
Aplicación de la ingeniería del
software sobre la herramienta

MATE:
Application Controller

Memoria del proyecto
de Ingeniería Técnica en
Informática de Sistemas

realizado por
Antonio Pimenta Soto

y dirigido por
Anna Sikora

Escola d’Enginyeria
Sabadell, Septiembre de 2011

Agradecimientos

Primero de todo agradecer a mis dos compañeros Noel y Rodrigo, con los

cuales no solo he realizado este proyecto sino que he compartido estos últimos

años de estudiante.

Gracias a Anna y Eduardo por contar con nosotros para participar de un

proyecto tan interesante como MATE.

Y también a Joan Piedrafita que ha estado con nosotros a lo largo de todo el

proceso, ayudándonos con nuestras dudas y ofreciéndonos un punto de vista

diferente.

FULL DE RESUM
PROJECTE FI DE CARRERA DE L’ESCOLA D’ENGINYERIA

Títol del projecte:
Aplicación de la ingenieria del software sobre la herramienta MATE: Application
Controller
Autor[a]: Antonio Pimenta Soto Data: Septembre de 2011

Tutor[a]/s[es]: Anna Sikora

Titulació: Enginyeria Técnica Informatica de sistemes

Paraules clau (mínim 3)
• Català: Enginyeria del software, programació paral·lela i qualitat de software.
• Castellà: Ingenieria del software, programación paralela y calidad del
software.
• Anglès: Software engineering, parallel programming and software quality.

Resum del projecte (extensió màxima 100 paraules)
• Català:
Aquest projecte té com a objectiu crear i aplicar una metodologia a una aplicació
anomenada MATE, que va ser creada al any 2003 per Anna Sikora per a la seva
tesis doctoral. Es tracta de dotar el projecte MATE de les eines necessàries per
garantir la seva evolució. La metodologia creada consta de l'especificació d'un
entorn de treball y una serie de documents que detallen els processos relatius al
desenvolupament de MATE. A més s'han creat algunes noves característiques que
fan de MATE una eina més completa i còmoda.

• Castellà:
Este proyecto tiene como objetivo crear y aplicar una metodología a una aplicación
llamada MATE que fue creada en en el año 2003 para su tesis doctoral. Se trata de
dotar el proyecto MATE de las herramientas necesarias para garantizar su
evolución. La metodología creada consta de la especificación de un entorno de
trabajo y una serie de documentos que detallan los procesos relativos al desarrollo
de MATE. Además se han creado algunas nuevas características que hacen de MATE
una herramienta mas completa y cómoda.

• Anglès:
This project has the goal of creating and applying a methodology to an application
called MATE, which was created by Anna Sikora in the year 2003 for her Thesis.
The main task consists in providing MATE with the necessary tools to be able to
evolve. The methodology we've created specifies an work environment and a
series of documents detailing the processes used in the developments of MATE.
Furthermore we've added new characteristics to MATE such as a shut down
mechanism and a configuration system that make MATE more complete and
enhance its usability.

Índice
1 Introducción...1

1.1 Perspectiva general..1
1.1.1 Computación de altas prestaciones..1
1.1.2 Computación paralela...1
1.1.3 Aplicaciones paralelas..2
1.1.4 Optimización de aplicaciones paralelas...2

1.2 MATE...4
1.3 Aportación..4
1.4 Alcance...5
1.5 Objetivos..5
1.6 Estructura del documento..6

2. Plan de proyecto y estudio de viabilidad..7
2.1 Estado actual..7

2.1.1 MATE: el proyecto...7
2.2 Requisitos funcionales y no funcionales..8

2.2.1 Requisitos funcionales...8
2.2.2 Requisitos no funcionales..8
2.2.3 Catalogación y priorización de requisitos..9

2.3 Descripción del sistema MATE...10
2.3.1 Lógica del sistema..10
2.3.2 Descripción física...14

2.4 Alternativas para el entorno...15
2.4.1 Solución propuesta...16

2.5 Viabilidad técnica...16
2.5.1 Lenguaje de programación...16
2.5.2 MPI...17
2.5.3 Dyninst...17

2.6 Planificación..18
2.6.1 WBS (Work Breakdown Structure)..18
2.6.2 Fases y actividades del proyecto..19
2.6.3 Recursos del proyecto..20
2.6.4 Calendario del proyecto...22
2.6.5 Calendario temporal...23

2.7 Evaluación de riesgos..26
2.7.1 Lista de riesgos...26
2.7.2 Catalogación de riesgos..26
2.7.3 Plan de contingencia..26

2.8 Presupuesto ...26
2.8.1 Estimación coste de personal...26
2.8.2 Estimación coste de los recursos..27
2.8.3Estimación coste de las actividades..27
2.8.4 Estimación de otros costes...27
2.8.5 Estimación costes indirectos..27
2.8.6 Resumen y análisis coste beneficio..27

3. Calidad del software...28
3.1 SQA...28

3.1.1 Modelos estándar...29
3.1.2 Modelos de aplicación o específicos de compañías...31

4 Especificación de la metodología..32
4.2 Especificación del entorno de desarrollo...32

4.2.1 Perspectiva general...32

4.2.2 Contribución personal..33
4.2.3 SVN ...33
4.2.4 Doxygen...37

4.3 Documentos de especificación...39
4.3.1 Perspectiva general...39
4.3.2 Contribución personal..39
4.3.3 Especificación de control de versiones y build..40
4.3.4 Especificación de deployment..41

5 Aplicación de la metodología..42
5.1 MATE: el módulo AC..42
5.2 Estado inicial del módulo..47
5.3 Cambios propuestos...47
5.4 Cambios aplicados...48

5.4.1 Adaptación a las nuevas librerías...48
5.4.2 Cambios en cascada...49
5.4.3 Cambios generales...49
5.4.5 Cambios concretos...50
5.4 Comentarios añadidos...50
5.4.1 Comentarios inline...51
5.4.2 Comentarios Doxygen..52

6 Nuevas características...54
6.1 Instalador...54
6.2 Mecanismo de parada..57

7 Conclusiones..59
7.1 Posibles mejoras..59

8 Bibliografía..61
Índice de anexos...62

1 Introducción

En esta sección se exponen los aspectos referentes al proyecto proporcionando una visión general de lo

que se trata en las secciones posteriores y ofreciendo al lector información útil para comprender el

marco en el que se desarrolla el proyecto.

1.1 Perspectiva general

1.1.1 Computación de altas prestaciones

En la actualidad el uso de computadoras se ha extendido a todas las ramas de la ciencia, proporcionando

una capacidad de calculo hasta ahora inimaginable permiten realizar cálculos y simulaciones

extremadamente complejas que seria imposible llevar a cabo de cualquier otra forma.

Esté afán de conseguir máquinas mas y mas potentes cada día motiva la investigación en HPC (High

Performance Computing), en castellano computación de altas pretaciones que reúne diferentes aspectos

del hardware y software.

1.1.2 Computación paralela

La evolución de las computadoras hace que cada vez sean mas potentes y por tanto capaces de realizar

cálculos mas complejos en menos tiempo. Esta evolución ha consistido durante mucho tiempo en

aumentar la frecuencia a la que se realizan estos cálculos, pero en los últimos tiempos han surgido otras

ideas como el computo paralelo que presenta una alternativa viable para dar continuidad a esta

evolución. Debido a que existe una obvia limitación física a la hora de aumentar la frecuencia de los

procesadores y el alto consumo que esto supone la computación paralela ha ganado protagonismo en el

campo de la supercomputación.

Podemos discernir dos claras variantes de la computación paralela, sistemas multinúcleo en los que una

sola maquina posee varios núcleos de procesamiento y clusters de maquinas donde varias maquinas

colaboran para realizar tareas de forma mas rápida. Pero a pesar de las posibilidades que este tipo de

arquitecturas presenta también existen desventajas. Principalmente a la hora de desarrollar software para

este tipo de arquitecturas se exige un alto conocimiento debido a que la complejidad del código aumenta

y aparecen muchos problemas nuevos derivados del tipo de ejecución concurrente. Problemas como la

sincronización o la comunicación entre cada uno de los nodos son comunes obstáculos que aparecen y

dificultan la creación de aplicaciones paralelas eficientes.

Además la programación paralela solo puede reducir el tiempo de ejecución hasta cierto punto ya que

parte de las tareas que se han de ejecutar no pueden hacerlo de forma paralela. Esta limitación viene

descrita por la ley de Amdahl y nos permite calcular la máxima optimización que podemos obtener en

función del porcentaje de la tarea que sea paralelizable.

1

Cuando programamos una aplicación para que esta se ejecute de forma paralela debemos dividirla en

segmentos que serán procesados por las diferentes máquinas. En este aspecto podemos dividir el

paralelismo en dos tipos:

– Paralelismo de datos:

En este tipo de paralelismo se divide la estructura de datos con la que se trabaja en diferentes

segmentos y se aplica la misma tarea a cada una de ellos. Este tipo de paralelismo es aplicable a

programas en forma de bucle donde en cada iteración se trabaja con una parte de la estructura de

datos.

– Paralelismo de tareas:

En cambio en este tipo de paralelismo se ejecuta una tarea distinta en cada uno de los nodos del

cluster.

1.1.3 Aplicaciones paralelas

En las arquitecturas multinúcleo todos los núcleos de procesamiento trabajan sobre la misma memoria y

por tanto no requieren de un sistema de paso de mensaje especializado para comunicarse entre ellos.

En cambio en las arquitecturas distribuidas como clusters o grids es necesario una comunicación y

sincronización entre las diferentes máquinas que la ejecutan para controlar el flujo de las instrucciones

que se procesan y poder aprovechar los resultados obtenidos. Este proceso de paso de mensajes es

necesario para distribuir las tareas a cada uno de los procesadores y posteriormente para obtener los

resultados.

En el caso de MATE las aplicaciones con las que este trabaja usarán MPI (Message Passing Interface)

para realizar estas comunicaciones. Este protocolo que se usa como estándar en aplicaciones paralelas,

dota a las aplicaciones de herramientas para comunicarse una vez han sido ejecutadas en una

computadora paralela distribuida.

1.1.4 Optimización de aplicaciones paralelas

Como se expone anteriormente para que cálculos complejos sean posibles se ha de disponer de

computadoras muy potentes, pero estas tiene un coste alto y por tanto el tiempo que se emplea en

realizar las tareas es un factor que influye directamente en el coste. Esto junto con la necesidad de

realizar estas tareas en tiempos razonables motiva la creación de herramientas que aceleran la ejecución

de este tipo de aplicaciones.

Como consecuencia existen programas cuya finalidad es la de analizar el comportamiento de

aplicaciones paralelas en ejecución para identificar problemas, como cuellos de botella, y poder

solucionarlos para agilizar la progresión de la aplicación.

El proceso de optimizar las aplicaciones paralelas tiene tres fases: monitorización, análisis y

2

sintonización. En la fase de monitorización se extrae información referente a la ejecución de la

aplicación. Esta información servirá para analizar el comportamiento de la aplicación y encontrar

posibles problemas, esto se hace en la fase de análisis. Por último en la fase de sintonización se hacen

cambios en la aplicación para solucionar, en la medida de lo posible, los problemas encontrados,

Análisis manual

Normalmente este proceso se realiza manualmente, el programador observa los datos obtenidos durante

la monitorización del programa una vez este ha terminado su ejecución. Con los datos recolectados el

usuario puede identificar problemas y modificar el código de la aplicación en consecuencia, recompilar

y volver a ejecutar el programa.

El problema de esta aproximación es que se requiere un alto conocimiento sobre programación paralela

para identificar y solucionar este tipo de problemas y por tanto, además de ser costoso y consumir

tiempo, está al alcance de pocos expertos.

Análisis automático

Existen aplicaciones que analizan automáticamente los datos recolectados y asisten al programador en

encontrar los cuellos de botella. Pero en estos casos el programador necesita realizar el mismo los

cambios y el análisis sigue siendo postmortem.

Análisis dinámico

En este caso el análisis se efectúa durante la ejecución de la aplicación esto permite eliminar la

necesidad de un archivo donde almacenar los datos recolectados y el análisis se va realizando en paralelo

a la ejecución de la aplicación. En este caso se obtienen mejores resultados y por tanto las mejoras

sugeridas serán mas efectivas pero aun se requiere parar la aplicación para poderla aplicar.

Sintonización dinámica

Este modelo permite aplicar los cambios sugeridos por el análisis de los datos recolectados en tiempo de

ejecución y por tanto eliminamos la necesidad de parar la ejecución y que el programador deba

modificar el código y recompilar el programa. Esto además nos permite aplicar cambios adaptativos ya

que cada ciclo de monitorización recolectará datos referentes a las modificaciones del ciclo anterior. Este

proceso adaptativo hace que las mejoras aplicadas sea mas eficientes, ya que en caso de aplicaciones no

deterministas las soluciones aplicadas en referencia a análisis anteriores podrían ser solo efectivas en

casos concretos.

3

Modificación dinámica
Para que la sintonización dinámica sea posible ha de existir una forma de modificar las instrucciones de

la aplicación mientras esta se ejecuta. MATE utiliza una librería llamada Dyninst para eso. Dyninst

proporciona una API que permite generar pequeños bloques de instrumentación llamados snippets y

introducirlos en un punto de la aplicación en cuestión. Esto permite que un programa mutator, en nuestro

caso MATE, modifique un mutatee, la aplicación sintonizada. El mutator utiliza una representación de la

imagen en memoria del mutatee llamada image para controlar el flujo del proceso y de esta manera

poder pararlo e insertar snippets en un punto predeterminado (point).

MATE usa estas características en dos puntos transcendentales del proceso, la monitorización y la

sintonización. Cuando MATE inicia una aplicación MPI inserta en ella una serie de snippets que envían

información al Analyzer y cuando este decide que cambios realizar en el programa, es mediante las

funciones de esta API que MATE aplica los cambios en el programa.

1.2 MATE

Es en este tipo de entornos, clusters de maquinas en paralelo, que MATE aplica una serie de funciones

para optimizar el funcionamiento de estas.

Existen muchas aplicaciones que intentan optimizar el uso de estas supercomputadores para incrementar

su rendimiento. MATE es una propuesta innovadora que va un paso mas allá en este proceso de

optimización y lo automatiza.

MATE tiene como objetivo encontrar cuellos de botella en la ejecución de la aplicación y modificarla

mientras esta se ejecuta, es decir mientras se encuentra en memoria, para resolverlos y de esta forma

aumentar el rendimiento general de la computadora.

1.3 Aportación

Dado que se trata de software ya creado, nuestra aportación al proyecto consiste en dotarlo de las

herramientas necesarias para seguir evolucionando, y de esta forma hacer posible que se convierta en un

producto que puedan usar terceras partes.

Para que esto sea posible MATE debe disponer de unos mínimos requisitos de calidad que permitan a

otros usuarios ejecutar y usar la aplicación pero que también ellos puedan comprender el código y

participar de la evolución de este.

Además de el trabajo realizado sobre software ya existente también añadiremos a MATE nuevas

características que lo harán mas cómodo de usar y permitirán que llegue a más usuarios.

4

1.4 Alcance

Nuestro proyecto, pese a que trabajemos con MATE, no modificará el funcionamiento básico de este.

MATE trabaja con funciones complejas de análisis y sintonización de aplicaciones, que se escapan de

nuestro campo de conocimiento y por tanto no modificaremos. Estas funciones han sido desarrolladas

por nuestros antecesores en este proyecto y cumplen con su función.

1.5 Objetivos
Debido a su envergadura, los objetivos de este proyecto se dividirán entre los diferentes miembros del
equipo de desarrollo. A continuación se listarán los objetivos generales y se especificará la división de
los mismos.

Objetivo Prioridad Miembro Asignado
1 Crear especificaciones del entorno de

desarrollo
Prioritario Grupo

2 Implantar entorno de desarrollo Crítico

2.1 Herramienta de colaboración Crítico Rodrigo Echeverría, Antonio Pimenta

2.2 Herramienta de control de versiones Crítico Antonio Pimenta

2.3 Herramienta de construcción Crítico Noel De Martin

3 Construir la metodología de desarrollo. Crítico Grupo

3.1 Guía de estilo de documentación. Crítico Rodrigo Echeverría

3.2 Guía de estilo de codificación. Crítico Noel De Martin

3.3 Guía de estilo de documentación de
código.

Prioritario Rodrigo Echeverría

3.4 Guía de estilo de desplegamiento. Prioritario Antonio Pimenta

4 Aplicar la metodología y
especificaciones a MATE.

Crítico

4.1 Aplicación sobre las clases comunes
(Common)

Crítico Noel De Martin

4.2 Aplicación sobre el módulo DMLib. Crítico Noel De Martin

4.3 Aplicación sobre el módulo AC. Crítico Antonio Pimenta

4.4 Aplicación sobre el módulo Analyzer. Crítico Rodrigo Echeverría

5

5 Desarrollo de nuevas características Secundario

5.1 Crear un instalador para cualquier
versión de Linux.

Secundario Rodrigo Echeverría, Antonio Pimenta

5.2 Crear un lector de configuraciones
flexible.

Secundario Noel De Martin

5.3 Crear un sistema de cerrado de MATE. Secundario Rodrigo Echeverría, Antonio Pimenta

6 Crear documentación de MATE para
futuros colaboradores y usuarios.

Prioritario Grupo

1.6 Estructura del documento

Este documento esta dividido en 8 secciones siendo esta la primera donde se introduce el tema del

proyecto y se da información necesaria para la comprensión del conjunto.

La segunda sección contiene la información relativa a la gestión del tiempo usado para realizar el

proyecto. En ella se expresan los requerimientos que debe satisfacer el producto final y se comprueba la

viabilidad de estas metas. Además se hace una descripción a fondo del funcionamiento de MATE y de

sus módulos.

En la sección tercera se hace hincapié en la importancia de la calidad del software, que es uno de los

fundamentos de la realización de este proyecto. En esta sección también se hjabla de los diferentes

modelos que existen para asegurar la calidad en un producto software y especificamos cual de ellos es

mas adecuado a MATE.

La cuarta sección habla del diseño y desarrollo de la metodología, y se puede dividir en dos bloques: el

primero que habla del entorno de desarrollo que se propone para MATE y el segundo que incluye las

especificaciones según las cuales se regirá este y futuros proyectos sobre MATE.

La quinta sección hace referencia a las actividades que se han llevado a cabo sobre el código de MATE

referentes a la metodología descrita en la sección 4. Esta sección incluye detalles de como se han

aplicado las diferentes especificaciones en MATE y como se ha usado el entorno de desarrollo.

La sección sexta habla de las nuevas características con las que se ha dotado a MATE. Se especifican las

diferentes fases del desarrollo de estos componentes nuevos, cual fue el motivo de su creación y los

resultados de esta.

En la séptima sección se explican los resultados del proyecto incluyendo posibles mejoras aplicables a

este y ideas para futuros proyectos MATE. En esta sección se valora el trabajo realizado y se analiza el

resultado obtenido.

Por último en la sección octava se incluyen las referencias a los documentos y paginas web usadas para

docuentarse.

6

2. Plan de proyecto y estudio de viabilidad

En esta sección se detalla en que marco se sitúa este proyecto y se plantean los requisitos específicos

que deberán ser satisfechos por el producto final, además, se propone una planificación para realizar el

proyecto en el tiempo estimado. Por ultimo se realiza un estudio para comprobar que se trata de un

proyecto viable económica y técnicamente.

2.1 Estado actual

2.1.1 MATE: el proyecto

MATE es una aplicación desarrollada por Anna Sikora en el año 2003 como parte de su tesis doctoral.

Esta aplicación tiene como objetivo mejorar el rendimiento de sistemas distribuidos y pretende llevar un

paso mas allá esta tarea por medio de automatizar el proceso de optimización y realizarlo de forma

dinámica, sin parar la ejecución de la aplicación.

El hecho de analizar el comportamiento de la aplicación objetivo y aplicar los cambios adecuado

produce un overhead en el tiempo de ejecución y por tanto el reto es realizar este proceso sin influir

negativamente en el tiempo total de ejecución para que el trabajo de optimización sea efectivo. El

análisis que se realiza es mas superficial y ligero para poder obtener soluciones en tiempo real.

En su inicio MATE se basaba en los siguientes puntos:

– La monitorización, análisis y modificaciones se realizan en tiempo de ejecución, por contra a

otras aplicaciones similares que realizan análisis postmortem o que los cambios deben ser

realizados a mano.

– MATE no debe influenciar negativamente en el tiempo de ejecución de la aplicación, la intrusión

tanto en cada una de las maquinas como en la red debe ser mínima para hacer eficaz la

optimización.

– El sistema debe ser aplicable a diferentes aplicaciones pudiendo adoptar diferentes modelos de

análisis.

– El sistema debe estar adaptado a personal no experto, parte de los beneficios de MATE es que

automatiza los aspectos mas complejos de la optimización de aplicaciones paralelas y por tanto

hace la participación de expertos innecesaria.

Posteriormente a su creación MATE ha derivado en varios trabajos haciéndolo parte de diferentes

proyectos, cada uno de estos proporcionándole nuevas funcionalidades y de esta forma perpetuando su

evolución. Entre otros Paola Caymes y Andrea Martínez han trabajado con MATE para dotarlo de

nuevas características, la creación automática de técnicas de sintonización y nuevos modelos de

7

rendimiento respectivamente.

El proyecto MATE sigue activo y existen lineas de investigación que en el futuro harán que MATE sea

aplicable en sistemas de gran escala. Esto se conseguirá jerarquizando el sistema de análisis de forma

que no se lleve a cabo en un único nodo sino que se distribuya en niveles para hacer posible el análisis

de miles de nodos.

2.2 Requisitos funcionales y no funcionales

Al tratarse de un proyecto que se basa en una aplicación ya desarrollada los objetivos naturales de un

proyecto de desarrollo se ven llevados a un segundo plano.

Por tanto ,aunque lo primero que puede surgir al pensar en requisitos sobre este proyecto sean requisitos

de MATE (mejorar rendimiento de la aplicación, no sobrecargar demasiado la ejecución), sería un error

enfocarlo de esa manera, ya que este proyecto no se trata de crear MATE, sino de crear una versión

como producto software del mismo.

Esto es, desarrollar y aplicar una serie de procedimientos para producir, a partir de la versión existente

de MATE, una aplicación adecuada a un uso general y proporcionar las herramientas necesarias para la

continuidad de su desarrollo.

2.2.1 Requisitos funcionales

Debido al hecho de que MATE es un programa plenamente operativo los requisitos funcionales se

reducen a que la funcionalidad actual se mantenga y a añadir algunos pequeños módulos que hacen mas

cómodo el uso de MATE aunque no modifican su funcionamiento principal, como por ejemplo un

sistema de Shut Down (Apagado). El resto de requisitos aparecerán al realizar los test de prueba sobre

los cuales trabajaremos para modificar el programa.

1.- Mantener funcionalidad actual de MATE.

2.- Adaptar a nuevos entornos.

3.- La aplicación debe cerrarse de forma controlada.

4.- Permitir lectura de archivos de configuración.

2.2.2 Requisitos no funcionales

En nuestro caso los requisitos no funcionales se basan en homogeneizar la codificación y

documentación. Por lo tanto harán referencia a las guías de especificación. También serán encontrar los

posibles errores del sistema mediante un sistema cíclico de testeo.
8

Dado que, como hemos explicado anteriormente, los requisitos funcionales básicos de MATE ya están

satisfechos, la carga de nuestro proyecto se encuentra en los no funcionales. Estos, pese a no añadir

funcionalidad a la aplicación incrementan su calidad.

1.- Homogeneizar codificación y documentación.

2.- Realizar proceso de testeo.

3.- El programa debe funcionar en todas las distribuciones de linux.

2.2.3 Catalogación y priorización de requisitos

Entre los requisitos de este proyecto el más importante es el de mantener la funcionalidad actual. Los

siguientes serían referentes a tener un buen soporte y documentación para que futuros colaboradores o

desarrolladores de MATE puedan solventar errores residuales. Y para acabar tener el mayor rango de

sistemas compatibles posible.

Priorización de los requisitos:

Requisitos Prioridad
Mantener funcionalidad actual de MATE. Esencial
Adaptar a nuevos entornos. Condicional
La aplicación debe cerrarse de forma controlada. Opcional

Permitir lectura de archivos de configuración. Opcional

Homogeneizar codificación y documentación. Esencial
Realizar proceso de testeo. Esencial
El programa debe funcionar en todas las distribuciones de linux. Opcional

Relación de requisitos con objetivos del proyecto:

Requisitos Objetivos
Mantener funcionalidad actual de MATE. 5
Adaptar a nuevos entornos. 6
La aplicación debe cerrarse de forma controlada. 5

Permitir lectura de archivos de configuración. 5

Homogeneizar codificación y documentación. 1, 4
Realizar proceso de testeo. 1,2,3
El programa debe funcionar en todas las distribuciones de linux. 6

9

2.3 Descripción del sistema MATE

2.3.1 Lógica del sistema
En nuestro entorno es necesario realizar sintonización dinámica. Desde el punto de vista funcional

podemos distinguir tres fases básicas:

– Monitorización

Esta fase es la encargada de obtener información sobre la ejecución de la aplicación. Esto no es

un proceso trivial ya para obtener medidas de rendimiento de la aplicación esta debe estar en

marcha, por lo tanto esta tiene que incluir fragmentos de código que se encargan de captar

eventos y notificar de estos al AC. Estos fragmentos pueden haber sido introducidos en el código

original por el programador o se pueden introducir de forma directa en el programa compilado y

en ejecución. En nuestro caso optamos por la segunda opción de nos da un grado de versatilidad

mayor.

Para que esto sea posible la aplicación que queremos monitorizar debe ejecutarse bajo la tutela

de un proceso de control y recolección [AC]. Este proceso se encarga, en una primera instancia,

de introducir en la aplicación objetivo una serie de funciones baliza que monitorizan una parte

especifica de la aplicación, y posteriormente de almacenar y tratar los resultados. Es necesario

también cargar en la aplicación una librería que contiene las herramientas necesaria para la

monitorización de la aplicación [DMLib].

Estas medidas de rendimiento pueden ser de varios tipos, por ejemplo tiempos de ejecución de

funciones clave o repeticiones de llamadas a una misma función. También se pueden medir las

veces que ocurre un evento complejo.

No obstante, para conseguir obtener medidas de rendimiento, se debe conocer profundamente la

aplicación que se desea optimizar. MATE utiliza unos modelos de rendimiento adaptados

estrechamente a la aplicación objetivo. Estos proporcionan información sobre como obtener

datos útiles para la medición del rendimiento y medidas a tomar para mejorarlo.

Por ultimo debe existir un medio adecuado para transmitir los datos recolectados a una proceso

de análisis para obtener resultados y, si es posible, sintonizar la aplicación para mejorar su

rendimiento.

Algunos aspectos que se deben tener en cuenta al trabajar en diferentes máquinas son las posibles

diferencias en los relojes de sus procesadores y el tiempo de transmisión de los datos. Es

importante que una serie de eventos que ocurren en la aplicación lleguen en ese orden al

analizador.

10

– Análisis

Una vez obtenidas las mediciones adecuadas un programador experto y conocedor de la

aplicación a optimizar, sabría encontrar los cuellos de botella en su ejecución y podría proponer

soluciones a estos. No obstante esta es una tarea pesada y duradera y como hemos dicho requiere

un nivel de conocimiento muy alto.

Como alternativa existen métodos de análisis automático. Estas herramientas identifican

problemas en la ejecución de la aplicación y incluso proporcionan soluciones a estas. Para que

esto sea posible se le debe proporcionar a la herramienta de análisis una base de conocimiento

sobre la aplicación así como posibles zonas criticas donde buscar problemas. El proceso de

producir unos modelos que permitan al analizador automático identificar exitosamente estos

problemas no es fácil. Además a pesar de que se obtenga un modelo valido las soluciones

proporcionadas serán estrictamente útiles para el comportamiento que tuvo la aplicación durante

esa concreta ejecución.

Con MATE se intenta atajar este problema no solo automatizando el proceso de análisis si no

además realizarlo de forma dinámica. Esto implica que el análisis de puede realizar mientras la

aplicación se ejecuta eliminando la necesidad de un archivo donde almacenar los datos de

medición. Este método, pese a que conserva muchas de las desventajas del análisis manual,

permite un análisis adaptativo en aplicaciones iterativas ya que durante la ejecución se puede

modificar dinámicamente la monitorización y instrumentación de la aplicación.

En el caso de MATE el análisis de produce dinámica y automáticamente, sin necesidad de un

archivo con los datos de monitorización, ya que el modulo Analyzer recibe los eventos

recolectados directamente.

– Optimización

La fase de optimización (Tuning) es en la cual aplicamos los cambios adecuados para mitigar los

problemas detectados. Estos cambios se deben hacer en el código de la aplicación ya que forman

parte de esta, y por tanto es normalmente necesario cerrar la aplicación, modificarla recompilarla

y volverla a ejecutar. Si los cambios aplicados son adecuados se debería observar una mejora en

el rendimiento.

No obstante este método de optimización requiere la atención directa del programador y además

es necesario recompilar, y por tanto cerrar, la aplicación. Los cambios realizados podrían ser

inútiles si en la siguiente ejecución el programa se comporta de forma distinta, debido, por

ejemplo, a diferentes valores de entrada.

MATE proporciona un modelo de optimización autónomo que no requiere de la intervención del

programador y que se realizar dinámicamente, es decir, sin cerrar la aplicación. Además el hecho
11

de que se sintonice la aplicación de forma dinámica permite que se realice de forma adaptativa,

así aunque cambien las condiciones de la ejecución el programa sigue operando de forma

eficiente.

En mate la aplicación de estas variaciones es llevada a cabo por el AC (Application Controller),

este dispone de un sintonizador (Tuner) que contiene las herramientas necesarias para

instrumentar la aplicación dinámicamente. Usando la información proporcionada por el Analyzer

el AC introduce los cambios necesarios en la aplicación mientras esta se ejecuta.

Estas tres fases tienen que estar realizándose continuamente, dinámicamente y automáticamente

mientras el programa está en ejecución. Para que esto método sea efectivo la aplicación objetivo debe

ser iterativa (ejecución de un bucle que realiza de forma repetida una serie de instrucciones), y se obtiene

la eficacia en procesos largos y que usen muchos recursos.

Básicamente, MATE está formado por los siguientes módulos que operan conjuntamente, controlando y

intentando mejorar el rendimiento de la aplicación objetivo.

– AC (Application controller): Se trata de un proceso daemon que controla la ejecución de la

aplicación. Este proceso se inicia de forma manual en cada uno de los nodos y es el que se

encarga de inicializar las tareas (aplicación) que se va a monitorizar.

Lo primero que hace el modulo es cargar en la imagen del proceso que representa la aplicación

una librería dinámica llamada DMLib, que contiene las herramientas necesarias para la

monitorización dinámica de la aplicación. Esta librería debe inicializarse con los datos del

analizador (host y puerto) para que sea posible la comunicación entre los nodos y el modulo

Analyzer.

A continuación se buscan los puntos indicados por el Analyzer donde se deberán introducir los

monitores que recopilan información de la ejecución. Esto es diferente para cada aplicación y

viene indicado por unos módulos incluidos en el Analyzer.

Una vez la aplicación esta lista y en linea se procede a iniciar la aplicación, y una vez esta está

iniciada los datos recopilados se envían como eventos al Analyzer directamente desde la

aplicación usando funciones de la DMLib.

 En este punto el AC ha de estar preparado para recibir instrucciones del Analyzer a la vez que

controla la aplicación en ejecución ya que esta puede producir nuevos eventos que reportar. En

cuanto se recibe una petición de sintonización (Tuning request) el AC informa a las tareas de que

han de ser modificadas y estas a su vez pedirán al Tuner que las actualice, siempre esperando a

que se de el momento adecuado. Esta sincronización de las modificaciones es posible gracias a

12

los breakpoints (Puntos de parada), que indican los lugares donde se debe insertar la

instrumentación nueva y paran la a ejecución de la aplicación para que estas modificaciones sean

posibles.

Este ciclo de comunicación-modificación se realiza de forma cíclica hasta que se han realizados

todas las modificaciones o la aplicación se ha cerrado.

– DMLib (Dynamic Monitoring Library): Una librería compartida que se carga dinámicamente

dentro de las tareas de la aplicación para facilitar la instrumentación y recolección de datos. La

librería contiene funciones que son responsables de el registro de eventos con todos los atributos

necesarios para entregarlos para análisis. Usamos la función loadLibrary de Dyninst para

cargar la librería una vez la tarea ya ha sido iniciada.

Esta librería debe ser inicializada con los datos del Analyzer para hacer posible la transmisión de

los datos recolectados. Esta inicialización se inserta como un snippet en la aplicación.

Una vez cargada e inicializada esta librería implanta las conexiones necesarias vía proxy para

comunicarse con el Analyzer.

– Analyzer: Es el proceso que se encarga de analizar el rendimiento de la aplicación, detecta

problemas de rendimiento a tiempo real y solicita los cambios idóneos para mejorarlo.

Mediante un sistema de captura de eventos este módulo obtiene información sobre la ejecución

de la aplicación y aplica unas funciones especificas a la aplicación para identificar problemas y

proporcionar al AC posibles soluciones. Este procedimiento es también cíclico y en cada

iteración ser manejan varios eventos que resultan en soluciones para el AC.

Pese a que es el A quien se ejecuta junto a la aplicación el Analyzer dispone de una abstracción

de esta que usa para identificar los eventos con de cada una de las tareas que se ejecutan en los

diferentes nodos.

– Common: Por ultimo existe un modulo en MATE que contiene las clases compartidas que son

usadas por los demás módulos. Este módulo cumple el objetivo de reutilización de código y

encapsulación de los diferentes componentes de MATE.

13

2.3.2 Descripción física

En cuanto a aplicación, MATE se divide en dos partes diferenciables, el Analyzer y el Application

Controller. Estos son los dos ejecutables que cumplen funciones distintas y se complementan para

formar en entorno de sintonización que es MATE. Al ser una herramienta para programas distribuidos,

MATE se ejecuta en diferentes máquinas, en concreto el modulo AC se ejecuta en cada uno de los nodos

que ejecutan la aplicación objetivo, mientras que el Analyzer es un programa centralizado que se ejecuta

en una sola máquina.

Al empezar la aplicación, MATE distribuye un proceso de AC en cada máquina para controlar el

comienzo de las tareas.

Otro de los componentes de MATE de la librería DMLib (dynamic monitoring library), cuando

comienza una nueva tarea MPI, el AC carga la librería compartida de monitorización en la memoria de

la tarea para permitir la instrumentación de esta. Esto le permite al Analyzer añadir/eliminar eventos

dinámicamente para recolectar información y realizar la sintonización.

14

Figura 1: Esquema del sistema extraido de la tesis sobre MATE

2.4 Alternativas para el entorno

Considerando que el proyecto consiste en crear una metodología de desarrollo productiva que sirva

como base a los futuros desarrolladores de MATE, para posteriormente aplicarla al software existente,

las alternativas se definen en el marco de herramientas de desarrollo, colaboración y en la selección de la

propia metodología.

Para proyectos de este tipo existen varias herramientas que nos asisten a la hora de trabajar en conjunto,

controlar la evolución del proyecto y finalmente compilar y testear los resultados. A continuación se

exponen las alternativas que hemos encontrado y la selección que usaremos, basándonos en cuales de

ellas se adecuan mas a MATE.

Alternativa 1 (H. Colaboración – Redmine)
Redmine es una herramienta de colaboración que actúa como solución todo-en-uno ya que posee soporte

multiproyecto, acceso basado en roles, sistema de seguimiento, gestor de calendarios y diagramas de

gantt, soporte a wikis y foros y compatibilidad con diversos gestores de versiones concurrentes. En

cuanto a coste, encontramos que se trata de una herramienta de código libre y gratuito.

Alternativa 2 (H. Colaboración – Trac)
Trac es una herramienta de gestión de proyectos que enlaza una base de datos de errores de software, un

sistema de versiones y el contenido de una wiki de colaboración. En cuanto a coste, encontramos que se

trata de una herramienta de código libre y gratuito.

Alternativa 3 (H. Control Versiones – CVS)
CVS (Concurrent Versions System) es una aplicación cliente-servidor donde el servidor se encarga de

guardar un historial de las diferentes versiones de cada uno de los archivos que componen un proyecto;

los clientes pueden acceder a estos archivos de forma directa o bien remotamente. En cuanto a coste,

encontramos que se trata de una herramienta de código libre y gratuito.

Alternativa 4 (H. Control Versiones – SVN)
SVN (Subversion) es una herramienta de control de versiones que tiene la peculiaridad de que mantiene

un único número de versión para un conjunto de archivos, de forma que lo que conserva es un estado

determinado del proyecto en general. Además soporta el acceso desde redes, permitiendo a usuarios

modificar los archivos desde distintas ubicaciones. En cuanto a coste, encontramos que se trata de una

herramienta de código libre y gratuito.

15

Alternativa 5 (H. Desarrollo – Buildbot)
Buildbot es una herramienta de desarrollo software iterativa que automatiza los procesos de compilación

y testeo. Posee soporte para control de versiones (CVS, SVN...). En cuanto a coste, encontramos que se

trata de una herramienta de código libre y gratuito.

Alternativa 6 (H. Desarrollo – Tinderbox)
Tinderbox es una suite que proporciona capacidades de continua integración, básicamente permite

manejar proyectos software y probar su funcionamiento en diversas plataformas. En cuanto a coste,

encontramos que se trata de una herramienta de código libre y gratuito.

2.4.1 Solución propuesta

En cuanto a la herramienta de seguimiento utilizaremos Redmine por dos razones: primero, es más

completa y nos ofrece en una misma aplicación todas las herramientas que necesitamos y, segundo, la

experiencia del director de proyecto con esta herramienta nos servirá como guía.

Sobre la herramienta de control de versiones utilizaremos SVN, ya que nos interesa más guardar el

proyecto por versiones en general, sin hacer hincapié en los archivos individuales. Además nos

proporciona una fácil integración con apache para poder preparar un servidor a través del cual acceder al

repositorio.

Y finalmente la herramienta de desarrollo que utilizaremos es Buildbot por su capacidad de integración

con SVN y porque nuestros intereses no se dirigen especialmente al testeo multiplataforma, sino a un

ciclo iterativo de compilación-testeo-recodificación.

2.5 Viabilidad técnica
Está sección está destinada a determinar que conocimientos serán necesarios para realizar el proyecto, y

de esta forma poder prepararse adecuadamente para las tareas que realizaremos en adelante. El proyecto

se realiza alrededor de una aplicación existente, MATE, que es compleja y trabaja en un campo de la

informático especializado como es la computación de alto rendimiento y la modificación dinámica de

aplicaciones en ejecución. Esto hace que sea necesario, si bien no tener un conocimiento exhaustivo del

tema, aprender algunos aspectos básicos, especialmente sobre las herramientas usadas como Dyninst o

MPI.

2.5.1 Lenguaje de programación

Para poder participar del desarrollo de una aplicación es absolutamente necesario conocer el lenguaje en

el cual esta ha sido escrita. En el caso de MATE este lenguaje es C++.

Debido al background de los participantes en este proyecto, no disponemos de experiencia en este
16

lenguaje y será necesario realizar un estudio de C++ así como de los patrones usados en MATE.

2.5.2 MPI

En cuanto al aspecto de MATE que trata con aplicaciones paralelas es relevante conocer los métodos de

pase de mensajes entre este tipo de procesos ya que en esto se basa la arquitectura de la aplicación.

MATE se aplica sobre aplicaciones paralelas que implementan MPI (Message Passing Interface) como

herramienta de comunicación entre sus diferentes procesos. Por tanto es importante conocer el

funcionamiento de esta librería.

Aprendizaje realizado:

Para disponer de los conocimientos necesarios sobre MPI hemos asistido a una serie de clases teóricas y

prácticas donde hemos aplicado los conocimientos teóricos adquiridos para crear pequeñas aplicaciones

paralelas que se comunican con este protocolo.

2.5.3 Dyninst
Como hemos dicho, una parte importante de MATE es el hecho de que los cambios en la aplicación se

realizan de forma dinámica y por tanto se requiere una herramienta que permita este tipo de acceso al

programa objetivo.

En este caso usamos Dyninst, una librería que nos permite manejar un proceso en ejecución y insertar

instrumentación en el. Dyninst es una herramienta compleja pero muy potente que nos permite encontrar

puntos concretos en el código siendo ejecutado e insertar o modificar elementos en el.

Aprendizaje realizado:

Al igual que con MPI se ha asistido a una serie de clases donde se han adquirido conocimientos teóricos

sobre Dyninst para posteriormente aplicarlos en laboratorios prácticos, con el resultado de pequeños

programas (mutator y mutatee) que usan Dyninst para obtener datos de la ejecución de estos como el

numero de veces que cierta función se ejecuta o el parámetro que se le pasa.

17

2.6 Planificación

2.6.1 WBS (Work Breakdown Structure)

18

Figura 2 Diagrama WBS del proyecto

2.6.2 Fases y actividades del proyecto
Fase Actividad Descripción Iterativa
Estudio previo Estudio de

viabilidad
Estudio para analizar las posibilidades y mejores
alternativas para realizar el proyecto y si estás son posibles
con los recursos disponibles en el tiempo requerido.

No

Planificación
del proyecto

Análisis sobre las tareas que compondrán el proyecto, su
calendario, los recursos necesarios para ejecutarlas y los
riesgos que comportan a la consecución del proyecto.

No

Formación
previa

Estudio sobre los temas relacionados con paso de mensajes
(MPI) y sintnización de procesos (Dyninst)

No

Desarrollo
metodología y
entorno

Desarrollo guías
de estilo

Creación de los documentos que conforman la base de la
metodología a implantar: guías de estilo de documentación,
codificación, construcción, control de versiones, etc.

Si

Implantación
entorno

Selección de las diferentes herramientas que forman el
entorno de desarrollo, implantación e integración de las
mismas.

Si

Implantación
metodología

Estudio
módulos MATE

Estudio sobre el código en su versión original de cada
módulo de MATE.

No

Combinación
DMLib y
Commons

Eliminación de las clases redundantes entre Commons y
DMLib y refactorización de AC y Analyzer en
consecuencia.

Si

Documentación
y
refactorizacion

Documentación sobre el código de cada módulo y
refactorización derivada de las guías de estilo.

No

Prueba unitaria Prueba unitaria de las clases que componen cada módulo. No
Documentación Extracción y compilación de la documentación sobre

código.
No

Prueba de
aceptación

Prueba del sistema completo para detectar posibles errores
en la refactorización.

No

Desarrollo de
nuevas
características

Sistema de
instalación

Desarrollo de un sistema de instalación capaz de
automatizar la búsqueda de dependencias y la compilación
en el mayor grado posible.

Si

Sistema de
configuración

Desarrollo de un sistema de lectura de configuraciones
para MATE fácilmente ampliable con diferentes tipos de
entradas.

Si

Sistema de
excepciones de
DMLib

Desarrollo de un sistema para DMLib de detección y
notificación de errores.

Si

Sistema de
cerrado

Desarrollo de un sistema capaz de cerrar el entorno de
forma centralizada y controlada.

Si

Cierre de
proyecto

Escritura y
compilación de
la memoria

Escritura de la memoria del proyecto y compilación del
documento junto con los anexos que lo acompañan.

No

Exposición del
proyecto

Exposición del proyecto ante un tribunal para su
evaluación.

No

Tabla 1: Fases de desarrollo del proyecto
19

2.6.3 Recursos del proyecto

Recursos humanos
• 3 Programadores-Analistas: Noel De Martín, Rodrigo Echeverría, Toni Pimenta

• 1 Project Manager: Joan Piedrafita

Recursos de infraestructura
• Servidor de proyectos, colaboración y builds virtualizado

◦ Equipo: Dell PowerEdge R515

◦ Procesador: 2 x AMD Opteron 4122 (4 Cores – 2.2 Ghz – L1 3MB / L2 6MB – 95W TDP)

◦ Memoria: 8GB Memory for 2 CPUs, DDR3, 1333MHz (8x1GB Single Ranked UDIMMs)

◦ Disco: 2x 250GB, SATA, 3.5-in, 7.2K RPM Hard Drive (Hot Plug)

• 8 Nodos de computo cluster DiskLess

◦ Equipo: Dell PowerEdge R610

◦ Procesador: 2 x Intel Xeon E5620 (4 Cores – 2,4 Ghz – 12 MB Cache – QPI 5,86 Gb/s)

◦ Memoria: 12GB DDR3, 1333MHz ECC (12x1GB)

• SAN

◦ Almacenamiento: DELL™ PowerVault™ MD3200i, 6 discos SAS 7.2k rpm 500 GB

◦ Red de gestión: 2 x SWITCH ETHERNET DELL PowerConnect 5424

• Otros

◦ Sistema de alimentación: SAI 8000VA APC

◦ Switch control cluster:SWITCH ETHERNET DELL PowerConnect 5448

◦ Switch gestión: SWITCH INFINIBAND SDR DE 8 PUERTOS, 4X, 1U.

◦ Switch Red MATE: SWITCH ETHERNET DELL PowerConnect 5424

◦ Rack PDU (8 Tomas + Ethernet)

◦ Chasis Rack 42U

◦ CABLE INFINIBAND 2 METROS CON CONEXION X4

◦ Cable de interconexión - RJ-45 (M) - RJ-45 (M) - 2 m - UTP - (CAT 6)

20

Configuración de la infraestructura

Calendario de los recursos
Los recursos humanos se utilizarán durante todo el proyecto, sin embargo el cluster y el almacenamiento

solo se utilizarán en la segunda parte del proyecto haciendo las pruebas necesarias con aplicaciones

paralelas para comprobar los resultados. El resto de recursos materiales también se utilizarán durante

todo el proyecto.

21

Figura 3 Esquematización del entorno de desarrollo

2.6.4 Calendario del proyecto
El proyecto se realizará durante en el segundo cuatrimestre del curso 2010/11.

Dependencias
Al tratarse de un modelo lineal, o en cascada, cada fase empezará al terminar la anterior, a excepción de

aquellas fases más delicadas que presentarán iteraciones para introducir cambios y correcciones una vez

se hagan pruebas.

Las fases del proyecto están representadas en el primer nivel de la jerarquía del diagrama WBS (capítulo

3.1).

La primera fase será el estudio previo, que incluye entrevistas con el cliente, estudios de viabilidad y

planificación, así como toda la formación previa necesaria para los analistas.

La segunda fase consiste en el desarrollo del entorno y la metodología. Está fase consiste, por una parte,

en la selección de un conjunto de herramientas que conformen un entorno de trabajo para futuros

desarrolladores de MATE y la implantación de las mismas (documentación del sistema de instalación y

configuración y la automatización del mismo) y, por la otra, en la confección de una serie de manuales

(guías de estilo) que sirvan como una referencia sobre el “como hacer” para los futuros desarrolladores.

La tercera y cuarta fase se ejecutaran en paralelo. La tercera fase consiste en adaptar el código a las guías

de estilo creadas y a la prueba unitaria del mismo. La cuarta fase consiste en el desarrollo de nuevas

características para mejorar la calidad del software en general.

Finalmente, la fase de cierre de proyecto consiste en acabar la memoria del proyecto, compactarla con

sus anexos y entregarla, además de la exposición del proyecto ante un tribunal.

22

2.6.5 Calendario temporal
La duración total estimada del proyecto es 248 días que, con una dedicación media de 4h/día, implican
992 horas de trabajo a distribuir entre los tres miembros del equipo.

Fase 1: Estudio previo

Fase 2: Desarrollo metodología y entorno

1a iteración

23

2a iteración

Fase 3: Implantación de la metodología

24

Fase 4: Desarrollo de nuevas características

Fase 5: Cierre de proyecto

25

2.7 Evaluación de riesgos

2.7.1 Lista de riesgos
1. Incumplimiento de plazos de entrega: Alguno de los plazos establecidos no se cumple.

2. Herramientas inadecuadas: problemas con las herramientas de desarrollo.

3. Incumplimiento de alguna norma: Repercusiones legales por el incumplimiento de alguna norma.

4. Abandono del proyecto de algún miembro: Uno de los miembros decide abandonar el proyecto.

5. Implementación incorrecta: Problemas a la hora de modificar MATE.

2.7.2 Catalogación de riesgos

Riesgo Probabilidad Impacto
1 Media Marginal
2 Baja Marginal
3 Baja Crítico
4 Baja Crítico
5 Baja Marginal

2.7.3 Plan de contingencia

Riesgo Plan de contingencia
1 Reuniones de seguimiento.
2 Planificación inicial.
3 Cotejar acciones futuras con las normativas presentes en el

documento de viabilidad. El NDA hace...
4 Reorganizar planificación.
5 Consultar expertos, reunión de seguimiento.

2.8 Presupuesto

2.8.1 Estimación coste de personal

Recurso Coste
3 Analista-programador 64.500 €
1 Project Manager 28.000 €
Total 92.500 €

26

2.8.2 Estimación coste de los recursos

Recurso Coste
Servidor 2.220,76 €
8 nodos cluster 23.902,08 €
SAN 8.173,86 €
Otros 12.917,21 €
Software 0 €
Total 47.213,91 €

2.8.3Estimación coste de las actividades
Ninguna actividad tiene costes directos.

2.8.4 Estimación de otros costes

Recurso Coste
Personal de soporte 24.000€
Alquiler local 25.488€
Total 49.488 €

2.8.5 Estimación costes indirectos

Recurso Coste
Electricidad 5.389,65 €
Consumibles 1.475 €
Telefonía 708 €
Limpieza 4.141,8 €
Mantenimiento 1.062 €
Gestión 2.124 €
Total 14.900,45 €

2.8.6 Resumen y análisis coste beneficio
Coste total = 92.500 + 47.213,91 + 49.488 + 14.900,45 = 204.102,36 €

Estos costes, pese a que parecen altos, son teóricos y en la realidad el coste del proyecto es mas reducido

dado que el personal somos nosotros, y como parte del proyecto realizados las tareas de desarrollo.

Además el cluster construido será usado para otras tareas y por tanto su coste se amortiza. Por último los

beneficios que comporta nuestro proyecto, aunque no económicamente, compensan por la inversión.

27

3. Calidad del software

En esta sección se define en que términos hablamos de calidad de software y se describen varios

modelos que nos ayudan a asegurar la calidad de un producto. Finalmente escogeremos el mas

adecuado a nuestro proyecto que será el que apliquemos.

3.1 SQA

Un aspecto importante dentro del proyecto es la utilización de SQA, del inglés Software Quality

Assurance. Se trata de un modelo sistemático y planeado de todas las acciones necesarias para asegurar

la calidad esperada del producto final, así como la correcta aplicación de estándares y procedimientos

adoptados. Es algo que se aplica durante todo el proceso de desarrollo, y se rige por el SQAP (Software

Quality Assurance Plan), dónde se definen las actividades específicas a llevar a cabo dentro del

proyecto. Dado el proceso de desarrollo de MATE, que se espera que continué más allá del proyecto

actual, es necesario establecer una serie de métodos que consoliden los objetivos marcados en cada

etapa.

Según los modelos de ampliación de defectos, el coste de los fallos detectados en un producto software

es mayor cuanto más tarde detecta. Para ilustrar la reducción del coste con la detección anticipada de

errores, podemos considerar una serie de costes relativos que se basan en datos de proyectos de software

rea1les. Suponiendo que un error descubierto en la fase de diseño del producto cuesta 1,0 unidad

monetaria, este mismo error descubierto antes de realizar el proceso de test costará 6,5 unidades, durante

las pruebas 15 unidades, y después de la entrega entre 60 y 100 unidades. El mismo razonamiento se

puede aplicar a otros recursos de un proyecto como pueden ser tiempo o rendimiento. Es aquí donde

reside la importancia de un buen proceso de SQA ya que nos permite tener un buen seguimiento durante

todo el proyecto.

A la hora de desarrollar un SQAP dentro de un proyecto hay diferentes alternativas y modelos de los que

escoger. Todos ellos listan una serie de aspectos importantes a tener en cuenta en el momento de evaluar

la calidad del software. Una vez detectados estas cualidades críticas, se pueden cuantificar con una serie

de métricas y así poder determinar la calidad actual del producto.

1 Defect amplification model [IBM81] "Implementating Software Inspections", Notas del curso, IBM
Systems Sciences Institute, IBM Corporation, 1981
28

3.1.1 Modelos estándar

Por un lado podemos encontrar diferentes modelos estándar. Estos modelos son aplicables a cualquier

proyecto y determinan el nivel de calidad con atributos generales. Además han sido utilizados en

diferentes proyectos y por lo tanto se tiene una perspectiva de los resultados esperados.

Uno de los primeros modelos existentes y en el que se basan la mayoría de los actuales es el modelo de

McCall, que, en un principio, fue creado para las fuerzas aéreas de los Estados Unidos en 1977.

Principalmente está enfocado a los desarrolladores del sistema y al proceso de desarrollo. En este

modelo McCall intenta unir la perspectiva de usuarios y desarrolladores, centrándose en unas

características de la calidad del software que reflejan tanto la visión de los usuarios como las prioridades

de los desarrolladores. El modelo presenta tres características para medir la calidad del software:

revisión (habilidad para adoptar cambios), transición (habilidad para adaptarse a otros entornos) y

operación (sus características operativas).

El modelo también es llamado FCM (Factor, Metrics, Criteria) porque detalla tres tipos de características

en una jerarquía (figura 1) dónde las más importantes se denominan factores. Por debajo podemos

observar diferentes subcaracterísticas denominadas criterios y, finalmente, tenemos las métricas para

determinar el nivel de satisfacción de cada una de estas subcaracterísticas.

Otro modelo a mencionar es el FMEA (Failure Mode and Effects Analisis). Como su nombre indica se

basa en analizar problemas potenciales, principalmente en una época temprana del ciclo de desarrollo

donde es más fácil tomar acciones para solucionarlos. FMEA se utiliza para identificar fallos potenciales

en los sistemas, para determinar su efecto sobre la operación del producto, y para identificar acciones

correctivas para atenuar las faltas. Podemos encontrar diferentes tipos siguiendo este modelo según su

enfoque: Sistema (enfocado a funciones globales del sistema), Diseño (enfocado a componentes y

29

Figura 4: Jerarquía FCM de MCCall

subsistemas), Proceso (enfocado a procesos de fabricación y ensamblamiento), Servicio (enfocado a

funciones del servicio) y Software (enfocado a funciones del software).

Para terminar, los modelos estándar más seguidos son las normas ISO (International Organization for

Standardization). Esta organización ha desarrollado una serie de normas y modelos para la evaluación de

la calidad aplicables a productos generales, adaptándose en ciertos casos a la producción de software. En

este modelo los conceptos de calidad se aplican más en el producto terminado que en el proceso de

desarrollo. Estas normas hacen posible que se sigan patrones de calidad generalmente aceptados con los

que se logran métricas para determinar las cualidades de un producto, teniendo en cuenta que en la

práctica existen dos tipos de calidad: externa (referente a los clientes) e interna (referente a

funcionalidad del software).

De todos los estándares que presenta, el más interesante para el proyecto es el ISO 9126, que está

enfocado directamente a productos software. Este modelo está basado en el de McCall, ya que determina

la calidad del software en base a una herencia de características. Como podemos observar en la figura 2,

posee 6 características principales (factores siguiendo el modelo de McCall). Las 6 características

principales son funcionalidad, fiabilidad, usabilidad, eficiencia, Mantenibilidad y portabilidad. Además

de esto cada aspecto tiene diferentes subcaracterísticas a evaluar.

Dentro del proyecto se da énfasis a los aspectos más importantes para el software. Por una parte dentro

de fiabilidad es importante tener en cuenta la tolerancia a fallos y la facilidad de recuperación, en el

30

Figura 5: Modelo ISO 9126

proyecto cubre este aspecto añadiendo ciertas nuevas características al programa (capítulo 4.5) y

realizando una serie de tests (capítulo 5). También se ha trabajado en el factor de usabilidad,

concretamente en las subcaracterísticas de comprensibilidad y facilidad de aprendizaje. Esto se ha

mejorado con la documentación generada para MATE y los diferentes elementos de soporte. El tema de

la eficiencia es algo importante, tratándose de un software de aumento de rendimiento, y es algo que se

ha acabado de definir consolidando todos los aspectos del programa en su estado previo. Finalmente el

hecho de haber creado la metodología con diferentes guías y directrices de trabajo hace que el

mantenimiento del software en el futuro sea mucho mayor y facilita el análisis y test del producto.

3.1.2 Modelos de aplicación o específicos de compañías

Además de los modelos estándar vistos en el capítulo anterior, existen los de aplicación específicos para

compañías. Estos no hablan de características generales sino que detallan controles de calidad ajustables

a necesidades particulares.

Uno de los que vale la pena mencionar es el llamado modelo CMMI (Capability Maturity Model

Integration). Este modelo determina una serie de procesos y actividades a llevar a cabo para asegurar la

calidad del producto, sin entrar en detalles de cómo realizar estas actividades. Según se van completando

las actividades propuestas se dice que el proyecto está en diferentes niveles de madurez: incompleto

(nivel 0), inicial, administrado, definido, cuantitativamente administrado y optimización (nivel 5).

Dispone de una lista de áreas de acción, y en cada una de ellas se proporciona la lista de prácticas a

llevar a cabo. Actualmente incluye de 22 áreas de proceso2 que podemos observar en la figura 3.

2CMMI for Acquisition versión 1.2, CMMI for Developement versión 1.2 y CMMI for Services versión
1.2
31

CMMI® for Development, Version 1.2 (CMMI-DEV, V1.2)

Causal Analysis and Resolution (CAR) Configuration Management (CM) Decision Analysis and Resolution

(DAR)

Integrated Project Management +IPPD

(IPM+IPPD)

Measurement and Analysis (MA) Organizational Innovation and

Deployment (OID)

Organizational Process Definition

+IPPD (OPD+IPPD)

Organizational Process Focus (OPF) Organizational Process Performance

(OPP)

Organizational Training (OT) Product Integration (PI) Project Monitoring and Control (PMC)

Project Planning (PP) Process and Product Quality Assurance

(PPQA)

Quantitative Project Management

(QPM)

Requirements Development (RD) Requirements Management (REQM) Risk Management (RSKM)

Supplier Agreement Management

(SAM)

Technical Solution (TS) Validation (VAL)

Verification (VER)

Tabla 2: Areas de proceso del modelo CMMI, versión 1.2

El último modelo a comentar es el modelo GQM (Goal-Question-Metric). A diferencia de los modelos

vistos anteriormente, este modelo no se basa en características generales de los productos, sino que es

aplicable solamente al proyecto en concreto. Toma este enfoque con la idea de que un programa de

mesura de calidad puede dar mejores resultados si se diseña con las metas en mente. Simplemente se

trata de trabajar realizando tres pasos: crear una lista con las metas del proyecto, a partir de la lista

generar unas preguntas que determinen si la meta se ha cumplido y finalmente decidir qué atributos

hacen falta medir para responder estas preguntas.

4 Especificación de la metodología
En esta sección se describen los diferentes componentes de la metodología que ha sido desarrollada
para MATE, se especifica la partición de trabajo entre los diferentes miembros del equipo de trabajo y
se exponen los resultados obtenidos describiendo tanto las guías creadas para el entorno como los
documentos de especificación.

4.2 Especificación del entorno de desarrollo

4.2.1 Perspectiva general
Como se ha mencionado anteriormente este proyecto tiene como objetivo primario establecer una

metodología de trabajo para dar continuidad a MATE. Una buena metodología es crucial para que un

proyecto de desarrollo de software sea exitoso y dada la naturaleza de MATE entendemos que se puede

beneficiar mucho de la creación de una.

Hemos diseñado una metodología adaptada a MATE, que dotara a los futuros desarrolladores de una

32

base para continuar con el desarrollo de esta aplicación. Como parte de esta metodología nosotros

proponemos una serie de herramientas para ser usadas como entorno de trabajo por los desarrolladores.

Esto es importante porque trabajar en un entorno especifico y especialmente diseñado para la tarea en

cuestión aumenta la productividad de los trabajadores y reduce el tiempo de trabajo. Además de producir

un producto homogéneo y de calidad como resultado.

4.2.2 Contribución personal
Este es un proyecto conjunto en el que se da una división de trabajo entre los tres estudiantes que

formamos parte de este. La tarea que hemos realizado es de gran envergadura y por tanto cada miembro

del equipo se ha encargado de un aspecto distinto del proyecto, ya sea en el diseño y desarrollo de la

metodología como en la aplicación de esta. Esta división de trabajo se muestra en la tabla siguiente.

Miembro Tareas asignadas
Rodrigo Echeverría • Instalación de Redmine

• Guía de instalación y configuración de Redmine
• Integración de Redmine con Apache
• Integración de Redmine con Eclipse
• Script de instalación de Redmine

Toni Pimenta • Instalación de Apache
• Instalación de SVN
• Instalación de Doxygen
• Integración de Apache y SVN
• Guía de instalación y configuración de Apache y SVN
• Integración de SVN y Redmine
• Script de instalación de SVN
• Script de instalación de Doxygen

Noel De Martin • Instalación de Buildbot
• Guía de instalación y configuración de Buildbot
• Integración de SVN y Buildbot
• Script de instalación de Buildbot

Tabla 3: División de tareas relativas al entorno de trabajo

A continuación se especifican los elementos con los que se ha contribuido a nivel personal a la creación

del entorno de desarrollo.

4.2.3 SVN

SVN (Subversion3) es una herramienta de control de versiones y repositorio. Se trata de una herramienta

imprescindible en cualquier proyecto de desarrollo, especialmente cuando existen varios desarrolladores

trabajando simultáneamente en el mismo proyecto. Un VCS (Version Control System) como SVN

3Subversion (sistema de control de versiones) Página oficial: http://subversion.apache.org/
33

http://subversion.apache.org/

permite el acceso a los archivos del proyecto por parte de diferentes entidades de forma que se eviten

conflictos y la consiguiente perdida de información que puede resultar en baja productividad o incluso

dañar críticamente el proyecto. En nuestro caso se contempla la posibilidad de que varios programadores

trabajen sobre el código o documentos de MATE de forma simultanea y por tanto se implanta un

repositorio SVN como solución a los conflictos.

SVN permite el almacenamiento de archivos en un entorno seguro y controlado donde los cambios

realizados se pueden organizar en versiones y modificaciones en los archivos pueden ser aplicadas al

repositorio sin peligro de que se pierdan modificaciones realizadas por otros desarrolladores. Esto se

hace mediante un proceso de merging que conserva los cambios realizados por ambos desarrolladores si

estos son compatibles y proporciona la posibilidad de resolver colisiones entre estos.

Con SVN los desarrolladores siempre disponen de las últimas modificaciones realizadas por sus

compañeros a la vez que pueden revisar antiguas versiones o recuperar el estado de un archivo. Esto es

de vital importancia cuando existen dependencias entre el trabajo realizado por varios desarrolladores ya

que se evitan periodos de poca productividad mientras se espera a obtener los cambios realizados por el

resto del equipo.

En nuestro caso usaremos SVN integrado con el resto del entorno de modo que aumentamos su

versatilidad y integramos sus funciones en el entorno general.

A nivel personal dotamos a SVN de la capacidad de proporcionar acceso web al repositorio. Esto se

lleva a cabo integrando SVN con Apache, un servidor gratuito, que nos permite acceder a los archivos

del repositorio SVN a través de internet, mediante una interfaz web. Además aplicaremos un protocolo

SSL para que el acceso de los archivos sea seguro y que datos sensibles estén protegidos.

La guía y script creados para este proyecto corresponden a la versión 1.6.15 de SVN (1.6.12 para

Apache).

Funcionalidades

Algunas de las principales funcionalidades que nos ofrece SVN son las básicas de cualquier VCS, como

unir dos ramas de desarrollo resolviendo conflictos entre ellas (merging).

34

Figura 6 Representación de la vida de un proyecto en SVN.

En esta imagen podemos observar las funciones básicas de SVN. La nomenclatura está especificada en

la guía de control de versiones y build. Podemos observar que la rama principal (Trunk) es la central de

color verde y contiene el estado actual del proyecto. Las ramas amarillas, llamadas Branches ,

representan copias del código que se están modificando. Vemos que cuando una de estas ramas de

desarrollo finaliza, se aplican los cambios a la rama principal mediante el proceso de merge.

Este proceso aplica los cambios realizados en la branch que sean compatibles con la rama principal y

trata de resolver los conflictos que se den para poder mezclar las dos ramas completamente. A través de

este procedimiento obtenemos en el punto 4 la versión base con los cambios de la rama 2-3 aplicados.

En este punto generamos otra rama de desarrollo (6) y generamos una versión numerada (Tag). Las

versiones numeradas son normalmente versiones estables que se desea liberar. Vemos mas adelante que

las ramas no tienen porque mezclarse siempre con el trunk sino que pueden ser anuladas o pueden

mezclarse dos branches.

En los estados 10 11 y 12 vemos un procedimiento habitual, llamado Rebasing, que consiste en hacer un

merge entre la rama de desarrollo y el código principal pero de modo que el resultado de este quede en la

branch, de modo que cualquier modificación que se haya realizado en la rama principal sea añadida a la

branch antes de hacer la mezcla con trunk. Esto mantiene actualizada la rama a la vez que aleja el

procedimiento de merge de la rama principal.

Subversión nos proporciona algunas features extra, como:

– SVN versiona directorios: los directorios en los que se almacenan los archivos están versionados

lo que nos permite llevar un control preciso de los cambios en estos.

– Commits atómicos: la instrucción commit que nos permite aplicar las modificaciones locales al

repositorio se ejecuta de forma atómica, como si se tratara de una única instrucción, para evitar

modificaciones parciales que corromperían el repositorio.

Además de permitir la modificación y llevar un control de los archivos SVN no sirve como herramienta

de seguimiento. Subversion almacena los cambios que se producen en los archivos en lugar de los

archivos en si, y nos permite averiguar cuando se modificó cada uno de ellos y quien fue el responsable

del cambio.Otras herramientas útiles son diff y revert que nos permiten respectivamente, ver las

diferencias entre dos ficheros y deshacer cambios en algún archivo.

Distribución de archivos

Como resultado de usar SVN obtenemos un repositorio ordenado con todos nuestros archivos ordenados

por versiones y un historial de cambios realizados.

35

Figura 7: Esquema de distribuciñon de archivos
en el repositorio SVN

En esta figura podemos ver un ejemplo de como quedaría el repositorio, vemos que cada carpeta tiene su

versión pero que a su vez los archivos dentro de estas pueden haber sido revisados mas veces.

Guía de instalación y configuración

Como documento adjunto al proyecto, añadimos las guías de instalación de los diferentes componentes

del entorno, para que se pueda ser reproducido por el equipo de desarrollo. La guía de instalación y

configuración de SVN y apache, incluye los datos necesarios para instalar y configurar un repositorio

SVN bajo un servidor apache con SSL. Y incluye una pequeña muestra de como crear un repositorio y

mantenerlo.

El documento contiene una breve descripción de la aplicación seguida de los requisitos y dependencias

de esta. A continuación se describe el proceso de instalación, se ofrecen distintas alternativas para

instalar la aplicación. Una vez explicada la instalación de SVN se describe un método para integrarlo

con Apache y configurar el repositorio. Finalmente explicamos como configurar y usar el programa

Script de instalación

Para facilitar la tarea de los desarrolladores se ha diseñado un script para realizar de forma automática la

instalación de SVN y apache, aunque la configuración del servidor requiere de algunos datos del

usuario.

36

El script es simple y consiste de una serie de instrucciones que descargan la versión indicada de la

aplicación y la instalan en el sistema.

El uso del script requiere acceso a internet y permiso de superusuario para realizar las instalaciones. El

script debe ser ejecutado por un interprete bash.

4.2.4 Doxygen

Documentar el código es necesario para que futuros desarrolladores, y nosotros mismos después de un

tiempo sin trabajar en MATE podamos entender fácil y rápidamente el código. Normalmente el código

no es trivial y cuesta comprender cual es la función de cada elemento y como se relacionan entre ellos y

estos es necesario para poder participar en el desarrollo del proyecto. El proceso de generar una

documentación detallada del código es pesado y lleva tiempo y normalmente no se le da prioridad en

proyectos de orientación académica como MATE.

Doxygen4 es una herramienta que nos permite extraer automáticamente documentación del código.

Mediante unos comentarios especiales Doxygen nos permite describir los elementos del programa en el

código como si se tratase de comentarios inline. Estos comentarios serán usados por Doxygen junto con

la información que este extrae del código en si para generar una completa documentación con diagramas

y descripciones de los elementos que componen la aplicación.

La guía y script creados para este proyecto corresponde a la versión 1.7.3 de Doxygen que es la actual en

este momento.

Funcionalidades

Doxygen puede generar, a partir del código, documentación en forma de pagina web (on-line) o

manuales de referencia en formatos como pdf. No solo clasifica y organiza los elementos de la

aplicación sinó que genera una serie de diagramas que muestran la jerarquía entre estos, y proporciona la

posibilidad que crear una interfaz web completa y intuitiva con toda la información.

Doxygen se adapta al lenguaje de programación elegido y extrae información directamente del código,

como el tipo de cada variable o los métodos de cada clase. Se puede configurar mediante un archivo de

configuración llamado doxyfile (por defecto) que contiene una amplia gama de opciones que nos

permiten modificar su comportamiento y el resultado obtenido.

Doxygen además cuenta con una interfaz gráfica de configuración y incluso se integra con eclipse,

nuestro IDE, mediante un plug-in llamado Eclox5 que nos permite gestionar los doxyfiles de cada

proyecto y modificar la configuración de cada uno.

4Pagina oficial de Doxygen: http://www.stack.nl/~dimitri/doxygen/
5 Eclox, plugin para eclipse. Pagina oficial: http://home.gna.org/eclox/
37

http://home.gna.org/eclox/
http://www.stack.nl/~dimitri/doxygen/

La especificación de como se deben escribir los comentarios de código se encuentra en la guía de

documentación de código.

Guía de instalación y configuración

Como en el caso de SVN, para Doxygen también se ha creado una guía de instalación que se incluirá

como documento adjunto, esta incluye los datos específicos de la aplicación así como simples

instrucciones de uso y configuración.

Contiene:

– La especificación de los requisitos y dependencia de Doxygen.

– Guía de instalación (dos alternativas para instalar Doxygen).

– Configuración de la aplicación (doxyfile).

– Guía de uso de la aplicación.

Script de instalación

Para facilitar la tarea de reproducir el entorno de trabajo hemos creado un script automático que instala

Doxygen y sus dependencias.

Este script descarga el código fuente de la web oficial la versión 1.7.3 de Doxygen y instala los ficheros

en el directorio definido para el proyecto (/opt/MATE/). A continuación genera links simbólicos hacia

/usr/local/bin/ para que la aplicación se pueda ejecutar desde linea de comandos.

38

Figura 8: Ejemplo de HTML resultante de extraer documentación con Doxygen

Uso del script:

Solo se requiere conexión a internet y ejecutar el script con un interprete de bash.

4.3 Documentos de especificación

4.3.1 Perspectiva general
Una vez hemos diseñado el entorno de trabajo que usaremos en el proyecto, es importante establecer una

metodología de trabajo común. Esto se lleva a cabo mediante la creación de unas serie de documentos

que especifican aspectos concretos de la metodología de trabajo a seguir por todos los miembros del

equipo de desarrollo. Esto es necesario para lograr una homogeneidad que, además de simplificar el

trabajo en equipo, ofrece un resultado de calidad y la aplicación de una metodología especifica resulta en

un producto mas compresible y facilita el trabajo realizado por terceras partes.

Estos documentos especifican diferentes aspectos de la forma de trabajar que se debe aplicar a MATE.

Desde como se debe escribir la documentación de la aplicación hasta el proceso de construcción y test

de esta.

4.3.2 Contribución personal
A nivel personal se ha contribuido a la generación de esta serie de documentos que, juntos, componen la

metodología de trabajo establecida para MATE. De nuevo, hacemos hincapié en la envergadura de esta

tarea, y entendemos que esto justifica la división de trabajo entre los componentes del grupo.

La división del trabajo se realiza según especifica la tabla siguiente:

39

Miembro Guías confeccionadas
Noel De Martin • Guía de estilo de codificación

• Guía de estilo de control de versiones
y construcción (construcción)

Rodrigo Echeverría • Guía de estilo documentación
• Guía de estilo de documentación de

código
Toni Pimenta • Guía de estilo de desplegamiento

• Guía de estilo de control de versiones
y construcción (control de versiones)

Tabla 4: División de trabajo relativa a los documentos de especificación

A continuación se describen los documentos desarrollados a nivel personal, que son los que especifican

el proceso de control de versiones y construcción (build) de MATE y el de deployment de la aplicación.

4.3.3 Especificación de control de versiones y build

En proyectos de gran complejidad es necesario llevar un estricto control del trabajo realizado,

especialmente si se trabaja en grupo, y suele ser necesario automatizar algunas tareas. MATE es una

aplicación compleja y como consecuencia está formada por muchos archivos, que deben tratados

meticulosamente ya que cualquier modificación no deseada podría influir en el funcionamiento de la

aplicación.

Por este motivo trabajamos con una herramienta de control de versiones (SVN) y aplicamos una

metodología adecuada para que las modificaciones hechas en el programa no tengan efectos colaterales

no deseados. Esto es, una serie de pasos a seguir para asegurarnos de que existe una sincronización entre

los miembros del equipo y se trabaja con la máxima eficiencia.

MATE está compuesto por varios módulos y cada uno de ellos se divide en clases que están codificadas

en diferentes archivos (código fuente). La distribución de clases en diferentes archivos, en lugar de

trabajar con un único fichero de código, tiene obvios beneficios pero como consecuencia de esto

obtenemos muchos componentes donde pueden existir errores. Por otra parte MATE es un aplicación

multiplataforma, lo que requiere que funcione bajo diferentes configuraciones y su funcionamiento debe

ser coherente en ellas. Para comprobar que MATE satisface estos requisitos existen tests que se pueden

realizar una vez aplicados los cambios. El problema es que trabajando con tantos archivos la tarea de

compilarlos, enlazarlos, ejecutarlos y testearlos en varias plataformas se hace muy pesada.

Para esto usamos una herramienta que automatiza este proceso, llamada Buildbot. Esta herramienta

requiere de una configuración y un proceso especifico de funcionamiento que también se describe en el

documento.

40

Contenido

Este documento se compone de dos secciones, la primera de ellas describe el procedimiento de control

de versiones que se aplicará a MATE y especifica un modelo a seguir para que todos los componentes

del equipo trabajen de forma sincronizada.

En esta sección se definen las herramientas que serán utilizadas para realizar dichas tareas y se

especifica de que modo se configurará esta para obtener el resultado deseado.

Por ultimo esta sección proporciona una propuesta de dinámica de trabajo que los miembros del equipo

de desarrollo deberán seguir para que el proyecto evolucione de forma adecuada.

La segunda sección especifica el funcionamiento de la herramienta de Construcción automática que

usaremos para compilar y testear MATE a medida que se hacen cambios importantes en la aplicación.

Está sección empieza como la anterior determinando cual será la herramienta usada para este propósito,

en este caso Buildbot. A continuación se describen los componentes principales de la herramienta y se

explica cual es la función de cada uno dentro del programa en general.

Por ultimo se propone una dinámica de trabajo para este proceso.

4.3.4 Especificación de deployment

El deployment de un producto software son el seguido de procesos y tareas que se requieren para que el

programa este disponible para su uso, empezando por la distribución de la aplicación a los usuarios una

vez desarrollado el software. Entre estas tareas se encuentra la instalación de la aplicación, su activación,

actualización y otros procesos que han de darse durante la vida del producto.

MATE, dado que se trata de un proyecto no comercial, no dispone de todos estos procesos, pero hemos

intentado que los mas relevantes estés integrados en la aplicación final. Uno de los módulos esenciales

es el de instalación, para que el programa sea utilizable por los usuarios debe estar instalado y el hecho

de automatizar este proceso aumenta el alcance de la aplicación ya que facilita su implantación.

En el proceso de deployment toman parte, no solo la aplicación que se desea utilizar, si no que participan

algunos programas externos que asisten en los procesos necesarios. Por tanto es necesario especificar

cuales son estos programas y de que se encargan.

Contenido

En el caso de MATE el deployment básicamente se reduce al proceso de instalación dada su orientación

en este momento del desarrollo.

41

Este documento se compone de 4 secciones relativas al deployment de MATE. En la primera sección se

definen las fases que se deberían considerar a la hora de preparar la aplicación para los usuarios. Algunas

de estos procesos no están implementados en MATE pero se definen por tal de establecer el estándar

para futuro desarrollo de la aplicación.

A continuación se especifican las herramientas usadas en el desarrollo de los módulos que si que se han

generado para MATE. Estos son, no solo las herramientas externas que se usan sino también los scripts

que puedan asistir en el proceso.

En la siguiente sección se determinan los diferentes componentes que se obtienen como resultado del

deployment.

Como ultima sección se determinan los responsables de crear cada uno de los módulos necesarios. De

forma que se especifica, dentro del equipo de desarrollo, los componentes que se encargarán de producir

cada elemento.

5 Aplicación de la metodología

Esta sección explica detalladamente el proceso de aplicar la metodología previamente creada a MATE.

Se empieza especificando sobre que parte de MATE se han aplicado los cambios y se detalla el trabajo

realizado en el.

5.1 MATE: el módulo AC

A nivel personal en este proyecto se ha aplicado la metodología desarrollada al módulo AC de MATE.

El funcionamiento y la lógica del módulo AC se ha definido anteriormente, en esta sección describimos

con detalle cuales son sus componentes para tener claro sobre que parte de MATE se ha trabajado.

Este módulo se construye a partir de los siguientes ficheros de código:

42

Header (.h) Implementación (.cpp) Clases que contiene
cmdLine.h - CommandLine

ctrl.h Ctrl.cpp Controller
InstrSet.h InstrSet.cpp SnippetHandler, InstrGroup

- Main.cpp * -
Monitor.h Monitor.cpp Monitor

PTPAcceptor.h PTPAcceptor.cpp PTPAcceptor (EventHandler)
PTPHandler.h PTPHandler.cpp PTPHandler (EventHandler)

ShutDownSlave.h ShutDownSlave.cpp ShutDownSlave (ActiveObject)
SnippetMaker.h SnippetMaker.cpp SnippetMaker

Task.h Task.cpp Task
TaskInstr.h TaskInstr.cpp TaskIntr

TaskManager.h TaskManager.cpp TaskExitHandler, TaskManager
Tasks.h - TaskCollection
Tuner.h Tuner.cpp Tuner

Tabla 5: Ficheros de código del AC y clases que contienen

*El fichero Main.cpp contiene la función principal por la que la aplicación inicia su ejecución. Esta

archivo no tiene una pareja de header ya que no requiere de definiciones previas, simplemente se trata

de iniciar el programa y recoger las posibles excepciones que se hayan podido producir.

Además de estos ficheros que son usados exclusivamente por el módulo AC, este requiere de otras clases

implementadas en el conjunto Common. Common es el nombre de un paquete de ficheros codificados en

C++ que contienen la implementación de clases comunes para varios módulos.

El AC obtiene estos ficheros ya compilados y se ocupa de incluirlos en el enlace del binario final.

Los ficheros objeto de Common requeridos por el AC son los siguientes:

DateTime.o

TimeValue.o

Exception.o SysException.o

Reactor.o

Process.o

Address.o

Socket.o

PTPProtocol.o

PTPMsg.o

PTPMsgHeader.o, Syslog.o

di.o

ConfigReader.o

Utils.o

Env.o

Paths.o

43

Config.o

ConfigMap.o

ByteStream.o

ConfigException.o

ECPMsg.o

ActiveObject.o

Thread.o

Estos ficheros objeto contienen las definiciones de clases y sus respectivos métodos, que AC utiliza

junto con los otros módulos para representar elementos comunes como Eventos o Fechas.

Mediante los ficheros compilados del AC y los que se importan de Common se crea el binario final que

corresponde al módulo AC.

44

Una vez compilado y enlazado el ejecutable obtenido realiza las funciones descritas por el siguiente

diagrama:

*Se adjunta como anexo una imagen de alta resolución de este diagrama.

45

Figura 9: Diagrama de secuencia del módulo AC*.

5.2 Estado inicial del módulo

MATE, antes del inicio de este proyecto, era una aplicación totalmente funcional, que se ejecutaba

correctamente. Debido a su naturaleza de proyecto académico, varios programadores habían introducido

cambios en el código pero la documentación de estos, era escasa o inexistente. Incluso el código inicial

no dispone de una documentación o manual de usuario formales.

Además de no estar documentado, el código contenía muchos fragmentos comentados, que habían sido

excluidos de esta forma del proceso de compilación y substituidos por nuevas secuencias de código.

El proyecto data del año 2003 y por tanto muchas de sus funciones están des-actualizadas (deprecated).

Esta des-actualización no solo afecta a las funciones de C++ sino que las librerías usadas como Dyninst

de terceras partes también han sido substituidas por versiones mas modernas y por tanto algunas de sus

funciones han cambiado o dejado de existir.

Es esencial solucionar estos problemas porque pueden afectar al funcionamiento del programa, pero hay

otros que también suponen un riesgo aunque este sea posible a mas largo alcance.

En el futuro MATE será estudiado y posiblemente actualizado por otros desarrolladores y por tanto es

importante que el código esté escrito de forma homogénea por tal de facilitar su comprensión.

El código carece de comentarios explicativos de las clases y los métodos, y aunque si contiene algunos

comentarios inline que describen las secuencias de instrucciones as complejas el código en general es

difícil de comprender.

5.3 Cambios propuestos

Como solución a los problemas nombrados se ha creado una metodología para trabajar con proyectos,

específicamente orientada a MATE. Esta metodología, definida con anterioridad en este documento,

describe una serie de procesos para dotar al proyecto MATE de un código homogéneo y formal, con

comentarios explicativos y actualizado a las ultimas versiones de sus dependencias. Además del trabajo

realizado sobre el código fuente también se propone la creación de una documentación y un manual de

usuario para la aplicación MATE.

Esta metodología se traduce en una serie de cambios que junto con los otros dos miembros del equipo

aplicaremos a los diferentes módulos de MATE.

En primera instancia se intentaran eliminar las llamadas a funciones des-actualizadas, y sustituiremos las

librerías usadas por su versión actual.

A continuación, procedemos a repasar los archivos fuente y las dependencias entre ellos, resolviendo

redundancias y gestionando los ficheros de forma que estén organizados por modulo, y haciendo que los

ficheros comunes solo aparezcan una vez.

46

Una vez contamos con el conjunto de ficheros final procedemos a aplicar las guías de estilo al código de

modo que todo quede homogéneo y fácil de leer.

A continuación, una vez comprendemos bien el código, insertamos los comentarios de cada método en

los archivos de cabecera (header) y los comentarios inline necesarios en los archivos de

implementación.

Después de cada paso es conveniente recompilar para comprobar que se mantiene la funcionalidad

inicial.

Una vez realizados estos cambios el código debería ser mucho mas comprensible y ahora gracias a los

comentarios de Doxygen podemos extraer automáticamente la documentación del código.

5.4 Cambios aplicados

5.4.1 Adaptación a las nuevas librerías

Dado que se han actualizado las librerías que se usaran como dependencias de MATE debemos

modificar las llamadas a funciones que existen en el código para adaptarlas a los cambios posibles.

En nuestro caso hemos pasado de usar la versión 6.1 de Dyninst a la versión 7.0. Esto es importante

porque siempre hay que intentar mantener los componentes del programa lo mas actualizados posible,

para aumentar la compatibilidad y favorecerse de las mejoras realizadas por los proveedores de este

software, que a menudo incrementan la calidad de nuestra aplicación.

En nuestro caso este cambio tiene como consecuencia la necesidad de cambiar algunas llamadas a

funciones, que han variado de una versión a la siguiente.

En el caso del AC se ha tenido que substituir el método getPid() que obtenía el identificador de un

proceso. El cambio producido es que a partir de la versión 6.0 de Dyninst esta función se descontinuó en

objetos de tipo thread, siendo exclusiva para procesos. A partir de esta versión se debe usar la función

getTid() para obtener el identificador de un thread.

Los cambios mas comunes son los relativos a procesos y threads. Otro de los cambios relativos a

Dyninst se produce al intentar llamar funciones propias de procesos en un objeto thread, como en el caso

del TaskManager que intenta obtener, mediante la función stopSignal(), la señal con la que se ha

finalizado un thread. En nuevas versiones de Dyninst esto no es posible de forma directa y se debe

acceder al proceso que representa el thread primero y luego a través de este obtener la señal de parada.

47

5.4.2 Cambios en cascada

Debido a que se producen cambios en varios módulos de forma simultanea, existe la posibilidad, dado

que los módulos son dependientes entre ellos, que algunos de los cambios realizados por otros miembros

del equipo de trabajo tengan una repercusión en los demás módulos.

En nuestro caso los cambios realizados en el modulo Common, que es el paquete que contiene las clases

comunes para varios módulos, son los que mas impacto tienen sobre el AC.

En el caso de la clase Controller, existe un ejemplo de cambio en cascada. En Common se decidió

cambiar el método de lectura de los archivos de configuración y por tanto este cambio ha provocado que

se hayan de cambiar la forma en que la clase Controller obtenía los datos de configuración.

En lugar de usar un objeto de clase Config para leer el archivo de configuración, ahora este objeto solo

almacena los datos obtenido y el encargado de leer y tratar este fichero es una clase nueva llamada

ConfigHelper que contiene un método llamado ReadFromFile(path del documento).

Antes:

_cfg.LoadFromFile (_configFile);

después:

_cfg = ConfigHelper::ReadFromFile(_configFile);

5.4.3 Cambios generales

En adición a los cambios específicos también se han realizado cambios necesarios debido a la evolución

del mismo lenguaje en que el programa está escrito. C++ como lenguaje de programación también

evoluciona y por tanto debemos ir actualizando los ficheros de código para que se adecuen a los cambios

del lenguaje.

El cambio mas significativo de este tipo es el referente a las cadenas de texto. En general se recomienda

el uso de la clase String en lugar de usar punteros a caracteres.

Este cambio se ha aplicado de forma numerosa en todo el código.

Un ejemplo es la función StartTask(...), método perteneciente a la clase TaskManager, que recibe

como parámetro el path de la aplicación a iniciar. Este path es una cadena de caracteres pero en lugar de

tratarla como tal usamos la clase String para representarla y por tanto cambiamos el tipo del parámetro

que se admite.

48

Pasamos de esto:

bool TaskManager::StartTask (char const * path, char
** args, int envc, char ** env);

a:

bool TaskManager::StartTask (const std::string& path,
char ** args, int envc, char ** env);

Como consecuencia a la hora de llamar a la función usaremos este tipo de variable para pasar la cadena

path.

Antes:

taskMngr.StartMPITask (_cmdLine.GetAppPath (),
_cmdLine.GetAppArgv ())

Después:

taskMngr.StartMPITask ((char *const)
_cmdLine.GetAppPath (), _cmdLine.GetAppArgv ())

5.4.5 Cambios concretos

En algunos casos, pese a que no son cambios motivados por la aplicación de la metodología se ha

decidido modificar pequeñas cosas.

Uno de estos casos concretos en el caso del módulo AC es el método FindByPid(int pid) de la

clase TaskCollection. Por alguna razón existía una duplicidad de métodos, ya que además del nombrado

la clase TaskCollecion disponía de otra función llamada Find que realiza exactamente la misma tarea

que FindByPid.

En este caso optamos por eliminar uno de ellos en concreto Find, ya que FindByPid es un nombre

mucho mas descriptivo para esta función. Esto tiene como consecuencia trazar todas las llamadas a esta

función y substituirlas por llamadas a la que conservamos.

5.4 Comentarios añadidos

Como parte de la documentación de MATE se han añadido al código fuente, esto es el conjunto de

ficheros en C++ que forman la aplicación, comentarios que facilitan la comprensión de los elementos y

49

como se relacionen entre ellos.

Estos comentarios se dividen en dos tipos distintos, los comentarios inline y los comentarios Doxygen

(descriptivos). Cada uno de ellos cumple una función distinta en en conjunto forman la documentación

de código de MATE.

5.4.1 Comentarios inline

Este tipo de comentarios está incrustados entre las instrucciones del código y tienen como objetivo

principal proporcionar una detallada descripción de cada linea o conjunto de estas a medida que se van

leyendo. Esto permite que se describa con detalle el flujo de un conjunto de instrucciones a medida que

vamos leyendo cada una de ellas.

El código original contenía comentarios de este tipo y se han conservado ya que explican de primera

mano cual es la función de cada elemento.

Algunos ejemplos de comentarios inline son los siguientes:

void ShutDownSlave::Run (){
char buf[10];
char intSig[] = "Interrupt";
// Loop that allows for more than one message received
while(1){

// Create client socket
SocketPtr clientSocket = _SSock.Accept();
// Blocking call that receives the message
clientSocket->Receive(buf, sizeof(buf));
// Memory comparison rather than strcmp
if(memcmp(buf, intSig, strlen(intSig)) == 0){

// Call interrupting function of the AC
_ctrl.Interrupt();
// Exit loop
break;

}
}
exit(0);

}

50

5.4.2 Comentarios Doxygen

Como se ha explicado con anterioridad en este documento, Doxygen es una herramienta que nos permite

extraer documentación de una aplicación directamente de su código. Esto es posible gracias a que

Doxygen analiza la sintaxis y semántica del código y además puede extraer información de ciertas lineas

de comentario especificas. Este tipo de comentarios son especiales para Doxygen, este las identifica

como tal, y están formateadas de forma que se pueda extraer información.

Con palabras clave como @brief o @param especificadnos a Doxygen que es cada componente del

comentario y este identifica cada uno de ellos para poder procesarlos y generar la documentación con el

formato deseado.

Estos son los comentarios mas numerosos y que tiene mas contenido. Todos los ficheros de cabecera

contienen este tipo de comentarios para describir cada una de las clases implementadas y sus métodos.

Cada clase tiene un comentarios que incluye su definición así como los datos de creación y versión de

esta.

Cada método contiene una breve descripción de su funcionamiento así como las especificación de

parámetros, elementos de retorno o excepciones que lanza entre otros.

Algunos ejemplos de este tipo de comentarios:

/*
 * @brief Creates a new task.
 *
 * Creates a new task that represent the execution
 * of the program passed
 * as a parameter and adds it to the list of
 * stored tasks.
 *
 * @param path Absolute location of the
 * executable containing the app.
 * @param args Arguments that should be
 * passed the application when it
 * is started.
 * @param envc Environment count. (Unused)
 * @param env Environments. (Unused)
 *
 * @return true if the task has been
 * successfully started, false otherwise.

51

 */
bool StartTask (const std::string& path, char **

args, int envc, char ** env);

52

6 Nuevas características

En esta sección se explican las características que se han añadido a MATE. Estas no son relativas a su

funcionamiento básico sino que son referentes a la calidad de software.

6.1 Instalador
Una de las piezas clave en cualquier producto software que se quiera distribuir a terceras personas es un

instalador que sea compatible con cualquier versión del sistema objetivo, y que permita de esta forma la

implantación sencilla y rápida de la instalación sin exigir un alto conocimiento de esta.

Para MATE, ya que se trata de una aplicación orientada a UNIX, hemos optado por desarrollar un

sistema de instalación basado en Make. Make es una herramienta de UNIX que permite, mediante una

serie de sencillos scripts, la compilación de una aplicación y implantación de esta en el sistema.

La instalación de MATE se lleva a cabo a partir del código fuente de la aplicación. Sobre este se realizan

unos procedimientos para generar los ejecutables que forman MATE como aplicación.

Fases de instalación:

– Configuración:

La primera fase de la instalación de cualquier producto software es la configuración del instalador para

adaptarlo a la maquina en la cual se esta llevando a cabo la instalación. Para poder compilar el programa

se deben conocer las características del sistema y este ha de disponer de las herramientas adecuadas.

El configurador de MATE, un shell-script llamado “configure”, se encarga de recolectar esta

información y almacenarla en un fichero.

La información se compone, entre otros, del tipo de arquitectura que usa el sistema, la localización del

compilador en el sistema de archivos, la existencia en el sistema de las dependencias de MATE y el path

de instalación personalizado si se desea.

– Compilación:

En esta fase se usa la herramienta Make para generar los ejecutables a partir de los diferentes ficheros de

código fuente. Compilando los archivos obtenemos los archivos objeto que mas tarde se enlazaran en

librerías o directamente en el ejecutable que se usara para iniciar la aplicación.

Make usa una serie de ficheros (makefiles) que contienen las instrucciones para generar cada unos de los

archivos intermedios que toman parte en la creación del ejecutable final.Estos archivos usan la

información recolectada en la fase de configuración para hacer posible la compilación.

53

– Instalación:

Una vez los ejecutables han sido compilados y enlazados con las librerías estáticas de las que dependen

es posible que el usuario quiera que se distribuyan estos binarios en carpetas predeterminadas para

facilitar el acceso.

El instalador procede en esta fase a mover los archivos generados a su correspondiente directorio en el

sistema de ficheros del usuario.

Requisitos del configurador:

• Soporte a usuario (opción -help)

• Opciones de selección

◦ Compilador de C (opción -cc).

◦ Compilador de C++ (opción -c++).

◦ Directorio de cabeceras de MPI (opción -mpiinc).

◦ Librerías de MPI (opción -mpilib).

◦ Librería especifica de MPI (opción -mpilibrary).

◦ Directorio de cabeceras de Dyninst (opción -dyninstinc).

◦ Librerías de Dyninst (opción -dyninstlib).

◦ Directorio de librerías de Dwarf (opción -dwarf).

◦ Directorio de librerías de Binutils (opción -with-binutils).

◦ Makefile objetivo (opción -with-make).

◦ Binario de Doxygen (opción -with-doxygen).

◦ Arquitectura del sistema (opción -arch).

• Control de dependencias.

• Búsqueda y configuración de dependencias en función de la arquitectura.

Requisitos del instalador:
• Compilación de los archivos fuente.

• Copia de los archivos ejecutables en el sistema.

• Limpieza de residuos de instalaciones previas.

• Generación de la documentación a partir del código.

Ficheros generados

Tal y como se aprecia en la descripción previa del proceso de instalación, en este toman parte varios

ficheros diferentes que se encargan de cada una de las fases de la instalación.

54

– Configurador [configure]:

El configurador es un script escrito en shell (sh) que extrae los datos necesarios para la instalación del

sistema. Además incluye la posibilidad de forzar muchos de los parámetros de forma que el usuario

puede sobrecargar las elecciones que se toman y así elegir cual es la configuración que desea.

– Instalador [makefile(s)]:

MATE dispone de un makefile para cada uno de sus módulos además de uno general que es el encargado

de ejecutar cada uno de los demás en un orden adecuado.

Estos ficheros contienen las instrucciones para crear cada uno de los ficheros intermedios y finales que

forman MATE. Para cada fase de la compilación existen unas dependencias que se deben cumplir antes

de pasar a la siguiente y el makefile se encarga de que la compilación se ejecute de forma adecuada.

Además dispone de unos objetivos (targets) adicionales que sirven para limpiar la instalación previa, es

decir, eliminar los archivos residuales de previas compilaciones, y generar la documentación a partir del

código.

Ficheros adicionales
El instalador hace uso de algunos archivos adicionales que proporcionan información sobre el sistema.

– Archfind: es un ejecutable que nos permite averiguar la arquitectura del sistema.

– IsAbs: se trata de un pequeño script que comprueba si un camino de directorio es absoluto.

Codificación

La implementación de este modulo se ha realizado usando principalmente las dos herramientas ya

nombradas, shell-scripts y Make. Para generar el configurador se podría haber optado por hacerlo

automáticamente con autotools pero para simplificar el profeso y el script final se optó por realizarlo

manualmente a partir de un script parecido existente.

Los makefiles se generaron a partir de los que ya existían para MATE añadiendo nuevos para adaptarse a

la trasformación de la aplicación.

Como contribución personal al proyecto se han realizado las tareas relativas a los makefiles.

Testeo
Como parte de MATE el instalador debe ser testeado para comprobar que su funcionamiento es correcto.

Dentro del instalador la parte mas importante y a la vez mas susceptible a fallos es el configure ya que

este debe adaptarse a diferentes situaciones en distintos sistemas.

55

Con este objetivo se han generado una serie de tests que comprueban que el script “configure” recolecta

siempre la información adecuada y sobrecarga los valores de los parámetros cuando el usuario lo desea.

Estos tests se han realizado mediante Make, que nos permite producir los resultados de diferentes

ejecuciones del script y con distintos parámetros de entrada y en diferentes sistemas y comprobar que

son los resultados esperados.

6.2 Mecanismo de parada
Otro aspecto importante en producto software es la habilidad de este para terminarse de forma segura.

Hasta el momento no existía un método de apagado de la aplicación sino que se tenia que abortar por

medio de comandos.

Requisitos
El mecanismo de parada debe encargarse de cerrar el programa de manera limpia y sin que se corra

peligro de perder información o provocar daños al sistema.

• Apagado controlado de MATE

• Difusión de la señal de apagado a los AC

• No influir en el tiempo de ejecución de la aplicación.

• Proporcionar control directo al usuario.

Diseño
Con estos requisitos en mente se ha diseñado un mecanismo que, aprovechando la clase socket del

proyecto original usa este tipo de protocolo de comunicación para transmitir la señal de cerrado a todos

los nodos del sistema distribuido y así se asegura de que todos los AC's activos se cierran en el momento

que el usuario desea finalizar MATE.

El sistema de cerrado consiste simplemente de un thread que se ejecuta de forma silenciosa en cada uno

de los nodos del cluster i en la máquina que ejecuta el Analyzer.

El thread de los nodos AC ejecuta una rutina de cliente que servidor que espera la señal del nodo

principal para indicarle al AC que debe finalizarse. De forma complementaria en el nodo principal se

ejecuta un thread que actúa como cliente y difunde la señal de cerrado cuando sea adecuado.

De este modo cuando la máquina central recibe la orden del usuario de que MATE debe cerrarse, esta

envía por socket la señal a todos los nodos AC.

Este método permite reducir prácticamente a 0 la influencia del mecanismo de cerrado en el tiempo total

de ejecución ya que los threads se bloquean esperando señales y no realizan esperas activas de modo que

56

el procesador queda libre para realizar las tareas relativas a la aplicación y a MATE.

Codificación

El mecanismo de parada se ha integrado en el código de MATE y por tanto está escrito en C++. En

concreto la clase creada para el AC, como aportación personal, se llama ShutDownSlave.

Esta clase es una subclase de ActiveObject lo que permite que se comporte como un thread.

Utiliza los objetos definidos por los desarrolladores originales de MATE para representar sockets.

Testeo

Las clases usadas en el desarrollo de este componente han sido testeadas de forma unitaria, es decir, que

funcionen bien por si solas. Debido a problemas con el entorno las pruebas del mecanismo de parada se

han limitado a comprobaciones del funcionamiento de los sockets y del sistema de parada del AC.

57

Figura 10 Diagrama que muestra el funcionamiento del mecanismo de parada.

7 Conclusiones
Este es un proyecto inusual que no tiene como objetivo la creación de una aplicación sino la de aplicar

garantías de calidad a una ya creada. En este sentido el proyecto ha sido un éxito.

Se ha diseñado un entorno de desarrollo especialmente adaptado a las necesidades de MATE. Esperamos

que esto represente el estándar para futuros proyecto con MATE y de esta forma se facilite el trabajo de

los realizadores de este. Todos los componentes del entorno cuentan con un mecanismo de instalación

automático (scripts de instalación) para que su implantación pueda ser realizada lo mas rápidamente

posible.

Se han creado una serie de documentos que conjuntamente describen detalladamente una metodología

que regula todos los aspectos del desarrollo de MATE. Esto hará posible la colaboración de terceras

partes a la evolución del proyecto unificando el código obtenido.

El código de MATE ha sido actualizado siguiendo las normas de estilo especificadas en las guías y se ha

intentado obtener el código mas limpio y correcto posible.

Además se ha documentado el código para que este sea más comprensible lo que reducirá notablemente

el esfuerzo de futuros desarrolladores a la hora de familiarizarse con la aplicación.

MATE como aplicación era totalmente funcional al inicio de este proyecto, no obstante el trabajo

realizado durante estos meses ha dotado al proyecto de características que, si bien no repercuten en las

funcionalidades de esta, son una parte muy importante para su evolución. No obstante se han añadido

algunas características nuevas, que no modifican el funcionamiento base pero hacen mas cómodo el uso

de la aplicación.

En definitiva podemos decir que se han cumplido los objetivos planteados, y que el resultado de

haberlos cumplido es transcendental para la evolución de MATE.

MATE es un proyecto con mucho futuro, la aplicación en si representa un paso adelante en la

optimización de aplicaciones paralelas, y por tanto debe darse continuidad a la evolución de esta.

Esperamos que con nuestra aportación se facilite a futuros desarrolladores la tarea de seguir trabajando

para hacer de MATE la herramienta mas completa posible.

7.1 Posibles mejoras

Pese a que el proyecto se ha llevado a cabo de forma exitosa, existen posibles mejoras que se podrían

haber aplicado, pero que debido a falta de tiempo o del conocimiento adecuado no han sido posibles.

MATE tiene en su código algunas partes incompletas que en la actualidad son prescindibles debido al

uso que se le da pero que harían de MATE un programa mas completo.

58

– Mejoras de funcionalidad:

En el modulo AC en la clase Tuner solo está implementado el cambios de valores para variables de tipo

float. Este es un parche que hace que MATE funcione para ciertos casos en que otros tipos son

innecesarios pero seria mas completo si estuviera implementado para cualquier tipo. Completar esta

parte del AC no era viable debido a la falta de experiencia con Dyninst y no se ha podido realizar.

– Licencia:

Otro factor importante que debe ser definido es bajo que términos se puede usar modificar y distribuir

MATE. La licencia que se le aplique a la aplicación será relevante en el futuro de esta y por tanto debe

ser responsablemente escogida.

– Testing:

Una parte importante de todo desarrollo software es asegurarse de que el producto final cumple con los

requisitos establecidos. Para comprobar que el producto se comporta de la forma esperada se deben

realizar una serie de tests en el entorno en que la herramienta debería funcionar una vez liberada. En

nuestro caso este entorno es un cluster de ordenadores. De modo que el siguiente paso serie realizar una

serie de tests de MATE en diferentes sistemas para corroborar los resultados obtenidos en los tests

unitarios. Y además validar las características añadidas como el sistema de configuración o el de cerrado.

59

8 Bibliografía

Links

– Página oficial de Dyninst: http://www.dyninst.org/

– Paradyn (pagina de Dyninst 7.0): http://www.paradyn.org/html/dyninst7.0-software.html

– The Message Passing Interface (MPI) standard: http://www.mcs.anl.gov/research/projects/mpi/

– Apache server project: http://httpd.apache.org/

– Página oficial de Doxygen: http://www.stack.nl/~dimitri/doxygen/

– Página oficial de SVN: http://subversion.apache.org/

– C++ referencia: http://www.cplusplus.com/reference/

– An Introduction to the UNIX Make Utility:

http://frank.mtsu.edu/~csdept/FacilitiesAndResources/make.htm

– Make manual: http://www.gnu.org/software/make/manual/make.html

– Creating UNIX libraries: http://www.cs.duke.edu/~ola/courses/programming/libraries.html

Documentos

– Anna Morajko, “Dynamic Tuning of Parallel/Distributed Applications”, UAB, 2003.

– Andrea Martínez, "Sintonización dinámica de aplicaciones MPI", UAB, 2010.

– Eduardo César, Definition of Framework-based Performance Models for Dynamic Performance

Tuning, UAB, 2006.

– Paul Glezen, Branching with Eclipse and CVS, Part 2: Rebasing, IBM 2007.

– Juan Soulié, C++ Language tutorial, 2007

60

http://www.cs.duke.edu/~ola/courses/programming/libraries.html
http://www.gnu.org/software/make/manual/make.html
http://frank.mtsu.edu/~csdept/FacilitiesAndResources/make.htm
http://www.cplusplus.com/reference/
http://subversion.apache.org/
http://www.stack.nl/~dimitri/doxygen/
http://httpd.apache.org/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.paradyn.org/html/dyninst7.0-software.html
http://www.dyninst.org/

Índice de anexos
1. Actas de reunión

I. Acta número uno, con fecha 03-01-2011

II. Acta número dos, con fecha 28-01-2011

III. Acta número tres, con fecha 18-02-2011

IV. Acta número cuatro, con fecha 01-04-2011

V. Acta número cinco, con fecha 06-05-2011

VI. Acta número seis, con fecha 17-06-2011

2. Guía de instalación de Doxygen

3. Script de instalación de Doxygen

4. Guía de instalación de Subversion

5. Script de instalación de Subversion

6. Especificación de deployment

7. Diagrama de secuencia del AC.

8. Especificación de control de versiones y build
9. Documentación del módulo AC extraída con Doxygen

61

	1 Introducción
	1.1 Perspectiva general
	1.1.1 Computación de altas prestaciones
	1.1.2 Computación paralela
	1.1.3 Aplicaciones paralelas
	1.1.4 Optimización de aplicaciones paralelas

	1.2 MATE
	1.3 Aportación
	1.4 Alcance
	1.5 Objetivos
	1.6 Estructura del documento

	2. Plan de proyecto y estudio de viabilidad
	2.1 Estado actual
	2.1.1 MATE: el proyecto

	2.2 Requisitos funcionales y no funcionales
	2.2.1 Requisitos funcionales
	2.2.2 Requisitos no funcionales
	2.2.3 Catalogación y priorización de requisitos

	2.3 Descripción del sistema MATE
	2.3.1 Lógica del sistema
	2.3.2 Descripción física

	2.4 Alternativas para el entorno
	2.4.1 Solución propuesta

	2.5 Viabilidad técnica
	2.5.1 Lenguaje de programación
	2.5.2 MPI
	2.5.3 Dyninst

	2.6 Planificación
	2.6.1 WBS (Work Breakdown Structure)
	2.6.2 Fases y actividades del proyecto
	2.6.3 Recursos del proyecto
	2.6.4 Calendario del proyecto
	2.6.5 Calendario temporal

	2.7 Evaluación de riesgos
	2.7.1 Lista de riesgos
	2.7.2 Catalogación de riesgos
	2.7.3 Plan de contingencia

	2.8 Presupuesto
	2.8.1 Estimación coste de personal
	2.8.2 Estimación coste de los recursos
	2.8.3Estimación coste de las actividades
	2.8.4 Estimación de otros costes
	2.8.5 Estimación costes indirectos
	2.8.6 Resumen y análisis coste beneficio

	3. Calidad del software
	3.1 SQA
	3.1.1 Modelos estándar
	3.1.2 Modelos de aplicación o específicos de compañías

	4 Especificación de la metodología
	4.2 Especificación del entorno de desarrollo
	4.2.1 Perspectiva general
	4.2.2 Contribución personal
	4.2.3 SVN
	4.2.4 Doxygen

	4.3 Documentos de especificación
	4.3.1 Perspectiva general
	4.3.2 Contribución personal
	4.3.3 Especificación de control de versiones y build
	4.3.4 Especificación de deployment

	5 Aplicación de la metodología
	5.1 MATE: el módulo AC
	5.2 Estado inicial del módulo
	5.3 Cambios propuestos
	5.4 Cambios aplicados
	5.4.1 Adaptación a las nuevas librerías
	5.4.2 Cambios en cascada
	5.4.3 Cambios generales
	5.4.5 Cambios concretos
	5.4 Comentarios añadidos
	5.4.1 Comentarios inline
	5.4.2 Comentarios Doxygen

	6 Nuevas características
	6.1 Instalador
	6.2 Mecanismo de parada

	7 Conclusiones
	7.1 Posibles mejoras

	8 Bibliografía
	Índice de anexos

