UNB

Universitat Autonoma de Barcelona

Gestion y Visualizacion de
museos Vvirtuales 3d en linea

Memoria del proyecto de Ingenieria Técnica en Informatica de Gestion
realizado por Jordi Nadal Gesto,

y dirigido per Daniel Riera Terrén,

Escola Universitaria d'Informatica

Sabadell, Septiembre de 2010

El/la abajo firmante, Daniel Riera Terrén
professor/a de la Escola Universitaria d'Informatica de la UAB,
CERTIFICA:

Que el trabajo al que corresponde la presente memoria
ha sido realizado bajo su direccion
por Jordi Nadal Gesto
| para que conste firma la presente.

Sabadell, Agosto de 2010

Firmado:

indice de contenidos

I INEEOAUCCION. ...ttt ettt ettt et e et et e eabe e seeeabeesaeaeabeensaesnseenseesnseeseesnsaaenns 4
1.1 DESCIIPCION ZENETAL......iiiiiiiiiiiieeiiie et ettt ete et e et e e e eeeaaeeetaeeesaaeeensseeeeesnnssaeeeeeennnnees 4
1.2 OB @EIVOS. c.uttieiiieiieetteeite et ettt et ettt et e st e e bt e s bt e eabeesabeesbeesaseenbeeesbeenseeense e seeesbeenseeenbeeseeeanbaeeeans 4
1.3 Acerca de €St€ dOCUMENLO.cccuieitiiiiieiiieiie ettt ettt ettt et e et e bt e sabeesaeesnneenes 5
1.4 Motivacion personal y agradeCimiCntos.ccueeruieriieriienieeiiieniieeieenreesieesaeeseeeeereeessneeeennns 5

2 Estudio de viabilidad..........coouiiiiiiiiiieee ettt 7
2.1 PlanifiCaCION.uieiiiiiiieiie ettt ettt ettt e et et e et e e st e e b e e enaeenbaeeeenbbee e nnreeennes 7
2.2 VIiabilidad tECIICA. ... eeiutiiiiieiieie ettt ettt et e eaeean 9
2.3 Viabilidad ©CONOMICA......c..eiiiieiieetietie ettt ettt et e ete et te e esteesabeeseeenbeenseesnseenseasnseennes 17
2.4 Viabilidad 1€@al........cccviiiiiieiie e et e e e e e e naaaaeeeeas 18
2.5 CONCIUSIONES.cuvieuiieeiieeiieeiieeteeete et e et e eteestteeaeesteeebeesseeenbeensaesnseanseesnseeseesnseenseesnseeeensseens 18

3 ANALISIS A€ TEQUETTIMIEINTOS. . eeeuuvieeiiieeitiieetieeeiteeeeteeeeteeesbeeesebeeessbeeessseeensseessseaeesannssseeeseansssseeeeens 19
B ROLES. ettt ettt b e b e e bt e et e e hteenbeeentbaeeenbaeeeenraaeeans 19
3.2 Requerimientos fUNCIONALES..........c.eeiiiiiiiiieciiie et e et e e saee e saeeeneneee s 20
3.3 Requerimientos N0 fUNCIONALES...........ccuiiiiiiiiiiiiieeie ettt 21

4 FUNdamentos tEOTICOSeeruuteitieiuieetieeite et e ettt et et e et e sateeabeesheeeabeesaeeeabeenbeeenbeeabeesabeebeeeanbeeeennees 22
B.1 ALGEDIA Y 3D ..ottt 22

5 Tecnologias y herramientas USAdas..........c.eeecuuieeiiiieiiiiieeiieeeieeeeiee et e esaeeesreeeeaeeesaeeeseeeesaeeennns 26

6Fases de disefio, IMPlementaCiOn Y tESTS......c.eeruierieeriieeiieiieeieeiteete et e eeeeeteeeaeeebeesereeeseneeeenneeeens 28
6.1 Diagrama de CasoSs de USO.......cccueieriieeiiieeiiieeiieeeiteeeiee et et eeseveeeaaeesaaeeeraeeeeennnsseeaeeenns 29
0.2 FASE L.t e ettt et e et e et e e s bt e e s bt e e e aee e e ennbbeeeeeenns 30
0.3 FASE 2.ttt ettt b e s bt e st e e e et eeeeeean 35
0.4 FASE 3.ttt et ettt e e bt e e e bt e e e bt e e e bt e e e bt e e ateeeeennbteeeeeenns 46
0.5 TS ettt ettt ettt et s bt e sttt e e e e e teeeeeeeaee 48
6.6 Bugs conocidos y funcionalidades inCompletas............ccveevuieriiiiiienieeiiienie e 48
6.7 DOCUMENTACION. ...ttt ettt ettt ettt e st e e bt e e st e e beesabe e bt e sabeeenbeeeaneeeeans 49

T CONCIUSIONES.eeevtieiieeiiteetie ettt ettt ettt et estte e bt e ssteeabeesseeenbeesseeeaseessseenseenssesnsaensseenseenseesnseas 50
7.1 AMPHACIONES fULUTAS.....eeeiuiiieiiieeiieeeieeeeiee et et e et e e et eeeaeestaeeebaeeessaeesasssaaeesesnssseeeeeannes 52

8 BIDHOZIATTA.ecuiiiiiiiiiee ettt ettt ettt sttt e st e e bt e e nbe e beeenaeenbeeennaeeen 54
8.1 OrOS ENLACES. ...cutieueieeieeite ettt ettt ettt et eehe e et e sbe e et e e sbe e e bt e bt e eabe e bt e enbaeeean 55

1 Introduccion

1.1 Descripciéon general

El mundo del desarrollo web es un mundo en cambio constante. Uno de los cambios que
esta sufriendo actualmente es uno que lleva afios intentdndose llevar a cabo: traer el web a
un nuevo nivel, padginas web en 3d. Este proyecto se propone tomar la iniciativa, y ser el
pionero dando los primeros pasos por un camino a oscuras en busca de tal objetivo.

Determinar qué interfaces hardan falta para crear paginas web con entornos
tridimensionales faciles de navegar para cualquier usuario con independencia de su
condicidn y experiencia con entornos en tres dimensiones. Buscar las limitaciones que un
entorno web impone a un entorno 3d y viceversa. Lidiar con las limitaciones que el
hardware y software del usuario impone. Todo ello juntado en un aplicacién web con una
aplicacion practica: la gestion y visualizacion de un museo en 3d.

La aplicacion constard de una herramienta para administradores que permitird ver una sala
de exposiciones virtual vacia, y una biblioteca de obras de arte; se podran afiadir y quitar
obras de la sala de exposiciones arrastrandolas de/a la biblioteca, creando asi galerias de
arte virtuales. Estas galerias se podran visualizar por cualquier persona con un explorador
web.

1.2 Objetivos

"Es el objetivo lo que nos ha creado...el objetivo nos vincula, el objetivo nos
motiva, nos guia, nos mueve, es el objetivo lo que nos define, el objetivo nos
mantiene unidos."

--agente Smith en Matrix

A continuacion se presentan los objetivos principales del proyecto:

1. Creacidn de una web de gestion de galerias de arte en 3d. Ha de permitir colocar en
un entorno tridimensional una obra de arte determinada de forma facil e intuitiva.
Desde colocar cuadros en las paredes o estatuas en el suelo, hasta jarrones en
pedestales.

2. Creacion de una biblioteca de obras de arte.
3. Poder guardar galerias de arte.

4. Creacion de un médulo de visualizacion que permita visitar las galerias de arte con
una cdmara en tercera persona. La exploracion de las galerias ha de ser sencilla y ha
de tratar de dar la méxima sensacion de realismo.

1.3 Acerca de este documento

El presente documento es la memoria del proyecto. La memoria esta dividida en varias
secciones: introduccion, estudio de viabilidad, andlisis de requerimientos, fundamentos
teoricos, tecnologias y herramientas usadas, fases de disefio, implementacion y tests, y
conclusiones.

Las secciones con la introduccién y el estudio de viabilidad se han redactado con un
lenguaje menos técnico de forma deliberada para facilitar su comprension. Se recomienda
pues empezar la lectura por estas secciones.

Las secciones fundamentos tedricos, tecnologias y herramientas usadas nos daran un
bagaje de conocimientos suficiente para entender el resto de secciones, por lo tanto son las
que se recomienda leer a continuacion. Estaran redactadas en un lenguaje de caracter mas
técnico.

En las secciones analisis de requerimientos, disefio, implementacion y fests, se describe
el proyecto propiamente dicho, dando por hecho que el lector dispone de los
conocimientos necesarios.

La seccidon conclusiones resume la consecucion o no de los objetivos expuestos en la
seccion introduccion y expone algunas de las posibles ampliaciones.

1.4 Motivacion personal y agradecimientos

"La habilidad es lo que eres capaz de hacer. La motivacion determina lo que haras.
La actitud determina lo bien que lo haras"

-- Lou Holtz

Alla por 1996, a través de un anuncio publicitario de un curso de programacion IBM, a la
temprana edad de 14 afios descubria yo, Jordi Nadal, la programacién. Cambid mi vida.
Descubri un mundo nuevo, que a la postre seria mi trabajo, mi mayor hobby, y mi forma
de vida. Actualmente, soy programador web profesional. Trato de estar siempre al tanto de
cualquier tendencia nueva en el mundo del desarrollo web.

Por otra parte siempre he mostrado interés por el mundo del 3d, mundos virtuales, video-
juegos, etc. A modo de proyectos personales, he desarrollado motores graficos 3d, juegos,
etc.

Asi pues, la posibilidad que se me presenta en este proyecto de tratar de combinar sendos
mundos es irrepetible. Tengo la oportunidad de experimentar con entornos 3d destinados a
un uso en un entorno web y descubrir sus limitaciones. Tengo la oportunidad de analizar
la posibilidad de explotar econdmicamente una tecnologia radicalmente innovadora. Todo
ello unido, despertd mi interés hasta el punto que se ha acabado materializando en mi
Proyecto Final de Carrera.

Proyecto que sin la ayuda de mi familia por su apoyo, de mi tutor Daniel Riera por sus
consejos, de Douglas Crockford por sus aportaciones al desarrollo en JavaScript y en
especial del conjunto de desarrolladores de Google por los incontables productos que han
traido al web como son: O3D, translate api, ajax api, gears, closure tools, search api,
maps api, visualization api, y un largo etcétera!

A todos ellos, mil gracias.

2 Estudio de viabilidad

"Es intentando lo imposible como se realiza lo posible."

-- henry barbusse

Se ha realizado un analisis de viabilidad exhaustivo , los resultados del cual se resumen en
los siguientes puntos.

2.1 Planificacion

"El mayor de los peligros para la mayoria de nosotros, no es que nuestro objetivo
sea demasiado alto y no lo alcancemos, sino que sea demasiado bajo y lo logremos"

— Michelangelo

A continuacion se detalla la planificacion prevista, la cual como puede verse en el
diagrama de Gantt de la figura 1, se desglosa en un proyecto a realizar para 3 personas, un
analista y gestor de proyectos, un disefiador, y un programador y beta-tester, que suman un
total de 253 horas, o lo que es lo mismo, 63 dias laborables y una hora segun la
planificacion, que asume una jornada laboral de 4 horas al dia, 2 dias a la semana (todos
los fines de semana) empezando el 10 de octubre y finalizando el proyecto el 18 de abril.

WES

1.1

L1l
L1z
113
114
115
L.1.6
1.2

121
122
123
1L.z2.4
1.3

131
132
133
1.3.4
1.4

141
1.4.2
1.4.3
15

1.5.1
152
1.53
1.5.4
155
1.5.6

Mambre

33 = PFC b

= #Analisis de Yiabilidad
Planificarion
Definicidn de objetivos
Andlisis de requerimientos
Andlisis de las tecnologias a utilizar
#nalisis de costes

Elaborar Documento de viabiidad

| Preparar Entorno
Instalar sistema operativo
Tnstalar servidor web
Instalat Software de desarrallo
Instalar software de disefin

= Disefio

Modelado 3d de un prototipo de museo

grama de casos de uso

isefio Base de datos

Diagramas de Clases y Secuencia

= Codificacion y tests
Codificacion prototipos funcionalidades 3d
Codificacion Aolicacian web orincioal

Tests funcionales con Selenium

| Memoria

Feedaceian Introduccion

Redaccion Capitulo An
Redaccion Capitulo Tecnologias Usadas
Redaccion Capitulos sobre la aplicacian
Redaccion Conclusion

Redaccidn anexos v presentacion

Trabain

8dzh
1d

1d

1d

i

Zh

2d

1d 3h
1d

th

th

th
12d
5d

15d
10d
1d

15d

2009, Ctr 4 12010, Chr 1 2010, chr 2
ack nay dic ene feb mar abr
klill1 (Comienzo del provecto ; ‘
10 et 2009 ;
r T
E finglista ;
1
L
-Aralsta "
u Analista [50] ;
1
i
N
oy Analista
1
; =_ analista
o Analit
" m nalista
o Analista
1
" A
i] Disefiador grafico
1
; Anlista
m I Analista [50]
i BE= Analista [50]
1
: r .
" [}, Programadar
! ¥
i [1, Disefiador gréfico
1 L
' j Programador
1
l

1d
d
3
3
i
3

(A

J

I

Figura 1: Planifi

|

1sta

4

cacion prev

2.2 \Viabilidad técnica

"Los ordenadores son inutiles. Sélo pueden darte respuestas”
-- Pablo Picasso

En este apartado se discute la eleccion de las tecnologias mas adecuadas para la
consecucion exitosa a nivel técnico de los objetivos marcados. Se muestran en. forma de
tabla las elecciones y el razonamiento que lleva a elegir estas tecnologia en detrimento de
otras que se han tenido en cuenta. Las tecnologias que se han descartado desde un
principio ya sea por precio o por desconocimiento no se incluyen en la tabla. Para cada
Grupo de tecnologias posibles se incluye un grafico que muestra el volumen de busquedas
en Google dando un indicativo del uso de las mismas. Aunque este indicador no pueda
validarse cientificamente, si que nos servird para hacernos una idea de dicho uso en
Internet. La mayoria de elecciones son tipicas del desarrollo web y no requieren de un
estudio en profundidad. La decisién mas critica en este caso es la eleccion de la 4PI 3d.
Para la eleccién de esta se ha hecho un estudio mas detallado que se muestra en una
segunda tabla tras las que se muestran a continuacion.

nombre PROs CONTRAs Conclusiones

(A

2004 | 2003 | 2006 | 2007 2008 2003
| !

Figura 2: Codigo en el servidor

Php Mayor compatibilidad Se usard php
menor precio
independencia del servidor
web

menor curva de
aprendizaje

Mejor documentacion

asp Dependencia de IIS, descartado

nombre PROs CONTRAS Conclusiones
jquery 1.00 mootesls =020 130 dojo 1.00
Search Yolum ax G 1
15.0
10.0 ! |
5.00
e
.;"'_I T —— Qi T fr— _._..L....-_' —'—-—-".‘*"'“!'":—"f t . i —

I
2004
I

| 2005
! !

2006

Figura 3: Librerias y frameworks Javascript

2009
!

nota: los resultados de prototype y dojo estan inflados puesto que tienen nombres con otros

significados
JjQuery + Mejor documentacion no dispone de sistema de|Se usard jQuery vy
jQueryUl |elegancia y expresividad |herencia jQueryUl por su
menor curva de facilidad de uso, y
aprendizaje productividad,
mayor productividad
soporte para widgets
mas usada
Moo Tools | Soporte para herencia Mayor curva de | opcional, JavaScript
aprendizaje 2.0 promete clases,
por lo que su mayor
virtud desaparecera
prototype | Mejor rendimiento no dispone de widgets opcional, JavaScript
dispone herencia y clases 2.0 promete clases,
por lo que su mayor
virtud desaparecera
dojo Soporte para widgets Mayor curva de | Opcional, Tras
documentacion aprendizaje jQuery es la mas
interesante

10

nombre PROs CONTRAS

Conclusiones

1.00 postgresqgl =010

0.50

2004 2005 2006
| ! | | 1]
Figura 4: Bases de datos

MySQL Mayor rendimiento

soporte para transacciones
coste nulo

menor curva de
aprendizaje

mejor documentacion

Se usara mysql

PostgreSQL | Mayor soporte de | Mayor curva
funcionalidades como |aprendizaje
soporte para transacciones
y subconsultas

de

descartado

11

nombre PROs CONTRAs Conclusiones
03 =100 webhgl =050 10,0 awaydd = 1.00
Search Vvolume bndex (| G0 | B |
60.0
40.0 A | |
20.4
o I I I I I I I I I I | 1 I |
2004 2005 2008 2007 2008 |
Figura 5: Motores 3D
nota: para viml97 y five3d no aparecen suficientes resultados
03D Mayor potencia grafica Actualmente requiere el|Se usarda O3D
uso de la tarjeta grafica plugin en el explorador,
mayor variedad de|se espera que cambie
hardware 'y software|la instalacion del plugin
soportado de todos las|en Linux/Unix/Bsd no es
APIs estudiadas sencilla, o simplemente
soporte para shaders no funciona
a través de JavaScript
WebGL promete potencia al mismo | Codigo inmaduro y en|Descartado,
nivel que O3D desarrollo tecnologia demasiado
promete soporte nativo del nueva e inmadura,
explorador que evita la a largo plazo es la
necesidad de plugins. tecnologia mas
interesante tras O3D
VRML97 Desfasado, descartado
menor potencia grafica
Away3d de las opciones estudiadas requiere flash descartado
basadas en flash es la que
tiene mayor potencia
Five3d sencillo requiere flash descartado
papervision de las opciones estudiadas|requiere flash descartado

basadas en flash es la que
tiene mayor seguimiento

12

nombre PROs CONTRAs Conclusiones

apache 100 jss =018

2004 2005 2006 2007 2008 20048
I 1 1 i I I i 1 1

Figura 6: Servidores web

Apache Mejor documentacion y Se usara apache
comunidad maés activa
independencia del sistema
operativo

ISS Dependencia del sistema descartado
operativo
costes

para la eleccion del AP/ 3d, se han eliminado de la terna, todas las opciones basadas en flash
para mantener la aplicacion basada en tecnologias de licencia libre, y mantener asi la
viabilidad economica y legal del proyecto bajo control. Vrml97 queda descartada
inmediatamente por desfasada. Asi pues, todo lo que queda es decidir entre WebGL y
Google O3D. Ambos pretenden transformase en el estandar de facto para graficos 3d en el
web.

WebGL es un proyecto conjunto del grupo de desarrollo WebGL del grupo Khronos
(consorcio empresarial que mantiene el desarrollo de la especificacion de OpenGL) y la
fundacion Mozilla (desarrolladores del explorador web Firefox). Su objetivo es exponer
OpenGL Es 2.0 a javascript.

Google O3D es un proyecto de Google. Permite actualmente, exponer una version reducida
de OpenGL 2.1 a Javascript.

03D WebGL

autor(es) Google Especificacion: WebGL working group
soporte en Firefox y WebKit: Mozilla
Foundation

Objetivo Exponer partes de OpenGL 2.1 a|Exponer OpenGL Es 2.0 a JavaScript.
Javascript, se han eliminado las|(basado en shaders, no usa funciones
funciones estaticas, siguiendo un |estaticas)

13

modelo basado en shaders

Shaders Formato propio basado en una|Se espera que esté basado en shaders
mezcla de Cg de Nvidia, y HLSL | GLSL (version por confirmar) de
de Microsoft OpenGL

Sistemas Windows XP/Vista/7, Windows XP/Vista/7,

Operativos MacOs X, Linux, BSD, Unix MacOs X, Linux, BSD, Unix

Soportados

Exploradores | Firefox, Internet Explorer, | Firefox, WebKit. Chrome

Web Chrome, Safari, WebKit

Soportados

Hardware Todo el que tenga implementado | Todo el que tenga implementado a nivel

Grafico a nivel de drivers soporte total de drivers soporte total para OpenGL

Soportado para OpenGL 2.1 o Direct3d|Es 2.0

9.0c

Tests realizados

Descripcion del hardware/software usado |O3D | WebGL | Notas
procesador Intel coreDuo 32bit Fallo|Fallo |WebGL solo funciona con
Tarjeta grafica| AMD/Ati mobility Versiones Superiores a
radeon X1400 3.7prealpha.

Drivers de la

xf86-video-ati 6.12.4

En el caso de O3D, se debe

Drivers de la
tarjeta grafica

xf86-video-ati 6.12.4

Sistema Linux Ubuntu 9.10,
operativo Sabayon Linux 5.0
Explorador | Firefox 3.7prealpha
otros OpenGL mesa 7.6,

: - compilar ~ manualmente, al
tarjeta grafica ejecutarlo da un “fallo de
Sistema Linux Ubuntu 9.10, segmentacion”
operativo Sabayon Linux 5.0
Explorador | Firefox 3.5, Konqueror
otros OpenGL mesa 7.6

kernel linux 2.6.31.14
con KMS activado
procesador | Intel coreDuo 32bit Fallo|Fallo |WebGL falla devolviendo el
Tarjeta grafical AMD/Ati mobility error “Canvas 3D:
radeon X 1400 GLX SGIX pbuffer not supported

2

, mientras que glxinfo | grep
pbuffer muestra:
GLX SGIS multisample,
GLX SGIX fbconfig,

GLX SGIX pbufter

es un error de WebGL al
comprobar el soporte de
GLX SGIX pbuffer(lo busca

14

kernel linux 2.6.31.14

con KMS activado

en los modulos cliente vy
servidor: solamente las tarjetas
de Nvidia lo tienen en ambos
modulos y en el hardware usado
solamente en el de cliente) .

En el caso de O3D, se debe

compilar ~ manualmente, al
ejecutarlo da un “fallo de
segmentacion”
procesador Intel core2 Duo 64bit |Fallo | Fallo |WebGL falla devolviendo el
Tarieta orafica intel i 4 error “Canvas 3D:
arjeta grafica | intel express serie GLX SGIX_pbuffer not supported
Dr.ivers de la xf86-video-intel 2.9.1 ” mientras que glxinfo | grep
tarjeta grafica pbuffer muestra:
Sistema Linux Ubuntu 9.10 GLX_SGIS_multisample,
Operativo GLX_SGIX_beOHﬁg,
. GLX SGIX pbuffer
Explorador | Firefox 3.7prealpha es un error de WebGL al
otros Opengl mesa 7.6, comprobar el soporte de
kernel linux 2.6.31 GLX SGIX pbufter(lo busca
en los modulos cliente y
servidor: solamente las tarjetas
de Nvidia lo tienen en ambos
modulos y en el hardware usado
solamente en el de cliente) .
En el caso de O3D, se debe
compilar ~ manualmente, al
ejecutarlo el area 3d se queda en
blanco
procesador Intel core2 Duo 64bit |Fallo Fallo |WebGL solo funciona con
Tarjeta grafica intel express serie 4 versiones Superiores a
: : 3.7prealpha.
Drivers de la|xf86-video-intel 2.9.1
tarjeta grafica En el caso de O3D, se debe
Sistema Linux Ubuntu 9.10 compilar manualmente, al
operativo ejecutarlo el area 3d se queda en
Explorador Firefox 3.5 blanco
otros OpenGL mesa 7.6,
kernel linux 2.6.31
procesador | Intel core2 Duo 64bit |Ok |Fallo |WebGL solo funciona con
versiones superiores a

Tarjeta grafica

intel express serie 4

Drivers de la
tarjeta grafica

intel v15.13.6.64.1908

3.7prealpha.

15

Sistema Windows Vista/7
operativo

Explorador | Firefox 3.5, Internet
Explorer 7,8, Chrome

procesador | Intel core2 Duo 64bit Ok |Funcio |Para WebGL los resultados son

Tarjeta grafica | intel express serie 4 na disp ares, algunas demos
: parcial |funcionan, otras no

Dr.ivers de la| intel v15.13.6.64.1908 mente

tarjeta grafica

Sistema Windows Vista/7

operativo

Explorador | Firefox 3.7prealpha

procesador | Intel coreDuo 32bit Ok |Falla |WebGL solo esta soportado para

Tarjeta grafica| AMD/Ati mobility la Vqrsién 3.7prealpha o superior
radeon X1400 de Firefox

Drivers de la| AMD/Ati Catalyst v9.3
tarjeta grafica

Sistema Windows XP
operativo

Explorador | Firefox 3.5, Internet
Explorer 7,8, Chrome

procesador | Intel coreDuo 32bit Ok |Funcio |Para WebGL los resultados son
Tarjeta grafica) AMD/Ati mobility ha disp ares, algunas demos
radeon X 1400 parcial |funcionan, otras no
mente

Drivers de la| AMD/Ati Catalyst v9.3
tarjeta grafica

Sistema Windows XP
operativo

Explorador | Firefox 3.7prealpha

En resumen, para MacOs X no se han podido realizar pruebas por falta de disponibilidad del
hardware/software necesario, para Linux no se ha podido lograr hacer ir ninguna libreria en
ninguna de las configuraciones de hardware probadas por problemas con los drivers de las
mismas. Para Windows O3D funciona en todas las combinaciones de hardware testeados, y
WebGL solo ha dado resultados parciales.

La conclusion es clara, usando Google O3D, MySql, PHP, Apache, jQuery, jQueryUI el
proyecto es técnicamente viable.

16

2.3 Viabilidad econémica

"No se trata de bits, bytes y protocolos, sino de beneficios, pérdidas y margenes"
-- Lou Gerstner

En este caso, se ha podido usar una terna de tecnologias , todas ellas de licencia libre, y
por tanto coste nulo.

Se han seleccionado, herramientas que reduzcan al minimo indispensable el nimero de
horas de trabajo, maximizando productividad, minimizando costes en forma de
horas/hombre, los cuales tenemos ya previstos en la planificacion.

En cuanto a costes materiales, podemos contabilizar la amortizacion del hardware con el
que se realizaran los tests y el desarrollo. Se podria contabilizar también los gastos
proveniente del consumo eléctrico y conexion a Internet, pero los consideraré nulos.

El proyecto no incluye el hosting de la web que se va a crear, luego podemos suponer este
coste nulo.

En la siguiente tabla se detallan los costes previstos,

Concepto Valor
Total horas/hombre (Analista,programador y disefiador) 1.850,00 €
Amortizacion equipamiento (2 portatiles valorados en 600€, con una vida util 300,00 €
de 4 aiios, amortizados uniformemente al 25%, 1r afio)
Impuesto sobre beneficios al 30% 645,00 €
Total 2.795,00 €

Vendiendo el producto final a un precio superior a 2.795,00 € el proyecto se puede
considerar econdmicamente viable. Teniendo en cuenta que es un producto nuevo y
distintivo, que crearia valor anadido para un hipotético cliente, podemos esperar que el
cliente esté dispuesto a pagar esta cantidad. Asi pues el proyecto es econdmicamente
viable.

17

2.4 Viabilidad legal

"En 2031, los abogados seran componentes habituales de la mayoria de los equipos
de desarrollo"
-- Grady Booch

El marco legal actual, que puede afectar al proyecto, se puede cefiir a la LSSI' y a la
LOPD".

El primero de sendos documentos, establece las obligaciones para toda web que realice
una actividad economica. No es el caso.

El Segundo, establece las obligaciones para toda web que manipule datos personales. En el
caso de del proyecto solamente se requiere un nombre de usuario y por lo tanto tampoco
afecta al proyecto.

No hay riesgo de problemas por patentes, ni se violan licencias.

Por todo ello el proyecto es legalmente viable.

2.5 Conclusiones

Dadas las razones expuestas en las secciones anteriores se considera que el proyecto es
viable, técnica, legal, y econdmicamente en los plazos especificados en la planificacion del
proyecto.

1 Ley de Servicios de la Sociedad de la Informacion ver http://www.lssi.es
2 Ley Organica de Proteccion de Datos ver https:/www.agpd.es

18

http://www.lssi.es/
https://www.agpd.es/

3 Analisis de requerimientos

"Un programador es la persona considerada experta en ser capaz de sacar, después
de innumerables tecleos, una serie infinita de respuestas incomprensibles calculadas
con precision micrométrica a partir de vagas asunciones basadas en discutibles
cifras tomadas de documentos inconcluyentes y llevados a cabo con instrumentos de
escasa precision, por personas de fiabilidad dudosa y cuestionable mentalidad con el
proposito declarado de molestar y confundir al desesperado e indefenso
departamento que tuvo la mala fortuna de pedir la informacion en primer lugar"

-- IEEE Grid newsmagazine

Una vez hemos concluido el andlisis de viabilidad técnica del proyecto, podemos
profundizar en los requerimientos del mismo extendiendo los objetivos marcados en el
apartado de introduccion.

A continuacion se detallan los tipos de usuarios que deberan interactuar con el sistema, los
requerimientos funcionales y los requerimientos no funcionales identificados.

3.1 Roles

"Desde el punto de vista de un programador, el usuario no es mas que un periférico
que teclea cuando se le envia una peticion de lectura"
-- P. Williams

La aplicacion web propuesta serd un punto de encuentro donde el administrador/gerente de
un museo real se registre como usuario. Cada usuario dispondrd de un o mas museos
virtuales, en los que celebrar una o mas exposiciones. A tal efecto cada usuario dispondra
de una cuenta de acceso.

Sin embargo para la visualizacion de dichas obras los visitantes de dichos museos no
requeriran de cuenta de acceso particular para visualizar las exposiciones.

Para la administracion de la web en general, se requiere de un rol de administrador.

A tal efecto se han identificado los siguientes roles de usuario y tareas que podran
interactuar con el sistema:

1. Cliente/Usuario - administrar sus museos, sus obras de arte, y sus exposiciones.
2. Administrador - gestion (administracion de usuarios, ...)

3. Visitante - visualizar exposiciones

19

3.2

Requerimientos funcionales

"En software, muy raramente partimos de requisitos con sentido. Incluso
teniéndolos, la tnica medida del éxito que importa es si nuestra solucion resuelve la
cambiante idea que el cliente tiene de lo que es su problema"

-- Jeff Atwood

A continuacidn se citan los requerimientos funcionales previstos. Notese que no es una
lista cerrada, pues se pretende seguir una metodologia de trabajo agil, la cual permite a
cada iteracion de la misma re-enfocar los objetivos pendientes, anadir nuevos o eliminar
antiguos.

Creacion de una aplicacion web multiusuario, con soporte para almacenamiento de
datos sobre base de datos.

Necesidad de mecanismos para mantener bibliotecas de obres de arte, incluye la
posibilidad de crear y eliminar bibliotecas, afiadir y quitar obras y mecanismos para
determinar la “orientacién” de las obras, es decir, la posicion en que una vez
colocadas en una superficie determinada, se tengan que orientar para dar la sensacion
de estar sentadas sobre dicha superficie. Para aclarar el concepto nada mejor un
ejemplo: para un cuadro que ird en una pared, se orientara horizontalmente, y nunca
verticalmente mientras que para una estatua que se coloque en el suelo se ha de
orientar verticalmente.

Necesidad de poder cargar una “sala de exposiciones virtual” sin ninguna obra. Poder
afiadir y quitar obras de arte tomadas de las bibliotecas (citadas en el punto anterior)
a la sala de exposiciones. Se debe poder seleccionar la posicion y orientacion de las
obras en dicha sala mediante interfaces tridimensionales. Y en tultima instancia,
soporte para guardar y eliminar salas ya creadas.

Necesidad de herramientas para la gestion de “widgets” html, entiéndase por widgets,
la posibilidad de exportar de alguin modo, las galerias creadas, para ser incrustadas en
paginas web externas como blogs. El widget debe permitir explorar las galerias
virtualmente, en un principio mediante una camara en primera persona.

Necesidad de alglin sistema para la gestion de usuarios. Se espera que se puedan
crear usuarios con diferentes permisos para administrar cada biblioteca. Si un usuario
quiere que “su” biblioteca sea de uso publico, o solamente de uso personal se ha de
proveer de los mecanismos necesarios para que asi sea.

20

3.3

Requerimientos no funcionales

"Es mas facil cambiar las especificaciones para que encajen con el software que
hacerlo al revés"
-- Alan Perlis

En cuanto a requerimientos no funcionales, una web en 3d implica gran variedad de
limitaciones; en la siguiente lista se describen estas limitaciones:

Extensibilidad, Calidad y Reusabilidad. La aplication programming interface-API
de ahora en adelante- O3D es una libreria de bajo nivel en muchos aspectos. Para
usarla es necesario crear algin tipo de extension de mayor nivel de abstraccion, ya
seo externa o creada internamente, que aumente su reusabilidad, puesto que es una
tecnologia en auge que probablemente sera usada en proyectos futuros, y disponer de
parte del trabajo hecho y probado en el futuro es un requerimiento deseable que
reducird costes y aumentara la productividad a largo plazo.

Aspectos legales y de licencias. Ceiirse en la medida de lo posible a herramientas y
librerias con licencias libres.

Eficiencia. La eficiencia serd importante, en una aplicacion 3d que depende del
hardware grafico de alto rendimiento ya es muy importante que el codigo sea
eficiente, pero en una aplicacion web 3d, el problema es aun mdas importante pues
aparecen varias restricciones mas, entre las mas importantes encontramos el ancho de
banda del cliente, el del servidor y la posibilidad del cliente de abrir multitud de
pestaiias en su explorador con multitud de aplicaciones web tratando de acceder
paralelamente al hardware gréafico. Todas estas restricciones se deben tener en
cuenta, tomando medidas tales como reducir el tamafio y resolucidon de las imagenes
tanto como sea necesario.

Plataforma y compatibilidad: Un objetivo deseable es maximizar la compatibilidad
con la maxima variedad de combinaciones de hardware grafico, sistema operativo y
explorador web.

Usabilidad: Este aspecto tiene especial importancia en este proyecto. La usabilidad
se entiende como la facilidad con que las personas pueden utilizar una herramienta
particular. En este caso se debe ofrecer una interfaz tridimensional a la que muchos
usuarios no estan acostumbrados. Asi pues es deseable buscar estructuras, ideas, y
disefios propios de herramientas que conozcan aplicables en este proyecto. A modo
de ejemplo paradigmatico, la aplicacion de modelado 3d Google SketchUp dispone
de una herramienta de medicion de dngulos con aspecto e icono de transportador que
facilita mucho su uso.

21

4 Fundamentos teodricos

"La diferencia entre la teoria y la practica es que, en teoria, no hay diferencia entre
la teoria y la practica"
- Richard Moore

Todo proyecto que incorpora 3d requiere de una serie de conocimientos bdsicos de
algebra, que incluyen vectores, matrices, cuaterniones, productos escalares, productos
vectoriales, y sus aplicaciones en los calculos necesarios para el renderizado 3d. Asi
mismo , los procesos fisicos que se tratan de simular en un entorno virtual, como por
ejemplo el comportamiento de la luz al incidir sobre diferentes formas provocando efectos
como la reflexion y la refraccion son también requeridos. Algunos de estos conocimientos
se detallan a continuacion con un enfoque orientado a su uso en el proyecto:

4.1 Algebray 3D

"El algebra es generosa: a menudo da mas de lo que se le pide."
--D'Alembert

Para representar una posiciéon o una direccion en un espacio tridimensional, se usan
vectores.

Se define un vector de n dimensiones como una tupla de n nimeros reales llamados
componentes del vector:

V= (C1,C2,++5Cn).

En un espacio tridimensional
pues, se usan vectores con 3
componentes, que representan el
desplazamiento a lo largo de los
ejes X, Y y Z respectivamente
para desplazamientos, o las
coordenadas de un punto en el
espacio (en la figura se muestra
un ejemplo):

v = (dud,,dy) " (

2264, 1hmm

v=(2264,1, 21436, 16833~
Y

/

1683,3mm

2143 6mm
Tradicionalmente, se usa el eje Z
para representar la profundidad

desde el punto de vista de la Figura 7: Vector en un espacio tridimensional
pantalla: para valores positivos

22

mas al fondo, valores negativos al frente de la pantalla; el eje X se usa para el
desplazamiento lateral, izquierda para valores negativos, derecha para positivos; por
ultimo el eje vertical se representa con el eje Y, valores positivos para arriba y valores
negativos para abajo.

Se define como médulo de un vector v la longitud del mismo; dados 2 puntos
A=(ay,ay,a,), B=(by,by,b,), la distancia que los separa se expresa como

V] =V [(bx-a,)* + (by-a,)*+ (b-a,)]

Varias operaciones se pueden aplicar sobre vectores, todas ellas necesarias en los célculos
basicos con vectores.

La suma de vectores, permite componer vectores y se define como:
V=vI4+v2=(v1, V1, V1) H(v2:,v2,,v2,)=(v1,+v2,, v V2, v1,+V2,)

La multiplicacion de un vector por un real, permite obtener vectores con mismo origen,
sentido y direccion pero diferente mddulo; se obtiene de la expresion:

v'=vFk=(vi*k,v, ¥k, v, *k)

Se conoce como la normalizacion de un vector, el hecho de multiplicar un vector por la
inversa de su modulo para obtener un nuevo vector de modulo unitario. Esta operacion se
expresa como : u=v* (1/|v|)

Cobra especial importancia en computacidon pues como veremos a continuacion permite
reducir notablemente calculos mas complejos.

El producto escalar de 2 vectores se define como
a'b= |al*[bl*cos(a) =(ax*b)+(a,*b,)+(a,*b,)

donde a representa el menor angulo que forman sendos vectores. Tomando el hilo del
proyecto, para colocar un cuadro en una pared vamos a necesitar un vector indicando la
orientacion de la superficie de dicha pared, respecto de una direccidn arbitraria. Aislando a
de esta formula se obtiene el angulo que forman. Repetiremos el calculo sobre la
orientacion del cuadro, y obtendremos los angulos que forman respecto de la misma
direccion tomada arbitrariamente anteriormente. Restard pues solamente restar dichos
angulos y rotar el cuadro segln el valor obtenido para alinear el cuadro con la pared. Este
calculo implica obtener el modulo de 2 vectores, lo cual a su vez implica operaciones con
raices cuadradas y exponentes; todo ello es muy costoso computacionalmente, y
recordemos que es un calculo que se repetira miles de veces por segundo. Pero retomando
la idea de normalizar vectores, si antes de realizar ninglin célculo tomamos los vectores y
los normalizamos, obtenemos 2 vectores nuevos cuya orientacion se mantiene, por lo tanto
forman el mismo angulo, pero sus modulos son unitarios; si observamos la formula
descubriremos que a=arccos([(ax*bx)+(a,*by)+(a,*b,)]/|a]*|b|) y puesto que |a|*|b| = 1*1=1
el célculo se reduce a

23

a = arccos((ax*by)+(a,*by)+(a,*b,))

€=(0,2053,1394)
El ultimo obstaculo pues es T
determinar alrededor de que eje
debemos rotar el cuadro; la
respuesta la encontramos en el
producto vectorial de 2 vectores,
dados 2 vectores vl y v2, el
producto vectorial de vl y v2 es
un nuevo vector ortogonal a vl y
v2, es decir perpendicular al plano
que forman vl y v2 y se define
como:

B=(1090, 0,1395)

vi=wlty2

A'=(1990, 2082, O;

360°-g

Figura 8: Producto vectorial

v'=vl x v2 = (uy*v,-u*vy, ufvie-udtv,, uctvy-uy *vy)

Una condicidn necesaria para su calculo es que vl y v2 deben formar un plano, es decir
deben, obligatoriamente, ser linealmente independientes: no pueden ser paralelos. Sin
embargo eso no es un problema para nuestro objetivo pues si son linealmente dependientes
significa que la orientacion de nuestro cuadro ya es la misma que la de la pared, con la
salvedad de que aun no sabemos si el cuadro esta puesto con el lienzo encarado hacia la
pared o al revés que es lo que pretendemos, solamente debemos mirar si un vector es el
inverso del otro, si lo son debemos rotar la figura 180 grados.

Los célculos expuestos anteriormente son herramientas muy potentes y sorprendentemente
sencillas para obtener angulos, posiciones, intersecciones o proyecciones. Pero no son la
solucion para realizar transformaciones tales como traslaciones, rotaciones o escalas sobre
figuras complejas. De esto ultimo se encargan las matrices.

Una matriz se define como un conjunto de nimeros dispuestos en filas y columnas y
definimos una matriz de orden m,n a una matriz con m filas y n columnas.

En general una transformacioén se aplica a un vector dado, conteniendo las coordenadas de
un punto en el espacio, pre-multiplicando este vector por la matriz de transformacion
requerida en cada caso. Estas matrices pueden ser multiplicadas a su vez por otras, para
componer transformaciones mas complejas. Las transformaciones basicas son:

Matriz de traslacion: permite trasladar figuras, las cuales se ven

T O 0 ¢, desplazadas tx unidades de distancia a lo largo del eje x, ty a lo
_ largo del eje y y tz a lo largo del eje z. (ver
0 1 0 ty figura 9).
o0 1 t, : . (S 0 0 0)
& Matriz de escala: permite escalar, es decir,
0 0 0 cambiar el tamafio de una figura alejando | 0 Sy 0 0

. ' todos sus vértices del origen de coordenadas 0 0 S 0
Figura 9: Traslacion — en una proporcion indicada por los =
pardmetros S,,S,,S, respectivamente (ver | 0 0 0 UJ

figura 10). Figura 10: Escala

24

Matrices de rotacion X, Yy Z :

Rz L0 0 0 permiten rotar una figura e°
& 0 cos@ -sin® 0 alrededor de los ejes X, Yy Z (ver
x 1
0 sind cos® 0 figura 11).

Rx

—

B . Matriz de rotaciones para ejes

Ry arbitrarios: permiten rotar figuras
a partir de un eje arbitrario

3 = cosf) —sind 0 0 —
ane G she § _ u=(u,,Uy,u,). En el proyecto este
0 1 O 0 sind cos@@ 0 0 . .
Ry=| Rar 7 5 o tipo de matrices se usan para
—sin@ 0 cosf 0 s b @ 8 orientar un cuadro respecto de una
¢ & o 1 pared (ver figura 12).

Figura 11: Rotacion alrededor de los ejes XY y Z

(1 —cosBuzuy +u.sinf 1+ (1 —cos@)(uZ—1) (11— cos@)uyu, —u,sing 0

lr 1+(1—cos@)(u:—1) (1—cosf)uyu, —u,sinf (1—cosb)u,u, + u,siné D“
\-(l — cos@)uzu, — uysin® (1 —cos@uyu, + uysinf 14 (1 —cos)(uZ—1) 0
1

0 0 0

Figura 12: Rotacion alrededor de un eje arbitrario

25

5 Tecnologias y herramientas usadas

“El verdadero progreso es el que pone la tecnologia al alcance de todos.”

— Henry Ford

Este apartado contiene una relacién de herramientas de diferente indole que han sido
usadas en algin momento durante la elaboracion del proyecto. Para cada una de ellas, hay
una captura de pantalla, una descripcidon y una valoracion personal.

tarea

nombre

Descripcion / valoracion

3D

animacion

DAZ
Studio

herramienta orientada a la

creacion y publicacion de|:
contenidos del|>
animaciones de uso muy|e

sencillo, con soporte para
animacion facial,
composicion de
animaciones, importar,
exportar, y morphs. Entre
otras opciones

modelado

SketchUp

Herramienta disefiada | .

para facilitar el modelado.
No soporta animaciones,
y las herramientas para
tratar texturas son muy
pobres. Capaz de acceder
a librerias de modelos en

Internet. Curva de”

aprendizaje muy pequeia.

== #P8 kL ON 400 07
D9 VMR ETLICE BIN &

visualizado

Google
03D +
Firefox

API para graficos 3d web.

26

shaders

Render
Monkey

Framework orientado al|;
desarrollo especifico de
shaders creado por
AMD/ATI muy completo
e intuitivo. Soporta
HLSL, Cg y GLSL.

web

Servidor

http

Apache

Servidor web de uso muy | -
extendido,
rendimiento y fiabilidad.

Lenguaje
scripts en
servidor

PHP

Lenguaje de
programacion web para
los scripts en el servidor.

Bases de

datos

MySql

Base de datos eficiente y
funcional.

IDE

Desarrollo

Netbeans

Entorno de
integrado, con soporte
para multiples lenguajes y
plataformas. En constante
evolucion. Dispone de
plugins para aumentar su
funcionalidad.

Disefio

Netbeans +
UML

plugin

Plugin integrado con
Netbeans para disefio
UML para lenguaje java.

Tests

Netbeans +
phpUnit +
Selenium

tests
cn
cn

Herramienta para
funcionales basados
phpUnit integrado
Netbeans.

Planificacion

Planner

Herramienta
planificaciéon con soporte
para diagramas de Gantt
basicos.

27

ofrece| =

desarrollo |[;

de

6 Fases de diseno, implementacién y tests

"Programar sin una arquitectura o disefio en mente es como explorar una gruta s6lo
con una linterna: no sabes donde estas, donde has estado ni hacia donde vas"
-- Danny Thorpe

Para el desarrollo de la aplicacion se ha optado por seguir una metodologia basada en el
método agil. Este, a grandes rasgos, consiste en seleccionar un requerimiento funcional de
la lista , disefiar poco y rapido para cubrir las necesidades del mismo, e implementar
codigo, a poder ser con calidad de producto acabado. Tras esto seleccionar un nuevo
requerimiento y repetir el proceso. Entre ciclo y ciclo los requerimientos pueden cambiar.
Y los ciclos deben ser cortos. Se prefiere la programacion en pareja, o cuando menos el
disefio en pareja o grupo.

Asi pues, las fases de disefio e implementacion del proyecto se han alternado durante
varios ciclos para cubrir los requerimientos expuestos en el apartado con el andlisis de
requerimientos. Estos requerimientos durante el desarrollo han sufrido una serie de
cambios comentados a continuacion:

La creacion de una web, multiusuario se mantiene. Las herramientas de administracion de
bibliotecas, obras de arte, salas de exposiciones y exposiciones también se mantienen.

La creacion de una herramienta de gestion de widgets, finalmente, se ha descartado; los
widgets, pasan a ser simplemente aplicaciones web enmarcadas en iframes html. Se ha
creado no obstante un widget a modo de demostracion que permite realizar una visita
virtual a un museo en 3ra persona.

La gestion de usuarios se ha implementado parcialmente para evitar alargar el proyecto, es
posible afiadir nuevos usuarios pero no gestionar las cuentas/permisos existentes.

En total, se ha encarado el proyecto en 3 fases, una primera fase para crear la web y toda la
infraestructura que toda web requiere; una segunda fase para implementar las herramientas
3d, y una tercera fase para el widget con la visita virtual. Este apartado ha sido organizado
del mismo modo. A continuacién se muestra el diagrama de casos de uso previsto
inicialmente. Posteriormente se muestran los diagramas de secuencia y/o clases disenados
al inicio de cada fase seguidos de una descripcion textual de los mismo y de un resumen
de los problemas que se encontraron durante la implementacion junto con la solucion
aportada para solventarlos en cada caso.

Notese que en el método agil se pretende un uso minimo de diagramas UML- Unified
Modelling Language-, con una funcién extremadamente orientada a la productividad: no
se desean diagramas perfectos, integrados con el codigo fuente, se desea tener una idea
general lo antes posible del disefio. Normalmente con un diagrama de clases y uno de
secuencia escritos en paralelo suele considerarse suficiente. Todo esto implica que no
necesariamente los nombres de las clases en los diagramas se acaban correspondiendo con
los nombres en el codigo fuente final. Y no solamente eso, sino que , incluso, no se
considera una mala praxis el hacer los disefios en papel o en una pizarra sin “pasarlos a

28

limpio”. En este caso se ha optado por modelar los disefios en papel y posteriormente
“pasarlos a limpio” por motivos de legibilidad en la documentacion, no obstante, los
nombres de las clases difieren de los finales.

6.1 Diagrama de Casos de Uso

"Hay dos maneras de disefiar software: una es hacerlo tan simple que sea obvia su
falta de deficiencias, y la otra es hacerlo tan complejo que no haya deficiencias
obvias"

-- C.A.R. Hoare

museo-3d

invi imi =<include==
administrar exposicion

administrarobrasdearte J — — — T T T 7=

usuario \

-
==includes== !
{
/
!

administrar salas de exposicion

f
§ ==include==

visitante /

administrar usuarios

administrador

Figura 13: Diagrama de casos de uso

Como puede observarse en la figura 13, la aplicacion prevee tres tipos de usuario, un
usuario de administracion global, uno para los propietarios de las galerias los cuales
deberan acceder al sistema mediante /ogin, y por ltimo los visitantes, quienes solamente
podran realizar visitas virtuales a los museos.

El sistema consiste en una aplicaciéon web, el disefio de la cual, se analiza en la fase 1,
descrita a continuacion.

29

6.2 Fase1

"El primer 90% del cddigo corresponde al primer 90% del tiempo de desarrollo. El
10% restante corresponde al otro 90% del desarrollo"
-- Tom Cargill

Para el disefio de la web que ha de sostener el sistema se ha optado por un patrén Model-
View-Controller -de ahora en adelante MVC- como eje principal de disefo. El patrén
MVC consiste en separar en tres capas el cédigo fuente: la vista, que encapsula el modo en
que se muestran los datos; el modelo que encapsula los datos y la capa con la logica de la
aplicacion; y el controlador que es el encargado de organizar el flujo de ejecucion de la
aplicacion.

Este patron se ha ampliado usando los patrones Front Controller y Two Step View. Front
Controller propone poner un unico Controlador principal sirviendo todas las peticiones y
enrutandolas al controlador correspondiente en cada caso.

Two Step View prefiere generar la vista en 2 fases una para preparar los datos y una para
insertarlos en una plantilla.

En este entorno, cuando un cliente ~
realiza una peticiéon un controlador
la toma (1), instancia un objeto de

la capa del modelo (2), este a su vez 5
prepara 'y procesa los datos

necesarios tomandolos, cuando sea Controlador —p Vista
necesario, de la base de datos (3-4), igz:g: S V'E'ﬂuf;i?i':;ﬁn ,

y una vez estos datos estan Accién 3 Vista Accién 3
preparados, el controlador toma el (

mando nuevamente (5) y prepara

una instancia de un objeto de la Modelo

capa vista (6), normalmente una Q 5 o

plantilla , la rellena con datos y esta ' '

plantilla es, en ultima instancia
devuelta por el controlador al L s

cliente en forma de pagina web(7), Figura 14: Arquitectura Model-View-Controller
como puede observarse en la figura (MVC)

14.

Para implementar este disefio se han creado tres clases basicas MVCController, MVCView
y MVCModel que encapsular el codigo genérico comun a un controlador, una vista y un
modelo respectivamente. Se han creado varias clases que extienden estas para encapsular
funcionalidades mas especificas. Asi, por ejemplo, Tenemos una clase llamada
GaleriaModel que extiende la clase MVCModel y contiene datos relacionados con una
galeria de arte virtual; o tenemos 2 clases llamadas LoginController y IndexController que
se encargan de las pantallas de login e indice respectivamente.

30

Para implementar el patron Front Controller en el mismo directorio en que se encuentra el
indice se ha preparado un archivo .htacces encargado de redirigir toda peticion del cliente
al archivo index.php que a su vez crea una instancia de un objeto de tipo FrontController
encargado de enrutar las peticiones. Este ultimo, implementa un patrén Factory para crear
instancias de controladores segun convenga.

Para la vista se barajo la opcion de incluir algin motor de plantillas html conocido como
smarty, pero finalmente se opt6d por implementar un soporte basado en lenguaje php.

Para el acceso a base de datos se ha previsto un disefio basado en el patron Data Acces
Object -DAO de ahora en adelante- el cual consiste en separar la capa con la logica de la
aplicacion (el modelo) del acceso a base de datos, de forma que desde el punto de vista del
modelo, el acceso a los datos es una API de la que no ha de conocer su implementacion
interna. Esto permite a largo plazo sustituir la base de datos por una diferente.

Para obtener conexiones a base de datos se ha optado por disponer de una clase que
gestione el acceso a base de datos que se ha llamado ConnectionFactory. Esta clase
implementa los patrones Factory y Singleton, los cuales permiten abstraer la creacion de
instancias de una determinada clase y asegurar la existencia de una Unica instancia de una
determinada clase en un momento dado respectivamente. ConnectionFactory, contiene una
unica conexidén a base de datos que sirve a través de su método getConnection(). El
objetivo de este disefio es el de abstraer la obtencion de la conexion. Esto permite que si
mas adelante, el nimero de usuarios crece, y por extension, el numero de conexiones
crece, se puede muy facilmente aplicar un patron diferente como podrd ser el patron
Thread Pool.

La clase DAO ofrece una interfaz a la que realizar consultas sql mediante sus métodos
retrieve 0 update, que retornan objetos de tipo DataAccesResult.

En la figura 15 se muestra un diagrama de clases con un resumen de las clases que
intervienen en el acceso a datos.

=l ConnectionFactory <<interface=>
Atributes ta Isingleton
- db: DataBaseConnection | ----oo-oo- 1 enais
Opermtions Cpemtions
+ getConnection() : DataAcces + getinstance() : void
la conexiodn a base de datos la
crea connectionFactory y luego es
pasada como parametro a
Datafccess en su constructor
El patron dao permite
— separa las consultas sql
ElDataAccess = DAO de Ia capa légica (modelo)
Attributes Attibutes =] ConcreteModel
- db : DataBaseCaonnection - da:DataAccess T
I
Cpamhians Cperahianz - dao : ConcreteDAO
+fetchi sgl : string) @ void + retrieve{ sgl : string) : DataAccessResult P
+ isError{) : bool + update(sql ; string) : hool
+ getlastid{) int T
|
=l DataAccessResult [= ConcreteDAO
Attibutes Attributes
-da:Datafccess T
Cperations + specificOperation{) : void
+ getRow() : array
+ rowCount() : vaid
+isError() : bool

Figura 15: Diagrama de clases para el patron Data Access Object (DAO)

31

En cuanto al resto de funcionalidades basicas para la web , podemos observar la creacion
de una clase de nombre SessionManager encargada de almacenar datos de sesién que
permitiria a largo plazo albergar variables relacionadas con la sesion de un usuario, el
lenguaje en que prefiere ver la interfaz de la web, etc, que en la version presentada, no es
usada. Implementa un patron Singleton.

Otra clase menor, que también implementa Singleton, es la clase de configuracion,
encargada de almacenar valores de configuracién como el usuario y /login de la base de
datos, los paths a las diferentes carpetas, etc.

La figura 16 muestra un diagrama de clases que resume el conjunto de clases implicadas
en la fase uno del proyecto, dando una vision de conjunto del mismo.

32

[= Carfig teinterfacess
Az {4 ISingleton
- dlata : mixed Feeeecamn . Alrjyiag
i - instange : null I}‘
+ getar] name : string § : mixed Opsvilits by
+getihstance():vai|
[~ Datafcces s b i v
Operalions 1 Y
+feteh(sql : string) : DataAccessResul i "\
+isEmon) bool N@es El connectionFactory |
+getlastla() :int Fos Al 4
T E“-—u - b : Datafcees .| - session_jd : string
/ Hlnao Dan Pattem Operalins P
| + et Connection() : Datafcees
! Alribuis
/ \ - a : Datareces T e _@ + et \ialue(name : string) : mixed
|'| Dpavalicns + et Session() : mixed
| +retrieve(s : string) : void [=—__ Eluser0A0 +intt{) : vaid
|'| +update(sql : string) : vaid H'*—-,_H Oparalions - save Session|) : void
|

=] DataAccessResult
Allribuas

- i3 : DataAcoess
Opwalions

+petRow() :amay

+rowCount() : void

+initTransaction{) : woid
+ mollbackTransaction) : vait
+commitTransaetion{) : voic

i

[SessionManager

Allribuas

+bascarPorlD{id : int) : DataAzcessResult
+buscarPorlogin{ ogin : string } : DataAccessResul
+ guardar datos.. : mixed) : void

COlparaliong
+ save'alue] name : stringt, value : mixedt) : ve

[l GaleriaDAD

aliing
+ buscarPorl O id : int) : DataAccess Result

+isEmor{) : boal + buscarPor| OUsuariof id : int) : DataAccess Resul
+ guardar datos : mixed) : vaid
+ actualizar datos : mixed) : vaid
+ eliminar] id : int) : vaid
[Zl ExposicionDAD \
Allribus \
Opealins
+buscarPorlD(id : int) : DataAcces Resutt I".
+ buscarPorl D Galeria(id : int) : DatafceesResut \
+ guardar datos ; mixed) ; void |
, ®
= ModeloDAO || GaleriaModel [l UserModel
Alliluges Allribudas . Allribuas
Opeats - nombre : string - nombre : string
+buscarPorlD{id : int) : DataAcces Result - Estenario : sting - lngin : strng
+buscarPorl D Galerial id : int) : Dataﬁccessﬁesut\ -id int [E— b ~ email : string
+ guardar] datos : mixed["]) : void \ - usuario_d int - lngin : strng
- texturas : string - galerias : Galeriahdadel["]
\“x& - +Exposiicones : Exposicion DAQ['] = MVCModel) I
\ - Modelos : IadeloDAD['] f){, Alrbudes +login{) void
Opatins Dipvationg +guardar] j: void
+buscarPorld{) : veid
+ eliminar]) ; void
+ guardar) : veid ELoginCantroller
+ actualizar]) : vaid Opavalions
| = showLoginForm{) : vait
+createlewUser|) : voic Emveview
+validatelser() vaid W Al
Pattem - data : mixed[]
FFrontController - template : string
Opvalions = Opvabions
+ contrallerF actary(name : string) : voi — MyCCortroller +tisplay() string
! Allribudas + stripTags Contert{ } : voi
/ Tt - action : string
- params ; string["] ¥
E IndexCortroller - view : MVC\iew ~
Qualens [Oparabions
+index{) : vaid + dataFormUnserialize() : vait Twa step view pattem & Composite View
+ routeRequest() : vaid Pattem

Figura 16: Diagrama de clases Fase 1

33

La web, pues, muestra al acceder a ella, un formulario de acceso, para ello el index cede el
control al FrontController, éste enruta la peticion al LoginController que prepara una vista
con una plantilla con un formulario de login y esta es devuelta al cliente por el controlador.
Todo el proceso se puede ver reflejado en el diagrama de secuencia de la figura 17.

| suari ” . FantCDntrDller|
| |

L I

- e

SthLaginFDrm___ I

I
I
I
%-I : LoglnCDntrnller| |
I
I
|

set(template,lDginFDrml

display

|
I
e 0 | I

Figura 17: Diagrama de secuencia, mostrar el formulario de login

Cuando el usuario introduce su login y password una peticiéon de login es enviada al
servidor. El .htacces la redirige al index, este se la pasa al FrontController que a su vez la
enruta al LoginController. EI LoginController crea un objeto UserModel con los datos
provistos; El objeto UserModel se conecta a la base de datos con una conexion creada por
el ConnectionFactory. A través de la implementacion del patron DAO se obtiene un objeto
de tipo DataAccesResult que contiene La informacion del usuario. Si el login es correcto
el LoginController pasa el testigo al IndexControler quien se encarga de preparar una vista
con la pantalla principal, que es finalmente devuelta al cliente. Este proceso se ve reflejado
en el diagrama de secuencia de la figura 18.

Usuari cFromtController
[assert I
| | |
ShowLoginForm | | |
.. | |
L | |
L Logln (user,password) I :
: LoglnController |
|
l |
walidate User{user,password) | |
|
; |
new usel(usqlerDaD) @ |
Login I |
| J-—l |
e ol e |
7set(templ$te.lndex) | |
display | I |
T T
DR ISR S
T T g L.
R e e e e B B L o I I I I
|

T 1 |

Figura 18: Diagrama de secuencia, login correcto

34

6.3 Fase2

. "Antes de que un software sea reutilizable deberia ser utilizable"
-- Ralph Johnson

Para la fase 2, se pretendia implementar el gestor 3d. Este estaria basado en el motor
grafico Google O3D. Pero esta API no esconde el hecho de ser de muy bajo nivel. Para
realizar tareas abstractas se requieren muchas lineas de codigo repetitivo. Asi pues era
obligatorio crear un objeto que encapsulara dicho codigo y permitiera trabajar a mayor
nivel de abstraccion.

El disefio requiere de un paradigma orientado a objeto, que permita estructurar el codigo
de forma reusable. El lenguaje de programacion a tal efecto es Javascript, luego la primera
decision a tomar es que sistema de herencia usar; JavaScript es un lenguaje muy libre y no
tiene una sintaxis predefinida para la herencia, no obstante se puede simular de diversos
modos: Se puede usar una API externa como Moo Tools, implementar uno nuevo basado
en el operador new, o se puede hacer uso del modelo basado en prototipos; €ste tltimo es
el modelo escogido en el proyecto.

En el paradigma prototipado todos los objetos son funciones y todas las funciones son
objetos. Toda funcion tiene un prototipo que se puede entender como un objeto indicando
su morfologia. Toda funcion es una variable y como tal puede ser modificada. El prototipo
de la funcidon puede por tanto ser modificado o sustituido completamente por el de otra,
permitiendo que propiedades definidas (anterior o posteriormente) en la segunda sean
accesibles inmediatamente en la primera: esta es la base en la que se sustenta el paradigma
prototipado.

En el proyecto se ha creado un objeto llamado O3DApp del que hereda toda aplicacion 3d.
En la fase 2 el gestor hereda de O3DApp, y en la fase 3 el visor para visitas también
deberd heredar de O3DApp. Asi pues tanto GestorMuseO3D como VisorMuseO3D seran
funciones vacias a las cuales les hemos sustituido su prototipo por una nueva instancia de
O3DApp creada a través del operador new. Las propiedades de las mismas se afiaden al
prototipo para que todas sus instancias automdaticamente puedan acceder a las mismas.
Desde las herramientas que dispondrdn, hasta la informacién de toda la geometria a
renderizar pasando por referencias a objetos de la pagina como paneles, botones, etiquetas,
etc. quedan incluidos.

Las diferentes herramientas se desea que sean reutilizables y requieren de un disefo
similar, luego se deben mover a clases separadas. A tal efecto se ha creado un objeto
llamado DinamicObject, y un objeto Init que son céntricos en el disefio de la aplicacion.
DinamicObject serd todo objeto no estatico, desde una cdmara que debe poder moverse
por un entorno tridimensional hasta un botéon presentado como un ente dentro del area
tridimensional y que deba responder a eventos de raton pasando por un actor capaz de
moverse segun una animacion predeterminada. Todo DinamicObject dispondrd de una
serie de parametros de configuracion diferentes en cada caso. Para volver el cddigo mas
consistente se deseaba reducir el nimero de pardmetros a dos en todos los casos, uno seria
una referencia a la aplicacion que va a usar el objeto, y el otro seria un objeto de tipo Init

35

encapsulando todos los parametros de configuracion para los demas objetos. Luego todo
objeto debera disponer de un método de inicializacién que arbitrariamente se ha decidido
que se llame startupNombredelObjeto(template:O3DApp,initObject:Init).

Los DinamicObject, en muchos casos, deben responder a eventos. Para poder registrar un
método como callback para un determinado evento es necesaria una técnica muy comun
en JavaScript llamada closure.

Veamos un ejemplo:

var quo = function (status)
{ eturn En el ejemplo quo es un objeto con un
; atributo privado status y un método
get status: function () publico get status que devuelve status.

{ Es importante comprender que
return status; .
) get status tiene acceso a status

}i directamente por el mero hecho de
bi estar declarada dentro de quo. Cuando
var myQuo = quo ("amazed") ; quo llega a su return y es eliminada,

get status continta gozando de acceso
a status, y no a una copia de status
como cabe suponer, sino directamente
a status. Al hecho de devolver un
método con acceso a los atributos de un objeto determinado incluso cuando este se ha
destruido se le llama closure.

Texto 1: Ejemplo de closure

Para definir callbacks, es decir métodos a los que invocar en respuesta a determinados
eventos el uso de closures es ideal. Se puede declarar todos los eventos de raton
-onMoseDown, onMouseUp, onMouseWheel-, los de teclado -onClick-, los de
renderizado -onRender- de esta forma. Y registrar todos estos métodos como callbacks
tanto del sistema de gestion de eventos de Google O3D como del sistema de gestion de
eventos del explorador al inicio de la aplicacion.

Para el proyecto se ha llevado la idea un paso mas alla creando una funcion para crear
closures a peticion llamada makeClosure que se usa siempre que es necesario un closure.
Esta funcion permite declarar callbacks para los eventos directamente en el prototipo en
vez de necesitar que sea fuera del mismo como exige la sintaxis usada en el ejemplo del
texto 1. Esto permite mantener la reusabilidad y la consistencia con un entorno orientado a
objeto con soporte de herencia basada en prototipos.

La figura 19 muestra un diagrama de clases que resume el disefio, (del cual se ha excluido
O3DApp, por su tamafio principalmente, y por aportar luz extra al disefio).

36

[BitmapMaterial

Alirbutas
- material - kit
« sampier < ad3ampler
« e s
« bt - O3l
« et - nckion

Cpoatons
+ st bl - O3 Ot i i

+ e Tenchure e Temshure - e Teochurs | - v

n.—'—'_'_'-'_'_'_'_'_'-'-'_'_'_

_IHUDBuiton

Alifbuios

"“—-.___‘__‘__‘__‘w

- onChickCalbcs - ncion
« D e - Bk il
~ b Trartsdrm : O Transdorn

« prt - i
ey
- e - QPlane
Dporaifons
+ shartuph U DBuson] tempiatie: Otkdbg, ittt ot) vard

+ eribhonse | e - miusaEvent | - vad

-t e
it HUD (]

+] | vaed

+ quadrExscin] | vid
s o | vd
4 darRmaaress] | vaid

+ Repeiemress) | v
+ erblons S e e v
+ e | -vid

+ s TrstrmePonel| | v

+ TojeTrrebrmiialiig | vid

+ T LFaParan Ot) vid
+ SelphisbaiisPan|) id
Sarbylone |-

Cparatans
+ starfUpPoiee T orngian - Ol it it - vl
+ ooy, e mseEeet | vl
+ ool vt - monsaBvet |- veid
+ wabec] pick - mimed | - e

[l paintToal [SeaToal
Atithatas Althulas
- bkl - i « bk - e
» sechordiia - minad « It - minad
- moselefliown - bod » el ik
« Bt - Bekmagh il « rcusieflawn - badk
« Il - ird

Cporilons
+ siartypScaeToo lampiaa: OddApy, inCkject: nd | vad
+ erionsallonwn| et mousaBiven | - voied
+ eriousslp evest : mouseEiet) vaid
+ oo oussefVived, e - moussavert | - void
+ salec okl - i | - v

E BitesioMusoo’d
Aithules

~ manTrartskrm - addTransdam
« Urvernee] - oM Travedeern
« modlTrarsorms - oifTransirm|'|
- ks - DomElament
- mattriisPin : Do Blanent
» ik - e
- sebvcdTransdernh - o Traelormn
« sl : ANBR i

e
__‘_"‘——-_.__;___‘_‘—‘__ - e Okl
s | Bodl

| TargetCamara

Aittbutes
-y Bl
- manszee ilewm - ol
g fe]
ettt i
- menszabfidelienn - bl
» e - i

ot | v
4u‘Mmd)m1’qem:mmEmp:m
4 e v - Rt | vl

Dpocaiions
+ svbTergeiCamess gt 00, bidOkject 1t)i

o Danicly

Albutes

N

Cporations Cparations
+ srtgvennicOjec. | :vad + etV | imel
mmnmw;:ﬁd\

« Urvirmesd i

+ shartupblonve ook femplate - O, imd0lject: bt) vl
+ orblonseDenwn) vt monsaBvest | - void

Cparalons

Figura 19: Diagrama de clases, Fase 2

I EresaToal

« ekl - e
» sidcflirn - mined
» Menseefown : bodl

Cporatons
+ spEramaTond ke O, bt v
+ cblozaDion et Bt - v
+erbhouselp evert: mouseEes} - veid

+ sl kb o v

+ st pErarse ol emplate - O, ivt0peact: b) - v
+ orousallown) event: ousaEvert | < vad
+ oribouselpl evet - mouseEvet | vaid
+ o usebcrve, et - monssavet | < v
+ et ekt - mimed | - vaid

37

Una vez se ha tenido un disefio general en mente la dificultad de su implementacion, se
enmarca en solventar las limitaciones técnicas de la tecnologia a disposicion y en buscar
ideas que mejoren la usabilidad de la aplicacion.

Google O3D es la tecnologia principal de la que depende el proyecto. Veamos en que
consiste, sus limitaciones, qué uso se hace de sus posibilidades en el proyecto y que
opciones se han dejado para hipotéticas ampliaciones.

Google O3D es un plugin para el explorador que permite renderizar escenarios
tridimensionales en un explorador web. Esta implementado mayormente en C++ y se
encarga de exponer a JavaScript una API que permite hacer uso de las dos librerias de
aceleracion grafica por hardware por excelencia: Microsoft Direct3D y OpenGL. La figura
20 muestra la arquitectura de Google O3D, se muestra en azul la aplicacion cliente (El
gestor en el caso de este proyecto), en verde el plugin en si mismo, en lila las librerias de
aceleracion y en amarillo el hardware gréafico del cliente .

03D run-time software stack

i JavaScript
e

OpenGL Direct3D

Figura 20: Arquitectura Plugin O3D

Historicamente el hardware grafico disponia de un procesador de vértices capaz de
realizar una determinada serie de operaciones bdsicas sobre un conjunto de datos
(vértices) que se enviaban a la tarjeta grafica constantemente. Esto implicaba usar los

38

llamados fixed function pipelines, que no eran mas que conjuntos de funcionalidades que
venian predefinidas en las librerias graficas como OpenGL o Direct3D. El hecho de usar
estas funciones fijas predefinidas daba muy poco margen a la creatividad: la tarjeta grafica
se encargaba de las transformaciones, de la proyeccion, del clipping (eliminar figuras que
no entraban dentro del cono de proyeccion) y por ultimo del rasterizado (transformar los
poligonos en pideles) . La unica tarea del programador era pues , preparar los vértices y
especificar que operaciones queria usar de entre las disponibles.

Pero con la llegada del hardware grafico programable llegd6 una revoluciéon: los
programmable pipelines. Los procesadores graficos , permitirian de ese momento en
adelante escribir pequefios programas que la tarjeta grafica interpretaria y ejecutaria en
cada una de las fases del renderizado , permitiendo asi una mayor libertad para el
programador.

Lo primero en aparecer fueron los llamados vertex shaders, que permitian hacer
transformaciones en las coordenadas de los vértices en la tarjeta grafica, sus aplicaciones
variaban desde animaciones (skinning) hasta automatizar el comportamiento de fluidos
como superficies de agua “ondulante” o banderas que se mueven al son del viento.

La verdadera revolucion tardd en aparecer un poco mas. Fueron los fragment shaders
también llamados pixel shaders, que permitian aplicar efectos y variar las propiedades de
los pixeles. Permitiendo efectos aplicables a toda la pantalla como mascaras de color sepia,
deteccion de contornos, efectos de iluminacion , bump mapping, normal mapping, cell
shading y un largo etcétera.

La tercera y ultima revolucion son los geometry shaders, los cuales permiten generar
geometria nueva en tiempo real, permitiendo efectos variados, por ejemplo a partir de una
textura representando unos escalones y un unico poligono para toda una escalera, generar
en tiempo real toda la geometria necesaria con todos los escalones.

Los geometry shaders se aplican inmediatamente después de los vertex shaders. Tras estos
se aplican las labores genéricas de renderizado hasta el rasterizado, tras este se aplican los
Fragment shaders generando la imagen final.

En sus inicios, los shaders se escribian directamente en ensamblador (lenguaje de muy
bajo nivel). Pero temprano aparecieron los primeros lenguajes de programacion de
shaders. Con el tiempo los lenguajes que se han vuelto estandar de facto para escribir
shaders son HLSL, GLSLy Cg.

HLSL es el lenguaje para shaders de Direct3D, creado por Microsoft. Goza de soporte
perfecto por todo el hardware grafico y su unica flaqueza es que solamente puede ser
usado bajo los sistemas operativos de Microsoft: Windows.

El segundo es el lenguaje descrito por la especificacion de OpenGL, dispone de diversas
implementaciones y el soporte de hardware es dispar. En general Nvidia suele dar buen
soporte, pero el resto de fabricantes priorizan HLSL claramente.

Cg, es un lenguaje creado por Nvidia y solamente esta soportado por su hardware.

Veamos un ejemplo de shader escrito en HLSL. Consiste en una figura a la que se le

39

aplican los reflejos de luz que provienen de un entorno simulado con una textura cubica
aplicada a una semiesfera que envuelve la figura a la que se aplica el efecto con los
reflejos. En este caso el vertex shader no ha de realizar ninguna tarea salvo pasar al
fragment shader los datos que este necesitara.

Veamos el codigo del vertex shader en cuestion:

float4x4 matViewProjection;

float4 vViewPosition;

struct VS OUTPUT ({
float4 Pos:POSITION;
float3 Normal:TEXCOORDO;
float3 View:TEXCOORDI1;

}i

VS OUTPUT vs main(float4 inPos:POSITION, float3 inNormal:NORMAL) {
VS_OUTPUT Out;
Out.Pos=mul (inPos,matViewProjection) ;
Out.Normal=normalize (inNormal) ;
Out.View=normalize (vViewPosition-inPos) ;
return (Out) ;

}
Texto 2: Ejemplo de vertex shader HLSL

Veamos ahora el codigo del fragment shader:

samplerCUBE Environment;
float4 ps main(float3 inNormal:TEXCOORDO, float3 inView:TEXCOORD1) {
inNormal=normalize (inNormal) ;
inView=normalize (inView) ;
float3 refVect=reflect (-inView, inNormal) ;
floatd4 color = texCUBE (Environment.refVect);
return (color);

}
Texto 3: Ejemplo de Fragment Shader HLSL

En la figura 21 puede verse el resultado de dicho shader:

1 ‘;

Figura 21: Resultado del shader de reflexion HLSL

e~

40

03D, dispone de un pipeline programable con soporte para vertex shaders y fragment
shaders. Los geometry shaders no estan disponibles. El lenguaje de shaders de Google
O3D es una mezcla entre HLSL y Cg, permitiendo facilmente importar shaders escritos
para estos siempre que no usen algunas de sus caracteristicas mas complejas. Una de las
limitaciones reside en el hecho de no poder importar shaders llamados multipase, por ser
capaces de realizar en un pase operaciones de renderizado que normalmente se harian en
varios pases, como por ejemplo cuando un shader necesita crear datos intermedios y
guardarlos en un buffer en memoria para luego usar el color de los pixeles como referencia
para hacer una determinada accion u otra. Estos shaders no son compatibles con O3D,
pero siempre se puede simular el funcionamiento dividiéndolo en fases y haciendo uso de
buffers como el FrameBuffer o el StencilBufter.

Veamos un ejemplo de shader en el lenguaje de O3D:

float4x4 worldViewProjection : WORLDVIEWPROJECTION;

float4 color;

struct VertexShaderInput { float4 position : POSITION; };

struct PixelShaderInput { floatd4 position : POSITION;};

PixelShaderInput vertexShaderFunction (VertexShaderInput input) {
PixelShaderInput output;
output.position = mul (input.position, worldViewProjection);
return output;

}

float4 pixelShaderFunction (PixelShaderInput input): COLOR ({
return color;

}

// #03D VertexShaderEntryPoint vertexShaderFunction

// #03D PixelShaderEntryPoint pixelShaderFunction

// #03D MatrixLoadOrder RowMajor

Texto 4: Vertex Shader y Fragment Shader O3D, efecto de color sdlido

Figura 22: Resultado del shader de color sdido
03D

Este shader renderiza una figura con un color s6lido como puede verse en la figura 22.

Para el proyecto, se han usado fragment shaders para texturizar con y sin sombreado ,
vertex shaders genéricos y vertex shaders para efectos de skinning (animacion de actores

41

en la fase 3).

Del renderizado final se encarga el hardware gréafico, pero antes la aplicacion debe aportar
los datos necesarios a tal efecto, incluyendo y no limitado a , texturas, geometria ,
animaciones, mapas de normales, bump maps, semillas generadoras de nimeros aleatorios
para generar texturas proceduralmente, colores, matrices para especificar filtros, etc. A
continuacion se detalla como O3D se encarga de proveer al shader con todos estos datos.

03D ofrece una serie de clases con las que componer el escenario. Estos objetos estan
organizados en un grafo llamado TransformGraph. Toda aplicacion 3d deberad tener un
TransformGraph. Cada objeto tendra una transformada y una serie do objetos que lo
componen cada uno con su transformada respectiva y asi sucesivamente.

Un nodo del arbol tendrd una o mas Shapes. Cada shape se crea por separado de su
transformada, se registra a esta y esta le da un espacio de coordenadas local. Cada shape
dispone de una o mas Primitives. Cada Primitive tendrd un Uinico Material que contendra
la textura y el efecto a aplicar sobre la misma. Los efectos se crean por separado de su
material y se le registran.

La figura 23 muestra como se compone un TransformGraph.

Root

Figura 23: TransformGraph

.Por otro lado O3D exige la creacion de al menos un segundo grafo llamado RenderGraph
el cual contiene informacion de estado del motor usada en el renderizado, asi como un
nodo con informacién de la vista(cdmara), un nodo que recorre el transformGraph para
obtener la geometria a renderizar y una serie de nodos, que se pueden componer de
diversas maneras, tantos como pases requiera el renderizado. En general se suele usar un
pase para renderizar materiales opacos, y un pase para materiales transparentes que
requieren de algoritmos de z-sorting y por consiguiente son mucho mas lentos.

La figura 24 muestra como es un RenderGraph.

42

Render Graph Root

Viewport
ClearBuffer Tree Traversal State Set is‘uu Set
P iRt SR DrawContext
To toot‘qi_ transform graph ' [pa-rl'on;nanﬂ} (z-ordered)
S— | S ;
+ +
Parentchild relstionship
—====-=- Reference
DrawList DrawlList

(performance) (transparency)
Figura 24: RenderGraph, con DrawlList basica y para transparencia

Una vez se conoce en que forma se deben estructurar los datos para los shaders se puede
empezar a pensar en la aplicacion. Para presentar una serie de herramientas se ha decidido
que a nivel de interfaz de usuario sea lo mas intuitivo posible, por lo tanto es una buena
idea imitar conceptos a los que el usuario esta acostumbrado a encontrar en otras
aplicaciones como barras de herramientas, barras de estado, botones, etc. Para cambiar de
herramienta solo hara falta hacer clic en el boton correspondiente.

Se han creado varias herramientas:

* MoveTool para trasladar figuras, estas se orientan automdticamente segun la
orientacion del plano que contiene al poligono que se encuentra bajo el puntero del
ratébn en cada momento. Funciona Siguiendo el conocido sistema de Drag & Drop
para facilitar al usuario su uso.

* RotateTool para rotar figuras alrededor de una vertical imaginaria tomando como
referencia el vector director del plano que contiene al poligono que se encuentra bajo
el puntero del raton en cada momento.

e ScaleTool para escalar figuras de forma proporcional en los tres ejes. Tiene dos
opciones una basada en Drag & Drop que toma el desplazamiento lateral del raton
como referencia para generar un factor de escala, y una segunda forma de trabajo
basada en la rueda del raton.

* PaintTool, el bote de pintura, herramienta para volcar texturas sobre el lienzo de un
cuadro.

43

* FEraseTool, la goma de borrar, herramienta para eliminar transformadas del
TransformGraph, que permite pinchar con el puntero del raton la transformada que se
desea eliminar.

e CameraTool , herramienta de camara. Toma un punto en el espacio como foco de
atencion. Permite hacer zoom usando la rueda del ratoén, cambiar el foco haciendo
clic sobre algin punto de la geometria. Al arrastrar el raton permite rotar la cdmara
alrededor del foco. Simula el comportamiento de un trackball, limitado a solamente
media esfera para que el movimiento del ratdon sea lo mas intuitivo posible.

03D renderiza con maxima prioridad, y cualquier boton que se quiera mostrar al usuario
debe colocarse, o bien fuera del area 3d, o bien crear una superficie en 3d y colocarla justo
delante de la cdmara, de modo que siempre sea visible y responda a los clics del usuario
simulando asi el comportamiento de un boton.

En el proyecto se ha optado por la segunda alternativa. Para su implementacion, se crean 2
escenarios diferentes cada uno con un arbol de transformadas diferente, uno tiene una vista
con proyeccion en perspectiva (realista, a mayor profundidad los objetos se ven mas
pequetios) y el escenario 3d; el otro con una proyeccidon ortografica (los objetos no se
vuelven pequefios con la distancia,suele usarse en herramientas CAD 3d) con los botones
a modo de Heads Up Display -HUD de ahora en adelante-, que contendrd un plano
alineado con la camara sobre el que renderizar los botones, y mayor prioridad de
renderizado para asegurar que siempre se dibuje por encima del escenario.

La ilustracién 1 muestra la diferencia entre las proyecciones en perspectiva y ortografica.

" Farclipping plane
A

\ Far clipping plane

hY
N Near clipping plane

\\ __\ LY |
\ . 'ﬁ\ Near clipping plane
\ AN
N
\\
Viewing frustum \
\ o H\
(othographic projection) Viewing frustum \
< \\
(perspective projection) \
A Eyepoint Eyepoint

Figura 25: Proyeccion ortogrdfica Figura 26: Proyeccion en perspectiva

Mlustracion 1: Comparativa entre proyecciones ortogrdfica y en perspectiva

44

Otro ejemplo donde, se ha optado por buscar mecanismos reconocibles para el usuario ha
sido la herramienta de PaintTool. Se pretendia poder cargar un unico marco de cuadro y
luego con un bote de pintura como el usado en las herramienta de disefio 2d “rellenar” el
lienzo con una imagen preseleccionada por el usuario. Esta herramienta requiere de un
“selector de relleno” al igual que en de disefio herramientas 2d tales como Photoshop.

Para seleccionar las imagenes no obstante se ha preferido subir todas las imagenes de una
tacada al servidor, comprimir-las en el servidor y descargar el conjunto comprimido con
todas las imdgenes al inicio de la aplicacion. Esta decision obedece a una restriccion
impuesta por el protocolo Hyper Text Transfer Protocol -HTTP- que no permite mas de 2
peticiones asincronas al mismo tiempo; esto a su vez provoca que si se intentan pedir
muchas imagenes separadas se producen errores en el plugin O3D sobre los que no se
tiene control y que han sido el mayor problema en el desarrollo de la aplicacion.

El otro gran problema es el hecho de que para diferentes aplicaciones 3d se suelen escoger
arbitrariamente los ejes que representan profundidad, altura y anchura respectivamente,
con lo que muchas veces se modela una figura en una aplicacidon externa, y al cargarla en
03D la figura aparece volteada varios grados alrededor de algin eje, y se debe volver a la
aplicacion de disefio (o herramienta de exportacion) y rotar la figura varias veces hasta dar
con la orientacioén que requiere O3D, ralentizando el desarrollo de la aplicacion.

Otro factor que ralentiza notablemente el desarrollo 3d es la complejidad de las estructuras
de datos con las que se trabaja.

Todo ello fuerza a dedicar mucho tiempo a tareas de debug. Por ello para el proyecto se
han afiadido algunos paneles al lateral de la web para dar informacidén de debug sobre
materiales y transformadas. Estos se podrian ampliar para modificar dichos materiales y
transformadas pero se optod por no realizar dichas ampliaciones. El acceso a estos paneles
es publico si bién en un futuro seria deseable que fuera restringido.

La figura 27 muestra una captura de pantalla del gestor.

¥ Museo 3d -- Indice - Mozilla Firefox

Archivo Editar Mer Marcadores Herramientas — Avuda

- - C o« M | htpefocahost/mosecsdindes phn o - BB~ LIz T-% O F-
\ 3 030 APT - 030 Plug-in APT - Google /{ | vaRs0aD ®)\ |] Musea 3d - Indice ® /}'q}_‘—; =y
usuaric logout Siwitch Theme -

Galerias: —| galeria de pruebas v |
[MNueva Editar Borrar

Exposiciones: _Eiconos—v;—‘

hlueva Editar Borrar

Figura 27: Captura de pantalla del gestor de museos

45

6.4 Fase3

"Es importante destacar que ningun ingeniero software con ética consentiria escribir
un procedimiento llamado DestruirBaghdad. Su ética le obligaria a escribir un
procedimiento DestruirCiudad, al que se pasaria el parametro Baghdad"

-- Nathaniel S. Borenstein

La tercera fase de implementacion ha sido la mas rapida de las tres, en gran parte gracias
al esfuerzo hecho en la segunda para disefiar codigo reutilizable. En esta fase solamente se
han creado dos objetos nuevos VisorMuseo3D y Actor.

Gran parte de la funcionalidad de cargar museos y exposiciones se implementd ya en la
segunda fase. La respuesta a eventos también estaba hecha. Por todo esto el Visor
solamente es un contenedor que contiene una serie diferente de atributos respecto del
gestorMuseo3D. Las mayores diferencia residen en el hecho de no disponer de las
herramientas del gestor y de disponer de un Actor.

Un actor es un avatar tridimensional capaz de caminar por el museo, controlado por el
usuario con las teclas de direccion del teclado, capaz de detectar las paredes y que se
detiene ante una. La camara sigue al avatar colocandose tras su espalda. El usuario puede
hacer girar la rueda del raton para que la cdmara se acerque hasta el avatar lo suficiente
como para que este no bloquee la vista, de forma que el usuario pueda admirar las obras de
arte expuestas en la exposicion. El avatar es capaz de caminar adelante y atras usando la
misma animacion marcha atrds y adelante respectivamente.

Dada la alta cantidad de datos que implica toda la geometria, para el actor junto con todas
sus texturas y animaciones , se ha tenido que tener mucho cuidado con el tamafo de las
texturas pues O3D tiene un limite méximo, y no conforme con eso , el hecho de cargar un
modelo para un actor que solamente el actor supera las 15Mb significa que la descarga de
dicho modelo puede ralentizar la carga de la pagina sensiblemente. Para minimizar este
efecto, que se aprecia mas sensiblemente cuanto mas lenta es la conexion del cliente, se
optd por una carga asincrona que permite cargar la pagina antes y luego mostrar algin
mensaje al usuario con el porcentaje de carga del modelo.

La figura 28 muestra un diagrama de clases que lo resume.

46

= DinamicObject Elnit
Attributes Attributes
- template : O3dApp - object : mixed
- active : bool CREhans
Cpemtions + getaluel) : mixed
+ startupDinamicChject{) : void + startuplnit{ object : mixed) : void

+ shutdownDinamicObject{ }: void

[= Actor
Attributes
- name : string
EIEIVisorMuseo3d - transform : O3dTransform
Attributes - treeinfo : mixed
- sceneTransform : O3dTransform - distanceFromCamera : float
- mainTransform : O3dTransform - keys @ int[*]
- mainfctor : Actor - clock : float
- mainActorTransform : O3dTransform - timehult : float
- mainActorTimeParam : O3dShaderParam [- AnimTimeParam : float
- treelnfo : mixed - AninmBeginTime ; float
R - AnimEndTime : float
+ onlnit{ J: void Coerations
+ cargarExposicion{) : void + startupActor(template : O3dApp, IntOkject : Init) : void
+ ReguestResources(J: void +reset() : void
+ onRender(event : renderEvent) : void + onRender(event : renderEvent) : void
+ update(J: void
+ onkeyUp(event : mouseEvent) : void
+ onkeyDown(event : mouseEvent) : void

Figura 28: Diagrama de clases Fase 3

La figura 29 muestra una captura de pantalla con el visor,

&) Mozilla Firefox

Archivo Editar Wer Marcadores Herramientas — Ayuda

= - o > T |j htip: Aflocalhost/museo3dAestyisor.html

i 3 03D API - 030 Plug-in API - Goole .. é || ¥ABa03D) | hetp:ffacalhostim.

load fimshed

Figura 29: Captura de pantalla del visor de museos

47

6.5 Tests

"No te preocupes si no funciona bien. Si todo estuviera correcto, serias despedido de
tu trabajo"
-- Ley de Mosher de la Ingenieria del Software

Testear una aplicacion sin acabar no es la mejor de las ideas. No obstante, a modo de
muestra se ha incorporado un Uunico test funcional basado en Selenium que es un
Framework para automatizar tests en el desarrollo web. El test en cuestion testea el
correcto login. No se han creado mads tests por falta de material a testear por un lado y falta
de tiempo para escribir mas tests por el otro.

Para ello se ha usado un plugin para el explorador Firefox llamado SeleniumIDE que
permite grabar las actividades de un usuario en una determinada pagina web y generar un
archivo que se toma como base para un test de Selenium. Luego con un plugin que permite
integrar Selenium, y PHPUnit en NetBeans se pueden crear tests que realizan
automaticamente las mismas acciones que se han grabado con SeleniumIDE y al mismo
tiempo se realizan una serie de aserciones para determinar el correcto funcionamiento de
la pagina, constituyendo asi un excelente sistema de tests automatizado, capaz de ejecutar
la misma tarea un nimero indeterminado de veces sin necesidad de presencia o accion
humana y generando un informe con los errores detectados, es decir las aserciones que no
se han cumplido. Todo ello se invoca desde el NetBeans.

6.6 Bugs conocidos y funcionalidades incompletas.

"Depurar es al menos dos veces mas duro que escribir el codigo por primera vez.
Por tanto, si tu escribes el codigo de la forma mas inteligente posible no seras, por
definicion, lo suficientemente inteligente para depurarlo”

-- Brian Kernighan

Para la consecucion del proyecto, a lo largo del desarrollo del mismo, se han dejado
pendientes varias tareas descritas a continuacion:

* No hay ningtn perfil para administrador.

* No se ha ‘probado la aplicacion lo suficiente. Mdas notoriamente no se han
desarrollado tests unitarios para las clases implementadas.

* No se ha comprobado el correcto funcionamiento de la pagina web en ningtn otro
explorador a parte de Mozilla Firefox, esto incluye a Chrome, Internet Explorer,
Opera, Konqueror o Safari entre otros.

* No se aplica la deteccidon de colisiones en el visor cuando el actor camina hacia atras,
y por lo tanto atraviesa las paredes.

48

* No se ha encontrado ningun sistema de documentacion automatico para el codigo
JavaScript y por ende no se ha generado tal documentacion.

6.7 Documentacion

"El buen codigo es su mejor documentacion”
-- Steve McConnell

Para generar la documentacion se ha hecho uso de PhpDocumentor, el cual a partir de los
comentarios en el codigo es capaz de crear automaticamente toda la documentacion para el
codigo php. La documentacion se encuentra en el apartado de anexos en el CD adjunto.

49

7 Conclusiones

"Es mejor cojear por el camino que avanzar a grandes pasos fuera de él. Pues quien
cojea en el camino, aunque avance poco, se acerca a la meta,mientras que quien va
fuera de él, cuanto mas corre, mas se aleja."

--San Agustin

Esta seccion contiene una descripcion con los objetivos del presente proyecto logrados y
no logrados. Seguidamente una breve exposicion de las conclusiones que se desprenden
del proyecto y para finalizar una relacion de posibles ampliaciones.

Como objetivos principales del proyecto se proponian la creacion de un gestor de museos
virtuales que permitiera realizar visitas virtuales a dichos museos. En mayor o menor
medida se han logrado cumplir todos los objetivos marcados, si bien ello a implicado
hacer una serie de concesiones en cuanto a funcionalidades, y cantidad de efectos graficos
que O3D permite. Respecto de la planificacion se ha logrado completar el proyecto con un
margen de tiempo cercano al previsto como muestra la figura con la planificacién al
finalizar el proyecto. La codificacion de la fase 2 resultd necesitar muchas mas horas de
las previstas, no obstante no se requirieron horas para el modelado del museo 3d para la
version de demostracion, pues se encontraron varios modelos hechos a través de Internet
compensando el nimero de horas extra necesitadas durante el desarrollo.

2010, M1
WES Mombre ock 2009 noy 2009 dic 2009 ene 2010 feb 2010 mar 2010 abr 2010 may 2010
1 = PFC | provecta z
Y oct 2009
Tk = Analisis de Yiabilidad B ——
1.1.1 Planificacion h Analiska
1.1.2 Definicién de objetivos fH4nalista
1.1.3 Andlisis de requerimientos } Analista [50]
1.1.4 Anlisis de las tecnologias a utilizar [4nialista [50]
1S Anslisis de costes Analista
1.1.6 Elaborar Documenta de viabilidad I Analista
152 # Preparar Entorno n
1.3 = Disefio N
1.5.1 Modelada 3d de un pratotipo de museo Disefiador gréfico
1.3.2 Diagrama de casos de uso j? Analista [50]
1.3.3 =l Diagramas de Clases ¥y Secuencia % v Analiska [50]
1.3.3.1 Fasel Analista
1.3.3.2 Fasez [, Analista
1.3.3.3 Fase3 [l Analista
1.4 = Codificacion y tests 3
1.4.1 Codificacion Aplicacion web principal Programadar
1.4.2 Codificacion prototipos funcionalidades 3d H|Programadaor
1.4.3 Tests funcionales con Seleniurm [Frogramador
1.4.4 Codificacion visor Programador
1.5 = Memoria =
1.5.1 Redaccidn Introduccisn [Analista
1.5.2 Redaccion Capitula Andlisis de viabilidad @ Analista
1.5.3 Redaccidn Capitulo Tecnologias Usadas 1 Analisks
1.5.4 Redaccidn Capitulos sobre la aplicacidn Analista
1.5.5 Redaccion Conclusion [Analista

Figura 30: Diagrama de Gantt, muestra la planificacion al termino del proyecto

50

A continuacion se exponen las conclusiones que se han extraido del proyecto.

Histéricamente se ha intentado repetidas veces juntar 3d y web, y en todos los intentos el
enfoque ha sido el de intentar revolucionar las interfaces actuales, conocidas por los
usuarios, sustituyéndolas por modelos innecesariamente complejos.

En todos estos casos dos factores han influido negativamente en el asentamiento de dichas
tecnologias, el primero es la complejidad tanto a nivel de implementacion para el
desarrollador, como para el usuario; el segundo eran las limitaciones técnicas impuestas
por las tecnologias de conexion que no permitian muchos alardes en términos de calidad
gréafica. Asi tecnologias como VRML97 quedaron en el olvido.

El hecho de que el proyecto trate acerca de museos no es sino una escusa para tratar de
unir el mundo del 3d y el mundo web una vez mas. Esta vez, no obstante, dando un
enfoque orientado a dar vida a proyectos con salida comercial, buscando en todo momento
que la interfaz sea lo mas intuitiva posible para los usuarios. Es decir salvando los dos
obstaculos que anteriormente hicieron fracasar toda tentativa.

El desarrollo de proyectos de dicha indole con las herramientas que dispone el mercado es,
sin duda alguna, posible hoy en dia, y existen infinidad de areas comerciales que podrian
hacer uso de dicha tecnologia, desde museos y salones de exposiciones hasta galerias de
moda, probadores de ropa virtuales para tiendas de ropa online, pasando por juegos online
y salones de chat virtuales. El limite lo ponen la creatividad y un espiritu emprendedor por
parte del desarrollador.

Para el proyecto, durante la fase del andlisis de viabilidad se barajaron varias tecnologias
para sustentar técnicamente al mismo. Se optd por Google O3D. Las alternativas basadas
en flash parecian condenadas al fracaso. Solamente WebGL se presentaba como alternativa
realista a largo plazo y al mismo tiempo resultaba demasiado inmadura como para ser
usada. En el momento del analisis, solamente Mozilla Firefox 3.7prealpha soportaba
WebGL, y era una implementacion llena de bugs que hubiere entorpecido el desarrollo del
proyecto. No obstante, WebGL se estaba posicionando como el estdndar de facto para el
3d.

Pues bien, recientemente, Google que no era ajena a este dato, ha sustituido su plugin O3D
por una implementacion nueva de la libreria que contintia llamando O3D, la cual se
sostiene sobre WebGL. Por tanto no se requiere un plugin externo al explorador que era la
mayor desventaja de O3D y pasa a estar soportado nativamente por los exploradores que
decidan dar soporte a WebGL (Firefox, WebKit y Chrome confirmados). Esto significa a
su vez que el uso de shaders basado anteriormente en HLSL y Cg pasa a usar inicamente
GLSL. Salvo este cambio las aplicaciones creadas anteriormente con el plugin continuaran
funcionando con la implementacion basada en WebGL con un minimo esfuerzo por parte
del desarrollador y con la dos grandes ventajas de pasar a no depender de un Sistema
Operativo determinado y de la necesidad de que el usuario deba instalar un plugin. Sin
duda alguna Google se gana con este movimiento el posicionarse con la tecnologia que
esta llamada a ser estandar de facto para unificar 3d y web. Todo aquel que se quiera subir
al tren, seguird el camino de O3D.

Ser pionero en la aventura de la web 3d, no solamente ha sido emocionante, sino que me

51

ha permitido adquirir una serie de conocimientos que en un entorno de competencia
profesional, ofrece una ventaja competitiva clara, permitiendo brindar a los clientes un
producto diferencial, el cual, la competencia esta a afios luz de poder ofrecer.

Uno de los requerimientos no funcionales del proyecto era el de escribir un proyecto con
codigo reutilizable. Esto responde a la intencién de continuar el desarrollo del mismo
ampliando la base creada a lo largo del proyecto con nuevas funcionalidades, disefios mas
robustos si cabe, interfaces mas sencillas, un mayor uso de O3D, més efectos graficos, y
dar el salto a la implementacion WebGL del plugin O3D. Todo esto con el objetivo en
mente de explotar econdmicamente dichas ampliaciones en proyectos con salida comercial
a medio — largo plazo. Algunas de dichas ampliaciones se discuten a continuacion.

7.1

Ampliaciones futuras

"Preguntarse cuando los ordenadores podran pensar es como preguntarse cuando los
submarinos podran nadar"
-- Edsger W. Dijkstra

A continuacion se muestra una relacion de ampliaciones a realizar al trabajo del proyecto.

La primera de las ampliaciones que estan en la lista de futuras ampliaciones es el
paso a usar la implementacion de O3D basada en WebGL. Este paso incluye sustituir
todos los shaders , actualmente escritos en el lenguaje del plugin y escribirlos en
GLSL. Ello implica usa serie de cambios en algunos de los objetos como
BitmapTexture. También implica empezar a testear la aplicacion en diferentes
entornos, incluyendo pero no limitado a Linux, y MacOS X puesto que lograr hacer
ver sin errores las aplicaciones usando shaders GLSL en dichos entornos tiene mas
posibilidades de éxito que las que se tenian con el plugin. Implicaria no obstante un
estudio previo sobre que extensiones de OpenGL son mas comunes de encontrar
implementadas en la mayor variedad posible de hardware grafico a largo plazo para
evitar incompatibilidades.

Mejorar el soporte para animaciones. Actualmente el modelo del actor solamente
dispone de una Unica animacion. Poder usar un grafo estados con tantas animaciones
como transiciones de estado en el grafo, y algin sistema que permita configurar
facilmente los eventos que disparen un salto de un estado a otro y por lo tanto la
reproduccion de una animacion u otra.

Crear herramientas de debug para acelerar el desarrollo de nuevas funcionalidades.

Otras mejoras menores, pero no por ello menos importantes, son el hecho de hacer un
uso mas extenso de ideas que imiten las interfaces a las que los usuarios se
encuentran acostumbrados. Por falta de tiempo, por ejemplo , el puntero del raton no
cambia de icono al pasar por encima de los botones para las herramientas del gestor,
y las imagenes de estos no cambian al ser pulsados.

52

* La mejor manera de vender un producto es que entre por los ojos. Asi pues, donde
ahora encontramos un museo sombreado, sin ningin fondo, sin luces, sin objetos
dinamicos con los que interactuar, sin fuentes de las que brote agua, si antorchas de
las que mane una llama, sin guias que nos expliquen la historia detras de cada cuadro,
se podria crear todo esto y mucho maés. Se podrian crear efectos de enviroment
mapping, refraccion, reflexion, normal mapping, cell shading, high dynamic
range(HDR), etcétera. La figura 31 muestra algunos efectos de entre la infinidad que
se podrian usar a tal efecto.

Refraction + reflexion water ’ ; Shadow mapping

Fire Particles

Motion Blur

Figura 31: Efectos grdficos

53

8 Bibliografia

Si cerca de la biblioteca tenéis un jardin ya no os faltara de nada.
— Marco Tulio Cicerén

A continuacion se detalla la bibliografia basica:

l.

CROCKFORD Douglas. JavaScript: The Good Parts. O'Reilly Media, (2008). 153
paginas. ISBN:0596517742.

Manual de documentacion jQuery [en linea] [Consulta: Agosto 2010]
http://docs.jquery.com/Main_Page .

. Manual de documentaciéon jQueryUI [en Ilinea] [Consulta: Agosto 2010]

http://jqueryui.com/demos/ .

. Manual de documentacion MySql [en linea] [Consulta: Agosto 2010]

http://dev.mysql.com/doc/ .

. Manual de documentacion O3D [en linea] [Consulta: Agosto 2010]

http://code.google.com/intl/es-ES/apis/O3D/docs/index.html .

Manual de documentacion PHP [en linea] [Consulta: Agosto 2010]
http://www.php.net/ .

Manual de documentaciéon Selenium [en linea] [Consulta: Agosto 2010]
http://seleniumhq.org/docs/ .

O3D-Announce [lista de correo] [Consulta: Agosto 2010] O3D-announce .

SHREINER Dave, MASON Woo, NEIDER Jackie, DAVIS Tom. OpenGL(R)
Programming Guide: The Official Guide to Learning OpenGL(R), Version 2.1. 6*
edicion. Addison-Wesley Professional, (2007). 928 paginas. ISBN:0321481003.

10. SHREINER Dave, khronos OpenGL ARB working group. OpenGL(R) Programming

Guide: The Official Guide to Learning OpenGL(R), Version 3.0 and 3.1. 7% edicion.
Addison-Wesley Professional, (2009). 936 paginas. ISBN:0321552628.

11. STEFANOV, Stoyan. Object-Oriented JavaScript: Create scalable, reusable high-

quality JavaScript applications and libraries. Packt Publishing (2008) . 356 paginas.
ISBN:1847194141.

12.ST LAURENT, Sebastien. Shaders for game programmers and artists. Course

Technology PTR (2004) . 483 paginas. ISBN:1592000924

13.BASORA Jordi, JANE Angela, GUITERAS Josep M, Matematiques batxillerat

credits 4,5,6, Mc Graw Hill, 263 paginas. ISBN: 8448112989.

54

http://groups.google.com/group/o3d-announce
http://seleniumhq.org/docs/
http://www.php.net/
http://code.google.com/intl/es-ES/apis/o3d/docs/index.html
http://dev.mysql.com/doc/
http://jqueryui.com/demos/
http://docs.jquery.com/Main_Page

8.1

Otros enlaces

"¢ Internet? ; Todavia anda eso por ahi?"
-- Homer Simpson

En esta seccidn se citan algunas herramientas ttiles en el mundo del desarrollo web citadas
a lo largo de la memoria sin ser necesariamente usadas en el proyecto:

1.

Google translate api, permite traducir de forma dindmica el contenido de tus paginas.
[en linea] [Consulta: Agosto 2010] http://code.google.com/intl/es-
ES/apis/ajaxlanguage/

Google ajax api, permite una forma de cargar librerias y frameworks ajax desde
un CDN (Content delivery network, dicho rapido y mal, una nube de servidores
dedicados) de Google, logrando reducir la latencia al cargar estas librerias,
aumentando la capacidad de cargar librerias en paralelo y mejorando el soporte de
catching(efecto memoria del explorador web, que evita volver a cargar una libreria si
ya se ha cargado con anterioridad).[en linea] [Consulta: Agosto 2010]
http://code.google.com/intl/es/apis/ajaxlibs/

Google gears, tecnologia que permite explorar webs dindmicamente sin necesidad de
estar conectado a la red, que una vez te conectas puedes usar para sincronizar los
contenidos en linea con los guardados localmente en el cliente. Nota: HTML 5
soportaria nativamente el mismo tipo de funcionalidad.[en linea] [Consulta: Agosto
2010] http://gears.google.com/

Google closure tools, herramientas para optimizar codigo JavaScript, reduciendo el
tamafo de los archivos,[en linea] [Consulta: Agosto 2010]
http://code.google.com/intl/es-ES/closure/

Google search api,busquedas transparentes en tu web con el motor de busquedas de
Google[en linea] [Consulta: Agosto 2010], http://code.google.com/intl/es-
ES/apis/ajaxsearch/

Google maps api, funcionalidades de geolocalizacion en tu web,[en linea] [Consulta:
Agosto 2010] http:/code.google.com/intl/es-ES/apis/maps/

Google visualization api, soporte para mostrar diagramas y graficos en tu web,[en
linea] [Consulta: Agosto 2010] http://code.google.com/intl/es-ES/apis/visualization/

away3d, motor 3d basado en flash [en linea] [Consulta: Agosto 2010]
http://away3d.com/

papervision3d, motor 3d basado en flash [en linea] [Consulta: Agosto 2010]
http://blog.papervision3d.org/

10. smarty, motor de plantillas HTML muy usado y potente [en linea] [Consulta: Agosto

2010] http://www.smarty.net/.

55

http://www.smarty.net/
http://blog.papervision3d.org/
http://away3d.com/
http://code.google.com/intl/es-ES/apis/visualization/
http://code.google.com/intl/es-ES/apis/maps/
http://code.google.com/intl/es-ES/apis/ajaxsearch/
http://code.google.com/intl/es-ES/apis/ajaxsearch/
http://code.google.com/intl/es-ES/closure/
http://gears.google.com/
http://code.google.com/intl/es/apis/ajaxlibs/
http://code.google.com/intl/es-ES/apis/ajaxlanguage/
http://code.google.com/intl/es-ES/apis/ajaxlanguage/

56

	1 Introducción
	1.1 Descripción general
	1.2 Objetivos
	1.3 Acerca de este documento
	1.4 Motivación personal y agradecimientos

	2 Estudio de viabilidad
	2.1 Planificación
	2.2 Viabilidad técnica
	2.3 Viabilidad económica
	2.4 Viabilidad legal
	2.5 Conclusiones

	3 Análisis de requerimientos
	3.1 Roles
	3.2 Requerimientos funcionales
	3.3 Requerimientos no funcionales

	4 Fundamentos teóricos
	4.1 Álgebra y 3D

	5 Tecnologías y herramientas usadas
	6 Fases de diseño, implementación y tests
	6.1 Diagrama de Casos de Uso
	6.2 Fase 1
	6.3 Fase 2
	6.4 Fase 3
	6.5 Tests
	6.6 Bugs conocidos y funcionalidades incompletas.
	6.7 Documentación

	7 Conclusiones
	7.1 Ampliaciones futuras

	8 Bibliografía
	8.1 Otros enlaces

