
Universitat Autònoma de Barcelona

Gestión y Visualización de
museos virtuales 3d en línea

Memoria del proyecto de Ingeniería Técnica en Informática de Gestión

realizado por Jordi Nadal Gesto,

y dirigido per Daniel Riera Terrén,

Escola Universitària d'Informàtica

Sabadell, Septiembre de 2010

El/la abajo firmante, Daniel Riera Terrén
professor/a de la Escola Universitària d'Informàtica de la UAB,

CERTIFICA:
Que el trabajo al que corresponde la presente memoria

ha sido realizado bajo su dirección
por Jordi Nadal Gesto

I para que conste firma la presente.
Sabadell, Agosto de 2010

Firmado:

2

Índice de contenidos
1 Introducción..4

1.1 Descripción general..4
1.2 Objetivos...4
1.3 Acerca de este documento...5
1.4 Motivación personal y agradecimientos...5

2 Estudio de viabilidad..7
2.1 Planificación...7
2.2 Viabilidad técnica..9
2.3 Viabilidad económica..17
2.4 Viabilidad legal...18
2.5 Conclusiones...18

3 Análisis de requerimientos...19
3.1 Roles...19
3.2 Requerimientos funcionales..20
3.3 Requerimientos no funcionales...21

4 Fundamentos teóricos ..22
4.1 Álgebra y 3D...22

5 Tecnologías y herramientas usadas...26
6Fases de diseño, implementación y tests..28

6.1 Diagrama de Casos de Uso...29
6.2 Fase 1..30
6.3 Fase 2..35
6.4 Fase 3..46
6.5 Tests..48
6.6 Bugs conocidos y funcionalidades incompletas...48
6.7 Documentación...49

7 Conclusiones...50
7.1 Ampliaciones futuras..52

8 Bibliografía...54
8.1 Otros enlaces...55

3

1 Introducción

1.1 Descripción general

El mundo del desarrollo web es un mundo en cambio constante. Uno de los cambios que
esta sufriendo actualmente es uno que lleva años intentándose llevar a cabo: traer el web a
un nuevo nivel, páginas web en 3d. Este proyecto se propone tomar la iniciativa, y ser el
pionero dando los primeros pasos por un camino a oscuras en busca de tal objetivo.

Determinar qué interfaces harán falta para crear páginas web con entornos
tridimensionales fáciles de navegar para cualquier usuario con independencia de su
condición y experiencia con entornos en tres dimensiones. Buscar las limitaciones que un
entorno web impone a un entorno 3d y viceversa. Lidiar con las limitaciones que el
hardware y software del usuario impone. Todo ello juntado en un aplicación web con una
aplicación práctica: la gestión y visualización de un museo en 3d.

La aplicación constará de una herramienta para administradores que permitirá ver una sala
de exposiciones virtual vacía, y una biblioteca de obras de arte; se podrán añadir y quitar
obras de la sala de exposiciones arrastrándolas de/a la biblioteca, creando así galerías de
arte virtuales. Éstas galerías se podrán visualizar por cualquier persona con un explorador
web.

1.2 Objetivos

A continuación se presentan los objetivos principales del proyecto:

1. Creación de una web de gestión de galerías de arte en 3d. Ha de permitir colocar en
un entorno tridimensional una obra de arte determinada de forma fácil e intuitiva.
Desde colocar cuadros en las paredes o estatuas en el suelo, hasta jarrones en
pedestales.

2. Creación de una biblioteca de obras de arte.

3. Poder guardar galerías de arte.

4. Creación de un módulo de visualización que permita visitar las galerías de arte con
una cámara en tercera persona. La exploración de las galerías ha de ser sencilla y ha
de tratar de dar la máxima sensación de realismo.

4

"Es el objetivo lo que nos ha creado...el objetivo nos vincula, el objetivo nos
motiva, nos guía, nos mueve, es el objetivo lo que nos define, el objetivo nos

mantiene unidos."

--agente Smith en Matrix

1.3 Acerca de este documento

El presente documento es la memoria del proyecto. La memoria esta dividida en varias
secciones: introducción, estudio de viabilidad, análisis de requerimientos, fundamentos
teóricos, tecnologías y herramientas usadas, fases de diseño, implementación y tests, y
conclusiones.

Las secciones con la introducción y el estudio de viabilidad se han redactado con un
lenguaje menos técnico de forma deliberada para facilitar su comprensión. Se recomienda
pues empezar la lectura por estas secciones.

Las secciones fundamentos teóricos, tecnologías y herramientas usadas nos darán un
bagaje de conocimientos suficiente para entender el resto de secciones, por lo tanto son las
que se recomienda leer a continuación. Estarán redactadas en un lenguaje de carácter más
técnico.

En las secciones análisis de requerimientos, diseño, implementación y tests, se describe
el proyecto propiamente dicho, dando por hecho que el lector dispone de los
conocimientos necesarios.

La sección conclusiones resume la consecución o no de los objetivos expuestos en la
sección introducción y expone algunas de las posibles ampliaciones.

1.4 Motivación personal y agradecimientos

Allá por 1996, a través de un anuncio publicitario de un curso de programación IBM, a la
temprana edad de 14 años descubría yo, Jordi Nadal, la programación. Cambió mi vida.
Descubrí un mundo nuevo, que a la postre sería mi trabajo, mi mayor hobby, y mi forma
de vida. Actualmente, soy programador web profesional. Trato de estar siempre al tanto de
cualquier tendencia nueva en el mundo del desarrollo web.

Por otra parte siempre he mostrado interés por el mundo del 3d, mundos virtuales, video-
juegos, etc. A modo de proyectos personales, he desarrollado motores gráficos 3d, juegos,
etc.

Así pues, la posibilidad que se me presenta en este proyecto de tratar de combinar sendos
mundos es irrepetible. Tengo la oportunidad de experimentar con entornos 3d destinados a
un uso en un entorno web y descubrir sus limitaciones. Tengo la oportunidad de analizar
la posibilidad de explotar económicamente una tecnología radicalmente innovadora. Todo
ello unido, despertó mi interés hasta el punto que se ha acabado materializando en mi
Proyecto Final de Carrera.

5

"La habilidad es lo que eres capaz de hacer. La motivación determina lo que harás.
La actitud determina lo bien que lo harás"

-- Lou Holtz

Proyecto que sin la ayuda de mi familia por su apoyo, de mi tutor Daniel Riera por sus
consejos, de Douglas Crockford por sus aportaciones al desarrollo en JavaScript y en
especial del conjunto de desarrolladores de Google por los incontables productos que han
traído al web como son: O3D, translate api, ajax api, gears, closure tools, search api,
maps api, visualization api, y un largo etcétera!

A todos ellos, mil gracias.

6

2 Estudio de viabilidad

Se ha realizado un análisis de viabilidad exhaustivo , los resultados del cual se resumen en
los siguientes puntos.

2.1 Planificación

A continuación se detalla la planificación prevista, la cual como puede verse en el
diagrama de Gantt de la figura 1, se desglosa en un proyecto a realizar para 3 personas, un
analista y gestor de proyectos, un diseñador, y un programador y beta-tester, que suman un
total de 253 horas, o lo que es lo mismo, 63 días laborables y una hora según la
planificación, que asume una jornada laboral de 4 horas al día, 2 días a la semana (todos
los fines de semana) empezando el 10 de octubre y finalizando el proyecto el 18 de abril.

7

"Es intentando lo imposible como se realiza lo posible."

-- henry barbusse

"El mayor de los peligros para la mayoría de nosotros, no es que nuestro objetivo
sea demasiado alto y no lo alcancemos, sino que sea demasiado bajo y lo logremos"

– Michelangelo

8

Figura 1: Planificación prevista

2.2 Viabilidad técnica

En este apartado se discute la elección de las tecnologías más adecuadas para la
consecución exitosa a nivel técnico de los objetivos marcados. Se muestran en. forma de
tabla las elecciones y el razonamiento que lleva a elegir estas tecnología en detrimento de
otras que se han tenido en cuenta. Las tecnologías que se han descartado desde un
principio ya sea por precio o por desconocimiento no se incluyen en la tabla. Para cada
Grupo de tecnologías posibles se incluye un gráfico que muestra el volumen de búsquedas
en Google dando un indicativo del uso de las mismas. Aunque este indicador no pueda
validarse científicamente, sí que nos servirá para hacernos una idea de dicho uso en
Internet. La mayoría de elecciones son típicas del desarrollo web y no requieren de un
estudio en profundidad. La decisión más crítica en este caso es la elección de la API 3d.
Para la elección de esta se ha hecho un estudio más detallado que se muestra en una
segunda tabla tras las que se muestran a continuación.

nombre PROs CONTRAs Conclusiones

Php Mayor compatibilidad
menor precio
independencia del servidor
web
menor curva de
aprendizaje
Mejor documentación

Se usará php

asp Dependencia de IIS, descartado

9

"Los ordenadores son inútiles. Sólo pueden darte respuestas"
-- Pablo Picasso

Figura 2: Código en el servidor

nombre PROs CONTRAs Conclusiones

nota: los resultados de prototype y dojo están inflados puesto que tienen nombres con otros
significados

jQuery +
jQueryUI

Mejor documentación
elegancia y expresividad
menor curva de
aprendizaje
mayor productividad
soporte para widgets
más usada

no dispone de sistema de
herencia

Se usará jQuery y
jQueryUI por su
facilidad de uso, y
productividad,

Moo Tools Soporte para herencia Mayor curva de
aprendizaje

opcional, JavaScript
2.0 promete clases,
por lo que su mayor
virtud desaparecerá

prototype Mejor rendimiento
dispone herencia y clases

no dispone de widgets opcional, JavaScript
2.0 promete clases,
por lo que su mayor
virtud desaparecerá

dojo Soporte para widgets
documentación

Mayor curva de
aprendizaje

Opcional, Tras
jQuery es la más
interesante

10

Figura 3: Librerías y frameworks Javascript

nombre PROs CONTRAs Conclusiones

MySQL Mayor rendimiento
soporte para transacciones
coste nulo
menor curva de
aprendizaje
mejor documentación

Se usará mysql

PostgreSQL Mayor soporte de
funcionalidades como
soporte para transacciones
y subconsultas

Mayor curva de
aprendizaje

descartado

11

Figura 4: Bases de datos

nombre PROs CONTRAs Conclusiones

nota: para vrml97 y five3d no aparecen suficientes resultados

O3D Mayor potencia gráfica
uso de la tarjeta gráfica
mayor variedad de
hardware y software
soportado de todos las
APIs estudiadas
soporte para shaders
a través de JavaScript

Actualmente requiere el
plugin en el explorador,
se espera que cambie
la instalación del plugin
en Linux/Unix/Bsd no es
sencilla, o simplemente
no funciona

Se usará O3D

WebGL promete potencia al mismo
nivel que O3D
promete soporte nativo del
explorador que evita la
necesidad de plugins.

Código inmaduro y en
desarrollo

Descartado,
tecnología demasiado
nueva e inmadura,
a largo plazo es la
tecnología más
interesante tras O3D

VRML97 Desfasado,
menor potencia gráfica

descartado

Away3d de las opciones estudiadas
basadas en flash es la que
tiene mayor potencia

requiere flash descartado

Five3d sencillo requiere flash descartado

papervision de las opciones estudiadas
basadas en flash es la que
tiene mayor seguimiento

requiere flash descartado

12

Figura 5: Motores 3D

nombre PROs CONTRAs Conclusiones

Apache Mejor documentación y
comunidad más activa
independencia del sistema
operativo

Se usará apache

ISS Dependencia del sistema
operativo
costes

descartado

para la elección del API 3d, se han eliminado de la terna, todas las opciones basadas en flash
para mantener la aplicación basada en tecnologías de licencia libre, y mantener así la
viabilidad económica y legal del proyecto bajo control. Vrml97 queda descartada
inmediatamente por desfasada. Así pues, todo lo que queda es decidir entre WebGL y
Google O3D. Ambos pretenden transformase en el estándar de facto para gráficos 3d en el
web.

WebGL es un proyecto conjunto del grupo de desarrollo WebGL del grupo Khronos
(consorcio empresarial que mantiene el desarrollo de la especificación de OpenGL) y la
fundación Mozilla (desarrolladores del explorador web Firefox). Su objetivo es exponer
OpenGL Es 2.0 a javascript.

Google O3D es un proyecto de Google. Permite actualmente, exponer una versión reducida
de OpenGL 2.1 a Javascript.

O3D WebGL

autor(es) Google Especificación: WebGL working group
soporte en Firefox y WebKit: Mozilla
Foundation

Objetivo Exponer partes de OpenGL 2.1 a
Javascript, se han eliminado las
funciones estáticas, siguiendo un

Exponer OpenGL Es 2.0 a JavaScript.
(basado en shaders, no usa funciones
estáticas)

13

Figura 6: Servidores web

modelo basado en shaders

Shaders Formato propio basado en una
mezcla de Cg de Nvidia, y HLSL
de Microsoft

Se espera que esté basado en shaders
GLSL (versión por confirmar) de
OpenGL

Sistemas
Operativos
Soportados

Windows XP/Vista/7,
MacOs X, Linux, BSD, Unix

Windows XP/Vista/7,
MacOs X, Linux, BSD, Unix

Exploradores
Web
Soportados

Firefox, Internet Explorer,
Chrome, Safari, WebKit

Firefox, WebKit. Chrome

Hardware
Gráfico
Soportado

Todo el que tenga implementado
a nivel de drivers soporte total
para OpenGL 2.1 o Direct3d
9.0c

Todo el que tenga implementado a nivel
de drivers soporte total para OpenGL
Es 2.0

Tests realizados

Descripción del hardware/software usado O3D WebGL Notas

procesador Intel coreDuo 32bit Fallo Fallo WebGL solo funciona con
versiones superiores a
3.7prealpha.
En el caso de O3D, se debe
compilar manualmente, al
ejecutarlo da un “fallo de
segmentación”

Tarjeta gráfica AMD/Ati mobility
radeon X1400

Drivers de la
tarjeta gráfica

xf86-video-ati 6.12.4

Sistema
operativo

Linux Ubuntu 9.10,
Sabayon Linux 5.o

Explorador Firefox 3.5, Konqueror

otros OpenGL mesa 7.6
kernel linux 2.6.31.14
con KMS activado

procesador Intel coreDuo 32bit Fallo Fallo WebGL falla devolviendo el
error “Canvas 3D:
GLX_SGIX_pbuffer not supported
”, mientras que glxinfo | grep
pbuffer muestra:
GLX_SGIS_multisample,
GLX_SGIX_fbconfig,
GLX_SGIX_pbuffer
es un error de WebGL al
comprobar el soporte de
GLX_SGIX_pbuffer(lo busca

Tarjeta gráfica AMD/Ati mobility
radeon X1400

Drivers de la
tarjeta gráfica

xf86-video-ati 6.12.4

Sistema
operativo

Linux Ubuntu 9.10,
Sabayon Linux 5.o

Explorador Firefox 3.7prealpha

otros OpenGL mesa 7.6,

14

kernel linux 2.6.31.14
con KMS activado

en los módulos cliente y
servidor: solamente las tarjetas
de Nvidia lo tienen en ambos
módulos y en el hardware usado
solamente en el de cliente) .
En el caso de O3D, se debe
compilar manualmente, al
ejecutarlo da un “fallo de
segmentación”

procesador Intel core2 Duo 64bit Fallo Fallo WebGL falla devolviendo el
error “Canvas 3D:
GLX_SGIX_pbuffer not supported
”, mientras que glxinfo | grep
pbuffer muestra:
GLX_SGIS_multisample,
GLX_SGIX_fbconfig,
GLX_SGIX_pbuffer
es un error de WebGL al
comprobar el soporte de
GLX_SGIX_pbuffer(lo busca
en los módulos cliente y
servidor: solamente las tarjetas
de Nvidia lo tienen en ambos
módulos y en el hardware usado
solamente en el de cliente) .
En el caso de O3D, se debe
compilar manualmente, al
ejecutarlo el área 3d se queda en
blanco

Tarjeta gráfica intel express serie 4

Drivers de la
tarjeta gráfica

xf86-video-intel 2.9.1

Sistema
operativo

Linux Ubuntu 9.10

Explorador Firefox 3.7prealpha

otros Opengl mesa 7.6,
kernel linux 2.6.31

procesador Intel core2 Duo 64bit Fallo Fallo WebGL solo funciona con
versiones superiores a
3.7prealpha.

En el caso de O3D, se debe
compilar manualmente, al
ejecutarlo el área 3d se queda en
blanco

Tarjeta gráfica intel express serie 4

Drivers de la
tarjeta gráfica

xf86-video-intel 2.9.1

Sistema
operativo

Linux Ubuntu 9.10

Explorador Firefox 3.5

otros OpenGL mesa 7.6,
kernel linux 2.6.31

procesador Intel core2 Duo 64bit Ok Fallo WebGL solo funciona con
versiones superiores a
3.7prealpha.

Tarjeta gráfica intel express serie 4

Drivers de la
tarjeta gráfica

 intel v15.13.6.64.1908

15

Sistema
operativo

Windows Vista/7

Explorador Firefox 3.5, Internet
Explorer 7,8, Chrome

procesador Intel core2 Duo 64bit Ok Funcio
na
parcial
mente

Para WebGL los resultados son
dispares, algunas demos
funcionan, otras no

Tarjeta gráfica intel express serie 4

Drivers de la
tarjeta gráfica

 intel v15.13.6.64.1908

Sistema
operativo

Windows Vista/7

Explorador Firefox 3.7prealpha

procesador Intel coreDuo 32bit Ok Falla WebGL solo esta soportado para
la versión 3.7prealpha o superior
de Firefox

Tarjeta gráfica AMD/Ati mobility
radeon X1400

Drivers de la
tarjeta gráfica

AMD/Ati Catalyst v9.3

Sistema
operativo

Windows XP

Explorador Firefox 3.5, Internet
Explorer 7,8, Chrome

procesador Intel coreDuo 32bit Ok Funcio
na
parcial
mente

Para WebGL los resultados son
dispares, algunas demos
funcionan, otras no

Tarjeta gráfica AMD/Ati mobility
radeon X1400

Drivers de la
tarjeta gráfica

AMD/Ati Catalyst v9.3

Sistema
operativo

Windows XP

Explorador Firefox 3.7prealpha

En resumen, para MacOs X no se han podido realizar pruebas por falta de disponibilidad del
hardware/software necesario, para Linux no se ha podido lograr hacer ir ninguna librería en
ninguna de las configuraciones de hardware probadas por problemas con los drivers de las
mismas. Para Windows O3D funciona en todas las combinaciones de hardware testeados, y
WebGL solo ha dado resultados parciales.

La conclusión es clara, usando Google O3D, MySql, PHP, Apache, jQuery, jQueryUI el
proyecto es técnicamente viable.

16

2.3 Viabilidad económica

En este caso, se ha podido usar una terna de tecnologías , todas ellas de licencia libre, y
por tanto coste nulo.

Se han seleccionado, herramientas que reduzcan al mínimo indispensable el número de
horas de trabajo, maximizando productividad, minimizando costes en forma de
horas/hombre, los cuales tenemos ya previstos en la planificación.

En cuanto a costes materiales, podemos contabilizar la amortización del hardware con el
que se realizarán los tests y el desarrollo. Se podría contabilizar también los gastos
proveniente del consumo eléctrico y conexión a Internet, pero los consideraré nulos.

El proyecto no incluye el hosting de la web que se va a crear, luego podemos suponer este
coste nulo.

En la siguiente tabla se detallan los costes previstos,

Concepto Valor
Total horas/hombre (Analista,programador y diseñador) 1.850,00 €
Amortización equipamiento (2 portátiles valorados en 600€, con una vida útil
de 4 años, amortizados uniformemente al 25%, 1r año)

300,00 €

Impuesto sobre beneficios al 30% 645,00 €
Total 2.795,00 €

Vendiendo el producto final a un precio superior a 2.795,00 € el proyecto se puede
considerar económicamente viable. Teniendo en cuenta que es un producto nuevo y
distintivo, que crearía valor añadido para un hipotético cliente, podemos esperar que el
cliente esté dispuesto a pagar esta cantidad. Así pues el proyecto es económicamente
viable.

17

"No se trata de bits, bytes y protocolos, sino de beneficios, pérdidas y márgenes"
-- Lou Gerstner

2.4 Viabilidad legal

El marco legal actual, que puede afectar al proyecto, se puede ceñir a la LSSI1 y a la
LOPD2.

El primero de sendos documentos, establece las obligaciones para toda web que realice
una actividad económica. No es el caso.

El Segundo, establece las obligaciones para toda web que manipule datos personales. En el
caso de del proyecto solamente se requiere un nombre de usuario y por lo tanto tampoco
afecta al proyecto.

No hay riesgo de problemas por patentes, ni se violan licencias.

Por todo ello el proyecto es legalmente viable.

2.5 Conclusiones

Dadas las razones expuestas en las secciones anteriores se considera que el proyecto es
viable, técnica, legal, y económicamente en los plazos especificados en la planificación del
proyecto.

1 Ley de Servicios de la Sociedad de la Información ver http://www.lssi.es
2 Ley Orgánica de Protección de Datos ver https://www.agpd.es

18

"En 2031, los abogados serán componentes habituales de la mayoría de los equipos
de desarrollo"

 -- Grady Booch

http://www.lssi.es/
https://www.agpd.es/

3 Análisis de requerimientos

Una vez hemos concluido el análisis de viabilidad técnica del proyecto, podemos
profundizar en los requerimientos del mismo extendiendo los objetivos marcados en el
apartado de introducción.

A continuación se detallan los tipos de usuarios que deberán interactuar con el sistema, los
requerimientos funcionales y los requerimientos no funcionales identificados.

3.1 Roles

La aplicación web propuesta será un punto de encuentro donde el administrador/gerente de
un museo real se registre como usuario. Cada usuario dispondrá de un o más museos
virtuales, en los que celebrar una o más exposiciones. A tal efecto cada usuario dispondrá
de una cuenta de acceso.

Sin embargo para la visualización de dichas obras los visitantes de dichos museos no
requerirán de cuenta de acceso particular para visualizar las exposiciones.

Para la administración de la web en general, se requiere de un rol de administrador.

A tal efecto se han identificado los siguientes roles de usuario y tareas que podrán
interactuar con el sistema:

1. Cliente/Usuario - administrar sus museos, sus obras de arte, y sus exposiciones.

2. Administrador - gestión (administración de usuarios, ...)

3. Visitante - visualizar exposiciones

19

"Un programador es la persona considerada experta en ser capaz de sacar, después
de innumerables tecleos, una serie infinita de respuestas incomprensibles calculadas

con precisión micrométrica a partir de vagas asunciones basadas en discutibles
cifras tomadas de documentos inconcluyentes y llevados a cabo con instrumentos de
escasa precisión, por personas de fiabilidad dudosa y cuestionable mentalidad con el

propósito declarado de molestar y confundir al desesperado e indefenso
departamento que tuvo la mala fortuna de pedir la información en primer lugar"

-- IEEE Grid newsmagazine

"Desde el punto de vista de un programador, el usuario no es más que un periférico
que teclea cuando se le envía una petición de lectura"

 -- P. Williams

3.2 Requerimientos funcionales

A continuación se citan los requerimientos funcionales previstos. Nótese que no es una
lista cerrada, pues se pretende seguir una metodología de trabajo ágil, la cual permite a
cada iteración de la misma re-enfocar los objetivos pendientes, añadir nuevos o eliminar
antiguos.

• Creación de una aplicación web multiusuario, con soporte para almacenamiento de
datos sobre base de datos.

• Necesidad de mecanismos para mantener bibliotecas de obres de arte, incluye la
posibilidad de crear y eliminar bibliotecas, añadir y quitar obras y mecanismos para
determinar la “orientación” de las obras, es decir, la posición en que una vez
colocadas en una superficie determinada, se tengan que orientar para dar la sensación
de estar sentadas sobre dicha superficie. Para aclarar el concepto nada mejor un
ejemplo: para un cuadro que irá en una pared, se orientará horizontalmente, y nunca
verticalmente mientras que para una estatua que se coloque en el suelo se ha de
orientar verticalmente.

• Necesidad de poder cargar una “sala de exposiciones virtual” sin ninguna obra. Poder
añadir y quitar obras de arte tomadas de las bibliotecas (citadas en el punto anterior)
a la sala de exposiciones. Se debe poder seleccionar la posición y orientación de las
obras en dicha sala mediante interfaces tridimensionales. Y en última instancia,
soporte para guardar y eliminar salas ya creadas.

• Necesidad de herramientas para la gestión de “widgets” html, entiéndase por widgets,
la posibilidad de exportar de algún modo, las galerías creadas, para ser incrustadas en
páginas web externas como blogs. El widget debe permitir explorar las galerías
virtualmente, en un principio mediante una cámara en primera persona.

• Necesidad de algún sistema para la gestión de usuarios. Se espera que se puedan
crear usuarios con diferentes permisos para administrar cada biblioteca. Si un usuario
quiere que “su” biblioteca sea de uso público, o solamente de uso personal se ha de
proveer de los mecanismos necesarios para que así sea.

20

"En software, muy raramente partimos de requisitos con sentido. Incluso
teniéndolos, la única medida del éxito que importa es si nuestra solución resuelve la

cambiante idea que el cliente tiene de lo que es su problema"
-- Jeff Atwood

3.3 Requerimientos no funcionales

En cuanto a requerimientos no funcionales, una web en 3d implica gran variedad de
limitaciones; en la siguiente lista se describen estas limitaciones:

• Extensibilidad, Calidad y Reusabilidad. La aplication programming interface-API
de ahora en adelante- O3D es una librería de bajo nivel en muchos aspectos. Para
usarla es necesario crear algún tipo de extensión de mayor nivel de abstracción, ya
seo externa o creada internamente, que aumente su reusabilidad, puesto que es una
tecnología en auge que probablemente será usada en proyectos futuros, y disponer de
parte del trabajo hecho y probado en el futuro es un requerimiento deseable que
reducirá costes y aumentará la productividad a largo plazo.

• Aspectos legales y de licencias. Ceñirse en la medida de lo posible a herramientas y
librerías con licencias libres.

• Eficiencia. La eficiencia será importante, en una aplicación 3d que depende del
hardware gráfico de alto rendimiento ya es muy importante que el código sea
eficiente, pero en una aplicación web 3d, el problema es aun más importante pues
aparecen varias restricciones más, entre las más importantes encontramos el ancho de
banda del cliente, el del servidor y la posibilidad del cliente de abrir multitud de
pestañas en su explorador con multitud de aplicaciones web tratando de acceder
paralelamente al hardware gráfico. Todas estas restricciones se deben tener en
cuenta, tomando medidas tales como reducir el tamaño y resolución de las imágenes
tanto como sea necesario.

• Plataforma y compatibilidad: Un objetivo deseable es maximizar la compatibilidad
con la máxima variedad de combinaciones de hardware gráfico, sistema operativo y
explorador web.

• Usabilidad: Este aspecto tiene especial importancia en este proyecto. La usabilidad
se entiende como la facilidad con que las personas pueden utilizar una herramienta
particular. En este caso se debe ofrecer una interfaz tridimensional a la que muchos
usuarios no están acostumbrados. Así pues es deseable buscar estructuras, ideas, y
diseños propios de herramientas que conozcan aplicables en este proyecto. A modo
de ejemplo paradigmático, la aplicación de modelado 3d Google SketchUp dispone
de una herramienta de medición de ángulos con aspecto e icono de transportador que
facilita mucho su uso.

21

"Es más fácil cambiar las especificaciones para que encajen con el software que
hacerlo al revés"
 -- Alan Perlis

4 Fundamentos teóricos

Todo proyecto que incorpora 3d requiere de una serie de conocimientos básicos de
álgebra, que incluyen vectores, matrices, cuaterniones, productos escalares, productos
vectoriales, y sus aplicaciones en los cálculos necesarios para el renderizado 3d. Así
mismo , los procesos físicos que se tratan de simular en un entorno virtual, como por
ejemplo el comportamiento de la luz al incidir sobre diferentes formas provocando efectos
como la reflexión y la refracción son también requeridos. Algunos de estos conocimientos
se detallan a continuación con un enfoque orientado a su uso en el proyecto:

4.1 Álgebra y 3D

Para representar una posición o una dirección en un espacio tridimensional, se usan
vectores.

Se define un vector de n dimensiones como una tupla de n números reales llamados
componentes del vector:

v = (c1,c2,..,cn).

En un espacio tridimensional
pues, se usan vectores con 3
componentes, que representan el
desplazamiento a lo largo de los
ejes X, Y y Z respectivamente
para desplazamientos, o las
coordenadas de un punto en el
espacio (en la figura se muestra
un ejemplo):

v = (dx,dy,dz)

Tradicionalmente, se usa el eje Z
para representar la profundidad
desde el punto de vista de la
pantalla: para valores positivos

22

Figura 7: Vector en un espacio tridimensional

"La diferencia entre la teoría y la práctica es que, en teoría, no hay diferencia entre
la teoría y la práctica"

- Richard Moore

"El álgebra es generosa: a menudo da más de lo que se le pide."
--D'Alembert

más al fondo, valores negativos al frente de la pantalla; el eje X se usa para el
desplazamiento lateral, izquierda para valores negativos, derecha para positivos; por
último el eje vertical se representa con el eje Y, valores positivos para arriba y valores
negativos para abajo.

Se define como módulo de un vector v la longitud del mismo; dados 2 puntos
A=(ax,ay,az), B=(bx,by,bz), la distancia que los separa se expresa como

|v| = √ [(bx-ax)2 + (by-ay)2+ (bz-az)2]

Varias operaciones se pueden aplicar sobre vectores, todas ellas necesarias en los cálculos
básicos con vectores.

La suma de vectores, permite componer vectores y se define como:

v'=v1+v2=(v1x,v1y,v1z)+(v2x,v2y,v2z)=(v1x+v2x,v1y+v2y,v1z+v2z)

La multiplicación de un vector por un real, permite obtener vectores con mismo origen,
sentido y dirección pero diferente módulo; se obtiene de la expresión:

v'=v*k=(vx*k,vy*k,vz*k)

Se conoce como la normalización de un vector, el hecho de multiplicar un vector por la
inversa de su módulo para obtener un nuevo vector de módulo unitario. Esta operación se
expresa como : u = v* (1/|v|)

Cobra especial importancia en computación pues como veremos a continuación permite
reducir notablemente cálculos más complejos.

El producto escalar de 2 vectores se define como

a·b= |a|*|b|*cos(α) =(ax*bx)+(ay*by)+(az*bz)

donde α representa el menor ángulo que forman sendos vectores. Tomando el hilo del
proyecto, para colocar un cuadro en una pared vamos a necesitar un vector indicando la
orientación de la superficie de dicha pared, respecto de una dirección arbitraria. Aislando α
de esta fórmula se obtiene el angulo que forman. Repetiremos el cálculo sobre la
orientación del cuadro, y obtendremos los ángulos que forman respecto de la misma
dirección tomada arbitrariamente anteriormente. Restará pues solamente restar dichos
ángulos y rotar el cuadro según el valor obtenido para alinear el cuadro con la pared. Este
cálculo implica obtener el módulo de 2 vectores, lo cual a su vez implica operaciones con
raíces cuadradas y exponentes; todo ello es muy costoso computacionalmente, y
recordemos que es un calculo que se repetirá miles de veces por segundo. Pero retomando
la idea de normalizar vectores, si antes de realizar ningún cálculo tomamos los vectores y
los normalizamos, obtenemos 2 vectores nuevos cuya orientación se mantiene, por lo tanto
forman el mismo angulo, pero sus módulos son unitarios; si observamos la fórmula
descubriremos que α=arccos([(ax*bx)+(ay*by)+(az*bz)]/|a|*|b|) y puesto que |a|*|b| = 1*1= 1
el cálculo se reduce a

23

α = arccos((ax*bx)+(ay*by)+(az*bz))

El último obstáculo pues es
determinar alrededor de que eje
debemos rotar el cuadro; la
respuesta la encontramos en el
producto vectorial de 2 vectores,
dados 2 vectores v1 y v2, el
producto vectorial de v1 y v2 es
un nuevo vector ortogonal a v1 y
v2, es decir perpendicular al plano
que forman v1 y v2 y se define
como:

v'=v1 x v2 = (uy*vz-uz*vy, uz*vx-ux*vz, ux*vy-uy*vx)

Una condición necesaria para su calculo es que v1 y v2 deben formar un plano, es decir
deben, obligatoriamente, ser linealmente independientes: no pueden ser paralelos. Sin
embargo eso no es un problema para nuestro objetivo pues si son linealmente dependientes
significa que la orientación de nuestro cuadro ya es la misma que la de la pared, con la
salvedad de que aun no sabemos si el cuadro esta puesto con el lienzo encarado hacia la
pared o al revés que es lo que pretendemos, solamente debemos mirar si un vector es el
inverso del otro, si lo son debemos rotar la figura 180 grados.

Los cálculos expuestos anteriormente son herramientas muy potentes y sorprendentemente
sencillas para obtener ángulos, posiciones, intersecciones o proyecciones. Pero no son la
solución para realizar transformaciones tales como traslaciones, rotaciones o escalas sobre
figuras complejas. De esto último se encargan las matrices.

Una matriz se define como un conjunto de números dispuestos en filas y columnas y
definimos una matriz de orden m,n a una matriz con m filas y n columnas.

En general una transformación se aplica a un vector dado, conteniendo las coordenadas de
un punto en el espacio, pre-multiplicando este vector por la matriz de transformación
requerida en cada caso. Estas matrices pueden ser multiplicadas a su vez por otras, para
componer transformaciones mas complejas. Las transformaciones básicas son:

Matriz de traslación: permite trasladar figuras, las cuales se ven
desplazadas tx unidades de distancia a lo largo del eje x, ty a lo
largo del eje y y tz a lo largo del eje z. (ver
figura 9).

Matriz de escala: permite escalar, es decir,
cambiar el tamaño de una figura alejando
todos sus vértices del origen de coordenadas
en una proporción indicada por los
parámetros Sx,Sy,Sz respectivamente (ver

figura 10).

24

Figura 8: Producto vectorial

Figura 9: Traslación

Figura 10: Escala

Matrices de rotación X, Y y Z :
permiten rotar una figura өº
alrededor de los ejes X, Y y Z (ver
figura 11).

Matriz de rotaciones para ejes
arbitrarios: permiten rotar figuras
a partir de un eje arbitrario
u=(ux,uy,uz). En el proyecto este
tipo de matrices se usan para
orientar un cuadro respecto de una
pared (ver figura 12).

25

Figura 11: Rotación alrededor de los ejes X,Y y Z

Figura 12: Rotación alrededor de un eje arbitrario

5 Tecnologías y herramientas usadas

Este apartado contiene una relación de herramientas de diferente índole que han sido
usadas en algún momento durante la elaboración del proyecto. Para cada una de ellas, hay
una captura de pantalla, una descripción y una valoración personal.

tarea nombre Descripción / valoración captura

3D animación DAZ
Studio

herramienta orientada a la
creación y publicación de
contenidos de
animaciones de uso muy
sencillo, con soporte para
animación facial,
composición de
animaciones, importar,
exportar, y morphs. Entre
otras opciones

modelado SketchUp Herramienta diseñada
para facilitar el modelado.
No soporta animaciones,
y las herramientas para
tratar texturas son muy
pobres. Capaz de acceder
a librerías de modelos en
Internet. Curva de
aprendizaje muy pequeña.

visualizado Google
O3D +
Firefox

API para gráficos 3d web.

26

“El verdadero progreso es el que pone la tecnología al alcance de todos.”
– Henry Ford

shaders Render
Monkey

Framework orientado al
desarrollo específico de
shaders creado por
AMD/ATI muy completo
e intuitivo. Soporta
HLSL, Cg y GLSL.

web Servidor
http

Apache Servidor web de uso muy
extendido, ofrece
rendimiento y fiabilidad.

Lenguaje
scripts en
servidor

PHP Lenguaje de
programación web para
los scripts en el servidor.

Bases de
datos

MySql Base de datos eficiente y
funcional.

IDE Desarrollo Netbeans Entorno de desarrollo
integrado, con soporte
para múltiples lenguajes y
plataformas. En constante
evolución. Dispone de
plugins para aumentar su
funcionalidad.

Diseño Netbeans +
UML
plugin

Plugin integrado con
Netbeans para diseño
UML para lenguaje java.

Tests Netbeans +
phpUnit +
Selenium

Herramienta para tests
funcionales basados en
phpUnit integrado en
Netbeans.

Planificación Planner Herramienta de
planificación con soporte
para diagramas de Gantt
básicos.

27

6 Fases de diseño, implementación y tests

Para el desarrollo de la aplicación se ha optado por seguir una metodología basada en el
método ágil. Este, a grandes rasgos, consiste en seleccionar un requerimiento funcional de
la lista , diseñar poco y rápido para cubrir las necesidades del mismo, e implementar
código, a poder ser con calidad de producto acabado. Tras esto seleccionar un nuevo
requerimiento y repetir el proceso. Entre ciclo y ciclo los requerimientos pueden cambiar.
Y los ciclos deben ser cortos. Se prefiere la programación en pareja, o cuando menos el
diseño en pareja o grupo.

Así pues, las fases de diseño e implementación del proyecto se han alternado durante
varios ciclos para cubrir los requerimientos expuestos en el apartado con el análisis de
requerimientos. Estos requerimientos durante el desarrollo han sufrido una serie de
cambios comentados a continuación:

La creación de una web, multiusuario se mantiene. Las herramientas de administración de
bibliotecas, obras de arte, salas de exposiciones y exposiciones también se mantienen.

La creación de una herramienta de gestión de widgets, finalmente, se ha descartado; los
widgets, pasan a ser simplemente aplicaciones web enmarcadas en iframes html. Se ha
creado no obstante un widget a modo de demostración que permite realizar una visita
virtual a un museo en 3ra persona.

La gestión de usuarios se ha implementado parcialmente para evitar alargar el proyecto, es
posible añadir nuevos usuarios pero no gestionar las cuentas/permisos existentes.

En total, se ha encarado el proyecto en 3 fases, una primera fase para crear la web y toda la
infraestructura que toda web requiere; una segunda fase para implementar las herramientas
3d, y una tercera fase para el widget con la visita virtual. Este apartado ha sido organizado
del mismo modo. A continuación se muestra el diagrama de casos de uso previsto
inicialmente. Posteriormente se muestran los diagramas de secuencia y/o clases diseñados
al inicio de cada fase seguidos de una descripción textual de los mismo y de un resumen
de los problemas que se encontraron durante la implementación junto con la solución
aportada para solventarlos en cada caso.

Nótese que en el método ágil se pretende un uso mínimo de diagramas UML-Unified
Modelling Language-, con una función extremadamente orientada a la productividad: no
se desean diagramas perfectos, integrados con el código fuente, se desea tener una idea
general lo antes posible del diseño. Normalmente con un diagrama de clases y uno de
secuencia escritos en paralelo suele considerarse suficiente. Todo esto implica que no
necesariamente los nombres de las clases en los diagramas se acaban correspondiendo con
los nombres en el código fuente final. Y no solamente eso, sino que , incluso, no se
considera una mala praxis el hacer los diseños en papel o en una pizarra sin “pasarlos a

28

"Programar sin una arquitectura o diseño en mente es como explorar una gruta sólo
con una linterna: no sabes dónde estás, dónde has estado ni hacia dónde vas"

 -- Danny Thorpe

limpio”. En este caso se ha optado por modelar los diseños en papel y posteriormente
“pasarlos a limpio” por motivos de legibilidad en la documentación, no obstante, los
nombres de las clases difieren de los finales.

6.1 Diagrama de Casos de Uso

Como puede observarse en la figura 13, la aplicación prevee tres tipos de usuario, un
usuario de administración global, uno para los propietarios de las galerías los cuales
deberán acceder al sistema mediante login, y por último los visitantes, quienes solamente
podrán realizar visitas virtuales a los museos.

El sistema consiste en una aplicación web, el diseño de la cual, se analiza en la fase 1,
descrita a continuación.

29

Figura 13: Diagrama de casos de uso

"Hay dos maneras de diseñar software: una es hacerlo tan simple que sea obvia su
falta de deficiencias, y la otra es hacerlo tan complejo que no haya deficiencias

obvias"
-- C.A.R. Hoare

6.2 Fase 1

Para el diseño de la web que ha de sostener el sistema se ha optado por un patrón Model-
View-Controller -de ahora en adelante MVC- como eje principal de diseño. El patrón
MVC consiste en separar en tres capas el código fuente: la vista, que encapsula el modo en
que se muestran los datos; el modelo que encapsula los datos y la capa con la lógica de la
aplicación; y el controlador que es el encargado de organizar el flujo de ejecución de la
aplicación.

Este patrón se ha ampliado usando los patrones Front Controller y Two Step View. Front
Controller propone poner un único Controlador principal sirviendo todas las peticiones y
enrutándolas al controlador correspondiente en cada caso.

Two Step View prefiere generar la vista en 2 fases una para preparar los datos y una para
insertarlos en una plantilla.

 En este entorno, cuando un cliente
realiza una petición un controlador
la toma (1), instancía un objeto de
la capa del modelo (2), este a su vez
prepara y procesa los datos
necesarios tomándolos, cuando sea
necesario, de la base de datos (3-4),
y una vez estos datos están
preparados, el controlador toma el
mando nuevamente (5) y prepara
una instancia de un objeto de la
capa vista (6), normalmente una
plantilla , la rellena con datos y esta
plantilla es, en última instancia
devuelta por el controlador al
cliente en forma de página web(7),
como puede observarse en la figura
 14.

Para implementar este diseño se han creado tres clases básicas MVCController, MVCView
y MVCModel que encapsular el código genérico común a un controlador, una vista y un
modelo respectivamente. Se han creado varias clases que extienden estas para encapsular
funcionalidades más específicas. Así, por ejemplo, Tenemos una clase llamada
GaleriaModel que extiende la clase MVCModel y contiene datos relacionados con una
galería de arte virtual; o tenemos 2 clases llamadas LoginController y IndexController que
se encargan de las pantallas de login e índice respectivamente.

30

Figura 14: Arquitectura Model-View-Controller
(MVC)

"El primer 90% del código corresponde al primer 90% del tiempo de desarrollo. El
10% restante corresponde al otro 90% del desarrollo"

-- Tom Cargill

Para implementar el patrón Front Controller en el mismo directorio en que se encuentra el
índice se ha preparado un archivo .htacces encargado de redirigir toda petición del cliente
al archivo índex.php que a su vez crea una instancia de un objeto de tipo FrontController
encargado de enrutar las peticiones. Éste último, implementa un patrón Factory para crear
instancias de controladores según convenga.

Para la vista se barajó la opción de incluir algún motor de plantillas html conocido como
smarty, pero finalmente se optó por implementar un soporte basado en lenguaje php.

Para el acceso a base de datos se ha previsto un diseño basado en el patrón Data Acces
Object -DAO de ahora en adelante- el cual consiste en separar la capa con la lógica de la
aplicación (el modelo) del acceso a base de datos, de forma que desde el punto de vista del
modelo, el acceso a los datos es una API de la que no ha de conocer su implementación
interna. Esto permite a largo plazo sustituir la base de datos por una diferente.

Para obtener conexiones a base de datos se ha optado por disponer de una clase que
gestione el acceso a base de datos que se ha llamado ConnectionFactory. Esta clase
implementa los patrones Factory y Singleton, los cuales permiten abstraer la creación de
instancias de una determinada clase y asegurar la existencia de una única instancia de una
determinada clase en un momento dado respectivamente. ConnectionFactory, contiene una
única conexión a base de datos que sirve a través de su método getConnection(). El
objetivo de este diseño es el de abstraer la obtención de la conexión. Esto permite que si
más adelante, el número de usuarios crece, y por extensión, el número de conexiones
crece, se puede muy fácilmente aplicar un patrón diferente como podrá ser el patrón
Thread Pool.

La clase DAO ofrece una interfaz a la que realizar consultas sql mediante sus métodos
retrieve o update, que retornan objetos de tipo DataAccesResult.

En la figura 15 se muestra un diagrama de clases con un resumen de las clases que
intervienen en el acceso a datos.

31

Figura 15: Diagrama de clases para el patrón Data Access Object (DAO)

En cuanto al resto de funcionalidades básicas para la web , podemos observar la creación
de una clase de nombre SessionManager encargada de almacenar datos de sesión que
permitiría a largo plazo albergar variables relacionadas con la sesión de un usuario, el
lenguaje en que prefiere ver la interfaz de la web, etc, que en la versión presentada, no es
usada. Implementa un patrón Singleton.

Otra clase menor, que también implementa Singleton, es la clase de configuración,
encargada de almacenar valores de configuración como el usuario y login de la base de
datos, los paths a las diferentes carpetas, etc.

La figura 16 muestra un diagrama de clases que resume el conjunto de clases implicadas
en la fase uno del proyecto, dando una visión de conjunto del mismo.

32

33

Figura 16: Diagrama de clases Fase 1

La web, pues, muestra al acceder a ella, un formulario de acceso, para ello el index cede el
control al FrontController, éste enruta la petición al LoginController que prepara una vista
con una plantilla con un formulario de login y esta es devuelta al cliente por el controlador.
Todo el proceso se puede ver reflejado en el diagrama de secuencia de la figura 17.

Cuando el usuario introduce su login y password una petición de login es enviada al
servidor. El .htacces la redirige al index, este se la pasa al FrontController que a su vez la
enruta al LoginController. El LoginController crea un objeto UserModel con los datos
provistos; El objeto UserModel se conecta a la base de datos con una conexión creada por
el ConnectionFactory. A través de la implementación del patrón DAO se obtiene un objeto
de tipo DataAccesResult que contiene La información del usuario. Si el login es correcto
el LoginController pasa el testigo al IndexControler quien se encarga de preparar una vista
con la pantalla principal, que es finalmente devuelta al cliente. Este proceso se ve reflejado
en el diagrama de secuencia de la figura 18.

34

Figura 17: Diagrama de secuencia, mostrar el formulario de login

Figura 18: Diagrama de secuencia, login correcto

6.3 Fase 2

Para la fase 2, se pretendía implementar el gestor 3d. Este estaría basado en el motor
gráfico Google O3D. Pero esta API no esconde el hecho de ser de muy bajo nivel. Para
realizar tareas abstractas se requieren muchas lineas de código repetitivo. Así pues era
obligatorio crear un objeto que encapsulara dicho código y permitiera trabajar a mayor
nivel de abstracción.

El diseño requiere de un paradigma orientado a objeto, que permita estructurar el código
de forma reusable. El lenguaje de programación a tal efecto es Javascript, luego la primera
decisión a tomar es que sistema de herencia usar; JavaScript es un lenguaje muy libre y no
tiene una sintaxis predefinida para la herencia, no obstante se puede simular de diversos
modos: Se puede usar una API externa como Moo Tools, implementar uno nuevo basado
en el operador new, o se puede hacer uso del modelo basado en prototipos; éste último es
el modelo escogido en el proyecto.

En el paradigma prototipado todos los objetos son funciones y todas las funciones son
objetos. Toda función tiene un prototipo que se puede entender como un objeto indicando
su morfología. Toda función es una variable y como tal puede ser modificada. El prototipo
de la función puede por tanto ser modificado o sustituido completamente por el de otra,
permitiendo que propiedades definidas (anterior o posteriormente) en la segunda sean
accesibles inmediatamente en la primera: esta es la base en la que se sustenta el paradigma
prototipado.

En el proyecto se ha creado un objeto llamado O3DApp del que hereda toda aplicación 3d.
En la fase 2 el gestor hereda de O3DApp, y en la fase 3 el visor para visitas también
deberá heredar de O3DApp. Así pues tanto GestorMuseO3D como VisorMuseO3D serán
funciones vacías a las cuales les hemos sustituido su prototipo por una nueva instancia de
O3DApp creada a través del operador new. Las propiedades de las mismas se añaden al
prototipo para que todas sus instancias automáticamente puedan acceder a las mismas.
Desde las herramientas que dispondrán, hasta la información de toda la geometría a
renderizar pasando por referencias a objetos de la página como paneles, botones, etiquetas,
etc. quedan incluidos.

Las diferentes herramientas se desea que sean reutilizables y requieren de un diseño
similar, luego se deben mover a clases separadas. A tal efecto se ha creado un objeto
llamado DinamicObject, y un objeto Init que son céntricos en el diseño de la aplicación.
DinamicObject será todo objeto no estático, desde una cámara que debe poder moverse
por un entorno tridimensional hasta un botón presentado como un ente dentro del área
tridimensional y que deba responder a eventos de ratón pasando por un actor capaz de
moverse según una animación predeterminada. Todo DinamicObject dispondrá de una
serie de parámetros de configuración diferentes en cada caso. Para volver el código más
consistente se deseaba reducir el número de parámetros a dos en todos los casos, uno sería
una referencia a la aplicación que va a usar el objeto, y el otro sería un objeto de tipo Init

35

. "Antes de que un software sea reutilizable debería ser utilizable"
 -- Ralph Johnson

encapsulando todos los parámetros de configuración para los demás objetos. Luego todo
objeto deberá disponer de un método de inicialización que arbitrariamente se ha decidido
que se llame startupNombredelObjeto(template:O3DApp,initObject:Init).

Los DinamicObject, en muchos casos, deben responder a eventos. Para poder registrar un
método como callback para un determinado evento es necesaria una técnica muy común
en JavaScript llamada closure.

Veamos un ejemplo:

En el ejemplo quo es un objeto con un
atributo privado status y un método
público get_status que devuelve status.
Es importante comprender que
get_status tiene acceso a status
directamente por el mero hecho de
estar declarada dentro de quo. Cuando
quo llega a su return y es eliminada,
get_status continúa gozando de acceso
a status, y no a una copia de status
como cabe suponer, sino directamente
a status. Al hecho de devolver un

método con acceso a los atributos de un objeto determinado incluso cuando este se ha
destruido se le llama closure.

Para definir callbacks, es decir métodos a los que invocar en respuesta a determinados
eventos el uso de closures es ideal. Se puede declarar todos los eventos de ratón
-onMoseDown, onMouseUp, onMouseWheel-, los de teclado -onClick-, los de
renderizado -onRender- de esta forma. Y registrar todos estos métodos como callbacks
tanto del sistema de gestión de eventos de Google O3D como del sistema de gestión de
eventos del explorador al inicio de la aplicación.

Para el proyecto se ha llevado la idea un paso más allá creando una función para crear
closures a petición llamada makeClosure que se usa siempre que es necesario un closure.
Esta función permite declarar callbacks para los eventos directamente en el prototipo en
vez de necesitar que sea fuera del mismo como exige la sintaxis usada en el ejemplo del
texto 1. Esto permite mantener la reusabilidad y la consistencia con un entorno orientado a
objeto con soporte de herencia basada en prototipos.

La figura 19 muestra un diagrama de clases que resume el diseño, (del cual se ha excluido
O3DApp, por su tamaño principalmente, y por aportar luz extra al diseño).

36

var quo = function (status)
{

return
{

get_status: function ()
{

return status;
}

};
};

var myQuo = quo("amazed");

Texto 1: Ejemplo de closure

37

Figura 19: Diagrama de clases, Fase 2

Una vez se ha tenido un diseño general en mente la dificultad de su implementación, se
enmarca en solventar las limitaciones técnicas de la tecnología a disposición y en buscar
ideas que mejoren la usabilidad de la aplicación.

Google O3D es la tecnología principal de la que depende el proyecto. Veamos en que
consiste, sus limitaciones, qué uso se hace de sus posibilidades en el proyecto y que
opciones se han dejado para hipotéticas ampliaciones.

Google O3D es un plugin para el explorador que permite renderizar escenarios
tridimensionales en un explorador web. Esta implementado mayormente en C++ y se
encarga de exponer a JavaScript una API que permite hacer uso de las dos librerías de
aceleración gráfica por hardware por excelencia: Microsoft Direct3D y OpenGL. La figura
20 muestra la arquitectura de Google O3D, se muestra en azul la aplicación cliente (El
gestor en el caso de este proyecto), en verde el plugin en si mismo, en lila las librerías de
aceleración y en amarillo el hardware gráfico del cliente .

Históricamente el hardware gráfico disponía de un procesador de vértices capaz de
realizar una determinada serie de operaciones básicas sobre un conjunto de datos
(vértices) que se enviaban a la tarjeta gráfica constantemente. Esto implicaba usar los

38

Figura 20: Arquitectura Plugin O3D

llamados fixed function pipelines, que no eran más que conjuntos de funcionalidades que
venían predefinidas en las librerías gráficas como OpenGL o Direct3D. El hecho de usar
estas funciones fijas predefinidas daba muy poco margen a la creatividad: la tarjeta gráfica
se encargaba de las transformaciones, de la proyección, del clipping (eliminar figuras que
no entraban dentro del cono de proyección) y por último del rasterizado (transformar los
polígonos en pídeles) . La única tarea del programador era pues , preparar los vértices y
especificar que operaciones quería usar de entre las disponibles.

Pero con la llegada del hardware gráfico programable llegó una revolución: los
programmable pipelines. Los procesadores gráficos , permitirían de ese momento en
adelante escribir pequeños programas que la tarjeta gráfica interpretaría y ejecutaría en
cada una de las fases del renderizado , permitiendo así una mayor libertad para el
programador.

Lo primero en aparecer fueron los llamados vertex shaders, que permitían hacer
transformaciones en las coordenadas de los vértices en la tarjeta gráfica, sus aplicaciones
variaban desde animaciones (skinning) hasta automatizar el comportamiento de fluidos
como superficies de agua “ondulante” o banderas que se mueven al son del viento.

La verdadera revolución tardó en aparecer un poco más. Fueron los fragment shaders
también llamados pixel shaders, que permitían aplicar efectos y variar las propiedades de
los píxeles. Permitiendo efectos aplicables a toda la pantalla como mascaras de color sepia,
detección de contornos, efectos de iluminación , bump mapping, normal mapping, cell
shading y un largo etcétera.

La tercera y ultima revolución son los geometry shaders, los cuales permiten generar
geometría nueva en tiempo real, permitiendo efectos variados, por ejemplo a partir de una
textura representando unos escalones y un único polígono para toda una escalera, generar
en tiempo real toda la geometría necesaria con todos los escalones.

Los geometry shaders se aplican inmediatamente después de los vertex shaders. Tras estos
se aplican las labores genéricas de renderizado hasta el rasterizado, tras este se aplican los
Fragment shaders generando la imagen final.

En sus inicios, los shaders se escribían directamente en ensamblador (lenguaje de muy
bajo nivel). Pero temprano aparecieron los primeros lenguajes de programación de
shaders. Con el tiempo los lenguajes que se han vuelto estándar de facto para escribir
shaders son HLSL, GLSL y Cg.

HLSL es el lenguaje para shaders de Direct3D, creado por Microsoft. Goza de soporte
perfecto por todo el hardware gráfico y su única flaqueza es que solamente puede ser
usado bajo los sistemas operativos de Microsoft: Windows.

El segundo es el lenguaje descrito por la especificación de OpenGL, dispone de diversas
implementaciones y el soporte de hardware es dispar. En general Nvidia suele dar buen
soporte, pero el resto de fabricantes priorizan HLSL claramente.

Cg, es un lenguaje creado por Nvidia y solamente esta soportado por su hardware.

Veamos un ejemplo de shader escrito en HLSL. Consiste en una figura a la que se le

39

aplican los reflejos de luz que provienen de un entorno simulado con una textura cubica
aplicada a una semiesfera que envuelve la figura a la que se aplica el efecto con los
reflejos. En este caso el vertex shader no ha de realizar ninguna tarea salvo pasar al
fragment shader los datos que este necesitara.

Veamos el código del vertex shader en cuestión:

Veamos ahora el código del fragment shader:

En la figura 21 puede verse el resultado de dicho shader:

40

float4x4 matViewProjection;
float4 vViewPosition;
struct VS_OUTPUT {

float4 Pos:POSITION;
float3 Normal:TEXCOORD0;
float3 View:TEXCOORD1;

};
VS_OUTPUT vs_main(float4 inPos:POSITION,float3 inNormal:NORMAL){

VS_OUTPUT Out;
Out.Pos=mul(inPos,matViewProjection);
Out.Normal=normalize(inNormal);
Out.View=normalize(vViewPosition-inPos);
return (Out);

}

Texto 2: Ejemplo de vertex shader HLSL

samplerCUBE Environment;
float4 ps_main(float3 inNormal:TEXCOORD0,float3 inView:TEXCOORD1){

inNormal=normalize(inNormal);
inView=normalize(inView);
float3 refVect=reflect(-inView,inNormal);
float4 color = texCUBE(Environment.refVect);
return (color);

}

Texto 3: Ejemplo de Fragment Shader HLSL

Figura 21: Resultado del shader de reflexión HLSL

O3D, dispone de un pipeline programable con soporte para vertex shaders y fragment
shaders. Los geometry shaders no están disponibles. El lenguaje de shaders de Google
O3D es una mezcla entre HLSL y Cg, permitiendo fácilmente importar shaders escritos
para estos siempre que no usen algunas de sus características más complejas. Una de las
limitaciones reside en el hecho de no poder importar shaders llamados multipase, por ser
capaces de realizar en un pase operaciones de renderizado que normalmente se harían en
varios pases, como por ejemplo cuando un shader necesita crear datos intermedios y
guardarlos en un buffer en memoria para luego usar el color de los píxeles como referencia
para hacer una determinada acción u otra. Estos shaders no son compatibles con O3D,
pero siempre se puede simular el funcionamiento dividiéndolo en fases y haciendo uso de
buffers como el FrameBuffer o el StencilBuffer.

Veamos un ejemplo de shader en el lenguaje de O3D:

Este shader renderiza una figura con un color sólido como puede verse en la figura 22.

Para el proyecto, se han usado fragment shaders para texturizar con y sin sombreado ,
vertex shaders genéricos y vertex shaders para efectos de skinning (animación de actores

41

float4x4 worldViewProjection : WORLDVIEWPROJECTION;
float4 color;
struct VertexShaderInput { float4 position : POSITION;};
struct PixelShaderInput { float4 position : POSITION;};
PixelShaderInput vertexShaderFunction(VertexShaderInput input) {
 PixelShaderInput output;
 output.position = mul(input.position, worldViewProjection);
 return output;
}
float4 pixelShaderFunction(PixelShaderInput input): COLOR {
 return color;
}
// #O3D VertexShaderEntryPoint vertexShaderFunction
// #O3D PixelShaderEntryPoint pixelShaderFunction
// #O3D MatrixLoadOrder RowMajor

Texto 4: Vertex Shader y Fragment Shader O3D, efecto de color sólido

Figura 22: Resultado del shader de color sóido
O3D

en la fase 3).

Del renderizado final se encarga el hardware gráfico, pero antes la aplicación debe aportar
los datos necesarios a tal efecto, incluyendo y no limitado a , texturas, geometría ,
animaciones, mapas de normales, bump maps, semillas generadoras de números aleatorios
para generar texturas proceduralmente, colores, matrices para especificar filtros, etc. A
continuación se detalla como O3D se encarga de proveer al shader con todos estos datos.

O3D ofrece una serie de clases con las que componer el escenario. Estos objetos están
organizados en un grafo llamado TransformGraph. Toda aplicación 3d deberá tener un
TransformGraph. Cada objeto tendrá una transformada y una serie do objetos que lo
componen cada uno con su transformada respectiva y así sucesivamente.

Un nodo del árbol tendrá una o más Shapes. Cada shape se crea por separado de su
transformada, se registra a esta y esta le da un espacio de coordenadas local. Cada shape
dispone de una o más Primitives. Cada Primitive tendrá un único Material que contendrá
la textura y el efecto a aplicar sobre la misma. Los efectos se crean por separado de su
material y se le registran.

La figura 23 muestra como se compone un TransformGraph.

.Por otro lado O3D exige la creación de al menos un segundo grafo llamado RenderGraph
el cual contiene información de estado del motor usada en el renderizado, así como un
nodo con información de la vista(cámara), un nodo que recorre el transformGraph para
obtener la geometría a renderizar y una serie de nodos, que se pueden componer de
diversas maneras, tantos como pases requiera el renderizado. En general se suele usar un
pase para renderizar materiales opacos, y un pase para materiales transparentes que
requieren de algoritmos de z-sorting y por consiguiente son mucho más lentos.

La figura 24 muestra como es un RenderGraph.

42

Figura 23: TransformGraph

Una vez se conoce en que forma se deben estructurar los datos para los shaders se puede
empezar a pensar en la aplicación. Para presentar una serie de herramientas se ha decidido
que a nivel de interfaz de usuario sea lo más intuitivo posible, por lo tanto es una buena
idea imitar conceptos a los que el usuario esta acostumbrado a encontrar en otras
aplicaciones como barras de herramientas, barras de estado, botones, etc. Para cambiar de
herramienta solo hará falta hacer clic en el botón correspondiente.

Se han creado varias herramientas:

• MoveTool para trasladar figuras, estas se orientan automáticamente según la
orientación del plano que contiene al polígono que se encuentra bajo el puntero del
ratón en cada momento. Funciona Siguiendo el conocido sistema de Drag & Drop
para facilitar al usuario su uso.

• RotateTool para rotar figuras alrededor de una vertical imaginaria tomando como
referencia el vector director del plano que contiene al polígono que se encuentra bajo
el puntero del ratón en cada momento.

• ScaleTool para escalar figuras de forma proporcional en los tres ejes. Tiene dos
opciones una basada en Drag & Drop que toma el desplazamiento lateral del ratón
como referencia para generar un factor de escala, y una segunda forma de trabajo
basada en la rueda del ratón.

• PaintTool, el bote de pintura, herramienta para volcar texturas sobre el lienzo de un
cuadro.

43

Figura 24: RenderGraph, con DrawList básica y para transparencia

• EraseTool, la goma de borrar, herramienta para eliminar transformadas del
TransformGraph, que permite pinchar con el puntero del ratón la transformada que se
desea eliminar.

• CameraTool , herramienta de cámara. Toma un punto en el espacio como foco de
atención. Permite hacer zoom usando la rueda del ratón, cambiar el foco haciendo
clic sobre algún punto de la geometría. Al arrastrar el ratón permite rotar la cámara
alrededor del foco. Simula el comportamiento de un trackball, limitado a solamente
media esfera para que el movimiento del ratón sea lo más intuitivo posible.

O3D renderiza con máxima prioridad, y cualquier botón que se quiera mostrar al usuario
debe colocarse, o bien fuera del área 3d, o bien crear una superficie en 3d y colocarla justo
delante de la cámara, de modo que siempre sea visible y responda a los clics del usuario
simulando así el comportamiento de un botón.

En el proyecto se ha optado por la segunda alternativa. Para su implementación, se crean 2
escenarios diferentes cada uno con un árbol de transformadas diferente, uno tiene una vista
con proyección en perspectiva (realista, a mayor profundidad los objetos se ven más
pequeños) y el escenario 3d; el otro con una proyección ortográfica (los objetos no se
vuelven pequeños con la distancia,suele usarse en herramientas CAD 3d) con los botones
a modo de Heads Up Display -HUD de ahora en adelante-, que contendrá un plano
alineado con la cámara sobre el que renderizar los botones, y mayor prioridad de
renderizado para asegurar que siempre se dibuje por encima del escenario.

La ilustración 1 muestra la diferencia entre las proyecciones en perspectiva y ortográfica.

44

Ilustración 1: Comparativa entre proyecciones ortográfica y en perspectiva

Figura 25: Proyección ortográfica Figura 26: Proyección en perspectiva

Otro ejemplo donde, se ha optado por buscar mecanismos reconocibles para el usuario ha
sido la herramienta de PaintTool. Se pretendía poder cargar un único marco de cuadro y
luego con un bote de pintura como el usado en las herramienta de diseño 2d “rellenar” el
lienzo con una imagen preseleccionada por el usuario. Esta herramienta requiere de un
“selector de relleno” al igual que en de diseño herramientas 2d tales como Photoshop.

Para seleccionar las imágenes no obstante se ha preferido subir todas las imágenes de una
tacada al servidor, comprimir-las en el servidor y descargar el conjunto comprimido con
todas las imágenes al inicio de la aplicación. Esta decisión obedece a una restricción
impuesta por el protocolo Hyper Text Transfer Protocol -HTTP- que no permite más de 2
peticiones asíncronas al mismo tiempo; esto a su vez provoca que si se intentan pedir
muchas imágenes separadas se producen errores en el plugin O3D sobre los que no se
tiene control y que han sido el mayor problema en el desarrollo de la aplicación.

El otro gran problema es el hecho de que para diferentes aplicaciones 3d se suelen escoger
arbitrariamente los ejes que representan profundidad, altura y anchura respectivamente,
con lo que muchas veces se modela una figura en una aplicación externa, y al cargarla en
O3D la figura aparece volteada varios grados alrededor de algún eje, y se debe volver a la
aplicación de diseño (o herramienta de exportación) y rotar la figura varias veces hasta dar
con la orientación que requiere O3D, ralentizando el desarrollo de la aplicación.

Otro factor que ralentiza notablemente el desarrollo 3d es la complejidad de las estructuras
de datos con las que se trabaja.

Todo ello fuerza a dedicar mucho tiempo a tareas de debug. Por ello para el proyecto se
han añadido algunos paneles al lateral de la web para dar información de debug sobre
materiales y transformadas. Estos se podrían ampliar para modificar dichos materiales y
transformadas pero se optó por no realizar dichas ampliaciones. El acceso a estos paneles
es público si bién en un futuro sería deseable que fuera restringido.

La figura 27 muestra una captura de pantalla del gestor.

45

Figura 27: Captura de pantalla del gestor de museos

6.4 Fase 3

La tercera fase de implementación ha sido la más rápida de las tres, en gran parte gracias
al esfuerzo hecho en la segunda para diseñar código reutilizable. En esta fase solamente se
han creado dos objetos nuevos VisorMuseo3D y Actor.

Gran parte de la funcionalidad de cargar museos y exposiciones se implementó ya en la
segunda fase. La respuesta a eventos también estaba hecha. Por todo esto el Visor
solamente es un contenedor que contiene una serie diferente de atributos respecto del
gestorMuseo3D. Las mayores diferencia residen en el hecho de no disponer de las
herramientas del gestor y de disponer de un Actor.

Un actor es un avatar tridimensional capaz de caminar por el museo, controlado por el
usuario con las teclas de dirección del teclado, capaz de detectar las paredes y que se
detiene ante una. La cámara sigue al avatar colocándose tras su espalda. El usuario puede
hacer girar la rueda del ratón para que la cámara se acerque hasta el avatar lo suficiente
como para que este no bloquee la vista, de forma que el usuario pueda admirar las obras de
arte expuestas en la exposición. El avatar es capaz de caminar adelante y atrás usando la
misma animación marcha atrás y adelante respectivamente.

Dada la alta cantidad de datos que implica toda la geometría, para el actor junto con todas
sus texturas y animaciones , se ha tenido que tener mucho cuidado con el tamaño de las
texturas pues O3D tiene un limite máximo, y no conforme con eso , el hecho de cargar un
modelo para un actor que solamente el actor supera las 15Mb significa que la descarga de
dicho modelo puede ralentizar la carga de la página sensiblemente. Para minimizar este
efecto, que se aprecia más sensiblemente cuanto más lenta es la conexión del cliente, se
optó por una carga asíncrona que permite cargar la página antes y luego mostrar algún
mensaje al usuario con el porcentaje de carga del modelo.

La figura 28 muestra un diagrama de clases que lo resume.

46

"Es importante destacar que ningún ingeniero software con ética consentiría escribir
un procedimiento llamado DestruirBaghdad. Su ética le obligaría a escribir un

procedimiento DestruirCiudad, al que se pasaría el parámetro Baghdad"
 -- Nathaniel S. Borenstein

La figura 29 muestra una captura de pantalla con el visor,

47

Figura 28: Diagrama de clases Fase 3

Figura 29: Captura de pantalla del visor de museos

6.5 Tests

Testear una aplicación sin acabar no es la mejor de las ideas. No obstante, a modo de
muestra se ha incorporado un único test funcional basado en Selenium que es un
Framework para automatizar tests en el desarrollo web. El test en cuestión testea el
correcto login. No se han creado más tests por falta de material a testear por un lado y falta
de tiempo para escribir más tests por el otro.

Para ello se ha usado un plugin para el explorador Firefox llamado SeleniumIDE que
permite grabar las actividades de un usuario en una determinada página web y generar un
archivo que se toma como base para un test de Selenium. Luego con un plugin que permite
integrar Selenium, y PHPUnit en NetBeans se pueden crear tests que realizan
automáticamente las mismas acciones que se han grabado con SeleniumIDE y al mismo
tiempo se realizan una serie de aserciones para determinar el correcto funcionamiento de
la página, constituyendo así un excelente sistema de tests automatizado, capaz de ejecutar
la misma tarea un número indeterminado de veces sin necesidad de presencia o acción
humana y generando un informe con los errores detectados, es decir las aserciones que no
se han cumplido. Todo ello se invoca desde el NetBeans.

6.6 Bugs conocidos y funcionalidades incompletas.

Para la consecución del proyecto, a lo largo del desarrollo del mismo, se han dejado
pendientes varias tareas descritas a continuación:

• No hay ningún perfil para administrador.

• No se ha `probado la aplicación lo suficiente. Más notoriamente no se han
desarrollado tests unitarios para las clases implementadas.

• No se ha comprobado el correcto funcionamiento de la página web en ningún otro
explorador a parte de Mozilla Firefox, esto incluye a Chrome, Internet Explorer,
Opera, Konqueror o Safari entre otros.

• No se aplica la detección de colisiones en el visor cuando el actor camina hacia atrás,
y por lo tanto atraviesa las paredes.

48

"No te preocupes si no funciona bien. Si todo estuviera correcto, serías despedido de
tu trabajo"

-- Ley de Mosher de la Ingeniería del Software

"Depurar es al menos dos veces más duro que escribir el código por primera vez.
Por tanto, si tu escribes el código de la forma más inteligente posible no serás, por

definición, lo suficientemente inteligente para depurarlo"
-- Brian Kernighan

• No se ha encontrado ningún sistema de documentación automático para el código
JavaScript y por ende no se ha generado tal documentación.

6.7 Documentación

Para generar la documentación se ha hecho uso de PhpDocumentor, el cual a partir de los
comentarios en el código es capaz de crear automáticamente toda la documentación para el
código php. La documentación se encuentra en el apartado de anexos en el CD adjunto.

49

"El buen código es su mejor documentación"
-- Steve McConnell

7 Conclusiones

Esta sección contiene una descripción con los objetivos del presente proyecto logrados y
no logrados. Seguidamente una breve exposición de las conclusiones que se desprenden
del proyecto y para finalizar una relación de posibles ampliaciones.

Como objetivos principales del proyecto se proponían la creación de un gestor de museos
virtuales que permitiera realizar visitas virtuales a dichos museos. En mayor o menor
medida se han logrado cumplir todos los objetivos marcados, si bien ello a implicado
hacer una serie de concesiones en cuanto a funcionalidades, y cantidad de efectos gráficos
que O3D permite. Respecto de la planificación se ha logrado completar el proyecto con un
margen de tiempo cercano al previsto como muestra la figura con la planificación al
finalizar el proyecto. La codificación de la fase 2 resultó necesitar muchas más horas de
las previstas, no obstante no se requirieron horas para el modelado del museo 3d para la
versión de demostración, pues se encontraron varios modelos hechos a través de Internet
compensando el número de horas extra necesitadas durante el desarrollo.

50

"Es mejor cojear por el camino que avanzar a grandes pasos fuera de él. Pues quien
cojea en el camino, aunque avance poco, se acerca a la meta,mientras que quien va

fuera de él, cuanto más corre, más se aleja."
--San Agustín

Figura 30: Diagrama de Gantt, muestra la planificación al termino del proyecto

A continuación se exponen las conclusiones que se han extraído del proyecto.

Históricamente se ha intentado repetidas veces juntar 3d y web, y en todos los intentos el
enfoque ha sido el de intentar revolucionar las interfaces actuales, conocidas por los
usuarios, sustituyéndolas por modelos innecesariamente complejos.

En todos estos casos dos factores han influido negativamente en el asentamiento de dichas
tecnologías, el primero es la complejidad tanto a nivel de implementación para el
desarrollador, como para el usuario; el segundo eran las limitaciones técnicas impuestas
por las tecnologías de conexión que no permitían muchos alardes en términos de calidad
gráfica. Así tecnologías como VRML97 quedaron en el olvido.

El hecho de que el proyecto trate acerca de museos no es sino una escusa para tratar de
unir el mundo del 3d y el mundo web una vez más. Esta vez, no obstante, dando un
enfoque orientado a dar vida a proyectos con salida comercial, buscando en todo momento
que la interfaz sea lo más intuitiva posible para los usuarios. Es decir salvando los dos
obstáculos que anteriormente hicieron fracasar toda tentativa.

El desarrollo de proyectos de dicha índole con las herramientas que dispone el mercado es,
sin duda alguna, posible hoy en día, y existen infinidad de áreas comerciales que podrían
hacer uso de dicha tecnología, desde museos y salones de exposiciones hasta galerías de
moda, probadores de ropa virtuales para tiendas de ropa online, pasando por juegos online
y salones de chat virtuales. El límite lo ponen la creatividad y un espíritu emprendedor por
parte del desarrollador.

Para el proyecto, durante la fase del análisis de viabilidad se barajaron varias tecnologías
para sustentar técnicamente al mismo. Se optó por Google O3D. Las alternativas basadas
en flash parecían condenadas al fracaso. Solamente WebGL se presentaba como alternativa
realista a largo plazo y al mismo tiempo resultaba demasiado inmadura como para ser
usada. En el momento del análisis, solamente Mozilla Firefox 3.7prealpha soportaba
WebGL, y era una implementación llena de bugs que hubiere entorpecido el desarrollo del
proyecto. No obstante, WebGL se estaba posicionando como el estándar de facto para el
3d.

Pues bien, recientemente, Google que no era ajena a este dato, ha sustituido su plugin O3D
por una implementación nueva de la librería que continúa llamando O3D, la cual se
sostiene sobre WebGL. Por tanto no se requiere un plugin externo al explorador que era la
mayor desventaja de O3D y pasa a estar soportado nativamente por los exploradores que
decidan dar soporte a WebGL (Firefox, WebKit y Chrome confirmados). Esto significa a
su vez que el uso de shaders basado anteriormente en HLSL y Cg pasa a usar únicamente
GLSL. Salvo este cambio las aplicaciones creadas anteriormente con el plugin continuarán
funcionando con la implementación basada en WebGL con un mínimo esfuerzo por parte
del desarrollador y con la dos grandes ventajas de pasar a no depender de un Sistema
Operativo determinado y de la necesidad de que el usuario deba instalar un plugin. Sin
duda alguna Google se gana con este movimiento el posicionarse con la tecnología que
esta llamada a ser estándar de facto para unificar 3d y web. Todo aquel que se quiera subir
al tren, seguirá el camino de O3D.

Ser pionero en la aventura de la web 3d, no solamente ha sido emocionante, sino que me

51

ha permitido adquirir una serie de conocimientos que en un entorno de competencia
profesional, ofrece una ventaja competitiva clara, permitiendo brindar a los clientes un
producto diferencial, el cual, la competencia esta a años luz de poder ofrecer.

Uno de los requerimientos no funcionales del proyecto era el de escribir un proyecto con
código reutilizable. Esto responde a la intención de continuar el desarrollo del mismo
ampliando la base creada a lo largo del proyecto con nuevas funcionalidades, diseños más
robustos si cabe, interfaces más sencillas, un mayor uso de O3D, más efectos gráficos, y
dar el salto a la implementación WebGL del plugin O3D. Todo esto con el objetivo en
mente de explotar económicamente dichas ampliaciones en proyectos con salida comercial
a medio – largo plazo. Algunas de dichas ampliaciones se discuten a continuación.

7.1 Ampliaciones futuras

A continuación se muestra una relación de ampliaciones a realizar al trabajo del proyecto.

• La primera de las ampliaciones que están en la lista de futuras ampliaciones es el
paso a usar la implementación de O3D basada en WebGL. Este paso incluye sustituir
todos los shaders , actualmente escritos en el lenguaje del plugin y escribirlos en
GLSL. Ello implica usa serie de cambios en algunos de los objetos como
BitmapTexture. También implica empezar a testear la aplicación en diferentes
entornos, incluyendo pero no limitado a Linux, y MacOS X puesto que lograr hacer
ver sin errores las aplicaciones usando shaders GLSL en dichos entornos tiene más
posibilidades de éxito que las que se tenían con el plugin. Implicaría no obstante un
estudio previo sobre que extensiones de OpenGL son más comunes de encontrar
implementadas en la mayor variedad posible de hardware gráfico a largo plazo para
evitar incompatibilidades.

• Mejorar el soporte para animaciones. Actualmente el modelo del actor solamente
dispone de una única animación. Poder usar un grafo estados con tantas animaciones
como transiciones de estado en el grafo, y algún sistema que permita configurar
fácilmente los eventos que disparen un salto de un estado a otro y por lo tanto la
reproducción de una animación u otra.

• Crear herramientas de debug para acelerar el desarrollo de nuevas funcionalidades.

• Otras mejoras menores, pero no por ello menos importantes, son el hecho de hacer un
uso más extenso de ideas que imiten las interfaces a las que los usuarios se
encuentran acostumbrados. Por falta de tiempo, por ejemplo , el puntero del ratón no
cambia de icono al pasar por encima de los botones para las herramientas del gestor,
y las imágenes de estos no cambian al ser pulsados.

52

"Preguntarse cuándo los ordenadores podrán pensar es como preguntarse cuándo los
submarinos podrán nadar"

-- Edsger W. Dijkstra

• La mejor manera de vender un producto es que entre por los ojos. Así pues, donde
ahora encontramos un museo sombreado, sin ningún fondo, sin luces, sin objetos
dinámicos con los que interactuar, sin fuentes de las que brote agua, si antorchas de
las que mane una llama, sin guías que nos expliquen la historia detrás de cada cuadro,
se podría crear todo esto y mucho más. Se podrían crear efectos de enviroment
mapping, refracción, reflexión, normal mapping, cell shading, high dynamic
range(HDR), etcétera. La figura 31 muestra algunos efectos de entre la infinidad que
se podrían usar a tal efecto.

53

Figura 31: Efectos gráficos

8 Bibliografía

A continuación se detalla la bibliografía básica:

1. CROCKFORD Douglas. JavaScript: The Good Parts. O'Reilly Media, (2008). 153
páginas. ISBN:0596517742.

2. Manual de documentación jQuery [en linea] [Consulta: Agosto 2010]
http://docs.jquery.com/Main_Page .

3. Manual de documentación jQueryUI [en linea] [Consulta: Agosto 2010]
http://jqueryui.com/demos/ .

4. Manual de documentación MySql [en linea] [Consulta: Agosto 2010]
http://dev.mysql.com/doc/ .

5. Manual de documentación O3D [en linea] [Consulta: Agosto 2010]
http://code.google.com/intl/es-ES/apis/O3D/docs/index.html .

6. Manual de documentación PHP [en linea] [Consulta: Agosto 2010]
http://www.php.net/ .

7. Manual de documentación Selenium [en linea] [Consulta: Agosto 2010]
http://seleniumhq.org/docs/ .

8. O3D-Announce [lista de correo] [Consulta: Agosto 2010] O3D-announce .

9. SHREINER Dave, MASON Woo, NEIDER Jackie, DAVIS Tom. OpenGL(R)
Programming Guide: The Official Guide to Learning OpenGL(R), Version 2.1. 6ª
edición. Addison-Wesley Professional, (2007). 928 páginas. ISBN:0321481003.

10. SHREINER Dave, khronos OpenGL ARB working group. OpenGL(R) Programming
Guide: The Official Guide to Learning OpenGL(R), Version 3.0 and 3.1. 7ª edición.
Addison-Wesley Professional, (2009). 936 páginas. ISBN:0321552628.

11. STEFANOV, Stoyan. Object-Oriented JavaScript: Create scalable, reusable high-
quality JavaScript applications and libraries. Packt Publishing (2008) . 356 páginas.
ISBN:1847194141.

12. ST LAURENT, Sebastien. Shaders for game programmers and artists. Course
Technology PTR (2004) . 483 páginas. ISBN:1592000924

13. BASORA Jordi, JANÉ Àngela, GUITERAS Josep M, Matemàtiques batxillerat
credits 4,5,6, Mc Graw Hill, 263 páginas. ISBN: 8448112989.

54

Si cerca de la biblioteca tenéis un jardín ya no os faltará de nada.
– Marco Tulio Cicerón

http://groups.google.com/group/o3d-announce
http://seleniumhq.org/docs/
http://www.php.net/
http://code.google.com/intl/es-ES/apis/o3d/docs/index.html
http://dev.mysql.com/doc/
http://jqueryui.com/demos/
http://docs.jquery.com/Main_Page

8.1 Otros enlaces

En esta sección se citan algunas herramientas útiles en el mundo del desarrollo web citadas
a lo largo de la memoria sin ser necesariamente usadas en el proyecto:

1. Google translate api, permite traducir de forma dinámica el contenido de tus páginas.
[en linea] [Consulta: Agosto 2010] http://code.google.com/intl/es-
ES/apis/ajaxlanguage/

2. Google ajax api, permite una forma de cargar librerías y frameworks ajax desde
un CDN (Content delivery network, dicho rápido y mal, una nube de servidores
dedicados) de Google, logrando reducir la latencia al cargar estas librerías,
aumentando la capacidad de cargar librerías en paralelo y mejorando el soporte de
catching(efecto memoria del explorador web, que evita volver a cargar una librería si
ya se ha cargado con anterioridad).[en linea] [Consulta: Agosto 2010]
http://code.google.com/intl/es/apis/ajaxlibs/

3. Google gears, tecnología que permite explorar webs dinámicamente sin necesidad de
estar conectado a la red, que una vez te conectas puedes usar para sincronizar los
contenidos en linea con los guardados localmente en el cliente. Nota: HTML 5
soportaría nativamente el mismo tipo de funcionalidad.[en linea] [Consulta: Agosto
2010] http://gears.google.com/

4. Google closure tools, herramientas para optimizar código JavaScript, reduciendo el
tamaño de los archivos,[en linea] [Consulta: Agosto 2010]
http://code.google.com/intl/es-ES/closure/

5. Google search api,búsquedas transparentes en tu web con el motor de búsquedas de
Google[en linea] [Consulta: Agosto 2010], http://code.google.com/intl/es-
ES/apis/ajaxsearch/

6. Google maps api, funcionalidades de geolocalización en tu web,[en linea] [Consulta:
Agosto 2010] http://code.google.com/intl/es-ES/apis/maps/

7. Google visualization api, soporte para mostrar diagramas y gráficos en tu web,[en
linea] [Consulta: Agosto 2010] http://code.google.com/intl/es-ES/apis/visualization/

8. away3d, motor 3d basado en flash [en linea] [Consulta: Agosto 2010]
http://away3d.com/

9. papervision3d, motor 3d basado en flash [en linea] [Consulta: Agosto 2010]
http://blog.papervision3d.org/

10. smarty, motor de plantillas HTML muy usado y potente [en linea] [Consulta: Agosto
2010] http://www.smarty.net/.

55

"¿Internet? ¿Todavía anda eso por ahí?"
-- Homer Simpson

http://www.smarty.net/
http://blog.papervision3d.org/
http://away3d.com/
http://code.google.com/intl/es-ES/apis/visualization/
http://code.google.com/intl/es-ES/apis/maps/
http://code.google.com/intl/es-ES/apis/ajaxsearch/
http://code.google.com/intl/es-ES/apis/ajaxsearch/
http://code.google.com/intl/es-ES/closure/
http://gears.google.com/
http://code.google.com/intl/es/apis/ajaxlibs/
http://code.google.com/intl/es-ES/apis/ajaxlanguage/
http://code.google.com/intl/es-ES/apis/ajaxlanguage/

56

	1 Introducción
	1.1 Descripción general
	1.2 Objetivos
	1.3 Acerca de este documento
	1.4 Motivación personal y agradecimientos

	2 Estudio de viabilidad
	2.1 Planificación
	2.2 Viabilidad técnica
	2.3 Viabilidad económica
	2.4 Viabilidad legal
	2.5 Conclusiones

	3 Análisis de requerimientos
	3.1 Roles
	3.2 Requerimientos funcionales
	3.3 Requerimientos no funcionales

	4 Fundamentos teóricos
	4.1 Álgebra y 3D

	5 Tecnologías y herramientas usadas
	6 Fases de diseño, implementación y tests
	6.1 Diagrama de Casos de Uso
	6.2 Fase 1
	6.3 Fase 2
	6.4 Fase 3
	6.5 Tests
	6.6 Bugs conocidos y funcionalidades incompletas.
	6.7 Documentación

	7 Conclusiones
	7.1 Ampliaciones futuras

	8 Bibliografía
	8.1 Otros enlaces

