UNB

Universitat Autonoma
de Barcelona

SISTEMA DE SINCRONIZACION Y CONTROL DE
VERSIONES DE DOCUMENTOS ON-LINE

Memoria del proyecto de Ingenieria Técnica en Informética de
Sistemas.

Realizado por:
Javier Carrefio lzquierdo
Y dirigido por:

Xavier Verge

urnB

Universitat Autbnoma
de Barcelona

El sotasignat, Xavier Verge
professor de I'Escola Universitaria d'Informatica de la

UAB,

CERTIFICA:
Que el treball al que correspon la present
memoria ha estat realitzat sota la seva

direccio per en Javier Carrefio Izquierdo

I per a que consti firma la present.

Sabadell, Juliol de 2011

urnB

Universitat Autbnoma
de Barcelona

Presentacion

Proyecto:

Sky Net: sistema de sincronizacion y control de versiones de documentos on-line

Autor:

Javier Carrefio Izquierdo

Director:

Xavier Verge

Departamento:

Economia de la Empresa

Resumen de la memoria:

Esta memoria describe el proceso de desarrollo de “Sky Net”, un sistema de control de versiones y
sincronizacién de documentos On-Line

La funcién principal de la aplicacion sera la de ofrecer al usuario un conjunto de herramientas capaces de
establecer una comunicacion cliente-servidor de forma transparente utilizando carpetas del disco duro. De
ésta forma el usuario final podra tener todos sus documentos guardados en un servidor (que puede ser o
no conocido), poderlos recuperar en el momento que se desee, y tener los mismos documentos en todas
las estaciones de trabajo que estén conectadas a la aplicacién. Ademas se le afiade una funcion de
control de versiones que permitira guardar el contenido de una carpeta bajo un identificador (nombre o
version), y poderlo recuperar mas adelante aunque ya hayamos hecho modificaciones en los documentos
de dicha carpeta.

Para lograr este objetivo, el proyecto se compone de dos aplicaciones: Sky Catcher, la aplicacién cliente, y
Sky Node, la aplicacion servidor. La aplicacion servidor estara instalada y configurada en una maquina
servidora, convenientemente con alta capacidad de disco duro, mientras que la aplicacion cliente sera
instalada en tantas maquinas como desee el usuario final.

Material entregado: Memoria en formato papel, dispositivo digital (CD-R) que incluye el cédigo fuente
de la aplicacion y la memoria en formato digital.

urnB

Universitat Autbnoma

de Barcelona
INDICE
1. INTRODUGCCION ...cceiseiseseesissensesesnissessessssensssessesssssssasesssssssssessssessessesssensenssssasensenssssnsensasssssnsne 8
1.1 OBJETIVO DEL PROYECTO uuuuueeeeeeeereesessrsnseeeeseessesssssssssssessssssssssssssssssssssssssssnssesesssssssssnssssssesesssss 8
1.2 DESCRIPCION DEL PROYECTO eetettereeeersrsnseeeeeeeesesssssssseesessesssssssssssssssssssssssssnssssesssssssssnnssssssssssssnn 9
1.3 MOTIVACIONES PERSONALES .cettttttieeeesrssenreeresssesssssansesessssssesssssssssssssssssssssanssessssssssssssnnsssssssssssns 10
1.4 ESTRUCTURA DE LA MEMORIA cccetttteeeerrireneeeteeeeesssssanseseessessesssssssssesessssssssssnssssssssssessssnnnsssssssssnns 11
1.5 METODOLOGIA DE DESARROLLO ciiieeeeerrrreeeeeteereesssssanseseeeseesessssssnssssessssssssssnsssssssssssssssnnsssssesssanns 12
2. ESTUDIO DE VIABILIDAD ...ccccoeeseeeereeiieeesssnneeeeessssenssssnneeesesssassnsssnssssssssssssssssnnssesesssssssssasnnnseess 14
2.1, INTRODUCCION 1iiecersnnnerereessesssssssnsenessssssssssssnnsesssssssssssssssssssssssssssssssnssssssssssssssssansessssssssssssannsassses 14
2.2. TIPOLOGIA Y PALABRAS CLAVE ...uuutttttiiiiesssssnnseeeessssssssssssnsesssssssssssssnsssessssssssssssansesssssssssssssnnnsssses 14
2.3. DESCRIPCION.ccitttitiiisirisisssesssssssesssns 15
2.4, OBJIETIVOS wetttitiireesssssnnrenssssisssssssssssesssssssssssssnsesssssssssssssssnsssssssssssssssnssssssssssssssssansessssssssssssannnsssses 15
2.5. DEFINICIONES, ACRONIMOS Y ABREVIACIONES. «.uvterieessneeesesssneessssssssssssssssassssssssassssssnssssssssnssssssnns 16
2.6. PARTES INTERESADAS .eccetttieceeerssnreeeesssseessssssssessessssssssssssssesssssssssssssnsssssssssssssssssnsesssssssssssssnnnssenss 17
2.6. DISENO / DESARROLLO DE LA APLICACION ..uueetteterrisiesssssnnnesssssssssssssnssssssssssssssssansesssssssssssssnnssnenes 18
2.7. REFERENCIAS cccteeecevrreereeeeeseeessssnsseseesssssessssssnsessessassssssssssssessssssssssssnssssssssssssssssansessssssssssssannsssenes 19
2.8. PRODUCTO Y DOCUMENTACION DEL PROYECTO tieeteeeeerssneereesessaesssssanseeeesssssesssssssssssssssssssssannsssenss 19
2.10. ESTUDIO DE LA SITUACION ACTUAL tetetiiesesssenseeeesssssssssssnnssessssssssssssnssssssssssssssssansasssssssssssssnnnsssses 20
2.10.1. CONTEXTO c.ueitiiteeuieiteereestesteetesteeseetesseessessesssessessaessessassaessesssessassesssassesseassessesssessessesssesesssessessesnees 20
2.10.2 ALTERNATIVASvtetteteeteestesteetesteeteetesteessessesssessestaessessaessestasssessassesssassesssassestssssansesteessesesssessessennes 21
2.10.3. LOGICA DEL SISTEMA.....cutittetesteettetesteetesseastessesseessessesssessassesssessesssessesssessessesssessessesssessesssessessesees 22
2.10.4. DESCRIPCION FISICA. ..oiiitieiieeiteesttestestesteesteesteesseessessseesssssstaessesssessssssssssssssnsesssesssesssessssssssesssesnsens 23
2.10.5. USUARIOS DEL SISTEMA ...c.ueeitiitieteeteeteetesteetessesseessessesseessassssssessesssessessesssessesssessessesssessesssessessesees 24
2.10.6. DIAGNOSTICO DEL SISTEMAcctteterteeteetesteetessesseessessesseessessesssessesseessessesssessessssssessesssessessesssessesses 24
2.10.7. NORMATIVAS Y LEGISLACIONoecueitiiteereiteettestesteetestesseesesteessassesssessesseessessssssesessessssssesssssessesnnes 25
2.11. REQUISITOS DEL PROYECTO uuuuuuueeeeeeeeseeesssssnseesessassesssssssssssssssssssssssssssssssssssssssasssssssssssssssnnssssans 25
2.11.1. REQUISITOS FUNCIONALEScctittetisteetesteestestesseestessesseessessesssassesseessessesssessesssessessesssessessesssessenees 25
2.11.2. REQUISITOS NO FUNCIONALESccotiitietiitieteeitesteetesteeseetesteessessesssesesseessessssssessessessssssesssessessesnees 25
2.11.3. RESTRICCIONES DEL SISTEMAcutiitiitieteiteettestesteetestesseessesseessessesssessessesssesssssssssessesssessessssssessesnes 26
2.11.4. PRIORIZACION DE REQUISITOS ..c.uteitistietertietessesseesessesseessessesssessesssessessesssessesssessessesssessessesssessensees 26
2.12. RECURSOS .eiitieeecersnnereeeesseesessssssesessssssessssssssessssssssssssssssssessssssssssssnssssssssssssssssasssssssssssssssnnsssenes 27
2.12.1. RECURSOS HUMANOSoctietiitieteeiteeteetestestessesteessestesseessasssessassesssessesseessessesssesessesssessessssssessesnees 27
2.12.2. RECURSOS DE HARDWAREcccittiiitteeeteeeitteesteesteeestesssseeessseesasesesssesssesensssesssesessssesssessnsssesssesanes 27
2.12.3. RECURSOS DE SOFTWAREcecttettetisteetestesseestesteesessesssesasssessessesssassessessessessssssessessssssesssssessesnes 28
2.13. PLANIFICACION DEL PROYECTO auuuctetteeeeernnnssssessseseesnssssssesssssessnnnssssssssssssssnnsssssssssssssssnnnsssssssanns 29
2.13.1. PLANIFICACION TEMPORALceiiitieiitteeeteeeitteesteesteeesteesiseeessseessesesssesssasensssessesessssessessnsssessseeanes 29
2.13.2. DIAGRAMA DE GANTT .eiiitiitieieiteeteetesteeteste et estesteetesteeseestastsessassesssassesseessestesssentestsessessesssesesseenes 30
2,05, PRESUPUESTO ceettiiisisisisesisss 32

urnB

Universitat Autbnoma

de Barcelona
2.016. CONCLUSIONES .vteuereeeeresnssreesersassressesesssensssses 33
3. DISENO DE LA APLICACION ...eieeieuienusenseansessansesssessesnsesneensesseansesnesnsssssennsansesnsessesssssnsessansenns 35
3.1 INTRODUGCCION eeuuerrereereerersesseresssssesessssessessssesssssssesssssssssssssssssssssssesssssssssssssssssssssssssssssssesssnssssssnns 35
3.2. DEFINICIONES Y CARACTERISTICAS DE LOS MODULOS. vttuuereescreaseressesessssesssesssssssssesesssssssssssssessnns 36
3.2.1. PROTOCOLO DE COMUNICACIONEScettttiiieertettteeeesiseeiereeeeesssssesssssseesesssssmsssssseesesssssmsssssssesesssnnns 36
3.2.2. APLICACION CLIENTE «.uteteeeeeeeeeeeeeeeeeee e eeeaeeeeseaseeeesaaeeeesaaeeeesaareeeesaaeeeesaareeeesaarneeessanseeessanneessane 39
3.2.3. APLICACION SERVIDOR .. .uutttttetetiieiitettteeesesseissseteeesssssaisssteeessssssmssssseesesssssmmssssseesesssssmmsssssesessssns 43
3.2. DEFINICIONES DEL MODELO DE DATOS. tuutreesereesereasssessssssaserssssssaseresssssssssssssssssssssssssssssssssssssssessnss 48
3.2.1 TABLA CONEXION ..eeeeeeeeeeee e e e e e e ee e e e e et eesaaeeeeesaaneeeesaaeeeesaaeeeesaaeseesaaeeeesaareeeesaaraeeesaaneeeesaanes 49
I I =TI N O 10 Y =T PR 49
3.2.2 TABLA GRUPO ...ttt ettt e e e e e e e ettt eeeeeeaas s eeeeeseeeaaaa et eeesssaaassseaeeeeesssasasaseeteeeesssasanrereeeeesssann 49
3.2.2 TABLA USUARIOGRUPO ...ttt e eeeeeeeee e e e e eeeaeeeeeeeseeeaasseaeeeeesseaaaasseaeeeeesssasasssesteeeesssasasaerereeesssann 50
3.3. DEFINICIONES DEL COMPORTAMIENTO DE LA APLICACION weuuierereuseererssseererssseererssseeserssssesessssessenes 50
3.3.1 PROTOCOLO DE COMUNICACIONES «..uveettteeeeeeeeeeeeeeeeeeeeaeeeeeeeeeesseeaassseeeeeeesssasassseseeeeesseesassrereeeeesssanan 50
3.3.2 APLICACION CLIENTE eteeteeeteeteeeeeeeeeeeeeteteessessassaeeeeessssaassrateesesssaaassseseeeeesssaaassesteeeessessasssereeeeesssans 55
3.3.3 APLICACION SERVIDORuuttvetteeeeeiieeeeeteteeessssaessseeeesssssssisaseeesssssssessseseeesesssssmmssssseeessssssmmsrssssesessssns 58
3.3.4 DEFINICION USUARIO-GRUPO....cccettieeeeetetee e e eeeeeeeeeeeeeseeeaaasraeeeeessesaasssesteesesssesassesteeeesssssasseseresesssanan 64
4. IMPLEMENTACION .utiistieseesseessanseassenssanssassesssanssasseasssnssansenssanssanssassanssansenssanssansenssenssanssssensenss 67
4. 1. INTRODUCCION .reuuerrereeeerrersseereerssssseessssssesssssssesssssesssssssssesssssssssssssssesssssssesssssssesssssssesssssssesasssssanas 67
4.2.1 TECNOLOGIAS Y LIBRERIAS.citttuutereernseereersssereesssseseessssssesssssesssssssssesssssssesssssssesssssssesssssssesssssssenss 67
4.2.2 DESARROLLO Y VARIACIONES DEL DISENO EN FASE DE IMPLEMENTACION...cveteueeerernssserernssessenes 73
4.2.3. ITERACIONES (VERSIONES)....utsseeeeeeeeseeesssssnreesessassssssssssssesssssessssssssessssssssssssanssssssssssssssnnssssass 77
5. JUEGOS DE PRUEBAS ...iieuuiitttuusereeenseeseessssessesnsssssasssssssess 80
5.1 INTRODUGCCION ttuuuetreresserrerassessersssessessssessessssessessssessassssesssssssesssssssesssssssesssssssssssssssesssssssesssnnsnnes 80
5.2 PRUEBAS DE LA COMUNICACION CLIENTE-SERVIDOR teeuueteeeseeereessesereessssereessssereessssesesssssessssssseses 80
5.3 PRUEBAS DE ESTRES suuuttrtressesrerasserserassessessssessessssessessssessessssssssssssesssssssssssssssssssssssesssssssssssnssssses 81
5.4 PRUEBAS DE SINCRONIZACION EN BANDA ESTRECHA cuuucrtteueeereernssereessssereessssesesssssesssssssessensssses 82
5.5 PRUEBAS DE CVSuttttiiirtrneierersseerersssessessssessessssessessssessessssesssssssesssssssesssssssesssssssesssssssessssssseses 83
B. CONCLUSIONES ...uiitteuusesseenssssseesssssseensssssssssssssesssnssssss 85
6.1 CONSECUCION DE OBJETIVOS teuuereeecrenserensesessssssessrsssssessssessssssssssssssssssssssssssnssssssssssssssssssssssssensssens 85
6.2 DESVIACIONES DE LA PLANIFICACION tttuuuetrerneerrerseereesssseseessssessessssessessssesssssssesssssssesssssssessssssneses 86
5.3 LINEAS DE MEJORA 11eureeeerernssreesersassressssensssssssssssssssssssessssesssssssssssssssssssssssssenssssssssssssssssssssssssenssssas 87

urnB

Universitat Autbnoma
de Barcelona

7. BIBLIOGRAFIA .eitieteteeiesiisesesieisisisesisssssesesessssssasasesssssasasesssssssessssssssassessssssasasssssssasasasnsnas 90

7.1 BIBLIOGRAFIA ON-LINE

7.2 AGRADECIMIENTOS

Universitat Autdbnoma

de Barcelona

CAPITULO 1

INTRODUCCION

urnB

Universitat Autbnoma
de Barcelona

1. Introduccidon

1.1 Objetivo del proyecto

El proyecto se realiza bajo el objetivo de crear una aplicacion de uso muy intuitivo que sea capaz
de ofrecer un servicio de sincronizacién y control de versiones sobre los documentos que tendremos en
ciertas carpetas definidas por el programa.

Lo que se pretende conseguir con este proyecto es que el usuario final sea capaz de olvidarse
completamente de tener que llevarse los documentos importantes de un lugar a otro de forma fisica
(utilizando un lapiz USB, o discos duros portatiles, etc.), y sea capaz de tener una sincronizacion perfecta
desde cualquier estacion de trabajo. Esto serd posible siempre y cuando haya conexion a internet, y bajo
unas condiciones concretas.

Para llevar esto a cabo se utilizard un esquema de cliente-servidor en la aplicacion desarrollada.
La aplicacion cliente (llamada Sky Catcher), se encargara de conectarse automéaticamente a un servidor
que habremos configurado en el primer inicio, y se comunicard con él para detectar los cambios de
archivos en la carpeta definida. Dichos cambios causaran que cliente y servidor se intercambien datos, y
asi el servidor siempre tendra una copia exacta de dicha carpeta en su disco duro.

El servidor por su parte, se encargara de dar este servicio a mas de un cliente a la vez, bajo el
mismo o diferente usuario. Esto quiere decir que si hay mas de un cliente conectado bajo el mismo
usuario, los cambios que haga uno de ellos sobre un documento se enviaran a los demas clientes, y asi
los documentos estaran sincronizados siempre. Ademas el servidor tendra un servicio de control de
versiones béasico capaz de guardar el estado y las modificaciones de una carpeta en un momento
determinado, y el cliente podra consultar (no modificar) los documentos en ese momento.

El control de usuarios se realizara utilizando el siguiente esquema de grupo-usuario:

Estaen

Usuario Grupo

Fig 1. Relacion Usuario-Grupo

Asi pues, nos podremos encontrar usuarios sin grupo, usuarios con grupo, e incluso grupos sin
usuarios. Mas adelante explicaremos la utilidad de estas tres variantes, y como afecta a la sincronizacion
de documentos.

urnB

Universitat Autbnoma
de Barcelona

1.2 Descripcién del proyecto

El proyecto consta de tres partes muy diferenciadas entre si:
e Disefio e implementacion del protocolo y libreria de comunicaciones entre cliente / servidor

¢ Disefio e implementacion de la aplicacién cliente, asi como de la pequefia base de datos para
la gestién de conexiones a servidores de Sky Net.

e Disefio e implementacion de la aplicacién servidor, asi como de la base de datos para la
gestion de usuarios y grupos.

En el siguiente esquema podemos ver un ejemplo de como se comunicaria un cliente Sky Catcher
con un servidor Sky Node, al detectar que el archivo “Nuevo.jpg” ha sido modificado.

¢ N
& — :>

IP Servidor
Conexmnes Usgr Nuevo jpg

Cambios en
"Nuevolpg @ Nuevo jpg

Carpeta
sincronizada Carpeta
sincronizada

Fig 2. Comunicacion basica cliente - servidor

La aplicacion cliente detectara automaticamente un cambio en alguno de los archivos que estan
dentro de la carpeta sincronizada, y enviara una peticion de actualizacion al servidor, enviandole el
archivo. El servidor reconocera al usuario, encontrara su carpeta sincronizada en su sistema de archivos, y
cambiara el archivo antiguo por el nuevo.

Cabe destacar que esta deteccion de cambios en los archivos sera dinamica para aliviar la carga
de trabajo del servidor, y la carga de datos de la comunicacién. Esto quiere decir que en vez de enviar el
archivo por cada cambio que haya distinguiremos cuatro tipos de cambios en un archivo: Crear, Modificar,
Renombrar y Eliminar. EI comportamiento del cliente ser& diferente en estos cuatro casos, en especial en
el Renombrar. El servidor no tiene por qué necesitar el archivo en caso de renombrar y eliminar,
simplemente con una instruccion de control sera suficiente. Sin embargo, en crear y modificar si sera
necesario.

Como podemos ver, las dos aplicaciones son muy diferentes entre si, y necesitan de un disefio e
implementacion totalmente por separado, alin usando ambas el mismo protocolo de comunicaciones.

urnB

Universitat Autbnoma
de Barcelona

1.3 Motivaciones personales

La motivacion principal que me ha llevado a realizar éste proyecto tan ambicioso es la falta de
opciones que existen actualmente en el mercado con la sincronizacion de documentos on-line.
Actualmente existen muchas aplicaciones que proporcionan un servicio muy similar al que propongo
(Podemos nombrar varios, pero el que mas destacaria en el momento de realizar ésta memoria se llama
Dropbox).

Todos estos programas proporcionan una capacidad de poder sincronizar tus documentos en un
servidor que funciona en internet. Pero todas estas aplicaciones carecen de algunas de las
funcionalidades que voy a aplicar en mi proyecto, que son:

e Mono usuario. Muchos de estos programas Unicamente permiten tener un usuario
sincronizado a la vez, con una carpeta. Si cambias de usuario, las carpetas se mezclan, o
simplemente, se borra el contenido.

e Mono servidor. La gran mayoria de estos programas son de pago. Y como son de pago,
utilizan servidores propietarios. No puedes conectarte a otro servidor que no sea el suyo
(aungue luego internamente sean varios), y estas obligado a ello.

e Seguridad. Estas aplicaciones ofrecen un servicio en sus propios servidores. TU no eres
capaz de saber qué uso se dan a tus documentos una vez almacenados en ellos. Por lo tanto,
aunque por ley tus datos pueden estar protegidos (en segin qué estado no existen leyes
orgénicas de protecciones de datos), siempre podran acceder a ellos.

Asi pues, como podemos ver, las diferentes soluciones que encontramos en el mercado pueden
ser efectivas, pero tienen estos pequefios fallos que el proyecto que se ha realizado no tienen. La
aplicacibn que quiero ofrecer al mercado sera multiusuario (varias cuentas, carpetas separadas),
multiservidor (nos podemos conectar a tantos servidores como queramos), y la seguridad estara
supeditada por el servidor al que nos conectemos, pudiendo ser desde un organismo publico, hasta uno
que instales en tu propio domicilio.

-10-

urnB

Universitat Autbnoma
de Barcelona

1.4 Estructura de la memoria

Esta memoria contiene toda la documentacién, disefio, pasos realizados, y problemas encontrados
y su resolucién acerca del proyecto Sky Net, sistema de sincronizacién y control de versiones de
documentos on-line.

La memoria se divide en siete capitulos, de los cuales los cuatro primeros tratan sobre la
explicacion del proyecto, sus funciones y la realizacion. Los siguientes capitulos tratan sobre los juegos de
pruebas realizados sobre el proyecto para asegurar su correcto funcionamiento, los objetivos cumplidos, y
la bibliografia utilizada como soporte durante la realizacién del proyecto.

En el primer capitulo encontraremos la introduccion al proyecto, sobre qué trata, y las
motivaciones personales que me han llevado a realizar ésta aplicacion.

En el segundo capitulo encontraremos el estudio de viabilidad de nuestro proyecto, dénde
analizamos la situacion actual de mercado, las alternativas a nuestra aplicacion, si podemos llevarlo a
cabo, o no, y también los requisitos de la aplicacion. En este apartado encontraremos la planificacion
temporal estimada al inicio, y el gasto econémico.

El tercer y cuarto capitulo trata sobre la fase de disefio de la aplicacion y de su implementacion.
En este capitulo podremos encontrar todos los esquemas y diagramas utilizados para determinar todas las
funcionalidades de la aplicacion, asi como de los problemas encontrados en la fase de implementacion,
como se han resuelto, y qué tecnologias y librerias han hecho falta para poder realizar la aplicacion.

En el quinto capitulo podremos encontrar los juegos de pruebas realizados durante y después de
la implementacion del proyecto. En este apartado podremos encontrar diferentes tablas de resultados y el
comportamiento de la aplicacion bajo situaciones de estrés.

Por dltimo, en los dos ultimos capitulos encontraremos las conclusiones finales, los objetivos que
hemos cumplido y los que no, qué ha sido necesario para que la aplicacion funcione correctamente, toda
la bibliografia que he utilizado como soporte técnico para poder llevar a cabo, y un pequefio
agradecimiento a personas ajenas al proyecto pero que han aportado sugerencias y observaciones que
han mejorado el producto final.

-11-

urnB

Universitat Autbnoma
de Barcelona

1.5 Metodologia de desarrollo

Para el desarrollo de este proyecto se ha seleccionado una metodologia de desarrollo evolutiva,
estableciendo en la primera versién un prototipo basico del protocolo de comunicaciones y de la aplicacion
cliente-servidor, y posteriormente afiadiendo funcionalidades a los tres modulos de la aplicacion.
Siguiendo la estructura del proyecto, la primera fase constara del desarrollo de los siguientes médulos:

e Protocolo de comunicaciones (llamado Sky Net Protocol)
e Aplicacién cliente (llamada Sky Catcher)

e Aplicacion servidor (llamada Sky Node)

La primera fase del proyecto es la de realizar un disefio y una implementacion basica con todo lo
necesario para establecer una comunicacién entre cliente-servidor, capaz de reconocer los cambios en un
documentos y comunicarselo al servidor con tal de almacenar el documento y mantener una
sincronizacion. A partir de esta fase, se irdn afiadiendo funcionalidades, tales como reconocer archivos
duplicados, renombrar archivos, permisos de grupos, etc., que explicaremos mas adelante con detalle. Asi
pues, las fases serén las siguientes:

1. Disefio e implementacion inicial del protocolo de comunicaciones, con juego de pruebas.
2. Disefio e implementacion inicial de la aplicacion cliente, con juego de pruebas,

3. Disefio e implementacion inicial de la aplicacion servidor, con juego de pruebas.

4. Unificar los tres madulos en un conjunto, y realizar juego de pruebas.

5. Adadir funcionalidades méas especificas a los tres médulos.: Control de usuarios y grupos,
deteccion de errores, deteccion de duplicados de archivos, etc.

Asi pues, el esquema utilizado para este desarrollo seria el siguiente:

Realizarjuego Correccion de
de pruebas errores

Disefio e
Analisisde implementacion Cadait =
requisitos base (protocolo, 4 a"ﬁ/’:g%’}l‘ nueva
cliente, servidor,
) MODELO EVOLUTIVO
Implementacion de Anélisisy disefio
nuevas de nuevas
funcionalidades funcionalidades

-12-

Universitat Autdbnoma

de Barcelona

By - 8

CAPITULO 2

ESTUDIO DE VIABILIDAD

-13-

urnB

Universitat Autbnoma
de Barcelona

2. Estudio de viabilidad

2.1. Introduccion

Este proyecto se ha realizado con la intencion de aportar un nuevo punto de vista a las
aplicaciones de sincronizacion de documentos en internet, afiadiendo funcionalidades que pocos o
ninguno de los softwares existentes aportaban en el momento de la realizacion del proyecto. La realizacion
del proyecto se hard en formato de dos aplicaciones (cliente-servidor), y la descripcion de las

funcionalidades seria la siguiente:

Aportar un control de usuarios/grupos en un entorno de sincronizacion on-line, permitiendo
a la aplicacién cliente ser capaz de gestionar documentos en uno o varios servidores a la vez, y
usando una o varias configuraciones distintas por cada servidor conectado. La aplicaciéon ser&
capaz de sincronizar todos los documentos con el servidor de forma transparente, de forma que
dichos documentos se puedan crear, modificar, eliminar y ser recuperados en maquinas distintas a
donde se instalé originalmente la aplicacion. Ademas, permitira la creacién de grupos publicos

donde los administradores podran colocar documentos para ser visualizados, pero no editados.

Lo que se pretende con esta aplicacion es mejorar la usabilidad y flexibilidad en los entornos de
sincronizacién de archivos on-line, que en su gran mayoria dependen de grandes empresas y en

ocasiones de servicios contratados de pago.

A dia de hoy la gran mayoria de éstas aplicaciones tienen versiones gratuitas y de pago, y casi
ninguna de las aplicaciones de pago ofrece un sistema de gestiéon de grupos / usuarios efectiva, ya que la
idea principal y basica es la de que un usuario tenga los documentos sincronizados con un servidor, que a
su vez es servidor propietario. Una empresa, o0 ciertos usuarios, no pueden permitirse el tener los

documentos almacenados en servidores ajenos a su hegocio, y se necesita una soluciéon a este problema.

2.2. Tipologia y palabras clave

Tipologia: Desarrollo de una aplicacién de sincronizacion de documentos On-Line multiusuario y
multiservidor.

Palabras clave: Sincronizacion On-Line, Gestién de grupos y usuarios, control de versiones.

-14-

2.3. Descripcion

urnB

Universitat Autbnoma
de Barcelona

Mediante esta aplicaciéon de sincronizacién de documentos On-Line, cualquier usuario que esté

dado de alta en un servidor sera capaz de tener sus documentos guardados de forma segura y

manteniendo los cambios en cualquier lugar, pudiendo recuperarlos en cualquier momento siempre y

cuando se tenga conectividad con el servidor. Ademas el usuario podra visualizar los documentos

publicados en los grupos publicos sin necesidad de estar registrado en el servidor, y podra realizar

versiones de sus carpetas para mas adelante poder visualizar los documentos en la fecha que se realizé la

version.

2.4. Objetivos

e Ol. Sincronizar los documentos de la maquina cliente con la maquina servidora de forma
transparente al usuario final.

o 02. Permitir la creacién y gestion de grupos publicos, asi como la asignacion de usuarios

a grupos.

e 03. Permitir la creacién de versiones y la visualizacion de ellas al margen de las carpetas

sincronizadas.

e O4. Realizar una interfaz de usuario amigable para el cliente, permitiendo que el usuario
mas inexperto sea capaz de conectarse a un servidor de Sky Net y sincronizar carpetas.

Critico Prioritario | Secundario
01 X
02 X
03 X
04 X

-15-

urnB

Universitat Autbnoma
de Barcelona

2.5. Definiciones, acrénimos y abreviaciones.

Sincronizaciéon On-Line: La sincronizaciéon on-line es el hecho de que un documento, o archivo
que se encuentra en la maquina cliente esté duplicado en tiempo real en una maquina servidora,
permitiendo su recuperacion en caso de eliminacién, o poderlo visualizar desde cualquier otra estacion de

trabajo.

Control de Versiones (CVS): El control de versiones permite versionar un documento (ya sea un
archivo, o carpeta) de forma que guarda su estado en el momento que se realiza la version. Un control de
versiones sencillo permite visualizar esa version, y los mas complejos permiten re-editar esa informacion y

guardarla como si de otra version se tratara.

Protocolo de comunicacién: Conjunto de instrucciones definidas que permiten a dos extremos
(en nuestro caso, cliente y servidor) comunicarse e intercambiar informacién, ya sean instrucciones de

control, o archivos enteros.

Aplicacién cliente: Aplicacién que se ejecuta en una estacion de trabajo y que establece

comunicacion con un servidor, con el fin de intercambiarse informacion.

Aplicacién servidor: Aplicacién que se ejecuta en segundo plano en una estacion servidora. Se
encarga de dar un servicio a las aplicaciones cliente que se conectaran. Suelen ser aplicaciones pesadas
y de mucha carga de procesamiento. También necesitan de una cantidad moderada de espacio en el

disco duro.

-16-

urnB

Universitat Autbnoma
de Barcelona

2.6. Partes interesadas
Existen dos grupos bien diferenciados de usuarios que usaran esta aplicacion.
Usuario basico - doméstico

El usuario basico sera aquél que utilizara la aplicacion para uso doméstico. Utilizara solamente la
funcién de sincronizacion con el servidor, y creara usuarios que puedan utilizar él y el grupo social que le
rodea. Por lo tanto, solamente utilizara la aplicacién para tener sus documentos sincronizados y poderlos

recuperar en caso de pérdida de documentos o compartirlos con otros usuarios / ordenadores.
Usuario avanzado — profesional

El usuario avanzado o profesional sera aquél que utilizara la aplicacion para hacer seguimiento de
sus proyectos. Utilizara el servicio que le proporciona la aplicacion para mantener un control de versiones
sobre él y poder recuperar los documentos en caso de pérdida. Por lo tanto, hara uso del control de

versiones y de la sincronizacién de archivos.
Usuario empresarial

El usuario empresarial es aquél que utilizara todas las funciones del programa. Utilizara la
sincronizacién de ficheros para asegurarse su recuperacién en caso de pérdida, para sincronizar grupos
de trabajo con los mismos ficheros (varios trabajadores utilizando a la vez el mismo proyecto), y utilizara el
control de versiones para mantener un seguimiento de los trabajos. A la vez podra utilizar el programa

para preservar sus documentos personales.
Usuario publico / publicidad

Un usuario publico, o un usuario empresarial que desee dar publicidad, pueden usar este sistema
para proporcionar documentacién o control de documentos utilizando la opcién de grupos publicos. Estos
grupos pueden mantener documentacion e ignorar los cambios que realicen otros usuarios que los
visualicen. Asi estos documentos publicados estaran al alcance de todos, y siempre estaran actualizados
en tiempo real. Un ejemplo seria un campus virtual de una universidad, donde cada grupo se puede

considerar una asignatura, y todos los alumnos pueden acceder a su documentacion.

-17-

urnB

Universitat Autbnoma
deBarcelona

2.6. Disefio / desarrollo de la aplicacién
Los diferentes usuarios que llevaran a cabo el proyecto seran:
Javier Carrefio lzquierdo, que se encargara del desarrollo y de la documentacion del proyecto

Xavier Verge, tutor del proyecto, que se encargara de la revision y coordinacién del proyecto por

parte de la universidad (UAB), asi como de las pruebas de aceptacion del software.

Nombre Descripcién Responsabilidad

Xavier Verge Tutor del proyecto UAB Realizar el seguimiento del
proyecto, marcar al alumno los
plazos previstos para las distintas
fases del proyecto, supervision
del proyecto, recomendar una
metodologia de trabajo, realizar
las pruebas de aceptacion.

Javier Carrefio Alumno que realiza el proyecto Alumno que bajo el seguimiento
Izquierdo de Xavier Verge se encargara de
disefiar e implementar el
proyecto, la correccion de errores,
y la realizacion de la
documentacion.

-18-

urnB

Universitat Autbnoma
de Barcelona

2.7. Referencias

La bibliografia y el material utilizado para la realizacion de ésta practica, asi como la colaboracién
por parte de otras personas se encontrara en el capitulo X (Bibliografia y colaboraciones).

2.8. Producto y documentacién del proyecto

e Se elaborara una memoria del proyecto que contendra un estudio del objetivo y de la
metodologia utilizada para desarrollar el proyecto, con una explicacion de las herramientas

y de la documentacion necesaria para realizarlo.

e Se elaborara un manual de instrucciones tanto para el usuario cliente como para el usuario

administrador, explicando cémo utilizar la aplicacién y qué posibilidades tiene.

-19-

urnB

Universitat Autbnoma
de Barcelona

2.10. Estudio de la situacién actual

2.10.1. Contexto

Actualmente existen muchas aplicaciones que nos ofrecen un servicio similar al que propongo en
mi proyecto, y en algunas ocasiones nos ofrecen un servicio “Premium” (de pago), que nos ofrecen nuevas

funcionalidades, mas espacio de almacenamiento, etc.

Todas y cada una de estas aplicaciones estan orientadas a un sector muy especifico empresarial,
o de usuario doméstico, que es aquél que quiere tener sus documentos almacenados en internet y
acceder a ellos de forma automatica y facil. Sin embargo, en la gran mayoria de aplicaciones se les olvida
que muchos de estos usuarios quieren utilizar mas de una cuenta de usuario, o dentro de una misma
empresa necesitan varias cuentas (por ejemplo, usuario por proyecto), y es aqui donde quieren hacer

negocio: hacer pagar por cuenta.

La situacion actual es que realmente existen pocas aplicaciones realmente versatiles en este
campo. Normalmente nos encontramos con aplicaciones muy sencillas de utilizar, pero de alto coste, o
aplicaciones totalmente gratuitas pero que necesitan un mantenimiento y una configuracién muy
laboriosos. Por lo tanto, las empresas normalmente optan por soluciones mas sencillas, como serian las
VPN, 0 acceso por control remoto a servidor. Estas dos opciones son practicamente de coste nulo, pero

si el servidor se queda sin conexion el sistema deja de funcionar.

L VPN: Virtual Private Network. Es una red virtual establecida entre un ordenador y un servidor a través de internet, y se puede
trabajar en red como si de una red local se tratara.

-20-

urnB

Universitat Autbnoma
de Barcelona

2.10.2 Alternativas

Actualmente en el mercado tenemos varias posibles alternativas al proyecto que se quiere realizar,

de entre las cuales destacaremos tres: Dropbox, Microsoft Live Mesh, y SubVersion.

e Dropbox: Aplicacién desarrollada por la empresa Dropbox, que permite crear una cuenta
de usuario gratuita hasta 2 Gb de capacidad, y sincroniza todo lo que contenga la carpeta
“My Dropbox” creada en la carpeta de documentos del usuario. Se puede conseguir hasta
10 Gb de capacidad consiguiendo invitar a 5 personas mas invitando desde tu cuenta de
Dropbox, pero si se quiere mas espacio se debe contratar los servicios Premium: 50 Gb
por 9.90 $ al mes o0 99% al afio, y 100 Gb por 19.99 $ al mes 0 199 $ al afio.

Aln asi, la aplicacion es mono usuario, y si se desea afadir un usuario las carpetas

internas se mezclaran, no tiene separacion de diferentes cuentas de usuario.

e Microsoft Live Mesh: Aplicacién desarrollada por Microsoft, y que forma parte del
conjunto de herramientas “Live” que desarrollé en 2010. Es un software que permite tener
las carpetas sincronizadas con la cuenta de correo Live, creada de forma gratuita, y la cual
dispone de 5 Gb para sincronizar archivos on-line. Esta alternativa es mas eficiente que
Dropbox en cuanto a gestién de cuentas de usuario, ya que separa las cuentas en
distintas carpetas (carpeta por cuenta), aunque se debe configurar esto manualmente. En
el momento de la realizacién del proyecto no existian mejores planes de almacenamiento
a excepcion de los planes extra contratados para Windows Live Empresas, los cuales son

muy caros y costosos.

Se integra a la perfeccién con Windows Live Messenger (también para empresas), y con
la cuenta de Microsoft Live, haciendo de ésta alternativa una alternativa comoda y facil de

utilizar.

e SubVersion: Esta aplicacion no es una aplicacién de sincronizacion de archivos on-line,
es un sistema de control de versiones. Sin embargo, existen clientes para Windows, como
por ejemplo Tortoise que se integra con el explorador de Windows y sincroniza una
carpeta con un proyecto versionado. La sincronizacién no es inmediata, debe hacerse
manualmente siempre (o configurar que se haga cada X tiempo). El control de usuarios y

de grupo es muy complejo y amplio, y el control de versiones es muy completo.

-21-

UNB

Universitat Autbnoma

de Barcelona

Sin embargo, se necesita de una configuracion muy precisa y exhaustiva, que solamente

usuarios con experiencia en el campo, o utilizando manuales complejos se puede realizar.

De las tres alternativas ésta es la mas dificil de utilizar y la menos intuitiva.

2.10.3. Lbgica del sistema

Esta aplicacion esta orientada a ser utilizada en dos méaquinas distintas (cliente y servidor), sin

embargo como las comunicaciones funcionan por el protocolo TCP/IP se puede llegar a utilizar en una

misma maquina (que haga de cliente y servidor a la vez). Aln asi, la légica en ambos casos es la misma.

La légica seguiréa el siguiente esquema:

Aplicacién
Cliente

(Sistema)

A4

*Detectar cambios en carpetas
sincronizadas.
=Sincronizar documentos con servidor.

[Usuario Cliente]

v

=Configurar conexién a servidor SkyNet y
establecer conexidn.
=Versionar carpetas.

-22-

Aplicacién Servidor
(Sistema)

*Gestionar conexiones SkyNet.

=Sincronizar carpetas sincronizadas con los
clientes.

*Gestionar cambios comunicados de
clientes en carpetas sincronizadas.

Usuario
Administrador
(Servidor)

=Gestionar usuarios.
=Gestionar grupos.
=Asignar usuarios a grupos.

UunB

Universitat Autbnoma
de Barcelona

2.10.4. Descripcion fisica.

La infraestructura de este proyecto se basa en una aplicacién cliente-servidor, por lo tanto,
Unicamente se necesitaran de maximo dos ordenadores para funcionar. La aplicacién cliente tendra una
pequefia base de datos para almacenar los datos de conexion con un servidor de Sky Net, y la aplicacion
servidor tendrd una base de datos que almacenara los usuarios y sus contrasefas, los grupos y su

contrasefia de administrador, y una relacion de usuarios-grupos.

Por lo tanto, el esquema quedaria asi:

I

-
e
—
- =
\ —

Aplicacion Cliente Aplicacion Servidor

-23-

urnB

Universitat Autbnoma
de Barcelona

2.10.5. Usuarios del sistema

Nombre Descripcién Responsabilidad

Usuario que utiliza la aplicacion cliente y puede

Usuario Usuario estandar .
conectarse a servidores Sky Net.

Administrador de la aplicacion servidor Sky Net
que puede gestionar los usuarios, grupos y asignar
usuarios a grupos, asi como configuraciones del
sistema (puertos, carpeta raiz del servidor, etc.).

Administrador Administrador

Usuario de Sky Net que representa una carpeta
User Usuario Sky Net | sincronizada. Se podria considerar como una
cuenta de usuario de un Usuario estandar.

Grupo de Sky Net, al cual puede acceder cualquier
persona sin necesidad de estar registrada en el
servidor. Su comportamiento es similar al del
usuario Sky Net, pero se necesita de una
contrasefia para poder modificar los documentos
(no visualizarlos). Puede contener usuarios.

Group Grupo Sky Net

2.10.6. Diagnostico del sistema

Deficiencias actuales:

e Actualmente las soluciones que podemos encontrar nos ofrecen un servicio de
almacenamiento on-line con sincronizacién de documentos, pero la gran mayoria solo nos
permiten utilizar una cuenta de usuario (al menos de forma gratuita).

e Los servidores de dichas aplicaciones son completamente desconocidos, y los
documentos pueden estar comprometidos.

e Las aplicaciones que podemos encontrar que subsanan estos problemas suelen ser caras
o con mucho coste de implementacién, asi como de posibles incompatibilidades con

sistemas de trabajo concretos.

-24-

urnB

Universitat Autbnoma
de Barcelona

Mejoras:

e Implementar un sistema de gestién de usuarios — grupos utilizando una estructura de

carpetas, sin necesidad de complejas relaciones entre si.

e Permitir que la aplicacion cliente se conecte a varios servidores y a varias cuentas a la

vez, separandolas en diferentes carpetas que trabajan por separado.

e Afadir un control de versiones simple y facil de utilizar.

2.10.7. Normativas y legislacion

¢ Normativa de proyectos de final de carrera de la EIS (Escuela de Informatica de Sabadell)

e Ley de la propiedad intelectual. El proyecto es propiedad Unica y exclusivamente del alumno y

de la universidad.

2.11. Requisitos del proyecto

2.11.1. Requisitos funcionales

1. Gestion de usuarios/grupos y asignacion de usuarios a grupos.
2. Gestion de las conexiones entre cliente y servidor.
3. Sincronizacion entre cliente-servidor de carpetas sincronizadas.

4. Creacion y almacenamiento de versiones de las carpetas sincronizadas

2.11.2. Requisitos no funcionales

1. Encriptacion de datos de usuario: contrasefias
2. Utilizacion de sistemas de hash estdndares para la identificacién de documentos (MD5, SHA1)

3. Unicamente un usuario administrador del sistema operativo podra hacer cambios en la aplicacion
servidor.

-25-

2.11.3. Restricciones del sistema

urnB

Universitat Autbnoma

deBarcelona

1. La aplicacién anicamente funcionara bajo entorno Windows, con .NET FRAMEWORK 4.0 minimo
(Microsoft Windows Vista SP1, Windows 7, Windows Server 2008 R2)

2. Margen de finalizacién de proyecto 28 de junio del 2011

3. Para el desarrollo de la aplicacién se utilizara el Microsoft Visual Studio 2010 Profesional (licencia
MSDN de la UAB)

4. Para el desarrollo de ambas bases de datos (cliente y servidor) se utilizara ADO.NET 4.0 SQLite
(Licencia Freeware).

2.11.4. Priorizacion de requisitos

RF1 RF2 RF3 RF4
Esencial X X
Condicional X
Opcional X
RNF1 RNF2 RNF3
Esencial X
Condicional X
Opcional X
RF1 RF2 RF3 RF4 RNF1 RNF2 RNF3
01 X X
02 X X X
03 X X
04 X X

-26-

urnB

Universitat Autbnoma
de Barcelona

2.12. Recursos
La clasificacion de los recursos necesarios para realizar el proyecto es la siguiente:

e Recursos humanos: Personas que aportan los conocimientos y la mano de obra para la
realizacion de este proyecto

e Recursos de hardware: La maquinaria y sus caracteristicas necesarias para llevar a cabo
este proyecto.

e Recursos de software: Software que necesitaremos para el desarrollo y la ejecucion del

proyecto.

2.12.1. Recursos humanos

El recurso humano principal es la persona encargada de la realizacion del proyecto. Se encargara
de todas las tareas, desde la fase de analisis hasta la fase de documentacion, pasando por disefio,

desarrollo y juego de pruebas.

2.12.2. Recursos de hardware

Para este proyecto se utilizaran un total de 3 ordenadores distintos, una estacion de trabajo
profesional para el desarrollo de la aplicacion, una estacion de trabajo normal y corriente (portatil) para las

pruebas de la aplicacién cliente, y un ordenador servidor para la comprobacion de la aplicacién servidor.

Estacion de desarrollo Estacion de trabajo portatil | Ordenador Servidor
CPU Intel Core2 Quad Q6600 2.4 Ghz | Intel Centrino Duo 2.4 Ghz Intel XEON 3060, 2.40 Ghz
RAM 8 Gb RAM DDR2 1200 mhz 2 GB RAM DDR2 800 32 GB RAM DDR2 1200 Mhz
HDD 800 GB 7200 RPM SATA-2 650 GB 7200 RPM SATA-2 256 GB SSD /2 TB SATA2 7200
Grafica |ATI RADEON 2400 PRO nVidia GeForce 8500 GTX ATI ES1000
SO Windows 7 Professional Windows 7 Professional Windows Server 2008 R2

-27-

urnB

Universitat Autbnoma
de Barcelona

2.12.3. Recursos de software

Distinguiremos dos partes: el software de desarrollo del proyecto, y el software utilizado para la

documentacion.

e Herramientas de desarrollo utilizadas en el proyecto:

o

o

@)

Microsoft Visual Studio 2010 Professional: Entorno de desarrollo integrado
(IDE) de pago realizado por Microsoft. Utilizado bajo la licencia de desarrollo de la
UAB. Existe una versién gratuita (Express) que también sirve. Permite desarrollar
aplicaciones utilizando el .NET FRAMEWORK, que es un conjunto muy extenso
de librerias de Microsoft que puede utilizar el usuario de forma gratuita.

SQLite ADO.NET 4.0: Sistema gestor de base de datos gratuito y muy liviano. Se
integra en el proyecto utilizando Unicamente una libreria y utilizando un archivo
como base de datos. No contiene tanta seguridad y definiciones como otros
sistemas gestores de bases de datos, pero para éste proyecto ya es suficiente.
Modelio: Disefiador de diagramas UML completo y gratuito. Permite la creacion
de todo tipo de diagramas que engloban todo el UML: Casos de uso, de
secuencia, de estad, etc.

e Herramientas para la documentacion del proyecto:

@)

Microsoft Office © Word 2010: Utilizado para la creacion del documento principal
Y SUS anexos

Microsoft Office © Powerpoint 2010: Utilizado para la creacion de la
presentacion en diapositivas del proyecto.

Microsoft Office Project © 2010: Utilizado para elaborar la planificacion temporal
del proyecto del estudio de viabilidad

Microsoft Paint © 6.1: Utilizado para la elaboracién de algunos graficos de la

memoria.

-28-

2.13. Planificacién del proyecto

2.13.1. Planificacién Temporal

Nombre de tarea Duracién
:/r}gc\ll(\)/éjBel proyecto: Asignacion del tutor y matricula 5 horas
Planificacion 9 dias
Estudio de viabilidad 5 dias
Verificaciones y correcciones por parte del tutor 8 horas
Andlisis del proyecto 15 dias
Andlisis de requisitos 5 dias
Andlisis del modelo de datos 4 dias

Documentacion de los requisitos y del modelo de datos 5 dias

Verificacion del andlisis por parte del tutor 8 horas
Etlsf.n.;) de la aplicacién (diagramas, modelos de uso, 38 dias
Disefio del protocolo de comunicaciones 10 dias
Disefio de la aplicacion cliente 8 dias
Disefio de la aplicacion servidor 8 dias
Disefio de la deteccion de archivos 5 dias

Disefio de la base de datos 1 dia

Documentacion del disefio 5 dias
Verificacion del disefio por parte del tutor 8 horas
Implementacion 45 dias
Implementacion del protocolo de comunicaciones 15 dias
Implementacion de la aplicacion cliente 10 dias
Implementacion de la aplicacion servidor 10 dias

Implementacion de la base de datos 1 dia

Verificacion del cédigo por parte del tutor 8 horas
Correccion de errores 8 dias
Test de pruebas 30 dias
Pruebas de la comunicacion cliente-servidor 3 dias
Pruebas de estrés 5 dias
Pruebas de sincronizacion en banda estrecha 4 dias
Pruebas de CVS 8 dias
Correccion de errores 10 dias
Documentacion 143 dias
Elaboracién de la documentacion 142 dias
Validacién de la documentacion 1 dia

Comienzo
dom 31/10/10

lun 01/11/10
lun 01/11/10
jue 11/11/10
vie 12/11/10
vie 12/11/10
vie 19/11/10
jue 25/11/10
jue 02/12/10

vie 03/12/10

vie 03/12/10
vie 17/12/10
mié 29/12/10
lun 10/01/11
lun 17/01/11
mar 18/01/11
mar 25/01/11
mié 26/01/11
mié 26/01/11
mié 16/02/11
mié 02/03/11
mié 16/03/11
jue 17/03/11
vie 18/03/11
mié 30/03/11
mié 30/03/11
lun 04/04/11
lun 11/04/11
vie 15/04/11
mié 27/04/11
lun 06/12/10
lun 06/12/10
mié 22/06/11

-29-

Fin
dom 31/10/10

jue 11/11/10
mié 10/11/10
jue 11/11/10
jue 02/12/10
jue 18/11/10
mié 24/11/10
mié 01/12/10
jue 02/12/10

mar 25/01/11

jue 16/12/10
mar 28/12/10
vie 07/01/11
vie 14/01/11
lun 17/01/11
lun 24/01/11
mar 25/01/11
mar 29/03/11
mar 15/02/11
mar 01/03/11
mar 15/03/11
mié 16/03/11
jue 17/03/11
mar 29/03/11
mar 10/05/11
vie 01/04/11
vie 08/04/11
jue 14/04/11
mar 26/04/11
mar 10/05/11
mié 22/06/11
mar 21/06/11
mié 22/06/11

urnB

Universitat Autbnoma
de Barcelona

Nombres de los recursos

Alumno; Tutor Proyecto UAB

Alumno

Alumno; Tutor Proyecto UAB

Alumno
Alumno
Alumno

Alumno; Tutor Proyecto UAB

Alumno
Alumno
Alumno
Alumno
Alumno
Alumno

Alumno; Tutor Proyecto UAB

Alumno
Alumno
Alumno
Alumno

Alumno; Tutor Proyecto UAB

Alumno

Alumno
Alumno
Alumno
Alumno
Alumno

Alumno

Alumno; Tutor Proyecto UAB

UNB

Universitat Autdbnoma
de Barcelona

2.13.2. Diagrama de Gantt

Alumno;Tutor Proyecto UAB

mno

j&Iumno

lumno;Tutor Proyecto UAB

Alumno

o . 1 Alumno

qu Alumno;Tutor Proyecto UAB

-30-

urnB

Universitat Autbnoma
de Barcelona

2.14. Evaluacion de riesgos

Existen dos riesgos principales en este proyecto: el tiempo y la posibilidad de que se cree algin

software similar en el transcurso del proyecto.

El riesgo del tiempo consta basicamente del desconocimiento real de un disefio efectivo con la
gestiéon y deteccion de cambios en documentos en la maquina cliente. Se sabe que un sistema Windows
genera cuatro tipos de cambios en un documento: crear, modificar, renombrar y eliminar, pero también
existen combinaciones entre ellos, y los programas de terceros pueden crear un archivo utilizando varias
de estas combinaciones. Por lo tanto, lo que va a consumir mas tiempo es en entender y disefiar una
buena gestién de documentos para Windows. Para solucionar este riesgo se utilizara la libreria de ayuda
gratuita de Microsoft MSDN, que siempre estd actualizada con los Ultimos cambios en los sistemas

operativos Y las librerias utilizadas.

Por otro lado, las varias aplicaciones alternativas a éste proyecto estan en continuo proceso de
actualizacion durante el transcurso del curso académico del proyecto, con el fin de aumentar y ofrecer mas
funcionalidades. Por lo tanto podria ocurrir que al finalizar el proyecto éstas alternativas incluyeran

cambios similares al proyecto, lo cual reduciria la originalidad de ésta aplicacion.

-31-

urnB

Universitat Autbnoma
de Barcelona

2.15. Presupuesto

Para la realizacion de éste proyecto realmente no habra ningun tipo de inversiéon econémica en él.
Todos los equipos informaticos utilizados son de propiedad del alumno, y el software utilizado lo

proporciona la entidad universitaria (UAB) bajo la licencia de Microsoft MSDN.

Sin embargo, si éste proyecto se realizara fuera de ambito universitario, por ejemplo para una

empresa o desarrollo personal, el presupuesto seria el siguiente;

Material Hardware

Equipo de desarrollo, marca DELL 480 €
Estacidn de trabajo (portatil), marca DELL 550 €
Estacién Servidor 1800 €

Material Software

Microsoft Office 2010 (Microsoft Word ©, Microsoft Excel ©, 90€
Microsoft PowerPoint ©, Microsoft Project ©)
Versién estudiantes

gratuito
SQLite ADO.NET 4.0
Microsoft Visual Studio 2010 Professional 550€
Disefio y Desarrollo
400 h de disefio e implementacién (16€/h, precio estandar) 6400 €
TOTAL 9870 €

Pero como ya hemos comentado, el hardware en este proyecto es propiedad del alumno, y el
software lo proporciona la entidad UAB con la licencia de Microsoft MSDN. Unicamente se podrian

considerar las horas de disefio e implementacién, en cuyo caso el presupuesto seria de 6400 €.

-32-

urnB

Universitat Autbnoma
de Barcelona

2.16. Conclusiones

Una vez vista la situacién actual, y las alternativas que existen en el mercado podemos decir que
aunque existen alternativas que pueden ofrecernos un servicio similar a lo que proponemos, dichas
alternativas contienen un alto pago, o alto mantenimiento monetario. Ademas, nos quedara siempre la
duda de la seguridad de nuestros documentos, ya que se almacenaran en servidores a los que no

podemos acceder directamente, o podemos supervisar su seguridad.

Por otro lado, las herramientas utilizadas para la realizacion de éste proyecto son practicamente
gratuitas, gracias a la licencia de la entidad UAB, y como la aplicacion se realiza como proyecto de final de

carrera, el coste es practicamente nulo.

Por lo tanto, estamos ante una aplicacién que ofrece unos servicios que pueden llegar a mejorar a
las alternativas que actualmente existen en el mercado, y en la practica, no existe ninguna limitacion en
cuanto a hardware se refiere. El Unico requisito que tendra la aplicacion es que los ordenadores donde se
ejecuten dispongan de conexion a internet para poder funcionar. La conclusion del estudio de viabilidad,

entonces, es que el proyecto es totalmente Viable.

-33-

Universitat Autdbnoma
de Barcelona

CAPITULO 3
DISENO DE LA APLICACION

-34-

urnB

Universitat Autbnoma
de Barcelona

3. Disefio de la aplicacion

3.1. Introduccion

Como se ha explicado anteriormente, ésta aplicacion constara de tres partes distintas: el protocolo
de comunicaciones, la aplicacion cliente, y la aplicacién servidor. La aplicacion cliente y servidor utilizara el
protocolo para enviarse mensajes de control de la una a la otra, y en caso de necesitar el archivo, se

enviara como dato adjunto al mensaje de control (utilizando un puerto distinto).

Los datos que se intercambiaran el cliente y el servidor seran el log-in de usuario o grupo (o
combinacion de ambos), un esquema de la situacion actual de las carpetas sincronizadas (para que el
servidor sepa qué archivos tiene el cliente, lo veremos mas adelante), los cambios en las carpetas
sincronizadas en la maquina cliente, y los archivos que sean necesarios para que dichos cambios queden

registrados en el servidor.

El esquema de comunicacion sera el siguiente:

1.Log In
2 Respuesta

/L - 3. Esquerna carpeta sincronizada) ——

4 Archivos

Cliente Servidor

-35-

urnB

Universitat Autbnoma
de Barcelona

3.2. Definiciones y caracteristicas de los médulos.

Analizaremos por separado el protocolo de comunicaciones, la aplicaciéon cliente, y la aplicacion

servidor.

3.2.1. Protocolo de comunicaciones

Los casos de uso del protocolo de comunicaciones son los siguientes:

Establecer Conexion

Enviar Mensaje de control

/

% _
Sistema\ Recibir mensaje de control

Desconectar
Forzar desconexion

Definimos los posibles casos de uso que el sistema puede tener con el protocolo de

comunicaciones:

Establecer Conexién

1) El sistema intentar4 conectarse via socket’ a la direccion IP y puerto proporcionados por la
aplicacion
a. En caso de error, saltara evento de error de conexion
2) Se establece el estado de la conexién en “Activa”.
3) Se ejecuta un thread® paralelo que se quedara leyendo el socket hasta que el estado de la

conexion pase a “Desconectado”.

% Socket: mecanismo Idgico (en lenguaje de programacion, es una libreria) que permite establecer una conexion de datos entre dos
maquinas usando protocolo TCP/IP e intercambiar datos punto a punto.

-36-

urnB

Universitat Autbnoma
de Barcelona

Enviar Mensaje de control

1)

2)

Poner el estado del protocolo en “Enviando mensaje”
a. Si el estado ya estaba en Enviando mensaje, poner el mensaje en cola, y finalizar.

Enviar el mensaje de control por el socket establecido en el establecimiento de conexion.

3) Siel mensaje es de tipo “Enviar archivo”:

a. Comprobar que la ruta proporcionada por parametro es correcta, y se puede acceder
al archivo en modo lectura.
b. Se envia después del mensaje de control el archivo byte a byte por el socket

establecido.

4) Comprobar la cola de mensajes

a. Silacola de mensajes esta vacia, finalizar y poner el estado en “Disponible”
b. Si la cola de mensajes tiene mensajes por enviar, volver al paso 2 con el siguiente

mensaje de la cola.

Desconectar

1) Enviar comando de detencién al thread de lectura del socket.

2) Enviar mensaje de control de desconexion por el socket de envio.

3) Una vez recibido el evento de cierre del thread, desconectar el socket de mensajes de control.,
4) Desconectar el socket de ficheros.

5) Establecer estado en “desconectado”

6) Lanzar evento de desconexion realizada con éxito.

® Thread: Un Thread es una aplicacion ejecutandose en segundo plano o en paralelo a la aplicacién principal. Permite que el
procesador sea capaz de ejecutar ambas aplicaciones (o trozos de aplicacion) simultaneamente

-37-

urnB

Universitat Autbnoma
de Barcelona

Recibir Mensaje de control

1) Leer los bytes que hay en el bufer® del socket establecido.
2) Reconstruir mensaje de control a partir de los bytes
a. En caso de que no haya mensaje de control, seguir leyendo del socket hasta
encontrar mensaje.
b. Si no se encuentra mensaje después de varios intentos, hacer saltar evento de error
de lectura y vaciar bufer.
3) Interpretar el mensaje de control:
a. Si el mensaje no es del tipo “enviar archivo”, hacer saltar evento de mensaje recibido
con el mensaje de control como parametro
b. Siel mensaje es del tipo “enviar archivo”:

i. Intentar abrir la ruta de archivo temporal establecida como parametro de la
funcién, en modo escritura.

a. En caso de no poder abrir la ruta de archivo temporal, lanzar
excepcion de error de apertura de archivo.

ii. Establecer variable temporal de bytes de fichero leidos a 0.

iii. Mientras los bytes de fichero leidos sean menores a los bytes de ficheros
esperados (pasados como parametro en el mensaje de control de enviar
fichero):

a. Recibir bytes de fichero en bloques de 1024 bytes. (1Kb).
b. Escribir bytes de fichero en bloques de 1024 bytes (1Kb).

iv. Lanzar evento de fichero recibido con éxito, enviando la ruta del archivo
temporal como parametro.

4) Si el socket sigue en estado “conectado”, volver al paso 1.

a. En caso contrario, finaliza el thread.

4 Bufer: Espacio de memoria reservado donde se guardan datos que posteriormente se iran leyendo. En .NET FRAMEWORK 4.0 los
buferes de los sockets son tedricamente ilimitados, pero a la practica pueden llegar a ser tan grandes como memoria RAM disponible
se tenga en el ordenador.

-38-

urnB

Universitat Autbnoma

de Barcelona

Forzar _desconexiéon (En caso de deteccion de funcionamiento incorrecto del

sistema).

1)
2)
3)
4)
5)
6)

Enviar comando de detencion inmediata al thread de lectura del socket.
Ignorar los mensajes de error de thread interrumpido bruscamente.
Forzar la desconexién del socket de mensajes de control.

Forzar la desconexién del socket de ficheros.

Si los buferes de ambos sockets estan parcialmente llenos, vaciarlos.

Enviar evento de desconexion forzosa realizada con éxito.

3.2.2. Aplicacién cliente

En la aplicacion cliente distinguiremos los diferentes casos de uso que podra tener el

usuario fisico, de los casos de uso que podra tener el sistema (la aplicacion).

X

Usuario fisico

—

Aplicacion Cliente

I . includ
Afadir Conexion Sky Net ___{_f_”j?_u_f_}i_.
W

Mostrar Carpetas Sincronizadas
=

Establecer Conexion Ty
<<include==

Versionar carpeta Sistema
Detectar cambios en fichero

T
i

Visualizar versdn i{{include>>
i
Enviar Archive /< - :

-390-

urnB

Universitat Autbnoma
de Barcelona

Usuario Fisico

Afadir Conexion Sky Net

1)

2)

3)

4)

Mostrar formulario pidiendo los siguientes datos de conexion: Usuario/grupo, contrasefia,
direccion IP del servidor, puerto de conexion, puerto de ficheros.
Guardar en la base de datos la configuracidn de conexién.

a) La representacion del formato de conexion sera: “user_grupo@servidor”.
Crear una carpeta que sera la carpeta sincronizada. La carpeta se llamara
user_grupo@servidor.

a) En caso de que exista la carpeta, no hacer nada, ya se utilizara esa.

Establecer conexion Sky Net (caso de uso del sistema).

Mostrar carpetas sincronizadas

1) Mostrar formulario con una lista de las carpetas sincronizadas que tiene el programa.

a) En caso de que la conexion esté establecida correctamente, mostrar un icono de
carpeta normal.

b) En caso de que la conexion no esté establecida correctamente, mostrar un icono de
carpeta con una cruz o simbolo que represente que la carpeta no esta siendo
sincronizada.

Salir

1) Interrumpir todas las conexiones y el trafico de datos / mensaje de control.
2) Desconectar todas las conexiones de Sky Net activas.

3) Salir del programa.

Versionar carpeta

1)

2)

3)

Mostrar formulario que pedird al usuario un nombre o un nimero de version para la carpeta
seleccionada.
Se enviara una peticion al servidor con el mensaje de control de versionar carpeta, y el
identificador del usuario.
Se mostrara un mensaje de version completado correctamente.

a) En caso de que el servidor no pueda versionar por algin motivo (nombre o version ya

existente), se mostrard un mensaje de error con el error devuelto.

-40-

urnB

Universitat Autbnoma
de Barcelona

Mostrar version

1) Pedir al servidor una lista de versiones de la carpeta.
2) Mostrar formulario al usuario con una lista de las diferentes versiones de la carpeta
a) En caso de que no exista aln ninguna version, mostrar mensaje de que no hay
versiones.
3) Una vez el usuario seleccione la version, se envia una peticion al servidor de ver la version.
4) Se mostrara un formulario al usuario pidiéndole donde desea guardar la version
5) Se mostrara un mensaje de versién completado correctamente.
a) En caso de que el servidor no pueda versionar por algin motivo (nombre o version ya

existente), se mostrara un mensaje de error con el error devuelto.

Sistema (aplicacién)

Iniciar Conexiones (Esto ocurre justo cuando inicia el programa)

1) Conectar a la base de datos.
2) Recuperar la informacién de las conexiones almacenadas en la base de datos.
3) Por cada conexién:

l. Establecer conexién

-41-

urnB

Universitat Autbnoma
de Barcelona

Establecer conexién

1) Establecer conexién utilizando el protocolo de comunicaciones.

a) En caso de que la conexion no sea realizada con éxito, mostrar mensaje de error al
usuario.

2) Recuperar la estructura de la carpeta sincronizada que pertenece a la conexion. Los datos que
se deben recuperar de cada archivo son: Nombre, tamafio, fecha de creacién, fecha de
modificacién, Hash®.

3) Enviar la estructura de la carpeta sincronizada mediante un mensaje de control al servidor.

4) Afadir un visualizador de cambios a la carpeta sincronizada, con tal de detectar cualquier tipo

de cambio dentro de la carpeta.

Detectar cambios en fichero

1) Identificar el tipo de cambio.
2) Enviar un mensaje de control dependiendo del tipo de cambio:
a) Archivo Creado.: Enviar archivo al servidor utilizando el mensaje de control de archivo
creado.
i. Si el archivo creado tiene un tamafio de 0 bytes se interpretara como archivo
vacio y no se enviara.
b) Archivo Modificado.: Enviar archivo al servidor utilizando el mensaje de control de
archivo modificado.
c) Archivo renombrado: Se enviara un mensaje de control al servidor de archivo
renombrado, con la ruta antigua y la nueva ruta.
d) Archivo borrado: se enviara un mensaje de control al servidor de archivo eliminado,

con la ruta del archivo.

Enviar archivo

1) Enviar mensaje de control de envio de archivo con la ruta del archivo.

® Hash: Utilizando un algoritmo matemaético con el contenido del fichero se obtiene un identificador tericamente tnico del fichero. Se
utiliza para hacer diferencias entre ficheros en caso que no sea posible identificarlos por otros medios.

-42-

3.

urnB

Universitat Autbnoma
de Barcelona

2.3. Aplicacion servidor

En la aplicacion servidor volvemos a tener el esquema de usuario fisico (ésta vez llamado

administrador), y sistema, que actuard automaticamente respondiendo a los eventos de

mensajes recibidos desde el protocolo de comunicaciones.

Aplicacion Servido d

Gestion usuarios "“-“:‘d“dEk}---:

Gestion grupos

M

1
< <inclide==
l

| |

- i

Configurar puerto o
<<include==

|

|

1

|

i

1

|

%i

Administrador

Asignar usuario a grupo

Realizar cambios en ficheros

z<zinclude==

Conectar cliente _—
Sistema

i

Enviar Version de carpeta

Usuario Administrador

Gestion de Usuarios

1) Mostrar formulario que contiene los usuarios y las opciones crear, modificar pardmetros y
eliminar.

a) Crear Usuario: Guardar los datos establecidos en la base de datos y crear la carpeta
de usuario
b) Modificar usuario: Guardar los nuevos datos en la base de datos, y desconectar los
usuarios conectados con este nombre de usuario
Eliminar usuario: Pedir confirmacion de eliminacion

i. En caso afirmativo: Desconectar los usuarios que tengan este nombre de
usuario, borrar datos de la base de datos y eliminar la carpeta de usuario.

i. En caso negativo: no hacer nada.

-43-

urnB

Universitat Autbnoma
de Barcelona

Gestion de Grupos

1) Mostrar formulario que contiene los grupos y las opciones crear, modificar parametros y
eliminar.
a) Crear grupo: Guardar los datos establecidos en la base de datos y crear la carpeta del
grupo.
b) Modificar grupo: Desconectar a los usuarios conectados como rol administrador de
grupo. Guardar los nuevos datos en la base de datos.
¢) Eliminar grupo: Pedir confirmacion de eliminacion.
i. En caso afirmativo: Desconectar los usuarios que estén conectados a este
grupo, borrar datos de la base de datos y eliminar la carpeta del grupo.

ii. En caso negativo: no hacer nada.

Asignar usuario a grupo

1) Mostrar formulario que contiene una lista de usuarios y sus grupos asignados, con las
opciones de afadir grupo y eliminar grupo al usuario.
a) Afadir al grupo: Guardar la relacion en la base de datos y crear una carpeta de
usuario dentro de la carpeta del grupo.
b) Eliminar del grupo: Desconectar a los usuarios que esté conectados, borrar la carpeta

del grupo, y eliminar la relacién de usuario-grupo de la base de datos.

Parar servicio

1) Pedir confirmacion de que se desea parar el servicio
a) En caso negativo, no hacer nada.
2) Desconectar todos los usuarios conectados al servidor con un mensaje de desconexion.

3) Detener el servicio de escucha de sockets.

Configurar puertos

1) Mostrar formulario de configuracion de puertos, con un campo de texto para poner el puerto y
botdn para guardar configuracion

2) En caso de cambiar el puerto y tener encendido el servicio, parar servicio.

3) Guardar puerto.

4) Encender servicio de escucha del socket.

-44-

urnB

Universitat Autbnoma
de Barcelona

Configurar carpeta raiz

1) Mostrar formulario de seleccién de carpeta

2) En caso de que el servicio esté activo, pedir confirmacién de cambiar la carpeta raiz
a) En caso negativo, no hacer nada

3) Parar servicio.

4) Guardar posicion de carpeta raiz

5) Mover todos los archivos de la antigua carpeta raiz a la nueva carpeta raiz.

6) Encender el servicio de la escucha de socket.

Usuario Administrador

Realizar cambios en fichero

1) Analizar el mensaje de control:
a) Crear Archivo: Leer el fichero adjunto del evento y guardarlo en la carpeta
sincronizada del usuario
b) Modificar archivo: Leer el fichero adjunto del evento y guardarlo en la carpeta
sincronizada del usuario.
¢) Renombrar archivo: Renombrar el fichero de la carpeta sincronizada al nombre
especificado en el evento
d) Eliminar archivo: Eliminar el archivo especificado en el parametro del evento
2) En cualquiera de los 4 casos anteriores: Reenviar el mensaje de control y el archivo adjunto si

hay a los demas clientes conectados con el mismo nombre de usuario o grupo

-45-

urnB

Universitat Autbnoma
de Barcelona

Sincronizar carpeta

1) Utilizando la tabla de contenidos de carpeta sincronizada que nos ha enviado el cliente,
comparar archivo a archivo:
a) Sila carpeta sincronizada contiene el archivo, y el cliente no, marcarlo como archivo a
enviar a cliente.
b) Sila carpeta sincronizada no contiene el archivo, y el cliente si, marcarlo para pedirlo
al cliente.
¢) Siambos contienen el archivo, distinguirlos usando la fecha de modificacion:
i. Sieldel cliente es mas nuevo, marcarlo para pedirlo al cliente.
ii. Sielde lacarpeta es mas nuevo, marcarlo para enviarlo al cliente.
iii. Si ambas fechas son las mismas, repetir comparacién con hash MD5 de
archivo. (caso muy poco frecuente).
iv. Sino se puede distinguir, ignorar el archivo.
2) Por cada archivo que tenemos que pedir al cliente:
a) Enviar mensaje de control de recuperar archivo, con la ruta del archivo, al cliente que
ha enviado la tabla de contenidos.
3) Por cada archivo que tenemos que enviar al cliente:
a) Enviar mensaje de control de enviar archivo con el archivo adjunto al cliente de la

tabla de contenidos.

Conectar cliente

1) Aceptar la peticién de conexion por parte de una aplicacion cliente.
2) Esperar mensaje de log-in
a) En caso de que no llegue mensaje de login durante un tiempo determinado,
desconectar.
3) Comprobar si el usuario — grupo y su contrasefia corresponden con los almacenados en la
base de datos.
a) En caso negativo, enviar mensaje de login error al cliente.
4) Pedir tabla de contenidos al cliente.
5) Afadir la conexion al cliente en la coleccién de clientes conectados, identificandolo con el

nombre de usuario.

-46-

urnB

Universitat Autbnoma
de Barcelona

Iniciar servicio

1) Comprobar que tenemos configurada la carpeta raiz
a) En caso contrario, mostrar mensaje al administrador de que debe configurar la carpeta
raiz.
2) Iniciar el servicio de escucha del socket, utilizando el puerto configurado (o predefinido: 5000)
a) En caso de error, informar de él mediante un mensaje en pantalla al administrador

3) Iniciar la aceptacion de conexiones via socket.

Versionar carpeta

1) Poner todos los clientes conectados que utilicen este nombre de cliente en modo de espera
(los mensajes enviados y recibidos se quedan bloqueados hasta nuevo aviso, utilizando
seméforos en threads®).

2) Copiar la carpeta sincronizada y su contenido en una nueva carpeta que contiene el nombre
dado por el cliente (nombre o version) codificado en el nombre.

3) Cuando se finalice la copia de la carpeta, se enviara una sefal al seméaforo de los threads

para que continden con el proceso.

Enviar Version de carpeta

1) Localizar la carpeta versionada dentro del sistema de archivos de la carpeta de usuario
a) En caso de no localizarla, enviar mensaje de que esa versién no existe al usuario
2) Comprimir el contenido en un archivo ZIP’
3) Enviar el archivo Zip por socket mediante un mensaje de control de enviar version, adjuntando

el archivo Zip al mensaje.

® Semaforo en thread: es un bloqueo lI6gico (escrito en cddigo) que detiene la ejecucion del codigo hasta nuevo aviso.

" Archivo ZIP: Archivo Unico que contiene mas archivos dentro, utilizando un estandar de compresién. De ésta forma podemos enviar
muchos archivos compactados y ocupando menos espacio.

-47-

UnB

Universitat Autdbnoma
de Barcelona

3.2. Definiciones del modelo de datos.

En nuestro proyecto utilizaremos dos bases de datos, la base de datos de la aplicacién cliente, y la

base de datos de la aplicacion servidor.

Las entidades de las bases de datos en cuestién seran:

APLICACION NOMBRE TIPO DESCRIPCION
CLIENTE Conexién TABLA Tabla que 'c,ontlene I_a informacion de
una conexion a servidor Sky Net.

Tabla que contiene la informacion de

SERVIDOR Usuario TABLA : vt :
configuracién de los usuarios.

SERVIDOR Grupo TABLA Tabl_a que contiene la informacion de
configuracién de los grupos.

SERVIDOR UsuarioGrupo TABLA Tabla que contiene la relacién de

grupo-usuario.

Tabla 8. Entidades de las bases de datos de aplicacion y cliente

Conexion
Usuario Grupo

Usuario @ string Mombre : string

ContrasefiaAdmin : string

= M bre : stri
Contrasena : string |

Fuerto @ integer
Servidor ! string

Contrasefia : string

usuarioGrupo UsuarioGrupo usuaricGrupo

] Usuario : string *

Grupo @ string

Fig 10. Diagrama entidad-relacion del modelo de datos almacenado

-48-

UnB

Universitat Autdbnoma
de Barcelona

3.2.1 Tabla Conexién

En esta tabla guardaremos los datos de configuracion por parte del usuario fisico de las multiples

conexiones a servidores Sky Net.

Campo Tipo Descripcion

Usuario TEXT Nombre del usuario/grupo que identifica la conexién
Contrasefia TEXT Contrasefia almacenada codificada con MD5
Puerto INTEGER Numero del Puerto. Por defecto 5000.

Servidor TEXT IP 0 nombre del servidor.

Nota: en SQLite los cambios de texto (tipo STRING) son TEXT. No existe VARCHAR.

3.2.2 Tabla Usuario
En esta tabla simplemente guardaremos el nombre de usuario y su contrasefia de conexion. La

informacién sobre ubicacion de carpeta sincronizada no es necesaria, ya que la aplicacion trabajara

directamente sobre el sistema de archivos.

Campo Tipo Descripcion

Nombre TEXT Nombre del usuario que identifica la conexién. No
puede haber duplicados.

Contrasefa TEXT Contrasefia almacenada codificada con MD5

3.2.2 Tabla Grupo

En esta tabla simplemente guardaremos el nombre del grupo y su contrasefia de administrador. La
informacion sobre ubicacién de carpeta sincronizada no es necesaria, ya que la aplicacién trabajara

directamente sobre el sistema de archivos.

Campo Tipo Descripcién

Nombre TEXT Nombre del grupo que identifica la conexion. No
puede haber duplicados.

ContrasefiaAdmin TEXT Contrasefia de administrador almacenada
codificada con MD5.

-49-

UNB

Universitat Autdbnoma
de Barcelona

3.2.2 Tabla UsuarioGrupo
En esta tabla guardaremos la relacion existente de un grupo y un usuario (que un usuario
pertenece a un grupo). Un mismo usuario puede estar en varios grupos, y un grupo puede tener varios

usuarios.

Campo _Tipo ~Descripcion

Usuario TEXT Nombre del usuario de la relacién
Grupo TEXT Nombre del grupo de la relacién

3.3. Definiciones del comportamiento de la aplicacion
3.3.1 Protocolo de comunicaciones

3.3.1.1 Comportamiento

La primera fase del comportamiento del protocolo de comunicaciones es la del establecimiento de
conexion de dos maquinas (conexion punto a punto). Para ello se utilizara la clase socket definida en el
.NET FRAMEWORK 4.0. En éste conjunto de librerias de Microsoft la clase socket se utilizan dentro de las

clases “TcpClient” y “TcpServer” , que aportan mas meétodos de control a la clase socket nativa.

Si el servicio de comunicaciones del protocolo se inicia en una maquina servidora, el protocolo
aceptara conexiones ya establecidas (objetos de la clase TcpClient), mientras que si el servicio se inicia en
una magquina cliente, se creara utilizando la direccion IP y el puerto. De esta manera podemos distinguir si

es cliente o servidor.

Una vez establecida la comunicacién (en caso contrario se lanzaria una excepcién de error de
comunicacion), el protocolo iniciara un thread con el médulo de lectura. Este thread se quedara a la espera
indefinidamente (hasta que la conexion se interrumpa de forma forzosa, o acordada por parte de ambos

extremos) a que el otro extremo envie datos.

-50-

urnB

Universitat Autbnoma
de Barcelona

El médulo de envio puede enviar dos tipos de mensajes: mensaje de control y archivo.

e En el caso del mensaje de control, se enviara por el canal de datos del socket establecido.
Como sélo se pueden enviar bytes por un socket, el mensaje de control (que es un objeto
de una clase definida) se serializara® en una cadena de bytes, y se enviara por el canal de
datos.

e En el caso de enviar archivos, primero se generara un mensaje de control informando del
tamafio del archivo y de la ruta del archivo (utilizando el anterior método). Una vez
enviado, se enviara por el canal de socket los bytes del archivo en bloques de 1024 bytes
(1 Kb), para facilitar la tarea del receptor de ir guardando el archivo en una ruta temporal y
no sobrecargar la memoria RAM del receptor con el archivo (Un mal disefio seria ir
guardando los bytes recibidos en la memoria, ya que un archivo puede llegar a tener un

tamafio superior a ello).

El médulo de recibir datos se estard ejecutando siempre en segundo plano, y Unicamente se
activara en el momento que el bufer de entrada del socket reciba datos. Cuando se lean los bytes del

canal de datos del socket, se intentara de serializar los bytes recibidos, con tal de reconstruir el mensaje.

Una vez reconstruido el mensaje, si el mensaje es del tipo enviar archivo, leeremos la cantidad de
bytes especificada en el parametro del mensaje de control y guardaremos el archivo en la ruta temporal.
Una vez hayamos recibido el archivo, generaremos un evento de fichero recibido. En caso de no ser un

envio de fichero, simplemente generaremos un evento de mensaje de control recibido.

El protocolo incluirdA métodos para finalizar una conexiéon de forma segura y forzada. En la
desconexion segura ambos extremos se enviardn mensajes de desconexién y procederan a la
desconexion cuando los buferes se vacien. En el caso de la desconexion forzosa, se detendré el thread de

lectura de forma inmediata, y se ignoraran todos los errores de interrupcion brusca de threads y conexién.

8 Serializar: proceso en el cual un objeto que esta almacenado en la memoria RAM del ordenador que esté ejecutando
el programa, se transforma en una cadena de bytes. De ésta forma se pueden compartir objetos entre programas, o
guardarlos en ficheros en el disco duro. La operacion inversa de serializar se llama deserializar, y consta de pasar de
una cadena de bytes a un objeto en memoria.

-51-

urnB

Universitat Autbnoma
de Barcelona

3.3.1.2 Diagrama de clases

cSkyMetProtocol

TipcMensaje @ integer

CrearMensajeSkyNet(in TipoMensaje : cSkyNetProtocol, in Parametros : string)

cConexion

TipeMensaje
Conexion : Socket

Estado : integer
Conectar()
Desconectar()
ForzarDesconexion()
EnviarMansaje(]

EnviarArchivol) Ky
L A Envia y Recibe SkyNetMessage
IniciarLectura()

* TipoMensaje : cSkyMetProtocol
ParametrosMensaje @ string

AnadirParametro(in Parametro : string)

RecupararParametro(in Index @ integer)

3.3.1.3 Definicion de clases

El mdédulo de protocolo de comunicaciones contiene 3 clases:

e cConexion: Clase principal del protocolo de comunicaciones. Esta clase se encarga de
establecer conexién via socket con otra maquina, y de enviar y recibir los mensajes de
control definidos dentro del Sky Net Protocol.

e cSkyNetProtocol: Clase que define los diferentes tipos de mensajes de control posibles
(los enumera), y se encarga de construir los mensajes de control, afiadiéndoles los
parametros.

e SkyNetMessage: Clase que representa un mensaje de control del protocolo de
comunicaciones Sky Net. Contiene el tipo de mensaje que es, y los parametros asociados
a él. En si simplemente es una estructura de datos, no tiene ninguna funcién ni trabaja con

los pardmetros.

-52-

urnB

Universitat Autbnoma
de Barcelona

3.3.1.4 Tipos de mensaje en el protocolo Sky Net.

Estaran predefinidos dentro del protocolo varios tipos de mensaje, para facilitar la identificacion de

los mensajes de control dentro de las aplicaciones cliente y servidor. Los mensajes estan divididos en

control l6gico y control de archivos. Seran los siguientes:

Mensajes de control l6gico

LOGIN: Peticién de login por parte del cliente, y tiene como parametros el nombre de
usuario o grupo, y el de la contrasefa, siendo éste Ultimo opcional en el caso del grupo
LOGIN_RESPONSE: Respuesta por parte del servidor a una peticion de login. Tendra
como parametro el mensaje ACCEPT, o DENIED, dependiendo de si se acepta el login o
no, y en el caso de DENIED puede llevar opcionalmente un segundo parametro indicando
el motivo.

FILESYNC_RETRIEVE: Mensaje generado por el servidor una vez aceptado el login. Es
un mensaje que indica al cliente que le envie su estructura de la carpeta sincronizada,
explicando la situacién de cada uno de los archivos.

FILESYNCTABLE: Respuesta del cliente a un mensaje de tipo FILESYNC_RETRIEVE.
Contiene como dato adjunto un objeto que representa la estructura de la carpeta
sincronizada.

MESSAGE: Este mensaje contiene como pardmetro un mensaje que se envia un extremo
a otro. Se utilizara en tareas de mantenimiento para avisar al cliente de que va a ser
desconectado en un intervalo de tiempo corto.

DISCONNECT: Este mensaje indica al otro extremo que se va a proceder a la
desconexion. Se utilizard para parar todos los threads que estén escuchando el socket, y
para realizar una desconexion limpia, sin errores. Puede contener como parametro un
mensaje a mostrar.

DO_VERSION: Este mensaje se envia de cliente a servidor. Indica que empiece el
proceso de realizar una version de su carpeta sincronizada. Viene acompafiado del
nombre o del nimero de la versidn como parametro.

RETRIEVE_VERSION: Este mensaje se envia de cliente a servidor. Indica el deseo del
cliente de recuperar una versién determinada de su carpeta sincronizada. Como
parametro viene el nombre o el numero de la versién.

WHAT_VERSIONS: Este mensaje se envia también de cliente a servidor. Es una peticién
del cliente para conocer qué versiones dispone el servidor de su carpeta sincronizada.
VERSION_LIST: Este mensaje contiene una lista con todos los nombres y numeraciones

de las versiones de la carpeta sincronizada.

Mensajes de control de archivos

-53-

urnB

Universitat Autbnoma
de Barcelona

FILE_RETRIEVE: Mensaje que enviara mayormente el servidor al cliente. Este mensaje
indica al otro extremo que desea que le envie un archivo en concreto.

FILE_SEND: Por definicion del proyecto, sera el mensaje mas utilizado en el protocolo de
comunicaciones. Indica que se estd enviando un archivo. Como parametros contiene la
ruta del archivo, y el tamafio de éste. Justo después de este mensaje llegaran bytes sin
codificar en el socket, y sera el archivo adjunto enviado.

FILE_RENAME: Mensaje que indica que el archivo ha sido renombrado. El primer
parametro indica la ruta del antiguo archivo, y el segundo parametro indicara la nueva
ruta.

FILE_DELETE: Mensaje que indica que un archivo ha sido borrado. El pardmetro indica la
nueva ruta.

VERSION_ZIP: Mensaje similar al FILE_SEND, pero que contendr& un archivo
comprimido como adjunto. El cliente debera descomprimir el archivo y colocarlo en la ruta

especificada. Como pardmetro incluye el nombre o la numeracion de la version.

-54-

urnB

Universitat Autbnoma
de Barcelona

3.3.2 Aplicacion cliente

3.3.2.1 Comportamiento y entorno grafico de usuario.

La aplicacién cliente constard de dos elementos basicos: un icono de mensajes en la barra de
tareas (con el icono de la aplicacion), dénde saldran todos los mensajes de error, y de un formulario

principal que se desplegara cuando el usuario haga doble clic en el icono.

En dicho formulario se mostrara un resumen en forma de listado de todas las carpetas
sincronizadas que disponemos. El icono de la carpeta sera un icono de carpeta plano en caso de que la
conexion esté activa y funcionando, y el de una carpeta con una cruz marcada en caso de que la conexion

de dicha carpeta no esté conectada o tenga algun error.

X

En dicho formulario si el usuario hace doble clic en los iconos de la carpeta, se abrira una ventana
del explorador de Windows directamente en la ubicacion de dicha carpeta, para facilitar la localizacién de

la ruta exacta de la carpeta sincronizada.

El usuario podra desplegar un menld emergente pulsando el botén derecho en todo el formulario.
Si el puntero del ratén estaba situado encima de uno de los iconos de las carpetas sincronizadas, el menu
también tendrd las opciones de realizar versién, ver versiones, y editar conexién. El menud tendra las
siguientes opciones:
e Afiadir conexion
o Editar conexion (deshabilitado si no se esta encima de icono de carpeta)
e Versionar carpeta (deshabilitado si no se esta encima de icono de carpeta)

e Ver versiones (deshabilitado si no se esta encima de icono de carpeta)

-55-

urnB

Universitat Autbnoma
de Barcelona

Cuando se selecciona la opcion de afiadir conexion, o editar conexion, aparecerd un formulario
dividido en dos partes: la parte izquierda tendra una lista con las conexiones existentes, dénde las
conexiones inactivas saldran en color rojo. También tendra un botén para afadir nueva conexién. La parte
de la derecha, que se activara al afiadir una conexién nueva o editarla, tendra una zona con las
configuraciones: usuario, contrasefia, puerto e IP, asi como botones de guardar datos, conectar o eliminar

conexion.

La opcion de ver versiones desplegard un nuevo formulario con una lista con las versiones
disponibles de dicha carpeta sincronizada. Al seleccionar una de las versiones, se desplegard un
formulario donde se pedira al usuario en qué carpeta de su unidad de disco duro desea guardar ésta
version. Cuando se seleccione la carpeta, ambos formularios (el de seleccion de carpeta y visualizar
version) se cerraran, y aparecera un mensaje en el icono de la aplicaciéon avisando que la versién se esta

descargando del servidor, y se abrira automaticamente la ubicacion cuando esté descargada.

La opcidn de crear version desplegara un formulario donde habré un selector de modo de version:
por nombre o por nimero de versién. Si el usuario selecciona por nombre, aparecerda un campo de texto
donde introducir el nombre. Por el contrario, si el usuario selecciona por versién, apareceran 4 campos de
texto pequefios donde poner la numeracién de la version (por ejemplo, 1.0.0.1). Una vez seleccionado el
modo de versionar, y aceptarlo, saldra un mensaje de aviso desde el icono de la aplicacién avisando que
se esta versionando la carpeta. Cuando termine de versionar, aparecera un mensaje desde el icono

avisando de que la version se ha realizado correctamente y ya se puede visualizar.

El comportamiento interno de la aplicacion constard de la creacién de la carpeta sincronizada al
crear una nueva conexion, y de supervisarla de forma transparente para el usuario. Cada vez que el
usuario cree, modifique, renombre o elimine un archivo dentro de esa carpeta, la aplicacion comunicara al
servidor dicho cambio y sera responsabilidad del servidor de tener una copia exacta de la carpeta

sincronizada.

-56-

urnB

Universitat Autbnoma

de Barcelona
cAplicacion
cConexiones @ string
clcono : string
FmCarpetas : string fmCarpetas
ST clconaSkyMet Ini:ial:(:l 1
Parar()
1 Salir()
1
FmCarpetas
MostrarCarpetas()
N cIconoSkyNet y
cConexiones ky! SeleccionarCarpetal)

Conexiones : cConexionSkyMNet

Icono : Image

cConexionSkyMNet .

MostrarMensaje(in Mensaje : string)

cCaontralFicheras fmCanexiones fmversiones

cConexionSkyNet

Conaxion : cConexion

ControlFicheros : cControlFicheros

1
FmConexiones FmVersiones

cControlFicheros Conexion : cConexionSkyNet

Conectar()
Sincronizar()
SupervisarCarpetal()

Conexion @ cConaxionSkyMat

RutaCarpeta : string GuardarConexion()
EliminarConexion()

Nuevaversion()
VerVersion(]

SupervisarCarpeta()()

Sky Net Protocol i

NuevaConexion()

cConexion

3.3.2.3 Definicion de clases

A continuacion definiremos brevemente las clases que compondran la aplicacién cliente y su

funcion:

cAplicacion: Clase principal que se inicia junto a la aplicacion. Contiene una instancia de
las clases cConexiones, clconoSkyNet y FmCarpetas, ya que seran Unicas en toda la
aplicacion. Se encargara de iniciar todas las posibles conexiones, o pararlas en caso de
gue el usuario lo solicite.

cConexiones: Clase que contendra todas las conexiones activas e inactivas hacia
servidores Sky Net. Se encargard de administrar todos los eventos que puedan producir
las conexiones.

cConexionSkyNet: Clase que representa la implementacion de una conexion SkyNet del
protocolo de comunicaciones. Contiene un objeto de la clase cConexion y se encargara de

interpretar los mensajes de control recibidos, y enviar los pertinentes.

-57-

urnB

Universitat Autbnoma
de Barcelona

e cControlFicheros: Clase que supervisara la carpeta sincronizada y generara eventos
distintos dependiendo del tipo de modificacién que se realiza en el sistema de ficheros del
ordenador.

e clconoSkyNet: Clase que representa el icono en la barra de tareas de la aplicacion.
Mostrara los mensajes en un globo de informacion emergente, y mostrara el formulario de
carpetas en caso de hacer doble clic

e FmCarpetas: Clase que representa el formulario visible donde se representan las
carpetas sincronizadas con diferentes iconos. Tendra un mend emergente con el que
poder acceder a la edicion de conexiones y versiones

e FmVersiones: Clase que representa el formulario visible donde se pueden crear y solicitar
versiones.

¢ FmConexiones: Clase que representa el formulario visible donde se pueden administrar

las conexiones activas e inactivas, asi como crear nuevas.

3.3.3 Aplicacion servidor

3.3.3.1 Comportamiento y entorno grafico de usuario.

La aplicacion servidor se diferencia de la aplicacion cliente en gran parte por la interfaz de usuario.
En vez de centrar la interfaz de usuario en las carpetas sincronizadas, ésta aplicacion se centrara en la

administracion de usuarios y grupos.

La aplicaciéon se iniciara similarmente a la aplicacion cliente. El inicio de la aplicacion sera
silencioso y con un icono en la barra de tareas. Sin embargo, si es la primera vez que se inicia la
aplicacion en la maquina en la que se encuentra, saldra un mensaje de aviso a modo informativo que hara
saber al usuario que debe configurar una carpeta raiz para empezar a almacenar las carpetas
sincronizadas. Esta carpeta raiz sera donde se van a alojar todas las carpetas de todos los clientes que se
conecten al servidor, por lo tanto debera estar en un disco duro amplio y con buena seguridad. Mas

adelante se podra cambiar la carpeta.

Al hacer doble clic sobre el icono, aparecera una pequefia barra de herramientas en una de las
esquinas de la pantalla. Dicha barra de herramientas ser4d un menu desplegable que contendrd las
siguientes opciones de configuracién:

e Configurar carpeta raiz

e Configurar puerto de escucha
e Gestion de clientes

e Gestién de grupos

e Parar / Encender servicio.

-58-

urnB

Universitat Autbnoma
de Barcelona

La opcion de configurar carpeta raiz nos mostrara un formulario de seleccién de carpeta, donde el
usuario seleccionara donde quiere situar todo el contenido del servidor de Sky Net. Una vez seleccionada
una nueva carpeta, si no es la primera configuracion, se le pedira nuevamente confirmacién, avisando que
cambiar la carpeta raiz desconectara inmediatamente a todos los clientes conectados y se moveran todos
los archivos de una carpeta a otra, lo que comportara lentitud en el sistema, y posibles fallos si se
interrumpe el proceso.

Si aun asi el usuario decide cambiar la carpeta, se procedera a desconectar a los clientes
enviando un mensaje de que el servidor va a proceder con labores de mantenimiento y permanecera
desconectado un intervalo de tiempo moderado, bloquear el proceso de aceptar conexiones de clientes y
mover todo el contenido de un sitio a otro. Una vez finalizado el proceso, se vuelven a aceptar conexiones

a clientes.

La opcién de configurar el puerto de escucha cambiara el puerto por el cual se conectaran los
clientes. En caso de guardar un valor distinto al anterior, se desconectaran a todos los clientes conectados
con un mensaje de que el servidor ha cambiado la configuracion y contacten con su administrador, se
blogueara el proceso de aceptar clientes, se guardaran los cambios, y se volvera a iniciar el proceso de

aceptar clientes, esta vez con el puerto nuevo.

La opcion de gestionar usuarios mostrara un formulario en el que puede interactuar el usuario
administrador. El formulario tendra dos zonas: una lista de usuarios existentes a la izquierda, y el panel de
configuracién a la derecha, que se activara solamente si queremos crear un usuario o modificarlo. Dentro
del panel de configuracion, si el usuario ya ha sido creado, se activard un sub panel con dos listas: grupos
disponibles, y grupos a los que pertenece. Se podran pasar elementos de una lista a otra con un botén

central con dibujo de flecha que cambiara la orientacién dependiendo de qué lista hayamos seleccionado.

Cualquier cambio producido en usuarios se guardara en la base de datos, en la tabla Usuario. Si el
cambio es modificacion o eliminacién, se desconectara a todos los clientes conectados bajo ese nombre,
enviandoles un mensaje de que la configuracion de su usuario ha cambiado y contacten con el
administrador. Si es un cambio de modificacion, se actualizaran los datos en la conveniente base de datos.

Si es eliminacion, ademas de eliminar los datos de la tabla, se eliminara la carpeta del servidor.

-590-

urnB

Universitat Autbnoma
de Barcelona

La opcion de gestionar grupos mostrara un formulario con un comportamiento idéntico al de la
gestiébn de usuarios. Se podran crear, modificar y eliminar grupos. Cuando se modifica un grupo, se
desconectaran a todos los usuarios que estén conectados a ese grupo, con un mensaje de notificacién. Si
se elimina un grupo, ademas de desconectar a los usuarios y eliminar el registro de la base de datos, se

eliminara la carpeta sincronizada.

Cabe destacar que en ambos casos, tanto de usuario como de grupo, si se eliminan se debera
eliminar también cualquier posible relacién en la tabla UsuarioGrupo, eliminando las carpetas adjuntas de

dichos usuarios o grupos.

La opcion de Parar / Encender servicio actuard dependiendo de si el servicio de aceptar
conexiones de clientes esta encendido o no. En el caso de que esté parado, lo encendera sin mostrar
notificacién alguna, de forma silenciosa. En caso de que esté encendido, se mostrara un formulario donde
se podra escribir un mensaje para enviar a todos los clientes. Si no se escribe ningln mensaje, se

generara el mensaje de la parada del servicio por labores de mantenimiento por tiempo indefinido.

En la parte del comportamiento interno del servidor, nos encontramos con una estructura similar a
la de la aplicacion cliente. Controlaremos todas las conexiones de clientes en distintos threads, y

recibiremos todos los mensajes que éstos nos hacen llegar.

El procedimiento de identificar a un cliente sera el siguiente:
1. Establecer conexion con el cliente
Esperar mensaje de login
Comparar el login con lo almacenado en la base de datos

Pedirle su estructura y estado de la carpeta sincronizada

o M WD

Actualizar la carpeta sincronizada del servidor y la del cliente. La del servidor con
los archivos mas recientes del cliente, y la del cliente con los archivos mas
recientes del servidor.

6. Quedarse a la espera de mas mensajes de control por parte del cliente.

Todo este procedimiento se realizara con eventos que saltardn desde el médulo de protocolo de

comunicaciones.

-60-

urnB

Universitat Autbnoma
de Barcelona

Cuando se recibe un mensaje de tipo LOGIN, comprobaremos en la base de datos si el login es
correcto, y le contestaremos con un mensaje de LOGIN_DENIED, con el primer parametro en ACCEPT o

DENIED segun si es correcto o no respectivamente.

Cuando se recibe un mensaje de tipo FILESYNCTABLE, compararemos archivo a archivo con los
que tenemos en el servidor. Podemos tener cuatro posibles resultados:
e Si el archivo es distinto y mas reciente que el del servidor, programaremos su peticion.
e Si el archivo es distinto y menos reciente que el del servidor, programaremaos su envio.
e Si el archivo no se encuentra en el servidor, programaremos su peticién

e Si el archivo no se encuentra en el cliente, programaremos su envio.

Una vez se hayan comparado todos y cada uno de los archivos, se procedera a enviar mensajes

de FILE_SEND (enviar archivo), o FILE_RETRIEVE (pedir archivo) segun se haya programado.

Cuando se recibe un mensaje de tipo FILE_SEND, significard que el cliente ha tenido un cambio
de archivo (o creacion), y nos envia el nuevo archivo. Se deberd cambiar el archivo que tiene el servidor

por el que nos esté proporcionando el cliente.

Con el mensaje de tipo FILE_ RENAME, simplemente se cambiara la antigua ruta del archivo por la

nueva.

Si recibimos un mensaje tipo FILE_DELETE, borraremos el archivo en la ruta especificada en el

parametro.

En cualquiera de los anteriores tres mensajes, FILE_SEND, FILE_RENAME y FILE_DELETE, se
debera reenviar el mismo mensaje a todos los clientes conectados bajo ese mismo nombre de usuario o
grupo. Cabe destacar que en una conexion a grupo (no a usuario), si no se proporcion6 contrasefia de

administrador, se ignoraran absolutamente todos los cambios que el cliente envie.

-61-

urnB

Universitat Autbnoma
de Barcelona

Si se recibe un mensaje de DO_VERSION, se bloquearan todos los threads provenientes de los
clientes conectados bajo el mismo nombre, con el fin de que no se produzcan cambios en la carpeta
mientras realizamos la versién. La versién se hara comprimiendo un archivo en ZIP y colocando dicho

archivo en una subcarpeta llamada “VersionedFiles”, dentro de la carpeta del usuario.

El mensaje WHAT_VERSIONS sera respondido con un mensaje de tipo VERSION_LIST,

conteniendo una lista de los nombres de todos los archivos ZIP dentro de la subcarpeta “VersionedFiles”.

El mensaje de tipo RETRIEVE_VERSION, sera respondido enviando un mensaje de

VERSION_ZIP, enviando como dato adjunto el archivo ZIP conteniendo la version.

Las carpetas de los usuarios se almacenaran siguiendo la siguiente estructura:

CarpetaRaiz/Users/NombreUsuario

Dentro de esa carpeta de usuario, se crearan dos carpetas, “OriginalFiles” y “VersionedFiles”. Los
archivos sincronizados con los clientes se almacenaran dentro de OriginalFiles, y los ZIPS que contienen

versiones seran almacenados dentro de VersionedFiles.

Las carpetas de los grupos se almacenaran siguiendo la siguiente estructura:

CarpetaRaiz/Groups/NombreGrupo

Dentro de esta carpeta de usuario se crearan dos carpetas mas: “PublicFiles” y “UserFiles”. Dentro
de PublicFiles se crearan dos carpetas “OriginalFiles” y “VersionedFiles”, y dentro de la carpeta “UserFiles”
se reproducira exactamente la misma estructura que las carpetas de usuario. De esta forma lograremos

tener separados los documentos publicos del grupo de los documentos privados de los usuarios del grupo.

-62-

urnB

Universitat Autbnoma
de Barcelona

3.3.3.2 Diagrama de clases

cServidor

ContralClientes n
Puerto : string cControlClientes

TieneGrupos,

1

Usre=s ¢ @lz=r ConexionServicio : cConexion

Grupos : cGrupo ClientesConectados : cCliente
ControlClientes : cControlClientes

cGrupo

Nombre :
Contraseria
Users :

string

string
¢ string

Conectar()
TieneUser PararServicicl|)
e DesconectarClientes(in NombreCliente : string)
fmInicial
clUser 0.1 i
cleonel, o :
Mombre @ string cCliente
Contrasena : string FmiInicial Llama .
Grupos : string — clcono
Mostrarlsuarios() 1
MostrarGrupos(Icono : Image N
e i cCliente
PararServicio()
NombreCliente : string
CarpetaRaiz ! string
— Conexion : string
M trg TASTUPDE .
usstra 4 .1 Desconectar()
EnviarMensaje(in Mensaje : SkyNetMessage)
FmUsuarios FmGrupos EnviarArchivo(in RutaArchive @ string)

CrearGrupc()
MaodificarGrupo()
EliminarGrupol)

CrearlJsuario()
MadificarUsuariol)

EliminarUsuario()
AsignarGrupol)

3.3.3.3 Definicion de clases

cServidor: Clase que se inicia junto a la aplicacién. Al iniciarse recuperara las
configuraciones de usuarios y grupos y las almacenara internamente, para evitar
posteriores consultas a la base de datos. Ademas iniciara el icono en la barra de tareas y
el servicio de escuchar conexiones de clientes, siempre que se cumplan los requisitos.
cGrupo: Clase que representa un grupo. Tiene nombre del grupo, su contrasefia
codificada con MD5, y una lista de los nombres de usuarios que él tiene, para facilitar la
posterior blsqueda.

cUser: Clase que representa un usuario. Tiene el nombre del usuario, una contrasefia
codificada con MD5, y una lista con todos los grupos a los que pertenece, para facilitar la
posterior blusqueda.

cControlClientes: Clase que tiene la conexion de servidor activa, y una lista con todos los
objetos de cCliente que estan conectados. Se encarga de recoger los eventos generados
por los cClientes y actuar segin sea necesario.

cCliente: Clase que representa la conexion de un cliente con el servidor. Es la que se
comunica directamente con el otro extremo. Genera eventos segun lleguen mensajes de

control, y envia mensajes de control al otro extremo.

-63-

urnB

Universitat Autbnoma
de Barcelona

e clcono: Clase que representa el icono en la barra de tareas. Respondera ante eventos del
ratén por parte del usuario fisico, y mostrara el formulario inicial, o lo ocultara.

e Fminicial: Formulario visual que se muestra al usuario fisico para que pueda gestionar los
usuarios, los grupos, y las configuraciones del servidor. Consta simplemente de una barra
de menus desplegable para acceder a las distintas opciones.

e FmUsuarios: Formulario que tiene una lista de usuarios y opciones para crearlos,
modificarlos y borrarlos. Ademas aqui es donde se asignaran los grupos a los usuarios.

e FmGrupos: Formulario que tiene una lista de grupos y opciones para crearlos,

modificarlos y borrarlos.

3.3.4 Definicidon usuario-grupo

El punto fuerte de este proyecto es la aparicion de un nuevo tipo de usuarios en esta clase de

aplicaciones (programas de sincronizacion on-line), que son los grupos.

Un grupo es una nueva definicion de usuario, que representa al usuario publico. Es un tipo de
usuario al que podemos conectarnos sin necesidad de contrasefa, y podemos visualizar los archivos que
existen en esta carpeta sincronizada. Sin embargo, la diferencia de un usuario normal, es que cualquier
modificacién realizada en la carpeta sincronizada no va a afectar al contenido del servidor ni de los demas
clientes conectados. Unicamente si se ha introducido contrasefia de administrador, y ésta es correcta,

funcionara como si fuera un usuario normal (guardando cambios).

Ademas se introduce la posibilidad de asignar un usuario a un grupo. Lo que aporta esto es que
un usuario pueda tener su propia carpeta sincronizada al completo (guardando las modificaciones),
utilizando su misma contrasefia que la de su usuario. La aportacion de ésta posibilidad, es que los
usuarios con contrasefia administradora podran interactuar con los usuarios de estos grupos, modificando
sus archivos. Los demas usuarios que estén conectados al grupo sin contrasefia en ningun caso podran

visualizar los archivos de los usuarios del grupo.

-64-

urnB

Universitat Autbnoma
de Barcelona

De ésta forma conseguimos una carpeta colaborativa entre administrador-usuario, ademéas de
seguir teniendo sincronizados los archivos de la carpeta publica. Una conexion a grupo publico sera
distinta a la de una conexién de usuario de grupo, por lo tanto, en la aplicacion cliente se deberan
configurar dos conexiones distintas (una para grupo, otra para usuario de grupo) si se quieren utilizar

ambas ventajas.

Algunos ejemplos de utilidad de este sistema seria el de un campus virtual universitario. Los
alumnos podrian conectarse con su usuario a un grupo (que seria una asignatura), y colgar ahi los
trabajos. Paralelamente podrian recuperar la documentacion de la asignatura con una conexién a un grupo

publico.

Otra aplicacion al sistema seria una carpeta dedicada a la sincronizacién de sub proyectos de un
proyecto mayor (por ejemplo, médulos de un programa). Cada carpeta de usuario de grupo representaria
un modulo del programa (o sector de la empresa), y la carpeta publica seria donde se cuelga la
documentacién. Los administradores del grupo se encargarian de realizar comentarios y modificaciones en

los diferentes moédulos.

Como podemos ver, las posibilidades y la flexibilidad son mucho mayores que un programa de

sincronizacién de documentos on-line sencillo.

-65-

Universitat Autdbnoma
de Barcelona

CAPITULO 4

IMPLEMENTACION

-66-

urnB

Universitat Autbnoma
de Barcelona

4. Implementacion

4.1. Introduccién
En este apartado hablaremos de la fase de implementacion del proyecto, empezando por las

tecnologias y librerias utilizadas para ello, y los problemas surgidos durante ésta fase y de como se han

solucionado.

4.2.1 Tecnologias y librerias

Lenguajes de programacién
e Visual Basic.NET 2010

Tecnologias de plataforma
e Microsoft .NET Framework 4.0

Gestores de bases de datos
e SQLite3, versién ADO.NET 4.0 (Adaptado a Visual Studio.NET 2010)

Protocolos utilizados
e Socket TCP/IP

Librerias estandares utilizadas

e Codificacion MD5
e Cadificacion SHA1

-67-

urnB

Universitat Autbnoma
de Barcelona

4.2.1.1 Visual Basic.NET 2010

El lenguaje Visual Basic.Net es un lenguaje creado y disefiado integramente por Microsoft para ser

el sucesor del antiguo Visual Basic. Es un lenguaje totalmente orientado a objetos y funciona sobre la

plataforma de desarrollo .NET Framework. El lenguaje estd orientado a crear aplicaciones de gestion y

visuales, utilizando ventanas de Windows, aunque también se pueden crear facilmente aplicaciones en

modo consola, y mas tipos de aplicaciones especificados dentro del .NET Framework.

La version utilizada del Visual Basic.NET es la 2010, incluida dentro del Microsoft Visual Studio

2010, que a su vez utiliza el .NET Framework 4.0

Caracteristicas:

Lenguaje intuitivo y facil de utilizar. Curva de aprendizaje corta.
Lenguaje totalmente orientado a objetos.
Sintaxis intuitiva y parecida al lenguaje normal hablado.

Compilador y debugador completos y faciles de aprender a utilizar.

Ventajas:

Utiliza toda la potencia del .NET Framework 4.0, que brinda al lenguaje un conjunto de
librerias capaces de realizar un extenso abanico de funciones.

Méaxima integracion con el sistema operativo Microsoft Windows: El lenguaje ha sido
disefiado para tratar con variables del sistema de forma facil.

Facilidad a la hora de debugar una aplicacion y encontrar errores.

Modo “Inmediato”: Acceso inmediato a variables en proceso de ejecucion y poder cambiar

los valores para analizar el comportamiento del programa.

Inconvenientes:

Unicamente disponible (de forma oficial) para los sistemas operativos Microsoft Windows
(XP SP3, Vista, 7).

En fase de disefio y modo debugacion, los recursos consumidos son de la orden de una
veintena mas que la simple ejecucion del programa. Por ejemplo, el proyecto ejecutado
consume aproximadamente 20 Mb de memoria RAM, mientras que en modo debugacion
consume alrededor de 400-500 Mb.

Interfaz de disefio pesada, requiere de un ordenador con muchos recursos.

-68-

urnB

Universitat Autbnoma
de Barcelona

4.2.1.2 Microsoft .NET Framework 4.0

El Microsoft .NET Framework 4.0 es un conjunto muy potente de librerias, totalmente gratuito, que

se incorpora al sistema operativo (muchas versiones ya lo traen preinstalado). Aporta un abanico de

funciones, clases definidas, y control de recursos muy amplio y facil de utilizar. Ademas, todas estas

librerias estan realizadas en formato estandar de Microsoft, lo cual significa que se pueden utilizar siempre

en cualquier lenguaje que utilice el .NET Framework.

Gracias a esto, una aplicacion realizada en un lenguaje de programacion (por ejemplo, Visual

Basic.NET), puede llegar a recompilarse en otro lenguaje dentro del .NET Framework (por ejemplo, C#).

De ésta forma se pueden llegar a crear aplicaciones y/o librerias que pueden ser reutilizadas de forma

independiente al lenguaje en el que se programen.

Caracteristicas:

Conjunto muy extenso de librerias que aportan funcionalidades y clases definidas a los
lenguajes de programacién

Ciclos de actualizacién moderados: Microsoft actualiza con la frecuencia justa para que los
programadores se adapten a los cambios.

Totalmente gratuito.

Ventajas:

Permite crear librerias multilenguaje: las DLL creadas en un lenguaje serviran para otros.
Las aplicaciones creadas utilizando .NET Framework seran siempre compatibles con
sistemas operativos que puedan utilizar esa versién de .NET Framework.

Documentacion y ayuda altamente extensa, desde pégina web con bldsqueda inteligente
(buscar lo que quieres hacer, y te lleva al método y/o clase que lo realiza), hasta foros con
programadores en linea que te ayudan.

Inconvenientes:

Unicamente disponible (de forma oficial) para los sistemas operativos Microsoft Windows
(XP SP3, Vista, 7).

En la primera carga de cualquier programa que utilice .NET Framework, se cargaran todas

las librerias utilizadas, lo que causa ralentizacion del sistema.

-69-

urnB

Universitat Autbnoma
de Barcelona

4.2.1.3 SQLite 3 (ADO.NET 4.0)

SQLite es un proyecto de dominio publico (Open Source) realizado por D. Richard Hipp que consta
de una simple libreria (alrededor de 200 Kb) que nos permite utilizar un completo sistema gestor de bases

de datos relacional. La version utilizada es la 3 adaptada al . NET FRAMEWORK 4.0.

A diferencia de otros motores de gestion de bases de datos, éste simplemente utiliza lo basico y
fundamental para ello: crear tablas, gestionarlas, y manejar datos. No incluye sistemas de control, y no
tiene soporte para campos extremadamente grandes. Sin embargo, no necesita de instalacion alguna en

la maquina que ejecuta la aplicacion.

Caracteristicas:
e Sistema gestor de bases de datos relacional completo.
e Libreria de poco tamafio

e Ultima version compatible con bases de datos de hasta 2 Terabytes.

Ventajas:
¢ No requiere de instalacion
¢ No requiere de configuracion

e Gestién de datos liviano y rapido.

Inconvenientes:
e Pocos tipos de datos soportados: Texto, humérico, BLOB (Datos binarios) y INTEGER
PRIMARY KEY, que es un tipo de datos numérico auto incremental que identifica las filas.
e Pocas actualizaciones.
e Sistema poco seguro. El cifrado de datos se realiza sobre el fichero que contiene la base

de datos, y ese fichero puede ser faciimente modificado.

-70-

urnB

Universitat Autbnoma
de Barcelona

4.2.1.4 Socket TCP/IP

TCPI/IP es un conjunto de protocolos definidos en los que se basa Internet, y se utilizada para la
intercomunicacion de computadoras. Se basa en la unién de dos de los protocolos basicos para las
comunicaciones en internet: el TCP y el IP. Se utiliza este protocolo en el disefio de aplicaciones cuando
se necesita de seguridad y flexibilidad en la entrega de datos. A diferencia de otros protocolos, éste se
asegurara siempre de que los datos lleguen de un extremo a otro (a excepcion de problemas fisicos de la

linea, o de la aplicacion).

La forma de utilizar el protocolo TCP/IP en el proyecto se hara mediante el uso de la definicion
Socket. Un socket es un concepto abstracto que implica la interconexiéon de dos programas, y el
intercambio de flujos de datos de un extremo a otro, de forma bidireccional. Para ello se necesita un par de
direcciones IP (origen y destino), un protocolo de transporte (en nuestro caso, TCP), y un par de puertos

(origen y destino).

Caracteristicas:
o Fiabilidad al enviar datos: el protocolo TCP /IP brinda una fiabilidad casi total de que los
datos lleguen bien y en orden.
e Diferenciacion de la capa de la ldgica del programa con la de comunicaciones, gracias al
Socket.

Ventajas:
e No se necesita hacer la implementacion del protocolo entero en nuestro programa,
simplemente se importa la libreria necesaria
e Protocolo y libreria creadas y mantenidas por un organismo que se encarga de las

comunicaciones en internet.

Inconvenientes:
e Los mecanismos internos de control para asegurarse de la fiabilidad que nos aporta son
pesados: los paquetes de datos enviados son mas grandes y, por lo tanto, la conexion es
menos rapida que si utilizaramos un protocolo sin esos controles.

e No codifica los datos. Hay que hacerlo en la aplicacion.

-71-

urnB

Universitat Autbnoma
de Barcelona

4.2.1.5 Generadores de hash MD5 y SHA1

MD5 y SHA1 son funciones generadoras de hash. El hash es una cadena hexadecimal devuelta
por el algoritmo de la funcién y en un principio (sobre todo en SHAL, puesto que en MD5 se han
encontrado fallos), un hash de un archivo o de contrasefia es Unico y diferente al de los demas. Para
generar el hash ambos algoritmos utilizan el contenido de dicho archivo o contrasefia, es por eso que si el
archivo cambia, o la contrasefia, el hash cambiara. La generacion de hash no es reversible, no se pueden

obtener los datos iniciales con el hash.

Ambos sistemas pueden utilizar una semilla. Una semilla es una palabra, o valor, que utilizara el
algoritmo de codificacién para utilizarlo de base a sus operaciones matematicas internas. De ésta forma, si
emisor y receptor conocen la semilla, pueden comparar la codificacion. Comparandolo con otro término

informatico, la semilla es la contrasefia de la generacion de hash.

La utilizaciébn en éste proyecto es la comparaciéon del hash, tanto de contrasefias como de
archivos. Utilizando este método, podemos distinguir si un archivo con los mismos atributos y propiedades
es diferente a otro, o si las contrasefias proporcionadas son las mismas. SHA1 es méas seguro que MD5,
pero es mas pesado y costoso de calcular. Solamente se ha implementado como alternativa en caso de

que falle el MD5 (méas adelante explicado en un juego de pruebas)

Caracteristicas:
e Creacidn de hash supuestamente Unico.

e Alta seguridad al cifrar datos y enviarlos.

Ventajas:
e Identificacion de archivos rapida y eficaz

e Comparacion entre hash de contrasefas rapida y eficaz.

Inconvenientes:
e En archivos grandes, la generacion del hash puede ser muy costosa, de la orden de
segundos.

e En archivos muy pequefios, se podria llegar a encontrar un hash MD5 idéntico.

-72-

urnB

Universitat Autbnoma
de Barcelona

4.2.2 Desarrollo y variaciones del disefio en fase de implementacién

En este apartado explicaremos el desarrollo de la aplicacion mediante el encuentro de problemas

y obstaculos encontrados en la fase de implementacion, asi como la solucion a ellos.

4.2.2.1. Threads en Visual Basic.NET 2010

Uno de los apartados mas problematicos en todo el proyecto han sido como utilizar los threads en
el lenguaje Visual Basic.NET 2010, para la emision y recepcion de mensajes de Sky Net y pasarlos a la
clase superior que controla las conexiones. A pesar de que el concepto es idéntico en la gran mayoria de
lenguajes orientados a objetos, una serie de caracteristicas han obligado a que el proyecto se ejecute con
unos algoritmos disefiados para solventar algunos problemas que aparecen con la implementacion de
threads que nos ofrece el .NET Framework 4.0

El problema principal de un thread en Visual Basic.NET 2010 es que pierde la capacidad de
comunicacién con el thread principal desde el que se llamé. A diferencia de otros lenguajes, cuando creas
un hilo de ejecucidn, siempre puedes referenciar al proceso que cred tal hilo. Sin embargo, en éste
lenguaje saltan excepciones al intentar comunicarse. Para la utilizacién de threads hemos utilizado dos
tipos de disefio de algoritmo distintos:

e Seméforos y colas.
El primer paso para poder utilizar este sistema es crear una cola y un evento. La cola es una
coleccién de objetos con tecnologia FIFO (First In, First Out). De ésta forma, cada vez que un
thread pase por la cola, dejar4 su mensaje de Sky net en la cola. Y se irdn dejando segun el orden
de ejecucion de dichos threads.

Para controlar que Unicamente un thread puede colocar a la vez el mensaje en la cola, se utilizara
un semaforo que solamente dejara pasar un thread a la vez, dejara el mensaje en la cola, y saldra
del seméforo indicando que puede pasar el siguiente. De esta forma la cola Gnicamente podra ser
accedida y/o modificada por un solo thread a la vez. De ésta forma luego podemos recoger toda la
cola de mensajes (utilizando el mismo seméforo), y se garantiza que ningun thread se pise entre
si,y

los threads no interactiian directamente con el thread principal: interactda la cola.

-73-

urnB

Universitat Autbnoma
de Barcelona

e Threads de segundo plano
Independientemente a los threads implementados en Visual Basic .NET 2010, existe otra clase
llamada “trabajador de segundo plano” (Background Worker). Esta clase incorpora una serie de
métodos y eventos para realizar un trabajo en segundo plano en un thread distinto, dentro de una

misma clase.

La implementacion es muy sencilla: basta con programar el algoritmo dentro del método de dicha
clase, y automaticamente lo realizara en segundo plano. A diferencia de los threads normales,
ésta clase puede interactuar con los atributos y métodos del objeto en el que se ha incorporado.
De ésta forma, podemos crear un hilo de ejecucion que se queda observando el socket de entrada
dentro del propio algoritmo, sin necesidad de separar codigo. Asi conseguimos utilizar los atributos

y métodos privados9 de la clase.

En nuestro proyecto, los threads en segundo plano han sido utilizados para el disefio y la
implementacién del thread principal de recepcién de mensajes Sky Net. Por otro lado, los
semaforos y las colas han sido utilizados mayormente para controlar el flujo de salida de mensajes
Sky Net. A diferencia de los eventos normales, que siguen el flujo de ejecucién de un programa
normal, los eventos generados por el sistema operativo (sistema de archivos) son threads en
paralelo. Esto quiere decir que si un programa externo hace muchas modificaciones a la vez en la
carpeta sincronizada, el sistema operativo puede llegar a lanzar un conjunto de eventos, todos
ellos threads, con todos los cambios. Se utiliza el seméforo para filtrar estos eventos, y la cola

para guardarlos en el orden que va llegando.

4.2.2.2. Duplicidad de archivos

Un bug conocido del sistema es que el sistema operativo puede llegar a lanzar dos, 0 més threads
de eventos a la vez, cuando se realiza un cambio, y puede llegar antes un evento que otro. En estos
casos, Sky Net no sera capaz de distinguir cual de los eventos fue realmente creado al principio, e
ignorara y no enviara al servidor los eventos destructivos (renombrar y borrar) en caso de que al intentar
acceder a dicho archivo, ya no exista. Esto causara la posible duplicidad de archivos en el servidor, o que

archivos anteriormente eliminados en el cliente aparezcan de nuevo.

® Atributos y métodos privados: Cualquier declaracion de atributo o método en modo privado significara que tnicamente se puede
acceder a él desde la misma clase. Otra clase de fuera no podra ver o utilizar dichos atributos o métodos.

-74-

urnB

Universitat Autbnoma
de Barcelona

Para solventar este problema, se disefiaron tres sistemas distintos de deteccion de archivos:

El primer sistema se basaba en un sistema de repeticion cada X tiempo (la prueba se realiz6 con
10 segundos de intervalo) de la tabla de situacion de la carpeta sincronizada. Este disefia es muy
efectivo y evita totalmente la duplicidad de archivos, y mantiene una carpeta completamente
sincronizada con el servidor. Sin embargo, conforme la carpeta sincronizada va creciendo, ésta
tabla cada vez es mas pesada, y el calculo de hash de archivos grandes se hace tediosa para el
procesador. Por lo tanto, para carpetas grandes éste sistema no es efectivo. Ademas perdemos la
distincién del tipo de cambio que se ha generado (sobretodo renombrar), y por lo tanto, siempre

estaremos mandando archivos que podrian ser el mismo.

El segundo sistema es una modificacion del primero. La tabla de situacion de la carpeta
sincronizada no incluye el calculo de hash, y por cada subcarpeta dentro de la carpeta
sincronizada se crea un thread que a su vez recorrera las subcarpetas. Con éste sistema, en
procesadores rapidos la creacion de la tabla de situacién se genera muy rapidamente, y en caso
de que el servidor dude de si un archivo es el mismo o no, se pedira la generacion del hash. Este
sistema es efectivo, pero en el momento que hay muchos clientes conectados bajo un mismo
sistema, el que se satura es el servidor: Intentar replicar la tabla de estado a todos los clientes y

servirles todos los archivos y cambios.

El tercer sistema, el actual, es la mezcla del sistema original y el primer sistema presentado. Los
cambios se seguirdn almacenando via eventos del sistema operativo (crear, modificar, renombrar,
borrar), y sirviendo los archivos sélo en caso de ser necesario. Sin embargo, cada vez que el
servidor detecte alguna operacion ilégica (renombrar un archivo inexistente, por ejemplo), activara
una variable en la conexion para pedir la tabla de estado al cliente. Existira un ciclo de
actualizacion de cliente preestablecido en 60 segundos, y que solamente se activara si ambos
sockets (lectura y escritura) estan inactivos. Cada vez que pase el tiempo del ciclo de

actualizacion se pedira al cliente la tabla, y se estructuraran los archivos de nuevo.

Los ciclos de actualizacién simplemente sera un temporizador programado para saltar un evento
cada X segundos. Solamente se crearda un temporizador en el caso que tengamos la primera
incoherencia en cuanto a eventos, y el temporizador se ir4 autoajustando dependiendo de la
cantidad de incoherencias nos vayan llegando. Por cada incoherencia recibida, se reducira en 5
segundos el siguiente ciclo de actualizacién, y cada vez que tengamos 5 mensajes coherentes de

archivos, se ampliard en 5 segundos el ciclo de actualizacion.

-75-

urnB

Universitat Autbnoma
de Barcelona

En el caso que el ciclo de actualizacion llegue a 20 segundos, se informara al cliente que
su sistema operativo esta funcionando incorrectamente, y se le desconectara
preventivamente para evitar colapsar la linea de comunicaciones. Si el temporizador llega
a 300 segundos, se parara definitivamente, hasta que aparezca una nueva incoherencia,

gue iniciara todo el proceso de nuevo a 60 segundos.

En el caso de que haya més de un cliente conectado al mismo usuario, los ciclos de
actualizacion se alternaran, en ningin caso se produciran al mismo tiempo. De ésta forma
reducimos al minimo la probabilidad de error de almacenar algin archivo. Actualmente
éste sistema esta implementado pero no activado, debido a que requiere que el servidor
disponga de suficiente ancho de banda para el control de errores, y las pruebas han sido

realizadas en una conexién basica de 1 Mbit/seg. (Mas adelante explicado)

4.2.2.3. Clases auxiliares.

Estas clases son una ampliaciéon del disefio inicial, y se han creado exclusivamente para facilitar la

tarea de la programacién y para no sobrecargar clases con métodos que no son propiamente de ellas. Por

ejemplo, el cifrado de una contrasefia o texto se encuentra fuera de las clases de control de conexiones,

ya que no son propiamente de ellas. Estas clases seran todas globales y estaticas: son clases que se

pueden utilizar sin ser instanciadas en el cédigo.

SkyNetAux: Clase que incorpora los métodos de cifrado de datos (contrasefias), la
transformacion y recuperacién de los mensajes Sky Net en cadenas de bytes, y el calculo
de hash de los archivos.

cFolderTable: Clase que incorpora los métodos para crear una tabla de correspondencia
de los archivos. Consiste en analizar la estructura de una carpeta que se pasa como
pardmetro. Cuando llega al otro extremo, se llama al método de sincronizar, pasandole la
nueva carpeta como parametro, y la misma clase generara dos listados: una con archivos
gue tiene un extremo, y la otra con los archivos que tiene el otro. De esta forma la misma
clase se encarga de comprobar los cambios.

SkyNetFileConnection: Clase que se encargara de leer del socket de lectura bloques de
1kb e ir construyendo el archivo en la ruta temporal establecida. De ésta forma sacamos el
algoritmo de la clase principal de SkyNetConnection, y podemos controlarlo de forma

separada. Se utilizara el mismo socket de lectura que la conexion.

-76-

urnB

Universitat Autbnoma
de Barcelona

e cConexionSQL: Clase que creara una conexién activa con una base de datos de SQLite y
podra modificar y guardar datos en la base de datos del programa. Contiene métodos para
conectar, hacer selecciones masivas, selecciones unitarias (por ejemplo, recuperar una

contrasefa), introducir datos y eliminarlos.

4.2.3.Iteraciones (versiones)

Como ya se explicé en el punto 1.5 (metodologia de desarrollo), se ha utilizado un sistema de
desarrollo evolutivo para la realizacion del proyecto. Concretamente se han creado 3 versiones distintas a
lo largo del desarrollo, para llegar al disefio y la implementacion final. A continuacién explicamos de qué
constaba cada una de las versiones distintas, y el motivo de dichas versiones.

4.2.3.1. lteraciéon 1 (Versiones de 0.1-Alphal a 0.4-Alpha2)

Se nombré a la primera versién Alpha 1 ya que ésta versién no incluia mas que un 20% de las
funcionalidades disefiadas inicialmente. El objetivo de ésta versién inicial era el de conseguir la
comunicacién entre cliente y servidor, sin distinguir todavia los diferentes cambios de archivos. El
protocolo de comunicaciones fue implementado con un sistema de confirmacion de recepcién de mensajes
bidireccional: cada vez que una de las dos partes recibia un mensaje se comunicaba al otro que habia
recibido el mensaje. Esto no formaria parte del disefio final, ya que la definicibn de Socket del .NET
FRAMEWORK 4.0 aseguraba la recepcion integra del mensaje. Se hizo para la trazabilidad de los

mensajes y poderlos visualizar y rastrear en caso de error.

Esta primera versién carecia de interfaz grafica comoda para el usuario, y no disponia de base de
datos alguna, todos los datos estaban guardados en la XML interna de las aplicaciones, y el sistema
solamente detectaba cambios de creacion y modificacion de archivos. Ademads, la transferencia de
archivos se realizaba por otro puerto distinto al de las conexiones de mensajes de control, con el fin de

detectar mejor los fallos al recibir / enviar ficheros.
Por lo tanto, esta primera versién no incluia gran parte de las funcionalidades disefiadas con el

objetivo de encontrar errores en la fase de comunicacién entre cliente y servidor, y solventarlos antes de
proceder a la implementacion de las funciones mas complejas.

-77-

urnB

Universitat Autbnoma
de Barcelona

4.2.3.2. lteracion 2 (Versiones de 0.5-Betal a 0.9-Beta2)

Inmediatamente después de la versiéon Alpha 1 se arregld la interfaz de usuario y se incorporaron
las detecciones de los demas tipos de cambios. Ademas se mejor6 el algoritmo de sincronizacion de
archivos entre clientes, por lo que la aplicacion servidor empezé a ir mas fluida y sin tanta carga de
recursos. Se quitd la confirmacion de mensaje por parte de cliente y servidor, ya que el protocolo de
comunicaciones funcionaba bien, los archivos se enviaban por el mismo puerto de comunicaciones, y se

incorporé al servidor los grupos y los usuarios de grupos.

Sin embargo, ésta version aun no tenia una deteccién de errores efectiva, y tampoco una
correccién de errores en tiempo de ejecucién. Se corrompian archivos en caso de desconexién por parte
de cliente y servidor, y era dificil corregirlo. Se incorporé la solucién de las repeticiones continuas de la
tabla de situacién de la carpeta sincronizada, y se solventd, pero la carga de trafico de red perjudicaba a la
parte del servidor.

La aplicaciéon se instalé6 en dos empresas asi como varios particulares que se prestaron a la
depuracion de errores, junto con un archivo de logs que enviaban diariamente, consiguiendo localizar los

errores en la deteccién de cambios en archivos y corregirlos.

4.2.3.3. lteracion 3 (Version 1.0)

Se incorpora el control de versiones a la parte cliente y servidor. Se realiza el disefio final de la
interfaz de usuario por la parte del cliente, unificando todos los formularios en solo uno (el formulario de las
carpetas sincronizadas), y desde ahi funciona como central para los demas formularios.

Se implementan los mensajes de control del control de versiones al protocolo de comunicaciones,
y se implementan los ciclos de actualizacion y control en la parte servidor para corregir errores. Se mejora
la transferencia de archivos. Se incorpora el uso de la base de datos SQLite para almacenar los datos, y

se utiliza la codificacion MD5 para almacenar datos criticos (contrasefias).

Esta version es la primera version estable sin bugs criticos y que cumple con todos los requisitos y
funciones disefiados.

-78-

Universitat Autonoma
de Barcelona

CAPITULO 5

JUEGOS DE PRUEBAS

-79-

urnB

Universitat Autbnoma
de Barcelona

5. Juegos de pruebas

5.1 Introduccion

En este apartado haremos una descripcién de los distintos juegos de pruebas que hemos
realizado a lo largo del proceso de implementacion de Sky Net, asi como de sus resultados y de como

hemos resuelto los posibles errores.

5.2 Pruebas de la comunicacion cliente-servidor

Uno de los principales pilares del proyecto es la perfecta comunicacién entre el cliente y el
servidor. Sin la seguridad de ésta comunicacién no podemos garantizar el perfecto funcionamiento del
resto de funciones que tenemos en Sky Net. Para ello, durante la primera iteracién del proyecto (las
primeras fases), se realiz6 una trazabilidad de todos y cada uno de los mensajes. Se programé un tipo de
mensaje adicional (llamado ACK) que se enviaria continuamente de un extremo a otro indicando que un
mensaje ha llegado correctamente y se ha podido interpretar bien. Cada vez que un extremo recibia el
mensaje ACK, escribia en un archivo de registro el mensaje enviado y que se habia recibido

correctamente por parte del otro extremo.

El juego de pruebas para someterlo a una posible saturacién de mensajes consistio en copiar y
pegar 340 archivos pdf de 200 Kb cada uno de golpe en la carpeta sincronizada. En las primeras fases de
la version mas de la mitad de mensajes se perdian, o el sincronismo entre cliente-servidor se detenia y no
se podia recuperar. El motivo se descubrié gracias a la documentaciéon MSDN acerca de los eventos
generados en el sistema operativo. Cuando el sistema operativo genera un evento de lectura/escritura de
archivos, estos eventos funcionan como threads aparte. Por lo tanto, en la primera implementacién no se

controlaba esto, y se perdian los eventos mientras el socket de escritura estaba ocupado.

Para solucionar este error, se disefié la cola de eventos y los semaforos, explicado en el apartado
4.2.2.1. Una vez se soluciono éste error, los mensajes llegaban todos sin excepcion (se realizaron pruebas
durante varios dias copiando archivos de forma masiva), y se eliminé el mensaje de tipo ACK del protocolo

de comunicaciones.

-80-

UnB

Universitat Autdbnoma
de Barcelona

5.3 Pruebas de estrés

Otro de los problemas que se encontr6 en el sistema Sky net es la alta demanda de
procesamiento para calcular los hash de los archivos. Se detect6 el problema en una ocasion al
sincronizar una carpeta de mas de 3000 archivos, todos de mas de 1 Mb de tamafio. La creacién de la

tabla de estado tardé 13 segundos.

Ficheros carpeta Tamafio Tamafio total Tiempo de creaciéon de hash
ficheros
1.000 1 Mb 1.000 Mb 5 segundos
3.000 1 Mb 3.000 Mb 13 segundos
10.000 5 Mb 50.000 Mb (*) 345 segundos
20 3 Gb 60 Gb 26 min.

Tabla 9. Resultados de las pruebas de stress

Como podemos observar en la taba, contra mas grandes son los ficheros, mas grandes son los
tiempos de célculo. Esto es debido a que en la primera version de codificacion de hash, se utilizaba
totalmente el contenido del fichero. Este tiempo era el que tardaba la aplicacién cliente en enviar la tabla
de estado de la carpeta sincronizada al servidor. Una vez eso, se procedia a la sincronizacion.
Evidentemente las pruebas se realizaron bajo un entorno hostil para el cual Sky Net no ha sido pensado:
manejo de muchisima cantidad de archivos de gran tamafio. Aln asi, una situacién en la que una carpeta

de usuario ocupe de 1 a 5 Gb podria darse con facilidad, asi que no era viable esta solucion.

Después de mucha investigacion, se logré descubrir que el .NET FRAMEWORK 4.0 incorpora
unas librerias especificas de codificacibon MD5 y SHA1 para ficheros grandes. Una vez readaptado el
cédigo utilizando las librerias, el tiempo de célculo se redujo drasticamente, y la tabla quedd de la

siguiente forma:

Ficheros carpeta Tamafio Tamafio total Tiempo de creacion de hash
ficheros
1.000 1 Mb 1.000 Mb 0.02 segundos
3.000 1 Mb 3.000 Mb 0.15 segundos
10.000 5 Mb 50.000 Mb (*) 2.13 segundos
20 3Gb 60 Gb 21.6 segundos

Tabla 10. Resultados de las pruebas de stress con nuevas librerias

A pesar de que aun tenemos un resultado alarmante (20 ficheros de 3 Gb calculados en 21.6
segundos), los resultados ya son muy optimizados en comparacion a la primera version. Para paliar esto,
se implementé la opcion de Unicamente pedir el hash en caso de no poder identificar el archivo,

reduciendo el calculo al minimo.

-81-

5.4 Pruebas de sincronizacion en banda estrecha

UnB

Universitat Autdbnoma
de Barcelona

Una de las pruebas realizadas para poder orientar los requisitos de conexidn a internet en la

aplicacion fue la de limitar a 64 Kbps la conexion entrante y saliente del servidor de pruebas, e ir

aumentandola en potencia de 2 hasta averiguar qué conexién es la mas éptima. Para las pruebas se

utilizaron carpetas sincronizadas de 10 archivos de 1 Mb cada uno (en total 10 Mb). Los valores los

recogemos en la siguiente tabla:

1 1 64 Kbps 200 segundos
1 1 128 Kbps 105 segundos
1 1 256 Kbps 60 segundos
1 1 512 Kbps 40 segundos
1 1 1 Mbps 35 segundos
1 1 2 Mbps 12 segundos
1 1 4 Mbps 7 segundos
5 1 64 Kbps 4 minutos
5 1 128 Kbps 3 minutos
5 1 256 Kbps 3 minutos
5 1 512 Kbps 3 minutos
5 1 1 Mbps 1 minuto

5 1 2 Mbps 40 segundos
5 1 4 Mbps 15 segundos
5 5 64 Kbps 10 minutos
5 5 128 Kbps 8 minutos
5 5 256 Kbps 7-8 minutos
5 5 512 Kbps 5 minutos
5 5 1 Mbps 2 minutos
5 5 2 Mbps 40 segundos
5 5 4 Mbps 20 segundos
5 5 EI:_%\?)X'_OT (Iz‘obcglsl Instantaneo

Conexion local
10 10 (LAN) — 1Gbps 5 segundos
Conexion local
20 20 (LAN) — 1Gbps 5 segundos

(*) n2 De usuarios conectados bajo una misma cuenta de usuario.

Tabla 11. Tiempo en tardar en sincronizar clientes, dependiendo de conexién.

De la tabla podemos deducir que los requisitos minimos para funcionar fluidamente a través de

internet son de una conexion minima de 4 Mbps, y que en conexién local (por ejemplo, ambito

empresarial), la sincronizacidn practicamente se vera afectada solamente por la velocidad de escrituray la

saturacion de la red en si.

-82-

urnB

Universitat Autbnoma
de Barcelona

5.5 Pruebas de CVS

Para realizar las pruebas de que el control de versiones funciona correctamente, se programé una
peticidon de generar versién en un cliente que tenia una carpeta sincronizada de 100 Mb. Acto seguido se
programaron en 4 maquinas distintas un script que durante la creacién de la versién mandarian eventos

de creacion, modificacidn, renombrar y eliminar sobre esa misma carpeta sincronizada.

Las pruebas obtuvieron como resultado que el servidor bloqueaba todos los eventos enviados por
los clientes, e iba almacenando los nuevos archivos en archivos temporales. Una vez terminaba de
comprimir el archivo ZIP, atendia a todos los eventos conforme le iban llegando. El resultado fue que
muchos archivos fueron eliminados y renombrados aleatoriamente, ya que esos eventos llegaban en

orden aleatorio segun el socket de lectura los iba enviando.

Para solucionar esto, se tuvieron en cuenta dos posibles soluciones: desconectar a todos los
clientes mientras se produjera la generacién de version, o que el servidor siguiera atendiendo a peticiones
y procesandolas mientras se generaba la versidon. Se optd por la segunda opcidon con una puntualizacién.
En el momento que el servidor recibe la peticidon de realizar versién, se genera él mismo una tabla de
estado de carpeta sincronizada, y se basara en el listado de archivos de esa tabla para generar la version.
Si mientras se genera la versidon un archivo es modificado después de haber sido comprimido, en el
archivo comprimido constara el archivo. Si se intenta modificar mientras se esta comprimiendo, dara
error de escritura, y se ignorara el evento. Y si el archivo es modificado antes de ser comprimido, esa

version tendrd el archivo modificado.
No obstante, se enviard un mensaje a todos y cada uno de los clientes de que se ha realizado una

peticidon de version de la carpeta sincronizada, pidiéndoles que dejen de trabajar durante un momento. La

realizacion de version suele ser ligera y rapida (a excepcidn de carpetas sumamente grandes y pesadas).

-83-

Universitat Autonoma
de Barcelona

CAPITULO 6
CONCLUSIONES

-84-

urnB

Universitat Autbnoma
de Barcelona

6. Conclusiones

6.1 Consecucidn de objetivos

El objetivo principal del proyecto, como se ha comentado al principio de la memoria, era la
creacion y el desarrollo de una aplicacion de sincronizacion de archivos de forma on-line, sobre un

servidor conectado a internet.

Se puede decir, en la finalizacion del proyecto, que el objetivo se ha cumplido completamente. Los
usuarios son capaces de tener varias carpetas sincronizadas con varios servidores a la vez y recuperar los
datos en todo momento, con una fluidez y transparencias muy optimizadas. Asi pues, la aplicacion es
completamente funcional y, salvo algunos errores minimos que se puedan encontrar, es completamente
fiable.

¢COmo se ha conseguido este objetivo?

Mediante la deteccién de los eventos del sistema operativo de creacién, modificacién, renombrar y
eliminacién de los archivos dentro de una carpeta predeterminada por el programa. Utilizando esos
eventos somos capaces de comunicar al servidor qué cambios hemos realizado en la carpeta, y asi se

obtiene una réplica exacta en tiempo real en un servidor.
¢ Qué funciones son necesarias para controlar estos eventos?

Es necesaria una correccién de errores en tiempo de ejecucion, ya que los eventos del sistema
operativo se pueden acumular y llegar de forma desordenada. Con este control de errores, seremos
capaces de determinar, por ejemplo, si un comando de renombrar llega tardio e ignorarlo en vez de
intentar renombrar un archivo ya eliminado. También podremos reiniciar la sincronizacién en cualquier
momento en caso de deteccidn de incoherencias en el sistema de archivo. En cualquier caso, si se duda
de una sincronizacion, el sistema guardara todos los cambios, dejando la tarea de seleccionar en un futuro

gué archivos deberian estar eliminados al usuario final.
Es necesario, también, un sistema para poder listar todos los archivos y poderlos comparar entre

cliente y servidor. De esta forma podemos hacer un listado rapidamente de los archivos que debemos

enviar de un extremo a otro para mantener la sincronizacion de forma exacta.

-85-

urnB

Universitat Autbnoma
de Barcelona

Asimismo, también es necesario un control de flujo de datos, para que no se pierdan los archivos
en el momento del envio, y saber bloquear los hilos de ejecuciéon en los puntos clave del codigo para que
los eventos no se pisen entre ellos. Afiadido a esto, necesitamos un sistema de almacenamiento de datos
(base de datos) para poder guardar los usuarios y sus contrasefias, y un sistema de cifrado y codificacién

de datos criticos (contrasefias y hashes de archivo Gnicos).
¢SAlgun objetivo no se ha cumplido?

A pesar de que se han afladido muchisimos sistemas de control sobre los cambios en archivos, se
han redisefiado los algoritmos de comprobacion en la aplicacién servidor, el sistema operativo seguira
lanzando los eventos de cambios de los archivos de forma cadtica. Los eventos, al ser threads del propio
sistema operativo, pueden llegar a superponerse entre ellos y a bloquearse, dejando cambios por avisar, o
enviando informacion errénea al servidor. Es necesario un estudio en profundidad sobre éste fallo y un

redisefio sobre como detectar los cambios en los archivos y avisarlos al servidor.

6.2 Desviaciones de la planificacion
La planificacion del proyecto ha sido respetada en casi toda su totalidad, salvo varias excepciones:

e El control de cambios de archivos (disefio de la aplicacién cliente) tard6 mas de lo
esperado. En concreto se necesitaron dos semanas mas para poder comprender en su
totalidad como funcionan los eventos del sistema operativo. La primera version basada en
el disefio original no coincidia con la forma en que el sistema operativo Windows lanza los
eventos de cambios a la aplicacion, y fue necesario volver a la fase de disefio, estudiando
la documentacién oficial de Microsoft, para poder desarrollar las funciones necesarias.

e Al 60% aproximadamente del desarrollo (cuando el proyecto se encontraba en la fase de
implementacion de la aplicacién servidor), el .NET Framework sufri6 una actualizacién
mayor. Se pasé de la version 3.5 (con la que se empez6 el proyecto), a la version 4.0. La
repercusion més grave fue la de la redefinicion del socket dentro del lenguaje de
programacion. Las comunicaciones extremo a extremo fueron mejoradas notoriamente por
parte de Microsoft en sus librerias, y se paré durante una semana el desarrollo del
proyecto para volver a la libreria de comunicaciones (protocolo de comunicaciones) y

aprovechar las nuevas funcionalidades para optimizar la comunicacion.

Debido a estas desviaciones, se tuvo que trabajar mas intensamente sobre las implementaciones

de las aplicaciones cliente y servidor, para no retrasar el proyecto y salirse del plazo establecido.

-86-

urnB

Universitat Autbnoma
de Barcelona

6.3 Lineas de mejora

En este apartado explicaremos las ideas que fueron desechadas durante el transcurso de la
implementacion y el disefio del proyecto, ya sea por falta de tiempo en la realizacion o por alta

complejidad.

6.3.1 Panel informativo

En una de las primeras versiones de la aplicacion se cre6 un panel informativo emergente que se
desplazaba desde la barra de tareas hacia el centro de la pantalla, como si de una notificacion emergente
se tratara. El problema de éste panel era que necesitaba de comunicacién con threads hijos, ya que las
notificaciones se iban generando conforme llegaban del servidor al cliente.

X
Error de conexion

La conexdon Javi@127.0.0.1 ha dado los
siguientes fallos: Mo such file ar directaory.

El formulario sigue disefiado y con todos los métodos para ir afladiendo mensajes de error
conforme van llegando, pero esta pendiente de la implementacion de una cola y de un sistema de
semaforos para que los threads puedan interactuar con él. Debido a que el sistema de colas y semaforos
se implemento mucho mas tarde, se utilizé el sistema de notificaciones de Windows (mensajes

emergentes desde el icono de la barra de tareas) para solventar el problema.

6.3.2 CVS ramificado

Una de las carencias de Sky Net es que no posee un gestor de versiones. Posee capacidad para
generar versiones, y para recuperar esas versiones, pero no para modificarlas y crear nuevas versiones a
partir de las antiguas. La aplicacién permite visualizar una versidn anterior, pero no volver a esa version.
Una futura mejora seria mejorar la gestion de CVS para detectar automaticamente cuando se realiza un
cambio en una versidn antigua, y generar una nueva versidn, totalmente de forma transparente. Y que el

usuario pueda volver a una versién anterior en cualquier momento.

-87-

urnB

Universitat Autbnoma
de Barcelona

6.3.3 Almacenamiento externo

Otra de las carencias del sistema de Sky Net es que el almacenamiento por parte del servidor se
realiza de forma local. Se puede llegar a configurar una ruta UNC, o utilizar una VPN para utilizar un disco
duro de otro lugar (por ejemplo, un NAS, o un servidor de almacenamiento). Sin embargo, una posible
mejora seria incorporar la compatibilidad con servidores FTP para poder almacenar los datos en otro
servidor totalmente ajeno al sistema. De ésta forma se podria crear toda una infraestructura entre
servidores Sky Net, y tener los archivos centralizados en un servidor con alta capacidad y alta seguridad

de acceso a los datos.

-88-

Universitat Autonoma

CAPITULO 7
BIBLIOGRAFIA

-89-

urnB

Universitat Autbnoma
de Barcelona

7. Bibliografia

7.1 Bibliografia On-Line

1.

http://msdn.microsoft.com/es-es/: Website de la libreria de ayudas de Microsoft sobre el .NET

Framework 4.0 y sus respectivos lenguajes de programacion. Gran cantidad de informacién y
ejemplos sobre cémo utilizar clases y realizar algoritmos. (Gltimo acceso 22/06/2011)

http://www.canalvisualbasic.net/foro/visual-basic-net/: Website de comunidad de usuarios espafiola

sobre Visual Basic.NET 4.0. En ella se han realizado varias consultas sobre temas, asi como
recopilacion de informacion sobre sockets y threads. (Gltimo acceso 15/06/2011)

http://www.syncrom.com/temarios/sfel/demos/Demo%20Concurrencia.pdf.: Manual de threads y

sincronizacién de threads por parte de la empresa Syncrom. En él se explican los principios
bésicos sobre la concurrencia de threads, la sincronizacion de threads, y métodos y ejemplos para
poder realizarlo. (Gltimo acceso 08/04/2011)

http://sqlite.phxsoftware.com/.: Website de las librerias SQLite adaptadas para el .NET Framework

4.0. (Ultimo acceso 12/05/2011)

http://es.wikipedia.org/.: Enciclopedia libre sin animo de lucro que recoge gran cantidad de

definiciones y articulos. Utilizada para la gran mayoria de definiciones de la documentacion.
(dltimo acceso 22/06/2011)
http://www.codeproject.com.: Comunidad de programadores (en inglés) con amplios articulos,

ejemplos, y cddigos fuente sobre muchas consultas y problemas. Se han realizado varias
consultas sobre sockets. (tltimo acceso 05/05/2011)

http://www.modeliosoft.com/.: Website de donde se puede obtener el programa de disefio UML

gratuito Modelio. (Gltimo acceso 08/06/2011)

-90-

http://msdn.microsoft.com/es-es/
http://www.canalvisualbasic.net/foro/visual-basic-net/
http://www.syncrom.com/temarios/sfe1/demos/Demo%20Concurrencia.pdf
http://sqlite.phxsoftware.com/
http://es.wikipedia.org/
http://www.codeproject.com/
http://www.modeliosoft.com/

urnB

Universitat Autbnoma
de Barcelona

7.2 Agradecimientos

Agradecimientos especiales a Nacor Teruel, director de ECOM Telecomunicaciones, Valencia.
Alex Grau Rodriguez, disefiador, Carme Corominas Bover, fotégrafa, Marc Pérez, programador y
analista, por el apoyo, el interés, las sugerencias, las aportaciones y las observaciones proporcionadas

durante la realizacién de todo el proyecto.

Agradecimiento especial a Gerisistem, S.L., empresa donde trabajo actualmente, por prestarme

todo el equipo informéatico y colaborar en la fase de pruebas, fuera de mi horario laboral.

Y agradecimientos generales, pero no menos importantes, a mas de una veintena de personas
gue colaboraron en la deteccién de errores del software, utilizandolo y haciendo de beta-testers en las
distintas fases del proyecto, a través del grupo de Facebook creado con el objetivo de conseguir

colaboracién en juegos de pruebas y logs completos del sistema.

91-

urnB

Universitat Autbnoma
de Barcelona

Sabadell, 28 de Junio de 2011

Javier Carrenio Izquierdo

-92-

