificial, incluye reconocimiento del habla con modelos ocultos de

Harkov. http://www.cs.ualberta.ca/~lindek/366/index.htm

Último acceso el 11 noviembre de 2009.

Llamas Bello, César; Cardeñoso Payo, Valentín. “Reconocimiento automático del

habla. Técnicas y aplicaciones.” Serie: Ciencias nº16. Secretario de publicaciones e

intercambio científico. Universidad de Valladolid, 1997. 3ª edición.

Lleida Solano, Eduardo. “Tecnologías del habla”. Web dedicada a explicar los sistemas

tecnológicos relacionados con el habla.

http://physionet.cps.unizar.es/~eduardo/investigacion/voz/voz.html

Último acceso el 11 noviembre de 2009.

M.A Spaans. “On Developing Acoustic Models Using HTK ”. Delft University of

Technology, 2004.

69

Pérez Pavón, Elia Patricia. “Construcción de un reconocedor de voz utilizando Sphinx y

el corpus DIMEx100”. Universidad Nacional Autónoma de México, Facultad de

ingeniería, 2006.

Proinssa S.L.L. “Domótica para la tercera edad y personas con discapacidad.

Control por voz del entorno”. Web de la Proinssa, especializada en sistemas domóticos.

http://www.proinssa.com

Último acceso el 11 noviembre de 2009.

Rabiner, Lawrence R. “Fundamentals of speech recognition”. Prentice Hall, 1993.

Santos-García, Gustavo. “Inteligencia artificial y matemática aplicada: Reconocimiento

automático del habla” Serie: Ciencias nº19. Secretario de publicaciones e intercambio

editorial. Universidad de Valladolid, 2001. 2ª edición.

Vitulli, Damiano. “Tutorial 4: 3ds loader”. Tutorial sobre la estructura y manejo de

ficheros 3ds. http://www.spacesimulator.net/tut4_3dsloader.html

Último acceso el 11 noviembre de 2009.

70

Firmado: Héctor Delgado Flores

Bellaterra, 12 de junio de 2008.

71

AGRADECIMIENTOS

Este proyecto pone punto y final a mi etapa universitaria. Han sido unos años en

los que he disfrutado de esta carrera, de muchas de sus asignaturas y del ambiente de

esta universidad. Hoy comienza el recuerdo de unos años en lo que he conocido a

muchas personas, con los que sin duda las clases y laboratorios no hubieran sido lo

mismo.

Quiero comenzar dando mi más sincero agradecimiento a Javier Serrano por

haberme dirigido este proyecto final de carrera, por haber confiado en que podía

hacerlo, por todas sus atenciones, por todo el tiempo que me ha dedicado y

especialmente por su apoyo.

También me gustaría destacar la paciencia que ha tenido conmigo Enric Martí Y

Hector Flores, sufridores constante de mis preguntas para la resolución de los distintos

problemas surgidos durante el desarrollo de todo el proyecto.

En general, a todos los profesores de la EUIS que de una u otra manara me han

ayudado a realizar este trabajo, que aunque no les mencione de forma explicita, no les

puedo negar un sincero agradecimiento.

Finalmente, no puedo dejar de agradecer la comprensión de mis familiares y

amigos, puesto que ellos han sido quienes más han tenido que aguantarme en mis malos

momentos a lo largo de la elaboración de este proyecto y que me ayudaron a encontrar

el camino cuando pensé que estaba perdida.

A todos, muchas gracias.

72

