UNB

Universitat Autonoma
de Barcelona

Aplicacion de la ingenieria del
software sobre la herramienta
MATE:

Application Controller

Memoria del proyecto
de Ingenieria Técnica en
Informatica de Sistemas

realizado por
Antonio Pimenta Soto

y dirigido por

Anna Sikora

Escola d’Enginyeria
Sabadell, Septiembre de 2011

Agradecimientos

Primero de todo agradecer a mis dos companeros Noel y Rodrigo, con los
cuales no solo he realizado este proyecto sino que he compartido estos ultimos

anos de estudiante.

Gracias a Anna y Eduardo por contar con nosotros para participar de un

proyecto tan interesante como MATE.

Y también a Joan Piedrafita que ha estado con nosotros a lo largo de todo el
proceso, ayudandonos con nuestras dudas y ofreciéndonos un punto de vista

diferente.

FULL DE RESUM
PROJECTE FI DE CARRERA DE L'ESCOLA D'ENGINYERIA

Titol del projecte:

Aplicacion de la ingenieria del software sobre la herramienta MATE: Application
Controller

Autor[a]: Antonio Pimenta Soto Data: Septembre de 2011

Tutor[a]/s[es]: Anna Sikora

Titulacié: Enginyeria Técnica Informatica de sistemes

Paraules clau (minim 3)

. Catala: Enginyeria del software, programacioé paral-lela i qualitat de software.
. Castella: Ingenieria del software, programacion paralela y calidad del
software.

. Angles: Software engineering, parallel programming and software quality.

Resum del projecte (extensio maxima 100 paraules)
. Catala:
Aguest projecte té com a objectiu crear i aplicar una metodologia a una aplicacié
anomenada MATE, que va ser creada al any 2003 per Anna Sikora per a la seva
tesis doctoral. Es tracta de dotar el projecte MATE de les eines necessaries per
garantir la seva evolucié. La metodologia creada consta de I'especificacié d'un
entorn de treball y una serie de documents que detallen els processos relatius al
desenvolupament de MATE. A més s'han creat algunes noves caracteristiques que
fan de MATE una eina més completa i comoda.

. Castella:

Este proyecto tiene como objetivo crear y aplicar una metodologia a una aplicacion
llamada MATE que fue creada en en el afo 2003 para su tesis doctoral. Se trata de
dotar el proyecto MATE de las herramientas necesarias para garantizar su
evolucion. La metodologia creada consta de la especificaciéon de un entorno de
trabajo y una serie de documentos que detallan los procesos relativos al desarrollo

de MATE. Ademas se han creado algunas nuevas caracteristicas que hacen de MATE
una herramienta mas completa y comoda.

. Angleés:

This project has the goal of creating and applying a methodology to an application
called MATE, which was created by Anna Sikora in the year 2003 for her Thesis.
The main task consists in providing MATE with the necessary tools to be able to
evolve. The methodology we've created specifies an work environment and a
series of documents detailing the processes used in the developments of MATE.
Furthermore we've added new characteristics to MATE such as a shut down

mechanism and a configuration system that make MATE more complete and
enhance its usability.

indice

L INEEOAUCCION. ...ttt et sb ettt bt e bt eat e s bt et et e s bt enbeeatesaeenaneens 1
1.1 Perspectiva @ENETAL.......c.eiiiiiieiiieeiee ettt tee et e e et e et e et e e esaaeeetseeensaeaaesennsnsaaaeeennnns 1
1.1.1 Computacion de altas PreStaCIONES.ccueeuieriieriieiieeitieeieerieesteeteesreesereeeenereeeeneseeeenens 1
1.1.2 Computacion Paralela...........cccueeeeiieeiiieeiie ettt e e rae e e e e et e s e e snbeeesnbeeenenas 1
1.1.3 Aplicaciones Paralelas............coecieeiiieriieiiieiie ettt ettt et et e e 2
1.1.4 Optimizacion de aplicaciones paralelas..........c.coecveeeeieeeiiieeiieeeee e e 2
L2 IMATE ...ttt ettt e b et s h e b et e h e bttt s h e nb et ht e b et st enae s 4
LI N o103 4 72T U) 4 PSPPSR UURURRR 4
L4 ALCAIICE. ...ttt ettt et st a e et b et e h e bttt e a e b e et s e e s 5
1.5 ODJOEIVOS. . eeeueiieeiiieeiiee ettt ettt e ettt e et e e ettt e e st eesaaee e saeeesaeeessaessbeeensaaeenssaeansaeeansaeeassaeeanseeaeeennnes 5
1.6 Estructura del dOCUMENTO........cc.eiiuiiiiriiiiiiiectteteee ettt et 6
2. Plan de proyecto y estudio de viabilidad............ccceieiiiiriiiiciiecececee e 7
2.1 EStAd0 QCTUAL ..ottt et sttt 7
2.1.1 MATE: €] PIOYECLO....eecuvieeieiieeeiiieeiiee ettt e estteeetteeeteeessaeeessteeessaeeessseessseesnsseessseeessseeesesnssnns 7
2.2 Requisitos funcionales y n0 funcionales............ccceeriieiieniieiiienie et 8
2.2.1 Requisitos fUNCIONALES.ccueiiiiieeiiie ettt ettt e e sae e e e st e e e e e s eareeeeeeenneaaeaens 8
2.2.2 Requisitos N0 fUNCIONALES.c.eeruiiiiieriieeiieeie ettt ettt e e eeeneaeeeenee 8
2.2.3 Catalogacion y priorizacion de TeQUISITOS.uueerreeerreeerreeeiereeesreesereesseeesseeessseeeeesensnnees 9
2.3 Descripcion del sistema MATE..........c.oooiiiiiiiiiciee ettt et e 10
2.3.1 LOZICA Al SISTEMA......eeeiuiiieiiieeiiieeiiee ettt et e et et e e eteeessbeeeaaeeesaeeesaeessaeeennaaaeeens 10
2.3.2 DeSCIIPCION TISICA.c.vvieutieiieeiieeiie ettt ettt et et e et e et e e beeeaaeebeesnbeeseeeabeeseeenseenseeeannes 14
2.4 Alternativas para €l €NTOTINIO.ccuiieiiieeeiieeeiieeeieeeeieeesteeesreeestaeeeeaeesaaeessseessssseaeesensseeeens 15
2.4.1 SOIUCION PLOPUECSTA. .. .eetieeuiieriieeiietieeieesiteeteestteeteeseaeeteesstessseesseesnseesseessseenseesnsseeennsneens 16
2.5 VIabilidad tECIICA.eiiiiiiiieiie ettt ettt st 16
2.5.1 Lenguaje de ProgramaciOn............cecveerueerueenueeneeenieesteeseessseessaessseesseesssessseesseessesssnsseens 16
252 MPLcee et ettt et e a et et n e teenteeteenbeenteens 17
2.5.3 DIYNINSE...tiiiiieiiiietieeie ettt ettt et e et e et e s ate e teeeabeesbeassbeeseesabeesbeeanbeeseeenbeenbeeentaeeenraeean 17
2.0 PlaniflCaCION.cc.uiiiiiiiiieiie ettt ettt et eeab e e bt e s a bt e bt e e e ab e e e e nbaeeeaabaeas 18
2.6.1 WBS (Work Breakdown StrUCLUIE)........cccuviieiiiiiiieeeiie ettt 18
2.6.2 Fases y actividades del Proyecto.......cc.eeccuiieeiiieriie ettt e e e e e 19
2.6.3 ReCUIS0S Al PIOYECLO. . c.uvieuiieiiieiieiieeiteette et stte et et e et e st eteeetteenbeesseesatseeesnsaeeesnsneans 20
2.6.4 Calendario del PrOYECTO......cccvuiieiiieeiieeeieeeteeeetee ettt e et e e et e e st e e s e e snbeeeeesnnaaeaeesennnns 22
2.6.5 Calendario teMPOTAL.........cc.eeiiiiiiiiiieeiierie ettt ettt sttt e et e e staeentaeeeennaee s 23
2.7 EValuacion d@ TI8SZO0S. . ..ueerureeiiieeiieeeereeesteeesiteesetteeesseessaeessseesssaeessseeesseeesesssssseaessssssseeens 26
2.7.1 LiStA € TIESZ0S. .eeuveeereeiieeuieeiiesieeteestteeteessteeseesateanseessseenseesaseanseassseenseensseanseessseenseennsens 26
2.7.2 CatalogaciOn € TIESZOS. . .cuuureerrrerireerreeesteeerteeesteeessreeessseeasseeesssseessseeessseeessseessssessssees 26
2.7.3 Plan de CONtINZEINCIAccuieriieiiieiieetteite et et ettt e ste et e stae e bt e ssbeensaeeesnsaeeensseeeenssaeens 26
2.8 PIESUPUESLO ...vveieeeeiiiieeeiitiee ettt e ettt e e ettt e e e ettt e e e e bt e e e e naaeeeeensbaeeesansseeeeenssaeesannnnsssssannaeeeens 26
2.8.1 Estimacion coste de Personal...........c.cocieeiieriieiiiieniieeie ettt et tee e en 26
2.8.2 Estimacion COSte de 10S TECUISOS.cevuuiiuiiiiiaiieiie ettt sttt 27
2.8.3Estimacion coste de 1as actividades...........eeevuieriieiiieniieiieie e 27
2.8.4 EStimaciOn de OIr0S COSTES. ...ccouutruuiariieiiieitieeiteitte et e stee et et e st esbtesabeesbee st e e eenbeeeenneeeeas 27
2.8.5 Estimacion COStES INAITECTOS.ecuuiiiieriieeiiieiieeieetee et eite et e e saeesteeseeeetaeeeasaeeesseeeans 27
2.8.6 Resumen y analisis COSte BENEICIO.......cuiieiuiiieiiiieciieeeie e 27

3. Calidad del SOTEWATE......cc.eiiiiiiieiieiieee ettt sttt st be e s aee s 28
R 0 PRSP 28
3.1.1 MOdeloS @StANAATc..eiiiiiiiiieiieitietee ettt sttt st 29
3.1.2 Modelos de aplicacion o especificos de companias........c.eeeevveeeeeeeeecieeesiieeenieeerieee e e 31

4 Especificacion de 1a metodologia..........ccuueviiiriiiiiieiiiecii et 32
4.2 Especificacion del entorno de desarrollo............eecvvieriieeiiieeiiieceeee e 32

4.2.1 Perspectiva GENETAL.......ccueiiiiiiieeiiieiieeie ettt ettt ettt et e es 32

4.2.2 ContribuCion PersONAL..........cccueeuieiiieiiieiieeiieeie ettt ettt ettt e e e e e ennes 33

4.2.3 SVN ettt h et ettt ettt et e et e ent e bt et e eneenseenteeneennreens 33
4.2 4 DIOXYZONL..eeiueteeeniiieeitee ettt e ettt e ettt e sttt e s bt e e sabeeeaabeesateeesteeensbeeeabbeesabbeesabbeeeabteeeeeanbeeeeeeas 37

4.3 Documentos de €SPECTIICACION.cccuvieeruiieeiiieeiieeeieeeeiee et eesteeeseaeeesaeeesaeeessaeeensaeesnseeennnes 39
4.3.1 Perspectiva @ENETAl........cccueiiiiiiiiiiieiieeie ettt ettt ettt e 39

4.3.2 ContribUCION PEISONAL.......uiieiiieeiiieeiiieeiieeeieeeeiee et e e sreeeae e e eteeesaeesraeesbeeeeeesnnneaeeens 39

4.3.3 Especificacion de control de versiones y build...........ccooeeriiiiniiiiiiniiiiieeeeeeeee 40

4.3.4 Especificacion de deployment............cccuieeiiieeiiiieiiieeiieeeieeeeieeesee e 41

5 Aplicacion de 1a MetodolOgia.cc.uiiiiiriiieiieie e e 42
5.1 MATE: €1 MOAUIO AC ...ttt e e e ba e e s taeeeseaeeesnsaeaeeeas 42
5.2 Estado inicial del mOAUIO.........cccoiiiiiiiiiiiec e 47
5.3 CamMbDI0S PIOPUESTOS. . eeeeuvieerrieeerieerreeeiteeesteeestteesssaeeassseeasseesssseeaseeessseesseeessseesssseeesssssseeeens 47
5.4 Cambios QPLICAAOS.eeiuieiiieiieeit ettt ettt ettt et e et e bt ete e b e snbeeeenbaeeenreeaens 48
5.4.1 Adaptacion a las nuevas lIDIerias.........cvevevieeriieeiiiecii e e 48

5.4.2 Cambios €N CASCAQA.......eevuiiiiieiiieeiieeiie ettt ettt ettt et et e e bt esate e beeebbeeeentbeeeenaeeeans 49

5.4.3 Cambios ZENETALCS......cccuuiiiiiieiiieeciie ettt et e e e e e et e e st e e ebe e e et a e e e e e nnaaaeeeeennnaees 49

5.4.5 CaMDI0OS CONCIEIOS. ...uviiutieeiiieiieeieetieeteettesteeteesateeteessteenseesseeanseessseeseessseesanseeesasseeennnn 50

5.4 Comentarios afadidOS.ueeeuiieriieeeiieeciee ettt et e et e e e st e e saee e eaeeeaaeeennaeaeeeennnnnes 50

5.4.1 ComeNtarios INIINE.c.eeiiuierieiieeiie et eite ettt eete et eesteeteessteebeessaeebeesaneessnseeesnnsaaeanes 51

5.4.2 Comentarios DOXYZEN.......ccccuiiiiiiieiieeeiieeeteeesiee e e etaeeeateesteeesteeessseeessaaeesaeesnsseeennnns 52

0 NUEVAS CATACTETISTICAS. .. eeuvieiiieiieiieetieeiteette et et et e e bt e stteeabeesaeeesbeesseeeaseeaeesnseeeansseeeensseeeansseeanns 54
0.1 INSTALAAOT ...ttt ettt e et e et e e e beeeea 54
6.2 MecaniSmO de PATada.........ccueeiuieiiienieeiieiee ettt ettt ettt e et e et eebe e e nbeeeenbeeeenreeeens 57

7 CONCIUSIONES. ...ttt ettt ettt e b e e a e e bt e sat e e bt e e st e e bt e eab e e bt e eabe e bt e eabeenbeeembeenbeesaneennees 59
7.1 POSIDLES TMEJOTAS.....eeeieitieiieeiieciieeiee ettt e sttt e et e bt e st eebeeeate e bt e sseeenseesaseeeensseeesnnseeeansseeenns 59

o B 3 10] F L0 e ¥ i £ SRR 61

TIAICE € ANEXOS...eveveeeeeeeeeeeeeeee e e e e e e e oo s e e e s et e s e e s s es e s e s e s s s e s e s e e s s et e s e s s e s e s eseseneeseerenens 62

1 Introduccion

En esta seccion se exponen los aspectos referentes al proyecto proporcionando una vision general de lo
que se trata en las secciones posteriores y ofreciendo al lector informacion util para comprender el

marco en el que se desarrolla el proyecto.

1.1 Perspectiva general

1.1.1 Computacion de altas prestaciones

En la actualidad el uso de computadoras se ha extendido a todas las ramas de la ciencia, proporcionando
una capacidad de calculo hasta ahora inimaginable permiten realizar calculos y simulaciones
extremadamente complejas que seria imposible llevar a cabo de cualquier otra forma.

Esté afan de conseguir maquinas mas y mas potentes cada dia motiva la investigacion en HPC (High
Performance Computing), en castellano computacion de altas pretaciones que retine diferentes aspectos

del hardware y software.

1.1.2 Computacién paralela

La evolucion de las computadoras hace que cada vez sean mas potentes y por tanto capaces de realizar
calculos mas complejos en menos tiempo. Esta evolucion ha consistido durante mucho tiempo en
aumentar la frecuencia a la que se realizan estos calculos, pero en los tltimos tiempos han surgido otras
ideas como el computo paralelo que presenta una alternativa viable para dar continuidad a esta
evolucion. Debido a que existe una obvia limitacion fisica a la hora de aumentar la frecuencia de los
procesadores y el alto consumo que esto supone la computacion paralela ha ganado protagonismo en el
campo de la supercomputacion.

Podemos discernir dos claras variantes de la computacion paralela, sistemas multintucleo en los que una
sola maquina posee varios nucleos de procesamiento y clusters de maquinas donde varias maquinas
colaboran para realizar tareas de forma mas rapida. Pero a pesar de las posibilidades que este tipo de
arquitecturas presenta también existen desventajas. Principalmente a la hora de desarrollar software para
este tipo de arquitecturas se exige un alto conocimiento debido a que la complejidad del codigo aumenta
y aparecen muchos problemas nuevos derivados del tipo de ejecucion concurrente. Problemas como la
sincronizacion o la comunicacion entre cada uno de los nodos son comunes obstdculos que aparecen y
dificultan la creacion de aplicaciones paralelas eficientes.

Ademas la programacion paralela solo puede reducir el tiempo de ejecucion hasta cierto punto ya que
parte de las tareas que se han de ejecutar no pueden hacerlo de forma paralela. Esta limitacion viene
descrita por la ley de Amdahl y nos permite calcular la maxima optimizacion que podemos obtener en

funcion del porcentaje de la tarea que sea paralelizable.

1

Cuando programamos una aplicacion para que esta se ejecute de forma paralela debemos dividirla en
segmentos que seran procesados por las diferentes maquinas. En este aspecto podemos dividir el
paralelismo en dos tipos:
— Paralelismo de datos:
En este tipo de paralelismo se divide la estructura de datos con la que se trabaja en diferentes
segmentos y se aplica la misma tarea a cada una de ellos. Este tipo de paralelismo es aplicable a
programas en forma de bucle donde en cada iteracion se trabaja con una parte de la estructura de
datos.
— Paralelismo de tareas:
En cambio en este tipo de paralelismo se ejecuta una tarea distinta en cada uno de los nodos del

cluster.

1.1.3 Aplicaciones paralelas

En las arquitecturas multinicleo todos los nticleos de procesamiento trabajan sobre la misma memoria y

por tanto no requieren de un sistema de paso de mensaje especializado para comunicarse entre ellos.

En cambio en las arquitecturas distribuidas como clusters o grids es necesario una comunicacion y
sincronizacion entre las diferentes maquinas que la ejecutan para controlar el flujo de las instrucciones
que se procesan y poder aprovechar los resultados obtenidos. Este proceso de paso de mensajes es
necesario para distribuir las tareas a cada uno de los procesadores y posteriormente para obtener los
resultados.

En el caso de MATE las aplicaciones con las que este trabaja usaran MPI (Message Passing Interface)
para realizar estas comunicaciones. Este protocolo que se usa como estandar en aplicaciones paralelas,
dota a las aplicaciones de herramientas para comunicarse una vez han sido ejecutadas en una

computadora paralela distribuida.

1.1.4 Optimizacion de aplicaciones paralelas

Como se expone anteriormente para que calculos complejos sean posibles se ha de disponer de
computadoras muy potentes, pero estas tiene un coste alto y por tanto el tiempo que se emplea en
realizar las tareas es un factor que influye directamente en el coste. Esto junto con la necesidad de
realizar estas tareas en tiempos razonables motiva la creacion de herramientas que aceleran la ejecucion

de este tipo de aplicaciones.

Como consecuencia existen programas cuya finalidad es la de analizar el comportamiento de
aplicaciones paralelas en ejecucion para identificar problemas, como cuellos de botella, y poder
solucionarlos para agilizar la progresion de la aplicacion.

El proceso de optimizar las aplicaciones paralelas tiene tres fases: monitorizacion, analisis y

2

sintonizacion. En la fase de monitorizacion se extrae informacion referente a la ejecucion de la
aplicacion. Esta informacion servird para analizar el comportamiento de la aplicacién y encontrar
posibles problemas, esto se hace en la fase de analisis. Por ltimo en la fase de sintonizacion se hacen

cambios en la aplicacion para solucionar, en la medida de lo posible, los problemas encontrados,

Analisis manual

Normalmente este proceso se realiza manualmente, el programador observa los datos obtenidos durante
la monitorizacidn del programa una vez este ha terminado su ejecucion. Con los datos recolectados el
usuario puede identificar problemas y modificar el codigo de la aplicacion en consecuencia, recompilar
y volver a ejecutar el programa.

El problema de esta aproximacion es que se requiere un alto conocimiento sobre programacion paralela
para identificar y solucionar este tipo de problemas y por tanto, ademas de ser costoso y consumir

tiempo, esta al alcance de pocos expertos.

Analisis automatico

Existen aplicaciones que analizan automaticamente los datos recolectados y asisten al programador en
encontrar los cuellos de botella. Pero en estos casos el programador necesita realizar el mismo los

cambios y el andlisis sigue siendo postmortem.

Analisis dinamico

En este caso el analisis se efectia durante la ejecucion de la aplicacion esto permite eliminar la
necesidad de un archivo donde almacenar los datos recolectados y el analisis se va realizando en paralelo

a la ejecucion de la aplicacion. En este caso se obtienen mejores resultados y por tanto las mejoras

sugeridas seran mas efectivas pero aun se requiere parar la aplicacion para poderla aplicar.

Sintonizacion dinamica

Este modelo permite aplicar los cambios sugeridos por el analisis de los datos recolectados en tiempo de
gjecucion y por tanto eliminamos la necesidad de parar la ejecucion y que el programador deba
modificar el codigo y recompilar el programa. Esto ademas nos permite aplicar cambios adaptativos ya
que cada ciclo de monitorizacion recolectard datos referentes a las modificaciones del ciclo anterior. Este
proceso adaptativo hace que las mejoras aplicadas sea mas eficientes, ya que en caso de aplicaciones no

deterministas las soluciones aplicadas en referencia a analisis anteriores podrian ser solo efectivas en

€asos concretos.

Modificacion dinamica

Para que la sintonizacion dindmica sea posible ha de existir una forma de modificar las instrucciones de
la aplicacion mientras esta se ejecuta. MATE utiliza una libreria llamada Dyninst para eso. Dyninst
proporciona una API que permite generar pequefios bloques de instrumentacion llamados snippets y
introducirlos en un punto de la aplicacion en cuestion. Esto permite que un programa mutator, en nuestro
caso MATE, modifique un mutatee, la aplicacion sintonizada. El mutator utiliza una representacion de la
imagen en memoria del mutatee llamada image para controlar el flujo del proceso y de esta manera

poder pararlo e insertar snippets en un punto predeterminado (point).

MATE usa estas caracteristicas en dos puntos transcendentales del proceso, la monitorizacion y la
sintonizaciéon. Cuando MATE inicia una aplicacion MPI inserta en ella una serie de snippets que envian
informacion al Analyzer y cuando este decide que cambios realizar en el programa, es mediante las

funciones de esta API que MATE aplica los cambios en el programa.

1.2 MATE

Es en este tipo de entornos, c/usters de maquinas en paralelo, que MATE aplica una serie de funciones

para optimizar el funcionamiento de estas.

Existen muchas aplicaciones que intentan optimizar el uso de estas supercomputadores para incrementar
su rendimiento. MATE es una propuesta innovadora que va un paso mas alld en este proceso de

optimizacién y lo automatiza.

MATE tiene como objetivo encontrar cuellos de botella en la ejecucion de la aplicacion y modificarla
mientras esta se ejecuta, es decir mientras se encuentra en memoria, para resolverlos y de esta forma

aumentar el rendimiento general de la computadora.

1.3 Aportacion

Dado que se trata de software ya creado, nuestra aportacion al proyecto consiste en dotarlo de las
herramientas necesarias para seguir evolucionando, y de esta forma hacer posible que se convierta en un

producto que puedan usar terceras partes.

Para que esto sea posible MATE debe disponer de unos minimos requisitos de calidad que permitan a
otros usuarios ejecutar y usar la aplicacion pero que también ellos puedan comprender el codigo y

participar de la evolucion de este.

Ademés de el trabajo realizado sobre software ya existente también afiadiremos a MATE nuevas

caracteristicas que lo hardn mas comodo de usar y permitirdn que llegue a mas usuarios.

1.4 Alcance

Nuestro proyecto, pese a que trabajemos con MATE, no modificara el funcionamiento basico de este.

MATE trabaja con funciones complejas de analisis y sintonizacion de aplicaciones, que se escapan de

nuestro campo de conocimiento y por tanto no modificaremos. Estas funciones han sido desarrolladas

por nuestros antecesores en este proyecto y cumplen con su funcion.

1.5 Objetivos

Debido a su envergadura, los objetivos de este proyecto se dividiran entre los diferentes miembros del
equipo de desarrollo. A continuacion se listaran los objetivos generales y se especificara la division de

los mismos.
Objetivo Prioridad ~ Miembro Asignado
1 Crear especificaciones del entorno de Prioritario | Grupo
desarrollo
2 Implantar entorno de desarrollo Critico
2.1 |Herramienta de colaboracion Critico Rodrigo Echeverria, Antonio Pimenta
2.2 |Herramienta de control de versiones Critico Antonio Pimenta
2.3 |Herramienta de construccion Critico Noel De Martin
3 Construir la metodologia de desarrollo. | Critico Grupo
3.1 |Guia de estilo de documentacion. Critico Rodrigo Echeverria
3.2 | Guia de estilo de codificacion. Critico Noel De Martin
3.3 | Guia de estilo de documentacion de Prioritario |Rodrigo Echeverria
codigo.
3.4 | Guia de estilo de desplegamiento. Prioritario | Antonio Pimenta
4 Aplicar la metodologia y Critico
especificaciones a MATE.
4.1 | Aplicacion sobre las clases comunes Critico Noel De Martin
(Common)
4.2 | Aplicacion sobre el moédulo DMLib. Critico Noel De Martin
4.3 | Aplicacion sobre el modulo AC. Critico Antonio Pimenta
4.4 | Aplicacion sobre el modulo Analyzer. Critico Rodrigo Echeverria

5 Desarrollo de nuevas caracteristicas Secundario

5.1 | Crear un instalador para cualquier Secundario |Rodrigo Echeverria, Antonio Pimenta
version de Linux.

5.2 |Crear un lector de configuraciones Secundario |Noel De Martin
flexible.

5.3 | Crear un sistema de cerrado de MATE. | Secundario |Rodrigo Echeverria, Antonio Pimenta

6 Crear documentaciéon de MATE para Prioritario | Grupo
futuros colaboradores y usuarios.

1.6 Estructura del documento

Este documento esta dividido en 8 secciones siendo esta la primera donde se introduce el tema del

proyecto y se da informacion necesaria para la comprension del conjunto.

La segunda seccidn contiene la informacion relativa a la gestion del tiempo usado para realizar el
proyecto. En ella se expresan los requerimientos que debe satisfacer el producto final y se comprueba la
viabilidad de estas metas. Ademas se hace una descripcion a fondo del funcionamiento de MATE y de

sus modulos.

En la seccion tercera se hace hincapié en la importancia de la calidad del software, que es uno de los
fundamentos de la realizacion de este proyecto. En esta seccion también se hjabla de los diferentes
modelos que existen para asegurar la calidad en un producto software y especificamos cual de ellos es

mas adecuado a MATE.

La cuarta seccion habla del disefio y desarrollo de la metodologia, y se puede dividir en dos bloques: el
primero que habla del entorno de desarrollo que se propone para MATE y el segundo que incluye las

especificaciones segun las cuales se regira este y futuros proyectos sobre MATE.

La quinta seccion hace referencia a las actividades que se han llevado a cabo sobre el codigo de MATE
referentes a la metodologia descrita en la seccion 4. Esta seccion incluye detalles de como se han

aplicado las diferentes especificaciones en MATE y como se ha usado el entorno de desarrollo.

La seccion sexta habla de las nuevas caracteristicas con las que se ha dotado a MATE. Se especifican las
diferentes fases del desarrollo de estos componentes nuevos, cual fue el motivo de su creacion y los

resultados de esta.

En la séptima seccion se explican los resultados del proyecto incluyendo posibles mejoras aplicables a
este y ideas para futuros proyectos MATE. En esta seccion se valora el trabajo realizado y se analiza el

resultado obtenido.

Por ultimo en la seccidon octava se incluyen las referencias a los documentos y paginas web usadas para

docuentarse.

6

2. Plan de proyecto y estudio de viabilidad

En esta seccion se detalla en que marco se situa este proyecto y se plantean los requisitos especificos
que deberan ser satisfechos por el producto final, ademadas, se propone una planificacion para realizar el
proyecto en el tiempo estimado. Por ultimo se realiza un estudio para comprobar que se trata de un

proyecto viable economica y técnicamente.

2.1 Estado actual

2.1.1 MATE: el proyecto

MATE es una aplicacion desarrollada por Anna Sikora en el afio 2003 como parte de su tesis doctoral.
Esta aplicacion tiene como objetivo mejorar el rendimiento de sistemas distribuidos y pretende llevar un
paso mas allé esta tarea por medio de automatizar el proceso de optimizacion y realizarlo de forma

dindmica, sin parar la ejecucion de la aplicacion.

El hecho de analizar el comportamiento de la aplicacioén objetivo y aplicar los cambios adecuado
produce un overhead en el tiempo de ejecucion y por tanto el reto es realizar este proceso sin influir
negativamente en el tiempo total de ejecucion para que el trabajo de optimizacion sea efectivo. El

analisis que se realiza es mas superficial y ligero para poder obtener soluciones en tiempo real.
En su inicio MATE se basaba en los siguientes puntos:

— La monitorizacidn, andlisis y modificaciones se realizan en tiempo de ejecucion, por contra a
otras aplicaciones similares que realizan analisis postmortem o que los cambios deben ser

realizados a mano.

— MATE no debe influenciar negativamente en el tiempo de ejecucion de la aplicacion, la intrusion
tanto en cada una de las maquinas como en la red debe ser minima para hacer eficaz la

optimizacion.

— El sistema debe ser aplicable a diferentes aplicaciones pudiendo adoptar diferentes modelos de
analisis.

— El sistema debe estar adaptado a personal no experto, parte de los beneficios de MATE es que

automatiza los aspectos mas complejos de la optimizacion de aplicaciones paralelas y por tanto

hace la participacion de expertos innecesaria.

Posteriormente a su creacion MATE ha derivado en varios trabajos haciéndolo parte de diferentes
proyectos, cada uno de estos proporciondndole nuevas funcionalidades y de esta forma perpetuando su
evolucion. Entre otros Paola Caymes y Andrea Martinez han trabajado con MATE para dotarlo de

nuevas caracteristicas, la creacion automatica de técnicas de sintonizacion y nuevos modelos de

7

rendimiento respectivamente.

El proyecto MATE sigue activo y existen lineas de investigacion que en el futuro haran que MATE sea
aplicable en sistemas de gran escala. Esto se conseguira jerarquizando el sistema de andlisis de forma
que no se lleve a cabo en un unico nodo sino que se distribuya en niveles para hacer posible el analisis

de miles de nodos.

2.2 Requisitos funcionales y no funcionales

Al tratarse de un proyecto que se basa en una aplicacion ya desarrollada los objetivos naturales de un

proyecto de desarrollo se ven llevados a un segundo plano.

Por tanto ,aunque lo primero que puede surgir al pensar en requisitos sobre este proyecto sean requisitos
de MATE (mejorar rendimiento de la aplicacion, no sobrecargar demasiado la ejecucion), seria un error
enfocarlo de esa manera, ya que este proyecto no se trata de crear MATE, sino de crear una version

como producto software del mismo.

Esto es, desarrollar y aplicar una serie de procedimientos para producir, a partir de la version existente
de MATE, una aplicacion adecuada a un uso general y proporcionar las herramientas necesarias para la

continuidad de su desarrollo.

2.2.1 Requisitos funcionales

Debido al hecho de que MATE es un programa plenamente operativo los requisitos funcionales se
reducen a que la funcionalidad actual se mantenga y a afiadir algunos pequefios médulos que hacen mas
comodo el uso de MATE aunque no modifican su funcionamiento principal, como por ejemplo un
sistema de Shut Down (Apagado). El resto de requisitos apareceran al realizar los test de prueba sobre

los cuales trabajaremos para modificar el programa.
1.- Mantener funcionalidad actual de MATE.
2.- Adaptar a nuevos entornos.
3.- La aplicacion debe cerrarse de forma controlada.

4.- Permitir lectura de archivos de configuracion.

2.2.2 Requisitos no funcionales

En nuestro caso los requisitos no funcionales se basan en homogeneizar la codificacion y
documentacion. Por lo tanto hardn referencia a las guias de especificacion. También seran encontrar los

posibles errores del sistema mediante un sistema ciclico de testeo.
8

Dado que, como hemos explicado anteriormente, los requisitos funcionales basicos de MATE ya estan
satisfechos, la carga de nuestro proyecto se encuentra en los no funcionales. Estos, pese a no anadir

funcionalidad a la aplicacion incrementan su calidad.
1.- Homogeneizar codificacion y documentacion.
2.- Realizar proceso de testeo.

3.- El programa debe funcionar en todas las distribuciones de linux.

2.2.3 Catalogacion y priorizaciéon de requisitos

Entre los requisitos de este proyecto el mas importante es el de mantener la funcionalidad actual. Los
siguientes serian referentes a tener un buen soporte y documentacion para que futuros colaboradores o
desarrolladores de MATE puedan solventar errores residuales. Y para acabar tener el mayor rango de

sistemas compatibles posible.

Priorizacion de los requisitos:

Requisitos Prioridad
Mantener funcionalidad actual de MATE. Esencial
Adaptar a nuevos entornos. Condicional
La aplicacion debe cerrarse de forma controlada. Opcional
Permitir lectura de archivos de configuracion. Opcional
Homogeneizar codificacion y documentacion. Esencial
Realizar proceso de testeo. Esencial

El programa debe funcionar en todas las distribuciones de linux. |Opcional

Relacion de requisitos con objetivos del proyecto:

Requisitos Objetivos

Mantener funcionalidad actual de MATE. 5
Adaptar a nuevos entornos. 6

La aplicacion debe cerrarse de forma controlada. 5
Permitir lectura de archivos de configuracion. 5
Homogeneizar codificacion y documentacion. 1,4
Realizar proceso de testeo. 1,2,3
El programa debe funcionar en todas las distribuciones de linux. |6

2.3 Descripcion del sistema MATE

2.3.1 Logica del sistema

En nuestro entorno es necesario realizar sintonizacién dindmica. Desde el punto de vista funcional

podemos distinguir tres fases basicas:

10

Monitorizacion

Esta fase es la encargada de obtener informacion sobre la ejecucion de la aplicacion. Esto no es
un proceso trivial ya para obtener medidas de rendimiento de la aplicacion esta debe estar en
marcha, por lo tanto esta tiene que incluir fragmentos de codigo que se encargan de captar
eventos y notificar de estos al AC. Estos fragmentos pueden haber sido introducidos en el codigo
original por el programador o se pueden introducir de forma directa en el programa compilado y
en ejecucion. En nuestro caso optamos por la segunda opcion de nos da un grado de versatilidad

mayor.

Para que esto sea posible la aplicacion que queremos monitorizar debe ejecutarse bajo la tutela
de un proceso de control y recoleccion [AC]. Este proceso se encarga, en una primera instancia,
de introducir en la aplicacion objetivo una serie de funciones baliza que monitorizan una parte
especifica de la aplicacion, y posteriormente de almacenar y tratar los resultados. Es necesario
también cargar en la aplicacion una libreria que contiene las herramientas necesaria para la

monitorizacion de la aplicacion [DMLib].

Estas medidas de rendimiento pueden ser de varios tipos, por ejemplo tiempos de ejecucion de
funciones clave o repeticiones de llamadas a una misma funcion. También se pueden medir las

veces que ocurre un evento complejo.

No obstante, para conseguir obtener medidas de rendimiento, se debe conocer profundamente la
aplicacion que se desea optimizar. MATE utiliza unos modelos de rendimiento adaptados
estrechamente a la aplicacion objetivo. Estos proporcionan informacion sobre como obtener

datos utiles para la medicion del rendimiento y medidas a tomar para mejorarlo.

Por ultimo debe existir un medio adecuado para transmitir los datos recolectados a una proceso
de analisis para obtener resultados y, si es posible, sintonizar la aplicacion para mejorar su

rendimiento.

Algunos aspectos que se deben tener en cuenta al trabajar en diferentes maquinas son las posibles
diferencias en los relojes de sus procesadores y el tiempo de transmision de los datos. Es
importante que una serie de eventos que ocurren en la aplicacion lleguen en ese orden al

analizador.

11

Analisis
Una vez obtenidas las mediciones adecuadas un programador experto y conocedor de la
aplicacion a optimizar, sabria encontrar los cuellos de botella en su ejecucion y podria proponer

soluciones a estos. No obstante esta es una tarea pesada y duradera y como hemos dicho requiere

un nivel de conocimiento muy alto.

Como alternativa existen métodos de andlisis automatico. Estas herramientas identifican
problemas en la ejecucion de la aplicacion y incluso proporcionan soluciones a estas. Para que
esto sea posible se le debe proporcionar a la herramienta de anélisis una base de conocimiento
sobre la aplicacion asi como posibles zonas criticas donde buscar problemas. El proceso de
producir unos modelos que permitan al analizador automatico identificar exitosamente estos
problemas no es facil. Ademas a pesar de que se obtenga un modelo valido las soluciones
proporcionadas seran estrictamente ttiles para el comportamiento que tuvo la aplicacion durante

esa concreta ejecucion.

Con MATE se intenta atajar este problema no solo automatizando el proceso de analisis si no
ademas realizarlo de forma dindmica. Esto implica que el anélisis de puede realizar mientras la
aplicacion se ejecuta eliminando la necesidad de un archivo donde almacenar los datos de
medicion. Este método, pese a que conserva muchas de las desventajas del analisis manual,
permite un analisis adaptativo en aplicaciones iterativas ya que durante la ejecucion se puede

modificar dindmicamente la monitorizacion y instrumentacion de la aplicacion.

En el caso de MATE el andlisis de produce dinamica y automaticamente, sin necesidad de un
archivo con los datos de monitorizacion, ya que el modulo Analyzer recibe los eventos

recolectados directamente.

Optimizacion

La fase de optimizacion (Tuning) es en la cual aplicamos los cambios adecuados para mitigar los
problemas detectados. Estos cambios se deben hacer en el cddigo de la aplicacion ya que forman
parte de esta, y por tanto es normalmente necesario cerrar la aplicacion, modificarla recompilarla

y volverla a ejecutar. Si los cambios aplicados son adecuados se deberia observar una mejora en

el rendimiento.

No obstante este método de optimizacion requiere la atencion directa del programador y ademas
es necesario recompilar, y por tanto cerrar, la aplicacion. Los cambios realizados podrian ser
inutiles si en la siguiente ejecucion el programa se comporta de forma distinta, debido, por

ejemplo, a diferentes valores de entrada.

MATE proporciona un modelo de optimizacion autonomo que no requiere de la intervencion del

programador y que se realizar dindmicamente, es decir, sin cerrar la aplicaciéon. Ademas el hecho

de que se sintonice la aplicacion de forma dindmica permite que se realice de forma adaptativa,
asi aunque cambien las condiciones de la ejecucion el programa sigue operando de forma

eficiente.

En mate la aplicacion de estas variaciones es llevada a cabo por el AC (Application Controller),
este dispone de un sintonizador (Tuner) que contiene las herramientas necesarias para
instrumentar la aplicacion dinamicamente. Usando la informacion proporcionada por el Analyzer

el AC introduce los cambios necesarios en la aplicacion mientras esta se ejecuta.

Estas tres fases tienen que estar realizdndose continuamente, dindimicamente y automaticamente

mientras el programa esta en ejecucion. Para que esto método sea efectivo la aplicacion objetivo debe

ser iterativa (ejecucion de un bucle que realiza de forma repetida una serie de instrucciones), y se obtiene

la eficacia en procesos largos y que usen muchos recursos.

Basicamente, MATE esta formado por los siguientes modulos que operan conjuntamente, controlando y

intentando mejorar el rendimiento de la aplicacion objetivo.

12

AC (Application controller): Se trata de un proceso daemon que controla la ejecucion de la
aplicacion. Este proceso se inicia de forma manual en cada uno de los nodos y es el que se

encarga de inicializar las tareas (aplicacion) que se va a monitorizar.

Lo primero que hace el modulo es cargar en la imagen del proceso que representa la aplicacion
una libreria dindmica llamada DMLib, que contiene las herramientas necesarias para la
monitorizacion dindmica de la aplicacion. Esta libreria debe inicializarse con los datos del
analizador (host y puerto) para que sea posible la comunicacién entre los nodos y el modulo

Analyzer.

A continuacidn se buscan los puntos indicados por el Analyzer donde se deberan introducir los
monitores que recopilan informacion de la ejecucion. Esto es diferente para cada aplicacion y

viene indicado por unos modulos incluidos en el Analyzer.

Una vez la aplicacion esta lista y en linea se procede a iniciar la aplicacion, y una vez esta esta
iniciada los datos recopilados se envian como eventos al Analyzer directamente desde la

aplicacion usando funciones de la DMLib.

En este punto el AC ha de estar preparado para recibir instrucciones del Analyzer a la vez que
controla la aplicacidon en ejecucion ya que esta puede producir nuevos eventos que reportar. En
cuanto se recibe una peticion de sintonizacion (Tuning request) el AC informa a las tareas de que
han de ser modificadas y estas a su vez pedirdn al Tuner que las actualice, siempre esperando a

que se de el momento adecuado. Esta sincronizacion de las modificaciones es posible gracias a

13

los breakpoints (Puntos de parada), que indican los lugares donde se debe insertar la
instrumentacidon nueva y paran la a ejecucion de la aplicacion para que estas modificaciones sean

posibles.

Este ciclo de comunicacién-modificacion se realiza de forma ciclica hasta que se han realizados

todas las modificaciones o la aplicacion se ha cerrado.

DMLib (Dynamic Monitoring Library): Una libreria compartida que se carga dinamicamente
dentro de las tareas de la aplicacion para facilitar la instrumentacion y recoleccion de datos. La
libreria contiene funciones que son responsables de el registro de eventos con todos los atributos
necesarios para entregarlos para analisis. Usamos la funcion 1oadLibrary de Dyninst para

cargar la libreria una vez la tarea ya ha sido iniciada.

Esta libreria debe ser inicializada con los datos del Analyzer para hacer posible la transmision de

los datos recolectados. Esta inicializacion se inserta como un snippet en la aplicacion.

Una vez cargada e inicializada esta libreria implanta las conexiones necesarias via proxy para

comunicarse con el Analyzer.

Analyzer: Es el proceso que se encarga de analizar el rendimiento de la aplicacion, detecta

problemas de rendimiento a tiempo real y solicita los cambios idoneos para mejorarlo.

Mediante un sistema de captura de eventos este mddulo obtiene informacion sobre la ejecucion
de la aplicacion y aplica unas funciones especificas a la aplicacion para identificar problemas y
proporcionar al AC posibles soluciones. Este procedimiento es también ciclico y en cada

iteracion ser manejan varios eventos que resultan en soluciones para el AC.

Pese a que es el A quien se ejecuta junto a la aplicacion el Analyzer dispone de una abstraccion
de esta que usa para identificar los eventos con de cada una de las tareas que se ejecutan en los

diferentes nodos.

Common: Por ultimo existe un modulo en MATE que contiene las clases compartidas que son
usadas por los demas modulos. Este modulo cumple el objetivo de reutilizacion de codigo y

encapsulacion de los diferentes componentes de MATE.

2.3.2 Descripcion fisica

Events

Master AC
[Monitor] [Tuner J

Slave AC
{ Monitor] [Tuner]

\A4 h 4

Change
instr.

1
i
|
i
1
Analyzer . modifications
1
1
1
i
i

Machine 3

Figura 1: Esquema del sistema extraido de la tesis sobre MATE

En cuanto a aplicacion, MATE se divide en dos partes diferenciables, el Analyzer y el Application
Controller. Estos son los dos ejecutables que cumplen funciones distintas y se complementan para
formar en entorno de sintonizacion que es MATE. Al ser una herramienta para programas distribuidos,
MATE se ejecuta en diferentes maquinas, en concreto el modulo AC se ejecuta en cada uno de los nodos
que ejecutan la aplicacion objetivo, mientras que el Analyzer es un programa centralizado que se ejecuta

en una sola maquina.

Al empezar la aplicacion, MATE distribuye un proceso de AC en cada maquina para controlar el

comienzo de las tareas.

Otro de los componentes de MATE de la libreria DMLib (dynamic monitoring library), cuando
comienza una nueva tarea MPI, el AC carga la libreria compartida de monitorizacion en la memoria de
la tarea para permitir la instrumentacion de esta. Esto le permite al Analyzer afiadir/eliminar eventos

dindmicamente para recolectar informacion y realizar la sintonizacion.

14

2.4 Alternativas para el entorno

Considerando que el proyecto consiste en crear una metodologia de desarrollo productiva que sirva
como base a los futuros desarrolladores de MATE, para posteriormente aplicarla al software existente,
las alternativas se definen en el marco de herramientas de desarrollo, colaboracion y en la seleccion de la

propia metodologia.

Para proyectos de este tipo existen varias herramientas que nos asisten a la hora de trabajar en conjunto,
controlar la evolucion del proyecto y finalmente compilar y testear los resultados. A continuacion se
exponen las alternativas que hemos encontrado y la seleccién que usaremos, basandonos en cuales de

ellas se adecuan mas a MATE.

Alternativa 1 (H. Colaboracion — Redmine)

Redmine es una herramienta de colaboracion que actia como solucion todo-en-uno ya que posee soporte
multiproyecto, acceso basado en roles, sistema de seguimiento, gestor de calendarios y diagramas de
gantt, soporte a wikis y foros y compatibilidad con diversos gestores de versiones concurrentes. En

cuanto a coste, encontramos que se trata de una herramienta de cédigo libre y gratuito.

Alternativa 2 (H. Colaboracion — Trac)
Trac es una herramienta de gestion de proyectos que enlaza una base de datos de errores de software, un
sistema de versiones y el contenido de una wiki de colaboracion. En cuanto a coste, encontramos que se

trata de una herramienta de codigo libre y gratuito.

Alternativa 3 (H. Control Versiones — CVS)

CVS (Concurrent Versions System) es una aplicacion cliente-servidor donde el servidor se encarga de
guardar un historial de las diferentes versiones de cada uno de los archivos que componen un proyecto;
los clientes pueden acceder a estos archivos de forma directa o bien remotamente. En cuanto a coste,

encontramos que se trata de una herramienta de codigo libre y gratuito.

Alternativa 4 (H. Control Versiones — SVN)

SVN (Subversion) es una herramienta de control de versiones que tiene la peculiaridad de que mantiene
un Unico nimero de version para un conjunto de archivos, de forma que lo que conserva es un estado
determinado del proyecto en general. Ademds soporta el acceso desde redes, permitiendo a usuarios
modificar los archivos desde distintas ubicaciones. En cuanto a coste, encontramos que se trata de una

herramienta de codigo libre y gratuito.

15

Alternativa 5 (H. Desarrollo — Buildbot)
Buildbot es una herramienta de desarrollo software iterativa que automatiza los procesos de compilacion
y testeo. Posee soporte para control de versiones (CVS, SVN...). En cuanto a coste, encontramos que se

trata de una herramienta de codigo libre y gratuito.

Alternativa 6 (H. Desarrollo — Tinderbox)
Tinderbox es una suite que proporciona capacidades de continua integracion, basicamente permite
manejar proyectos software y probar su funcionamiento en diversas plataformas. En cuanto a coste,

encontramos que se trata de una herramienta de codigo libre y gratuito.

2.4.1 Solucién propuesta

En cuanto a la herramienta de seguimiento utilizaremos Redmine por dos razones: primero, es mas
completa y nos ofrece en una misma aplicacion todas las herramientas que necesitamos y, segundo, la

experiencia del director de proyecto con esta herramienta nos servira como guia.

Sobre la herramienta de control de versiones utilizaremos SVN, ya que nos interesa mas guardar el
proyecto por versiones en general, sin hacer hincapi¢ en los archivos individuales. Ademas nos
proporciona una facil integracion con apache para poder preparar un servidor a través del cual acceder al

repositorio.

Y finalmente la herramienta de desarrollo que utilizaremos es Buildbot por su capacidad de integracion
con SVN y porque nuestros intereses no se dirigen especialmente al testeo multiplataforma, sino a un

ciclo iterativo de compilacion-testeo-recodificacion.

2.5 Viabilidad técnica

Esté seccion estd destinada a determinar que conocimientos seran necesarios para realizar el proyecto, y
de esta forma poder prepararse adecuadamente para las tareas que realizaremos en adelante. El proyecto
se realiza alrededor de una aplicacion existente, MATE, que es compleja y trabaja en un campo de la
informatico especializado como es la computacioén de alto rendimiento y la modificaciéon dinamica de
aplicaciones en ejecucion. Esto hace que sea necesario, si bien no tener un conocimiento exhaustivo del

tema, aprender algunos aspectos basicos, especialmente sobre las herramientas usadas como Dyninst o

MPL.

2.5.1 Lenguaje de programacion

Para poder participar del desarrollo de una aplicacion es absolutamente necesario conocer el lenguaje en

el cual esta ha sido escrita. En el caso de MATE este lenguaje es C++.

Debido al background de los participantes en este proyecto, no disponemos de experiencia en este
16

lenguaje y sera necesario realizar un estudio de C++ asi como de los patrones usados en MATE.

2.5.2 MPI

En cuanto al aspecto de MATE que trata con aplicaciones paralelas es relevante conocer los métodos de

pase de mensajes entre este tipo de procesos ya que en esto se basa la arquitectura de la aplicacion.

MATE se aplica sobre aplicaciones paralelas que implementan MPI (Message Passing Interface) como
herramienta de comunicacion entre sus diferentes procesos. Por tanto es importante conocer el

funcionamiento de esta libreria.
Aprendizaje realizado:

Para disponer de los conocimientos necesarios sobre MPI hemos asistido a una serie de clases teoricas y
practicas donde hemos aplicado los conocimientos tedricos adquiridos para crear pequefias aplicaciones

paralelas que se comunican con este protocolo.

2.5.3 Dyninst
Como hemos dicho, una parte importante de MATE es el hecho de que los cambios en la aplicacion se
realizan de forma dinamica y por tanto se requiere una herramienta que permita este tipo de acceso al

programa objetivo.

En este caso usamos Dyninst, una libreria que nos permite manejar un proceso en ejecucion y insertar
instrumentacion en el. Dyninst es una herramienta compleja pero muy potente que nos permite encontrar

puntos concretos en el codigo siendo ejecutado e insertar o modificar elementos en el.
Aprendizaje realizado:

Al igual que con MPI se ha asistido a una serie de clases donde se han adquirido conocimientos tedricos
sobre Dyninst para posteriormente aplicarlos en laboratorios practicos, con el resultado de pequeios
programas (mutator y mutatee) que usan Dyninst para obtener datos de la ejecucion de estos como el

numero de veces que cierta funcidn se ejecuta o el pardmetro que se le pasa.

17

2.6 Planificacion

2.6.1 WBS (Work Breakdown Structure)

[

Definicidn e implantacion de una
metodologiade desarrollo para MATE

I

Estudio
previo

Desarrollo metodologiay

entorno

Implantacion de la
metodologia

Desarrollo de nuevas
caracteristicas

Cierre de
proyecto

Estudio de
viabilidad

Estudio de
viabilidad

Planificacidan
proyecto

Plan de
proyecto

Plan de

iteraciones

Lista de

resgos

18

I-‘ Metodalogia

Guia de estilo de
documentacian

Guia de estilo de
documentacian
de codigo

Guia de estilo de
codificacian

Guia de estilo de
control de versiones
y construceion

Control de versiones

Gestion de equipos

Documentacidn

Guia de estilo de
desplegamiento

Estudio madulos
MATE
Merge entre Commaons
y DMLib

Aplicacion metodologia
sobre Common y DMLib

Aplicacion metodologia
sobre AC y Analyzer

Documentacidn

Entorno de desarrollo I-
Implantacian
herramientas

Servidor http

GIC Control de

VEISIONes

GIC Gestion de

equipos

Construccion

Documentacion

GIC

Entorno de
desarrollo cliente

Automatizacidn
instalacidn del entorno

Prueba de aceptacian

—| Sistema de instalacion I

Estudio situacion
actual
Desarrollo script de
configuracian

Desarrollo makefiles

Documentacion
de usuario

Escritura de la
memaria del proyecto
Compactacidn
MEemoria y anexos
Memaria
proyecto

Presentacion del
proyecto

Sistema de cerrado

Sistema de
configuracion
Redisefio de clases
Documentacion del
nuevo sistema
Sistema de
excepciones DMLib
Disefio de clases
Documentacidn de
las clases

Figura 2 Diagrama WBS del proyecto

Analisis del ciclo de

gjecucidn

Implementacicn sobre

Implementacién sobre
Analyzer

Prueba de integracidn

(_:
(9]

2.6.2 Fases y actividades del proyecto

Fase Actividad Descripcion [terativa
Estudio previo |Estudio de Estudio para analizar las posibilidades y mejores No
viabilidad alternativas para realizar el proyecto y si ests son posibles
con los recursos disponibles en el tiempo requerido.
Planificacion | Andlisis sobre las tareas que compondran el proyecto, su | No
del proyecto calendario, los recursos necesarios para ejecutarlas y los
riesgos que comportan a la consecucion del proyecto.
Formacion Estudio sobre los temas relacionados con paso de mensajes | No
previa (MPI) y sintnizacion de procesos (Dyninst)
Desarrollo Desarrollo guias | Creacion de los documentos que conforman la base de la | Si
metodologiay |de estilo metodologia a implantar: guias de estilo de documentacion,
entorno codificacion, construccion, control de versiones, etc.
Implantacion Seleccion de las diferentes herramientas que forman el Si
entorno entorno de desarrollo, implantacion e integracion de las
mismas.
Implantacion | Estudio Estudio sobre el codigo en su version original de cada No
metodologia modulos MATE |modulo de MATE.
Combinacién | Eliminacion de las clases redundantes entre Commons y Si
DMLib y DMLIb y refactorizacion de AC y Analyzer en
Commons consecuencia.
Documentacion | Documentacion sobre el codigo de cada mddulo y No
y refactorizacion derivada de las guias de estilo.
refactorizacion
Prueba unitaria |Prueba unitaria de las clases que componen cada modulo. |No
Documentacion | Extraccion y compilacion de la documentacion sobre No
codigo.
Prueba de Prueba del sistema completo para detectar posibles errores | No
aceptacion en la refactorizacion.
Desarrollo de | Sistema de Desarrollo de un sistema de instalacion capaz de Si
nuevas instalacion automatizar la busqueda de dependencias y la compilacién
caracteristicas en el mayor grado posible.
Sistema de Desarrollo de un sistema de lectura de configuraciones Si
configuracion |para MATE féacilmente ampliable con diferentes tipos de
entradas.
Sistema de Desarrollo de un sistema para DMLib de deteccion y Si
excepciones de |notificacion de errores.
DMLib
Sistema de Desarrollo de un sistema capaz de cerrar el entorno de Si
cerrado forma centralizada y controlada.
Cierre de Escritura y Escritura de la memoria del proyecto y compilacion del No
proyecto compilacion de |documento junto con los anexos que lo acompanan.
la memoria
Exposicion del | Exposicion del proyecto ante un tribunal para su No

proyecto

evaluacion.

19

Tabla 1: Fases de desarrollo del proyecto

2.6.3 Recursos del proyecto

Recursos humanos

3 Programadores-Analistas: Noel De Martin, Rodrigo Echeverria, Toni Pimenta

1 Project Manager: Joan Piedrafita

Recursos de infraestructura

20

Servidor de proyectos, colaboracion y builds virtualizado

o Equipo: Dell PowerEdge R515

o Procesador: 2 x AMD Opteron 4122 (4 Cores — 2.2 Ghz— L1 3MB /L2 6MB — 95W TDP)
© Memoria: 8GB Memory for 2 CPUs, DDR3, 1333MHz (8x1GB Single Ranked UDIMMs)
o Disco: 2x 250GB, SATA, 3.5-in, 7.2K RPM Hard Drive (Hot Plug)

8 Nodos de computo cluster DiskLess

o Equipo: Dell PowerEdge R610

© Procesador: 2 x Intel Xeon E5620 (4 Cores — 2,4 Ghz — 12 MB Cache — QPI 5,86 Gb/s)
o Memoria: 12GB DDR3, 1333MHz ECC (12x1GB)

SAN
© Almacenamiento: DELL™ PowerVault™ MD3200i, 6 discos SAS 7.2k rpm 500 GB
o Red de gestion: 2 x SWITCH ETHERNET DELL PowerConnect 5424

Otros

o Sistema de alimentacion: SAI 8000VA APC

o Switch control cluster:SWITCH ETHERNET DELL PowerConnect 5448
o Switch gestion: SWITCH INFINIBAND SDR DE 8 PUERTOS, 4X, 1U.
o Switch Red MATE: SWITCH ETHERNET DELL PowerConnect 5424

o Rack PDU (8 Tomas + Ethernet)

© Chasis Rack 42U

o CABLE INFINIBAND 2 METROS CON CONEXION X4

o (Cable de interconexion - RJ-45 (M) - RJ-45 (M) -2 m - UTP - (CAT 6)

Configuracion de la infraestructura

Virtualizacion

O 0 0O O

Cluster 8 nodos

a0 oo

aga oo

aag oo

FI g o d oo oo
Switch gestion oo oo

oo oo

00 oo

Maquinas cliente oo oo

Almacenamiento

0 oo o

OO O o 000 o

Switch A Switch B
Figura 3 Esquematizacion del entorno de desarrollo

Calendario de los recursos

Los recursos humanos se utilizaran durante todo el proyecto, sin embargo el cluster y el almacenamiento
solo se utilizaran en la segunda parte del proyecto haciendo las pruebas necesarias con aplicaciones

paralelas para comprobar los resultados. El resto de recursos materiales también se utilizardn durante

todo el proyecto.

21

2.6.4 Calendario del proyecto

El proyecto se realizara durante en el segundo cuatrimestre del curso 2010/11.

Dependencias
Al tratarse de un modelo lineal, o en cascada, cada fase empezard al terminar la anterior, a excepcion de
aquellas fases mas delicadas que presentardn iteraciones para introducir cambios y correcciones una vez

se hagan pruebas.

Las fases del proyecto estan representadas en el primer nivel de la jerarquia del diagrama WBS (capitulo

3.1).

La primera fase sera el estudio previo, que incluye entrevistas con el cliente, estudios de viabilidad y

planificacion, asi como toda la formacion previa necesaria para los analistas.

La segunda fase consiste en el desarrollo del entorno y la metodologia. Est4 fase consiste, por una parte,
en la seleccion de un conjunto de herramientas que conformen un entorno de trabajo para futuros
desarrolladores de MATE y la implantacion de las mismas (documentacion del sistema de instalacion y
configuracion y la automatizacion del mismo) y, por la otra, en la confeccion de una serie de manuales

(guias de estilo) que sirvan como una referencia sobre el “‘como hacer” para los futuros desarrolladores.
La tercera y cuarta fase se ejecutaran en paralelo. La tercera fase consiste en adaptar el codigo a las guias
de estilo creadas y a la prueba unitaria del mismo. La cuarta fase consiste en el desarrollo de nuevas

caracteristicas para mejorar la calidad del software en general.

Finalmente, la fase de cierre de proyecto consiste en acabar la memoria del proyecto, compactarla con

sus anexos y entregarla, ademas de la exposicion del proyecto ante un tribunal.

22

2.6.5 Calendario temporal

La duracion total estimada del proyecto es 248 dias que, con una dedicacion media de 4h/dia, implican

992 horas de trabajo a distribuir entre los tres miembros del equipo.

Fase 1: Estudio previo

T : [t 10 |Mov 10 |Dec 10 Jan11 [Feb 11 |Mar 11 |
126 [03 1o 17 [24 [31 [o7 [14 [21 [26 [os 12 Jig [26 [02 [08 [16 [23 [30 Jos [13 [20 [27 [o0s 13 [20 [27
2 BIFASE: Estudio previo 8 w
2 Entrevista cliente
4 EEstudio de viabilidad
5 [DOC]Estudio de viabilidad 1.0
6 EPlanificacion del proyecto
7 [DOCIPlan de proyecto
] [DOC]Plan de iteraciones
a [DOC]Lista de riesgos |
10 ElEstudio de alternativas sistema de desarrollo|:| W
11 [DOC]Especificacion entorno de desarrollo
12 EFormacion previa | .]
13 MF|
14 Dyninst
15 EReunion de seguimiento []
16 Revision de documentos iniciales
17 Reunion de seguimiento Il
,
Fase 2: Desarrollo metodologia y entorno
. .r
1 iteracion
T : llan 11 |Feb 11 Mar 11
"I 103 [06 08 1z 15 18 21 [23 |27 [30 [02 [05 08 11 14 [17 20 |23 [26 |01 J04 o7 10 113 [16 15 |
18 B FASE: Desarrollo Metodologia y entorno E |
19 EMetodologia (1a iteracion) L . 2
20 [DOC]Guia de estilo de documentacion 1.0
21 Aprobacidn guia de estilo de documentacion
22 [DOC]Guia de estilo de documentacion de cédige
23 [DOC]Guia de estilo de codificacién 1.0
24 [DOC]Guia de estilo de contrel de versionas y con
25 [DOC]Guia de estilo de desplegamiento 1.0
26 EEntorno de desarrollo (1a iteracion)
27 Bimplantacion de las herramientas
28 Implantacién de Apache
29 Eimplantacion de Redmine
30 Implantacion de Redmine E
31 [DOC]Guia de instalacidn y configracidn de Red
32 [DOC]Guia de usuario de Redmine :
33 Himplantacion de Subversion(SVN)
34 Implantacion de Subversion E
=5 [DOC]Guia de instalacién y configracién de SWN
35 Ellmplantacion de Buildbot :
37 Implantacion de Buildbot
38 [DOC]Guia de instalacion y configracion de Buil
39 Himplantacion de Doxygen
40 Implantacion de Doxygen :
41 [DOC]Guia de instalacién y configracian de Doxy
42 EReunion de seguimiento y cierre de la iteraciq:

23

2% iteracion

42
43
44
45
46
47
43
49
50
51
52
53
54
55
56
57
53
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

Name

BReunion de seguimiento y cierre de 1a iteraci

BActualizacion documentos iniciales
[DOC]Plan de proyecto 2.0
[DOC]Plan de iteraciones 2.0
[DOC]Lista de riesgos 2.0

Revision documentacion generada hasta la fecha
BMetodologia (2a iteracion)

EActualizacion y correccion guias de estilo
[Doc]Guia de estilo de documentacidn 1.0
[DOCIGuia de estilo de documentacion de codig
[DoC]Guia de estilo de codificacién 1.0
[DOC]Guia de estilo de control de versiones y co
[DOC]Guia de estilo de desplegamients 1.0

BEntorno de desarrollo (2a iteracién)
Integracién Redmine-spache
Implantacién Eclipse
Integracion Redmine-Eclipse
Integracién Redmine-Svn
Integracion SWN-Buildbot

EActualizacion y correccion de las guias de ing
[DOC]Guia de instalacién y configracion de Redmi
[DOC]Guia de instalacidn y configracidn de SV y| -

[DOC]Guia de instalacion y configracion de Build
EAutomatizacion instalacion entorno
Script de instalacion de Redmine
Script de instalacion de SwvN
Script de instalacion de Buildbot
BReunion de sequimiento y cierre de 2a iteraci
BActualizacion documentos iniciales
[DOC]IPlan de proyecto 2.0
[DOC]Plan de iteraciones 2.0
[DOC]Lista de riesgos 2.0
Revision documentacion generada hasta la fecha

Fe

b1l

Ma

>

Mar 11
[oa Jor 1o [13 Jis _N1e [22 [25 [28 [o3 [06 [0% [12 [15 18 [21 [24 [27 [30

Apri1
oz Jos Jos 11 Ji4 [17 [20

01

?

Fase 3: Implantacion de la metodologia

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
100
110
111
112

24

-

Name

75 | EIFASE: Implantacion de la metodologia

BEstudio modulos (1a iteracion)
Estudio sobre Commons
Estudio sobre DMLib
Estudio sobre AC
Estudio sobre Analyzer
Merge entre Commons y DMLb
Blimplantacion (1a iteracion)
E Sobre Common
Documentacion
Refactorizacion
Prueba unitaria
ESobre DMLib
Documentacion
Refactorizacion
Prueba unitaria
BReunion de seguimiento y cierre 1a iteracion
BActualizacion documentos iniciales
[DOC]Plan de proyacto 2.0
[DOC]Plan de iteraciones 2.0
[DOC]Lista de riesgos 2.0
Revisidn sobre el merge Common-DMLib
Revision documentacion Common-DrLib
Revision refactorizacién Commaon-DMLb
Revision test unitario Common-DMLIb
Bimplantacion (2a iteracién)
ESobre AC
Adaptacién cambios sobre Comrmon
Documentacion
Refactorizacion
Prueba unitaria
ESobre Analyzer
Adaptacion cambios sobre Common
Documentacién
Refactorizacion
Prueba unitaria
BReunién de seguimiento y cierre 2a iteracion
Seguimiento sobre los cambios realizados

Aprill May 11 Jun 11
"lo1 fo4 [o7 10 [13 [16 [1e [22 [25 [28 [o1 [o4 o7 [10 13 16 19 [22 [25 [26 [31 [o3 Jos Jog 12 [i5 18
f - el
v

Fase 4: Desarrollo de nuevas caracteristicas

Name : Jlun 11 furin g1l 11
BL [o3 Joe Joo 12 15 [18 [21 [24 [27 [30 [03 [06 0711 [14 [1119022 34 362260)1 [04 [0=88 L1 L14[111a
121 BIReunion de seguimiento :
122 Prueba de aceptacion sistema de instalacion
123 BEntorne de configuracion
124 Estudio estado actual
125 Redisefio de clases
126 Implementacion lectura de configuracian
127 Documentacion nuevo sistema
128 Prueba de nuevas clases
129 BSistema de excepciones DMLib
130 Implementacién sistema
131 Prueha unitaria
132 Documeantacion
133 HSistema de cerrado
134 Andlisis del ciclo de ejecucion
135 Propuesta de sistemna de cerrado
136 Aceptacion sistema
137 ElDesarrollo sistema de cerrado
138 Sobre el médulo Analyzer
[l 139 Sobre el madulo AC
140 Prueba de integracion
113 | BEIFASE: Desarrollo de nuevas caracteristicas
114 ESistema de instalacion
115 Estudio situacion actual
115 Formacion respecto instalacién en UNIX
117 Desarrollo script de configuracian
118 Desarrollo makeFiles
118 Prueba unitaria
120 [Doc]Manual de usuario
121 EReunion de seguimiento
122 Prueba de aceptacion sistema de instalacion
123 EEntorno de configuracion
124 Estudio estado actual
125 Redisefio de clases
126 Implementacion lectura de configuracian
127 Documentacion nuevo sistema
128 Prueba de nuevas clases
128 ESistema de excepciones DMLib
130 Implementacion sistema
131 Prueba unitaria
132 Documentacion
Fase 5: Cierre de proyecto
Name) May 11 un 11 ul 11 Aug 11 |Sep 11 ot 11]
. g 4] [17 T24 Jo1 [os T15 [22 [28 [05 [12 J1s [26 [03 [10 [17 [24 [31 o7 [14 [21 [28 Jo4 [11 [18 [25 o2 [08 |
141 EIFASE: Cierre de proyecto | L, v
142 [DOC] Memoria de proyecto 1.0 ;
143 Correccidén de memoria
144 [DOC] Memoria de proyecto 2.0
145 Compactacién mematria y anexos
146 Disefio presentacion
147 Presentacién

25

2.7 Evaluacion de riesgos

2.7.1 Lista de riesgos
Incumplimiento de plazos de entrega: Alguno de los plazos establecidos no se cumple.

Herramientas inadecuadas: problemas con las herramientas de desarrollo.

Incumplimiento de alguna norma: Repercusiones legales por el incumplimiento de alguna norma.

Abandono del proyecto de algin miembro: Uno de los miembros decide abandonar el proyecto.

A e

Implementacidén incorrecta: Problemas a la hora de modificar MATE.

2.7.2 Catalogacion de riesgos

Riesgo Probabilidad Impacto
1 Media Marginal
2 Baja Marginal
3 Baja Critico
4 Baja Critico
5 Baja Marginal

2.7.3 Plan de contingencia

Riesgo Plan de contingencia

1 Reuniones de seguimiento.

2 Planificacion inicial.

3 Cotejar acciones futuras con las normativas presentes en el
documento de viabilidad. El NDA hace...

4 Reorganizar planificacion.
Consultar expertos, reunion de seguimiento.

2.8 Presupuesto

2.8.1 Estimacion coste de personal

Recurso Coste

3 Analista-programador 64.500 €
1 Project Manager 28.000 €
Total 92.500 €

26

2.8.2 Estimacion coste de los recursos

Recurso Coste

Servidor 2.220,76 €
8 nodos cluster 23.902,08 €
SAN 8.173,86 €
Otros 12.917,21 €
Software 0€

Total 47.213,91 €

2.8.3Estimacion coste de las actividades

Ninguna actividad tiene costes directos.

2.8.4 Estimacion de otros costes

Recurso Coste

Personal de soporte 24.000€
Alquiler local 25.488€
Total 49.488 €

2.8.5 Estimacion costes indirectos

Recurso Coste

Electricidad 5.389,65 €
Consumibles 1.475 €
Telefonia 708 €
Limpieza 4.141,8 €
Mantenimiento 1.062 €
Gestion 2.124 €
Total 14.900,45 €

2.8.6 Resumen y analisis coste beneficio
Coste total = 92.500 + 47.213,91 + 49.488 + 14.900,45 = 204.102,36 €

Estos costes, pese a que parecen altos, son tedricos y en la realidad el coste del proyecto es mas reducido
dado que el personal somos nosotros, y como parte del proyecto realizados las tareas de desarrollo.
Ademas el cluster construido sera usado para otras tareas y por tanto su coste se amortiza. Por ultimo los

beneficios que comporta nuestro proyecto, aunque no econémicamente, compensan por la inversion.

27

3. Calidad del software

En esta seccion se define en que términos hablamos de calidad de software y se describen varios
modelos que nos ayudan a asegurar la calidad de un producto. Finalmente escogeremos el mas

adecuado a nuestro proyecto que serd el que apliquemos.

3.1 SQA

Un aspecto importante dentro del proyecto es la utilizacion de SQA, del inglés Software Quality
Assurance. Se trata de un modelo sistemdtico y planeado de todas las acciones necesarias para asegurar
la calidad esperada del producto final, asi como la correcta aplicacion de estandares y procedimientos
adoptados. Es algo que se aplica durante todo el proceso de desarrollo, y se rige por el SQAP (Software
Quality Assurance Plan), donde se definen las actividades especificas a llevar a cabo dentro del
proyecto. Dado el proceso de desarrollo de MATE, que se espera que continu¢ mas alla del proyecto
actual, es necesario establecer una serie de métodos que consoliden los objetivos marcados en cada

etapa.

Segun los modelos de ampliacion de defectos, el coste de los fallos detectados en un producto software
es mayor cuanto mas tarde detecta. Para ilustrar la reduccion del coste con la deteccion anticipada de
errores, podemos considerar una serie de costes relativos que se basan en datos de proyectos de software
rea'les. Suponiendo que un error descubierto en la fase de disefio del producto cuesta 1,0 unidad
monetaria, este mismo error descubierto antes de realizar el proceso de test costard 6,5 unidades, durante
las pruebas 15 unidades, y después de la entrega entre 60 y 100 unidades. El mismo razonamiento se
puede aplicar a otros recursos de un proyecto como pueden ser tiempo o rendimiento. Es aqui donde
reside la importancia de un buen proceso de SQA ya que nos permite tener un buen seguimiento durante

todo el proyecto.

A la hora de desarrollar un SQAP dentro de un proyecto hay diferentes alternativas y modelos de los que
escoger. Todos ellos listan una serie de aspectos importantes a tener en cuenta en el momento de evaluar
la calidad del software. Una vez detectados estas cualidades criticas, se pueden cuantificar con una serie

de métricas y asi poder determinar la calidad actual del producto.

1 Defect amplification model [IBM81] "Implementating Software Inspections", Notas del curso, IBM
Systems Sciences Institute, IBM Corporation, 1981
28

3.1.1 Modelos estandar

Por un lado podemos encontrar diferentes modelos estandar. Estos modelos son aplicables a cualquier
proyecto y determinan el nivel de calidad con atributos generales. Ademdas han sido utilizados en

diferentes proyectos y por lo tanto se tiene una perspectiva de los resultados esperados.

Uno de los primeros modelos existentes y en el que se basan la mayoria de los actuales es el modelo de
McCall, que, en un principio, fue creado para las fuerzas aéreas de los Estados Unidos en 1977.
Principalmente estd enfocado a los desarrolladores del sistema y al proceso de desarrollo. En este
modelo McCall intenta unir la perspectiva de usuarios y desarrolladores, centrandose en unas
caracteristicas de la calidad del software que reflejan tanto la visién de los usuarios como las prioridades
de los desarrolladores. El modelo presenta tres caracteristicas para medir la calidad del software:
revision (habilidad para adoptar cambios), transicién (habilidad para adaptarse a otros entornos) y

operacion (sus caracteristicas operativas).

Calidad Del Software
il g

Factor 1 Factor 2 Factor 3 aaa

. vy !

Criterio 1 Criterio 2 Criterio 3 -

A J r h

Indicadores de calidad (métricas)

Figura 4: Jerarquia FCM de MCCall

El modelo también es llamado FCM (Factor, Metrics, Criteria) porque detalla tres tipos de caracteristicas
en una jerarquia (figura 1) donde las mas importantes se denominan factores. Por debajo podemos
observar diferentes subcaracteristicas denominadas criterios y, finalmente, tenemos las métricas para

determinar el nivel de satisfaccion de cada una de estas subcaracteristicas.

Otro modelo a mencionar es el FMEA (Failure Mode and Effects Analisis). Como su nombre indica se
basa en analizar problemas potenciales, principalmente en una época temprana del ciclo de desarrollo
donde es mas facil tomar acciones para solucionarlos. FMEA se utiliza para identificar fallos potenciales
en los sistemas, para determinar su efecto sobre la operacion del producto, y para identificar acciones
correctivas para atenuar las faltas. Podemos encontrar diferentes tipos siguiendo este modelo segiin su
enfoque: Sistema (enfocado a funciones globales del sistema), Disefio (enfocado a componentes y

29

subsistemas), Proceso (enfocado a procesos de fabricacion y ensamblamiento), Servicio (enfocado a

funciones del servicio) y Software (enfocado a funciones del software).

Para terminar, los modelos estdndar mas seguidos son las normas ISO (International Organization for
Standardization). Esta organizacion ha desarrollado una serie de normas y modelos para la evaluacion de
la calidad aplicables a productos generales, adaptandose en ciertos casos a la produccion de software. En
este modelo los conceptos de calidad se aplican mas en el producto terminado que en el proceso de
desarrollo. Estas normas hacen posible que se sigan patrones de calidad generalmente aceptados con los
que se logran métricas para determinar las cualidades de un producto, teniendo en cuenta que en la
practica existen dos tipos de calidad: externa (referente a los clientes) e interna (referente a

funcionalidad del software).

De todos los estandares que presenta, el mas interesante para el proyecto es el ISO 9126, que esta
enfocado directamente a productos software. Este modelo estd basado en el de McCall, ya que determina
la calidad del software en base a una herencia de caracteristicas. Como podemos observar en la figura 2,
posee 6 caracteristicas principales (factores siguiendo el modelo de McCall). Las 6 caracteristicas
principales son funcionalidad, fiabilidad, usabilidad, eficiencia, Mantenibilidad y portabilidad. Ademas

de esto cada aspecto tiene diferentes subcaracteristicas a evaluar.

éCumple el software las
funcionalidades necesarias?

¢Como de facil es

transportar el
software a

otro entorno?

Funcionalidad éCémo de fiable

es el software?

Portabilidad Fiabilidad

Mantenibilidad

Usabilidad
¢Como de facil
es modificar
el software?

¢Es el software

Eficiencia facil de utilizar?

¢Como de eficiente
es el software?

Figura 5: Modelo ISO 9126

Dentro del proyecto se da énfasis a los aspectos mas importantes para el software. Por una parte dentro

de fiabilidad es importante tener en cuenta la tolerancia a fallos y la facilidad de recuperacion, en el

30

proyecto cubre este aspecto afadiendo ciertas nuevas caracteristicas al programa (capitulo 4.5) y
realizando una serie de tests (capitulo 5). También se ha trabajado en el factor de usabilidad,
concretamente en las subcaracteristicas de comprensibilidad y facilidad de aprendizaje. Esto se ha
mejorado con la documentacion generada para MATE y los diferentes elementos de soporte. El tema de
la eficiencia es algo importante, tratandose de un software de aumento de rendimiento, y es algo que se
ha acabado de definir consolidando todos los aspectos del programa en su estado previo. Finalmente el
hecho de haber creado la metodologia con diferentes guias y directrices de trabajo hace que el

mantenimiento del software en el futuro sea mucho mayor y facilita el andlisis y test del producto.

3.1.2 Modelos de aplicacion o especificos de compaiias

Ademas de los modelos estandar vistos en el capitulo anterior, existen los de aplicacidon especificos para
compafias. Estos no hablan de caracteristicas generales sino que detallan controles de calidad ajustables

a necesidades particulares.

Uno de los que vale la pena mencionar es el llamado modelo CMMI (Capability Maturity Model
Integration). Este modelo determina una serie de procesos y actividades a llevar a cabo para asegurar la
calidad del producto, sin entrar en detalles de como realizar estas actividades. Segln se van completando
las actividades propuestas se dice que el proyecto esta en diferentes niveles de madurez: incompleto
(nivel 0), inicial, administrado, definido, cuantitativamente administrado y optimizacién (nivel 5).
Dispone de una lista de areas de accidn, y en cada una de ellas se proporciona la lista de practicas a

llevar a cabo. Actualmente incluye de 22 areas de proceso” que podemos observar en la figura 3.

2CMMI for Acquisition version 1.2, CMMI for Developement version 1.2 y CMMI for Services version
1.2
31

CMMI® for Development, Version 1.2 (CMMI-DEYV, V1.2)

Causal Analysis and Resolution (CAR)

Configuration Management (CM)

Decision Analysis and Resolution

(DAR)

Integrated Project Management +IPPD
(IPM+IPPD)

Measurement and Analysis (MA)

Organizational Innovation and

Deployment (OID)

Organizational Process Definition

+IPPD (OPD+IPPD)

Organizational Process Focus (OPF)

Organizational Process Performance

(OPP)

Organizational Training (OT)

Product Integration (PI)

Project Monitoring and Control (PMC)

Project Planning (PP)

Process and Product Quality Assurance

Quantitative Project Management

(SAM)

(PPQA) (QPM)
Requirements Development (RD) Requirements Management (REQM) Risk Management (RSKM)
Supplier Agreement Management Technical Solution (TS) Validation (VAL)

Verification (VER)

Tabla 2: Areas de proceso del modelo CMMI, version 1.2

El ultimo modelo a comentar es el modelo GQM (Goal-Question-Metric). A diferencia de los modelos
vistos anteriormente, este modelo no se basa en caracteristicas generales de los productos, sino que es
aplicable solamente al proyecto en concreto. Toma este enfoque con la idea de que un programa de
mesura de calidad puede dar mejores resultados si se disefia con las metas en mente. Simplemente se
trata de trabajar realizando tres pasos: crear una lista con las metas del proyecto, a partir de la lista
generar unas preguntas que determinen si la meta se ha cumplido y finalmente decidir qué atributos

hacen falta medir para responder estas preguntas.

4 Especificacion de la metodologia

En esta seccion se describen los diferentes componentes de la metodologia que ha sido desarrollada
para MATE, se especifica la particion de trabajo entre los diferentes miembros del equipo de trabajo y
se exponen los resultados obtenidos describiendo tanto las guias creadas para el entorno como los
documentos de especificacion.

4.2 Especificacién del entorno de desarrollo

4.2.1 Perspectiva general

Como se ha mencionado anteriormente este proyecto tiene como objetivo primario establecer una
metodologia de trabajo para dar continuidad a MATE. Una buena metodologia es crucial para que un
proyecto de desarrollo de software sea exitoso y dada la naturaleza de MATE entendemos que se puede

beneficiar mucho de la creacion de una.

Hemos disefiado una metodologia adaptada a MATE, que dotara a los futuros desarrolladores de una

32

base para continuar con el desarrollo de esta aplicacion. Como parte de esta metodologia nosotros
proponemos una serie de herramientas para ser usadas como entorno de trabajo por los desarrolladores.
Esto es importante porque trabajar en un entorno especifico y especialmente disefiado para la tarea en
cuestion aumenta la productividad de los trabajadores y reduce el tiempo de trabajo. Ademas de producir

un producto homogéneo y de calidad como resultado.

4.2.2 Contribucion personal

Este es un proyecto conjunto en el que se da una division de trabajo entre los tres estudiantes que
formamos parte de este. La tarea que hemos realizado es de gran envergadura y por tanto cada miembro
del equipo se ha encargado de un aspecto distinto del proyecto, ya sea en el disefio y desarrollo de la

metodologia como en la aplicacion de esta. Esta division de trabajo se muestra en la tabla siguiente.

Miembro Tareas asignadas

Rodrigo Echeverria * Instalacion de Redmine

* Guia de instalacion y configuracion de Redmine
* Integracion de Redmine con Apache

* Integracion de Redmine con Eclipse

* Script de instalacion de Redmine

Toni Pimenta * Instalacion de Apache

* Instalacion de SVN

* Instalacion de Doxygen

* Integracion de Apache y SVN

* Guia de instalacion y configuracion de Apache y SVN
* Integracion de SVN y Redmine

* Script de instalacion de SVN

* Script de instalacion de Doxygen

Noel De Martin * Instalacion de Buildbot

* Guia de instalacion y configuracion de Buildbot
* Integracion de SVN y Buildbot

* Script de instalacion de Buildbot

Tabla 3: Division de tareas relativas al entorno de trabajo

A continuacién se especifican los elementos con los que se ha contribuido a nivel personal a la creacion

del entorno de desarrollo.

4.2.3 SVN

SVN (Subversion?) es una herramienta de control de versiones y repositorio. Se trata de una herramienta
imprescindible en cualquier proyecto de desarrollo, especialmente cuando existen varios desarrolladores

trabajando simultdneamente en el mismo proyecto. Un VCS (Version Control System) como SVN

3Subversion (sistema de control de versiones) Pagina oficial: http://subversion.apache.org/
33

http://subversion.apache.org/

permite el acceso a los archivos del proyecto por parte de diferentes entidades de forma que se eviten
conflictos y la consiguiente perdida de informacion que puede resultar en baja productividad o incluso
dafiar criticamente el proyecto. En nuestro caso se contempla la posibilidad de que varios programadores
trabajen sobre el codigo o documentos de MATE de forma simultanea y por tanto se implanta un

repositorio SVN como solucion a los conflictos.

SVN permite el almacenamiento de archivos en un entorno seguro y controlado donde los cambios
realizados se pueden organizar en versiones y modificaciones en los archivos pueden ser aplicadas al
repositorio sin peligro de que se pierdan modificaciones realizadas por otros desarrolladores. Esto se
hace mediante un proceso de merging que conserva los cambios realizados por ambos desarrolladores si

estos son compatibles y proporciona la posibilidad de resolver colisiones entre estos.

Con SVN los desarrolladores siempre disponen de las ultimas modificaciones realizadas por sus
compafieros a la vez que pueden revisar antiguas versiones o recuperar el estado de un archivo. Esto es
de vital importancia cuando existen dependencias entre el trabajo realizado por varios desarrolladores ya
que se evitan periodos de poca productividad mientras se espera a obtener los cambios realizados por el

resto del equipo.

En nuestro caso usaremos SVN integrado con el resto del entorno de modo que aumentamos su

versatilidad y integramos sus funciones en el entorno general.

A nivel personal dotamos a SVN de la capacidad de proporcionar acceso web al repositorio. Esto se
lleva a cabo integrando SVN con Apache, un servidor gratuito, que nos permite acceder a los archivos
del repositorio SVN a través de internet, mediante una interfaz web. Ademas aplicaremos un protocolo

SSL para que el acceso de los archivos sea seguro y que datos sensibles estén protegidos.

La guia y script creados para este proyecto corresponden a la version 1.6.15 de SVN (1.6.12 para

Apache).

Funcionalidades

6 Hol—11 ~15-16
213 718 /\ ovameoTe
1 -4 S0 12 14

Figura 6 Representacion de la vida de un proyecto en SVN.

L J

Algunas de las principales funcionalidades que nos ofrece SVN son las basicas de cualquier VCS, como
unir dos ramas de desarrollo resolviendo conflictos entre ellas (merging).

34

En esta imagen podemos observar las funciones bésicas de SVN. La nomenclatura esta especificada en
la guia de control de versiones y build. Podemos observar que la rama principal (Trunk) es la central de
color verde y contiene el estado actual del proyecto. Las ramas amarillas, llamadas Branches ,
representan copias del codigo que se estan modificando. Vemos que cuando una de estas ramas de

desarrollo finaliza, se aplican los cambios a la rama principal mediante el proceso de merge.

Este proceso aplica los cambios realizados en la branch que sean compatibles con la rama principal y
trata de resolver los conflictos que se den para poder mezclar las dos ramas completamente. A través de
este procedimiento obtenemos en el punto 4 la version base con los cambios de la rama 2-3 aplicados.
En este punto generamos otra rama de desarrollo (6) y generamos una version numerada (Tag). Las
versiones numeradas son normalmente versiones estables que se desea liberar. Vemos mas adelante que
las ramas no tienen porque mezclarse siempre con el #unk sino que pueden ser anuladas o pueden

mezclarse dos branches.

En los estados 10 11 y 12 vemos un procedimiento habitual, llamado Rebasing, que consiste en hacer un
merge entre la rama de desarrollo y el codigo principal pero de modo que el resultado de este quede en la
branch, de modo que cualquier modificacion que se haya realizado en la rama principal sea afiadida a la
branch antes de hacer la mezcla con frunk. Esto mantiene actualizada la rama a la vez que aleja el

procedimiento de merge de la rama principal.
Subversion nos proporciona algunas features extra, como:

— SVN versiona directorios: los directorios en los que se almacenan los archivos estan versionados

lo que nos permite llevar un control preciso de los cambios en estos.

— Commits atdbmicos: la instruccion commit que nos permite aplicar las modificaciones locales al
repositorio se ejecuta de forma atémica, como si se tratara de una unica instruccion, para evitar

modificaciones parciales que corromperian el repositorio.

Ademas de permitir la modificacion y llevar un control de los archivos SVN no sirve como herramienta
de seguimiento. Subversion almacena los cambios que se producen en los archivos en lugar de los
archivos en si, y nos permite averiguar cuando se modificé cada uno de ellos y quien fue el responsable
del cambio.Otras herramientas ttiles son diff'y revert que nos permiten respectivamente, ver las

diferencias entre dos ficheros y deshacer cambios en algun archivo.

Distribucion de archivos

Como resultado de usar SVN obtenemos un repositorio ordenado con todos nuestros archivos ordenados

por versiones y un historial de cambios realizados.

35

> SVN
Repository 3 D _Tre e

Revision n

Branches
| Revision 1
J il
Tags
| Revision 2
File A
Trunk Revision 8
Revision 3 File A
Revision 7

File A
Revision &

File B
Revision 6
File B
Revision 5

Figura 7: Esquema de distribuciiion de archivos
en el repositorio SVN

En esta figura podemos ver un ejemplo de como quedaria el repositorio, vemos que cada carpeta tiene su

version pero que a su vez los archivos dentro de estas pueden haber sido revisados mas veces.

Guia de instalacién y configuracion

Como documento adjunto al proyecto, afiadimos las guias de instalacion de los diferentes componentes
del entorno, para que se pueda ser reproducido por el equipo de desarrollo. La guia de instalacion y
configuracion de SVN y apache, incluye los datos necesarios para instalar y configurar un repositorio
SVN bajo un servidor apache con SSL. Y incluye una pequefia muestra de como crear un repositorio y

mantenerlo.

El documento contiene una breve descripcion de la aplicacion seguida de los requisitos y dependencias
de esta. A continuacion se describe el proceso de instalacion, se ofrecen distintas alternativas para
instalar la aplicacion. Una vez explicada la instalacion de SVN se describe un método para integrarlo

con Apache y configurar el repositorio. Finalmente explicamos como configurar y usar el programa

Script de instalacion

Para facilitar la tarea de los desarrolladores se ha disefiado un script para realizar de forma automatica la
instalacion de SVN y apache, aunque la configuracion del servidor requiere de algunos datos del

usuario.

36

El script es simple y consiste de una serie de instrucciones que descargan la version indicada de la

aplicacion y la instalan en el sistema.

El uso del script requiere acceso a internet y permiso de superusuario para realizar las instalaciones. El

script debe ser ejecutado por un interprete bash.

4.2.4 Doxygen

Documentar el codigo es necesario para que futuros desarrolladores, y nosotros mismos después de un
tiempo sin trabajar en MATE podamos entender facil y rapidamente el cédigo. Normalmente el codigo
no es trivial y cuesta comprender cual es la funcion de cada elemento y como se relacionan entre ellos y
estos es necesario para poder participar en el desarrollo del proyecto. El proceso de generar una
documentacion detallada del codigo es pesado y lleva tiempo y normalmente no se le da prioridad en

proyectos de orientacion académica como MATE.

Doxygen* es una herramienta que nos permite extraer automaticamente documentacion del codigo.
Mediante unos comentarios especiales Doxygen nos permite describir los elementos del programa en el
codigo como si se tratase de comentarios inline. Estos comentarios seran usados por Doxygen junto con
la informacion que este extrae del codigo en si para generar una completa documentacion con diagramas

y descripciones de los elementos que componen la aplicacion.

La guia y script creados para este proyecto corresponde a la version 1.7.3 de Doxygen que es la actual en

este momento.

Funcionalidades

Doxygen puede generar, a partir del codigo, documentacion en forma de pagina web (on-line) o
manuales de referencia en formatos como pdf. No solo clasifica y organiza los elementos de la
aplicacion sind que genera una serie de diagramas que muestran la jerarquia entre estos, y proporciona la

posibilidad que crear una interfaz web completa y intuitiva con toda la informacion.

Doxygen se adapta al lenguaje de programacion elegido y extrae informacion directamente del codigo,
como el tipo de cada variable o los métodos de cada clase. Se puede configurar mediante un archivo de
configuracion llamado doxyfile (por defecto) que contiene una amplia gama de opciones que nos

permiten modificar su comportamiento y el resultado obtenido.

Doxygen ademas cuenta con una interfaz grafica de configuracion y incluso se integra con eclipse,
nuestro IDE, mediante un plug-in llamado Eclox’ que nos permite gestionar los doxyfiles de cada

proyecto y modificar la configuracion de cada uno.

4Pagina oficial de Doxygen: http://www.stack.nl/~dimitri/doxygen/
5 Eclox, plugin para eclipse. Pagina oficial: http://home.gna.org/eclox/
37

http://home.gna.org/eclox/
http://www.stack.nl/~dimitri/doxygen/

! e !
List Class Index Class Hierarchy | Class Members

Common ::StartAppHequest T

Staks Tunlet Class Reference
Common::StreamLogger

Common::StringArray Inheritance diagram for Tunlet:
Common::SysException
Common::5yslog

Task | | |

|AdjustingNWTunIet| | FactoringTunlet | | FactoringTunlet |
Model::Task
TaskCollection List of all members.
TaskExitHandler
Model: - TaskHandler Public Member Functions
TaskInstr virtual void Initialize (Model:: Application &app)=0
TaskManager virtual void BeforeAppStart ()

S virtual void AppStarted ()
iR virtual void Destroy ()=0
TaskStats virtual void Initialize (Model:: Application &app)=0
Common::Thread virtual void BeforeAppStart ()

e virtual void AppStarted () N

SommanslimelEie virtual void Destroy (}=0
Tuner virtual void Initialize (Model:: Application &app)=0

Common::TuningRequest virtuatvokl . BaforaAppStart.[)
virtual void AppStarted ()

vitual void_Destroy (=0

TunletContainer

Common::UnRegisterMsg Member Function Documentation

\entana
virtual void Tunlet::Initialize (Model::Application & app) [pure virtual]

WnrlrarNata

Figura 8: Ejemplo de HTML resultante de extraer documentacion con Doxygen
La especificacion de como se deben escribir los comentarios de cddigo se encuentra en la guia de

documentacién de codigo.

Guia de instalacién y configuracion

Como en el caso de SVN, para Doxygen también se ha creado una guia de instalacion que se incluira
como documento adjunto, esta incluye los datos especificos de la aplicacion asi como simples

instrucciones de uso y configuracion.

Contiene:
— La especificacion de los requisitos y dependencia de Doxygen.
— Guia de instalacion (dos alternativas para instalar Doxygen).
— Configuracion de la aplicacion (doxyfile).

— Guia de uso de la aplicacion.

Script de instalacion

Para facilitar la tarea de reproducir el entorno de trabajo hemos creado un script automatico que instala

Doxygen y sus dependencias.

Este script descarga el codigo fuente de la web oficial la version 1.7.3 de Doxygen y instala los ficheros
en el directorio definido para el proyecto (/opt/MATE/). A continuacidon genera /inks simbolicos hacia

/ust/local/bin/ para que la aplicacion se pueda ejecutar desde linea de comandos.

38

Uso del script:

Solo se requiere conexidn a internet y ejecutar el script con un interprete de bash.

4.3 Documentos de especificacion

4.3.1 Perspectiva general

Una vez hemos disefiado el entorno de trabajo que usaremos en el proyecto, es importante establecer una
metodologia de trabajo comun. Esto se lleva a cabo mediante la creacion de unas serie de documentos
que especifican aspectos concretos de la metodologia de trabajo a seguir por todos los miembros del
equipo de desarrollo. Esto es necesario para lograr una homogeneidad que, ademas de simplificar el
trabajo en equipo, ofrece un resultado de calidad y la aplicacion de una metodologia especifica resulta en

un producto mas compresible y facilita el trabajo realizado por terceras partes.

Estos documentos especifican diferentes aspectos de la forma de trabajar que se debe aplicar a MATE.
Desde como se debe escribir la documentacion de la aplicacion hasta el proceso de construccion y test

de esta.

4.3.2 Contribucién personal
A nivel personal se ha contribuido a la generacion de esta serie de documentos que, juntos, componen la
metodologia de trabajo establecida para MATE. De nuevo, hacemos hincapié en la envergadura de esta

tarea, y entendemos que esto justifica la division de trabajo entre los componentes del grupo.

La division del trabajo se realiza segiin especifica la tabla siguiente:

39

Miembro Guias confeccionadas

Noel De Martin * Quia de estilo de codificacion
* (Quia de estilo de control de versiones
y construccion (construccion)

Rodrigo Echeverria * Guia de estilo documentacion
* QGuia de estilo de documentacion de
codigo
Toni Pimenta * QGuia de estilo de desplegamiento

* Quia de estilo de control de versiones
y construccion (control de versiones)

Tabla 4: Division de trabajo relativa a los documentos de especificacion

A continuacion se describen los documentos desarrollados a nivel personal, que son los que especifican

el proceso de control de versiones y construccion (build) de MATE y el de deployment de la aplicacion.

4.3.3 Especificacion de control de versiones y build

En proyectos de gran complejidad es necesario llevar un estricto control del trabajo realizado,
especialmente si se trabaja en grupo, y suele ser necesario automatizar algunas tareas. MATE es una
aplicacién compleja y como consecuencia estd formada por muchos archivos, que deben tratados
meticulosamente ya que cualquier modificacién no deseada podria influir en el funcionamiento de la

aplicacion.

Por este motivo trabajamos con una herramienta de control de versiones (SVN) y aplicamos una
metodologia adecuada para que las modificaciones hechas en el programa no tengan efectos colaterales
no deseados. Esto es, una serie de pasos a seguir para asegurarnos de que existe una sincronizacion entre

los miembros del equipo y se trabaja con la maxima eficiencia.

MATE est4a compuesto por varios modulos y cada uno de ellos se divide en clases que estan codificadas
en diferentes archivos (codigo fuente). La distribucion de clases en diferentes archivos, en lugar de
trabajar con un unico fichero de cddigo, tiene obvios beneficios pero como consecuencia de esto
obtenemos muchos componentes donde pueden existir errores. Por otra parte MATE es un aplicacion
multiplataforma, lo que requiere que funcione bajo diferentes configuraciones y su funcionamiento debe
ser coherente en ellas. Para comprobar que MATE satisface estos requisitos existen tests que se pueden
realizar una vez aplicados los cambios. El problema es que trabajando con tantos archivos la tarea de

compilarlos, enlazarlos, ejecutarlos y testearlos en varias plataformas se hace muy pesada.

Para esto usamos una herramienta que automatiza este proceso, llamada Buildbot. Esta herramienta
requiere de una configuracion y un proceso especifico de funcionamiento que también se describe en el

documento.

40

Contenido

Este documento se compone de dos secciones, la primera de ellas describe el procedimiento de control
de versiones que se aplicara a MATE y especifica un modelo a seguir para que todos los componentes

del equipo trabajen de forma sincronizada.

En esta seccion se definen las herramientas que seran utilizadas para realizar dichas tareas y se

especifica de que modo se configurara esta para obtener el resultado deseado.

Por ultimo esta seccion proporciona una propuesta de dindmica de trabajo que los miembros del equipo

de desarrollo deberan seguir para que el proyecto evolucione de forma adecuada.

La segunda seccion especifica el funcionamiento de la herramienta de Construccion automatica que

usaremos para compilar y testear MATE a medida que se hacen cambios importantes en la aplicacion.

Esté seccion empieza como la anterior determinando cual sera la herramienta usada para este proposito,
en este caso Buildbot. A continuacion se describen los componentes principales de la herramienta y se

explica cual es la funcidon de cada uno dentro del programa en general.

Por ultimo se propone una dindmica de trabajo para este proceso.

4.3.4 Especificaciéon de deployment

El deployment de un producto software son el seguido de procesos y tareas que se requieren para que el
programa este disponible para su uso, empezando por la distribucion de la aplicacion a los usuarios una
vez desarrollado el software. Entre estas tareas se encuentra la instalacion de la aplicacion, su activacion,

actualizacion y otros procesos que han de darse durante la vida del producto.

MATE, dado que se trata de un proyecto no comercial, no dispone de todos estos procesos, pero hemos
intentado que los mas relevantes estés integrados en la aplicacion final. Uno de los modulos esenciales
es el de instalacion, para que el programa sea utilizable por los usuarios debe estar instalado y el hecho

de automatizar este proceso aumenta el alcance de la aplicacion ya que facilita su implantacion.

En el proceso de deployment toman parte, no solo la aplicacion que se desea utilizar, si no que participan
algunos programas externos que asisten en los procesos necesarios. Por tanto es necesario especificar

cuales son estos programas y de que se encargan.

Contenido

En el caso de MATE el deployment basicamente se reduce al proceso de instalacion dada su orientacion

en este momento del desarrollo.

41

Este documento se compone de 4 secciones relativas al deployment de MATE. En la primera seccion se
definen las fases que se deberian considerar a la hora de preparar la aplicacion para los usuarios. Algunas
de estos procesos no estan implementados en MATE pero se definen por tal de establecer el estandar

para futuro desarrollo de la aplicacion.

A continuacion se especifican las herramientas usadas en el desarrollo de los médulos que si que se han
generado para MATE. Estos son, no solo las herramientas externas que se usan sino también los scripts

que puedan asistir en el proceso.

En la siguiente seccion se determinan los diferentes componentes que se obtienen como resultado del
deployment.

Como ultima seccion se determinan los responsables de crear cada uno de los modulos necesarios. De
forma que se especifica, dentro del equipo de desarrollo, los componentes que se encargaran de producir

cada elemento.

5 Aplicacion de la metodologia

Esta seccion explica detalladamente el proceso de aplicar la metodologia previamente creada a MATE.
Se empieza especificando sobre que parte de MATE se han aplicado los cambios y se detalla el trabajo

realizado en el.

5.1 MATE: el moédulo AC

A nivel personal en este proyecto se ha aplicado la metodologia desarrollada al médulo AC de MATE.

El funcionamiento y la logica del modulo AC se ha definido anteriormente, en esta seccion describimos

con detalle cuales son sus componentes para tener claro sobre que parte de MATE se ha trabajado.

Este mddulo se construye a partir de los siguientes ficheros de codigo:

42

Header (h) Implementacion (.cpp) Clases que contiene

cmdLine.h - CommandLine
ctrl.h Ctrl.cpp Controller
InstrSet.h InstrSet.cpp SnippetHandler, InstrGroup
- Main.cpp * -

Monitor.h Monitor.cpp Monitor
PTPAcceptor.h PTPAcceptor.cpp PTPAcceptor (EventHandler)
PTPHandler.h PTPHandler.cpp PTPHandler (EventHandler)

SRV ShutDownSlave.cpp ShutDownSlave (ActiveObject)
SnippetMaker.h SnippetMaker.cpp SnippetMaker
Task.h Task.cpp Task

TaskInstr.h TaskInstr.cpp TaskIntr

TaskManager.h TaskManager.cpp TaskExitHandler, TaskManager
Tasks.h - TaskCollection
Tuner.h Tuner.cpp Tuner

Tabla 5: Ficheros de codigo del AC y clases que contienen

*El fichero Main.cpp contiene la funcion principal por la que la aplicacién inicia su ejecucion. Esta
archivo no tiene una pareja de header ya que no requiere de definiciones previas, simplemente se trata

de iniciar el programa y recoger las posibles excepciones que se hayan podido producir.

Ademas de estos ficheros que son usados exclusivamente por el médulo AC, este requiere de otras clases
implementadas en el conjunto Common. Common es el nombre de un paquete de ficheros codificados en

C++ que contienen la implementacion de clases comunes para varios moédulos.

El AC obtiene estos ficheros ya compilados y se ocupa de incluirlos en el enlace del binario final.

Los ficheros objeto de Common requeridos por el AC son los siguientes:

DateTime.o Address.o di.o
TimeValue.o Socket.o ConfigReader.o
Exception.o SysException.o PTPProtocol.o Utils.o
Reactor.o PTPMsg.o Env.o
Process.o

PTPMsgHeader.o, Syslog.o Paths.o

43

Config.o ConfigException.o Thread.o

ConfigMap.o ECPMsg.o

ByteStream.o ActiveObject.o

Estos ficheros objeto contienen las definiciones de clases y sus respectivos métodos, que AC utiliza

junto con los otros médulos para representar elementos comunes como Eventos o Fechas.

Mediante los ficheros compilados del AC y los que se importan de Common se crea el binario final que

corresponde al modulo AC.

44

Una vez compilado y enlazado el ejecutable obtenido realiza las funciones descritas por el siguiente

diagrama:
O O

3.hasConfig(

1.Parse
Arg
2.1s0k()

C1JIRL Cunfﬁs\psr

L
7.run()

4.ReadFrom,
File()

5.Read
cfg

6.Configure {_cfg)

o O Q0
T:J

8.<<create>>

| |
Ta;kMQnager Tuner

9a.< <create tuner>>
9b.< < create mpnitor>>

|
an\tur

ONONONONONONG)

Q

10.<<create>>
(?nly instance)

| | |
Reactor PTPAcceptor sDS Task DlPrg(e;;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| | .
N [| [kd
rg 1 | 1
_\ 1
11.<<create>> :
12a.<<create>> N :
13.<<create>> 12b Redister | :
14.Run 15.L|:sten :
16.StartMPITask R
17.<<create>> 18.<<create>>
> N
> 19.Attach/
» process
20a.Load
library
(DMLib)
21.Handle Events >
22.Digpptch 20b.Init
Fvengs library
23.Read
Messages
24.Add |nstrRed
€
y
26.Handle Events 25 Add instrReE
L
»
27.Poll fgr|status change
29.[if breakpoint] R 2B Status
Process breakpoint »
30.Get request
31.Process
request L 5,
. 32.Apply changes
Main Loop T
_________ S T L Ty St I R —

Figura 9: Diagrama de secuencia del modulo AC*.

*Se adjunta como anexo una imagen de alta resolucion de este diagrama.

45

1O

@
[
=

reate

5.2 Estado inicial del médulo

MATE, antes del inicio de este proyecto, era una aplicacion totalmente funcional, que se ejecutaba
correctamente. Debido a su naturaleza de proyecto académico, varios programadores habian introducido
cambios en el cddigo pero la documentacion de estos, era escasa o inexistente. Incluso el codigo inicial

no dispone de una documentacion o manual de usuario formales.

Ademas de no estar documentado, el cédigo contenia muchos fragmentos comentados, que habian sido

excluidos de esta forma del proceso de compilacion y substituidos por nuevas secuencias de codigo.

El proyecto data del afio 2003 y por tanto muchas de sus funciones estan des-actualizadas (deprecated).
Esta des-actualizacion no solo afecta a las funciones de C++ sino que las librerias usadas como Dyninst
de terceras partes también han sido substituidas por versiones mas modernas y por tanto algunas de sus

funciones han cambiado o dejado de existir.

Es esencial solucionar estos problemas porque pueden afectar al funcionamiento del programa, pero hay

otros que también suponen un riesgo aunque este sea posible a mas largo alcance.

En el futuro MATE sera estudiado y posiblemente actualizado por otros desarrolladores y por tanto es

importante que el cddigo esté escrito de forma homogénea por tal de facilitar su comprension.

El codigo carece de comentarios explicativos de las clases y los métodos, y aunque si contiene algunos
comentarios in/ine que describen las secuencias de instrucciones as complejas el codigo en general es

dificil de comprender.

5.3 Cambios propuestos

Como solucion a los problemas nombrados se ha creado una metodologia para trabajar con proyectos,
especificamente orientada a MATE. Esta metodologia, definida con anterioridad en este documento,
describe una serie de procesos para dotar al proyecto MATE de un codigo homogéneo y formal, con
comentarios explicativos y actualizado a las ultimas versiones de sus dependencias. Ademas del trabajo
realizado sobre el codigo fuente también se propone la creacion de una documentacion y un manual de

usuario para la aplicacion MATE.

Esta metodologia se traduce en una serie de cambios que junto con los otros dos miembros del equipo

aplicaremos a los diferentes modulos de MATE.

En primera instancia se intentaran eliminar las llamadas a funciones des-actualizadas, y sustituiremos las

librerias usadas por su version actual.

A continuacidn, procedemos a repasar los archivos fuente y las dependencias entre ellos, resolviendo
redundancias y gestionando los ficheros de forma que estén organizados por modulo, y haciendo que los

ficheros comunes solo aparezcan una vez.

46

Una vez contamos con el conjunto de ficheros final procedemos a aplicar las guias de estilo al codigo de

modo que todo quede homogéneo y facil de leer.

A continuacién, una vez comprendemos bien el codigo, insertamos los comentarios de cada método en
los archivos de cabecera (header) y los comentarios inl/ine necesarios en los archivos de

implementacion.

Después de cada paso es conveniente recompilar para comprobar que se mantiene la funcionalidad
inicial.
Una vez realizados estos cambios el codigo deberia ser mucho mas comprensible y ahora gracias a los

comentarios de Doxygen podemos extraer automaticamente la documentacion del cédigo.

5.4 Cambios aplicados

5.4.1 Adaptacion a las nuevas librerias

Dado que se han actualizado las librerias que se usaran como dependencias de MATE debemos

modificar las llamadas a funciones que existen en el codigo para adaptarlas a los cambios posibles.

En nuestro caso hemos pasado de usar la version 6.1 de Dyninst a la version 7.0. Esto es importante
porque siempre hay que intentar mantener los componentes del programa lo mas actualizados posible,
para aumentar la compatibilidad y favorecerse de las mejoras realizadas por los proveedores de este

software, que a menudo incrementan la calidad de nuestra aplicacion.

En nuestro caso este cambio tiene como consecuencia la necesidad de cambiar algunas llamadas a

funciones, que han variado de una version a la siguiente.

En el caso del AC se ha tenido que substituir el método getPid () que obtenia el identificador de un
proceso. El cambio producido es que a partir de la version 6.0 de Dyninst esta funcion se descontinud en
objetos de tipo thread, siendo exclusiva para procesos. A partir de esta version se debe usar la funcion
getTid () para obtener el identificador de un thread.

Los cambios mas comunes son los relativos a procesos y threads. Otro de los cambios relativos a
Dyninst se produce al intentar llamar funciones propias de procesos en un objeto thread, como en el caso
del TaskManager que intenta obtener, mediante la funcién stopSignal (), la sefial con la que se ha
finalizado un thread. En nuevas versiones de Dyninst esto no es posible de forma directa y se debe

acceder al proceso que representa el thread primero y luego a través de este obtener la sefial de parada.

47

5.4.2 Cambios en cascada

Debido a que se producen cambios en varios modulos de forma simultanea, existe la posibilidad, dado
que los modulos son dependientes entre ellos, que algunos de los cambios realizados por otros miembros

del equipo de trabajo tengan una repercusion en los demas modulos.

En nuestro caso los cambios realizados en el modulo Common, que es el paquete que contiene las clases

comunes para varios médulos, son los que mas impacto tienen sobre el AC.

En el caso de la clase Controller, existe un ejemplo de cambio en cascada. En Common se decidi6
cambiar el método de lectura de los archivos de configuracion y por tanto este cambio ha provocado que

se hayan de cambiar la forma en que la clase Controller obtenia los datos de configuracion.

En lugar de usar un objeto de clase Config para leer el archivo de configuracion, ahora este objeto solo
almacena los datos obtenido y el encargado de leer y tratar este fichero es una clase nueva llamada

ConfigHelper que contiene un método llamado ReadFromFile (path del documento).

Antes:

_cfg.LoadFromFile (configFile);
después:

_cfg = ConfigHelper::ReadFromFile (configFile);

5.4.3 Cambios generales

En adicion a los cambios especificos también se han realizado cambios necesarios debido a la evolucion
del mismo lenguaje en que el programa esta escrito. C++ como lenguaje de programacion también
evoluciona y por tanto debemos ir actualizando los ficheros de codigo para que se adecuen a los cambios

del lenguaje.

El cambio mas significativo de este tipo es el referente a las cadenas de texto. En general se recomienda

el uso de la clase String en lugar de usar punteros a caracteres.
Este cambio se ha aplicado de forma numerosa en todo el codigo.

Un ejemplo es la funcién StartTask (. . .), método perteneciente a la clase TaskManager, que recibe
como parametro el path de la aplicacion a iniciar. Este path es una cadena de caracteres pero en lugar de
tratarla como tal usamos la clase String para representarla y por tanto cambiamos el tipo del pardmetro

que se admite.

48

Pasamos de esto:

bool TaskManager::StartTask (char const * path, char

** args, int envc, char ** env);

bool TaskManager::StartTask (const std::stringé& path,

char ** args, int envc, char ** env);

Como consecuencia a la hora de llamar a la funcién usaremos este tipo de variable para pasar la cadena

path.

Antes:
taskMngr.StartMPITask (cmdLine.GetAppPath (),
_cmdLine.GetAppArgv ())

Después:

taskMngr.StartMPITask ((char *const)

_cmdLine.GetAppPath (), cmdLine.GetAppArgv ())

5.4.5 Cambios concretos

En algunos casos, pese a que no son cambios motivados por la aplicacion de la metodologia se ha

decidido modificar pequefias cosas.

Uno de estos casos concretos en el caso del médulo AC es el método FindByPid (int pid) dela
clase TaskCollection. Por alguna razén existia una duplicidad de métodos, ya que ademas del nombrado
la clase TaskCollecion disponia de otra funcidon llamada Find que realiza exactamente la misma tarea

que FindByPid.

En este caso optamos por eliminar uno de ellos en concreto Find, ya que FindByPid es un nombre
mucho mas descriptivo para esta funcion. Esto tiene como consecuencia trazar todas las llamadas a esta

funcién y substituirlas por llamadas a la que conservamos.

5.4 Comentarios anadidos

Como parte de la documentacion de MATE se han anadido al cddigo fuente, esto es el conjunto de

ficheros en C++ que forman la aplicacioén, comentarios que facilitan la comprension de los elementos y

49

como se relacionen entre ellos.

Estos comentarios se dividen en dos tipos distintos, los comentarios inl/ine y los comentarios Doxygen
(descriptivos). Cada uno de ellos cumple una funcion distinta en en conjunto forman la documentacion

de codigo de MATE.

5.4.1 Comentarios inline

Este tipo de comentarios esta incrustados entre las instrucciones del codigo y tienen como objetivo
principal proporcionar una detallada descripcion de cada linea o conjunto de estas a medida que se van
leyendo. Esto permite que se describa con detalle el flujo de un conjunto de instrucciones a medida que

vamos leyendo cada una de ellas.

El codigo original contenia comentarios de este tipo y se han conservado ya que explican de primera

mano cual es la funcion de cada elemento.

Algunos ejemplos de comentarios inline son los siguientes:

void ShutDownSlave::Run () {
char buf[10];
char intSig[] = "Interrupt";
// Loop that allows for more than one message received
while (1) {
// Create client socket
SocketPtr clientSocket = SSock.Accept();
// Blocking call that receives the message
clientSocket->Receive (buf, sizeof (buf));
// Memory comparison rather than strcmp
if (memcmp (buf, intSig, strlen (intSig)) == 0) {
// Call interrupting function of the AC
_ctrl.Interrupt();
// Exit loop

break;

exit (0) ;

50

5.4.2 Comentarios Doxygen

Como se ha explicado con anterioridad en este documento, Doxygen es una herramienta que nos permite
extraer documentacion de una aplicacion directamente de su codigo. Esto es posible gracias a que
Doxygen analiza la sintaxis y semantica del codigo y ademas puede extraer informacion de ciertas lineas
de comentario especificas. Este tipo de comentarios son especiales para Doxygen, este las identifica

como tal, y estdn formateadas de forma que se pueda extraer informacion.

Con palabras clave como @brief o @param especificadnos a Doxygen que es cada componente del
comentario y este identifica cada uno de ellos para poder procesarlos y generar la documentacion con el

formato deseado.

Estos son los comentarios mas numerosos y que tiene mas contenido. Todos los ficheros de cabecera

contienen este tipo de comentarios para describir cada una de las clases implementadas y sus métodos.

Cada clase tiene un comentarios que incluye su definicion asi como los datos de creacion y version de

esta.

Cada método contiene una breve descripcion de su funcionamiento asi como las especificacion de

parametros, elementos de retorno o excepciones que lanza entre otros.

Algunos ejemplos de este tipo de comentarios:

/*

* @brief Creates a new task.

* Creates a new task that represent the execution
* of the program passed
* as a parameter and adds it to the list of

* stored tasks.

* @param path Absolute location of the

* executable containing the app.

* @param args Arguments that should be

* passed the application when it

* is started.

* @param envc Environment count. (Unused)

* @param env Environments. (Unused)

* (@return true if the task has been

* successfully started, false otherwise.

51

52

*/

bool StartTask
args, int enve,

(const std::stringé& path,
char ** env);

char **

6 Nuevas caracteristicas

En esta seccion se explican las caracteristicas que se han anadido a MATE. Estas no son relativas a su

funcionamiento basico sino que son referentes a la calidad de software.

6.1 Instalador
Una de las piezas clave en cualquier producto software que se quiera distribuir a terceras personas es un
instalador que sea compatible con cualquier version del sistema objetivo, y que permita de esta forma la

implantacion sencilla y rapida de la instalacion sin exigir un alto conocimiento de esta.

Para MATE, ya que se trata de una aplicacion orientada a UNIX, hemos optado por desarrollar un
sistema de instalacion basado en Make. Make es una herramienta de UNIX que permite, mediante una

serie de sencillos scripts, la compilacion de una aplicacion y implantacion de esta en el sistema.

La instalacion de MATE se lleva a cabo a partir del codigo fuente de la aplicacion. Sobre este se realizan

unos procedimientos para generar los ejecutables que forman MATE como aplicacion.

Fases de instalacion:

— Configuracion:

La primera fase de la instalacion de cualquier producto software es la configuracion del instalador para
adaptarlo a la maquina en la cual se esta llevando a cabo la instalacion. Para poder compilar el programa

se deben conocer las caracteristicas del sistema y este ha de disponer de las herramientas adecuadas.

El configurador de MATE, un shell-script llamado “configure”, se encarga de recolectar esta

informacion y almacenarla en un fichero.

La informacién se compone, entre otros, del tipo de arquitectura que usa el sistema, la localizacion del
compilador en el sistema de archivos, la existencia en el sistema de las dependencias de MATE vy el path

de instalacion personalizado si se desea.
— Compilacion:

En esta fase se usa la herramienta Make para generar los ejecutables a partir de los diferentes ficheros de
codigo fuente. Compilando los archivos obtenemos los archivos objeto que mas tarde se enlazaran en

librerias o directamente en el ejecutable que se usara para iniciar la aplicacion.

Make usa una serie de ficheros (makefiles) que contienen las instrucciones para generar cada unos de los
archivos intermedios que toman parte en la creacion del ejecutable final.Estos archivos usan la

informacion recolectada en la fase de configuracion para hacer posible la compilacion.

53

— Instalacion:

Una vez los ejecutables han sido compilados y enlazados con las librerias estaticas de las que dependen
es posible que el usuario quiera que se distribuyan estos binarios en carpetas predeterminadas para

facilitar el acceso.

El instalador procede en esta fase a mover los archivos generados a su correspondiente directorio en el

sistema de ficheros del usuario.

Requisitos del configurador:

* Soporte a usuario (opcion -help)
* Opciones de seleccion
o Compilador de C (opcion -cc).
o Compilador de C++ (opcidn -c++).
o Directorio de cabeceras de MPI (opcion -mpiinc).
o Librerias de MPI (opcion -mpilib).
o Libreria especifica de MPI (opcion -mpilibrary).
o Directorio de cabeceras de Dyninst (opcioén -dyninstinc).
o Librerias de Dyninst (opcioén -dyninstlib).
o Directorio de librerias de Dwarf (opcion -dwarf).
o Directorio de librerias de Binutils (opcion -with-binutils).
o Makefile objetivo (opcidn -with-make).
o Binario de Doxygen (opcion -with-doxygen).
o Arquitectura del sistema (opcion -arch).
* Control de dependencias.

* Busqueda y configuracion de dependencias en funcion de la arquitectura.

Requisitos del instalador:
* Compilacion de los archivos fuente.
* Copia de los archivos ejecutables en el sistema.
* Limpieza de residuos de instalaciones previas.

* Generacidn de la documentacion a partir del codigo.

Ficheros generados

Tal y como se aprecia en la descripcion previa del proceso de instalacion, en este toman parte varios
ficheros diferentes que se encargan de cada una de las fases de la instalacion.

54

— Configurador [configure]:

El configurador es un script escrito en shell (s#) que extrae los datos necesarios para la instalacion del
sistema. Ademas incluye la posibilidad de forzar muchos de los pardmetros de forma que el usuario

puede sobrecargar las elecciones que se toman y asi elegir cual es la configuracion que desea.
— Instalador [makefile(s)]:

MATE dispone de un makefile para cada uno de sus modulos ademas de uno general que es el encargado

de ejecutar cada uno de los demas en un orden adecuado.

Estos ficheros contienen las instrucciones para crear cada uno de los ficheros intermedios y finales que
forman MATE. Para cada fase de la compilacion existen unas dependencias que se deben cumplir antes

de pasar a la siguiente y el makefile se encarga de que la compilacion se ejecute de forma adecuada.

Ademas dispone de unos objetivos (fargets) adicionales que sirven para limpiar la instalacion previa, es
decir, eliminar los archivos residuales de previas compilaciones, y generar la documentacion a partir del

codigo.

Ficheros adicionales
El instalador hace uso de algunos archivos adicionales que proporcionan informacion sobre el sistema.
— Archfind: es un ejecutable que nos permite averiguar la arquitectura del sistema.

— IsAbs: se trata de un pequeiio script que comprueba si un camino de directorio es absoluto.

Codificacion
La implementacion de este modulo se ha realizado usando principalmente las dos herramientas ya
nombradas, shell-scripts y Make. Para generar el configurador se podria haber optado por hacerlo

automaticamente con autotools pero para simplificar el profeso y el script final se opto por realizarlo

manualmente a partir de un script parecido existente.

Los makefiles se generaron a partir de los que ya existian para MATE afadiendo nuevos para adaptarse a

la trasformacion de la aplicacion.

Como contribucion personal al proyecto se han realizado las tareas relativas a los makefiles.

Testeo
Como parte de MATE el instalador debe ser testeado para comprobar que su funcionamiento es correcto.
Dentro del instalador la parte mas importante y a la vez mas susceptible a fallos es el configure ya que

este debe adaptarse a diferentes situaciones en distintos sistemas.

55

Con este objetivo se han generado una serie de tests que comprueban que el script “configure” recolecta

siempre la informacion adecuada y sobrecarga los valores de los pardmetros cuando el usuario lo desea.

Estos tests se han realizado mediante Make, que nos permite producir los resultados de diferentes
ejecuciones del script y con distintos parametros de entrada y en diferentes sistemas y comprobar que

son los resultados esperados.

6.2 Mecanismo de parada
Otro aspecto importante en producto software es la habilidad de este para terminarse de forma segura.
Hasta el momento no existia un método de apagado de la aplicacion sino que se tenia que abortar por

medio de comandos.

Requisitos
El mecanismo de parada debe encargarse de cerrar el programa de manera limpia y sin que se corra

peligro de perder informacidn o provocar dafos al sistema.
* Apagado controlado de MATE
» Difusion de la sefial de apagado a los AC
* No influir en el tiempo de ejecucion de la aplicacion.

* Proporcionar control directo al usuario.

Diseno

Con estos requisitos en mente se ha disefiado un mecanismo que, aprovechando la clase socket del
proyecto original usa este tipo de protocolo de comunicacion para transmitir la sefial de cerrado a todos
los nodos del sistema distribuido y asi se asegura de que todos los AC's activos se cierran en el momento

que el usuario desea finalizar MATE.

El sistema de cerrado consiste simplemente de un thread que se ejecuta de forma silenciosa en cada uno

de los nodos del cluster 1 en la maquina que ejecuta el Analyzer.

El thread de los nodos AC ejecuta una rutina de cliente que servidor que espera la sefial del nodo
principal para indicarle al AC que debe finalizarse. De forma complementaria en el nodo principal se

ejecuta un thread que actua como cliente y difunde la sefial de cerrado cuando sea adecuado.

De este modo cuando la maquina central recibe la orden del usuario de que MATE debe cerrarse, esta

envia por socket la senal a todos los nodos AC.

Este método permite reducir practicamente a 0 la influencia del mecanismo de cerrado en el tiempo total

de ejecucion ya que los threads se bloquean esperando sefiales y no realizan esperas activas de modo que

56

el procesador queda libre para realizar las tareas relativas a la aplicacion y a MATE.

3:Recepcion de la sefial de cerrado
y finalizacién del AC

2: Notificar a los nodos

1: Espera entrada del usuario

4: finalizacion del Analyzer
Figura 10 Diagrama que muestra el funcionamiento del mecanismo de parada.

Codificacion
El mecanismo de parada se ha integrado en el c6digo de MATE y por tanto esta escrito en C++. En
concreto la clase creada para el AC, como aportacion personal, se llama ShutDownSlave.

Esta clase es una subclase de ActiveObject lo que permite que se comporte como un thread.

Utiliza los objetos definidos por los desarrolladores originales de MATE para representar sockets.

Testeo

Las clases usadas en el desarrollo de este componente han sido testeadas de forma unitaria, es decir, que
funcionen bien por si solas. Debido a problemas con el entorno las pruebas del mecanismo de parada se

han limitado a comprobaciones del funcionamiento de los sockets y del sistema de parada del AC.

57

7 Conclusiones
Este es un proyecto inusual que no tiene como objetivo la creacion de una aplicacion sino la de aplicar

garantias de calidad a una ya creada. En este sentido el proyecto ha sido un éxito.

Se ha disefiado un entorno de desarrollo especialmente adaptado a las necesidades de MATE. Esperamos
que esto represente el estandar para futuros proyecto con MATE y de esta forma se facilite el trabajo de
los realizadores de este. Todos los componentes del entorno cuentan con un mecanismo de instalacion
automatico (scripts de instalacion) para que su implantacion pueda ser realizada lo mas rapidamente

posible.

Se han creado una serie de documentos que conjuntamente describen detalladamente una metodologia
que regula todos los aspectos del desarrollo de MATE. Esto hara posible la colaboracion de terceras

partes a la evolucion del proyecto unificando el codigo obtenido.

El c6digo de MATE ha sido actualizado siguiendo las normas de estilo especificadas en las guias y se ha

intentado obtener el codigo mas limpio y correcto posible.

Ademas se ha documentado el c6digo para que este sea mas comprensible lo que reducira notablemente

el esfuerzo de futuros desarrolladores a la hora de familiarizarse con la aplicacion.

MATE como aplicacion era totalmente funcional al inicio de este proyecto, no obstante el trabajo
realizado durante estos meses ha dotado al proyecto de caracteristicas que, si bien no repercuten en las
funcionalidades de esta, son una parte muy importante para su evolucién. No obstante se han afiadido
algunas caracteristicas nuevas, que no modifican el funcionamiento base pero hacen mas cémodo el uso

de la aplicacion.

En definitiva podemos decir que se han cumplido los objetivos planteados, y que el resultado de

haberlos cumplido es transcendental para la evolucion de MATE.

MATE es un proyecto con mucho futuro, la aplicacion en si representa un paso adelante en la
optimizacion de aplicaciones paralelas, y por tanto debe darse continuidad a la evolucién de esta.
Esperamos que con nuestra aportacion se facilite a futuros desarrolladores la tarea de seguir trabajando

para hacer de MATE la herramienta mas completa posible.

7.1 Posibles mejoras

Pese a que el proyecto se ha llevado a cabo de forma exitosa, existen posibles mejoras que se podrian

haber aplicado, pero que debido a falta de tiempo o del conocimiento adecuado no han sido posibles.

MATE tiene en su codigo algunas partes incompletas que en la actualidad son prescindibles debido al

uso que se le da pero que harian de MATE un programa mas completo.

58

— Mejoras de funcionalidad:

En el modulo AC en la clase Tuner solo estd implementado el cambios de valores para variables de tipo
float. Este es un parche que hace que MATE funcione para ciertos casos en que otros tipos son
innecesarios pero seria mas completo si estuviera implementado para cualquier tipo. Completar esta

parte del AC no era viable debido a la falta de experiencia con Dyninst y no se ha podido realizar.
— Licencia:

Otro factor importante que debe ser definido es bajo que términos se puede usar modificar y distribuir
MATE. La licencia que se le aplique a la aplicacion serd relevante en el futuro de esta y por tanto debe

ser responsablemente escogida.
— Testing:

Una parte importante de todo desarrollo software es asegurarse de que el producto final cumple con los
requisitos establecidos. Para comprobar que el producto se comporta de la forma esperada se deben
realizar una serie de fests en el entorno en que la herramienta deberia funcionar una vez liberada. En
nuestro caso este entorno es un cluster de ordenadores. De modo que el siguiente paso serie realizar una
serie de fests de MATE en diferentes sistemas para corroborar los resultados obtenidos en los fests

unitarios. Y ademas validar las caracteristicas anadidas como el sistema de configuracion o el de cerrado.

59

8 Bibliografia

Links

Pégina oficial de Dyninst: http://www.dyninst.org/

Paradyn (pagina de Dyninst 7.0): http://www.paradyn.org/html/dyninst7.0-software.html

The Message Passing Interface (MPI) standard: http://www.mcs.anl.gov/research/projects/mpi/

Apache server project: http:/httpd.apache.org/

Pégina oficial de Doxygen: http://www.stack.nl/~dimitri/doxygen/

Pégina oficial de SVN: http://subversion.apache.org/

C++ referencia: http://www.cplusplus.com/reference/

An Introduction to the UNIX Make Utility:
http://frank.mtsu.edu/~csdept/FacilitiesAndResources/make.htm

Make manual: http://www.gnu.org/software/make/manual/make.html

Creating UNIX libraries: http://www.cs.duke.edu/~ola/courses/programming/libraries.html

Documentos

60

Anna Morajko, “Dynamic Tuning of Parallel/Distributed Applications”, UAB, 2003.

Andrea Martinez, "Sintonizacién dindmica de aplicaciones MPI", UAB, 2010.

Eduardo César, Definition of Framework-based Performance Models for Dynamic Performance
Tuning, UAB, 2006.

Paul Glezen, Branching with Eclipse and CVS, Part 2: Rebasing, IBM 2007.

Juan Souli¢, C++ Language tutorial, 2007

http://www.cs.duke.edu/~ola/courses/programming/libraries.html
http://www.gnu.org/software/make/manual/make.html
http://frank.mtsu.edu/~csdept/FacilitiesAndResources/make.htm
http://www.cplusplus.com/reference/
http://subversion.apache.org/
http://www.stack.nl/~dimitri/doxygen/
http://httpd.apache.org/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.paradyn.org/html/dyninst7.0-software.html
http://www.dyninst.org/

indice de anexos

61

1.

A S A

Actas de reunion

I. Acta nimero uno, con fecha 03-01-2011
II. Acta nimero dos, con fecha 28-01-2011
III. Acta nimero tres, con fecha 18-02-2011
IV. Acta ntimero cuatro, con fecha 01-04-2011
V. Acta nimero cinco, con fecha 06-05-2011
VI. Acta nimero seis, con fecha 17-06-2011
Guia de instalacion de Doxygen

Script de instalacion de Doxygen

Guia de instalacion de Subversion

Script de instalacion de Subversion
Especificacion de deployment

Diagrama de secuencia del AC.

Especificacion de control de versiones y build

Documentacion del modulo AC extraida con Doxygen

	1 Introducción
	1.1 Perspectiva general
	1.1.1 Computación de altas prestaciones
	1.1.2 Computación paralela
	1.1.3 Aplicaciones paralelas
	1.1.4 Optimización de aplicaciones paralelas

	1.2 MATE
	1.3 Aportación
	1.4 Alcance
	1.5 Objetivos
	1.6 Estructura del documento

	2. Plan de proyecto y estudio de viabilidad
	2.1 Estado actual
	2.1.1 MATE: el proyecto

	2.2 Requisitos funcionales y no funcionales
	2.2.1 Requisitos funcionales
	2.2.2 Requisitos no funcionales
	2.2.3 Catalogación y priorización de requisitos

	2.3 Descripción del sistema MATE
	2.3.1 Lógica del sistema
	2.3.2 Descripción física

	2.4 Alternativas para el entorno
	2.4.1 Solución propuesta

	2.5 Viabilidad técnica
	2.5.1 Lenguaje de programación
	2.5.2 MPI
	2.5.3 Dyninst

	2.6 Planificación
	2.6.1 WBS (Work Breakdown Structure)
	2.6.2 Fases y actividades del proyecto
	2.6.3 Recursos del proyecto
	2.6.4 Calendario del proyecto
	2.6.5 Calendario temporal

	2.7 Evaluación de riesgos
	2.7.1 Lista de riesgos
	2.7.2 Catalogación de riesgos
	2.7.3 Plan de contingencia

	2.8 Presupuesto
	2.8.1 Estimación coste de personal
	2.8.2 Estimación coste de los recursos
	2.8.3Estimación coste de las actividades
	2.8.4 Estimación de otros costes
	2.8.5 Estimación costes indirectos
	2.8.6 Resumen y análisis coste beneficio

	3. Calidad del software
	3.1 SQA
	3.1.1 Modelos estándar
	3.1.2 Modelos de aplicación o específicos de compañías

	4 Especificación de la metodología
	4.2 Especificación del entorno de desarrollo
	4.2.1 Perspectiva general
	4.2.2 Contribución personal
	4.2.3 SVN
	4.2.4 Doxygen

	4.3 Documentos de especificación
	4.3.1 Perspectiva general
	4.3.2 Contribución personal
	4.3.3 Especificación de control de versiones y build
	4.3.4 Especificación de deployment

	5 Aplicación de la metodología
	5.1 MATE: el módulo AC
	5.2 Estado inicial del módulo
	5.3 Cambios propuestos
	5.4 Cambios aplicados
	5.4.1 Adaptación a las nuevas librerías
	5.4.2 Cambios en cascada
	5.4.3 Cambios generales
	5.4.5 Cambios concretos
	5.4 Comentarios añadidos
	5.4.1 Comentarios inline
	5.4.2 Comentarios Doxygen

	6 Nuevas características
	6.1 Instalador
	6.2 Mecanismo de parada

	7 Conclusiones
	7.1 Posibles mejoras

	8 Bibliografía
	Índice de anexos

