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PRESENTACIÓ 

 

El present treball de recerca constitueix la primera fase del projecte MEC BFU 2006 

07124/BFI: “Lesió pulmonar unilateral induïda per ventilació mecànica i/o endotoxina: 

mecanismes biofísics, cel·lulars i moleculars de lesió local, descompartimentalització 

multiorgànica remota i precondicionament” i ha servit per fer un primer abordatge en 

l’estudi de l’afectació neuronal relacionada amb la lesió pulmonar aguda induïda per la 

ventilació mecànica 

 

Els resultats obtinguts, han constituït la base pel desenvolupament de posteriors 

projectes dirigits a caracteritzar els mecanismes implicats en la comunicació pulmó-

cervell (crosstalk) en la mateixa línia de recerca. 

 

La doctoranda, Mª Elisa Quilez, és llicenciada en Biologia per la Universitat Autònoma 

de Barcelona (2006) i actualment, desenvolupa la seva carrera professional com a 

investigadora predoctoral, dins del grup 33 del CIBER de Malalties Respiratòries (IP: 

Lluís Blanch) al Laboratori de Recerca Translacional en Fisiopatologia Respiratòria de 

la Corporació Sanitària Parc Taulí. 

 

La patologia crítica s’associa freqüentment amb el desenvolupament d’ alteracions 

neurològiques a curt i/o llarg termini, que comporten  un gran impacte tant social com 

econòmic. En els darrers anys, molts estudis han investigat si determinats 

procediments clínics aplicats de rutina sobre el pacient crític, com ara la ventilació 

mecànica, entre d’altres, podrien tenir efecte sobre aquestes alteracions. En aquest 

sentit, és conegut que la utilització d’un patró de ventilació mecànica inadequat pot 

contribuir a agreujar la lesió pulmonar aguda (LPA) preexistent o inclús induir-la en 

pulmons sans. La pèrdua de compartimentalització de la lesió local (al pulmó) pot 
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arribar a afectar altres òrgans i, en situacions extremes, conduir al desenvolupament 

de disfunció multiorgànica. Els mecanismes a través dels quals òrgans distals 

lesionats, com el pulmó, poden arribar a afectar al sistema nerviós central, són encara 

desconeguts i el seu estudi ha estat un dels objectius del present treball. 

En un primer abordatge de l’anàlisi de la interacció pulmó - cervell, hem realitzat un 

estudi, basat en un model agut de ventilació mecànica en rates (3 hores), on s’ha 

caracteritzat el patró d’activació neuronal i la resposta inflamatòria local (pulmó) i 

sistèmica, així com d’altres paràmetres fisiològics en funció del volum corrent 

administrat. 

 6



ABSTRACT 

 

Introduction: Survivors of critical illness often have significant long-term brain 

alteration and routine clinical procedures like mechanical ventilation (MV) may affect 

long-term brain outcome. We aimed to investigate the effect of the increase of tidal 

volume (Vt) on brain activation in a rat model. 

Methods: Male Sprague Dawley rats were randomized to 3 groups: 1) control: 

anesthetized unventilated animals, 2) low Vt (LVt): MV for 3 hours with Vt 8 ml/kg and 

zero positive end-expiratory pressure (ZEEP), and 3) high Vt (HVt) MV for 3 hours with 

Vt 30 ml/kg and ZEEP. We measured lung mechanics, mean arterial pressure (MAP), 

arterial blood gases, and plasma and lung levels of cytokines. We used 

immunohistochemistry to examine c-fos as a marker of neuronal activation.  

Results: After 3 hours on LVt, PaO2 decreased and PaCO2 increased significantly. 

MAP and compliance remained stable in MV groups. Systemic and pulmonary 

inflammation was higher in MV rats than in unventilated rats. Plasma TNFα was 

significantly higher in HVt than in LVt. Immunopositive cells to c-fos in the retrosplenial 

cortex and thalamus increased significantly in HVt rats but not in LVt or unventilated 

rats. 

Conclusions: MV promoted brain activation. The intensity of the response was higher 

in HVt animals suggesting an iatrogenic effect of MV on brain. These findings suggest 

that this novel cross-talking mechanism between lung and brain should be explored in 

patients undergoing MV. 
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BACKGROUND 

 

Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) are 

associated with high morbidity and mortality [1], and ARDS survivors present significant 

long-term cognitive impairment [2]. These consequences may result from complex 

interactions between different clinical protocols and endogenous factors occurring 

simultaneously in critically ill patients [3]. In this context, mechanical ventilation (MV) is 

a lifesaving procedure but not without complications. Even in healthy lungs, MV may 

contribute to a positive feedback loop that starts with mechanotransduction at the 

epithelial and endothelial levels leading to a deleterious inflammatory cascade that 

might affect distant organs and systems [4-6]. Moreover, critical care patients who 

undergo long-term MV show distinctive neurological impairment, including memory and 

cognitive decline [7]. 

Many studies have examined the mechanisms involved in the neuroimmune crosstalk; 

most focus on the central nervous system (CNS) response to systemic inflammation. 

However, the mechanisms through which damage to remote organs can reach the 

brain are poorly understood [8, 9], including early neurological effects related to MV 

and the importance of settings used. The immediate early gene c-fos has been used as 

a marker of neuronal activity, and correlates with increase in electrical and metabolic 

activity in brain cells by pathological situations, also involved in phenomena of neuronal 

plasticity, amongst others. In a first approach, to study lung-brain crosstalk, we have 

used c-fos as a marker of areas sensible to injurious MV in the brain [10]. 

The main objective of the present study was to investigate the effect of the increase in 

tidal volume on activation in some areas of the brain in a rat model of MV, using c-fos. 

The second was to explore the effects of lung overstretching and the triggered 

inflammatory response. Therefore, we compared rats ventilated with two different 

levels of tidal volume, a high Vt group vs. a low Vt group, vs. non-ventilated control 

rats.
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METHODS

 

Animal Preparation 

Thirty male Sprague Dawley rats weighing 300-350gr where were housed in standard 

conditions of light-dark cycle regulated, air humid (60%) and temperature (22 ± 1ºC) 

Commercial chow pellets and tap water were available ad libitum. 

Animals were treated following the Principles of Laboratory Animal Care (UE 609/86 

CEE, Real Decreto 223/88 BOE-18/03) and all procedures were approved by the 

Animal Ethics Committee of Hospital de Sabadell (Spain). 

 

Experimental protocol 

Rats were anesthetized with intraperitoneal ketamine (75mg/kg, Parke-Davis, El Prat 

de Llobregat, Spain), and xylacine (10ml/kg, Rompun®, Bayer, Barcelona, Spain). One 

half of this dose of anesthesia was re-administered every 45 min. Right jugular vein 

and left carotid artery were cannulated for infusions, hemodynamic monitoring and to 

aspirate blood for blood gas analysis. An endotracheal tube (2 mm inner diameter) was 

inserted by a surgical tracheotomy and connected to a mechanical ventilator (300 

Servo-Ventilator; Siemens, Solna, Sweden). Animals were paralized with an 

intravenous injection of 0.2 cc succinylcholine (1.5 mg/kg, Glaxo- Wellcome, Tres 

Cantos Madrid, Spain) immediately before measurements of lung mechanics.  

Then animals were randomly assigned to one of three experimental groups (n=8 per 

group): 1) Control group (CRL), unventilated animals, were immediately exanguinated 

after the anesthesia, 2) Low Vt group (LVt), ventilated with 8 ml/kg and 0 cmH2O of 

positive end-expiratory pressure (ZEEP) for 3 hours, and 3) High Vt group (HVt), 

ventilated with 30 ml/kg and ZEEP for 3 hours. To maintain normocapnia without 

decreasing respiratory rate, instrumental dead space was increased in the HVt group.  

At baseline, animals in the MV groups underwent volume-controlled ventilation with 8 

ml/kg Vt and 2 cmH2O PEEP. Inspired oxygen fraction (FiO2) was kept at 0.4 
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throughout the experiment, and the respiratory rate was adjusted for normocapnia. We 

measured values of MAP, arterial blood gases, and respiratory system parameters 15 

minutes after initiating MV (baseline) and hourly thereafter after randomization. 

Physiological parameters, including blood gas analysis, blood pressure, temperature, 

tidal volume, respiratory rate, and inspired gas composition, were measured recorded 

hourly. Inspiratory and expiratory pauses were applied to calculate static lung 

compliance (Crs). Fluid management was identical in all groups (Ringer-lactate, 10 

ml·kg-1·h-1) to prevent differences that might favor edema formation, and vasoactive 

drugs were not used in any group. At the end of the 3-hour period, rats were 

euthanatized by exsanguination. We centrifuged 7 ml of blood from each animal and 

stored the plasma at -80º C for protein determinations. Hearts and lungs were removed 

en bloc, and the right lung was frozen for additional tissue analyses of proteins. Rats’ 

brains were removed from the cranium by careful dissection and immediately frozen 

and stored at -80ºC. 

 

Measurement of Cytokines/Chemokines 

Commercially available enzyme linked immunosorbent assay (ELISA) kits (Biosource, 

Camarillo, CA, USA) were used to determine the following plasma protein levels: tumor 

necrosis factor (TNF)-α, macrophage inflammatory protein (MIP)-2 and interleukin (IL)-

6. 

Lung tissue was homogenized in a lysis buffer and the protein content of the lysate was 

quantified using the same commercially kits than we used in plasma samples. 

Analyses of all samples, standards, and controls were run in duplicate following the 

manufacturer’s recommendation. 

 

Histological analysis 

At the end of the experiment, the lungs were removed and fixed via intratracheal 

instillation of 4% buffered formaldehyde and immersed in the same fixative. After 
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fixation, the lungs were embedded in paraffin, and they were sectioned and processed 

for histological examination. Histological scores were calculated after hematoxylin-

eosin (HE) staining as described elsewhere [12] and assessed intraalveolar neutrophil 

infiltration by counting the number of neutrophils in fifty fields per animal at a 

magnification of X400 using ImageJ v1.40g (Wayne Rasband, NIH, USA). 

Lung damage was determined using a Lung Injury Score (LIS) based on the evaluation 

of alveolar edema, hemorrhage, neutrophil infiltration and alveolar septal thickening in 

each animal. Each parameter was scored from 0 to 4. Subsequently, the total LIS was 

calculated by adding the individual score for each parameter up to a maximum score of 

16 [12]. 

 

Immunohistochemistry 

At the end of the experiment, the brains were removed and immediately frozen and 

stored at -80ºC.  Frozen brains were cut into 20-µm coronal sections (cryostat CM1900, 

Leica Microsystems, Spain) and stored at -80ºC until further processing. Sections were 

processed for c-fos immunohistochemistry to asses the neuronal activation in the 

thalamus, retrosplenial cortex (RS), central amygdala (CeA), hippocampus, 

paraventricular hypothalamic nuclei (PVN), and supraoptic nucleus (SON). Additional 

sections were stained with cresyl violet to identify the regions of interest. 

Briefly, sections were first dried, post-fixed in 4% paraformaldehyde solution (PFA) for 

10 minutes. Endogenous peroxidase was blocked with a solution at 1.5% H2O2. They 

were then rinsed with phosphate buffer saline (pH 7.4, 0.1M). Nonspecific binding was 

reduced by incubation with a blocking solution containing 5% normal goat serum, 3.5% 

egg whites and 0.35% triton X-100 for 60 min followed by incubation with 0.01% biotin. 

Sections were then incubated in a polyclonal rabbit antibody against c-fos (c-fos (4), 

Santa Cruz Biotechnology) at a dilution of 1:250 for 30 min at room temperature. Then 

sections were incubated with biotinylated goat anti-rabbit IgG for 30 min and then with 

avidin–biotin horseradish peroxidase solution (ABC kit, Vector laboratories). The c-fos 
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antibody-peroxidase complex was revealed using 0.06% diaminobenzidine (Sigma) 

and 0.01% H2O2. Finally, the slides were dehydrated with ethanol series and 

coverslipped with DPX. 

 

Image analysis 

After immunostaining, specific activated areas were identified by light microscopy 

(DM250, Leica, Wetzlar, Germany) with the aid of a stereotaxic atlas [14]. Images were 

digitized and a semi-quantitative analysis of c-fos positive cells was performed using 

the ImageJ software (ImageJ 1.40g, W.Rasband, NIH, USA). c-fos positive nuclei were 

evaluated according to the intensity of staining and an optimal threshold was set to 

avoid any background signal. 

 

Statistical analysis 

We used power analysis for ANOVA designs to estimate the sample size assuming an 

α error of 0.05 and β error of 0.2 (Granmo 5.2 software). U-Mann-Withney non-

parametric tests were used to analyze differences between groups. All values are 

expressed as mean ± SEM. Significance was set at p<0.05. 
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RESULTS 

 

Animal body weights were similar in all groups. At baseline, no differences in 

hemodynamics or gas exchange were observed between MV groups. Control rats were 

exanguinated at time zero and were used as the baseline group in comparison 

between groups. 

 

Physiological variables 

MAP remained stable within the normal range throughout the 3-hour period in all 

groups. Respiratory system compliance (Crs) and plateau pressure (Pplateau) 

increased with HVt MV, but both remained unchanged throughout the experimental 

period. Respiratory rates were not significantly different between LVt and HVt animals 

(mean 47.3 vs 47, respectively; p=0.7). Significant decreases in PaO2/FiO2 and pH and 

concurrent increases in PaCO2 were found in LVt animals after 3 hours of MV (figure 

1) 
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Figure 1. Hemodynamic and respiratory characteristics of rats during the 3-h period. No 

differences between groups were observed at baseline. MAP remained stable in both groups. 

Pplateau and Crs increased significantly during HVt ventilation but remained stable during the 3-

h period. There were not differences between LVt and HVt in Pa/FiO2. PCO2 increased only in 

LVt animals. Data are presented as mean± SE. *: p < 0.05 versus the HVt group. n= 8 animals 

per group. Abbreviations: MAP: mean arterial pressure; CRL: control; LVt: low tidal volume; HVt: 

high tidal volume; Pplateau: plateau pressure; Crs: static compliance of the respiratory system. 
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Histology 

Figure 2 shows representative images of lungs in each experimental group. Lung 

neutrophilic infiltration and LIS were significantly higher in MV rats than in unventilated 

rats, but no differences between LVt and HVt were found (figure 2) 
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Figure 2. Representative images of lungs in each group after H-E staining and LIS. 
% of lung neutrophil content and LIS increased with MV but was similar in animals receiving LVt 

and HVt. Results are represented as mean ± SE. *p<0.05 versus the unventilated control group. 

n= 8 animals per group. Abbreviations: CRL: control; LVt: low tidal volume; HVt: high tidal 

volume; LIS: Lung injury score. 
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c-fos immunopositive brain areas 

Neuronal activation evidenced by an increased number of c-fos immunopositive cells 

was observed in the RS (figure 3) and thalamus (figure 4) of HVt rats, but not in LVt or 

control rats. Neuronal activation was also observed in the CeA (figure 5), PVN (figure 

6), and SON (data not shown) of MV rats, although activation did not differ between 

HVt and LVt animals. Similarly, no differences in c-fos activation in other cortical areas 

or in the hippocampus were observed between the experimental groups (data not 

shown). 

Coronal section diagrams encompassing areas of interest are represented at the top of 

figures 3 to 6 (modified from reference 14). 
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Figure 3. Brain activation evidenced by c-fos immunoreactivity in the retrosplenial 
cortex. Representative images of RS from each experimental group after immunohistochemical 

staining. Black arrows indicate c-fos positive cells: HVt increased the number of c-fos-positive 

neurons in the RS; lower levels of neuronal activation were found in unventilated and LVt 

animals. Data are presented as mean ± SE. *p<0.05 respect to unventilated control animals. 

Abbreviations: CRL: control; LVt: low tidal volume; HVt: high tidal volume; RS: retrosplenial 

cortex. 
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Figure 4. Brain activation evidenced by c-fos immunoreactivity in thalamus. 
Representative images of thalamus from each experimental group after immunohistochemical 

staining. Black arrows indicate c-fos positive cells: HVt  increased the number of c-fos-positive 

neurons in the thalamus. Data are presented as mean ± SE. *p<0.05 respect to unventilated 

control animals. Abbreviations: CRL: control; LVt: low tidal volume; HVt: high tidal volume. 
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Figure 5. Brain activation evidenced by c-fos immunoreactivity in Central Amygdala. 
Representative images of CeA from each experimental group after immunohistochemical 

staining. Black arrows indicate c-fos positive cells: MV significantly increased neuronal 

activation in the CeA independently of the Vt level. Few c-fos positive cells were found in CeA of 

control animals. Data are presented as mean ± SE. *p<0.05 respect to unventilated control 

animals. Abbreviations: No MV: unventilated animals; LVt: low tidal volume; HVt: high tidal 

volume; CeA: Central amygdala. 
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Figure 6. Brain activation evidenced by c-fos immunoreactivity in Paraventricular 
hypothalamic nuclei. Representative images of PVN from each experimental group after 

immunohistochemical staining. Black arrows indicate c-fos positive cells: Neuronal activation in 

the PVN tended to increase with MV, but this increase did not reach significance compared with 

controls. Data are presented as mean ± SE. *p<0.05 respect to unventilated control animals. 

Abbreviations: CRL: control; LVt: low tidal volume; HVt: high tidal volume; PVN: Paraventricular 

hypothalamic nuclei. 
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Inflammatory mediators 

MV increased plasma levels of IL-6 and MIP-2 in LVt and HVt groups (p< 0.05). 

However, plasma TNFα levels increased significantly after 3 hours of HVt ventilation 

(p=0.005) but remained unaltered in the LVt group. 

In the lungs, irrespective of the Vt level, MV increased IL-6 and MIP-2 levels. Lung 

TNFα levels were similar in MV and unventilated animals. Taken all together, the 

inflammatory response was higher (but also more variable) in the HVt group than in the 

LVt group (figure 7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PLASMA

IL-6 MIP-2 TNFα
0

100

200

300

400

500

600

700
CRL
LVt
HVt

*

*

** *
#

pg
/m

l

LUNG

IL-6 MIP-2 TNFα
0

200

400

600

800

1000

1200

1400

* *

*
*

pg
/m

g 
pr

ot

Figure 7. Plasma and lung levels of proteins involved in the inflammatory cascade. 
Mechanical ventilation triggered lung and systemic inflammatory responses. Compared to LVt, 

HVt promoted an increase in inflammatory markers mainly mediated by TNFα at the plasma 

level. Data are presented as mean ± SE. *p<0.05 respect to unventilated control animals, # 

p<0.05 vs LVt . n= 8 animals per group. Abbreviations: CRL: control; LVt: low tidal volume; HVt: 

high tidal volume; IL: interleukin, TNF: tumor necrosis factor; MIP: macrophage-inflammatory 

protein. 
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DISCUSSION 

 

We found that MV induced c-fos expression in discrete areas of the brain in healthy 

and non-hypoxemic rats. Moreover, HVt ventilation caused more neuronal activation 

when compared to LVt ventilation, thus supporting the hypothesis that an iatrogeneous 

effect of MV may affect the brain. These results provide novel and important data that 

might have clinical relevance during the management of critically ill patients.  

The immediate early gene c-fos [15] is rapidly induced and can be detected by 

immunochemistry; therefore it is a valuable tool for determining which brain areas are 

stimulated [16, 17]. The basal expression of c-fos is low, but can be dramatically 

induced by a variety of stimuli and conditions such as metabolic stress, ischemia, and 

inflammation, among others [18, 19]. Various mechanisms are probably involved in the 

response to MV. Lungs can “sense” mechanical stimuli by lung mechanoreceptors that 

can communicate to the brain. The autonomic nervous system is also involved in this 

crosstalk [20-22].  

The ventilatory strategy may also affect the CNS by altering the inflammatory cascade 

promoted by mechanotransduction. In the present study, as reported elsewhere, we 

have used two different MV strategies that triggered proinflammatory responses even 

in subjects receiving LVt [4, 5, and 23]. The proinflammatory response to HVt was 

found mainly at the systemic level and was mediated by TNFα [6, 23, and 24]. Only 

minimal differences in other cytokines, lung function parameters or LIS were found 

between MV groups. The release of inflammatory mediators [23, 24] or certain 

metabolites to the bloodstream can be sensed by the brain, altering the permeability of 

the blood brain barrier [22, 25] or modifying cerebral blood flow. No data is available 

about the contribution of these two mechanisms in the activation observed in the brain 

areas studied in our model.  

HVt consistently increased c-fos in the RS and thalamus, neither of which were 

activated in LVt or CRL animals.  Moreover, in the literature RS and thalamus have 

 22



been linked to neurological disorders after stress [26, 27], fatigue-loading in rats [28, 

29]; emotional or psychological stress might also induce neuronal activation in cortical 

and limbic regions [16, 30].  

In the present study we cannot determine whether the regional brain activation 

observed in LVt group was caused by moderate hypercapnia. This impaired gas 

exchange in the LVt group is compatible with progressive alveolar de-recruitment in the 

absence of PEEP. The higher level of brain activation observed in the HVt group 

occurred in the context of normocapnia, thus suggesting that the mechanisms inducing 

cell activation in these brain areas are different in HVT, which deserves being explored 

in further investigations. 

Our results were obtained in the context of preserved lung function and hemodynamic 

stability. The magnitude of the response to HVt observed by different authors varies 

[23, 24, 31-33], and some authors have reported detrimental effects of HVt on MAP 

[34]. However, we found that adequate fluid management ensured MAP stability 

throughout the experimental procedure (3h), corroborating previous findings in our 

laboratory [11, 23]. Therefore, the differences in the results could not be attributed to 

differential organ perfusion.  
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Clinical relevance 

Due to the novelty of this issue (brain activation and MV) and the limitations of the 

study, we can only speculate about the translation of these results to the clinical 

setting. The etiology of cognitive impairment in critically ill patients is undoubtedly 

multifactorial and is the subject of ongoing discussion [2, 3]. Nevertheless, crosstalk 

between the lung and brain is poorly understood [22], and although many randomized 

controlled clinical trials have evaluated the efficacy and safety of various methods of 

MV in ARDS and ALI patients, few studies have explored the influence of MV patterns 

at the neuronal level. Our findings about regional brain activation during MV could help 

define particular areas susceptible to be activated by mechanoreceptors in the lung. 

Those areas might play a crucial role in regulating early events occurring during the 

application of non-adequate MV patterns. Our findings might have implications for 

understanding how the brain senses incoming signals or insults from the lungs in 

anesthetized and paralyzed subjects.  

In summary, our data further support the concept of brain-lung interaction during MV 

and indicate the importance of the ventilatory settings used. These findings may 

therefore have clinical relevance and emphasize the importance of further research in 

this field. 

 24



REFERENCES 

 

1. Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, 

Hudson LD: Incidence and outcomes of acute lung injury.  N Engl J Med 

2005, 353:1685-93. 

2. Hopkins RO, Jackson JC: Long-term neurocognitive function after critical 

illness. Chest 2006, 130:869-78. 

3. Jackson JC, Girard TD, Gordon SM, Thompson JL, Shintani AK, Thomason JW, 

Pun BT, Canonico AE, Dunn JG, Bernard GR, Dittus RS, Ely EW: Long-term 

cognitive and psychological outcomes in the Awakening and Breathing 

Controlled trial. Am J Respir Crit Care Med 2010, 182:183-91. 

4. Wolthuis EK, Vlaar AP, Choi G, Roelofs JJ, Juffermans NP, Schultz MJ. 

Mechanical ventilation using non-injurious ventilation settings causes lung 

injury in the absence of pre-existing lung injury in healthy mice. Crit Care 

2009, 13: R1.  

5. Vaneker M, Joosten LA, Heunks LM, Snijdelaar DG, Halbertsma FJ, van Egmond 

J, Netea MG, van der Hoeven JG, Scheffer GJ: Low-tidal-volume mechanical 

ventilation induces a toll-like receptor 4-dependent inflammatory response 

in healthy mice. Anesthesiology 2008, 109:465-72. 

6. Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, Bruno F, 

Slutsky AS: Effect of mechanical ventilation on inflammatory mediators in 

patients with acute respiratory distress syndrome: a randomized controlled 

trial. JAMA 1999, 282:54-61. 

7. Pustavoitau A, Stevens RD: Mechanisms of neurologic failure in critical 

illness.  Crit Care Clin 2008, 24: 1-24. 

8. Akrout N, Sharshar T, Annane D: Mechanisms of brain signaling during 

sepsis. Curr Neuropharmacol 2009, 7: 296-301. 

 25



9. Quan N: Brain's firewall: blood-brain barrier actively regulates neuroimmune 

information flow. Brain Behav Immun 2006, 20: 447-8. 

10. Sanz O, Estrada A, Ferrer I, Planas AM: Differential cellular distribution and 

dynamics of HSP70, cyclooxygenase-2, and c-Fos in the rat brain after 

transient focal ischemia or kainic acid. Neuroscience 1997, 80: 221-32. 

11. López-Aguilar J, Villagrá A, Bernabé F, Murias G, Piacentini E, Real J, 

Fernández-Segoviano P, Romero PV, Hotchkiss JR, Blanch L: Massive brain 

injury enhances lung damage in an isolated lung model of ventilator-

induced lung injury. Crit Care Med 2005, 33:1077-83. 

12. Murakami K, Bjertnaes LJ, Schmalstieg FC, et al: A novel animal model of 

sepsis after acute lung injury in sheep. Crit Care Med 200, 30: 2083-2090. 

13. Morgan JI, Curran T: Stimulus-transcription coupling in the nervous system: 

involvement of the inducible proto-oncogenes fos and jun. Annu Rev 

Neurosci 1991. 14:421-51. 

14. Paxinos G and Watson C: The rat brain in stereotaxic coordinates 6th eds 

Academic Press; 2007. 

15. Akazawa KH, Cui Y, Tanaka M, Kataoka Y, Yoneda Y, Watanabe Y: Mapping of 

regional brain activation in response to fatigue-load and recovery in rats 

with c-Fos immunohistochemistry. Neurosci Res 2010, 66:372-379. 

16. Jankord R, Herman JP: Limbic regulation of hypothalamo-pituitary-

adrenocortical function during acute and chronic stress. Ann N Y Acad Sci 

2008, 1148:64-73. 

17. Zhang J, Zhang D, McQuade JS, Behbehani M, Tsien JZ, Xu M: c-fos regulates 

neuronal excitability and survival. Nat Genet 2002, 30:416-20. 

18. Chaudhuri A, Zangenehpour S, Rahbar-Dehgan F, Ye F: Molecular maps of 

neural activity and quiescence. Acta Neurobiol Exp 2000, 60: 403-10. 

19. Tracey KJ: The inflammatory reflex. Nature 2002, 420:853-859.  

 26



20.  Dos Santos CC, Shan Y, Akram A, Slutsky AS, Haitsma JJ: Neuroimmune 

Regulation of Ventilator-Induced Lung Injury. Am J Respir Crit Care Med 

2010, Sep 24. [Epub ahead of print]. 

21. Kubin L, Alheid GF, Zuperku EJ, McCrimmon DR: Central pathways of 

pulmonary and lower airway vagal afferents. J Appl Physiol 2006, 101:618-27.  

22. Gonzalvo R, Martí-Sistac O, Blanch L, López-Aguilar J: Bench-to-bedside 

review: brain-lung interaction in the critically ill--a pending issue revisited. 

Crit Care 2007, 11: 216. 

23. López-Aguilar J, Quilez ME, Martí-Sistac O, García-Martín C, Fuster G, Puig F, 

Flores C, Villar J, Artigas A, Blanch L: Early physiological and biological 

features in three animal models of induced acute lung injury. Intensive Care 

Med 2010, 36:347-55. 

24. Imai Y, Parodo J, Kajikawa O, de Perrot M, Fischer S, Edwards V, Cutz E, Liu M, 

Keshavjee S, Martin TR, Marshall JC, Ranieri VM, Slutsky AS: Injurious 

mechanical ventilation and end-organ epithelial cell apoptosis and organ 

dysfunction in an experimental model of acute respiratory distress 

syndrome.  JAMA 2003, 289:2104-12. 

25. Niimi M, Wada Y, Sato M, Takahara J, Kawanishi: Effect of continuous 

intravenous injection of interleukin-6 and pretreatment with cyclooxigenase 

inhibitor on brain c-fos expression in the rat. Neuroendocrinol 1997, 66:47-53. 

26. Senba E, Ueyama T: Stress-induced expression of immediate early genes in 

the brain and peripheral organs of the rat. Neurosci Res 1997, 29:183-207. 

27. Senba E, Matsunaga K, Tohyama M, Noguchi K: Stress-induced c-fos 

expression in the rat brain: activation mechanism of sympathetic pathway. 

Brain Res Bull 1993, 31: 329-44. 

28. Pothuizen HH, Davies M, Aggleton JP, Vann SD: Effects of selective granular 

retrosplenial cortex lesions on spatial working memory in rats. Behav Brain 

Res 2010, 208:566-75.  

 27



29. Dumont JR, Petrides M, Sziklas V: Fornix and retrosplenial contribution to a 

hippocampo-thalamic circuit underlying conditional learning. Behav Brain 

Res 2010, 209:3-20. 

30. Herman JP, Cullinan WE: Neurocircuitry of stress: central control of the 

hypothalamo-pituitary- adren ocortical axis. Trends Neurosci 1997, 20:78-84. 

31. Ricard JD, Dreyfuss D, Saumon G: Ventilator-induced lung injury. Eur Respir J 

2003, 42: 2-9. 

32. Matute-Bello G, Frevert CW, Martin TR: Animal models of acute lung injury. 

Am J Physiol Lung Cell Mol Physiol 2008, 295:379-99. 

33. Dos Santos CC, Slutsky AS: Mechanisms of ventilator-induced lung injury: A 

perspective. J Appl Physiol 2000, 89:1645–1655. 

34. Martínez-Caro L, Lorente JA, Marín-Corral J, Sánchez-Rodríguez C, Sánchez-

Ferrer A, Nin N, Ferruelo A, de Paula M, Fernández-Segoviano P, Barreiro E, 

Esteban A:  Role of free radicals in vascular dysfunction induced by high 

tidal volume ventilation. Intensive Care Med 2009, 35:1110-1119. 

 

 28


