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Abstract 

 

En el presente trabajo se ha desarrollado el primer aptasensor (biosensor de aptámero) en nuestro 

grupo de investigación, Grup de Sensors i Biosensors de la Universidad Autònoma de Barcelona. 

En concreto se han desarrollado dos aptasensores para la detección de la proteína trombina, uno 

basado en la inmovilización de aptámeros por adsorción física, y otro basado en la inmovilización 

de aptámeros por enlace covalente mediante la reacción EDAC-NHS. El aptasensor utiliza la 

afinidad específica de la cadena de DNA (aptámero) por la proteína con la que interacciona. Los 

cambios de carga y estéricos del complejo aptámero proteína alteran la capacidad y la resistencia 

de transferencia interfacial de electrones en la superficie del electrodo. El principio de detección se 

basa en la detección de cambios de estas propiedades de interfase del electrodo con el marcador 

redox [Fe(CN)6]
3- / [Fe(CN)6]

4-, utilizando mediciones de Espectroscopia Electroquímica de 

Impedancia. El aptasensor basado en adsorción física del aptámero mostró una respuesta lineal a 

trombina en el rango de 7.5 a 75 pM y un límite de detección de 5pM, después de optimizar todas 

las condiciones experimentales. Posteriormente se estudió la especificidad del sistema respecto 

proteínas potencialmente interferentes presentes en suero sanguíneo, obteniendo cierta 

interferencia por parte de fibrinógeno e inmunoglobulina G, pero no por parte de albúmina. El 

sensor demostró ser regenerable mediante la ruptura del complejo formado entre el aptámero y la 

trombina con una solución de NaCl 2.0 M, aumento de la temperatura y agitación. El segundo 

aptasensor, basado en enlace covalente del aptámero mostró una respuesta lineal a trombina y 

limite de detección mejor que el anterior sensor; de 2.5 a 100 pM y 1.5 pM respectivamente. 

Aunque cabe destacar que este aptasensor está siendo optimizado actualmente. 
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1. Introducción 

 

1.1. Sensor Químico 

Un sensor químico es un dispositivo que como resultado de una interacción química con el analito, 

transforma información química de tipo cualitativa o cuantitativa en una señal medible y útil 

analíticamente1. Los sensores químicos se caracterizan por sus dimensiones reducidas, robustez, 

facilidad de uso y capacidad de suministrar información analítica fiable de manera continua. 

Los sensores químicos normalmente están formados por dos componentes básicos inter-

conectados: un sistema de reconocimiento molecular (receptor) y un transductor físico-químico2,3. 

El receptor es capaz de reconocer selectivamente un determinado analito. Como consecuencia de 

este reconocimiento se produce una señal primaria de tipo térmica, eléctrica, óptica o másica. El 

transductor es el responsable de transformar dicha señal en otra de tipo eléctrica. La señal eléctrica 

producida aporta información analítica sobre la muestra, el proceso o el sistema que se investiga4. 

 

Figura 1. Esquema del funcionamiento de un sensor químico. 

Los sensores se pueden clasificar, en  función de la propiedad física que mida el transductor 4-6, en: 

 Sensores ópticos7: sensores basados en fibras ópticas, en resonancia de plasmones 

superficiales y sensores de onda evanescente. 

 Sensores piezoeléctricos6: sensores basados en onda acústica de volumen  o superficial. 

 Sensores electroquímicos y eléctricos6: sensores amperométricos, potenciométricos, 

impedimétricos, o de efecto de campo (ISFET)2. 

En el próximo apartado, se desarrollará al detalle la técnica utilizada en este trabajo para 

realizar las mediciones analíticas. 
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1.2.  Espectroscopia Electroquímica de Impedancia 

 

La  Espectroscopia Electroquímica de Impedancia, conocida como EIS (Electrochemical 

Impedance Spectroscopy), es una técnica relativamente moderna que apareció en la década de los 

70. El término impedancia debe su nombre a Olivier Heaviside, quien en el 1886 adaptó los 

números complejos al estudio de los circuitos eléctricos. 

Este método consiste en la medida de la impedancia que presenta un sistema electroquímico a 

diferentes frecuencias. La impedancia eléctrica mide la oposición de un circuito o de un 

componente eléctrico al paso de una corriente eléctrica sinusoidal alterna8,9. 

La impedancia electroquímica se obtiene al aplicar un potencial AC a la celda electroquímica bajo 

estudio y  medir la corriente a través de la celda. La señal aplicada es de tipo coseinodal. Así por 

ejemplo, se puede aplicar sobre el sistema una señal de potencial alterno10:     

   

ࡱ ൌ ࢕ࡱ .ሺ૑ܛܗ܋  ሻܜ

Donde E es el potencial aplicado a tiempo t, Eo es la amplitud de la señal, ω ൌ  es la frecuencia ݂ߨ2

angular, y  f es la frecuencia expresada en Hertzs (Hz). 

Variando la frecuencia, ω, de esta señal de potencial, Eo, de cero a infinito, se obtiene la respuesta 

del sistema, esta vez en intensidad de corriente, I. La respuesta en régimen permanente de un 

sistema lineal a una señal de excitación de tipo coseinodal, en otra señal coseinodal de la misma 

frecuencia que la primera, pero que difiere  en los valores de su amplitud y ángulo de fase10. 

                                                   

ࡵ ൌ ࢕ࡵ .ሺ૑ܛܗ܋ ܜ െ ૎ሻ 

A partir de las mediciones de desfase ߮  y de la amplitud de la respuesta, Zo, es posible obtener la 

impedancia de transferencia electroquímica del material estudiado: 

ࢆ ൌ
۳ሺܜሻ
ሺ࢚ሻࡵ

ൌ
ܗ۳ ሺ૑ܛܗ܋  · ሻܜ

ܗ۷ ሺ૑ܛܗ܋ · ܜ െ  ૎ሻ
ൌ ܗ܈

ሺ૑ܛܗ܋ · ሻܜ
ሺ૑ܛܗ܋ · ܜ െ ૎ሻ

 

Según la expresión de Euler: 

   

.ሺ࢐ܘܠ܍ ࣐ሻ ൌ ࣐ܛܗ܋ ൅  ࣐ܖܑܛܒ
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Es posible expresar la impedancia en aritmética compleja. El potencial y la señal de corriente son 

descritos como: 

ሺ࢚ሻࡱ ൌ  ࢕ࡱ · ሺ࢐࣓ܘܠ܍ · ࢚ሻ y  ሺ࢚ሻࡵ ൌ ࢕ࡵ · ܘܠ܍ ሺ࢐࣓ · ࢚ െ ࢐࣐ሻ 

 

La impedancia  entonces, se representa como un número complejo: 

 

ࢆ ൌ
۳ሺܜሻ
ሺ࢚ሻࡵ

ൌ ૎ሻܒሺܘܠ܍ ܗ܈ ൌ ૎ܛܗ܋ሺܗ܈ ൅ ܒ ૎ሻܖܑܛ ൌ ܚ܈ ൅  ܑ܈ܒ

 

Entre las diferentes representaciones gráficas de los datos impedimétricos, la más común es la 

representación  del diagrama de Nyquist, en la que la parte imaginaria de la impedancia -Zi, se 

representa frente a la parte real Zr. En esta gráfica cada punto corresponde a una frecuencia 

diferente. Los resultados también pueden ser interpretados mediante diagramas de Bode, en los 

cuales el logaritmo de la magnitud de la impedancia (݈݃݋|ܼ|ሻ  y el desfase (φሻ se grafican respecto 

al logaritmo de la frecuencia (݈߱݃݋ሻ. 

La figura 2 muestra un diagrama de Nyquist teórico, donde el vector de impedancia de módulo Z0 

forma con el eje x un ángulo que corresponde al ángulo de desfase . Los datos de baja frecuencia 

están representados en la parte derecha del diagrama, mientras que los datos de alta frecuencia 

están en la izquierda. 

 

 

 

 

 

Figura 2. Diagrama de Nyquist teórico. 

 

La interpretación de los espectros de impedancia se basa en la correlación entre los datos 

obtenidos y circuitos eléctricos, formados con elementos eléctricos básicos como resistencias, 

condensadores, inductores,…combinados entre ellos.  
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Figura 3. Diagrama de Nyquist para una reacción electródica y su circuito eléctrico equivalente  formado por 

una resistencia R1 en paralelo con un par resistencia  (R2), warburg (W), y condensador (C). 

La figura 3, muestra el diagrama de Nyquist normalmente observado con una reacción 

electroquímica ideal y el correspondiente circuito eléctrico equivalente, llamado circuito de Randles, 

formado por un condensador (C) en paralelo con una resistencia (R2), ambos en serie con otra 

resistencia (R1) (circuito R(RC)), más el término de Warburg originado en la difusión. El espectro de 

impedancia se representa por un semicírculo que comienza en el punto que corresponde al valor 

de R1, y el punto final corresponde a la suma de R1+R2. El valor de la capacidad del condensador C 

se obtiene a partir del valor máximo de impedancia imaginaria del espectro. Muchos espectros de 

impedancia  corresponden a sistemas electroquímicos que muestran equivalencia con este tipo de 

diagrama. El parámetro R1 representa la resistencia de la solución, R2 corresponde en nuestro caso 

a la resistencia de la transferencia de carga (Rct) entre la solución y la superficie del electrodo, y C 

es la capacidad de la doble capa, debida a la interfase entre el electrodo y la solución electrolítica.  

En muchos casos, debido a la complejidad electroquímica del sistema  los espectros de 

impedancia y los correspondientes circuitos eléctricos equivalentes son más complejos que el 

representado por el circuito eléctrico de Randles en la figura 3. 

Entre las aplicaciones de la técnica EIS destacan todo tipo de caracterizaciones de sistemas 

electroquímicos; los más populares son los estudios de fenómenos de corrosión11, de superficie12 y 

la asignación de mecanismos para reacciones electroquímicas13,14. Un campo de estudio en que la 

EIS ha resultado especialmente útil es el diagnóstico y optimización para sensores químicos 15,16 y 

biosensores17,18. Como comentario final, sólo se recuerda que en las medidas de impedancia, loque 

se deduce no es una parte existente y otra virtual (imaginaria) sino la presencia de desfase entre la 

señal AC de excitación y la señal AC resultante. 
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1.3.  Biosensores 

Un biosensor es un dispositivo analítico que incorpora un elemento biológico de reconocimiento 

altamente selectivo en íntimo contacto con el transductor capaz de detectar  el evento de 

reconocimiento molecular entre el analito y la molécula, transformándolo en una señal analítica, 

normalmente de tipo eléctrica4,22,23. 

El material biológico confiere la selectividad del biosensor mientras que el transductor confiere 

sensibilidad. Es por ello que es muy importante escoger bien el transductor. 

Las etapas de operación de un biosensor son las siguientes: 

1. Interacción específica del analito de la muestra con el material biológico inmovilizado. 

2. Detección de la variación de alguna propiedad física o química del sistema provocada por la 

reacción de bioreconocimiento. 

3. Procesamiento de la señal y obtención de los resultados. 

El material biológico, que puede ser muy variado22 (DNA, enzimas, bacterias, aptámeros, tejidos, 

células,…), puede inmovilizarse en el transductor de diferentes maneras23. Una primera 

clasificación distingue la inmovilización superficial que incluye la retención en membrana, adsorción 

física sobre el transductor, entrecruzamiento mediante agentes bifuncionales o enlace covalente; 

una segunda familia seria la inmovilización por atrapamiento en una matriz polimérica, entre la que 

destaca la tecnología habitual en nuestros laboratorios, los biocomposites24.  

 

1.4.  Biosensores de Aptámeros: Aptasensores 

Los aptasensores (biosensores o genosensores de aptámeros) son dispositivos capaces de 

proporcionar una señal analítica a partir del evento de unión entre una molécula diana y un 

aptámero. Combinan un elemento de reconocimiento biológico (en este caso una simple hebra de 

DNA sintética, llamada aptámero) que confiere selectividad, con un transductor que confiere 

sensibilidad  y que permite generar una señal eléctrica a partir del evento de reconocimiento.  

 

1.5.  Aptámeros 

Los aptámeros son ligandos de cadena simple de ácidos nucleicos (RNA o DNA) que tienen una 

alta afinidad y especificidad con otras moléculas que no sean ácidos nucleicos, por ejemplo 

proteínas25. Los aptámeros de ácidos nucleicos han sido denominados "anticuerpos químicos", ya 

que interactúan con sus moléculas diana con una alta afinidad y especificidad, y sus interacciones 
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unidas a las moléculas diana pueden ser amplificadas para generar una nueva biblioteca para un 

mejor reconocimiento. Este proceso se suele repetir de 8 a 12 ciclos25. 

Los aptámeros identificados por el procedimiento de selección (es decir, aptámeros de cadena 

larga) suelen tener de 80 a 100 nucleótidos. Sin embargo, no todos los nucleótidos de un aptámero 

juegan un papel crítico en la unión a su objetivo, por ello los nucleótidos no esenciales son 

eliminados. El aptámero utilizado en el presente trabajo, selectivo a la proteina trombina, es uno 

altamente estudiado y caracterizado, con una secuencia responsable del reconocimiento de 19 

bases Timina y Guanina, 5’-TTTGGGTTGGTGTGGTTGG-3’. 

 

1.6.  Trombina 

La trombina es una enzima glicoproteínica de tipo peptidasa, formada por dos cadenas de 

polipéptidos de 36 y 259 aminoácidos unidas por un puente disulfuro. Se encuentra relacionada 

con la coagulación sanguínea28.Esta proteína no se encuentra presente en la sangre, si no que se 

forma como parte del proceso de coagulación sanguíneo a partir de la protrombina. La protrombina 

necesita la presencia de iones Ca2+ y otras sustancias que se encuentran en las plaquetas y en el 

plasma, para proceder a su ruptura entre los aminoácidos Arg274-Thr275 y Arg323-Ile324, y 

producir la trombina, de peso molecular 32 KDaltons. Una vez formada posee la capacidad de 

coagular el fibrinógeno formando coágulos  en condiciones fisiológicas y trombos en patológicas29. 

Se cree que juega un papel importante en un gran número de enfermedades cardiovasculares30. 

Además, regula muchos procesos en la inflamación y la reparación del tejido de la pared de los 

vasos sanguíneos. Cuando aparece en sangre a un nivel pM indica la presencia de formación de 

trombos26. Por ello es importante evaluar esta proteína a nivel de trazas con alta sensibilidad.  

 

 

 

                                      

                    

               

                                                 Figura 5. Estructura en 3D de la trombina 
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1.7. Inmovilizaciones empleadas 

Como ya he mencionado anteriormente, las estrategias para inmovilizar aptámeros, así como otros 

materiales biológicos son muy variadas2,3, por ello, en este trabajo se han utilizado dos de ellas. 

 

1.7.1. Inmovilización por adsorción física 

 

Esta técnica consiste en la adsorción directa de aptámero en la superficie del electrodo a través de 

interacciones débiles con los sitios activos del sustrato, en este caso del composite. La adsorción 

física es el método más simple de inmovilización en superficies debido a que no requiere reactivos 

especiales ni utilización de aptámeros funcionalizados31. Las principales desventajas que presenta 

son: posibilidad de desorción del aptámero de la superficie y adsorción inespecífica en la superficie 

de electrodo por parte de la molécula diana. Debido a esta última desventaja, se puede  utilizar una 

etapa de bloqueo por medio de polietilenglicol (PEG) o Albúmina Sérica (BSA), entre otras 

sustancias, que bloquean los sitios donde no se ha producido adsorción física, aumentando así las 

prestaciones de esta técnica de inmovilización. 

 

1.7.2. Inmovilización por enlace covalente 

 

Este tipo de técnica es la más elegante y la que posee mayor eficiencia en el bioreconocimiento, a 

la vez es la más difícil de conseguir. Consiste en la formación de un enlace covalente entre el 

transductor y el reactivo inmovilizante, con la condición que el elemento de reconocimiento resulte 

con actividad y con la orientación adecuada. Requiere normalmente la derivatización de éstos.  

Una de las metodologías de inmovilización covalente más desarrollada en la bibliografía, es la 

unión covalente sobre grafito funcionalizado con grupos carboxilo32-34. Esta reacción utiliza para la 

inmovilización del aptámero,  la reacción de la carbodiimida34-36, con la que se inmovilizan proteínas 

a partir del enlace amida entre grupos amino terminales con grupos reactivos carboxilo presentes 

en la superficie38,39. Con este objetivo, los aptámeros utilizados pueden ser funcionalizados con 

grupos amino terminales.  

Para la funcionalización de los electrodos con grupos carboxilos se utilizó activación  

electroquímica. Esta técnica consiste en la aplicación de  potencial  al electrodo  para la formación 

de grupos carboxilos en la superficie de éste. Existen diferentes estrategias donde utilizan 

diferentes tipos de soluciones y distintos pH 40-42.  
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1.8. Aplicaciones analíticas y tipos de aptasensores  
 

Gracias a sus características, los aptámeros pueden ser utilizados en numerosas aplicaciones 

analíticas, desde técnicas de separación a biosensores. De entre las técnicas de separación, la 

Cromatografía, la Espectroscopía de Masas y  la Electroforesis capilar utilizan las propiedades de 

los aptámeros para detectar y separar proteínas, enantiómeros42,… Dentro del campo de los 

biosensores se han convertido en sustitutos de los anticuerpos y enzimas como elementos de 

bioreconocimiento en diferentes transductores para detectar proteínas, toxinas, anticuerpos43,… 

Utilizando aptámeros la miniaturización, la integración y la automatización de biosensores es más 

fácil que utilizando anticuerpos o enzimas, gracias a su menor tamaño. Entre los diferentes modos 

de transducción; electroquímicos, acústicos, piezoeléctricos, ópticos,.., los transductores 

electroquímicos son los más recientes. El primer uso de aptámeros como elementos de 

bioreconocimiento en aptasensores fue en 1996, con un biosensor óptico basado en aptámeros 

marcados con fluorescencia para la detección de IgG44. En 2004 fue descrito el primer aptasensor 

electroquímico, basado en un formato sándwich donde los aptámeros estaban marcados con 

glucosa oxidasa para la detección de trombina mediante amperometría45. 

  

Actualmente, gracias a las propiedades de las técnicas electroquímicas, se están desarrollando 

numerosos aptasensores basados en las técnicas de Resonancia de Plasmón Superficial (SPR), 

en EIS, en Potenciometría, en Transistores de Efecto de Campo (ISFET), Microbalanzas de cristal 

de cuarzo46, etc. 
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2. OBJETIVOS 
 

Durante el desarrollo de la introducción del presente trabajo, se ha comentado la importancia de 

detectar o cuantificar mediante un biosensor concentraciones de trombina del orden picomolar. 

En este contexto, los principales objetivos son: 

 

1. Construir sensores de grafito-epoxi. 

 

2. En base a (1), desarrollar y optimizar  aptasensores para cuantificar trombina basados en 

diferentes técnicas de inmovilización. 

 

3. Comprobar que la inmovilización del aptámero  de trombina mediante adsorción física,  y  

mediante enlace covalente con la reacción EDAC-NHS en la superficie del electrodo son  técnicas 

viables. 

 

4. Demostrar que la técnica de Espectroscopia de Impedancia Electroquímica es una técnica muy 

sensible e idónea para detectar cambios en la superficie del electrodo en el proceso de 

bioreconocimiento del sistema, sin necesidad de elementos de marcaje. 

 

5. Comprobar si los aptasensores desarrollados pueden reutilizarse, tras su regeneración química. 

 

6. Comparar los resultados obtenidos para cada tipo de inmovilización de aptámero en la superficie 

del electrodo. 
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3. EXPERIMENTAL 

Se presenta una breve descripción de la metodología experimental utilizada para llevar a cabo el 

presente trabajo. 

 

3.1. Reactivos 

En la construcción de los aptasensores se utilizó polvo de grafito de partícula de 50µm de Merck, 
resina Epotek  H77 y endurecedor  Epotek H77 de Epoxy Technology, K3[Fe(CN)6] y K4[Fe(CN)6] de 
Panreac, cloruro de sodio de Merck, hidrogenofosfato de sodio dihidratado de Sigma, 
polietilenglicol (PEG) de Fluka, cloruro de potasio de Merck, dihidrogenofosfato de potasio de 
Merck, ácido nítrico de Sigma, ácido perclórico de Sigma, clorhidrato de N-(3-dimetilaminopropil)-
N′-etilcarbodiimida (EDAC), N-hidroxisuccinimida (NHS). Todos los reactivos utilizados fueron  de  
calidad analítica. 

Todas las disoluciones fueron preparadas con agua Milli-Q.  

Todos los aptámeros de trombina (AptThr) utilizados en este trabajo fueron preparados por TIB-

MOLBIOL, y fueron modificados con el grupo amino terminal en la posición 5’, su secuencia es la 

siguiente: 5’-TTTGGGTTGGTGTGGTTGG-3’. Las disoluciones stock de los aptámeros fueron diluidas 

con agua Milli-Q, separadas en fracciones de 10µl y almacenadas en el congelador a temperatura 

de -20ºC. Las proteínas (albúmina bovina, BSA, Thr, fibrinógeno, Fbr, Inmunoglobulina G, IgG) se 

prepararon de igual manera que los aptámeros y fueron obtenidas de Sigma Aldrich. 

 

3.1.2. Buffer 

El buffer utilizado fue PBS de pH ajustado a 7.6, cuya composición  aparece en la tabla 3. 

Tabla 1. Composición del buffer PBS. 

Sal Concentración (mM) 

NaCl 187 

KCl 2.7 

Na2HPO4.2H2O 8.1 

KH2PO4 1.76 
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3.2. Construcción de los electrodos de trabajo 

Para la construcción de los cuerpos de los electrodos se utilizó una conexión hembra de 2 mm de 
diámetro al que se le acopló una rosca metálica. En su extremo se soldó una lámina de cobre 
circular con estaño, de la cual se eliminó mediante una solución de HNO3 diluido la capa de óxido 
que podría tener. Esta capa de óxido de no eliminarse podría hacer aumentar la resistencia al paso 
de la corriente, y por lo tanto, disminuir la conductividad eléctrica del transductor. Esta conexión se 
introdujo en un tubo cilíndrico de PVC de 6 mm de diámetro interno, de 8 mm de diámetro externo y 
de 20 mm de longitud. La rosca metálica que posee la conexión permitió que este último quedara 
bien fijado en su extremo del tubo de PVC, mientras que en el otro extremo quedó una cavidad 
virtual de 3 mm de profundidad. Todo ello se puede observar en la figura 6. 

 

 

 

 

 

Figura 6. Fotografía de los componentes del electrodo Figura 7.Fotografía de electrodo con y sin 

composite 

 

En la cavidad del electrodo posteriormente se introdujo el composite, figura 7. Una vez curado el 

electrodo se lijó con papel esmeril de 220,  400,  800, 1000, 1200 y papel de alúmina (Thermo 

scientific Orion) respectivamente. 

Preparación del composite 

El composite grafito-epoxi se preparó mezclando resina epoxi  y endurecedor en una relación en 

peso de 20:3 respectivamente. Posteriormente, se adicionó grafito en polvo en una proporción del 

20%. El material resultante fue homogenizado con la ayuda de una espátula durante una hora e 

incorporado en el cuerpo del electrodo. Éstos  fueron curados durante 3 días a 80ºC. 
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3.3. Instrumentación 

Para realizar las mediciones de EIS se utilizaron  dos  unidades  de impedancia: IM6e (BAS-

Zahner, Alemania) y Autolab (Metrohm Autolab B.V, Holanda). El software utilizado para la 

adquisición de las medidas fue: en la unidad Im6E  el programa Thales (BAS-Zahner), y en la 

unidad Autolab el programa Fra (Eco Chemie, Utrecht, Holanda). Para obtener el ajuste de los  

valores se utilizó el programa Zview (Scribner Associates, Southern Pines, NC, EEUU). Para la 

construcción de la celda se utilizaron tres electrodos: un electrodo auxiliar de platino (Crison 52-67 

1, Barcelona, España), un electrodo de referencia Ag/AgCl, es decir, un  alambre de plata cubierto 

de AgCl  y el electrodo composite construido de grafito-epoxi como electrodo de trabajo. Para 

realizar la regeneración del aptasensor se utilizó un termomixer compact (Eppendorf Hamburg, 

Alemania)  

 

3. 4. Procedimientos para la detección de trombina 

En este trabajo se muestran diferentes procedimientos para construir un aptasensor de trombina. A 

continuación se explica cada procedimiento al detalle. 

 

3.4.1. Procedimiento 1 - Aptasensor basado en inmovilización por adsorción física 
del aptámero en la superficie del electrodo 

La fabricación del primer aptasensor consistió en tres etapas: inmovilización del aptámero en la 

superficie del composite por adsorción física, bloqueo para prevenir la adsorción inespecífica, y 

reconocimiento por parte del aptámero de la molécula diana, en este caso de la trombina. 

El primer paso consistió en someter a 160µl de AptThr de una concentración de 1µM a la 

temperatura de 80 a 90ºC, durante 3 minutos para que adquiriese una conformación más estable. 

Una vez pasado este tiempo, se  dejó enfriar en un baño de agua fría. Se introdujo el electrodo en 

un eppendorf que contenía el aptámero y se dejó incubar durante 15 minutos. Posteriormente,  el 

electrodo se lavó dos veces con 160 µl de  buffer PBS durante 10 minutos a temperatura ambiente. 

La etapa de bloqueo consistió en incubar el electrodo con 160µl de una solución de PEG 40 mM 

durante 15 minutos. Posteriormente, se lavó el electrodo dos veces con 160µl de buffer 10 minutos 

a temperatura ambiente, para eliminar los posibles restos de PEG. 

Una vez bloqueados los sitios no adsorbidos por el aptámero, se inició la etapa de 

bioreconocimiento. En un eppendorf que contenía  160µl de una solución con una concentración 
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dada de trombina, se introdujo el electrodo. Se dejó incubar durante 15 minutos a temperatura 

ambiente. A continuación, se lavó el electrodo dos veces con 160µl de  buffer PBS durante 10 

minutos, para eliminar los restos de proteína que no fueron reconocidos. Para los estudios de 

especificidad, se utilizó el mismo procedimiento anterior, con  proteínas diferentes a la trombina. 

Tanto la concentración del aptámero como de proteína y de PEG fueron optimizadas mediante 

curvas de calibrado. Las condiciones experimentales y el buffer PBS fueron optimizadas por 

componentes del grupo en trabajos anteriores del campo de los genosensores. 

 

Regeneración del aptasensor 

Para llevar a cabo la regeneración del aptasensor se utilizó NaCl 2M. Después del proceso de 

incubación de trombina, se sumergió el electrodo en un eppendorf que contenía 160µl  de una 

solución 2M de NaCl. Se dejó incubar durante 20 minutos en un termomixer a 42ºC con agitación. 

Posteriormente, se lavó dos veces con 160µl de PBS durante 10 minutos. 

 

3.4.2. Procedimiento 2 - Aptasensor basado en inmovilización del aptámero por 
enlace covalente mediante activación electroquímica del electrodo. 

Este último procedimiento consistió en cuatro etapas: activación de la superficie del electrodo, 

inmovilización del aptámero de trombina mediante la reacción EDAC-NHS, bloqueo de la superficie 

del electrodo con PEG, y bioreconocimiento de trombina por parte del aptámero. 

El primer paso de este procedimiento consistió en la activación de la superficie del electrodo. Se 

aplicó al electrodo un potencial de 0.8V respecto al electrodo de referencia Ag|AgCl|KCl(sat.) en 

una disolución 1M de HClO4 durante 5 horas. 

El procedimiento de inmovilización consistió en sumergir el electrodo en un eppendorf que contenía 

1mg de EDAC, 0.5mg de NHS y 160 µl de AptThr 1µM. Se dejó incubar durante 24 horas. 

Posteriormente, el electrodo se lavó dos veces con 160 µl de PBS durante 10 minutos. 

Una vez el aptámero quedó inmovilizado en la superficie del electrodo se procedió al bloqueo de la 

superficie del electrodo mediante el polímero PEG. El electrodo se sumergió en un eppendorf que 

contenía 160 µl de PEG 40 mM, se dejó incubar 15 minutos y posteriormente se lavó dos veces 

con 160 µl de buffer PBS durante 10 minutos. 

A continuación se realizó el último paso del procedimiento: bioreconocimiento de trombina por parte 

del aptámero. El electrodo se sumergió en un eppendorf que contenía 160 µl de una cierta 
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concentración de trombina, se dejó incubar durante 15 minutos. Una vez finalizado este tiempo, se 

procedió a lavar el electrodo dos veces con 160 µl de buffer PBS durante 10 minutos.  

 

3.5. Detección EIS 

Para llevar a cabo la caracterización de los electrodos así como para obtener todas las medidas se 

utilizó la técnica de Espectroscopia Electroquímica de Impedancia. Las medidas fueron realizadas 

en buffer PBS que contenía una mezcla 0.01M de K3[Fe(CN)6]/K4[Fe(CN)6] (1:1) como marcador  

redox. Se aplicó un potencial de 0.17 V (correspondiente al potencial de equilibrio vs al electrodo 

de referencia Ag/AgCl) y un rango de frecuencias de 50KHz a 0.05Hz con una amplitud AC de 

10mV. El espectro obtenido fue representado como gráfico de Nyquist (-Zi vs Zr). La curva teórica 

fue utilizada para ajustar los datos al correspondiente circuito eléctrico. Los datos χ2 que miden el 

buen ajuste del modelo se obtuvieron gracias al programa Zview. En todos los casos, antes de 

cualquier inmovilización de la superficie se realizó el espectro de impedancia del electrodo con el 

buffer y el mediador redox. Posteriormente, después de cada etapa de inmovilización, de bloqueo, 

de bioreconocimiento,…se realizaron también medidas de impedancia. 
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4. RESULTADOS Y DISCUSIÓN 

 

Gracias al interés por los sensores y especialmente por los biosensores se ha llevado a cabo el 

desarrollo de  aptasensores capaces de realizar medidas rápidas a partir de un instrumental 

sencillo y de una técnica versátil como la Espectroscopia Electroquímica de Impedancia, que nos 

permite estudiar fenómenos de bioreconocimiento en la superficie de electrodos. 

En este trabajo, en concreto, se construyeron dos aptasensores para la determinación de trombina;  

uno basado en la inmovilización del aptámero en la superficie del electrodo mediante adsorción 

física y otro mediante enlace covalente. La cuantificación de trombina se realizó comparando los 

cambios de resistencia de transferencia electrónica interfacial  del electrodo utilizando la pareja 

redox [Fe(CN)6]
3-/ [Fe(CN)6]

4-,como muestra la figura 8.  

 

 

 

 

 

 

Figura 8. Esquema del proceso de detección utilizando el marcador redox [Fe(CN)6]
3-/ [Fe(CN)6]

4-. 

Los espectros experimentales obtenidos fueron representados como diagramas de Nyquist, como 

muestra la figura 9. El semicírculo del gráfico corresponde a la cinética de la reacción, y la diagonal 

a la derecha corresponde a la contribución de la difusión de las especies. El semicírculo, que es 

nuestra señal analítica, se utiliza para ajustar los datos experimentales a un circuito eléctrico 

equivalente. El mejor ajuste propuesto corresponde al circuito eléctrico que aparece en la figura 10. 

Como ya he mencionado anteriormente, cada elemento del circuito es posible asociarlo a un 

fenómeno electroquímico. En este caso la resistencia R1 corresponde a la resistencia de la 

disolución, R2 (también llamada Rct) representa la resistencia a la transferencia de carga entre la 

solución y la superficie del electrodo. CPE está asociado a la capacitancia de la doble capa debida 

a la interfase entre el electrodo y la solución electrolítica. El uso de un elemento de fase constante 

CPE en vez de un condensador se requiere para obtener un mejor ajuste de los datos 

experimentales, y está causado por la falta de  idealidad de  la superficie del electrodo. 

Para todos los ajustes, se observó el valor χ2 del programa Zview, el cual evalúa el ajuste de la 

distribución observada (datos del diagrama de Nyquist) a una teórica (valores obtenidos por el 

circuito eléctrico). En todos los casos fueron calculados y resultaron ser menor que 0.2, mucho 
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menor que el valor tabulado para 50 grados de libertad (67.505 al nivel de confianza del 95%). 

 

 

 

 

 

 

Figura 9. Típico diagrama de Nyquist obtenido en 

experimentos con el marcador redox K3[Fe(CN)6]/K4[Fe(CN)6].

Figura 10. Circuito equivalente utilizado 

para obtener las medidas de impedancia. 

Los resultados de los diferentes protocolos utilizados se expresaron como incrementos de variación 

de Rct entre la resistencia de la transferencia de carga obtenida en los diferentes experimentos y la 

debida al buffer con el marcador redox. De hecho, los valores de Rct del electrodo con el buffer son 

distintos para cada electrodo, lo cual produce que la comparación directa entre valores sea difícil. 

Además, el mismo electrodo puede mostrar valores de  Rct distintos en diferentes experimentos. 

Este hecho se explica teniendo en cuenta que la superficie del electrodo se renueva después de 

cada experimento ya que se pule con papel de esmeril generando diferentes superficies. Estas 

diferencias producen que los valores de Rct sean diferentes. Por esta razón, los datos obtenidos 

requieren su normalización para llegar a ser independientes y poder ser comparados. 

 

 

4.1. Δ y Δratio 

 

Por las razones mencionadas anteriormente se tiene la necesidad de expresar los resultados 

obtenidos como variaciones relativas de Rct. Existen dos formas para expresar esta variación: Δ y 

Δratio. Sus fórmulas se muestran a continuación: 

Δ= Rct (AptThr) - Rct(electrodo-buffer) 

Δratio = Δs/ Δp 

Donde   Δs= Rct(AptThr-Thr) - Rct(electrodo-buffer)   y  Δp = Rct(AptThr) - Rct(electrodo-buffer).  

 

 



 
RESULTADOS Y DISCUSIÓN 

 

18 
 

En estas expresiones Δp corresponde a la variación de Rct después de la inmovilización del 

aptámero, mientras que Δs representa la variación de Rct después del último paso del 

bioreconocimiento. La figura 11 muestra los valores de Rct correspondientes a las ecuaciones 

utilizadas anteriormente, representados como diagrama de Nyquist. 

 

 

 

 

 

 

 

 

 

 

Figura 11. Evolución de la señal analítica Rct durante las etapas de empleo del aptasensor. 

 

 

4.2. Reproducibilidad de los electrodos 

 

Se estudió la reproducibilidad de todos los electrodos a partir de los datos obtenidos, utilizando: 

a) el mismo transductor después de estar pulido (reproducibilidad de pulido) 

b) diferentes transductores (reproducibilidad de construcción de los electrodos) 

Como la técnica impedimétrica es muy sensible a un cambio o modificación de la superficie del 

electrodo, el procedimiento de pulido utilizado para renovar la superficie del electrodo puede influir 

en los resultados. Por ello, se estudió la reproducibilidad del pulido. En cuanto a la reproducibilidad 

de construcción de los electrodos, se observó la influencia de la construcción manual de cada 

electrodo con los resultados impedimétricos. 

Para los dos estudios, los espectros de impedancia de los electrodos fueron obtenidos con una 

solución de buffer PBS que contenía 10mM de una mezcla de  K3[Fe(CN)6]/K4[Fe(CN)6] (1:1) a 

pH=7.6. Los valores obtenidos de resistencia a la transferencia de carga debido al marcador redox 

fueron usados para calcular la desviación estándar relativa  (RSD%) de los resultados, y éstos 

fueron de 5.59% para la reproducibilidad de pulido y  8.28% para la reproducibilidad de 

construcción. Cada valor de  RSD% correspondió a 5 o más experimentos.  

El valor de RSD%  correspondiente al procedimiento de pulido de la superficie del electrodo fue 

menor que el que corresponde a la construcción del transductor. Esto significa que la influencia de  
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la renovación de la superficie es menor que la debida a  la construcción del electrodo, motivo 

predecible, ya que existen factores incontrolables en la construcción manual. 

 

4.3. Aptasensor basado en inmovilización por adsorción física 

 

En la construcción de este aptasensor se utilizó como inmovilización del aptámero en la superficie 

del electrodo la técnica de adsorción física. Esta técnica consiste en la adsorción directa de 

aptámero en la superficie del electrodo a través de interacciones débiles con los sitios activos del 

sustrato, en este caso del composite. El procedimiento para llevar a cabo este aptasensor consistió 

en tres etapas como muestra la figura 12: inmovilización del aptámero en la superficie del 

electrodo, bloqueo con PEG para prevenir la adsorción inespecífica, y reconocimiento por parte del 

aptámero de la molécula diana, en este caso de la trombina.  

 

 

 

 

 

 

       Figura 12. Esquema del protocolo experimental en el aptasensor por adsorción. 

 

4.3.1. Optimización de las concentraciones de aptámero y PEG. 

 

Antes de estudiar la detección de trombina, las concentraciones de aptámero y PEG fueron 

optimizadas mediante curvas de calibrado. 

La figura 13, muestra la curva de calibrado de  AptThr adsorbido en la superficie del electrodo. Se 

observó como la diferencia de resistencias (Δ) aumentaba hasta llegar a un valor fijo. Esto era 

debido a que la adsorción física del  aptámero en la superficie del electrodo seguía una isoterma de 

Langmuir, donde se llegaba a un valor constante que correspondió a la saturación de éste en la 

superficie del electrodo. Este valor correspondió a  la concentración de 1µM de aptámero. 
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Figura 13. Optimización de la concentración de 

aptámero de trombina en el aptasensor. 
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Figura 14. Optimización de la concentración de 

bloqueante PEG para la operación del biosensor. 

 

Para eliminar una posible adsorción inespecífica en la superficie, se utilizó un agente bloqueante 

ampliamente utilizado, el polietilenglicol (PEG). Como se puede observar en la figura  14, existió un 

aumento de resistencia hasta alcanzar el valor de 40 mM de PEG, posteriormente, se observó una 

estabilización. Esto fue debido a que ocurrió el mismo fenómeno que en el caso anterior, el  

polímero PEG siguió una isoterma de Langmuir, donde se llegó a un valor constante que 

correspondió a la concentración de saturación de éste en la superficie. Por lo tanto, la 

concentración óptima de bloqueante se escogió como 40 mM. 

 

 

4.3.2. Detección de trombina 

 

Siguiendo el protocolo experimental mencionado anteriormente para la detección de trombina, se 

obtuvieron los resultados que aparecen en la figura 15. 
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Figura 15. Respuesta del aptasensor a una muestra de Trombina de 10 pM. 
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Como podemos observar, en cada paso del procedimiento la resistencia Rct entre la superficie del 

electrodo y la disolución aumentó. Esto fue debido a que en cada etapa se retrasó la cinética de la 

transferencia de electrones del marcador redox [Fe(CN)6]
3-/[Fe(CN)6]

4- en la interfase del electrodo. 

 

4.3.3. Curva de calibrado de trombina 

 

Para poder cuantificar la concentración de trombina se construyó su curva de calibrado. La cadena 

simple de oligonucleótidos que forma el aptámero de trombina, reconoce a la proteína mediante un  

plegamiento tridimensional. Durante este plegamiento se crean interacciones débiles entre el 

sistema aptámero-proteína dando lugar al complejo AptThr-Thr27. 

La figura 16, muestra la evolución de los diagramas de Nyquist durante la experiencia de 

calibración frente a trombina. Se observó como al aumentar su concentración aumentó la 

resistencia de transferencia interfacial electrónica entre la superficie del electrodo y la solución, ya 

que la proteína era reconocida por parte del aptámero, hasta llegar a una concentración donde la 

superficie del electrodo quedó saturada, por lo que no existió  por parte del aptámero más 

reconocimiento de proteína.  
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Figura 16. Diagramas de Nyquist correspondientes a la variación de  la concentración de trombina. 

 

Para evaluar el límite de detección del sistema AptThr-Thr, así como el rango lineal de 

concentración de Thr, se construyó una curva de calibrado, representando la señal analítica como 

ratio respecto a la concentración de proteína, figura 17 .La curva que aparece en la figura 17 

muestra una tendencia sigmoidea. La zona central puede aproximarse a una recta, que comprende  
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la concentración de 7.5 pM a 75 pM de proteína. Posteriormente, se obtuvo mediante regresión 

lineal la  recta correspondiente. 
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      Figura 17.Curva de calibrado de la concentración de trombina respecto a ratio y recta de regresión. 

 

La recta muestra que hay una buena relación lineal  (coeficiente de correlación r2= 0.9981) entre la 

señal analítica ( ratio) y la concentración de trombina en el rango de 7.5 a 75 pM, de acuerdo con la 

ecuación:   

 ratio = 1.013 + 1.106·1010 [Thr] 

 

El EC50 se estimó en 44 pM y el límite de detección, calculado como tres veces la desviación 

estándar de la regresión lineal, fue de 5 pM. Éste es un valor favorable para detectar trombina, ya 

que es exactamente éste el nivel de concentración en el que interviene cuando se forman trombos, 

lo que puede dar lugar a  diferentes enfermedades cardiovasculares. La reproducibilidad del 

método muestra una desviación estándar relativa (RSD) de 7.2%, obtenida para series de 5 

experimentos para una concentración de Thr de 75 pM. 

 

4.3.4. Especificidad del aptasensor  

 

La trombina se encuentra presente en suero sanguíneo junto con hormonas, lípidos,…y otras 

proteínas28. Para evaluar la especificidad del sistema, se evaluó la respuesta con  proteínas 

típicamente presentes en  suero. En el primer caso, se utilizó como proteína albúmina (BSA),  que 

se encuentra en el suero en una proporción de más del 60% del total de proteínas presentes. 

Normalmente en  suero se encuentra en un intervalo de 35 a 50 g/l47. Para realizar la prueba se 

utilizó la concentración más alta, 50 g/l. En la figura 18, podemos observar que cuando se incubó 

con esta proteína, la resistencia interfacial electrónica no aumentaba, en este caso se observaba 

una ligera disminución. Al incubar nuevamente con trombina se observó como la resistencia si  
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aumentaba. Por lo tanto, podemos decir que la albúmina no fue reconocida por parte del AptThr, y 

por lo tanto no interfiere en el sistema aptámero-trombina. En el segundo caso, se utilizó como 

proteína fibrinógeno. 

 
 

 

 

 

 

 

 

 

 

 

 

Figura 18. Respuesta del aptasensor a la BSA. 

 

 

 

 

 

 

 

 

Figura 19. Respuesta del aptasensor al Fibrinógeno. 

 

El fibrinógeno es una proteína fibrilar que participa en el proceso de coagulación sanguíneo. Por 

acción de la trombina, se degrada en fibrina y da lugar a la formación de coágulos29. Esta proteína 

está presente en suero humano en un intervalo de concentración de 200 a 400 mg/dL48. En la 

figura 19, podemos observar como la resistencia interfacial electrónica aumentó, como 

consecuencia de algún tipo de reconocimiento por parte del AptThr, por lo tanto, existe por parte de 

esta proteína interferencia. En el último caso, se utilizó inmunoglobulina G (IgG). La IgG es una 

proteína globular que se sintetiza como respuesta a la invasión del organismo por parte de 

bacterias, virus y hongos. Se encuentra presente en suero humano en un intervalo de 

concentración de 950 mg/dL a 1550 mg/dL de suero, siendo un valor normal el de 1250 mg/dL49. 

Como podemos observar en la figura 20, existe por parte de IgG interferencia respecto a la 

trombina, ya que aumentó la resistencia Rct. El motivo de este aumento, así como en el del caso del 

fibrinógeno, puede ser debido a algún proceso biológico que se escapa de nuestro conocimiento. 

En estos  dos últimos casos, al añadir trombina al sistema, la resistencia interfacial entre el 

electrodo y la superficie también aumentaba, esto pudo ser debido a que se pudo producir algún 

fenómeno de desplazamiento parcial entre la trombina y las proteínas interferentes. 
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Figura 20. Respuesta del aptasensor a la IgG y posteriormente la adición de Thr 

 

 

4.3.5. Sensibilidad del aptasensor 

 

Para poder evaluar la sensibilidad del aptasensor se compararon los calibrados de Fbr, IgG  y Thr, 

figura 21. En la tabla 2, podemos observar las ecuaciones de las rectas de calibrado de cada 

proteína y de la trombina, así como sus respectivas pendientes y límites de detección. 

El aptasensor muestra la mayor sensibilidad para su molécula diana, la trombina, 6 órdenes de 

magnitud mayor que la pendiente para IgG y 5 órdenes de magnitud más que para Fbr, tal como se  

aprecia en la figura 21. Por lo tanto, podemos decir que el aptasensor muestra una alta sensibilidad 

a Thr respecto a las proteínas potencialmente interferentes.  
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Figura 21. Respuesta a las proteínas evaluadas: ●IgG, ○Fbr y ▼Thr. 
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Tabla 2. Rectas de regresión y pendientes de las curvas de calibrado de diferentes proteínas. 

Proteína Recta Regresión Sensibilidad (M-1) 
Límite de 
detección 

conc. Típica
en suero 

Thr Δratio = 1.013 + 1.106.1010 [ Thr ] 1.106.1010 5 pM 0 

Fbr Δratio = 1.007 + 3.698.105 [ Fbr ] 3.698.105 2 µM 6-12 M 

IgG Δratio =1.424 + 2.385.104 [ IgG ] 2.385.104 10 µM 60-100 M 

Albumina sin respuesta - - 0.52-0.75 mM 

 

 

4.3.6. Regeneración del aptasensor 

 

El complejo AptThr-Thr, formado por interacciones débiles, se disocia al añadir medio salino,  

aumentar la temperatura  y agitar, lo que permite la regeneración del biosensor. En la figura 22 se 

pueden apreciar tres ciclos de sensado, intercalados por una medida de blanco. Al añadir trombina 

al medio aumenta la Rct gracias a la formación del complejo AptThr-Thr. Posteriormente al añadir 

medio salino, aumentar la temperatura y agitar, se disocia el complejo y disminuye esta resistencia 

hasta el valor correspodiente de Rct(AptThr), y así sucesivamente. Se calcularon los valores de Δratio de 

cada paso del proceso y se representaron en el diagrama de barras de la figura 23. 

En la figura 23, podemos observar el mismo fenómeno anterior: la Δratio aumentó cuando se incubó 

el electrodo con  Thr y disminuyó cuando se regeneró el sensor. En la tercera incubación con Thr, 

Δratio aumentó más que en las otras incubaciones, esto fue debido a que se incubó con una 

concentración superior.  Este tipo de regeneración puede ser una alternativa a  la regeneración por 

pulido, y presenta la ventaja que se regenera la superficie del electrodo sin perder la inmovilización 

del aptámero en la superficie de éste. 
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Figura 22. Diagrama de Nyquist del proceso de       

regeneración. 

 

Figura 23. Señales obtenidas para los tres 

procesos de regeneración. [Thr] utilizada: 7.5 pM 

(1 y 2), y 75 pM (3). 
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4.4. Aptasensor basado en inmovilización por enlace covalente  

 

Con el objetivo de utilizar una técnica de inmovilización considerada más eficiente y elegante que la 

anterior, se propuso desarrollar un aptasensor basado en inmovilización del aptámero en la 

superficie del electrodo mediante enlace covalente de la reacción EDAC-NHS. Para realizar esta 

inmovilización, previamente la superficie del electrodo fue activada electroquímicamente con el 

objeto de generar grupos carboxilos superficiales. En la figura 24, se muestran las diferentes 

etapas que comprenden el procedimiento experimental. 

 

 

 

Figura 24. Esquema del proceso experimental del aptasensor basado en inmovilización por enlace covalente. 

 

 

4.4.1. Activación electroquímica 

 

La superficie del electrodo se activó electroquímicamente con el objetivo de oxidar el carbono 

grafito del composite a carboxilo, para posteriormente, mediante la reacción EDAC-NHS inmovilizar 

el aptámero en la superficie del electrodo. Se aplicó un potencial fijo de 0.8V durante 5 horas en 

ácido perclórico 1M40. El carbono grafito, posee una estructura hexagonal y es  muy poco reactivo, 

al aplicar un potencial de oxidación en condiciones controladas como en este caso, se crean puntos 

de reactividad en los extremos del hexágono, estos puntos son más activos electroquímicamente, 

por lo que la resistencia interfacial electrónica disminuye. Este fenómeno fue observado y se puede 

apreciar en la  figura 25.  
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Figura 25. Espectro de Impedancia antes y después del proceso de activación electroquímica de la superficie 

del electrodo. 

 

4.4.2. Inmovilización por enlace covalente mediante la reacción EDAC-NHS. 

 

Este tipo de inmovilización se basa en la formación de un enlace covalente entre el aptámero de 

trombina modificado con un grupo amino y la superficie del electrodo. El reactivo que ayuda en la 

reacción de formación de la amida entre el grupo carboxilo de la superficie del electrodo y el grupo 

amino terminal del aptámero modificado, es la carbodiimida, el compuesto EDAC50. Como en esta 

reacción  se obtienen rendimientos bajos, se agrega NHS a la reacción para asistir a la 

carbodiimida en su función, obteniéndose así mayores rendimientos51. La reacción de formación del 

enlace amida entre  el grupo amino terminal del aptámero y el grupo carboxilo de la superficie del 

electrodo se muestra en la figura  26. 

Como se observa en la figura, el reactivo EDAC con el grupo carboxilo de la superficie del electrodo 

forma un intermedio inestable, derivado de la urea  Este intermedio es susceptible de hidrolizarse.  

La adición del éster sulfo-NHS estabiliza el intermedio aumentando así la eficiencia de la reacción 

entre el grupo amino terminal y el intermedio46. 

 

Figura 26. Mecanismo de reacción entre los reactivos EDAC-NHS y el grupo amino del aptámero. 
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4.4.3. Detección de trombina 

 

Para cuantificar la concentración de trombina, como en el caso anterior de inmovilización por 

adsorción física, se realizó una curva de calibrado de dicha proteína, figura 27. Como ocurría en el 

caso anterior, al aumentar la concentración de trombina, aumentaba la resistencia interfacial entre 

la solución y el electrodo, debido a la formación del complejo AptThr-Thr. Por lo tanto, podemos 

decir que existe una relación proporcional entre el AptThr y la concentración de Thr, hasta llegar al 

punto de saturación que corresponde alrededor de 100 pM. En la figura 27, se puede observar la 

recta de regresión calculada a partir del calibrado. 
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Figura 27. Diagrama de Nyquist de la calibración de 

trombina. 

Figura 28. Curva de calibrado y recta regresión Δratio 

respecto la concentración de trombina. 

La recta representada en la figura  28  muestra que hay una buena relación lineal  (coeficiente de 

correlación r2= 0.9922) entre la concentración de trombina y el valor de  señal analítica relativa 

( ratio) en el rango de 2.5 pM a 100 pM, de acuerdo con la ecuación:   

  ratio = 1.512 + 1.208·1010 [Thr] 

Como en el caso anterior, el límite de detección fue calculado como tres veces la desviación 

estándar obtenida en la regresión lineal, y fue de 1.5 pM, la EC50 se estimó en 50pM. La 

reproducibilidad del método muestra una desviación estándar relativa (RSD) de 8.3 %, obtenida 

para series de 3 experimentos para una concentración de 50 pM de Thr. 
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4.5. Comparación de las diferentes técnicas de inmovilización 

 

En la tabla 3 se pueden comparar las rectas de regresión obtenidas para cada técnica de 

inmovilización. Los aptasensores construidos basados en las dos técnicas de inmovilización 

presentan unos valores de  reproducibilidad y sensibilidad similares. En cuanto al rango lineal y el 

límite de detección con la técnica por enlace covalente  se obtuvieron mejores resultados. El rango 

lineal de concentración de Thr es más amplio, de 2.5 a 100 pM y el límite de detección más bajo, 

1.5 pM. En este sistema en el que utilizamos un electrodo de composite, grafito-epoxi, como 

electrodo de trabajo, la inmovilización por enlace covalente mostró mejores prestaciones, aunque 

cabe destacar que el aptasensor basado en enlace covalente no fue optimizado mientras que el 

basado en adsorción física sí. En trabajos posteriores se optimizarán todas las condiciones 

experimentales de este último aptasensor para poder comparar con mayor criterio  estas dos 

técnicas de inmovilización. Además, posteriormente, se intentarán eliminar los problemas de 

interferencia mediante el uso de una lengua electrónica basada en una matriz de biosensores para 

poder cuantificar niveles de trombina en muestras reales. 

 

 

Tabla 3. Rectas de regresión lineal obtenidas para cada técnica de inmovilización. 

Inmovilización Regresión lineal Sensibilidad (M-1)  
Rango  

lineal       

Límite  de 

detección 

RSD 

% 

A.Física Δratio = 1.013 + 1.106·1010 [Thr] 1.106.1010 7.5 - 75 pM 5 pM 7.2 

E. Covalente ratio = 1.512 + 1.206·1010 [Thr] 1.206·1010 2.5 - 100 pM 1.5 pM 8.3 
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5. CONCLUSIONES 
 

De forma específica se pueden resaltar las siguientes conclusiones: 

 

1. Se han construido transductores electroquímicos  grafito-epoxi, y se ha estudiado la 

reproducibilidad en cuanto a construcción y pulido, dando mejor valor en  pulido, 5.59 % RSD, com 

o era de esperar. 

2. El aptasensor desarrollado  basado tanto por inmovilización covalente como inmovilización por 

adsorción física, ha mostrado tener una buena reproducibilidad y sensibilidad. En cuanto a 

especificidad, se han obtenido datos de interferencia  de fibrinógeno e inmunoglobulina G. Este 

problema se estudiará en trabajos posteriores mediante el uso de una lengua electrónica basada 

en una matriz de biosensores. 

3. Se ha demostrado que las técnicas utilizadas para inmovilizar el aptámero sobre la superficie del 

electrodo son idóneas  para la construcción de aptasensores impedimétricos. 

4. La Espectroscopia Electroquímica de Impedancia  ha demostrado  ser una  técnica muy sensible 

para monitorizar tanto la inmovilización del aptámero como la formación del complejo AptThr-Thr 

sobre la superficie del electrodo, logrando en todos los casos  una buena reproducibilidad de los 

resultados sin marcaje. 

5. La regeneración del aptasensor basado en adsorción física mediante medio salino ha 

demostrado ser una alternativa a  la regeneración por pulido de la superficie del electrodo. 

6. Cabe destacar que se ha desarrollado el primer aptasensor en nuestro grupo de investigación, 

Grup de Sensors i Biosensors. Las dos técnicas de inmovilización utilizadas mostraron valores de 

sensibilidad y de reproducibilidad similares. En cuanto a límite de detección y rango lineal se 

obtuvieron mejores resultados con la técnica por enlace covalente, 1.5pM y 2.5 a 100pM 

respectivamente, aunque el aptasensor basado en enlace covalente no ha sido optimizado. En 

estudios en curso se están optimizando las condiciones experimentales de este aptasensor para 

poder comparar con mayor criterio. 
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