UNB

Universitat Autonoma
de Barcelona

Aplicacion de la ingenieria
del software sobre la
herramienta MATE:
Common y DMLIib

Memoria del proyecto
de Ingenieria Técnica en
Informatica de Gestion
realizado por
Noel De Martin Fernandez
y dirigido por
Eduardo César Galobardes
Escola d’Enginyeria

Sabadell, Septiembre de 2011

Agradecimientos
Para empezar me gustaria agradecer la realizacion de este proyecto a Eduardo César y Anna
Sikora. Gracias a los dos por brindarme la oportunidad de formar parte de este proyecto que ha
resultado muy interesante y fructifero. También agradecerles la tutorizacion del progreso del
proyecto y toda la ayuda prestada durante éste. Ademas especial agradecimiento a Anna por
crear MATE, un programa que encuentro muy interesante y que espero que siga evolucionando

el resto de los afios.

Seguidamente le doy las gracias a Joan Piedrafita, por haber-nos dado acceso a las instalaciones
y proporcionarnos un buen entorno de trabajo. También por haberme ensefiado mucho, no solo

en cuanto a este proyecto, sino en diferentes aspectos que me ayudaran en mi vida profesional.

Finalmente me gustaria agradecerle el apoyo y la amistad mostrados durante estos afios a mis
compafieros, Toni Pimenta y Rodrigo Echeverria. Os considero unos compafieros de trabajo y
amigos geniales con los que no solo trabajo bien, sino que me divierto, cosa que aprecio mucho.

Espero que el hecho de acabar la carrera no nos separe y sigamonos viendo el resto de los afios.

FULL DE RESUM - PROJECTE FI DE CARRERA DE L'ESCOLA
D'ENGINYERIA

Titol del projecte: Aplicacion de la ingenieria del software sobre la herramienta
MATE: Common y DMLib

Data: Septembre de 2011

Autor: Noel De Martin Fernandez

Tutor: Eduardo César Galobardes

Titulacié: Enginyeria Técnica d'Informatica de Gestio

Paraules clau
« Catala: Arquitectura Paral-lela, Enginyeria del Software, Control de Qualitat.
e Castella: Arquitecturas paralelas, Ingenieria del Software, Control de Calidad.

« Anglés: Parallel Architecture, Software Engineering, Quality Control.

Resum del projecte

» Catala: Aquest projecte intenta implantar una metodologia de treball sobre MATE.
MATE es una eina de sintonitzacié d'aplicacions paral-leles sorgida de la tesis
doctoral d'Anna Sikora a 2003. Vistos els resultats obtinguts, es va decidir donar
un pas endavant i convertir-la en un producte software Open Source. Per fer-ho ha
sigut necessari aplicar una serie d'estandards i fer un proces de tests. En aquest
treball s'ha creat part de la metodologia i s'han modificat dos dels moduls
principals.

« Castella: Este proyecto trata de crear y implantar una metodologia de trabajo
sobre MATE. MATE es una herramienta de sintonizaciéon de aplicaciones paralelas
surgida de la tesis doctoral de Anna Sikora en 2003. Vistos los resultados
obtenidos con la aplicacion, se decidié dar un paso adelante y convertirla en un
producto software Open Source. Para ello ha sido necesario aplicar ciertos
estandares y realizar un proceso de tests. En este trabajo se ha creado parte de la
metodologia y se han modificado dos de los mddulos principales.

* Anglés: This project tries to create and establish a work methodology on MATE.
MATE is a tuning tool for parallel applications born from Anna Sikora's doctoral
thesis in 2003. After contemplating the application's results, it was decided to
transform it into an Open Source software product. For that it's been necessary to
apply certain standards and perform some tests. On this project part of the
methodology has been created and two main modules have been modified.

Indice

1. INErOAUCCION.cuueieiiitiinieitiiitecsnientecssessnecssesssecssnssssessssssssssssassssesssassssesssasssassssassssesssasssassssssassssnns 1
L1 ADEECEACTILES. ...ttt ettt et e h e et e s he e et esat e e bt e sbbeebeeeanbeeenans 1
1. 1.1 ArquiteCturas PArAlelas....................ccccueveueeiiuiieiiieeeiee et rae e e e es 1
1.1.2 AplicAciones PArAlels..................c...ccoeovcuiieiiieiiiiieeiie e 2
1.1.3 Analisis de rendimiento...................ccccccvveiiiiiiiiiiiiiie e 3
1.1.4 Sintonizacion de PrOCESOS.ccoeuueeiueeeieeieeeiie ettt saee s e 3
1.2 SODIE MATEttt ettt ettt ettt e s bt et et esb e et e seteneeenteeneeenee s 5
1.3 ObJetiVOS el PrOYECLO. .. ceeuiiieiiieeiiie et ettt ettt et e et e e eeeaaeeesaeesssaeessaeeennssseeeeennes 5
1.4 Estructura del dOCUMENTO.oiiuiiiiiiiiiie et et 7
2. Viabilidad y Plan del Proyecto..... . eeiccccssnricssssnrecsssssnsecssssnsss 8
2.1 Estudio de 1a Situacion actual...........cccceouiruiiriiriiniiieieeceteeeseee et 8
20100 COMIOXTO ...ttt e 8
2.1.2 LOGICA Ael SISTOMUAUocueeeeeeee ettt ettt et e e e e nsaaeeeeeanns 9
2.1.3 DeSCTIDCION fISICA.........eoeeeeeeeiiieeeiee ettt e st e et e e e et e e e nasaaeeeeennseees 13
2.1.4 Diagnostico del SISTEMQ.................cc.ueevueieiiieeiiieeie et eee e e et eesaae e e eaaaaae s 14
2.2 Requisitos funcionales y N0 fUncionales.............ccecueeeiuiieiciiieeiiieeeiee et 14
2.2.1 ReqUISTIOS fURCIONALES...............ccooocueeiiiiiiiiieee ettt 15
2.2.2 ReqUISTLOS NO fUNCIONALES.............cc.oooeeiiieieeieeeee ettt 15
2.3 Alternativas y seleccion de la SOIUCION.cccooveeiieiiiiiiiiiiieee e 16
2.3.1 Alternativa 1 (H. Colaboracion — Redmine)..................ccccccueeccuveaeiiieaiiireaieeeiiieeeiieenns 16
2.3.4 Alternativa 2 (H. Colaboracion — TFAC)..............cc.c.ccccveeeeeeeeieeeiieeeiie e 16
2.3.4 Alternativa 3 (H. Control Versiones — CVS)......cccoouvueeeiieeiiieeiieeeciieee e 16
2.3.4 Alternativa 4 (H. Control Versiones — SVIN)........ccccoucoiiioiiiiiiniiiiieieeeeeeee e 16
2.3.5 Alternativa 5 (H. Desarrollo — Buildbot)...................c...cccooeeeueiviiiiiciiiiieeiciiieeeeee 17
2.3.6 Alternativa 6 (H. Desarrollo — Tinderbox)................cccoccovevcieenieieiiieeiiieeiee e 17
2.3.7 SOIUCION PPOPUCSTA...........cceeeeeieeieeee et e e e e e e enaaaee s 17
2.4 PlaniflCaCION.ccuuieiiieiiieiie ettt ettt ettt et e e at e e b e e it e e bt e e at e e bb e e e nb e e e e nbaeeeaabaeas 18

2.4 1 Dia@rama WBS..........c.ccoouii ittt e 18

2.4.2 Fases y actividades del Proyecto................cccoovcueiciiiiiiiiiiiaiieiieee e 19

2.4.4 ReCUTSOS AeL PIOVECTO...........ccueeeiiieiie ettt 20
2.4.5 Calendario del PrOYeCcto.............c...cccueeiiieeiieieieeeee et 23
2.4.6 EVAIUGCION AE TTOSZOS..........ccceeeeiieeeiie et 27
2.5 Viabilidad €CONOMICA.c.uiiiiiiiiiiteiie ettt ettt ettt ettt e st e st e e e bt e e enaeeeeas 28
2.5.1 ESHIMACION d@ COSLES. ..ottt 28
2.5.2 ANGLISIS COSIE-DONELICIO.ccueeeiiiiieieeee et 30
2.6 VIabilidad tECINICA.eeutiieieiiiieiiieteee ettt sttt sttt 30
3. Definicion MetOdolO@Ia......ccuuiierruriiisuresssercssercssanisssasessssnesssssessssssssssssssssssssssssssssssssasssssasssssassssssns 31
R 0 RSP PSPR 31
311 MOAelOS @SIANAATcoc.eiiiiiiiieee et 32
3.1.2 Modelos de aplicacion o especificos de COMPARIAS..................ccccevceevvraiiiiisiiieaaiaan. 35
3.2 PerspectiVa ENETALcooiiiiiiiiieiie ettt ettt ettt ettt ettt e et aeeearaeaan 36
3.2.1 GUIAS Y @SPECIfICACIONES.c.oeeeeeeiieeieeeiee ettt eese e e e e 36
3.2.2 HEOFFAMIGIIAS. ...ttt e 38
3.2.3 Elementos no dOCUMENIAAOS................ccccoovieiiiiiiiiiii ittt 39
3.3 BUILADOL ...ttt ettt a e e bt e e e bt e e e eneeeen 40
3.3.1 Breve descripcion de la herramienta..................c.ccocceeeieiiiiiiaiiii et 40
3.3.2 COnfiguracion QENeral....................ccocccuuiiiiiuiaiiiiie e 42
3.3.3 OFGANIZAAOFTES............cceeeeieeee ettt e e e e e e eeaaeee s 42
3.3.4 COMSIFUCIOTES.....ceeei ettt ettt 44
3.3.5 INfOrmes de StAAO.ccoooocueieiiiieiiiieieeee e 44
3.3.6 Guia de instalacion y CONfIGUIACION................cc.cceveeeeiieeeiiiieesieeeeiee e 45
3.3.7 Script de iNSIALACION.ccooouiiiiiiiiiiiiiiite e 45
3.4 Guia de estilo de cOdIfICACION.cc.eivuiiiiriiiiiiecc e 46
34] COMEERIAO. ...ttt 46
3.4.2 Evolucion del dOCUMENTO.................c.cccueiiiiiiiiiiiiieee et 47

4. Trabajo en modulos Common Y DIMLIDcicvieiiniveicsseicsssnicssnnicsssnssssanssssanssssassssssssssssssssssansess 48
4.1 Introduccion a 10s MOAULOS.couiiiiiiiieiie ettt 48
G 1.1 COMMOMN........ooooeiee e et e et e e et e e e e ee e e et e e e e e ntsaeeeetsaaaaaaaeeeens 48

G 1.2 DMLID.........coeeiiiiiiee e e ettt 53

4.2 DOCUMENTACION. ...coeeiieeeeeeeee e, 55

4.2.1 COMENLAVIOS TRIINC.ceeiee ettt e 55

4.2.2 COMENLATIOS AOXYZCN......c.eeesieeeiee e et e et et e e tee et e e st e e snsae e e e s aeeeeeennssaeeens 56

4.3 Cambios realiZados.......cueiveeinueiiseiisiinseensneissencsiisseecsessssicsessssssssessssissssssssssssesssssssssssssssssassssans 58
4.3.1 Uso uniforme de String y CRAT *...........ccccooveiiiiiieiiieee e 58

4.3.2 Separacion €N NAMESPACES................cceecuireeruieeiriteeiteee ettt ettt sttt 59

4.3.3 Separacion de archivos fuente y de cabecera...................ccccccoeeveiiiiniiiiiiiniiiiieiieaeen. 59

4.3.4 Cambios PURTUALES.c..ooeieieiieeeie ettt e e s 60

4.4 Desarrollo de nuevas CaracteriStICaS.uerueeueriertieieeieteeteseeete ettt st e e eeeeeeee e 62
4.4.1 SiStema@ de @XCOPCIONES.cccueeeiieeeiieeiie e et e e e tae e e e e sasaeesaseeennsaeeens 62

4.4.2 Sistema de CONIGUIACION.c...cccueeviueeeiiieeiiie e e e e aae e aae e s 66

5. TOSEING.cuueeiireeeisnnissnencssarecsssnecsssnessssnesssnessssnesssssesssssessasasses 68
S5.1UnNit Testing ¥ ECUT ...ciiiiiiiiee ettt ettt ettt et e st e e e snneeeennaee s 68
5.2 Casos de prueba realizZados.........ccuveeiierieeiieiieeiteie ettt e ettt eeanae s 69

0. CONCIUSIONES....ucineiiueiirecsuiinniissecsssecssnisssesssecsssnessnssssnsssessssessssssssssssassssessssssssssssassssesssassssnsssassssans 75
6.1 E1LTUturo de MATE ..ottt ettt ettt e e e e 75
6.2 CoNCIUSIONES PETSONALES......eeeevireeiiieeiieeeiieeeieeeeteeesteeesreeestbeeeaaeeesaeeesaeesseeessaeaeesnsssseaeens 76
Biblio@rafia.......ccouiiiiiiiiiiiiiniiniinnniiniinniinnnnnnicssiestessssssssssssisssssssssessass 78

INLAICE A€ ANMEXO0S..eeerererrrrrerereresssssssssssssesasssnssssssnce 79

1. Introduccion

1.1 Antecedentes

Debido a la naturaleza del presente proyecto, resulta pertinente empezar dando una breve vision de
HPC (High Performance Computing). La computacion ha sido una de las mayores herramientas para
estudios cientificos desde su aparicion y la capacidad de calculo ha ido aumentando en grandes
proporciones desde entonces. La rama de las ciencias de la computacion relacionada con esto se
denomina computacion de altas prestaciones. Consiste en obtener la mayor capacidad de célculo
posible utilizando supercomputadores y diferentes técnicas para aumentar el rendimiento, como

programacion paralela o distribuida.

1.1.1 Arquitecturas paralelas

El aspecto que presenta mas interés para el proyecto son las arquitecturas paralelas. Hasta cierto
momento se ha estudiado el procesamiento a nivel del procesador y se han aplicado técnicas de
segmentacion. Esto podria considerarse un primer mecanismo de paralelismo, ya que varias
instrucciones consecutivas son ejecutadas de forma solapada. También se ha visto en los
procesadores superescalares como se realiza algo de procesamiento paralelo lanzando dos o mas

instrucciones al mismo tiempo gracias a la presencia de varios cauces paralelos.

Sin embargo todos estos se cifien a la arquitectura de Von Neummann con un procesador y memoria
donde se guardan los datos y el programa, es decir, una méaquina secuencial que procesa datos
escalares. Este modelo ha ido evolucionando incluyendo elementos de paralelismo, pero sigue siendo
una maquina de ejecucion con un unico flujo de instrucciones. No existe una frontera clara entre la

arquitectura monoprocesador y las masivamente paralelas.

Podemos considerar una arquitectura paralela un escenario en el que se descompone un proceso
secuencial en suboperaciones, y cada subproceso se ejecuta en un segmento dedicado que opera en
forma concurrente con los otros segmentos. De esta manera cada segmento obtendra un resultado
parcial y se obtendra el resultado del calculo una vez todas las suboperaciones finalicen. Una de las
técnicas para implementar este tipo de operaciones se trata del uso de aplicaciones paralelas o

distribuidas.

1.1.2 Aplicaciones paralelas

El desarrollo de aplicaciones paralelas surgidé a raiz de las arquitecturas paralelas mencionadas
previamente. En estas aplicaciones el procesamiento se reparte en diferentes tareas independientes

que se ejecutaran concurrentemente.

A la hora de trabajar con este tipo de programas, existen dos paradigmas bésicos que implementan
esta idea. El primero es el uso de memoria compartida. En este modelo, los procesos comparten una
direcciéon de memoria donde leen y escriben de forma asincrona. Para esto se utilizan sistemas de
exclusidon mutua como pueden ser semaforos o mutex. Una de las ventajas de este modelo es que el
concepto de "posesion" de datos es inexistente, ya que no es necesario especificar la comunicacion
entre procesos para realizar intercambio de informacioén. Sin embargo en cuanto a rendimiento los
resultados de esta practica son menos eficientes, ya que el control de memoria puede llegar a utilizar
muchos recursos. El otro paradigma que podemos ver implementando estas aplicaciones es el paso de
mensajes. En este modelo cada tarea utiliza su propios datos y es totalmente independiente de las
demas en la fase de calculo. Con esto es mas facil trabajar en maquinas diferentes y repartir la carga
mas facilmente. Mas tarde, una vez completada la tarea, se entregan los resultados utilizando una
comunicacion entre procesos. Aunque a la hora de implementar el programa pueda aumentar la

complejidad, los resultados son mejores y se obtiene un mayor rendimiento.

Un sistema que implementa el segundo modelo de aplicacion paralelas es MPI (Message Passing
Library). Se trata de un protocolo de comunicaciones que soporta comunicacion punto-a-punto y
colectiva. La meta de este protocolo es conseguir un alto rendimiento, con buena escalabilidad y

portabilidad. Hoy en dia se situa como el modelo dominante utilizado en HPC.

1.1.3 Analisis de rendimiento

Como ya se ha mencionado la finalidad de HPC es aumentar el rendimiento de céalculo para
operaciones costas. Por eso es importante conocer las herramientas de analisis de rendimiento mas

utilizadas.

La manera de realizar este analisis estd enfocado al estudio de los factores que puedan afectar el
rendimiento del sistema. Esto nos permitira identificar los puntos importantes y de esta manera poder
solucionar los problemas y aumentar las ventajas. Por lo tanto esto implica una combinacion de
medida, interpretacion y representacion de los atributos que representan el sistema. Se puede realizar
de tres diferentes maneras. Por un lado es posible utilizar medidas reales sobre el sistema, el
problema de utilizar esta técnica es que tiene poca flexibilidad y el coste puede llegar a ser muy alto.
Por otro lado es posible generar simulaciones, de esta manera es posible realizar una buena cantidad
de pruebas con una alta flexibilidad. Finalmente, la soluciéon més rdpida y precaria es realizar un
modelado analitico. Se trata de crear una descripciéon matematica de ciertas caracteristicas del sistema

y atacar el proceso de analisis desde ese resultado.

Flexibilidad Coste Exactitud Precision

Medida baja alto alta alta
Simulacién | alta medio |media media
Modelado alta bajo baja baja
analitico

1.1.4 Sintonizacién de procesos

Finalmente, entramos en el tema que incube a este proyecto mds directamente, la sintonizacion de
aplicaciones paralelas. Después de realizar estudios sobre este tipo de aplicaciones y recoger varios
datos con métricas, uno de los sistemas que ha demostrado ser mas eficiente en la practica es la

sintonizacién dindmica de procesos paralelos.

El problema con el andlisis clasico es que el desarrollador debe tener experiencia en la programacion
de aplicaciones paralelas y el analisis de rendimiento para poder modificar el comportamiento de la
aplicacion. Para superar estas dificultades, las herramientas de sintonizacion de procesos paralelos
aportan una serie de aspectos que permiten un andlisis automatico del rendimiento. Estas
herramientas se basan en una serie de fases. Primero, recogen una coleccion de métricas de la
aplicacion en funcionamiento con una herramienta de monitorizacion. Una vez se han recogido estos
datos, se procede a realizar el analisis automatico. Este proceso busca problemas de rendimiento y
bottlenecks. Muchos de estos problemas con aplicaciones paralelas han demostrado ser los mismos
con afios de experiencia en el analisis del rendimiento. Por eso estas herramientas poseen una base de
conocimiento sobre los posibles bottlenecks y como encontrarlos. Una vez se han detectado los

problemas, se genera una posible solucion y se realiza la sintonizacion de la aplicacion.

Monitorizacion

Aplicacion
Paralela

Sintonizacidn

Figura 1.1 Proceso de sintonizacion de aplicaciones paralelas.

Existen diferentes técnicas a la hora de aplicar esta sintonizacion sobre la aplicacion objetivo. Una de
ellas es la sintonizacion dindmica a través de tunlets. Estos tunlets son librerias asociadas a estos
problemas que contienen informacion sobre como solucionarlos. Para poder cooperar con el entorno,
la implementacion de cada tunlet esta basada en la API de sintonizacion dinamica que proporciona el

modulo de analisis.

1.2 Sobre MATE

MATE es un programa que implementa la sintonizacioén de aplicaciones paralelas descrita en el punto
anterior. La aplicacion fue desarrollada junto a la tesis doctoral de Anna Morajko' en 2003 y desde
entonces ha ido evolucionando. Las siglas de MATE significan "Monitoring, Analysis and Tuning
Environment", en relacion a las fases que realiza para llevar a cabo la sintonizacion. El ciclo principal
de ejecucion del entorno consiste en tres fases: monitorizacion de la aplicacion objetivo, andlisis de

sus parametros de ejecucion y modificacion de los mismos.

La primera fase de monitorizacion consiste en instrumentar de forma dindmica y automatica la
aplicacion objetivo para conseguir informacion sobre su comportamiento. Para poder instrumentar de
forma dindmica una aplicacion se utiliza Dynlnst, una libreria que permite insertar fragmentos de
codigo (llamados snippets) dentro del programa en ejecucion. Mediante esta libreria MATE se ocupa
de insertar uno de sus moddulos, DMLib (Dynamic Monitoring Library), y recoger los datos

necesarios. Los resultados obtenidos se comunican a través de la libreria de paso de mensajes MPI.

En la fase de andlisis se contrastan los resultados de la monitorizacion con los modelos tedricos de
comportamiento para buscar bottlenecks, detectar sus causas y determinar soluciones. Todo esto se

realiza en el modulo Analyzer que dispone de una serie de Tunlets como base de conocimiento.

Finalmente la fase de modificacion consiste en la introduccion de los cambios determinados en la fase
de analisis en la aplicacion objetivo. Este trabajo también lo realiza utilizando Dyninst. Todo este
ciclo es continuo y por eso mismo en esta fase también se pueden realizar cambios sobre los
parametros de monitorizacion. De esta manera el analisis va mejorando con el tiempo de ejecucion y

la sintonizacion da mejores resultados.

1.3 Objetivos del proyecto

Debido a su envergadura, los objetivos de este proyecto se dividiran entre los diferentes miembros del
equipo de desarrollo. A continuacion se listaran los objetivos generales y se especificard la division

de los mismos.

1
5

Anna Morajko, "Dynamic Tuning of Parallel/Distributed Applications", UAB, 2003.

Objetivo Prioridad Miembro Asignado*
1 Crear especificaciones del entorno de Prioritario Grupo
desarrollo
2 Implantar entorno de desarrollo Critico
2.1 Herramienta de colaboracion Critico Rodrigo Echeverria,
Antonio Pimenta
2.2 |Herramienta de control de versiones Critico Antonio Pimenta
2.3 Herramienta de construccion Critico Noel De Martin
3 Construir la metodologia de desarrollo. | Critico Grupo
3.1 Guia de estilo de documentacion. Critico Rodrigo Echeverria
3.2 |Guia de estilo de codificacion. Critico Noel De Martin
3.3 |Guia de estilo de documentacion de Prioritario Rodrigo Echeverria
codigo.
3.4 | Guia de estilo de desplegamiento. Prioritario Antonio Pimenta
4 Aplicar la metodologia y especificaciones | Critico
a MATE.
4.1 Aplicacion sobre las clases comunes Critico Noel De Martin
(Common)
4.2 | Aplicacion sobre el médulo DMLib. Critico Noel De Martin
43 Aplicacién sobre el modulo AC. Critico Antonio Pimenta
4.4 | Aplicacion sobre el modulo Analyzer. Critico Rodrigo Echeverria
5 Desarrollo de nuevas caracteristicas Secundario
5.1 Crear un instalador para cualquier version | Secundario Rodrigo Echeverria,
de Linux. Antonio Pimenta
5.2 | Crear un lector de configuraciones Secundario Noel De Martin
flexible.
53 Crear un sistema de cerrado de MATE. | Secundario Rodrigo Echeverria,
Antonio Pimenta
6 Crear documentacion de MATE para Prioritario Grupo

futuros colaboradores y usuarios.

1.4 Estructura del documento

Este documento esta dividido en 6 capitulos principales.

El presente primer capitulo introduce el tema y finalidad del proyecto. Primero podemos encontrar la
seccion antecedentes que explica todo lo necesario para situarse en el contexto del programa MATE y
las aplicaciones paralelas. Seguidamente se muestran los objetivos del proyecto y la distribucion de

estos.

En el segundo capitulo se describe la evolucién que ha tenido el proyecto y como se ha llevado a
cabo. El primer estudio de viabilidad muestra la situacion actual y estudia la logica del sistema y los
diferentes aspectos necesarios antes de comenzar con el proyecto. En la planificacion podemos
encontrar todas las tareas realizadas, asi como los recursos utilizados. También se muestra un analisis

de coste-beneficio y la explicacion de las tareas a realizar antes de comenzar con el proyecto.

En el tercer capitulo ya se entra en materia detallando la primera parte del proyecto, el desarrollo de
la metodologia. Primero se muestra una perspectiva general sobre las metodologias y se explica el por
qué se ha decidido realizarla. A continuacion se presenta la metodologia general trabajada por las tres
partes implicadas y finalmente se detallan en profundidad las herramientas y especificaciones

trabajadas en este proyecto.

Los siguientes dos capitulos hablan de la segunda parte del proyecto, el trabajo realizado en los
modulos de MATE. En el cuarto se describen los mddulos trabajados y se da una explicacion
detallada de todos los elementos que contiene. Después se pueden encontrar explicaciones de todo el
trabajo realizado a través del proyecto y los resultados obtenidos. En el capitulo cinco se describe el
proceso de test realizado para asegurar el cumplimiento de los objetivos establecidos y se detalla el

sistema que se ha seguido para ello.

Finalmente el ultimo capitulo habla de los resultados del proyecto y el cumplimiento de los objetivos
establecidos previamente. También acaba cerrando el documento con una reflexion sobre las

repercusiones del proyecto y la evolucion de MATE.

2. Viabilidad y Plan del proyecto

2.1 Estudio de Ia situacion actual

Actualmente MATE estd en una version enfocada a la investigacion y se busca modificar este
enfoque aplicando una metodologia de desarrollo firme y obteniendo una documentacion clara para
tratarse como producto. Ademas, existen otras aplicaciones con funcionalidades similares, también
orientadas a la sintonizacion dinamica de rendimiento. Las mas destacadas y cercanas a MATE son

AutoPilot, y Active Harmony.

Por otro lado cabe destacar que MATE tiene un valor afiadido ya que posee caracteristicas Uinicas que
lo distinguen de otras alternativas: no necesita insertar coédigo fuera del tiempo de ejecucion como
Autopilot (puede realizar modificaciones en tiempo de ejecucion) y basa su analisis en modelos de
comportamiento y reglas bésicas, no en heuristicas como Active Armony o en logicas rebuscadas

como Autopilot.

2.1.1 Contexto

El entorno de MATE ha sido probado con un amplio conjunto de aplicaciones paralelas y distribuidas
obteniendo resultados satisfactorios de su funcionamiento, por lo que se puede decir que la
herramienta presenta un grado de funcionalidad plena. Una vez se ha comprobado que el software es
funcionalmente operativo y cumple con sus objetivos de disefio, el equipo de desarrollo de MATE

pretende mejorar la calidad del mismo y ampliar el espectro de usuarios que puedan utilizarlo.

2.1.2 Logica del sistema

En nuestro entorno es necesario realizar sintonizacion dinamica. Desde el punto de vista funcional

podemos distinguir tres fases basicas descritas en los puntos siguientes.

Monitorizacién
Esta fase es la encargada de obtener informacién sobre la ejecucion de la aplicacion. Esto no es un
proceso trivial ya para obtener medidas de rendimiento de la aplicacion esta debe estar en marcha,
por lo tanto esta tiene que incluir fragmentos de codigo que se encargan de captar eventos y notificar
de estos al AC. Estos fragmentos pueden haber sido introducidos en el cddigo original por el
programador o se pueden introducir de forma directa en el programa compilado y en ejecucion. En

nuestro caso optamos por la segunda opcién de nos da un grado de versatilidad mayor.

Para que esto sea posible la aplicacion que queremos monitorizar debe ejecutarse bajo la tutela de un
proceso de control y recoleccion [AC]. Este proceso se encarga, en una primera instancia, de
introducir en la aplicacion objetivo una serie de funciones baliza que monitorizan una parte
especifica de la aplicacion, y posteriormente de almacenar y tratar los resultados. Es necesario
también cargar en la aplicaciéon una libreria que contiene las herramientas necesarias para la

monitorizacion de la aplicacion [DMLib].

Estas medidas de rendimiento pueden ser de varios tipos, por ejemplo tiempos de ejecucion de
funciones clave o repeticiones de llamadas a una misma funcidén. También se pueden medir las veces

que ocurre un evento complejo.

No obstante, para conseguir obtener medidas de rendimiento, se debe conocer profundamente la
aplicacion que se desea optimizar. MATE utiliza unos modelos de rendimiento adaptados
estrechamente a la aplicacion objetivo. Estos proporcionan informacién sobre como obtener datos

utiles para la medicion del rendimiento y medidas a tomar para mejorarlo.

Por ultimo debe existir un medio adecuado para transmitir los datos recolectados a un proceso de

analisis para obtener resultados y, si es posible, sintonizar la aplicacién para mejorar su rendimiento.

Algunos aspectos que se deben tener en cuenta al trabajar en diferentes maquinas son las posibles
diferencias en los relojes de sus procesadores y el tiempo de transmision de los datos. Es importante

que una serie de eventos que ocurren en la aplicacion lleguen en ese orden al analizador.

Analisis

Una vez obtenidas las mediciones adecuadas un programador experto y conocedor de la aplicacion a
optimizar, sabria encontrar los cuellos de botella en su ejecucion y podria proponer soluciones a
estos. No obstante esta es una tarea pesada y duradera y como hemos dicho requiere un nivel de

conocimiento muy alto.

Como alternativa existen métodos de analisis automatico. Estas herramientas identifican problemas
en la ejecucion de la aplicacion e incluso proporcionan soluciones a estas. Para que esto sea posible
se le debe proporcionar a la herramienta de anélisis una base de conocimiento sobre la aplicacion asi
como posibles zonas criticas donde buscar problemas. El proceso de producir unos modelos que
permitan al analizador automatico identificar exitosamente estos problemas no es facil. Ademas, a
pesar de que se obtenga un modelo valido. Las soluciones proporcionadas serdn estrictamente utiles

para el comportamiento que tuvo la aplicacion durante esa ejecucion concreta.

Con MATE se intenta atajar este problema no solo automatizando el proceso de analisis sino ademas
realizarlo de forma dinamica. Esto implica que el analisis de puede realizar mientras la aplicacion se
ejecuta, eliminando la necesidad de un archivo donde almacenar los datos de medicion. Este método,
pese a que conserva muchas de las desventajas del analisis manual, permite un analisis adaptativo en
aplicaciones iterativas ya que durante la ejecucion se puede modificar dinamicamente la

monitorizacion e instrumentacion de la aplicacion.

En el caso de MATE el andlisis se produce dindmica y automaticamente, sin necesidad de un archivo

con los datos de monitorizacion, ya que el modulo Analyzer recibe los eventos recolectados.

Optimizacion

10

La fase de optimizacion (Tuning) es en la cual aplicamos los cambios adecuados para mitigar los
problemas detectados. Estos cambios se deben hacer en el cddigo de la aplicacion ya que forman
parte de esta, y por tanto es normalmente necesario cerrar la aplicacion, modificarla, recompilarla y
volverla a ejecutar. Si los cambios aplicados son adecuados se deberia observar una mejora en el

rendimiento.

No obstante este método de optimizacion requiere la atencion directa del programador y ademas es
necesario recompilar, y por tanto cerrar, la aplicacion. Los cambios realizados podrian ser inttiles si
en la siguiente ejecucion el programa se comporta de forma distinta, debido, por ejemplo, a

diferentes valores de entrada.

MATE proporciona un modelo de optimizaciéon autobnomo que no requiere de la intervencion del
programador y que se realiza dindmicamente, es decir, sin cerrar la aplicacion. Ademas, el hecho de
que se sintonice la aplicacion de forma dindmica permite que se realice de forma adaptativa, asi

aunque cambien las condiciones de la ejecucion el programa sigue operando de forma eficiente.

En MATE la aplicacién de estas variaciones es llevada a cabo por el AC (Aplication Controller), este
dispone de un sintonizador (Tuner) que contiene las herramientas necesarias para instrumentar la
aplicacion dindmicamente. Usando la informacién proporcionada por el Analyzer el AC introduce

los cambios necesarios en la aplicacion mientras esta se ejecuta.

Estas tres fases tienen que estar realizdndose continua, dindmica y automdticamente mientras el
programa estd en ejecucion. Para que este método sea efectivo la aplicacion objetivo debe ser
iterativa (ejecucion de un bucle que realiza de forma repetida una serie de instrucciones), y se obtiene

la eficacia en procesos largos y que usen muchos recursos.

Modulos de MATE

11

Basicamente, MATE estd formado por los siguientes moédulos que operan conjuntamente,

controlando e intentando mejorar el rendimiento de la aplicacion objetivo.

— AC (Aplication controler): Se trata de un proceso daemon que controla la ejecucion de la
aplicacion. Este proceso se inicia de forma manual en cada uno de los nodos y es el que se

encarga de inicializar las tareas (aplicacion) que se van a monitorizar.

Lo primero que hace el modulo es cargar en la imagen del proceso que representa la aplicacion
una libreria dindmica llamada DMLib, que contiene las herramientas necesarias para la
monitorizacion dindmica de la aplicacion. Esta libreria debe inicializarse con los datos del

analizador para que sea posible la comunicacion entre los nodos y el modulo Analyzer.

A continuacion se buscan los puntos indicados por el Analyzer donde se deberan introducir los
monitores que recopilan informaciéon de la ejecucion. Esto es diferente para cada aplicacion y

viene indicado por unos médulos incluidos en el Analyzer.

Una vez aplicada esta lista, y en linea, se procede a iniciar la aplicacion, y una vez esta esta
iniciada los datos recopilados se envian como eventos al Analyzer directamente desde la

aplicacion usando funciones de la DMLib.

12

En este punto el AC ha de estar preparado para recibir instrucciones del Analyzer a la vez que
controla la aplicacién en ejecucion ya que esta puede producir nuevos eventos que reportar. En
cuanto se recibe una peticion de sintonizacion (Tuning request), el AC informa a las tareas de
que han de ser modificadas y estas a su vez pediran al Tuner que las actualice, siempre esperando
a que se dé¢ el momento adecuado. Esta sincronizacion de las modificaciones es posible gracias a
los “break points” (puntos de parada), que indican los lugares donde se debe insertar la
instrumentacion nueva y paran la ejecucion de la aplicacion para que estas modificaciones sean

posibles.

Este ciclo de comunicacion-modificacion se realiza de forma ciclica hasta que se han realizados

todas las modificaciones o la aplicacion se ha cerrado.

DMLib (Dynamic Monitoring Library): Una libreria compartida que se carga dindmicamente
dentro de las tareas de la aplicacion para facilitar la instrumentacion y recoleccion de datos. La
libreria contiene funciones que son responsables del registro de eventos con todos los atributos
necesarios para entregarlos para analisis. Usamos la funcion loadLibrary de dyninst para cargar

la libreria una vez la tarea ya ha sido iniciada.

Esta libreria debe ser inicializada con los datos del Analyzer para hacer posible la transmision de

los datos recolectados. Esta inicializacion se inserta como un snippet en la aplicacion.

Una vez cargada e inicializada esta libreria implanta las conexiones necesarias via proxy para

comunicarse con el Analyzer.

Analyzer: Es el proceso que se encarga de analizar el rendimiento de la aplicacion, detecta

problemas de rendimiento a tiempo real y solicita los cambios idoneos para mejorarlo.

Mediante un sistema de captura de eventos este mddulo obtiene informacion sobre la ejecucion
de la aplicacion y aplica unas funciones especificas a la aplicacion para identificar problemas y
proporcionar al AC posibles soluciones. Este procedimiento es también ciclico y en cada

iteracion se manejan varios eventos que resultan en soluciones para el AC.

Pese a que es el AC quien se ejecuta junto a la aplicacion el Analyzer dispone de una abstraccion
de esta que usa para identificar los eventos con de cada una de las tareas que se ejecutan en los

diferentes nodos.

— Common: Por ultimo existe un médulo en MATE que contiene las clases compartidas que son
usadas por los deméas modulos. Este modulo cumple el objetivo de reutilizacion de codigo y

encapsulacion de los diferentes componentes de MATE.

2.1.3 Descripcion fisica

13

Master AC
[Monitor] [Tuner]

Slave AC
[Monitor } { Tuner J

__

vy

Analyzer

Machine 3

Figura 2.1 Esquema del sistema, extraido de la tesis de MATE.

En cuanto a aplicacion, MATE se divide en dos partes diferenciables, el Analyzer y el Aplication
Controller. Estos son los dos ejecutables que cumplen funciones distintas y se complementan para
formar en entorno de sintonizacion que es MATE. Al ser una herramienta para programas
distribuidos, MATE se ejecuta en diferentes maquinas, en concreto el modulo AC se ejecuta en cada
uno de los nodos que ejecutan procesos de la aplicacion objetivo, mientras que el Analyzer es un

programa centralizado que se ejecuta en una sola maquina.

Al empezar la aplicacion, MATE distribuye un proceso de AC en cada maquina para controlar el

comienzo de las tareas.

Otro de los componentes de MATE es la libreria DMLib (dynamic monitoring library), cuando
comienza una nueva tarea MPI, el AC carga la libreria compartida de monitorizacion en la memoria
de la tarea para permitir la instrumentacion de esta. Esto le permite al Analyzer afadir/eliminar

eventos dindmicamente para recolectar informacion y realizar la sintonizacion.

2.1.4 Diagnostico del sistema

2.

14

Actualmente la aplicacion estd muy restringida y solo es capaz de funcionar en escenarios con
caracteristicas muy concretas. Ademas al ser un proyecto destinado a la investigacion, carece de las
metodologias de desarrollo necesarias para su expansion, como la documentacion o sistemas de

colaboracion.

Esto se podra solventar con un proceso de testeo donde obtendremos una serie de errores a reparar y
que definiran el curso de la segunda parte del proyecto. También serd necesario crear una

documentacién de respaldo para permitir la evolucion del producto.

2 Requisitos funcionales y no funcionales

Al tratarse de un proyecto que se basa en una aplicacion ya desarrollada los objetivos naturales de un

proyecto de desarrollo se ven llevados a un segundo plano.

Por tanto, aunque lo primero que puede surgir al pensar en requisitos sobre este proyecto sean
requisitos de MATE (mejorar rendimiento de la aplicacion, no sobrecargar demasiado la ejecucion),
seria un error enfocarlo de esa manera, ya que este proyecto no se trata de crear MATE, sino de crear

una versién como producto software del mismo.

Esto es, desarrollar y aplicar una serie de procedimientos para producir, a partir de la version
existente de MATE, una aplicacion adecuada a un uso general y proporcionar las herramientas

necesarias para la continuidad de su desarrollo.

2.2.1 Requisitos funcionales

Debido al hecho de que MATE es un programa plenamente operativo los requisitos funcionales se
reducen a que la funcionalidad actual se mantenga y a afiadir algunos pequefios médulos que hagan
mas comodo el uso de MATE aunque no modifiquen su funcionamiento principal, como por ejemplo
un sistema de Shutdown (Apagado). El resto de requisitos apareceran al realizar los test de prueba

sobre los cuales trabajaremos para modificar el programa.

1.- Mantener funcionalidad actual de MATE.
2.- Adaptar a nuevos entornos.
3.- La aplicacion debe cerrarse de forma controlada.

4.- Permitir lectura de archivos de configuracion.

2.2.2 Requisitos no funcionales

En nuestro caso los requisitos no funcionales se basan en homogeneizar la codificacion y
documentacion. Por lo tanto haran referencia a las guias de especificacion. También seran encontrar

los posibles errores del sistema mediante un sistema ciclico de testeo.

Dado que, como hemos explicado anteriormente, los requisitos funcionales basicos de MATE ya
estan satisfechos, la carga de nuestro proyecto se encuentra en los no funcionales. Estos, pese a no

anadir funcionalidad a la aplicacion incrementan su calidad.

1.- Homogeneizar codificacion y documentacion.
2.- Realizar proceso de testeo.

3.- El programa debe funcionar en todas las distribuciones de linux.

15

2.3 Alternativas y seleccion de la solucion

Considerando que el proyecto consiste en crear una metodologia de desarrollo productiva que sirva
como base a los futuros desarrolladores de MATE, para posteriormente aplicarla al software
existente, las alternativas se definen en el marco de herramientas de desarrollo, colaboracion y en la

seleccion de la propia metodologia.

2.3.1 Alternativa 1 (H. Colaboraciéon — Redmine)

Redmine es una herramienta de colaboracion que actia como solucion todo-en-uno ya que posee
soporte multiproyecto, acceso basado en roles, sistema de seguimiento, gestor de calendarios y
diagramas de Gantt, soporte a wikis y foros y compatibilidad con diversos gestores de versiones

concurrentes. En cuanto a coste, encontramos que se trata de una herramienta de codigo libre.

2.3.4 Alternativa 2 (H. Colaboracién — Trac)

Trac es una herramienta de gestion de proyectos que enlaza una base de datos de errores de software,
un sistema de versiones y el contenido de una wiki de colaboracion. En cuanto a coste, encontramos

que se trata de una herramienta de codigo libre y gratuito.

2.3.4 Alternativa 3 (H. Control Versiones — CVS)

CVS (Concurrent Versions System) es una aplicacion cliente-servidor donde el servidor se encarga de
guardar un historial de las diferentes versiones de cada uno de los archivos que componen un
proyecto; los clientes pueden acceder a estos archivos de forma directa o bien remotamente. En

cuanto a coste, encontramos que se trata de una herramienta de codigo libre y gratuito.

2.3.4 Alternativa 4 (H. Control Versiones — SVN)

16

SVN (Subversions) es una herramienta de control de versiones que tiene la peculiaridad de que
mantiene un unico nimero de version para un conjunto de archivos, de forma que lo que conserva es
un estado determinado del proyecto en general. Ademas, soporta el acceso desde redes, permitiendo a
usuarios modificar los archivos desde distintas ubicaciones. En cuanto a coste, encontramos que se

trata de una herramienta de codigo libre y gratuito.

2.3.5 Alternativa 5 (H. Desarrollo — Buildbot)

Buildbot es una herramienta de desarrollo software iterativa que automatiza los procesos de
compilacion y testing. Posee soporte para control de versiones (CVS, SVN, etc.). En cuanto a coste,

encontramos que se trata de una herramienta de codigo libre y gratuito.

2.3.6 Alternativa 6 (H. Desarrollo — Tinderbox)

Tinderbox es una suite que proporciona capacidades de continua integracion, basicamente permite
manejar proyectos software y probar su funcionamiento en diversas plataformas. En cuanto a coste,

encontramos que se trata de una herramienta de codigo libre y gratuito.

2.3.7 Solucién propuesta

En cuanto a la herramienta de seguimiento se utilizarda Redmine por dos razones: primero, es mas
completa y ofrece en una misma aplicacion todas las herramientas que se necesitan y, segundo, la

experiencia del director de proyecto con esta herramienta servird como guia.

Sobre la herramienta de control de versiones se utilizara SVN, ya que interesa mas guardar el

proyecto por versiones en general, sin hacer hincapié en los archivos individuales.
Y finalmente la herramienta de desarrollo que se utilizard es Buildbot por su capacidad de integracion

con SVN y porque nuestros intereses no se dirigen especialmente al testing multiplataforma, sino a un

ciclo iterativo de compilacion-testing-recodificacion.

17

2.4 Planificacion

2.4.1 Diagrama WBS

[

Definicion e implantacion de una
metodologiade desarrcllo para MATE

)

[

I

|

Estudio
previo

Desarrollo metodologia y

entorno

Implantacion de la
metodologia

) |

Desarrollo de nuevas
caracteristicas

) |

Cierre de
proyecto

Estudio de
viabilidad

Estudio de
viabilidad

\-‘ Metodalogia

Guia de estilo de
documentacion

Planificacion
proyecto

Plan de

proyecta

Plan de
iteraciones

Lista de
rigsgos

18

Control de versiones

Gestidn de equipos

Guia de estilo de
documentacian
de cadigo

Guia de estilo de
codificacian

Guia de estilo de
control de versiones
y construeccidn

Guia de estilo de
desplegamiento

Estudio médulos
MATE
Merge entre Commaons
y DMLk

Aplicacidn metodologia

sobre Common y DMLib

Adaptacion AC y
Analyzer a Commaon

Aplicacidn metodologia
sobre AC y Analyzer

Documentacidn

Entorno de desarrollo I-
Implantacian
herramientas

Senvidor http

GIC Control de

versiones

GIC Gestidn de
equipos

Construccion

Documentacidn

GIC
Documentacicn

Entorno de
desarrollo cliente

Automatizacidn

instalacidn del entorno

Prueba de aceptacidn

—l Sistema de instalacian |

Estudio situacion
actual
Desarrollo script de
configuracian

Desarrollo maksfiles

Documentacion
de usuario

Compactacidn
memaria y anexos
Memaria
proyecto

Presentacidn del
proyecta

Sisterna de cerrado

Sistema de
configuracién

Sistema de
excepciones DMLk

Rediszfio de clases
Documentacidn del
nuevo sistema

Documentacién de
las clases

Analisis del ciclo de
Bjecucion

Implementacidn sobre

Implementacidn sobre
Analyzer

Prueba de integracian

f—:
(9]

2.4.2 Fases y actividades del proyecto

Fase Actividad Descripcion Iterativa
Estudio previo |Estudio de Estudio para analizar las posibilidades y mejores No
viabilidad alternativas para realizar el proyecto y si estas son
posibles con los recursos disponibles en el tiempo
requerido.
Planificacion Andlisis sobre las tareas que compondran el proyecto, su|No
del proyecto calendario, los recursos necesarios para ejecutarlas y los
riesgos que comportan a la consecucion del proyecto.
Formacion Estudio sobre los temas relacionados con paso de No
previa mensajes (MPI) y sintonizacidon de procesos (Dyninst)
Desarrollo Desarrollo guias | Creacion de los documentos que conforman la base de | Si
metodologiay |de estilo la metodologia a implantar: guias de estilo de
entorno documentacion, codificacion, construccion, control de
versiones, etc.
Implantacion Seleccion de las diferentes herramientas que forman el | Si
entorno entorno de desarrollo, implantacion e integracion de las
mismas.
Implantacion Estudio Estudio sobre el codigo en su version original de cada | No
metodologia modulos MATE |modulo de MATE.
Combinacién | Eliminacion de las clases redundantes entre Commons y | Si
DMLib y DMLib y refactorizacion de AC y Analyzer en
Commons consecuencia.
Documentacion | Documentacion sobre el codigo de cada modulo y No
y refactorizacion derivada de las guias de estilo.
refactorizacion
Prueba unitaria | Prueba unitaria de las clases que componen cada No
modulo.
Documentaciéon | Extraccion y compilacion de la documentacion sobre No
codigo.
Prueba de Prueba del sistema completo para detectar posibles No
aceptacion errores en la refactorizacion.
Desarrollo de Sistema de Desarrollo de un sistema de instalacion capaz de Si
nuevas instalacion automatizar la busqueda de dependencias y la
caracteristicas compilacion en el mayor grado posible.
Sistema de Desarrollo de un sistema de lectura de configuraciones | Si

19

configuracion |para MATE facilmente ampliable con diferentes tipos
de entradas.

Sistema de Desarrollo de un sistema para DMLib de deteccion y Si

excepciones de |notificacion de errores.

DMLib

Sistema de Desarrollo de un sistema capaz de cerrar el entorno de | Si

cerrado forma centralizada y controlada.
Cierre de Escritura y Escritura de la memoria del proyecto y compilacion del |No
proyecto compilacién de |documento junto con los anexos que lo acompafian.

la memoria

Exposicion del | Exposicion del proyecto ante un tribunal para su No

proyecto

evaluacion.

2.4.4 Recursos del proyecto

Recursos humanos

* 3 Programadores-Analistas: Noel De Martin, Rodrigo Echeverria, Toni Pimenta

* 1 Project Manager: Joan Piedrafita

Recursos de infraestructura

Para la realizacion del proyecto se dispone de la infraestructura que podemos observar en la figura
2.2. Este sistema consiste en una red SAN (Storage Area Network) que almacenard los datos y un
cluster de 8 nodos donde se ejecutaran las aplicaciones paralelas. Existen dos switches de control que
se ocuparan del cluster y de los programas cliente, y un switch de gestion para la virtualizacion. En

este ultimo switch se podrén conectar las maquinas cliente, en nuestro caso portatiles, para realizar las

pruebas necesarias.

20

Figura 2.2 Diagrama de infraestructura.

Virtualizacién

O O 0 W,

Cluster 8 nodos

0 oo

)] oo

oo oo

[p o oo oo oo
Switch gestion oo oo

d m] oo
oo oo

Magquinas cliente ‘oo OO0 |

Almacenamiento

o ojg o

| 0 o o o | | 0Oo0o o I
1
Switch A Switch B

Los detalles técnicos de la infraestructura son:

» Servidor de proyectos, colaboracion y builds virtualizado
o Equipo: Dell PowerEdge R515
© Procesador: 2 x AMD Opteron 4122 (4 Cores —2.2 Ghz— L1 3MB /L2 6MB — 95W TDP)
o Memoria: 8GB Memory for 2 CPUs, DDR3, 1333MHz (8x1GB Single Ranked UDIMMs)
o Disco: 2x 250GB, SATA, 3.5-in, 7.2K RPM Hard Drive (Hot Plug)

* 8 Nodos de computo cluster DiskLess
o Equipo: Dell PowerEdge R610
o Procesador: 2 x Intel Xeon E5620 (4 Cores — 2,4 Ghz — 12 MB Cache — QPI 5,86 Gb/s)

o Memoria: 12GB DDR3, 1333MHz ECC (12x1GB)

* SAN

© Almacenamiento: DELL™ PowerVault™ MD32001, 6 discos SAS 7.2k rpm 500 GB
o Red de gestion: 2 x SWITCH ETHERNET DELL PowerConnect 5424
* Otros
o Sistema de alimentacién: SAI 8000VA APC
o Switch control cluster:SWITCH ETHERNET DELL PowerConnect 5448
o Switch gestion: SWITCH INFINIBAND SDR DE 8 PUERTOS, 4X, 1U.
o Switch Red MATE: SWITCH ETHERNET DELL PowerConnect 5424
o Rack PDU (8 Tomas + Ethernet)
© Chasis Rack 42U
© CABLE INFINIBAND 2 METROS CON CONEXION X4
o (able de interconexion - RJ-45 (M) - RJ-45 (M) -2 m - UTP - (CAT 6)
2.4.4.1 Calendario de recursos
Los recursos humanos se utilizardn durante todo el proyecto, sin embargo el cluster y el
almacenamiento solo se utilizaran en la segunda parte del proyecto haciendo las pruebas necesarias

con aplicaciones paralelas para comprobar los resultados. El resto de recursos materiales también se

utilizaran durante todo el proyecto.

2.4.4.2 Asignacion de recursos

Fase Actividad Recursos asignados
Estudio previo Estudio de Personal.
viabilidad

Planificacion del |Personal.
proyecto

Formacion previa |Personal.

Desarrollo Desarrollo guias | Personal, ordenadores personales, local.

metodologia y de estilo

entorno
Implantacion Personal, ordenadores personales, local, servidor de proyectos.
entorno

Implantacion Estudio modulos | Personal, ordenadores personales, local.

metodologia MATE

22

Combinacion Personal, ordenadores personales, local, servidor de proyectos.
DMLib y
Commons

Documentacion y |Personal, ordenadores personales, local, servidor de proyectos.
refactorizacion

Prueba unitaria Personal, ordenadores personales, local, servidor de proyectos.

Documentacion | Personal, ordenadores personales, local, servidor de proyectos.

Prueba de Personal, ordenadores personales, local, servidor de proyectos
aceptacion y cluster de computadores.
Desarrollo de Sistema de Personal, ordenadores personales, local, servidor de proyectos.
nuevas instalacioén
caracteristicas
Sistema de Personal, ordenadores personales, local, servidor de proyectos.
configuracion
Sistema de Personal, ordenadores personales, local, servidor de proyectos
cerrado y cluster de computadores.
Cierre de proyecto | Escritura y Personal, ordenadores personales.
compilacion de la
memoria

Exposicion del Personal, ordenadores personales.
proyecto

2.4.5 Calendario del proyecto

El proyecto se realizara durante en el segundo cuatrimestre del curso 2010/11.

2.4.5.1 Dependencias
Al tratarse de un modelo lineal, o en cascada, cada fase empezard al terminar la anterior, a excepcion
de aquellas fases mas delicadas que presentaran iteraciones para introducir cambios y correcciones

una vez se hagan las pruebas necesarias.

Las fases del proyecto estan representadas en el primer nivel de la jerarquia del diagrama WBS

(seccion 2.4.1).

23

La primera fase sera el estudio previo, que incluye entrevistas con el cliente, estudios de viabilidad y

planificacion, asi como toda la formacion previa necesaria para los analistas.

La segunda fase consiste en el desarrollo del entorno y la metodologia. Estd fase consiste, por una
parte, en la seleccion de un conjunto de herramientas que conformen un entorno de trabajo para
futuros desarrolladores de MATE y la implantacion de las mismas (documentacion del sistema de
instalacion y configuracion y la automatizacion del mismo) y, por la otra, en la confeccion de una
serie de manuales (guias de estilo) que sirvan como una referencia sobre el “como hacer” para los

futuros desarrolladores.

La tercera y cuarta fase se ejecutaran en paralelo. La tercera fase consiste en adaptar el codigo a las
guias de estilo creadas y a la prueba unitaria del mismo. La cuarta fase consiste en el desarrollo de

nuevas caracteristicas para mejorar la calidad del software en general.

Finalmente, la fase de cierre de proyecto consiste en acabar la memoria del proyecto, compactarla con

sus anexos y entregarla, ademas de la exposicion del proyecto ante un tribunal.

2.4.5.2 Calendario temporal

La duracion total estimada del proyecto es 248 dias que, con una dedicacion media de 4h/dia,

implican 992 horas de trabajo a distribuir entre los tres miembros del equipo.

Fase 1: Estudio previo

24

|oct 10 |Mov 10 |Dec 1o Jan11 [Feb 11 [Mar 11 |
26 |03 [10 [17 |24 |31 [07 [14 |21 |28 |05 [12 [16 [26 [02 |08 [16 |23 |30 [06 [1= [20 |27 |06 [13 |20 |27
BFASE: Estudio previo g g
Entrevista cliente :
EEstudio de viabilidad
[Doc]Estudio de viabilidad 1.0
EPlanificacion del proyecto
[DOCIPlan de proyecto
[DOC]Plan de iteraciones
[DOC]Lista de riesgos |
EEstudio de alternativas sistema de desarrollo| || W
[DOC]Especificacion entorno de desarrollo
EFormacion previa | .]
MPI :
Dyninst .
EReunion de seguimiento | J
Revisidn de documentos iniciales |
Reunion de seguimiento d Il

Mame

o

Fase 2: Desarrollo metodologia y entorno

14 iteracion

e : llan 11 |Feb 11 Mar 11
i1 0= [0 09 12 15 18 |21 |24 |27 |30 |02 |05 [os 11 [14 [17 |70 [2= |26 |01 |04 07 10 [13 [16 [18 |
18 B FASE: Desarrollo Metodologia y entorno E |
19 EMetodologia (1a iteracion) L . 2
20 [DOC]Guia de estilo de documentacion 1.0
21 Aprobacién guia de estilo de documentacion
22 [DOC]Guia de estilo de documentacion de cédige
23 [DOC]Guia de estilo de codificacién 1.0
24 [DOC]Guia de estilo de control de versiones y con
25 [DOC]Guia de estilo de desplegamiento 1.0
26 EEntorno de desarrollo (1a iteracion)
27 Bimplantacién de las herramientas
28 Implantacién de Apache
29 Himplantacion de Redmine
30 Implantacion de Redmine i
31 [DOC]Guia de instalacién y configracién de Red
3z [DOC]Guia de usuario de Redmine :
33 Himplantacion de Subversion(SVN)
34 Implantacion de Subversion F
=5 [DOC]Guia de instalacién y configracién de SWN
36 Ellmplantacion de Buildbot :
37 Implantacion de Buildbot
el [DOC]Guia de instalacion y configracion de Buil
39 Simplantacion de Doxygen
40 Implantacion de Doxygen
41 [DOC]Gula de instalacién y configracion de Do
42 EReunion de seguimiento y cierre de la iteraciq:
24 iteracion
Name }|Feb 11 Mar 11 lapril
01 o2 o7 110 113 T16_J1e [22 [25 |26 [03 [06 [09 [12 [15 [18 21 24 [27 [20 |02 [05 [08 11 14 17 [20
42 BReunion de seguimiento y cierre de 1a iteracid :
43 EActualizacion documentos iniciales :
44 [DOC]IPlan de proyecto 2.0 |
45 [DOC]IPlan de iteraciones 2.0 |
46 [DOC]Lista de riesgos 2.0 |
47 Rewvision documentacion generada hasta la fecha
48 BMetodologia (2a iteracion)
48 BActualizacion y correccion guias de estilo
50 [DOC]Guia de estilo de documentacién 1.0
51 [DOC]Guia de estilo de documentacion de codig
52 [DOC]Guia de estilo de codificacién 1.0
53 [DOC]Guia de estilo de control de versiones y co
54 [DOC]Guia de estilo de desplegamiento 1.0
55 EEntorno de desarrollo {2a iteracion) y
56 Integracion Redmine-Apache
57 Implantacion Eclipse
58 Integracion Redmine-Eclipse
59 Integracion Redmine-SVN
50 Integracian SWN-Buildbot :
61 BlActualizacion y correccion de las guias de in< '
62 [DOC]Guia de instalacién y configracién de Redmi
63 [DOC]Guia de instalacion y configracion de SWN y| -
654 [DOC]Guia de instalacién y configracién de Buildh @
65 BAutomatizacion instalacion entorno
66 Script de instalacion de Redmine
67 Script de instalacion de SWN
58 Script de instalacion de Buildbot
59 BIReunion de seguimiento y cierre de 2a iteraci
70 HActualizacion documentos iniciales
71 [DOCIPlan de proyecto 2.0
72 [DOC]Plan de iteraciones 2.0
73 [DOC]Lista de riesgos 2.0
74 Revision documentacion generada hasta la fecha

25

Fase 3: Implantacién de la metodologia

Name

o~

75 | EIFASE: Implantacion de la metodologia

76 BEstudio modulos (1a iteracion)

77 Estudio sobre Commons

78 Estudio sobre DMLb

79 Estudio sobre AC

80 Estudio sobre Analyzer

81 Merge entre Commans y DMLIb

32 Blmplantacion (la iteracion)

83 B Sobre Common

24 Documentacion

85 Refactorizacion

86 Prueba unitaria

87 ESobre DMLib

88 Documentacion

89 Refactorizacion

90 Prueba unitaria

91 BReunion de seguimiento y cierre 1a iteracion
92 HActualizacion documentos iniciales
93 [DOC]Plan de proyecto 2.0

94 [DOC]Plan de iteraciones 2.0

g5 [DOC]Lista de riesgos 2.0

96 Revision sobre el merge Common-DMLIb
97 Revision documentacion Common-DMLib
98 Revision refactorizacién Common-DMLib
Ell Revision test unitario Common-DMLIb
100 Blimplantacion (2a iteracion)

101 ESobre AC

102 Adaptacion cambios sobre Common
103 Documentacion

104 Refactorizacion

105 Prueba unitaria

106 ESobre Analyzer

107 Adaptacién cambios sobre Common
108 Documentacion

109 Refactorizacion

110 Prueba unitaria

111 BReunion de seguimiento y cierre 2a iteracion
112 Seguimiento sobre los cambios realizados

Fase 4: Desarrollo de nuevas caracteristicas

Aprill May 11 Jlun 11

“[01 Jo4 Jo7 [10 [13 16 J1e [22 [25 [28 |01 [o4 o7 10 [13 16 (19 [22 [25 [28 [31 o3 [os [0 [12 [15 18

: = v
L, v

Name

113 | EIFASE: Desarrollo de nuevas caracteristicas
114 ESistema de instalacion

-

Apr 11 May 11 lun 11
|31 64 o7 10 J13 [16 [16 [22]25 [25 |01 [04 [07 Jio [13 [16 [16 [22 [25 |28 |31 [03 [06 [0 [12 [15 [18
3 -

v v

26

115 Estudio situacion actual
115 Formacion respecto instalacién en UNIX
117 Desarrollo script de configuracian
118 Desarrollo makeFiles
118 Prueba unitaria
120 [DocIManual de usuario
121 EReunion de seguimiento
122 Prueba de aceptacién sistema de instalacin g
123 EEntorno de configuracion
124 Estudio estado actual
125 Redisefio de clases
126 Implementacion lectura de configuracian
127 Documentacion nuevo sistema
128 Prueba de nuevas clases
129 ESistema de excepciones DMLib
130 Implementacién sistema
131 Prueba unitaria
132 Documentacion
T : Jun 11 ul11 g 11 11
‘8L 03 Jog Joo 12 15 8 [21 [24 [27 [30 03 [06 w011l [14 11019022 24 252290)1 [04 [0289 11 LI4[111a
121 BReuniéon de seguimiento
122 Prueba de aceptacion sistema de instalacion
123 BEntorno de configuracién
124 Estudio estado actual
125 Redisefio de clases
126 Implementacion lectura de configuracion
127 Documentacion nuevo sistema
128 Prueha de nuevas clases
129 BSistema de excepciones DMLib
130 Implementacion sistema
131 Prueba unitaria
132 Documentacion
g BSistema de cerrado
134 Andlisis del ciclo de ejecucion
135 Propuesta de sistemna de cerrado
136 Aceptacion sistema
137 EDesarrollo sistema de cerrado
138 Sobre el madulo Analyzer
139 Sobre el médulo AC
140 Prueha de integracion

Fase 5: Cierre de proyecto

141
142
143
144
145
146
147

BIFASE: Cierre de proyecto

1 [May 11 Jlun 11 Jul 11 laug 11 |Sep 11 |oet 11
MO TT7 124 (01 [08 15 [22 |29 [05 [12 18 [26 [03 [10_[17 [24 [31 [07 [14 [21 |28 [o4 [11 [ig [25 [02 [09

L, | v

Name

[DOC] Memaria de proyecto 1.0
Correccion de memaria

[DOC] Memaria de proyecto 2.0
Compactacion memoria y anexos
Disefio presentacion
Presentacion

2.4.6 Evaluacién de riesgos

Lista de riesgos

1.

wok wn

Incumplimiento de plazos de entrega: Alguno de los plazos establecidos no se cumple.

Herramientas inadecuadas: problemas con las herramientas de desarrollo.

Incumplimiento de alguna norma: Repercusiones legales por el incumplimiento de alguna norma.

Abandono del proyecto de algiin miembro: Uno de los miembros decide abandonar el proyecto.

Implementacidn incorrecta: Problemas a la hora de modificar MATE.

Catalogacion de riesgos

27

Riesgo Probabilidad Impacto
1 Media Marginal
2 Baja Marginal
3 Baja Critico

4 Baja Critico

5 Baja Marginal

Plan de contingencia

Riesgo Plan de contingencia

1

Reuniones de seguimiento.

Planificacion inicial.

Cotejar acciones futuras con las normativas presentes en el
documento de viabilidad. El NDA hace...

Reorganizar planificacion.

Consultar expertos, reunién de seguimiento.

2.5 Viabilidad econéomica

2.5.1 Estimacion de costes

Coste total =92.500+ 47.213,91+ 49.488+ 14.900,45=204.102,36 €

Coste del personal

El personal ha utilizar sera el siguiente:

- 3 Programadores-Analistas: Noel De Martin, Rodrigo Echeverria, Toni Pimenta

- 1 Project Manager: Joan Piedrafita

Y por lo tanto, el coste estimado seria el siguiente:

Recurso Coste

3 Analista-programador 64.500 €
1 Project Manager 28.000 €
Total 92.500 €

28

Coste de los recursos

Se pueden observar los costes de todos los recursos en la siguiente tabla:

Recurso Coste

Servidor 2.220,76 €
8 nodos cluster 23.902,08 €
SAN 8.173,86 €
Otros 12.917,21 €
Software 0€

Total 47.213,91 €

Costes indirectos

Recurso Coste

Electricidad 5.389,65 €
Consumibles 1.475 €
Telefonia 708 €
Limpieza 4.241,8 €
Mantenimiento 1.062 €
Gestion 2.124 €
Total 14.900,45 €

29

Otros costes

Recurso Coste

Personal de soporte 24.000€
Alquiler local 25.488¢€
Total 49.488 €

2.5.2 Analisis coste-beneficio

2.

30

Sobre este resultado hace falta matizar dos aspectos. Primero que los costes de personal incluyen a los
diferentes autores de los respectivos proyectos, por lo tanto, se reducen a 0. Por otra parte, los costes
de recursos se irdn amortizando en los sucesivos proyectos referentes a MATE. El resto de costes
quedan en negativo, pero el beneficio que comporta el proyecto en cuestiones de investigacion y

promocion lo compensa.

6 Viabilidad técnica

En este proyecto se puede decir que la viabilidad técnica es facilmente justificable, dados diferentes

factores de peso.

Sobre la primera parte, el desarrollo de una metodologia, se dispone de tres técnicos capacitados para
llevar a cabo este tipo de tarea. Observando la planificacion se puede ver que se han tenido en cuenta

las diferentes dificultades que se puedan encontrar y el aspecto técnico no es ningun problema.

La segunda parte de el proyecto, el trabajo a desarrollar en la herramienta MATE, también dispone de
una serie de ventajas que aseguran su viabilidad. Ya que MATE es fruto de la tesis doctoral de una de
las tutoras del proyecto, Anna Sikora, es posible realizar cualquier consulta de aspecto técnico. En
cuanto a conocimientos necesarios para modificar el programa, se han cursado una serie de clases de

master en la UAB sobre las materias necesarias (Dynlnst y MPI).

3

3.

. Definicion metodologia

1SQA

Un aspecto importante dentro del proyecto es la utilizacion de SQA, del inglés Software Quality
Assurance. Se trata de un modelo sistematico y planeado de todas las acciones necesarias para
asegurar la calidad esperada del producto final, asi como la correcta aplicacion de estandares y
procedimientos adoptados. Es algo que se aplica durante todo el proceso de desarrollo, y se rige por el
SQAP (Software Quality Assurance Plan), donde se definen las actividades especificas a llevar a cabo
dentro del proyecto. Dado el proceso de desarrollo de MATE, que se espera que continie mas alla del
proyecto actual, es necesario establecer una serie de métodos que consoliden los objetivos marcados

en cada etapa.

Segun los modelos de ampliacion de defectos, el coste de los fallos detectados en un producto
software es mayor cuanto mas tarde se detectan. Para ilustrar la reduccion del coste con la deteccion
anticipada de errores, podemos considerar una serie de costes relativos que se basan en datos de
proyectos de software reales®. Suponiendo que un error descubierto en la fase de disefio del producto
cuesta 1,0 unidad monetaria, este mismo error descubierto antes de realizar el proceso de test costara
6,5 unidades, durante las pruebas 15 unidades, y después de la entrega entre 60 y 100 unidades. El
mismo razonamiento se puede aplicar a otros recursos de un proyecto como pueden ser tiempo o
rendimiento. Es aqui donde reside la importancia de un buen proceso de SQA ya que nos permite

tener un buen seguimiento durante todo el proyecto.

A la hora de desarrollar un SQAP dentro de un proyecto hay diferentes alternativas y modelos de los
que escoger. Todos ellos listan una serie de aspectos importantes a tener en cuenta en el momento de
evaluar la calidad del software. Una vez detectados estas cualidades criticas, se pueden cuantificar

con una serie de métricas y asi poder determinar la calidad actual del producto.

2

31

Defect amplification model [[BM81] "Implementating Software Inspections", Notas del curso, IBM Systems Sciences
Institute, IBM Corporation, 1981

3.1.1 Modelos estandar

32

Por un lado podemos encontrar diferentes modelos estandar. Estos modelos son aplicables a cualquier
proyecto y determinan el nivel de calidad con atributos generales. Ademas han sido utilizados en

diferentes proyectos y por lo tanto se tiene una perspectiva de los resultados esperados.

Uno de los primeros modelos existentes y en el que se basan la mayoria de los actuales es el modelo
de McCall, que, en un principio, fue creado para las fuerzas aéreas de los Estados Unidos en 1977.
Principalmente esta enfocado a los desarrolladores del sistema y al proceso de desarrollo. En este
modelo McCall intenta unir la perspectiva de usuarios y desarrolladores, centrandose en unas
caracteristicas de la calidad del software que reflejan tanto la vision de los usuarios como las
prioridades de los desarrolladores. El modelo presenta tres caracteristicas para medir la calidad del
software: revision (habilidad para adoptar cambios), transicion (habilidad para adaptarse a otros

entornos) y operacion (sus caracteristicas operativas).

Calidad Del Software
el g

Factor 1 Factor 2 Factor 3 RN

: Py oy ,

Criterio 1 Criterio 2 Criterio 3 S

) 4 y Y

Indicadores de calidad (métricas)

Figura 3.1 Jerarquia FCM de McCall.

El modelo también es llamado FCM (Factor, Metrics, Criteria) porque detalla tres tipos de
caracteristicas en una jerarquia (figura 3.1) donde las mds importantes se denominan factores. Por
debajo podemos observar diferentes subcaracteristicas denominadas criterios y, finalmente, tenemos

las métricas para determinar el nivel de satisfaccion de cada una de estas subcaracteristicas.

33

Otro modelo a mencionar es el FMEA (Failure Mode and Effects Analisis). Como su nombre indica
se basa en analizar problemas potenciales, principalmente en una época temprana del ciclo de
desarrollo donde es mas facil tomar acciones para solucionarlos. FMEA se utiliza para identificar
fallos potenciales en los sistemas, para determinar su efecto sobre la operacion del producto, y para
identificar acciones correctivas para atenuar las faltas. Podemos encontrar diferentes tipos siguiendo
este modelo segin su enfoque: Sistema (enfocado a funciones globales del sistema), Disefio
(enfocado a componentes y subsistemas), Proceso (enfocado a procesos de fabricacion y ensamblaje),

Servicio (enfocado a funciones del servicio) y Software (enfocado a funciones del software).

Para terminar, los modelos estandar mas seguidos son las normas ISO (International Organization for
Standardization). Esta organizacion ha desarrollado una serie de normas y modelos para la evaluacion
de la calidad aplicables a productos generales, adaptandose en ciertos casos a la produccion de
software. En este modelo los conceptos de calidad se aplican mas en el producto terminado que en el
proceso de desarrollo. Estas normas hacen posible que se sigan patrones de calidad generalmente
aceptados con los que se logran métricas para determinar las cualidades de un producto, teniendo en
cuenta que en la practica existen dos tipos de calidad: externa (referente a los clientes) e interna

(referente a funcionalidad del software).

De todos los estandares que presenta, el mas interesante para el proyecto es el ISO 9126, que esta
enfocado directamente a productos software. Este modelo estd basado en el de McCall, ya que
determina la calidad del software en base a una herencia de caracteristicas. Como podemos observar
en la figura 3.2, posee 6 caracteristicas principales (factores siguiendo el modelo de McCall). Las 6
caracteristicas principales son funcionalidad, fiabilidad, usabilidad, eficiencia, Mantenibilidad y

portabilidad. Ademas de esto cada aspecto tiene diferentes subcaracteristicas a evaluar.

34

¢Cumple el software las
funcionalidades necesarias?

¢Como de facil es

transportar el
software a

otro entorno?

Funcionalidad éCémo de fiable

es el software?

Portabilidad Fiabilidad

Mantenibilidad Usabilidad

¢Como de facil
es modificar
el software?

éEs el software

Eficiencia facil de utilizar?

¢Como de eficiente
es el software?

Figura 3.2 Modelo ISO 9126

Dentro del proyecto se da énfasis a los aspectos mas importantes para el software. Por una parte
dentro de fiabilidad es importante tener en cuenta la tolerancia a fallos y la facilidad de recuperacion,
en el proyecto cubre este aspecto afiadiendo ciertas nuevas caracteristicas al programa (seccion 4.4) y
realizando una serie de tests (capitulo 5). También se ha trabajado en el factor de usabilidad,
concretamente en las subcaracteristicas de comprensibilidad y facilidad de aprendizaje. Esto se ha
mejorado con la documentacioén generada para MATE y los diferentes elementos de soporte. El tema
de la eficiencia es algo importante, tratindose de un software de aumento de rendimiento, y es algo
que se ha acabado de definir consolidando todos los aspectos del programa en su estado previo.
Finalmente el hecho de haber creado la metodologia con diferentes guias y directrices de trabajo hace
que el mantenimiento del software en el futuro sea mucho mayor y facilita el andlisis y test del

producto.

3.1.2 Modelos de aplicacion o especificos de compaiias

Ademas de los modelos estandar vistos en el capitulo anterior, existen los de aplicacion especificos

para companias. Estos no hablan de caracteristicas generales sino que detallan controles de calidad

ajustables a necesidades particulares.

Uno de los que vale la pena mencionar es el llamado modelo CMMI (Capability Maturity Model

Integration). Este modelo determina una serie de procesos y actividades a llevar a cabo para asegurar

la calidad del producto, sin entrar en detalles de como realizar estas actividades. Segun se van

completando las actividades propuestas se dice que el proyecto estd en diferentes niveles de madurez:

incompleto (nivel 0), inicial, administrado, definido, cuantitativamente administrado y optimizacion

(nivel 5). Dispone de una lista de areas de accion, y en cada una de ellas se proporciona la lista de

practicas a llevar a cabo. Actualmente incluye de 22 areas de proceso® que podemos observar en la

Tabla 3.1.

CMMI® for Development, Version 1.2 (CMMI-DEYV, V1.2)

Causal Analysis and Resolution (CAR)

Configuration Management (CM)

Decision Analysis and Resolution
(DAR)

Integrated Project Management +IPPD
(IPM-+IPPD)

Measurement and Analysis (MA)

Organizational Innovation and
Deployment (OID)

Organizational Process Definition
+IPPD (OPD+IPPD)

Organizational Process Focus (OPF)

Organizational Process Performance
(OPP)

Organizational Training (OT)

Product Integration (PI)

Project Monitoring and Control (PMC)

Project Planning (PP) Process and Product Quality Assurance Quantitative Project Management
(PPQA) (QPM)
Requirements Development (RD) Requirements Management (REQM) Risk Management (RSKM)
Supplier Agreement Management Technical Solution (TS) Validation (VAL)
(SAM)
Verification (VER)

Tabla 3.1 Areas de proceso del modelo CMMI, version 1.2

3 CMMI for Acquisition version 1.2, CMMI for Developement version 1.2 y CMMI for Services version 1.2

35

3.

El altimo modelo a comentar es el modelo GQM (Goal-Question-Metric). A diferencia de los
modelos vistos anteriormente, este modelo no se basa en caracteristicas generales de los productos,
sino que es aplicable solamente al proyecto en concreto. Toma este enfoque con la idea de que un
programa de mesura de calidad puede dar mejores resultados si se disefia con las metas en mente.
Simplemente se trata de trabajar realizando tres pasos: crear una lista con las metas del proyecto, a
partir de la lista generar unas preguntas que determinen si la meta se ha cumplido y finalmente decidir

qué atributos hacen falta medir para responder estas preguntas.

2 Perspectiva general

Una de las tareas a realizar para este proyecto ha sido generar el soporte que necesita el proceso de
desarrollo de un programa como MATE. Para definir una metodologia de trabajo, se han estudiado
diferentes alternativas sobre las herramientas a utilizar y se han visto los diferentes aspectos a cubrir
con guias y especificaciones. Finalmente ha resultado en una serie de documentos que definen todo el
proceso de desarrollo. Estos documentos no estan cerrados y estan abiertos a las modificaciones que

sean pertinentes, pero resultan una buena base para el futuro avance de MATE.

3.2.1 Guias y especificaciones

36

El primer conjunto de documentos a generar para respaldar la metodologia han sido unas guias de
estilo y unos documentos de especificacion. Estos elementos ayudan a mantener un formato uniforme
durante todos los artefactos del proyecto y agilizan el proceso de desarrollo. Dada la naturaleza del
proyecto, dénde los documentos estan abiertos a revisiones hasta la finalizacion de este, ya se habran
tenido en cuenta diferentes problemas. Por eso ayudaran a futuros integrantes del equipo de desarrollo

a no cometer los mismos errores.

37

El resultado consiste en 5 documentos donde se tienen en cuenta diferentes aspectos de la

metodologia a tener en cuenta:

Guia de estilo de documentacion: Esta primera guia trata de homogeneizar el formato de todos
los documentos generados para esta metodologia y en el futuro desarrollo de MATE. Este
documento abarca diferentes aspectos a tener en cuenta a la hora de escribir documentacion. Por
un lado especifica el formato en que la informacion se establece, dando unas secciones comunes
para todos los documentos y una serie de recomendaciones a seguir siempre que sea posible.
Seguidamente detalla el formato comun a seguir con los titulos de seccion, el tipo de letra a
utilizar, tipo de paginacion, etc. Es la Unica guia que trata de algo que no sea puramente

desarrollo.

Guia de estilo de documentaciéon de codigo: La documentacion a la que se refiere esta guia es
la generada a través del codigo, en este caso utilizando la herramienta doxygen. Para comentarios
inline, dirigidos exclusivamente a desarrolladores, esta la guia de estilo de codificacion. En esta
guia se detalla el uso de tags de doxygen, asi como la manera en la que se deben listar los
atributos y unas recomendaciones generales de redaccion. También habla de qué partes es

necesario documentar y cuales son meramente opcionales.

Guia de estilo de codificacion: En esta guia encontramos diferentes directrices a seguir a la hora
de generar cédigo de MATE. Es una guia orientada al lenguaje C++ y detalla diferentes aspectos
importantes a la hora de mantener una homogeneidad en el codigo. Ademds de la propia
codificacion también comenta algo de la localizacion de los ficheros y algunas practicas a seguir.

Se puede encontrar mas informacion sobre esta guia en la seccion 3.4.

Especificacion de deployment: Este documento trata de especificar los métodos a seguir para
obtener una version final de la aplicacion. Es una especificacion orientada a la ultima fase del
proceso de desarrollo. Después de haber trabajado de forma local con el producto, es necesario
realizar una serie de pasos para poder utilizarlo de manera general. Para ello el documento detalla
las fases a seguir (Release, activacion y desactivacion, modificaciones y desinstalacién), las

herramientas a utilizar y los médulos necesarios.

Especificacion de control de versiones y build: Esta especificacion trata de establecer unas
pautas a seguir para tener un buen control sobre el producto y sus versiones. Al tratarse de un
proyecto desarrollado por diferentes personas, es importante tener un sistema para poder trabajar
concurrentemente. Por lo tanto intenta detallar los mecanismos que se aplicaran para llevar un

control de la evolucion del proyecto, asi como la construccion y tests de cada etapa.

3.2.2 Herramientas

38

Otro conjunto de artefactos a generar para la metodologia son especificaciones y guias de instalacién

de las herramientas a utilizar. La importancia reside en utilizar siempre las mismas herramientas con

el mismo entorno y configuracion, ya que han sido probadas para el proceso de desarrollo inicial y

han dado buenos resultados.

Las herramientas documentadas finalmente son las siguientes:

Buildbot: Buildbot se trata de una herramienta de automatizacion de construccion. Es importante
para comprobar que el producto actiia como se espera en diferentes entornos y bajo diferentes
circunstancias. Para facilitar el uso de esta herramienta se han generado dos elementos. El
primero es una guia de instalacion y configuracion. Incluye diferentes detalles sobre la
configuracién de la herramienta para utilizarla de la manera deseada en nuestro proyecto. Por
otro lado también se ha escrito un script de instalacion de Buildbot. Este script instala tanto
Buildbot como sus dependencias de la manera deseada para trabajar con MATE. Se puede

encontrar informacién mas detallada sobre estos artefactos en las secciones 3.3.7 y 3.4.

SVN + Apache: Para poder controlar las versiones se dispone de Subversion (abreviado como
SVN). Se trata de una herramienta que permite el almacenamiento organizado de archivos y
controla los cambios que se efectian en ellos. Ademas permite acceso a los archivos de forma
remota. Pese a no se ser una herramienta especificamente disefiada para el desarrollo software
cumple las funciones necesarias y en nuestro caso nos ofrece un servidor comtn para almacenar
y compartir el trabajo conjunto durante el proyecto. Ademas para disponer de una vision mas
comoda podemos usar apache para que nos muestre los contenidos del repositorio en formato

html.

— Redmine: Redmine es una herramienta dedicada a la gestion y planificacion de proyectos con
interfaz web. El uso de esta herramienta en el proyecto MATE es importante como via de
conexién de todos los elementos comentados anteriormente. Por un lado permite gestionar todo
el desarrollo del proyecto con herramientas de planificacion como pueden ser diagramas de
Gantt, calendarios, foros, etc. También posee un soporte de usuarios con diferentes roles para
gestionar el proceso de desarrollo con mas eficacia. Por otro lado sera el punto el front-end de
nuestro sistema, ya que es capaz de integrarse con Buildbot y SVN, por lo tanto una vez
realizadas las configuraciones necesarias, sera el punto en el que todos los desarrolladores

trabajaran.

— Doxygen: Doxygen es un sistema de documentacion para codigo en varios lenguajes, entre los
cuales se encuentran C++ y C, lo que nos permitira usarlo en este proyecto. Este programa nos
permite la creacion rapida y comoda de documentacion a partir de una analisis exhaustivo del
codigo. Ademas nos puede servir de asistencia a la hora de comprender la estructuracion y
funcionamiento de grandes cantidades de codigo pues tiene el capacidad de mostrar de forma
esquematica los componentes de este. Con esto podremos generar una documentacion externa al

codigo, en formato html, para los usuarios de las librerias de MATE.

3.2.3 Elementos no documentados

39

Ademas de todos los elementos documentados con las guias y especificaciones, que se utilizaran
durante todo el desarrollo de MATE, este proyecto en concreto ha utilizado ciertas herramientas de
manera local que no se han documentado. La razén es que se han escogido por familiaridad y

comodidad, pero cualquier herramienta con estas caracteristicas puede cumplir los requisitos.

Por un lado el editor de codigo utilizado ha sido Eclipse Helios. Este permite la compilacion de todo
el codigo de forma automatica (con un makefile que es posible editar realizando ciertas
configuraciones). Posee ciertos mecanismos de automatismo a la hora de documentar e incluso
escribir codigo. También es muy util ya que dispone de varios plugins que han facilitado las tareas a

realizar en esta fase del proyecto.

Para realizar las tareas asignadas se han instalado dos plugins en Eclipse. El primero se denomina
eclox, y permite trabajar de manera mucho mas cémoda con doxygen. Con este plugin es posible
generar la documentacion del codigo en diferentes formatos como pueden ser html, pdf, etc. También

se ha utilizado la libreria graphicviz para generar automaticamente diagramas de clases y herencia.

3.

El otro plugin utilizado ha sido ECUT, se trata de un plugin que integra el uso de CPPUnit con
Eclipse y permite crear casos de uso y test de manera sencilla. También compila y ejecuta las pruebas

mostrando los resultados de forma gréfica y analizando los resultados.

3 Buildbot

Como se ha mencionado anteriormente una de las herramientas utilizadas ha sido Buildbot, y dado el
ambito del proyecto ha sido necesario automatizar los procesos de testing. Por lo tanto Buildbot se
trata de una herramienta necesaria y parte de la metodologia a crear era una guia de instalacion. En el
momento de realizacion del proyecto la version de buildbot era la 0.8.3, y tanto la guia adjunta como

las especificaciones presentes estdn basadas en ella.

3.3.1 Breve descripcion de la herramienta.

40

Buildbot es un sistema para automatizar el ciclo de construccion y test necesario en la mayoria de
proyectos software para validar cambios. Construyendo automaticamente cada parte del proyecto
cada vez que se realizan cambios se detectan rapidamente los posibles problemas, antes de que otros
desarrolladores se vean afectados por el fallo. El desarrollador responsable puede detectarse sin la
intervencion humana y ser notificado. Realizando las construcciones en diferentes plataformas es mas
facil ver el comportamiento del programa para desarrolladores que no tienen acceso a diferentes
entornos. Ademas de eso se puede obtener informacioén del programa para que sea mas facil de

mejorar y detectar los puntos criticos. Buildbot es una herramienta gratuita.

Para realizar el ciclo de testing, Buildbot puede estar instalado en diferentes maquinas con entornos
de interés, de este modo se podran realizar diferentes pruebas automatizadas y contrastar los

resultados en distintos escenarios.

41

REPOSITORY NOTIFIERS

« Subversion « Email

. :I:zr:::lal] : Pall BUILD ; » Web Status

- HANGES m— TATUS

Bazaar p— MASTER — | ke

o = Status Client
« CVS

COMMANDS COMMANDS

4 N
BUILD BUILD
SLAVE SLAVE

Figura 3.3 Esquema del sistema, extraido de la documentacion oficial de Buildbot.

Buildbot dispone de dos tipos de agentes para realizar su funcion. El primero y mas importante es el
buildmaster (también llamado buildbot) y se encarga de manejar toda la estructura del programa. Este
observa el repositorio donde se encuentran los ficheros del proyecto y detecta todos los cambios que
se realizan cada vez que se actualiza. Una vez detectados los eventos notifica a través de diferentes
canales a los desarrolladores pertinentes y manda las acciones a realizar a las diferentes maquinas del
sistema. El segundo es el buildslave y podemos tener varios agentes de este tipo en diferentes
maquinas. Son los encargados de realizar las acciones programadas por el buildmaster en sus
maquinas locales y recoger los resultados. Se puede observar un esquema mostrando esto en la figura

3.3.

La configuracion del buildmaster se almacena en el archivo master.cfg, y es ahi donde se realizan las
especificaciones de los procesos de compilacion, la cantidad de buildslaves, etc. Este fichero esta
escrito en python y la configuracion se lee de una variable tipo diccionario, donde cada clave

representa cada uno de los aspectos a configurar.

3.3.2 Configuracién general

Como informacidon general se registran cuatro tipos de entidades: los buildslaves, el repositorio

utilizado, la identidad del proyecto y la base de datos.

Para registrar buildslaves en el buildmaster es necesario especificar dos claves en el diccionario. La
primera es 'slaves' y es una array de objetos tipo BuildSlave, cada uno de ellos dispondra de un
nombre y una contrasefia con la cual podran registrarse diferentes maquinas e intercambiar
notificaciones con el buildmaster. La otra clave necesaria es 'slavePortnum' y se trata de un entero

que denominaré el puerto asociado a la aplicacion por el cual se comunicaran los dos agentes.

Los ficheros de nuestro proyecto estaran guardados en un repositorio, y el buildmaster se encargara
de seguir su evolucion y detectar los cambios. Para configurar la conexion con el repositorio se utiliza
la clave 'change source' y es un objeto del mddulo buildbot.changes. Dependiendo del tipo de

repositorio puede ser de la clase SVNPoller, GitPoller, etc.

Sobre la identidad del proyecto se pueden indicar diferentes cosas, como el nombre del proyecto (en
la clave 'projectName') o la URL (clave 'projectURL'). Pero es imprescindible indicar el lugar donde
buildbot mostrara los resultados obtenidos y la informacién sobre estos. Esto se indicara en la clave

'buildbotURL".

Finalmente es necesario especificar una conexién a una base de datos donde buildbot guardara
informacion sobre los resultados de las construcciones, estado actual, acciones pendientes, etc. Esto

se indica en la clave 'db_url'.

3.3.3 Organizadores

42

Para poder realizar construcciones y pruebas sobre el codigo se dispone de diferentes organizadores
(schedulers) que indican a los constructores (builders) cudndo deben realizar el proceso de

compilacion. Se configuran en la clave 'schedulers' y se trata de una lista.

43

Podemos hablar de diferentes tipos de organizadores:

Filtro de cambios: Detecta cambios realizados en el repositorio filtrando los valores de cuatro
atributos importantes (proyecto, repositorio, branch y categoria). Se realizara el proceso de
construccion solo si todas las condiciones sujetas a estos atributos se cumplen. Por ejemplo, es
posible que solamente queramos hacer pruebas con un proyecto llamado “ejemplol” y en una

branch llamada “branch3”.

Organizador de branch unica: Este suele ser el tipo de organizador mas utilizado. Escucha a
una sola branch del repositorio y activa un temporizador cada vez que se realizan cambios.
Cuando se realiza un nuevo cambio, el temporizador se reinicia y si llega al tiempo maximo

establecido, indica a los constructores correspondientes que deben activarse.

Organizador de varias branch: Funciona igual que el organizador de branch unica pero
observando diferentes branch de un mismo repositorio. Todas ellas tendran un temporizador

independiente del resto.

Organizador dependiente: A diferencia de los demas organizadores, éste no presta atencion al
repositorio sino que realiza acciones dependiendo de los resultados de otras construcciones. Por
lo tanto, activara sus constructores solamente después de haber realizado otros tipos de pruebas
con ¢éxito. Tiene sentido cuando se utilizan pruebas con diferentes partes del cddigo y queremos

realizar tests de integracion.

Organizador periddico: Simplemente activa los constructores cada x segundos, sin tener en
cuenta los cambios realizados en el repositorio o los resultados de otras pruebas. Hay otros

organizadores de este tipo para casos mas concretos (por ejemplo el organizador nocturno).

Organizador “try”: Como particularidad este organizador puede activar constructores para
partes de cddigo que no han sido subidas al repositorio. Tiene este nombre porque permite

utilizar el comando “#ry” de buildbot.

Organizador activado (friggered): Se trata de un organizador que solo realiza acciones cuando
lo indica otro constructor. También puede indicarse que espere a terminar el proceso de
construccion actual para activarse. La ventaja sobre el organizador dependiente es que es mas

versatil a la hora de asociarlo con otros constructores.

3.3.4 Constructores

Como se ha mencionado previamente los encargados de realizar el proceso de compilacion y las
pruebas deseadas son los constructores (builders). Cada uno se encarga de un tipo de construccion
diferente y puede ser utilizado por varios buildslaves. Generalmente son independientes entre ellos,
pero dependiendo de la configuracion del sistema y los organizadores pueden existir dependencias.
Ademas tienen asociada una fabrica de construccidon, que genera instancias de construccion con

versiones concretas del codigo.

Cada constructor se define en la lista en la clave 'builders'. Aqui se indicaré el tipo de fabrica a
utilizar (BasicBuildFactory, GNUAutoconf, BasicSVN, etc.) y las acciones (steps) a realizar en el

proceso de construccion.

3.3.5 Informes de estado

44

Buildbot dispone de un sistema para notificar a todos los interesados de los resultados de las
construcciones y cualquier accion realizada. Cada uno de estos métodos se denomina objetivo de
estado (status target). Estos se indican en la clave 'status' del diccionario y se pueden encontrar de los

siguientes tipos:

— Informe por web: La informacion de los resultados se puede mostrar en forma de web con
diferentes vistas. La mas utilizada es la vista en cascada, que muestra los eventos en una linea de
tiempo, con multiples detalles de las diferentes construcciones y con links para ver mas detalles
como logs o codigo fuente. Existen otros tipos de vistas no tan utilizadas, como pueden ser en

forma de cuadricula o vistas con solo las ultimas acciones.

— Informe por email: Otro es el sistema por email, Buildbot es capaz de notificar a los usuarios
interesados y bajo las circunstancias deseadas. Un tipico uso de esto es para notificar a los

desarrolladores cuando algiin cambio que han realizado ha causado algln error en las pruebas.

— Agente IRC: Este sistema crea un agente IRC que permite a los usuarios realizar peticiones de

informacion.

— Otros: Existen otro tipo de objetivos de estado e incluso es posible crear plugins para diferentes

canales utilizando la interfaz buildbot.interfaces.IStatus.

3.3.6 Guia de instalacion y configuraciéon

Como parte de la metodologia a desarrollar se ha creado una guia de instalacidon y configuracion de
buildbot. Esta guia es un documento que espera utilizarse para establecer el entorno de desarrollo en

el proyecto presente y los futuros relacionados con MATE.

La guia estd formada por 4 capitulos basicos. El primero es una introduccion al documento, parte
comun para todos los elementos de la metodologia (como esta indicado en la guia de estilo de
documentacién). A continuacion el siguiente capitulo hace una pequena descripcion de buildbot para
tener una perspectiva del programa, e introducir los aspectos basicos necesarios para saber utilizarlo.
También habla de la version a la que va dirigida la guia y la estructura que se espera tener. En el
tercer capitulo se explica el proceso de instalacion, tanto del buildmaster como de los buildslave, y se
listan las dependencias necesarias para un correcto funcionamiento. Finalmente en el capitulo 4 se

habla de la configuracion de las diferentes caracteristicas de Buildbot.

El proposito del documento es introducir el programa y dar una visién bésica a los conceptos de
Buildbot, ya que el uso esperado para el desarrollo de MATE es limitado y no es necesario un uso

avanzado de la herramienta.

3.3.7 Script de instalacion

45

Ademas de la guia también se escribid un script que instala automaticamente Buildbot y las

dependencias necesarias. El script estd escrito en bash y para funcionar debe estar instalado python.

La instalacion la realizara en el directorio '/opt' ya que de esta manera tenemos el entorno buildbot y
sus dependencias controlados y sera mas facil realizar cualquier cambio necesario en el futuro.
Ademas de esta manera se aumenta la compatibilidad entre sistemas y facilita la importacion del
entorno. Para conseguir esto el primer paso que realiza el script es descargar las fuentes del programa,
¢éstas son las versiones presentes en cuanto se comenzé a desarrollar el proyecto y que actualmente
pueden estar obsoletas. Todas ellas se sitian en el directorio '/tmp' y se descomprimen. El siguiente
paso se trata de la instalacion de las dependencias y la libreria de buildbot. Esto se realizara dentro de
una carpeta que crearemos llamada '"MATE' y por lo tanto el directorio de instalacion para todas ellas
sera 'Jopt/MATE'. Finalmente se eliminan las fuentes de '/tmp' y se crean enlaces dinamicos
apuntando a las carpetas 'opt/MATE/bin' y '/opt/MATE/lib/python' desde carpetas existentes en los

paths del sistema.

3.4 Guia de estilo de codificacion

Otro de los elementos a desarrollar con la metodologia ha sido una guia de estilo de codificacion para

el lenguaje de programacion C++.

Este documento recoge un conjunto de normas y estilos que se utilizaran en la programacion:
indentacion (sangrado), nombres de variables, eleccion de estructuras, distribucion de los archivos,
précticas de programacion, etc. De esta manera proporciona una coherencia entre los programas

escritos por diferentes personas para facilitar la interaccion y modificacion de los mismos.

El uso de una guia de estilo presenta diferentes ventajas. En cuanto al proceso de desarrollo, favorece
la colaboracion del equipo ya que representa un formato comun a seguir. También formaliza el modo
de trabajo de manera que se mantenga una homogeneidad durante todo el proceso de desarrollo. Otro
punto a tener en cuenta es la integracion de nuevos miembros al equipo de trabajo, si el codigo es mas
legible facilita su entendimiento y por lo tanto acelera la incorporacion. Dado el origen del proyecto
MATE vy sus caracteristicas se esperan diferentes cambios de personal, por lo que este Gltimo aspecto

acaba siendo esencial.

Por otro lado, observando el software como producto, un 80% del coste se debe al mantenimiento* y
una guia de estilo lo facilita en gran medida. Ademas le da una vision de unidad al coédigo final
siguiendo una estructura y nomenclatura tunicas. También lo provee de unas métricas de calidad de
software y esto le aporta otro valor al producto. Finalmente una guia de estilo ayuda a que no se

repitan errores pasados y favorece el funcionamiento en entornos no testeados.

3.4.1 Contenido

La guia consta de 8 capitulos donde se definen varios aspectos del estilo de codificacién.

El primer capitulo es una introduccion al documento y habla de la estructura y alcance de este. Esta
seccion es comun en toda la documentacién de la metodologia, y deja claro que se trata de una guia

para el proyecto MATE.

46

"The benefits of Coding Standards", Nigel Cheshire y Richard Sharpe.

El segundo habla de normas a aplicar en cuanto a ficheros. Para este proyecto se decidié separarlos en
archivos de cabecera (.h) y archivos fuente (.cpp). El contenido de los archivos de cabecera seran
todas las declaraciones generales de clases, métodos, constantes, etc. También habla de algunos casos
a tener en cuenta como el uso de los namespace o los métodos inline. En los archivos fuente se
encontrara la implementacién de los métodos presentes en el archivo de cabecera. En algunos casos, y
con la debida justificacion, estos archivos podran omitirse. Finalmente habla de los nombres a utilizar

y organizacién fisica.

Los capitulos del tercero al sexto forman el cuerpo de la guia y es donde estan las normas a seguir a la
hora de escribir cédigo. En el tercero encontramos indicadas las caracteristicas generales.
Béasicamente habla del formato a seguir de codificacién, sin entrar en ningtn tipo de detalles en
cuanto a escenarios concretos. Sobre esto ultimo habla mas el capitulo 4, el cual indica los formatos a
seguir para casos particulares, como pueden ser asignaciones, llamadas a métodos, sentencias
condicionales, etc. En el capitulo cinco se deja de hablar de formato para entrar en detalles sobre las
declaraciones. Se habla de maneras de como declarar multiples entidades en la misma linea y cuando
es posible hacerlo. Para acabar este bloque de la guia el capitulo 6 habla de la nomenclatura a seguir a

la hora de nombrar clases, métodos, variables, etc.

Finalmente los dos udltimos capitulos acaban hablando de casos particulares. El capitulo 7 introduce
varias practicas de programacion a seguir siempre que sea posible, y el capitulo 8 habla de la manera
de utilizar comentarios en ciertas situaciones. Aun asi, no profundiza en el uso de comentarios ya que

se han creado guias especificas para eso.

3.4.2 Evolucion del documento

47

A pesar de empezar a trabajar pronto en la metodologia no se pudo acceder al coédigo hasta que los
documentos sobre esta ya estaban acabados. Por lo tanto al ver el estado de MATE se realizaron
cambios en la guia a fin de acomodarla al estilo previamente utilizado y de esa manera realizar
solamente cambios necesarios y de disefio sobre el cddigo. También al ser un codigo mas complejo al
habitual habia diferentes aspectos que no se habian tenido en cuenta y por lo tanto se tuvieron que

anadir diferentes detalles.

4

4.

. Trabajo en modulos Common y DMLIib

1 Introduccion a los moédulos

Antes de entrar en detalle con el trabajo realizado en este proyecto, es importante conocer la
estructura y funcionamiento de los modulos trabajados. Aunque se han realizado diferentes cambios y

se han anadido nuevas caracteristicas, el funcionamiento basico es el mismo y no ha cambiado.

4.1.1 Common

48

El primer modulo de MATE trabajado en este proyecto ha sido Common. Este mddulo, a diferencia
de los otros tres, no consiste en una entidad propia, no realiza ningiin proceso que pueda reflejarse en
un diagrama de flujo ni un orden de ejecucion. Se trata de un paquete de clases que utilizan dos o tres
de los otros mddulos y, por lo tanto, resulta pertinente tenerlos aislados y asi eliminar la redundancia
de clases. Cémo base de funcionamiento para el resto de moédulos, la importancia reside en el
funcionamiento basico de las clases y por eso se han realizado una serie de casos de prueba (ver

seccion 5.2).

En este paquete podemos encontrar los siguientes archivos, que definen diferentes clases y métodos:

— ActiveObject.h: Este archivo contiene la definicion de la clase ActiveObject. Se trata de una
clase abstracta que encapsula un thread del sistema operativo de la libreria POSIX. Se utilizara
para crear los diferentes hilos del programa, y derivan de él las clases ShutDownManager y

EventCollector.

— Adress.h: En este archivo encontramos también una sola clase, la clase Adress. Se trata de una

clase que almacena y trabaja con direcciones de sockets de la familia AF_INET.

— ByteStream.h y OutputStream.h: En el archivo OutputStream.h se define la clase del mismo
nombre. Se trata de una clase que representa un flujo de salida de datos en diferentes formatos.
Es una clase abstracta y por lo tanto debera tener clases derivadas. Podemos encontrar una de

ellas dentro de Common, la clase ByteStream. Es una clase que encapsula un flujo de bytes.

49

Config.h y Configmap.h: En un principio el archivo Config.h solamente contenia la clase
Config, mas tarde se ha incluido una nueva clase llamada ConfigHelper (ver seccion 4.4.2). La
clase Config es basicamente un diccionario que guarda informacién en base a secciones y claves.
Se utiliza para aplicar diferentes configuraciones en MATE. Esta clase contiene un objeto de la

clase ConfigMap, que implementa el diccionario mencionado que trabaja con secciones y claves.

ConfigReader.h: Este archivo contiene archivos para trabajar con la lectura y carga de
configuraciones. En un principio también contenia solamente una clase, ConfigReader, pero se

ha modificado para tal de tener mas versatilidad (ver seccion 4.4.2).

Datetime.h y TimeValue.h: La clase Datetime simplemente adapta la estructura tm declarada en
la libreria time.h con un uso mas comodo y funciones para trabajar en ellas. Dispone de una serie
de setters para obtener los elementos de la estructura y el tiempo almacenado siempre sera el de
la maquina local al crear el objeto. Por otro lado la clase TimeValue adapta la estructura timeval,
también declarada en time.h. A diferencia de DateTime esta clase tiene sobrecargados una serie

de operadores para facilitar el manejo de estos.

di.h: En este archivo encontramos diferentes clases que actiian como interface para la API de
DynlInst. Ademas de eso también dispone de ciertas acciones a realizar con Dynlnst encapsuladas

en métodos, con la finalidad de tener un mejor control interno sobre las operaciones a realizar.

Common::EventMsg

—

Common::ECPMessage Common::Registersg

Common::UnRegisterMsg

ECPMsg.h, ECPMsgHeader.h y ECPProxy.h: Todos estos archivos estan relacionados con el
Event Collector Proxy. El objeto de esta clase se encargara de establecer una comunicacion
unidireccional con el Analyzer. De esta manera DMLib enviara los informes generados con meta

data sobre los eventos de interés a través de diferentes mensajes.

50

Env.h y Paths.h: El archivo Env.h solamente contiene un método llamado ExpandPath.
Simplemente se encarga de expandir rutas que puedan contener variables de entorno o
transformar rutas relativas en absolutas. Por otro lado, el archivo Paths.h tiene la funcidn

MakeDirectory, que se ocupa de crear un directorio con la ruta indicada.

Event.h, EventHandler.h, EventMap.h y EventMsgWritter.h: Estos ficheros contienen la
declaracion de la clase Event y clases relacionadas. La clase Event se encarga de almacenar qué

informacion deberd guardar el Analyzer sobre los eventos de interés.

Exception.h y derivados: El archivo Exception.h contiene la declaracion de la clase Exception.
Esta clase se encarga de almacenar informacion sobre alglin error indicado por el programa. Para
ello dispone de un codigo de error un mensaje indicando la causa. En un principio solamente
existian la clase Exception y SysException, pero después de trabajar en los mddulos se han

afiadido nuevos tipos (ver seccion 4.4.1).

FuncDefs.h: En este fichero encontramos las definiciones de las clases FuncDefs y FuncDef. La
clase FuncDef contiene informacion de una funcion que se desea monitorizar en la funcion
objetivo. La clase FuncDefs es simplemente una estructura de almacenamiento de objetos de la

clase FuncDef.

NetSer.h y Serial.h: Estos archivos contienen clases relacionadas con el proceso de
serializacion. Este proceso trata de transformar objetos y informacién de una maquina en un flujo
de bytes para poder ser transmitido a través de una conexion. En el caso de MATE esta

transmision se realizara a través de Sockets.

Pipe.h: Lo que se encuentra en este fichero es la clase Pipe. Esta clase trata de conectar la salida
de un proceso a la entrada de otro, de tal manera que se cree una conexion y los datos se pasen

automaticamente de uno a otro.

51

Process.h: En este archivo se encuentran las declaraciones de tres clases. La primera es la clase
abstracta Process, implementa la ejecucion de un nuevo thread (utilizando la funcién fork) y
ejecuta el método run(), a sobrecargar por las clases derivadas. Las otras dos clases son derivadas
de esta y se denominan ExecProcess y RemoteProcess. ExecProcess realiza una llamada a un
programa en la maquina local, pasando como valores de entrada la ruta y los argumentos.
RemoteProcess ejecuta remotamente un programa en otra maquina, utilizando el programa

Remote Shell (rsh).

Common:: AddinstrRequest | ‘ Common::FunctionParamChangeRequest |

Commoan::RemovelnstrRequest | ‘ Common::InsetFunctionCallRequest |

Common::PTPMessage

‘\Cummon::StanAppRequest ‘

Common::TuningRequest

| Common::LoadLibraryRequest |

Common:: COneTimeFunctionCallRequest |

‘ Commaon::RemoveFunctionCallRequest]

| Common::ReplaceFunctionRequest ‘

| Commoan:: SetVariableValueRequest |

PTPMsg.h, PTPMsgHeader.h y PTPProtocol.h: Las clases que se pueden encontrar dentro de
estos archivos estan relacionadas con mensajes que intercambiaran el Analyzer y el sintonizador.
Las siglas significan Protocolo de sintonizacion de rendimiento (Performance Tuning Protocol en
inglés). Cada uno de estos mensajes consta de una peticion al Tuner para realizar una de las
siguientes acciones: peticion de cargar libreria, peticién de sintonizacidn, peticion de asignacion
de variable, peticion de reemplazo de funcidn, peticion de insercion de funcion, peticion de
ejecucion de funcion, peticion de eliminacion de llamada a funcion, peticion de cambio de
pardmetros, peticion de insercion de instruccion, peticion de eliminacion de instruccion y
peticion de arranque de aplicacion. Cada una de estas peticiones es una clase derivada de la clase

padre PTPMsg.

Queue.h: En este archivo vemos la declaracion de la clase Queue. Se trata de una clase que
implementa una estructura de datos utilizando FIFO (First Input First Output). Al utilizar un
sistema de template se pueden guardar objetos de cualquier clase. Ademas tiene implementados

sistemas de control de concurrencia con semaforos.

— Reactor.h: Este archivo contiene la declaracion de la clase Reactor y otras necesarias para
funcionar. Esta clase implementa el patrén de disefio del mismo nombre. Consiste en manejar
peticiones de handles (identificadores de sockets) para diferentes procesos realizando peticiones

de manera concurrente.

— Socket.h: En este archivo encontramos la declaracion de las clases Socket, SocketBase y
ServerSocket. Son simplemente interfaces para la libreria sys/socket.h. SocketBase implementa
sockets de cualquier tipo, con una serie de atributos por defecto. Aunque los métodos de la clase
SocketBase estan en un fichero fuente .cpp, los métodos de Socket y ServerSocket se encuentran

junto a la declaracion siendo tipo inline.

— StringArray.h: La clase StringArray se trata de una estructura de datos que almacena strings.

— sync.h: En este archivo encontramos declaraciones de elementos de sincronizacion para acceso
concurrente. Contiene las clases Semaphore y Mutex, ambos garantizan exclusion mutua en el

uso de recursos compartidos.

— SysLog.h: Dentro de SysLog.h vemos la declaraciones del log del sistema, asi como varias
clases relacionadas. Se trata de un registro de los eventos ocurridos en el sistema relevantes para
el usuario, y dispone de entradas con diferentes niveles de importancia (debug, info, warning,

error y fatal).

— Thread.h: En este archivo solamente encontramos la definicion de la clase Thread. Define una

interfaz para crear y manejar la ejecucion de métodos en nuevos hilos.

— Types.h y Utilis.h: Estos dos archivos contienen diferentes elementos bésicos que se utilizan
alrededor de MATE. Entre estos elementos podemos encontrar declaraciones de tipos,

enumerados y clases.

Ademas de esta descripcion basica de los ficheros, se pueden encontrar mas detalles en la

documentacién generada en html.

4.1.2 DMLib

Aplication Controller

O

DMLibApi
I

Aplicacion objetivo
1

[

[

l:LoadLibrary(DMLib) !
> I

[

[

[

‘ Sysll_uq

>
3:DMLb_SysLogConfigure() 1 Q
>

ITI EventCollectorProxy
1
_____________ ! 4:DMLib_InitProxy() 1

L.
>
) 5:DMLib_OpenEvent()

5:DMLib_CloseEvent()

2:InitLibrary() 2:DMLib_init()

Y

6:5endEvent() |
-,

Y

Y

Monitorizacidn

D 7:DMLib done()

8:UnregisterLibrary()

Y

: X ’

Figura 4.1 Diagrama de secuencia de DMLib

El médulo DMLib (Dynamic Monitoring Library) implementa la funcionalidad para monitorizar
eventos y se compilara como una biblioteca compartida. En la libreria podemos encontrar funciones
para registrar eventos en el formato adecuado para entregarlos y ser analizados. En el diagrama de la
figura 4.1 podemos observar los pasos necesarios para monitorizar los eventos. Primero el Tuner
carga la libreria dentro de la aplicacion objetivo (utilizando el método BPatch_thread::loadLibrary()

de Dyninst).

53

54

Esta libreria posee las siguientes funciones publicas:

bool DMLib Init (std::string const & taskName,
std::string const & analyzerHost,
int analyzerPort,
std::string const & configFile = "DMLib.ini");
void DMLib SetDiff (int lowDiff, int highDiff);
void DMLib OpenEvent (int eventlId,
InstrPlace instrPlace,
int paramCount) ;
void DMLib AddIntParam (int value);
void DMLib AddFloatParam (float value);
void DMLib AddDoubleParam (double value);
void DMLib AddCharParam (char value);
void DMLib AddStringParam (std::string const & value);
void DMLib CloseEvent ();
void DMLib Done () ;

La primera funcion, DMLib_Init, se encarga de inicializar la libreria con la informacion del proceso a
monitorizar, la localizacion del Analyzer y la configuracion. Durante este paso, DMLib establece una
conexion via TCP/IP con el Analyzer para mdas tarde enviar informacién de los eventos
monitorizados. Para corregir la diferencia del clock entre maquinas se utiliza la funcion
DMLib_SetDiff. Esta nos permite mantener un clock global y poder trabajar con el mismo timestamp

en los eventos generados.

Para empezar a monitorizar eventos, se empieza utilizando la funcion DMLib OpenEvent. Esta
funcion empezara inicializando todos los atributos necesarios: el identificador del evento y el numero
de atributos. El parametro instrPlace indica en que parte de la funcion se va a guardar la informacion.
Una vez se ha inicializado, se utilizan las funciones DMLib AddXXXParam. Esta accién debera
hacerse el mismo nimero de veces que atributos se han indicado en el pardmetro paramCount
utilizado al inicializar el evento. Estos métodos permiten el registro de attributos del evento.
Finalmente una vez se hayan definido todos los atributos, se utiliza la funcion DMLib CloseEvent

para cerrar el evento y enviar la informacion al Analyzer.

Para terminar, la funcion DMLib Done se ocupa de cerrar la libreria y liberar toda la memoria

4.

ocupada. También se encargard de notificar al Analyzer de que ha acabado la fase de monitorizacion

y cierra la conexion.

2 Documentacion

Una de las mayores tareas a realizar sobre el codigo era documentarlo adecuadamente para facilitar el
proceso de integracion de futuros miembros del equipo de desarrollo. También generar una
documentacién para usuarios a modo de referencia. Dado el tipo de proyecto y entidades relacionadas
se ha visto pertinente realizar los comentarios en inglés, ya que la nomenclatura del codigo ya estaba

en este idioma y es el mas portable.

Se pueden observar dos tipos de comentarios dentro del cddigo, los comentarios inline y los

comentarios doxygen.

4.2.1 Comentarios inline

55

Estos estan destinados unicamente a programadores con acceso al codigo fuente. Por lo tanto se trata
de comentarios relacionados directamente con la implementacion y el flujo de ejecucion del
programa. El formato a seguir es empezando con '//' y nunca utilizando '/* */'. Hay varias razones
para utilizar este formato; por un lado utilizando asteriscos puede llegar a confundirse con
comentarios doxygen, y por otro lado dificultan el comentario de bloques. Aqui podemos observar un

ejemplo ilustrando este Gltimo caso:

/*

/* un comentario */

printf (Yqueremos comentar esto”);
/* otro comentario */

printf (Yy esto tambien”) ;

*/ <--- no funciona!'!

La mayoria de estos comentarios ya estaban presentes en el codigo inicial y no se han modificado, sin
embargo se han afiadido varios en partes donde se veia necesario. Un buen ejemplo de su uso lo

podemos encontrar en el método AnalyzeLine de la clase ConfigReader:

// ignore empty lines
if (line.size() == 0)
return;
// skip white chars

int idx = 0O;

int len = line.size();
while (isspace (line[idx]) && idx < len)
idx++;

// check if line is all white
if (idx == len)

return;
switch (line[idx])

{

case '#': // comment - ignore
break;
case '[': // section

ReadSection (config, &linel[idx]);
break;

default: // key/value or error
ReadKeyValue (config, &linel[idx]):;
break;

4.2.2 Comentarios doxygen

El otro tipo de comentarios anadidos son los referentes a la documentacion externa de las clases y
funciones. En éstos solamente se incluyen comentarios referentes al funcionamiento, asi como
explicacion de pardmetros, excepciones o cualquier dato que pueda serle util a un usuario. Se
encuentran integramente en los archivos de cabecera y siguen la guia de documentacion de codigo
generada con la metodologia de trabajo. En la version inicial no habia ninguno de estos comentarios,
por lo tanto se han tenido que realizar todos desde cero.

56

Doxygen es muy configurable y por lo tanto existen muchos formatos entre los que escoger,
finalmente se ha seguido el formato '/** */' para cada bloque de comentarios y '@' para los tags.
Se han escogido estos caracteres porque coinciden con el formato de JavaDoc, con el que ya se tenia

familiaridad. Estos son algunos de los tags utilizados:

— (@class <nombre>: Determina que los comentarios a continuacién son referentes a la clase

<nombre>.

— (@brief {descripcion}: Indica el comienzo de un paragrafo que se utilizard como descripcion
breve. Normalmente este paragrafo indica que tipo de informacion o comportamiento encapsula
la clase. Si se trata de un método dara una breve descripcion del comportamiento. El siguiente

paragrafo sera la descripcion extendida.

— (@version {version}: Indica en qué version se encuentra la clase.

— (@since {version}: Indica desde qué version del proyecto la clase estd presente.

— (@author {nombre}: Indica el autor de la clase.

— (@extends <nombre>: Determina que la clase hereda de la clase <nombre>.

— (@param <nombre>: Da una descripcion del pardmetro con nombre <nombre>.

— (@return {descripcién}: Describe el valor de retorno del método.

— (@throws <nombre>: Indica que el método puede lanzar excepciones del tipo <nombre>.

Aunque esos son los fags mas utilizados también se han utilizado otros como @code, @endcode, etc.
Con todo esto doxygen es capaz de generar la documentacion en diferentes formatos y, utilizando

GraphicViz, también genera diferentes diagramas de clases, herencia, dependencias, etc.

57

4.3 Cambios realizados

Otra de las tareas principales del proyecto ha sido realizar cambios necesarios en el codigo de MATE.
Aunque la mayoria han estado enfocados a la estandarizacidon, o a realizar ajustes para hacer el
programa mas compatible con otros entornos, también se han llevado a cabo diferentes

modificaciones en algunas funcionalidades.

4.3.1 Uso uniforme de string y char *

58

Uno de los problemas que presentaba el codigo inicialmente es que no tenia uniformidad en el uso de
cadenas y caracteres. A fin de tener un formato comun en todos los archivos fuente, se estandarizaron
todos los usos de la clase string y char * Ademas, esto dio pie a diferentes modificaciones ya que
utilizando una clase en vez de un tipo primitivo, se tenian muchas mas facilidades para manipular los

datos.

Aun teniendo en cuenta esto, un aspecto importante de este cambio es que en principio no puede
causar ningun tipo de problema para el uso de las clases ya implementado en otros modulos. La razén
es que en C++, para un argumento de tipo string, es posible pasar tanto una cadena literal como una
array de caracteres y automaticamente se llamara a uno de los constructores de la clase. Podemos

observar esto con el siguiente ejemplo:

void funcionDePrueba (std::string foo) ;

char * cad;

string str;

//Trabajamos con las variables cad y str
//Diferentes posibles llamadas de la funcion
funcionDePrueba ("esta es una cadena literal");
funcionDeprueba (cad) ;

funcionDePrueba (str) ;

Como caso general se ha aplicado este cambio a todas las funciones que recibian cadenas de nombres
o entidades introducidos por un usuario (paths del sistema, nombres de archivos, nombres de hosts,
etc.). Las excepciones donde se ha mantenido el formato de char * han sido cuando se utilizaba como

buffer y cuando era necesario trabajar directamente con el espacio reservado en memoria.

4.3.2 Separacidn en namespaces

A la hora de desarrollar un nuevo producto software hace falta tener en cuenta diferentes aspectos
para que no exista ningun tipo de problema a la hora de importar modulos de las librerias generadas,
en este caso sera necesario utilizar las librerias de MATE a la hora de desarrollar tunlets. Uno de
estos problemas es resolver las posibles colisiones que puedan existir con nombres de clases o
métodos. En nuestro proyecto se pueden observar dentro del médulo Common diferentes clases con

nombres muy comunes y que pueden traer problemas (Exception.h, Queue.h, OutputStream.h, etc.).

Una manera de solucionar este problema es utilizando namespaces. Se trata de un sistema que se
encarga de agrupar diferentes entidades bajo un nombre, y por lo tanto es posible tener diferentes

clases y métodos con el mismo nombre presentes si utilizan diferentes namespaces.

Los dos namespaces creados han sido DMLib y Common. En el primero, DMLib, solamente se han
incluido las clases ECPProxy y EventMsgWritter ya que son las tUnicas que se utilizan
exclusivamente con DMLib. También se han puesto bajo este namespace los métodos del archivo
DMLibApi.h, que se trata de la interface para controlar a DMLib. Por otro lado el namespace
Common se ha aplicado al resto de clases, este es el mas importante ya que es aqui donde

encontramos clases con nombres conflictivos.

Con este cambio es necesario tener en cuenta que se tendran que modificar los archivos utilizando
Common y DMLib en MATE para poder acceder a las clases. Simplemente es necesario poner "using
namespace xxxx;" cada vez que se vaya a utilizar una clase que se encuentra dentro de un namespace
determinado, por lo tanto no es un cambio muy drastico que pueda afectar demasiado al resto de

modulos.

4.3.3 Separacioén de archivos fuente y de cabecera

59

Para adaptar el cédigo de MATE a la guia de estilo de codificacion (ver seccion 3.4) el cambio mas
notable ha sido el de separar diferentes clases en archivos de cabecera (.h) y archivos fuente (.cpp).
Algunos de los archivos ya estaban separados de esta manera pero no de manera uniforme y era

necesario mantener una homogeneidad.

A la hora de crear una clase o algun método, una buena practica de codificacién es separar las
declaraciones y prototipos de las implementaciones. De esta manera en el archivo de cabecera
podemos encontrar la interface de la clase y es aqui donde se realiza toda la documentacion necesaria
y se pueden observar claramente todos los elementos de esta. Ademds de ser comodo para el
programador también ayuda a futuros desarrolladores ya que es mas facil estudiar una clase por el
archivo de cabecera y, en caso de querer conocer detalles sobre la implementacion, solo es necesario

abrir el archivo fuente.

También es un método que generalmente da mejores resultados de compilacion, ya que los métodos
que contienen la implementacion en los archivos de cabecera son implicitamente métodos inline. Esto
significa que el compilador no creard referencias a una implementacion cada vez que un archivo
incluya una cabecera, sino que copiard el cddigo multiples veces, causando asi uso de recursos
innecesarios. Sin embargo hay ciertas excepciones donde es tutil declarar métodos inline, en nuestro
proyecto se puede observar esto en las clases de sockets. Al ser un elemento muy utilizado dentro del
programa es bueno declarar estos métodos como inline, ya que no contienen mucho cédigo y por lo

tanto dard mas velocidad de ejecucion sin malgastar mucho espacio.

4.3.4 Cambios puntuales

60

Ademés de los cambios generales mencionados anteriormente, se han realizado otros cambios mas

puntuales que resulta pertinente comentar.

Por un lado en la clase ByteStream se trabajaba inicialmente con un buffer pasado a través del
constructor. Ya que C++ soporta morfologia de constructores, se ha afiadido otro constructor que
solamente requiere el tamafio del buffer y crea uno interno de manera que el usuario no necesite

preocuparse del control del buffer.

Otro aspecto que ha sido necesario cambiar es la implementacion de ciertas funciones en el archivo
di.cpp. En el estado previo de MATE, se trabajaba con una version antigua de Dynlnst y por lo tanto
ha sido necesario adaptarlo a la nueva API. El ejemplo mas claro es en el método GetLineNumber de

la clase DiProcess.

61

Previamente este método se utilizaba de la manera siguiente:

BPatch Vector< BPatch statement > lines;
if (! (bpProcess->getSourcelines (addr, lines)))

throw DiEx ("Could not get information about
the line number from process");

Sin embargo, la funcion getSourceLines se ha marcado como deprecated y por lo tanto no es posible
utilizarla. Esta funcidon pretendia retornar el archivo y el niumero de linea donde se encuentra un
proceso. Por lo tanto se ha modificado la implementacion previa por una busqueda manual de los

datos necesarios:

BPatch Vector< BPatch statement > lines;
if (bpProcess->getSourcelines (addr, lines)) {
line = lines[0].lineNumber () ;
for (int i = 0; 1 < length; i++) {
fileName[i] = lines[0].fileName () [1];
}
} else {

throw DiEx ("Could not get information about
the line number from process");

Sobre la API de DMLib, se han afiadido diferentes caracteristicas como se menciona posteriormente.
Sin embargo un cambio puntual a mencionar es un nuevo parametro que se ha anadido. En la version
inicial se asumia que el archivo de configuracion se denominaba DMLib.ini y no se podia cambiar la
ruta. Como mejora para el uso de la interfaz ahora es posible especificar la ruta en un nuevo
parametro llamado configFile. Este cambio no solo resulta en una mejora de la interfaz, ademas no
afecta el resto del programa ya que tiene un valor por defecto que es el mismo que antes y no sera

necesario darle un valor en todas las llamadas.

El ultimo y quiza mas importante de estos cambios ha sido la refactorizacion de las clases referentes a
ECPMessage. Inicialmente existian colisiones con Common y Analyzer, ya que los tres tipos de
mensaje y el header estaba definido en los dos modulos. Dada la finalidad de Common, se ha
removido la declaracion de estas clases del modulo Analyzer y ahora solamente se pueden encontrar
en el moédulo Common. Ademas se ha cambiado el reparto de las definiciones, se han juntado la clase

ECPMsg.h y derivadas en el mismo archivo, llamado ECPMsg.h.

4.4 Desarrollo de nuevas Caracteristicas

Mientras una parte del proyecto consistia en aplicar la metodologia creada previamente a MATE (ver

capitulo 3), también contenia parte de desarrollo de nuevas funcionalidades.

4.4.1 Sistema de excepciones

62

Un elemento importante en todo producto software es la capacidad de detectar los errores de la mejor
manera posible y poder notificar al usuario correctamente. La importancia del tratamiento de
excepciones no reside solamente en la notificacion para el usuario, ya que muchas de ellas son casos
extremos que rara vez llegaran a ojos del usuario, sino que es algo esencial para la implementacion de

nuevas caracteristicas.

En C++ las excepciones pueden ser cualquier variable, ya que al utilizar la palabra reservada throw es
posible pasar como argumento cualquier elemento. En el estado inicial del codigo podiamos

encontrar dos tipos de excepciones.

Por un lado podiamos encontrar cadenas de caracteres como excepciones:

throw "mensaje de error";

Este uso del sistema de excepciones es bastante pobre ya que, aunque para el ojo humano dé
informacion, a la hora de programar es imposible realizar un buen tratamiento de excepciones.
Ademas de la causa, el programa tampoco puede determinar qué tipo de excepciones va a capturar y

por lo tanto es mas dificil continuar con la ejecucion de la aplicacion.

Por otro lado podiamos encontrar la clase Exception:

throw Exception ("mensaje de error");

Esta forma de utilizar el sistema de excepciones es mejor, ya que al tener el soporte de una clase es
posible realizar mas controles y guardar los datos necesarios en cada objeto para que la aplicacion
tenga toda la informacion necesaria para tratar el error. Sin embargo sigue sin resolver el segundo
problema, solo tenemos un tipo de excepcion y, aunque podamos saber de qué se trata después de

capturarlo, no podemos realizar una discriminacion previa.

4.4.1.1 Nueva jerarquia de excepciones
Después de observar lo comentado en el apartado anterior, se decidid implementar una nueva

jerarquia de excepciones para poder realizar un mejor tratamiento.

Common::ConfigException

Commaon::EventException

-

Common::Exception

Commaon::FuncDefException

Common::SysException

Figura 4.2 Diagrama de clases de la nueva jerarquia de excepciones.

Como se puede observar en la figura 4.2, la clase padre es Exception. Esta clase ya existia
previamente y, por lo tanto, no serd necesario cambiar cddigo en otros mddulos para adaptarlos a los
cambios realizados. Sin embargo por las diferentes razones mencionadas en el apartado anterior es
recomendable realizar un buen tratamiento de excepciones y tener en cuenta la causa del error. Las
nuevas clases de excepciones son para diferentes situaciones dentro de Common, pero en un futuro

también es posible implementar nuevos tipos heredando de la clase padre.

63

64

Esta clase, Exception, posee tres atributos de tipo protected. Esto significa que solo pueden acceder a

ellos métodos de esta clase o derivadas. Por lo tanto las diferentes implementaciones podran utilizar

estos atributos como base. Los atributos son: _err, que contiene el cddigo del error (normalmente se

trata de errno, dentro de errno.h); msg, una string con el mensaje de error para mostrar al usuario; y

_objName, también una cadena que se puede utilizar para denominar la entidad que ha causado el

error, en cada tipo de excepcion se utilizara diferente. Ademds de estos atributos también tiene

definidos dos constructores y tres métodos tipo getter. Las clases derivadas de esta deberan

implementar los métodos para mostrar el mensaje, llamados Display().

El resto de excepciones implementadas son:

FuncDefException: Se utiliza esta clase de excepciones en los objetos tipo FuncDefs, una clase
encargada de almacenar definiciones de funciones a monitorizar. Los usos actuales en el codigo
de MATE son referentes a la busqueda y insercion de definiciones a la clase. En un futuro
proceso de desarrollo estas excepciones podrian utilizarse para un mejor control de la

monitorizacion.

ConfigException: Esta clase de excepciones se utilizan en todos los elementos de la lectura de
configuraciones. Indican que ha habido un error intentando localizar la fuente o en el formato de
la configuracion. Normalmente el atributo _objName se utiliza para el elemento que esta dando
problemas, coémo puede ser el path del archivo proporcionado (en el caso del FileConfigReader)
o la linea de la configuracion donde se encuentra el error de formato. También aparece a la hora
de intentar leer algiin elemento no existente de la configuracion, y el nombre suele ser la clave a

la que se intenta acceder.

EventException: Este tipo de excepciones esta pensado para ser utilizado en todas las acciones
referentes a la captura de eventos dentro de MATE. En el modulo trabajado en éste proyecto,
Common, solamente se utiliza en la clase EventMap y tiene un uso similar al comentado
anteriormente para las configuraciones. Al intentar acceder a elementos no existentes del mapa
de eventos, se lanzard una excepcion indicandolo. En un futuro esta clase podria ser utilizada
alrededor de MATE ya que la captura de eventos es una parte importante del proceso de

sintonizacion.

— SysException: Las excepciones del sistema (system exceptions) son las mdas generales y
utilizadas en Common. Se tratan de diferentes tipos de errores referentes con el flujo interno de
MATE y que, en principio, no estan causados por agentes externos. Actualmente las clases que
lanzan excepciones de este tipo son Address, Pipe, Process, Reactor, Socket, Sempahore, Syslog
y Thread. Este marco tan amplio parece contradecir los motivos explicados previamente (seccion
4.4.1), pero esta justificado por el motivo de que el tratamiento de estas es mas interno y

dependiente del contexto.

4.4.1.2 Deteccion de errores en DMLib

65

Inicialmente el médulo DMLib contenia un control de errores basica, pero después de afiadir el nuevo
sistema de excepciones habia varias excepciones no controladas. Por lo tanto era necesario definir un

nuevo sistema que tratara estas excepciones y notificara correctamente al usuario.

Como hemos visto anteriormente (seccion 4.1.2) DMLIib realiza tres diferentes acciones al iniciarse.
En el estado inicial del software la funcion DMLib Init simplemente llamaba a tres funciones que
realizaban esta accion sin ningun tipo de retorno. Para tener un control mas completo la mayoria de
funciones que antes eran tipo void ahora devuelven un booleano, indicando si la operacion ha tenido

éxito o no.

En la primera operacion, iniciar el log del sistema, los errores se notifican por la salida estandar.
Aunque esto no sea una buena practica, ya que no quedard constancia de los errores iniciales en el
log, es inevitable ya que todavia no estara iniciado. Todos los mensajes de error mostrados son

directamente los asociados a las excepciones lanzadas.

El siguiente paso es iniciar la variable de MPI necesaria, si hay algin error en esta fase ya se
notificara en el log del sistema, con un nivel de gravedad de "error". Ya que este error no viene
asociado a ninguna excepcion el mensaje proporcionado esta escrito directamente en la funcion que

realiza esta accion.

Para terminar se inicia la conexion de DMLIib con el analyzer. Esta vez se vuelve a utilizar el log del
sistema con un nivel de gravedad de "error" si sucede algun problema. También volvemos a disponer
de excepciones y por lo tanto los mensajes se generaran automaticamente con el tratamiento de las

excepciones.

4.4.2 Sistema de configuracion

66

Para todo programa destinado a un uso personal, es importante ser capaz de afadir cierto nivel de
configuracion propia. En MATE esto tiene especial importancia ya que estd pensado para ser
ejecutado en diferentes entornos y bajo varias situaciones. Por lo tanto una parte que merece cierto
hincapié es la capacidad del programa para aceptar configuraciones externas y la modularidad para

facilitar la insercién de nuevos parametros a tener en cuenta.

Inicialmente el sistema implantado para leer configuraciones consistia en una sola clase, llamada
FileConfigReader y que contenia toda la implementacion para leer configuraciones en el formato
adecuado. Esto era una buena solucion, ya que en principio no era necesaria la capacidad de poder
leer configuraciones en otros formatos. Sin embargo en esta fase del desarrollo, donde se pretende
hacer a MATE mas modular y versatil, un cambio en el disefio del sistema de configuracioén ha sido

algo ttil y necesario.

Common::ConfigHelper

Common::ConfigReader fe—— Common:FileConfigReader

Figura 4.3 Diagrama de clases del nuevo sistema de configuracion.

En el nuevo diseno que podemos observar en la figura, los detalles del formato ya no estan ligados a
la clase FileConfigReader, sino que se encuentran en la implementacion de la clase abstracta
ConfigReader. Esta clase contiene diferentes métodos privados que contienen la lectura de la
configuracion por secciones (ReadSection y ReadKeyValue). Ademas de estas posee un método
protegido que sera el que las clases derivadas utilizaran para analizar cada linea de texto, este método
se denomina AnalyzeLine. Finalmente, todas las clases derivadas deberan contener los métodos
necesarios para leer de cada tipo de elemento de entrada, pero deberdn implementar el método
Read(). Esta funcion debe realizar la lectura linea a linea utilizando el método AnalyzeLine y
finalmente retornar un objeto de tipo Config con la informacion parseada correctamente. Aunque este
nuevo sistema permite la lectura de diferentes tipos de entradas, se ha mantenido la lectura de

archivos y no se ha afiadido ninguna, esto se realizara en la siguiente fase de desarrollo de MATE.

67

Ademas de el nuevo conjunto de clases derivadas de ConfigReader también se ha creado una clase
estatica llamada ConfigHelper. Esta clase dispone de una agrupacion de métodos para trabajar con las
configuraciones y utilizan diferentes tipos de elementos. Actualmente solamente estd implementada
la habilidad de leer la configuracion desde un archivo. En el futuro todas las capacidades de MATE

para trabajar con configuraciones, ya sea para leer o guardar, estaran incluidas en esta clase.

S

S.

68

. Testing

1 Unit Testing y ECUT

Como ya hemos visto en el capitulo 3 es importante asegurar que ademas de cumplir los objetivos
establecidos, el resultado tenga la calidad esperada. Ademas, tratindose el modulo trabajado
(Common) de el fundamento sobre el que funciona MATE, las funcionalidades bésicas tienen una

importancia adicional.

Para asegurar el nivel de calidad deseado, se han realizado una serie de casos de prueba unitarios. Se
trata de comprobar el funcionamiento de componentes discretos del producto final. Las pruebas
deben ser independientes entre ellas y esto servira para comprobar el funcionamiento unitario antes
de realizar tests de integracion o de sistema. Normalmente estas pruebas tratan de unos test
controlados donde se simula el contexto real en el que deberan trabajar las clases. En estos contextos
se provee una seria de inputs conocidos y se miden los outputs obtenidos. Posteriormente se
comparan estos resultados con los outputs esperados y de esta manera se determina el éxito o fracaso

de cada prueba.

Aunque estos test necesitan ser independientes de las clases, existen componentes que necesitan otros
elementos del sistema para poder funcionar. Cuando son necesarios, se utilizan lo que se denomina
"stubs" y "drivers". Por un lado, los stubs se tratan de simulaciones de sub-unidades que se necesitan
para poder trabajar. Por otro lado los drivers son componentes de los cuales la clase probada forma

parte.

Para llevar a cabo la implementacion de estas pruebas se ha utilizado la libreria CPPUnit. en esta
libreria podemos encontrar una clase llamada TestFixture y que utilizaremos para realizar las pruebas
de cada clase. Cada clase de test derivara de la clase TestFixture y para cada aspecto que queramos
probar se creard un método. Existen dos métodos especiales, setUp() y tearDown() que se ejecutaran
antes y después de la ejecucion de cada prueba respectivamente. Dentro de cada caso de prueba se
utilizan funciones para comprobar si el resultado es el esperado, como por ejemplo
CPPUNIT ASSERT() o CPPUNIT_ASSERT EQUAL(). Una vez implementados los métodos, se
llama a cada uno de ellos con la funcion CPPUNIT _TEST().

IS Project | Gu ECUT 22 T Navigat

a? B @ e

Runs: 45/45 & Errors: 0 8 Failures: 0

— G Test for All Tests
+ Ei Test for AddressTest
+ [Test for ByteStreamTest
+ [Test for ConfigReaderTest
+ E Test for DateTimeTest
— [Test for PipeTest
£ Test for PipeTest::testCloseRead
£ Test for PipeTest::testCloseWrite
£ Test for PipeTest::testRead
g Test for Pi peTest:testWrite
Ei Test for QueueTest
Fi Test for StringArrayTest
Eil Test for SysExceptionTest
[Test for SyslogTest
Eil Test for ThreadTest

FEEEEE

Failure Trace

[2. Problems 2

=B PipeTest.h i3

1#ifndef TEST pipeTest
2 #define TEST pipeTest

3

4#ifdef ECUT_MAIN

5

6#include "cppunit/extensions/HelperMacros.h"

gclass PipeTest :
9 public:
10 void testCloseRead();
11 void testCloseWrite();
12 void testRead();
13 void testWrite();
14 CPPUNIT_TEST_SUITE(PipeTest);
15 CPPUNIT_TEST(testCloseRead);
16 CPPUNIT TEST(testCloseWrite);
17 CPPUNIT TEST(testRead);
18 CPPUNIT TEST(testWrite);
19 CPPUNIT_TEST_SUITE_END();
20%;
21
22 #endif /* ECUT MAIN */
£3

24 #endif /+*PIPETEST*/

public CPPUNIT NS::TestFixture {

¥ Tasks B Console | = Properties | 47 Search

0 errors, 99 wamings, 3 others

Description Resource Path
+ @& Warnings (99 items)

+ 1 Infos (3 items)

Location Type

Figura 5.1 Interfaz del plugin ECUT en Eclipse.

Como asistente para estos casos de prueba se ha utilizado el plugin ECUT para Eclipse. Con este
plugin es posible crear las clases automaticamente y asociar cada prueba a métodos concretos de cada
clase. Ademas en el momento de ejecutar los casos de prueba muestra los resultados de forma grafica

y proporciona datos adicionales de interés, como pueden ser el tiempo de ejecucion o la herencia de

los tests. En la figura 5.1 podemos observar como muestra estos resultados.

5.2 Casos de prueba realizados

El resultado final consiste en 10 casos de prueba unitarios, cada uno tratindose de una unidad del
modulo Common que se han considerado importantes. También se dispone de una carpeta con

archivos auxiliares llamada "objects". En esta carpeta encontramos archivos de configuracion

necesarios para el funcionamiento de algunas clases.

69

Clase Address
Ya que esta clase se trata de una clase muy bdasica, que simplemente almacena informacién sobre

direcciones de socket, las pruebas realizadas son bastante simples.

La primera prueba trata de comprobar que el tratamiento de tamafio de las direcciones es correcto. Ya
que la tiene sobrecargado el cast a (sockaddr in) es posible utilizar la funcion sizeof() para averiguar
cual seria el resultado correcto. Lo comprobamos con los tres tipos de constructores posibles y asi

también se asegura el correcto funcionamiento de estos.

En el segundo test simplemente comprobamos que el método GetHostName() funciona
correctamente. Para eso solamente es necesario comparar la cadena de retorno con la cadena

"localhost" y ver que el resultado es el mismo.

Clase ByteStream
Los casos de prueba realizados en esta clase comprueban diferentes aspectos de la clase, realizando

pruebas unitarias sobre los métodos mas relevantes.

Por un lado comprueba los constructores, viendo que el apuntador al buffer interno es el correcto.
También comprueba que el nuevo constructor (ver seccion 4.3.4) funciona correctamente y reserva el

espacio adecuado.

Otro aspecto comprobado en el test es la correcta habilidad para escribir y acceder a los datos.
Primero realiza pruebas de la funcion Write(), introduciendo dos sentencias y comprobando que al
obtener el contenido las lee correctamente. Seguidamente comprueba que aunque el buffer interno
tenga las mismas caracteristicas, no lo considere como igual al utilizar la funcion GetData(). Y para

terminar utiliza la funcién GetDataSize() para comprobar la correcta mesura del tamafo.

Para acabar encontramos la prueba de la funcién Reset(). Esta funcion debe dejar el buffer vacio, y lo
comprobamos empezando con datos en el buffer y observando que al resetear nos lo encontramos

vacio de nuevo.

Clase ConfigReader
Ya que esta clase a sido modificada (seccion 4.4.2) es necesario realizar pruebas para asegurarnos de

que no contienen ningun bug que pueda afectar el producto final.

70

Dada la simplicidad de el resultado bésico que debemos obtener, solamente es necesario realizar tests
sobre el método Read(). Aunque externamente de un resultado muy simple esto aseguro que la
funcionalidad de lectura y de localizacion de archivos funciona correctamente. Primero realizamos
una lectura de un archivo que no existe y comprobamos que, efectivamente, se lanza una excepcion
indicandolo. Después de esto leemos un archivo con el formato adecuado y comprobamos que el

contenido se ha leido correctamente.

Clase DateTime

En esta clase encontramos diferentes tests debido a la cantidad de funcionalidades que ofrece la clase.

Aun asi todos ellos son simples getters que muestran el correcto estado de los datos dentro del objeto.

Podemos observar que disponen de un setUp() inicial que se ocupa de guardar la fecha actual tanto en
el objeto a testear como en una string literal. El resto de funciones comprueban el correcto acceso y

conversion al afo, mes, dia, hora, minuto y segundo.

Clase Pipe

71

La funcionalidad bésica de esta clase es simple y, por lo tanto, es posible asegurar su funcionamiento

realizando solamente dos tipos de pruebas.

Las primeras van dirigidas al control del flujo de datos. Para controlar si es posible escribir o leer de
alguno de los extremos del Pipe, se utilizan las funciones CloseWrite() y CloseRead(). Las pruebas de
estos métodos simplemetne comprueban que los canales estan abiertos y una vez cerrados estan,

efectivamente, cerrados.

Los otros casos de prueba ya tienen mads interés ya que comprueban la correcta lectura y escritura de
datos si los canales estan abiertos. Para poder comprobar el resultado y simular mejor un caso real, se
realiza un fork() para comunicar dos threads a través del pipe. Una vez creado el escenario ficticio
simplemente se pasan datos a través del pipe y se comprueba que llegan correctamente al otro

extremo.

Clase Queue

Como ya hemos mencionado previamente (seccion 4.1.1) esta clase es capaz de almacenar objetos de
cualquier clase. Para facilitar el proceso de obtencion y comparacion de objetos, se ha utilizado la

clase string.

Las primeras pruebas que podemos ver son referentes a las comprobaciones de limites de la cola.
Primero comprueba con una cola vacia que el método IsEmpty() retorne un resultado positivo, a
continuacion introduce datos para comprobar que lo indica correctamente y para terminar volvemos a
vaciarla. El otro test es similar, ya que utiliza la funcién IsFull() para determinar lo contrario.

También se realizan varias situaciones para comprobar que funciona en diferentes escenarios.

Por otro lado se asegura el funcionamiento del control interno viendo el correcto funcionamiento de
las funciones GetMaxSize() y GetCount(). Mientras el primer método es comprobable directamente
después de la inicializacion del objeto, con el segundo es necesario realizar una comprobacién mas a

fondo realizando la comparacion cada vez que insertamos un nuevo elemento.

Finalmente se acaba comprobando las funciones de insercion y extraccion. Los métodos Get() y Put()
se prueban realizando inserciones y comprobando que el resultado retornado al extraer el objeto es el
mismo. También se comprueba a parte la funcion GetB() que realiza una extraccion utilizando

mecanismos de exclusion mutua.

Clase StringArray

72

En los casos de prueba unitarios de esta clase comprobamos las funcionalidades bésicas para manejar

la estructura de datos.

Primero se comprueban las funciones Add() y Get(). Para asegurarnos de que tanto el orden como
cantidad de strings guardadas es correcto, creamos un vector de C++ como estructura auxiliar.
Seguidamente introducimos las mismas strings que tenemos en este vector en nuestro objeto y
posteriormente comprobamos que el estado es el esperado. Otro test realizado es sobre la funcion

Grow() que incrementa la capacidad de almacenamiento de el objeto.

Las otras pruebas realizadas giran en torno al acceso a atributos internos del objeto. La primera
simplemente comprueba que el tamafio de strings almacenado es el correcto y la segunda determina

que el acceso a la estructura interna que almacena los objetos da el resultado esperado.

Clase SysException

Para las clases de excepcion solamente se ha realizado el test en una, SysException. Esto se debe a
que todas ellas comparten la misma estructura interna y funcionamiento, por lo tanto realizar pruebas

en una de ellas es suficiente.

Las primeras dos funciones simplemente comprueban que el mecanismo de tratamiento de funciones
try... catch funciona correctamente. Esto se comprueba lanzando excepciones con los dos diferentes
constructores y recogiendo el resultado. El método restante comprueba el correcto almacenamiento y
tratamiento de codigos de error. Esto lo hace comprobando que un codigo de error conocido retorna

el mensaje esperado.

Clase Syslog

73

Las pruebas realizadas a esta clase resultan ser las mas extensas, dada la cantidad de métodos y

funcionalidades de las que dispone.

Para empezar se realizan pruebas de los getters bésicos. El primero se trata del timestamp, el
momento en el que se realiza la insercion de la entrada en un objeto del tipo DateTime. Seguidamente
se comprueban los métodos GetSeverity() y GetMessage() comparando los resultados dados con los

esperados.

Por otro lado se realizan pruebas sobre los métodos de control sobre el log. Primeramente se
comprueba con varios tipos de entradas que la funcion Accept() de el resultado correcto dependiendo
del nivel de severidad del mensaje. A continuacion se prueba la insercion de entradas en tres tipos de
loggers. StreamLogger con entrada directa de caracteres, FileLogger que inserta los resultados en un
fichero y SysLog que va imprimiendo por pantalla los mensajes con informacion. Para acabar con

esta parte se comprueba el funcionamiento de la insercion de loggers dentro del log del sistema.

La tultima parte que se comprueba es la muestra de informacion con los métodos ShowTimestamp() y
ShowSeverity(). Estos dos métodos se comprueban leyendo las cadenas que dan como resultado y

buscando si los elementos tratados se muestran o no.

Clase Thread

Realizar pruebas sobre esta clase es importante, ya que MATE trabaja con Threads constantemente

para realizar las tareas de cada mddulo.

En el archivo con los casos de prueba encontramos tres funciones, una para cada prueba, que seran las
ejecutadas en cada thread y una variable global tipo string. Los resultados de las pruebas se basaran
en comprobar el estado actual de la string una vez terminado el thread. Para realizar un control mas
preciso y evitar lo mejor posible los problemas por prioridad de ejecucion en el procesador, se

utilizan varias llamadas a la funcion sleep().

74

6

6.

75

. Conclusiones

Después de realizar el trabajo sobre el proyecto se pueden analizar ciertos aspectos sobre el proceso y

ver el cumplimiento de las expectativas iniciales.

Sobre la primera parte, el desarrollo de la metodologia para MATE, es pertinente comentar que el
resultado es satisfactorio y cumple los objetivos propuestos. Como se habia planeado, la metodologia
es capaz de acoger un proyecto de la envergadura de MATE y permitir un desarrollo fluido
manteniendo una serie de estandares que le den a la aplicacion un aspecto de unidad y cohesion. Los
resultados obtenidos son una serie de especificaciones y guias que respaldan todo el proceso de
desarrollo. Ademas al haber realizado parte del trabajo sobre la aplicacion junto a otras dos personas,
ha sido posible ver los efectos de la metodologia aplicada en la préctica y por lo tanto se ha podido
corroborar su utilidad. En cuanto a los objetivos listados en el primer capitulo del documento, se

puede observar que esta parte justifica el cumplimiento de los tres primeros.

El trabajo realizado sobre la aplicacion, una vez asentada la metodologia, ha sido la segunda parte del
proyecto. Una vez aplicada la metodologia a MATE se ha conseguido aportar el respaldo necesario
para que pueda continuar evolucionando y el equipo de desarrollo pase a ser mas flexible. No solo se
ha conseguido aplicar ciertos estandares en cuanto al proceso de desarrollo, sino que también se
dispone de una documentacion mds solida que facilitard el uso de MATE a nuevos usuarios.
Finalmente las nuevas caracteristicas anadidas a los modulos Common y DMLib hacen el sistema
mas fiable y menos propenso a errores desconocidos. Esto abarca el resto de objetivos propuestos y

por lo tanto se puede considerar el resultado como satisfactorio.

1 El futuro de MATE

Aunque todos los objetivos establecidos se hayan cumplido, sigue faltando un paso siguiente en la
evolucion de MATE para considerarse un producto finalizado. Se han realizado pruebas unitarias
sobre las clases de los médulos y la integridad de cada uno de ellos se puede considerar alta. Sin
embargo, es necesario realizar el proceso de despliegue y observar el comportamiento de MATE
frente a diferentes entornos y situaciones. Para ello serd necesario realizar una serie de tests de
integracion y tests de despliegue, donde se vera realmente el grado de funcionalidad que muestra la

herramienta actualmente.

6.

76

Ademas de establecer MATE como producto en cuanto a nivel de funcionalidad, también existen una
serie de caracteristicas que podrian aportar mucho a la herramienta de cara a ser accesible para un

marco mas amplio de usuarios:

* El sistema de configuracion estd preparado para leer la configuracion desde diferentes
entradas. Sin embargo, solamente estd implementada la lectura de configuraciones a través de
ficheros en un formato no estindar donde no se asegura ningun tipo de integridad. Como
sugerencia en la evolucion de la herramienta, seria posible trabajar en el sistema de
configuracion y implementar la lectura de diferentes formatos estandar como XML. De esta
manera seria mds facil generar y modificar configuraciones para MATE y realizar

comprobaciones sobre la configuracion antes de cargarla directamente sobre el programa.

* Una de las ventajas de MATE es que no es necesario realizar ninguna operacion sobre la
aplicacion antes de la ejecucion. Aun asi, cada vez que se ejecuta de nuevo la aplicacion la
sintonizacion de MATE es la misma. Por lo tanto una posible mejora en este proceso de
sintonizacion es aportar un sistema de tratamiento de la informacién que permita disponer de
una base de conocimiento asociada a cada aplicacion particular. De esta manera se
conservaria la ventaja de sintonizar en tiempo de ejecucion pero sin el inconveniente de

empezar de cero en cada ejecucion.

* En el mdédulo DMLib encontramos una serie de instrucciones muy bdasicas para realizar el
proceso de monitorizacion. Una posible mejora sobre esto en un futuro podria ser permitir la
customizacion de este proceso para ser utilizado de manera mas eficiente en cada aplicacion

particular.

2 Conclusiones personales

A nivel personal puedo decir que este proyecto ha aportado mucho y ha permitido que ponga en

practica varias de las disciplinas estudiadas en la carrera.

El hecho de haber formado parte de un equipo de desarrollo de varias personas me ha mostrado las
dificultades que pueden surgir en la vida real y que no son posibles aprender de forma tedrica. Tanto
en aspectos de coordinacion y trabajo en equipo como aspectos mas técnicos a la hora de compartir

informacion y trabajar en un mismo sistema que debe funcionar de manera unitaria.

77

El hecho de ser la primera experiencia en un proyecto de investigacion también ha servido para ver la
sinergia entre teoria y practica, ya que aunque se trate de un proyecto nacido de investigacion tendra

un futuro como producto software.

En cuanto a la parte técnica la segunda parte del proyecto me ha ayudado mucho a mejorar el
dominio del lenguaje de programacion C++ y ver la magnitud de un programa real en el que se ha

trabajado durante muchas horas.

Bibliografia

78

Links

The Message Passing Interface (MPI) standard - http://www.mcs.anl.gov/research/projects/mpi/

Dyninst API - http://www.dyninst.org/
C/C++ API - http://ta-lib.org/d api/d api.html

Buildbot Documentation - http://buildbot.net/buildbot/docs/current/

Doxygen Manual - http://www.stack.nl/~dimitri/doxygen/manual.html

Library Programming HowTo - http://www.fags.org/docs/Linux-HOWTO/Program-Library-
HOWTO.html

SQA definition - http://www.sga.net/

Libros

Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, Jack Dongarra, “MPI: The
complete reference”, Vol. I, 2nd edition. Mit Pr,1996.

Bjarne Stroustrup, “The C++ Programming Language”, 3rd edition. Addison-Wesley, 1997.

William Gropp, Steve Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, Marc Snir, “MPI: The complete reference”, Vol. 11, 2nd edition. Mit Pr, 1998.

Documentos

FN/Mats Henricson & Erik Nyquist, "Programming in C++, Rules and Recomendations", 1992.
M. Xenos, “Usability Perspective in Software Quality” , 2001.

Anna Morajko, “Dynamic Tuning of Parallel/Distributed Applications”, UAB, 2003.

Nick Jenkins, "A Software Testing Primer", 2008.

Andrea Martinez, "Sintonizacién dinamica de aplicaciones MPI", UAB, 2010.

http://www.mcs.anl.gov/research/projects/mpi/
http://www.sqa.net/
http://www.faqs.org/docs/Linux-HOWTO/Program-Library-HOWTO.html
http://www.faqs.org/docs/Linux-HOWTO/Program-Library-HOWTO.html
http://www.stack.nl/~dimitri/doxygen/manual.html
http://buildbot.net/buildbot/docs/current/
http://ta-lib.org/d_api/d_api.html
http://www.dyninst.org/

Indice de anexos

79

Anexo 1.

Anexo 2.

Anexo 3.

Anexo 4.

Anexo 5.

Anexo 6.

Anexo 7.

Anexo 8.

Anexo 9.

Anexo 10.

Anexo 11.

Acta de seguimiento del proyecto nimero 1.

Acta de seguimiento del proyecto nimero 2.

Acta de seguimiento del proyecto nimero 3.

Acta de seguimiento del proyecto nimero 4.

Acta de seguimiento del proyecto nimero 5.

Acta de seguimiento del proyecto nimero 6.

Script instalacion de Buildbot + dependencias.

Codigo fuente de los casos de prueba unitarios realizados en Common.

Documentacion de modulos Common y DMLib generada con doxygen.

Guia de estilo de codificacion.

Guia de instalacion de Buildbot.

	1. Introducción
	1.1 Antecedentes
	1.1.1 Arquitecturas paralelas
	1.1.2 Aplicaciones paralelas
	1.1.3 Análisis de rendimiento
	1.1.4 Sintonización de procesos

	1.2 Sobre MATE
	1.3 Objetivos del proyecto
	1.4 Estructura del documento

	2. Viabilidad y Plan del proyecto
	2.1 Estudio de la situación actual
	2.1.1 Contexto
	2.1.2 Lógica del sistema
	Monitorización
	Análisis
	Optimización
	Módulos de MATE

	2.1.3 Descripción física
	2.1.4 Diagnóstico del sistema

	2.2 Requisitos funcionales y no funcionales
	2.2.1 Requisitos funcionales
	2.2.2 Requisitos no funcionales
	2.3 Alternativas y selección de la solución
	2.3.1 Alternativa 1 (H. Colaboración – Redmine)
	2.3.4 Alternativa 2 (H. Colaboración – Trac)
	2.3.4 Alternativa 3 (H. Control Versiones – CVS)
	2.3.4 Alternativa 4 (H. Control Versiones – SVN)
	2.3.5 Alternativa 5 (H. Desarrollo – Buildbot)
	2.3.6 Alternativa 6 (H. Desarrollo – Tinderbox)
	2.3.7 Solución propuesta

	2.4 Planificación
	2.4.1 Diagrama WBS
	2.4.2 Fases y actividades del proyecto
	2.4.4 Recursos del proyecto
	Recursos humanos
	Recursos de infraestructura
	2.4.4.1 Calendario de recursos
	2.4.4.2 Asignación de recursos

	2.4.5 Calendario del proyecto
	2.4.5.1 Dependencias
	2.4.5.2 Calendario temporal
	Fase 1: Estudio previo
	Fase 2: Desarrollo metodología y entorno
	Fase 3: Implantación de la metodología
	Fase 4: Desarrollo de nuevas características
	Fase 5: Cierre de proyecto

	2.4.6 Evaluación de riesgos
	Lista de riesgos
	Catalogación de riesgos
	Plan de contingencia

	2.5 Viabilidad económica
	2.5.1 Estimación de costes
	Coste del personal
	Coste de los recursos
	Costes indirectos
	Otros costes

	2.5.2 Análisis coste-beneficio

	2.6 Viabilidad técnica

	3. Definición metodología
	3.1 SQA
	3.1.1 Modelos estándar
	3.1.2 Modelos de aplicación o específicos de compañías

	3.2 Perspectiva general
	3.2.1 Guías y especificaciones
	3.2.2 Herramientas
	3.2.3 Elementos no documentados

	3.3 Buildbot
	3.3.1 Breve descripción de la herramienta.
	3.3.2 Configuración general
	3.3.3 Organizadores
	3.3.4 Constructores
	3.3.5 Informes de estado
	3.3.6 Guía de instalación y configuración
	3.3.7 Script de instalación

	3.4 Guía de estilo de codificación
	3.4.1 Contenido
	3.4.2 Evolución del documento

	4. Trabajo en módulos Common y DMLib
	4.1 Introducción a los módulos
	4.1.1 Common
	4.1.2 DMLib

	4.2 Documentación
	4.2.1 Comentarios inline
	4.2.2 Comentarios doxygen

	4.3 Cambios realizados
	4.3.1 Uso uniforme de string y char *
	4.3.2 Separación en namespaces
	4.3.3 Separación de archivos fuente y de cabecera
	4.3.4 Cambios puntuales
	4.4 Desarrollo de nuevas Características
	4.4.1 Sistema de excepciones
	4.4.1.1 Nueva jerarquía de excepciones
	4.4.1.2 Detección de errores en DMLib

	4.4.2 Sistema de configuración

	5. Testing
	5.1 Unit Testing y ECUT
	5.2 Casos de prueba realizados
	Clase Address
	Clase ByteStream
	Clase ConfigReader
	Clase DateTime
	Clase Pipe
	Clase Queue
	Clase StringArray
	Clase SysException
	Clase Syslog
	Clase Thread

	6. Conclusiones
	6.1 El futuro de MATE
	6.2 Conclusiones personales

	Bibliografía
	Índice de anexos

