UnB

Universitat Autonoma
de Barcelona

MONITOR

DE SERVIDORS JMS

Memoria del projecte
d'Enginyeria Técnica en
Informatica de Gestid
realitzat per
Jordi Manzano Ulloa
| dirigit per

Marc Tallé Sendra

Escola Universitaria d'Informatica

Sabadell, setembre de 2010






El/la sotasignant, Marc Tallé Sendra,

professor/a de I'Escola Universitaria d'Informatica de la UAB,
CERTIFICA:

Que el treball al que correspon la present memoria
ha estat realitzat sota la seva direccié

per en Jordi Manzano Ulloa

| per a que consti firma la present.
Sabadell, Setembre de 2010

Z

i

Signat: Marc Tallé Sendra







La tecnologia Java Message Service és una API que habilita la transmissiéo de missatges entre
aplicacions Java, actuant com a middleware i fent possible el funcionament d'aplicacions distribuides

sobre plataformes heterogénies.

El monitor de servidors JMS és un projecte basat en el disseny i implementacié d'una eina GUI,
destinada a programadors i equips de proves, que treballin amb la tecnologia Java Message Service,
multiplataforma i multiservidor, que podra monitoritzar un nombre variat de servidors JMS des de

qualsevol sistema que tingui una maquina virtual de Java instal-lada.

L'aplicacio té com a principal objectiu visualitzar de forma clara i senzilla I'estat global d'un servidor
JMS, mostrant les cues i topics creats, juntament amb la possibilitat de realitzar accions sobre les
mateixes destinacions (enviament i eliminacid de missatges residents al servidor) i la creacié de
grafiques sobre el trafic de missatges. Aixi doncs, el monitor ha d'esdevenir una eina focalitzada al
trafic de missatges, que permet a simple cop d'ull veure informacié del servidor sense interactuar

gairebé amb la mateixa.






Index

LU 11 o o (U oo o TP 11
R =11 o = Vo o T 11
1.2 ODJECHIUS eI PrOJECTE. ... ettt e e e e e e e e e e e e e e e e e e 14
R B = L o = = o O 16
R 1V o) 1)V 7= o1 T o < P 21
1.5 Estructura de 1a MEmMOKIa..........oooiiiiiiiii et e e e e e e e e e e e e e e e e e e aaa s 22

2 Estudi de Viabilitat...........oooene e aanans 23
D22 I 11 (0T [T o T 23

2.1.1 Avantatges de l'aplicacid a implementar.............ooouiiiiiiii e 24
2.1.2 Inconvenients de l'aplicacio a implementar..............cooovviiiieiicccii e 25
A O o] = Tor (SO PPPPPPPN 26
2.2.1 Descripcid de la situacid a tractar............oouuiiiiiiiii e 26
2.2.2 Perfil A& I'USUAN. ... .ottt e ettt e e e e e e e e e e e e e e e e eea e e eeeannns 27
2.2.3 ODBJECHIUS. ...ttt e e e e e e e s 28
2.3 DeSCrpCIO del SIStEMA.......cooiiii e 30
2.3.1 Analisi dels llenguatges de programaciO.............coooiiiiiiiiiiiiiii e 30
2.3.2 Analisi de proveidors JIMS..........co oot aaraas 32
2.3.3 Analisi d'entorns de desenvolupament integrats..............cooooiiiiiiiiiiiiiiii e 34
2.3.4 Analisi de llibreries grafiqUeS..........cciii i it 34
G Rl Y= | (U= TedTo e L= 4o o 1 35
P2 TG U= o1 ] =T L3P 36
2.4 OrganitZzacio del PrOJECIE. ... .uuu e e e e e e e e 38
2.5 ANALISI COSE = DENETICI. ...ce e 39
2.5.1 COStOS reCUIrSOS MALEIIAIS. .......uueiiiiiiiiiiiiei et e e e e e e e as 39
2.5.2 COStOS rECUISOS NUMANS. ....uuuuiii i eeee e e e et e e e e e e e e e e e e e e e e e e et eeensan s 40
R TR BN =YW oo P 41
2.6 PlanifiCacil del PrOJECEE. .. ...ttt a e e e e e e e 42
2.6.1 Model de desenvolupament i etapes del projecte...........uceeiiiiiiiiiiiiiiiiicicce e, 42
2.8.2 US A IS FECUISOS. ...t e et e e e eee e 43
2.6.3 Técniques de planificacio i CONTIOL............ooiiii e 43
B o] g o1 813 o] o 1= PP 47

B I o g F= T =Y a1 30 (=T 4 o= T 49
R Tt I 101 Yo [ T o1 T TP 49
G B2 1V o [o | Y= - PP 51

K 0 I o S 52
3.2.2 MOM i el paradigma de la MiSSatgerial...........cuuuiiiiiiiiiiiiiei e 54
3.2.3 RPC vS. MiSSatgeria ASINCIONA. .........uuuuiiiiiiiiiiiiiiee e 61

3.3 JaVA MESSAQGE SEIVICE. ... .ttt e ettt e e 65



G T Tt I [0 o Yo [ o3 o TP 65

3.3.2 Models (publicador - subscriptor / punt @ punt ).........coooiiiiiiiii e 67
3.3.3 Fonaments basics de JMS.........oo e 69
R I ot =Y o = 1 PP 81
3.3.5 Consideracions d'una implantacio amb JMS.............oooi e 82

4 ANAlISi € rEQUETMENTS.....ciiiiiiiiiei et e e e ettt e e e e e e e e e e e e e eeeetana e e e e e eeaneeeenens 87
4.1 DescripCiO del ProJECTe. ... .o 87
4.2 Requeriments fUNCIONAIS............ e e e e e e et e e e e e eea s 89
4.2.1 Interficie grafiCa........ccoiiii e aaanan 89
4.2.2 Gestid de la configuracio i CONNEXIO. .........uuuieriiiiiiiiiiiiiii e 90
4.2.3 Dades MOSIrAdES. .....oooiieiiiii e 91
4.2.4 ACCIONS SODIE €] SEIVIAON ... .ci it e e e e e e e eeennns 92
4.3 Requeriments NO fUNCIONAIS...........uuuiiiiiii e 93
R B[ E1=T gLV e [N = o] oz o] o TS 94
5.1 Configuracid de la plataforma.............ooooiiiiiiii e 94
5.1.1 SistemMa OPEIratiU.........cooiiiiiiiiei e e 95
5.1.2 Servidors JMS . ... e e e e e e e e e e e e e e e e e eene 96
5.1.3 Entorn desenvolupament integrat.............ooooiiii i 98

o O I 1 o =Y =T 3PP PPPTPP 99
T BRI N |1 =TS IR o] 1= Tor o] o 1 99
LA 07T Yo =3 1= TP 101
5.2.1 GeStioNAr CONNEXIO........ouiiiiiiiiiiie ettt e e e e e e eeaa e e e eeenees 101
5.2.2 EMMAgatZEemar SESSIO.........uuuuuuiiiiiiiiiiiiiieiiieee et et e e e e e e e e e e e e e e e e e e e s eeae 103
5.2.3 RECUPEIAI SESSIO. ....uuueeeeiiiiiiiiiiiiee et e e e e et e e e e et et e ettt e e e e e e eeeane e eeeeeene 104
A Y (ST o= F= To [ R 106
5.2.5 ENVIar MiSSAtgES. ... ittt enee 107
5.2.6 Netejar deStNACIO. ..ot e e e 108
5.2.7 Consulta missatges de la destinacCio.............coooiiiiiiiiiii e 109
5.2.8 Crear grafiCa......ouee i 110
5.2.9 TaNCAr GrafiCa.. ..o 111
5.3 Altres consideracions del diSSENY............uuuiiiiiiiiiiiiiiiiee e 112
5.3.1 Interficie amb ProVEIAOIS.........uuueiiii et e e e e e e e e e eaera e eee 112
5.3.2 INterfiCie GrafiCa.........uuueiiiiiiiiiiiiie e e e e e e e e 114
STRC IR N C1=1S] (o e = (=Y o T[] 1 SR 115

LS I T g o= 0 41T o1 =T T P 117
6.1 Estructura de fitxers i dir€@CtOriS. ... ....ooeiiie e 117
6.1.1 JMSMONItOrINTEITACE. ... e 118

ST IV 1Y, 151 1Y, (o o 11 (o] SRR 119



6.2 Configuracio de 12 @PlICACIO. ... e 121

I B N = (o= E o L= = T o] o= T (o TP 121
6.2.2 MU IJIOMIA. ... .ttt e e e et e e et e e e e e e e et e e e e e e e ara e eeas 123
5.2.3 ICONES 1 IMALGES. ... .ttt ettt et et e et e e e e e e aaaeeeeaaeeees 124
6.3 Interficie d'adminiSIraCiO..........couuuieiiiii e 127
6.4 ClIENT GrAfIC. . .eeeeeeeeiiiiee et e et e e e 142
L o B 0T g Ted o F= 11 = o = 1] o= TP 145
6.4.2 GEStIO dE 1ES SESSIONS. ...ciiieeiiieieiie ettt e e e e e e e e e e aeaaans 154
6.4.3 Funcionalitats amb destinaCioNS...........oooi oo 161
B.4.4 GrafiQUES. ... oottt e e e e e e e e e e e e aaaaea e e eaaaaas 167
TR (0= T 171
@70 o7 1011 o o - 7R 180
7.1 ODJECHUS @SSOIS. .....eeeiiieeiiiiie et e e et e e e e e e e e e e e e e e e e e eeeeeeees 180
44 L= =T [0 o F 182
7.3 Linies de desenvolupament ODEIMES. .........cooiiiiiii i e 184

7.4 Valoracio personal

BIBLIOGRAFIA. ...ttt et e e et e e e e e e s e e e e s e e e e s e e e e anreeeeeeens 186






Monitor de servidors JMS Jordi Manzano Ulloa

CAPITOL

Introduccio

1.1 PRESENTACIO

La Java Message Service (JMS) és una API' (interficie de programacié d'aplicacions) de
l'empresa Sun Microsystems, que habilita la transmissid6 de missatges entre aplicacions
desenvolupades sota la plataforma Java 2. Actua doncs com middleware orientat a missatges
(MOM); basat en una infraestructura d'enviament i recepcid de missatges, augmentant la
portabilitat i flexibilitat del sistema i fent possible el funcionament d'aplicacions distribuides sobre

plataformes heterogénies. Per la comunicacié s'utilitzen cues o topics:

*+ CUES: La comunicaci6 s'estableix punt a punt; un client productor de missatges envia
missatges a una cua. Un client consumidor es connecta a aquesta per tal d'obtenir
missatges que en ser consumits, seran eliminats de la cua. Aquest model assegura la

persisténcia del missatge en cas de no ser consumit.

1 API (Application Programming Interface) és el conjunt de procediments i funcions que ofereix una llibreria per ser utilitzada per un

altre programa com una capa de abstraccié.

Escola Universitaria d'Informatica de Sabadell 11



Monitor de servidors JMS Jordi Manzano Ulloa

« TOPICS: Es basa en un model publicador / subscriptor: existeixen diversos clients que
publiquen missatges mitjancant el topic, que podran ser consumits al mateix temps per
diversos clients subscriptors. Aquest model no assegura la persisténcia del missatge en
cas de que no hagi subscriptors escoltant, provocant doncs la pérdua de les dades que

contenia el missatge.

Cal dir que la implementacié de la interficie JMS vindra donada per un proveidor de
missatgeria JMS que es situara en el centre de la comunicacié entre aplicacions: aixd permet que
es pugui canviar de servidor JMS sense modificar el codi de les aplicacions, ja que el programador

usara la interficie definida per Sun Microsystems. Com a servidors de JMS podem destacar:

Programari lliure:

+ JBoss

* ActiveMQ

* Fuse Message Broker
+ JORAM

*  Open JMS

Programari de propietari:

« TIBCO EMS

+  WebSphere MQ

* WebSphere Application Server

* Bea Weblogic

La majoria de servidors JMS inclouen consoles i APIs d'administracié per poder realitzar la

gestié dels mateixos:

Escola Universitaria d'Informatica de Sabadell 12



Monitor de servidors JMS Jordi Manzano Ulloa

OpenJM5 Administrator: ../config/fopenjms.xml
File Actions

? ] OpendMSServer
Add Queue

Add Topic

Add User

Purge Messages

T

Connected - Online Mode

Figura 1: Consola d'administracié de OPENJMS

No obstant, en la practica acostumen a ser aplicacions CLI (command-line interface) o GUI
(graphical user interface) enfocades a I'administracié del servidor de missatgeria i no als rols que
efectuen els programadors o els equips de proves, centrats en les aplicacions que utilitzen el
servidor per comunicar-se i no en l'administracié del mateix. Per tant, es podrien resumir les

necessitats d'aquests en:

* Control dels missatges entrants i sortints al servidor JMS, per veure la carrega que hi ha al

sistema.
+ Control dels missatges acumulats (no consumits) al servidor.

» Enviament de missatges a una destinacio (topics o cues), de tal forma que l'usuari rapidament
pot realitzar proves amb els seus desenvolupaments generant un missatge en una destinacié

concreta.
* Eliminacié de missatges no consumits en una destinacié (topics o cues).
* Interficie grafica intuitiva i facil d'utilitzar.

* Gestio de servidors favorits, per tal de no introduir totes les dades requerides per la connexio,

cada vegada que es vulgui monitoritzar un servidor JMS.

Escola Universitaria d'Informatica de Sabadell 13



Monitor de servidors JMS Jordi Manzano Ulloa

1.2 OBJECTIUS DEL PROJECTE

L'objectiu més rellevant a assolir amb el projecte és el disseny i la implementacioé d'una eina
facilment ampliable per la monitoritzacié de servidors JMS, tal que el model inicial de la primera

versio contingui les seguents funcionalitats:

* GUI: la disponibilitat d'una interficie grafica per la representacié de la informacid fa més

comprensible les dades obtingudes i facilita I'is a I'usuari.

* Funcionalitat minima d'administracié: malgrat I'objectiu no és la gestié propia del servidor,
el monitor ha de contenir unes funcionalitat minimes que poden ser utilitzades pels
programadors o provadors. Aquestes poden ser la creaci6 i eliminacié de destinacions (cues

o topics) i I'eliminacié dels missatges que persisteixen al servidor.

* Independéncia de plataforma: I'usuari pot treballar amb diferents sistemes operatius, per tan

€s necessari que ' aplicacio pugui correr sota qualsevol plataforma.

* Aplicacié enfocada al trafic de missatges: la disposicid dels elements i objectes grafics, la
informacioé recollida i mostrada per I'aplicacio, i les funcionalitats per interactuar amb les cues
i topics estan enfocades al trafic de missatges entrants i sortints que es registra en el

servidor.

* Independéncia de servidor JMS: no té sentit fer un monitor per un servidor en concret, ja
que l'aplicacié ha d'aprofitar una de les avantatges de la APl JMS, com és la independéncia

del codi amb la implementacié proporcionada pel servidor amb el que s'estigui treballant.

Escola Universitaria d'Informatica de Sabadell 14



Monitor de servidors JMS Jordi Manzano Ulloa

Tots aquest objectius descrits anteriorment sén de caracter funcional i resumeixen els serveis
que ha de proporcionar una aplicacié de monitoritzacié de servidors JMS. No obstant, una de les
fites més importants en el projecte és la independéncia del monitor amb els proveidors JMS, de tal
manera que tingui una amplia compatibilitat amb diferents servidors de missatgeria JMS. Per tant,
el disseny de l'aplicaci6 a implementar ha de contemplar futures actualitzacions d'
implementacions de servidors JMS, minimitzant el cost del manteniment i ampliacions sobre

I'aplicacioé a desenvolupar.

Aixi doncs, el monitor de servidors JMS, ha d'esdevenir una solucié rapida i practica pels
programadors i equips de proves que desitgen un monitor amb funcionalitats basiques, enfocat al
trafic de missatges i al contingut dels mateixos, ampliable en funcié de les seves necessitats i

compatible amb diferents proveidors de missatgeria JMS.

Escola Universitaria d'Informatica de Sabadell 15



Monitor de servidors JMS Jordi Manzano Ulloa

1.3 ESTAT DE L'ART

A dia d'avui, no existeixen gaires solucions que acompleixin amb totalitat amb totes les
necessitats descrites anteriorment; si que és cert que els proveidors inclouen en les seves
implementacions consoles d'administracid i API, perd0 naturalment el perfil del destinatari
d'aquestes eines és el propi administrador del servidor JMS, quan el monitor que es pretén ha
d'incloure a més eines com per exemple, l'enviament de missatges i la lectura de missatges
enregistrats al servidor. Una de les poques aplicacions que acompleixen d'una forma excel-lent els

proposits descrits en els anteriors apartats és HermesJMS.

HermesJMS és un consola extensible que ajuda a l'usuari a interactuar amb els proveidors
JMS navegant per coles o topics, que permet enviar missatges, copiar-los i eliminar-los de les
destinacions escollides. Multiservidor, s'integra perfectament amb JNDI? i permet gestionar les

connexions a servidors JMS de diferents proveidors.

ActiveMQ Oracle

ArjunaMQ Pramati

EMS SAP

FioranoMQ SeeBeyond ICAN
HornetQ SeeBeyond JCAPS
JbossMQ SonicMQ

Jboss Messaging WeblogicMQ
JORAM WebMethods
OpenJMS WebSphereMQ

Taula 1: proveidors suportats per HermesJMS

2 JNDI: API per a serveis de directori que permet als clients descobrir i buscar objectes a través d'un nom, sent independent de la

implementacié subjacent.

Escola Universitaria d'Informatica de Sabadell 16



Monitor de servidors JMS

Jordi Manzano Ulloa

Cost:

HermesJMS és una aplicacié de programari lliure amb llicencia Apache versié 2°, aixo
representa un cost inexistent pels drets del programari, fet que fa d'Hermes una alternativa molt

valida per qualsevol tasca de monitoritzacié de servidors JMS.

Caracteristiques principals:

La interficie grafica es basa en una finestra principal (on es mostrara la informacié de les
destinacions seleccionades) i un marc amb totes les sessions configurades. Per tant, no hi ha un

resum global de l'estat del servidor, si no que, a mesura que es selecciona una destinacio, es

mostren les dades relacionades amb aquesta.

&7 Hermes v1.13

File Messagss Actions Options Help

<

Sessions a B

(= ims A5
= (2 sessions

&, ActiveMg

b ActiveMQ (INDI)

2 ArjunaMg

2 Copy of ActiveM

> EMS

@) $TMP$.EMS-

&) $sys.admin

-8} $sys.lookup

#) $sys.undeliv
) >

-{&) queue

O E-EEE

B B BB

@) queue.samp
{8} sample
>
- sample
@@ topic.sample
@

@@ topic.sample

0000ROO

- topic.sample
(-2, EMS (INDT)
[#-72, EMS (redhat)
+-8,, Files

JBoss

JBoss (HTTF)
JBoss (John)

#-°Z, JORAM
(-7, MyEMS v

\ S

B Tooks A

Browsing topic.sample on EMS (durableName=X00¢): Running. ..

i [X) QQ%@ID@'E@@@@I*M’,;EIL’@i@ﬂﬁ'i Pl
20T eesE X E2)iz e X o)
@ ActiveMy Assas | Z) EMS queue 4 b x
# IMSMessa, .. IMSDestin... IMSTimest, ..  IMSType JMSReplyTa IMSCorrel... IMSExpira. .. IMSPriority
IDEMSSERY.. e Weddnai | | | o |
1 ID:EMS-SERV... queus ‘Wed Aug 05 ... 1] =
2 ID:EMS-SERV... queus ‘Wed Aug 05 ... 0 4
hello
Payload |Haader toString | Hex
3= Filter:| v|J b4
Finished. 8 messages read.
K9 EMS topic.sample name=J6C 4 b X
# IMSMessagelD JIMSDestination IMSTim. .. IMSType IMSRe... IMsCor,.,  IMSExp... JMSPrio...
11769 ID:EMS-SERVER.3C44 ... topic.sample Tue Aug 0... 1] o
11770 ID:EMS-SERVER.3C44 ... topic.sample Tue Aug 0... 1] 4w
Field Name Value Description
35 MsqType 8 ExecutionRepart -~
49 SenderComplD PORT =
52 SendingTime 20060426-18:23:58
56 TargetComplD EDGE w
Payload | Header | toString Haxl FD(‘
j:E Filter: v|_7 x
11771 messages read.
13:11:48 | 27mof2sm ||

Figura 2: Hermes JMS

3 Apache license v2.0: és una llicencia de programari lliure creada per I'Apache Software Foundation (ASF). Permet a l'usuari del

programari plena llibertat d'Us per a qualsevol proposit, distribuir-lo, modificar-lo, i distribuir versions modificades d'aquest programari.

Més informacié a http://www.apache.org/licenses/LICENSE-2.0

Escola Universitaria d'Informatica de Sabadell

17


http://www.apache.org/licenses/LICENSE-2.0

Monitor de servidors JMS Jordi Manzano Ulloa

Es possible accedir al contingut dels missatges sense esborrar-los en el servidor, a més de
filtrar-los i exportar-los a fitxers XML*. Juntament amb la possibilitat d'enviar i esborrar missatges,
Hermes JMS permet cercar cadenes de text en:

* Les capcaleres dels missatges

+ Text en missatges de tipus TextMessage

El resultat de trucar al métode foString de qualsevol objecte en un ObjectMessage.

* Totes les claus i valors de un missatge MapMessage.

Una altra caracteristica interessant és el conjunt de funcionalitats sobre emmagatzematge de
missatges rebuts. D'una banda, permet l'intercanvi de missatges entre destinacions, és a dir,
l'usuari pot moure missatges d'una cua a un topic fent un drag&drop del missatge en la interficie
grafica. D'altra, implementa funcionalitats d'enregistrament de missatges rebuts en les
destinacions a un lloc extern en el servidor (disc dur, base de dades). Tot i aixd cal dir, que

aquesta funcionalitat és experimental.

Perd sense dubte, la gran avantatge de l'aplicacié és el seu suport a una gran quantitat de
proveidors. A més d'obtenir dades concretes de les destinacions mitjangant la interficie de
l'estandard JMS, permet la possibilitat d'incloure els connectors (normalment llibreries o API) que
els proveidors faciliten en les seves implementacions, per tal d'obtenir dades i realitzar funcions

especifiques per aquell servidor JMS en concret.

4 XML o Extensible Markup Language és un metallenguatge extensible d'etiquetes desenvolupat pel World Wide Web Consortium.

Es una manera de definir llenguatges per diferents necessitats. Més informacio a http://www.w3.org/XML/

Escola Universitaria d'Informatica de Sabadell 18


http://www.w3.org/XML/

Monitor de servidors JMS Jordi Manzano Ulloa

£ Preferences

Seasion
Session; c v Transacted:

Audic: [ Reconnects: |
Plug In
BEA .Wg.bLUg.ic L v
|Property Yalus
;jmsServer MyIMS Server
Jweblogicomain rydomain
;webLogicServer Myserver
Connection Factory
Class! fhermes.JNbIConnectlonFactory + | Loader: |weblogic 8.1 w
| Property Yalug |
lbinding javax/ims{QueusConnectionFackory
iinitialContextFactary weblogic. jndi WiInitialContextFactary
JproviderURL 3 fflocalhost: 7o01
|securityCredentials admin
EsacurltyPrlnclpaI admin
Destinations
[Name ShartMame Diormain
:testTUDic@MyJMS Server TOPIC
keskQuene@My IMS Server QUEUE
Connection

ClientIl; | [CJuser: | | Password: | | Shared
Sessions | Providers | General| Renderers
[ QK I ’ Cancel ] ’ Apply ]

Figura 3: Configuracié de connectors de

proveidors a Hermes JMS

Aixi doncs, Hermes JMS és una aplicacié que permet realitzar tasques d'administracié sobre
un gran nombre de servidors de missatgeria Java, on s'inclouen eines i funcionalitats molt
interessants sobre els missatges i les destinacions amb un cost nul. No obstant, encara que
aquesta alternativa acompleixi amb les funcionalitats basiques del proposit del projecte, el disseny
de la interficie fa que el seu Us pels proposits dels usuaris potencials que s'han descrit
anteriorment no sigui gaire efectiu; la navegacié per destinacions fa que sigui dificil tenir una visio
global de les cues i topics. A més, és una aplicacié forga gran i més complicada de configurar i
mantenir, ja que adjunta gestions propies d'administracié de servidors, funcions que no soén
necessaries a priori per les tasques dels usuaris als que va destinat el desenvolupament a

realitzar en aquest projecte.

Altra alternativa és la utilitzaci6 de les consoles i eines que proporciona el proveidor.

Aquestes solen englobar totes les funcions relatives a I'administracié del servidor; creacié de cues,

Escola Universitaria d'Informatica de Sabadell 19



Monitor de servidors JMS Jordi Manzano Ulloa

topics, factories, gestié d'usuaris, estat del servidor i estadistiques generals de missatgeria, entre

d'altres.

-
“Sems " Apache
Software Foundation
. - Wit/ fwnw.apache org/

Home | Queues | Topics | Subscribers | Connections | Send

Connections H Queue Views

= Graph
- XML
Connector openwire

B Useful Links

Name. Remote Address  Enqueue Count | Dequeue Count | Dispatch Queue Size | Active | Slow
= Documentati
ID:nbwfhtmieke-1032-1245855929253-1:10 /127.0.0.1:1032  © o a erue falze = FAQ
= Download:
= Forums
ID:nbwfhtmielke-1046-1245355333643-1:10 /127.0.0,1:1047 O o a true false
1D:nbwfhimielke-4359-1245955625565-1:0 /127.0.0.1:4960 O o a true false
ID:inbwfhtmielke-1044-1245355331887-1:0 /127.0.0,1:1045 O o a true false
ID:nbwfhtmielke-1037-1245355330871-1:10 /127.0.0,1:1038  © o a true false
1D:nbwfhtmielke-1050-1245355335487-1:10 /127.0.0,1:1051  © o a true false
ID:nbwfhtmielke-4395-1245355300565-1:10 (127.0.0,1:48%6 O o a true false

Connector ssl

Name Remote Address Enqueue Count = Dequeue Count  Dispatch Queue Size  Active | Slow

Connector xmpp

Name = Remote Address  Enqueue Count = Dequeue Count = Dispatch Queue Size  Active | Slow

Connector stomp

Name Remote Addvesz  Enquaus Count Daqueus Count | Dispatch Quaua Size  Active | Slow

Network Connectors

Name Network TIL | Dynamic Only | Conduit Subscriptions | Bridge Temps | Decrease Priorities  Dispatch Async

defaultone L falze e s falze true

Figura 4: Consola d'administracio de Active MQ

No obstant, pels desenvolupadors i equips de proves, no és una alternativa prou efectiva; no
solament es vol monitoritzar el servidor, es vol accedir i manipular les destinacions realitzant
accions sobre aquestes com per exemple I'enviament de missatges o obtencié del contingut
d'aquests, tot en una interficie dissenyada envers la missatgeria i les destinacions en comptes de

['administracio del servidor.

Escola Universitaria d'Informatica de Sabadell 20



Monitor de servidors JMS Jordi Manzano Ulloa

1.4 MOTIVACIONS

Actualment, no hi ha gaires aplicacions de monitoritzacié de servidors JMS extensibles a
diferents proveidors, ja que normalment aquests inclouen en les seves implementacions petites
aplicacions i APIs d'administracié per aquestes tasques. Malgrat tot, de I'experiéncia laboral propia
amb servidors JMS, sorgeix la necessitat de disposar d'una eina unica per tal de realitzar proves
amb desenvolupaments que empren aquesta tecnologia; la lectura de missatges sense consumir-
los en el servidor, I'enviament de missatges sobre una destinacié escoltada per un client en
desenvolupament, el comportament de les aplicacions davant la carrega massiva de missatges...

sén tasques rutinaries per programadors i equip de proves.

Aixi doncs, el monitor de servidors JMS neix com un projecte personal impulsat per una
experiéncia laboral, per l'aprenentatge de tecnologies i com una eina ampliable i gratuita per tots
aquells usuaris que vulguin monitoritzar els seus servidors JMS facilment, oferint en un inici

funcionalitats basiques i una estructura escalable.

Escola Universitaria d'Informatica de Sabadell 21



Monitor de servidors JMS Jordi Manzano Ulloa

1.5 ESTRUCTURA DE LA MEMORIA

En aquest primer capitol s'ha realitzat una breu introduccié a I'aplicacié que es vol
desenvolupar, explicant els objectius més importants i destacables juntament amb exemples
d'aplicacions existents que desenvolupen tasques semblants a les proposades pel projecte

exposat. A més, es comenten les motivacions personals i el per qué del monitor de servidors JMS.

En el segon capitol s'analitza la viabilitat técnica i es realitza una planificaci6 amb les fites a
acomplir en el desenvolupament del projecte. Es concretaran els punts i objectius que es pretenen

assolir en aquesta primera versio de I'aplicacio.

En el tercer capitol s'exposen els fonaments tedrics necessaris per entendre el present
projecte, fent un breu resum del que s'entén per un programari d'intermediari o middleware i els
diferents tipus que es poden trobar, tot fent un major émfasi en la tecnologia a la qual aquest

projecte vol facilitar una eina, la Java Message Service.

En el quart capitol es defineixen de manera més precisa les caracteristiques del projecte i es

relacionen els diferents requeriments que el conformaran, previs al seu desenvolupament.

En el cinqué i sisé capitols es descriu de manera detallada les diferents fases del procés de
disseny i implementacio de I'aplicacid, incidint en aquelles parts que han suposat un major grau de
dificultat tecnica. Es comenten a més aquelles correccions més significatives detectades durant

les proves realitzades.

El capitol seté resumeix les conclusions extretes en la realitzaci6 del projecte i
s'analitzen els resultats obtinguts. Es descriuen les linies del projecte que queden obertes i es
mostra una bibliografia completa dels recursos que s'han consultat a I'hora de desenvolupar el

projecte.

Escola Universitaria d'Informatica de Sabadell 22



Monitor de servidors JMS Jordi Manzano Ulloa

CAPITOL

Estudi de viabilitat

2.1 INTRODUCCIO

En aquest capitol es descriuran de manera més precisa els objectius i requeriments del
projecte a desenvolupar per poder avaluar les diferents solucions possibles i determinar si es

tracta d'un projecte viable.

Una vegada s'hagin analitzat les diferents propostes s'escollira, sota un criteri argumentat,
quina d'aquestes acompleix i satisfa els objectius i requeriments del projecte en els terminis
proposats. A més s'estableixen certes limitacions en el desenvolupament de les funcionalitats, els
recursos disponibles, analitzant els riscos futurs i amb una planificacié per minimitzar les dificultats

que poden aparéixer durant el cicle de desenvolupament del projecte.

S'estudiara el disseny i I' implementacié d'una solucid amb interficie grafica que mostri de
forma rapida i visual I'estat de les destinacions creades en un servidor de missatgeria JMS, que
incloura utilitats per enviar, esborrar i mirar el contingut de missatges. A més, ha de ser facil de
mantenir i ampliar, ja que l'aplicacié pretén ser una solucié Unica pel monitorizatge de qualsevol

servidor JMS, destinada a perfils de programadors, equip de proves i suport de aplicacions.

Escola Universitaria d'Informatica de Sabadell 23



Monitor de servidors JMS Jordi Manzano Ulloa

2.1.1 Avantatges de I'aplicacié a implementar
+ Simplificacio de I' informacié de control: facilita I'administracié i supervisié d'un servidor
mostrant d'una manera clara els missatges que hi ha en una cua o topic, a més

d'estadistiques (sempre que el proveidors JMS tingui disponible aquesta funcionalitat).

» Seguiment i evolucio: les grafiques generades sobre I'activitat del servidor ajuden a tenir un
registre historic a l'usuari sobre el trafic de missatges en el servidor. A més, és possible
I'exportacié d'aquestes a altres formats, facilitant la incorporacié de les grafiques en

documents o informes.

* Independéncia de sistema operatiu: I'aplicacio pot correr sota diferents sistemes operatius

sense modificar el codi o utilitzar altres tipus de llibreries gracies a la tecnologia Java.

» Control del trafic de missatges: la interficie esta disposada i dissenyada per veure el trafic
de missatges entrants i sortints en les destinacions de forma que, amb un simple cop d'ull al
monitor sense cap interaccio prévia de l'usuari, es pot saber si aquest a arribat al seu desti, si

ha sigut consumit i el seu contingut.

 Eina multiservidor: El monitor esta pensat per poder fer les seves tasques sobre qualsevol
monitor JMS. Aixi doncs, tant el disseny com la implementacié contemplen la possibilitat
d'ampliar facilment l'aplicacié6 a mesura que es treballin amb diferents servidors JMS i es
requereixi d'una actualitzacié del monitor, ja que, la implementacié de la comunicacié amb el

servidor és independent de l'aplicacié grafica.

Escola Universitaria d'Informatica de Sabadell 24



Monitor de servidors JMS Jordi Manzano Ulloa

* Facilitat d'as: la interficie grafica, fa que la interaccié amb el monitor per part de I'usuari sigui

menor en comparaciéo amb una interficie de linia de comandes.

2.1.2 Inconvenients de l'aplicacié a implementar

La monitoritzacié consumeix recursos de la xarxa: la comunicacié amb el servidor JMS
requereix de la propia missatgeria JMS per obtenir les dades rellevants a la seva activitat.
Aquest és un fet decisiu a I'hnora de realitzar el disseny del monitor, ja que s'ha de
minimitzar l'impacte dels missatges de monitoritzacioé en el sistema de missatgeria Java,

per tal d'afectar el menys possible al funcionament normal del servidor.

Aplicacié stand-alone: El monitor s'executa en totes aquelles maquines on treballen els
usuaris que volen utilitzar-lo; no és una solucié centralitzada que corre sobre un ordinador
accessible a tots els usuaris i atén a les peticions d'aquests per accedir a la informacié com
si es tractes d'una intranet. Es una eina per Us local, fet que provoca que per cada
connexié per realitzar la connexié amb el servidor JMS, la quantitat de missatges de
monitoritzacié vagi incrementant. Per aix0, és un tema critic que el disseny ha de resoldre,

minimitzant la quantitat de missatges obtinguts del servidor.

Escola Universitaria d'Informatica de Sabadell 25



Monitor de servidors JMS Jordi Manzano Ulloa

2.2 OBJECTE

2.2.1 Descripcio de la situacio a tractar

Es parteix de la necessitat de monitoritzar el trafic de missatgeria en un servidor, per tal de
respondre a les necessitats que es donen en tot projecte on s'empra la tecnologia JMS, de tal
forma que els programadors, provadors i el suport técnic de sistemes, tinguin una eina practica i
facil d'utilitzar que els faci estalviar temps davant les consoles d'administracio, no enfocades al

trafic i a la missatgeria i si a tasques propies de gestié del propi servidor.

Aixi doncs, el monitor de servidors JMS ha d'aportar, a més de la propia monitoritzacio, un
conjunt de facilitats i funcionalitats pels rols esmentats anteriorment que li donin un valor afegit i

permeti agilitzar tasques com:

+ Determinacié de problemes de connexié de clients al servidor: En qualsevol instant,

es poden veure el nombre de consumidors que te una destinacio.

* Analisi del comportament del servidor davant sobrecarrega de missatges: Una gran
quantitat de missatges per segon pot fer que els recursos demandats pel servidor acabin
per enfonsar la maquina i alenteixi tot el sistema de missatgeria en general. Aquesta
situacié no només afecta al servidor JMS, si no a tots els clients connectats a ell, ja que els
missatges s'aniran acumulant al servidor per ser consumits posteriorment, fet provocat per
I'embut creat pels clients destinataris al no poder processar els missatges pendents amb el
mateix ritme que els que es generen nous. En consequeéncia, incrementa dramaticament la
memoria i I'escriptura a disc (en cas de les cues, per les seves propietats de persisténcia
de la informacio) i que els clients que han de rebre altres missatges es vegin afectats pel
minvament de recursos en el servidor, baixant I'eficiencia del sistema (components que

necessiten compartir informacio i servidor de missatgeria).

Escola Universitaria d'Informatica de Sabadell 26



Monitor de servidors JMS Jordi Manzano Ulloa

*  Proves de components: La inclusido de funcionalitats, com per exemple l'enviament de
missatges, permeten simular el comportament i realitzar proves unitaries i globals dels

components que conformen el sistema a desenvolupar.

+ Redaccié d'informes i estadistiques: Incorporant aquestes a una aplicacié de
monitorizatge, l'usuari pot exportar-les a format grafic per utilitzar-les amb un
processadors de textos o altres aplicacions, a més d'obtenir una rapida visié de l'estat del

servidor JMS.

+ Verificacié del contingut dels missatges emmagatzemats al servidor: Es possible que
sigui necessari contrastar el contingut dels missatges amb el resultat esperat per un client

productor en concret durant una fase de desenvolupament o proves.

2.2.2 Perfil de l'usuari
Aquesta aplicacio esta orientada a tots aquells perfils que analitzen, desenvolupen i mantenen
aplicacions que necessiten de la comunicacié entre les mateixes mitjancant la figura middleware

del servidor JMS. Es distingeixen els seguents rols:

* Programadors: tots aquells individus que fan tasques de desenvolupament o utilitzen
aquests servidors i necessiten comprovar i consultar I'estat en que es troben aquests de

manera rapida.

* Equip de proves: Usuaris que fan proves sobre els desenvolupaments implementats per
I'equip anterior. Necessiten eines per poder interactuar amb el sistema i comprovar les

entrades amb els resultats esperats.

Escola Universitaria d'Informatica de Sabadell 27



Monitor de servidors JMS Jordi Manzano Ulloa

* Equip de suport del sistema: Son el punt de connexié del sistema a desenvolupar o
desenvolupat amb el client. Gestionen i fan un primer analisi sobre incidéncies en I'Us de
I'aplicacio, per tant una eina que analitzi els continguts del missatges és util per determinar
les causes del problema. En cas de que sigui una errada en el programari, deriven la

responsabilitat en forma d'una solicitud de correcci6 als programadors.

2.2.3 Objectius

El monitor de servidors JMS que es pretén desenvolupar en el present projecte, ha de ser una
eina amigable per l'usuari amb una representacié de la informacid clara. Des del procés
d'instal-lacio, passant per la configuracié i fins I'us rutinari del programa, ha de resultar una

experiéncia que faciliti tots els processos d'implantacié de I'aplicaci6.

La idea principal del monitor JMS és la de reflectir I'estat d'un servidor JMS en temps real.
Degut a la propia filosofia JMS, el monitor ha de ser capag¢ de suportar la connexié per diferents
proveidors de Java Message Service, proporcionant mecanismes que facilitin la integracio
d'aquests amb el present desenvolupament minimitzant els costos derivats de I'ampliacio i

manteniment del monitor.

Agilitzar les tasques de l'usuari és sens dubte una de les raons del naixement del projecte;
I'enviament de missatges a una destinacié per observar com es comporten els components d'un
sistema distribuit, la realitzacioé de proves de carrega sobre el servidor de missatgeria, la generacio
de grafiques sobre parametres monitoritzats i la consulta de contingut de missatges son aspectes
necessaris en les activitats realitzades pels usuaris potencials del sistema, anomenats en l'anterior

apartat.

Per facilitar la configuracié de les connexions als servidors JMS, el propi client grafic ha de

permetre aquesta gestid, fent que l'usuari estalvii temps introduint dades cada vegada que es

Escola Universitaria d'Informatica de Sabadell 28



Monitor de servidors JMS Jordi Manzano Ulloa

vulgui connectar a un servidor JMS, que a la practica normalment solen ser una llista definida i poc
canviant. La gestié de tipus d'usuari a l'aplicacié no és un questié a tenir en compte, ja que és
I'administrador del servidor JMS qui decideix en funcié de la definicié d'usuaris i permisos en la

propia configuracio del servidor, fins on pot gestionar l'usuari del monitor.

El monitor JMS, és una aplicacié que neix amb una vocacié personal d'aprenentatge on la
versié desenvolupada en aquest projecte, vol ser el primer esglad d'una eina al servei de tothom,

de cost minim, facilitant el disseny i el codi a la comunitat d'usuaris i programadors.

Escola Universitaria d'Informatica de Sabadell 29



Monitor de servidors JMS Jordi Manzano Ulloa

2.3 DESCRIPCIO DEL SISTEMA

Existeixen diverses tecnologies i llenguatges de programacié que poden ser valids per cercar
una solucioé al projecte exposat. Cal recordar, que es demana una aplicacié simple i de baix cost
de manteniment que pugui créixer en funcié de les necessitats del client. En el seguent apartat es
descriuran les diferents plataformes i tecnologies analitzades i es justificara I'eleccié d'aquella que
ha sigut escollida. Seguidament s'indicaran els diferents riscos que hi podrien apareixer durant el

desenvolupament i els recursos que s'hi disposaran per a la seva realitzacio.

2.3.1 Analisi dels llenguatges de programacié

D'una banda tenim llenguatges compilats® com C (paradigma imperatiu) o C++
(multiparadigma). C és molt eficient perd té un cost de desenvolupament més gran, ja que es
requereix més temps per realitzar una funcionalitat que altres llenguatges de més alt nivell. C++
permet un major nivell d'abstraccié i es pot definir com multiparadigma, ja que afegeix a C eines
per la manipulacié d'objectes perd al mateix cop és possible seguir un model de programacio
estructurat. Tot i que els dos sén dels més eficients, al ésser llenguatges compilats, el cost de la
portabilitat €s major: cal modificar el codi i utilitzar diferents llibreries, a més de compilar I'aplicacio

de nou en funcio de la plataforma on s'executara el programa.

Els llenguatges interpretats com Perl o Python gaudeixen d'una major possibilitat de ser
portables i fan més rapida la implementacié del codi pel seu alt nivell d'abstraccié. Perl permet la
comunicacié entre ordinadors sota protocols TCP/IP; implementa fils d'execucié o threads; i a més
té la opcid de suportar I' estil de programacié orientat a objectes, fet que facilita el disseny i
codificacié de qualsevol tipus de programa. Python suporta els paradigmes de programacié

orientada a objectes, programacié estructurada i programacié funcional, a més de ser un

5 En els llenguatges compilats, el compilador tradueix el codi d'alt nivell a codi maquina o de baix nivell per a que pugui ser

executada, generant aixi un arxiu executable per a una plataforma en concret.

Escola Universitaria d'Informatica de Sabadell 30



Monitor de servidors JMS Jordi Manzano Ulloa

llenguatge facil d'aprendre i de disposar d'una sintaxi molt llegible. No obstant, en diferencia amb
els compilats, un llenguatge interpretat necessita un intérpret per executar el codi; aixo fa que en
la majoria dels casos siguin programes més lents. Sén llenguatges molt utilitzats per fer prototips i

complements o connectors per altres programes.

Pel desenvolupament del projecte s'ha escollit Java, llenguatge orientat a objectes i amb una
alta portabilitat a nombroses plataformes: el mateix codi pot correr sobre diferents maquines. El
codi Java és compilat primer generant un codi bytecode® per a que la Java Virtual Machine” que
estara escrita en codi natiu a la plataforma en concret I'executi. A diferéncia d'altres, la maquina
virtual de Java utilitza un compilador en temps d'execucié fet que millora el rendiment de sistemes
de programacié que utilitzen bytecode. Cal dir, que no és tan rapid com un executable natiu per a
una determinada plataforma, pero la seva amplia API, la portabilitat i la gestié automatitzada de la
memoria; fet que redueix el temps d'implementacio i elimina errors classics en la programacié com
son les fuites de memodria o memory leaks provocats per la mala gestié en l'alliberacié de la
memoria. Totes aquestes avantatges el fan un bon candidat pel desenvolupament del projecte,
perd sens dubte el motiu principal de la seva elecci6 és la tecnologia que es vol monitoritzar; les

API's d'administracio i accés a servidors JMS estan desenvolupades principalment en Java.

Es important comentar, que la distincié realitzada en els anteriors paragrafs entre interpretat i
compilat, és purament practica i no per propietats inherents al propi llenguatge. En teoria,
qualsevol llenguatge de programacié pot ésser compilat o interpretat com per exemple Lisp, Basic

o el propi Python, que disposen de compiladors i intérprets.

6 El bytecode es situa en mig del codi maquina i del d'alt nivell. Rep aquest nom ja que normalment la majoria de codis d'operacio
té la longitud d'un byte.

7 La Java Virtual Machine o maquina virtual de Java, és un executable per a una determinada plataforma que interpreta i executa

les instruccions en Java bytecode, codi resultant del compilador de Java.

Escola Universitaria d'Informatica de Sabadell 31



Monitor de servidors JMS Jordi Manzano Ulloa

2.3.2 Analisi de proveidors JMS

A l'actualitat existeixen un gran nombre de proveidors de tecnologia JMS. Com que el
projecte és independent de proveidors i es pretén reduir costos, es descartara el programari
privatiu i de pagament. Aixi doncs s'escolliran dos proveidors que no afectin als costos del present
projecte i que al mateix temps siguin productes emprats per diferents desenvolupaments i

projectes que utilitzin la tecnologia JMS.

Fuse Message Broker és un gestor de missatgeria JMS basat en Apache Active MQ alliberat
per Fuse Open Souce Community. Amb una llicencia Apache v.2.0, és un producte provat i
certificat amb un equip de suport darrera, que disposa d'una notable capacitat per gestionar gran
volum de dades i amb un dels millors rendiments dintre del proveidors de missatgeria JMS. A més
és compatible amb JMS 1.1 i altres tecnologies i protocols com poden ser com JDBC, JCA, i EJB,

AJAX, REST, HTTP, TCP, SSL, NIO i UDP. Les caracteristiques principals d'aquest proveidors

son:
FUSE MESSAGE BROKER
CARACTERISTIQUES AVANTATGES
Basat en estandards — compatible amb JMS, J2EE, Facilitat de desenvolupament- connectivitat sense
JNDI,AJAX, REST, HTTP fissures amb actius nous i existents.
Publicador i subscriptor / missatgeria punt a punt — Plataforma completa de missatgeria — compatible
permet broadcasting i/o missatgeria Unica. amb durables i connexions d'alta disponibilitat.
SEDA, compressié, prefetch, JMS streams Millor performance — capcar de gestionar grans
carregues de missatges i volum de dades.
Alta disponibilitat — cluster, capacitat per recuperar No pérdua de dades — resistent a les fallides de xarxa
dades davant caigudes. o de sistemes.
Autentificacioé / autoritzacié — compatible amb Facil integracié — aprofita les inversions existents en
aplicacions propies i solucions de tercers. seguretat.

Taula 2: caracteristiques i avantatges de Fuse Message Broker

Escola Universitaria d'Informatica de Sabadell 32



Monitor de servidors JMS Jordi Manzano Ulloa

D'altra banda, openJMS és una implementacié de programari lliure de la APl Java Message
Service 1.1. Un dels beneficis de openJMS és que és un proveidor neutral. A causa de les
especificacions de JMS Java no s'especifica un protocol de connexio, I'aplicacié de cada proveidor
de JMS és diferent i no és interoperable amb altres. Les implementacions de JMS normalment sén
alliberades com a part d'un proveidor de servidor d'aplicacions, aix0 fa l'aplicacié d'un proveidor de
JMS especifica per aquest servidor d'aplicacions. OpenJMS, al igual que FUSE, no depén de cap
servidor d'aplicacions i per tant pot ser una interficie comu entre els usuaris de diferents
proveidors. Els usuaris de servidors d'aplicacions diferents poden posar-se d'acord per utilitzar
I'aplicacié OpendMS comuns per a la interoperabilitat de les seves capes. Destaquen les segients

funcionalitats:

OPEN JMS
CARACTERISTIQUES
AVANTATGES
PRINCIPALS
Publicador i subscriptor / missatgeria punt a punt - Plataforma completa de missatgeria — compatible
permet broadcasting i/o missatgeria unica. amb durables i connexions d'alta disponibilitat.
Certificat d'entrega -
Garantia d'entrega de missatges Els clients productors s'assabenten si el consumidor a

rebut el missatge correctament.
Compatibilitat amb bases de dades — Permet
X emmagatzemar les dades del missatges a una base de
Persisténcia amb JDBC ) ) )
dades per tal de recuper la informacié en cas de fallida del
servidor.
. Seguretat d'accés — Permet la gestié d'usuaris i
Autentificacié , . . .
I'accés al servidor de missatgeria.
Millora de rendiment — El servidor detecta que aquell
Deteccié automatica de desconnexions de clients client no es troba disponible i I'elimina de la seva llista de
connexions obertes.
Millora integracié - Afavoreix la integracio i la

Compatible amb TCP, RMI, HTTP i SSL _ o
capacitat de desenvolupament amb altres aplicacions.

Taula 3: caracteristiques i avantatges de OpenJMS

Tots els proveidors anomenats anteriorment poden ser executats en plataformes Linux i

Windows i suposen un cost nul en llicéncies pels desenvolupaments que optin per un d'ells com

Escola Universitaria d'Informatica de Sabadell 33



Monitor de servidors JMS

Jordi Manzano Ulloa

intermediari de comunicacions JMS.

2.3.3 Analisi d'entorns de desenvolupament integrats

Un entorn de desenvolupament integrat o IDE, facilita al programador la seva tasca oferint

multiples funcionalitats de les que es poden destacar editor de text, compilador, control de

versions, casos de test, i depurador. Eclipse i Netbeans son els IDE més coneguts pel

desenvolupament en Java. Els dos disposen de les eines esmentades anteriorment i a més

accepten connectors per ampliar I'entorn, des de suport per altres llenguatges (com PHP, C, C++,

Ruby, Perl) fins editors de UML®. En el projecte s'utilitzara Eclipse, que consta d'un suport molt

ampli de connectors i d'un editor de text excel-lent.

2.3.4 Analisi de llibreries grafiques

A fi de poder implementar les grafiques que generara l'aplicacié sobre les estadistiques

monitoritzades, s'opta per escollir una llibreria externa que permeti que el desenvolupament

d'aquesta funcionalitat sigui més rapid.

Price Volume Chart Demo

Eurodollar Futures Contract (MARO3)
98.50 oA no,00
98.00 A e
. Wi L 600,000
97.00 - -500,000
2 oges0| T 400,000
= A Ve -a-l A W )
96.00{ /" N L 300,000
95.50 1’ e N |
L 200,000
L 100,000
9450 i 1 r HEEN 1 il
et AR ALARAREEARRAR u
Jan-2002  Mar-2002  May-2002  Jul-2002  Sep-2002  Nov-2002
Date
— Price W Volume

ILUNOA

Figura 5: grafica generada amb la llibreria JfreeCharts

8UML o unified modeling language és un llenguatge de modelatge i definicié de sistemes de programari. Més informacié en

http://www.uml.org/.

Escola Universitaria d'Informatica de Sabadell

34


http://www.uml.org/

Monitor de servidors JMS Jordi Manzano Ulloa

JfreeCharts, és una llibreria per Java amb llicencia LGPL®, amb una API simple i facil
d'entendre. Permet realitzar una gran quantitat de grafiques, amb eines incrustades com

I'ampliacié o disminucié de la grafica sobre el planol i I'exportacié d'aquestes a .PNG.

Elegant Jcharts és una altra alternativa per la generacié de grafiques en Java. Capag¢ de
generar gran quantitat de grafiques amb efectes 2D i 3D, inclou també la capacitat d'scrolling que
tenia JfreeCharts amb una qualitat grafica superior. No obstant, aquesta llibreria requereix d'un

cost de llicéncia, fet que situa a I'anterior com a la candidata pel present projecte.

2.3.5 Avaluacio de riscos

Com s'ha comentat a apartats anteriors, I'aplicacié ha de ser executada per cada usuari, no
es tracta d'un monitor centralitzat a una maquina a la qual es pot tenir accés, si no que és un client
que visualitza l'estat de les cues, topics i els missatges que existeixen a un servidor JMS. Aixi
doncs, I'is massiu i distribuit d'aquesta eina pot provocar un trafic elevat de missatges a la xarxa.
A més, també s'ha de tenir en compte que soén peticions que ataquen contra el servidor JMS, fet
que influeix en el rendiment d'aquest, ja que ha de generar la resposta i respondre amb la dada

sol-licitada.

D'altra banda, la gran varietat de proveidors JMS fa d'inici que no es puguin desenvolupar un
gran nombre de les interficies que donen accés als diferents servidors amb el nombre d'hores
valorades pel present projecte, fet que implicara que els futurs usuaris que utilitzin diferents
proveidors hagin d'implementar la interficie. No obstant s'entregaran llibreries que implementaran

l'accés de dos proveidors.

Cal remarcar la falta d'experiéncia prévia i Us de tecnologies pel desenvolupament del

9 GNU Lesser General Public License és una llicencia open source que permet I'is del programari o llibreries a altres aplicacions

de propietari. Més informacié en: http://www.gnu.org/licenses/Igpl.html

Escola Universitaria d'Informatica de Sabadell 35


http://www.gnu.org/licenses/lgpl.html

Monitor de servidors JMS

Jordi Manzano Ulloa

projecte, fet que pot influir en el acompliment de les dades previstes per I'entrega. A més, es tracta

d'un projecte amb un cicle de salt d'aigua, amb el que qualsevol demora en una fase anterior

endarrereix la seguent.

2.3.6 Recursos

RECURSOS HUMANS

Rol

Analista

Técnic programador

Equip de proves

Taula 4: recursos humans

PROGRAMARI

Servidor

monitoritzat

Client per la

monitoritzacio

Entorns de
programacié
Generacio de

documentacio

Llibreries i
aplicacions de

tercers

Gestio del

projecte

Sistemes Operatius: Ubuntu 9.04

Java Runtime Environment 1.6

Sistema Operatiu: Ubuntu 9.04 / Windows
XP

Java Runtime Environment 1.6
Diagrames UML: DIA

Eclipse
OpenOffice 3.0

JDK 1.6
OpendMS
FUSE
JFreeCharts

Planificacié: Microsoft Project

Taula 5: programari disponible

Escola Universitaria d'Informatica de Sabadell

36



Monitor de servidors JMS

Jordi Manzano Ulloa

Recursos
minims

clients*

Recursos
minims

servidor

MAQUINARI
Memoria: 256 MB*
Processador: AMD Sempron 2800+ 1600 Mhz /
mem. cau L2: 256KB
Disc dur: 5 GB
Unitat de reproduccié de DVD
Monitor SVGA
Tarja de xarxa
Teclat i ratoli
* la memoria minima ve imposada en la majoria dels
casos pels requisits minims del sistema operatiu, ja
que el monitor no té un consum molt elevat. Per
Windows Vista, la memoria minima recomanable és de
1 GB.
Memoria: 2048 MB
Processador: Intel Pentium Dual Core E6300
2800 Mhz / mem. cau L2: 2048 KB
Unitat de reproduccio i enregistrament de DVD
Disc dur: 10 GB
Tarja de xarxa

Taula 6: maquinari disponible

Escola Universitaria d'Informatica de Sabadell

37


http://ark.intel.com/Product.aspx?id=41493

Monitor de servidors JMS Jordi Manzano Ulloa

2.4 ORGANITZACIO DEL PROJECTE

En primera instancia, sera necessaria una cerca de requeriments i funcionalitats basiques que
tot sistema de monitoritzacié ha de complir. Observant els productes existents al mercat es podra

acotar els objectius d'aquest projecte amb els requeriments minims.

Després d'una primera fase de documentaci6 inicial i estudi de la viabilitat, es perfilaran els
requeriments funcionals i no funcionals, generant un diagrama de casos d'Us. També es realitzara
la cerca de documentacié i I'estudi de les diferents tecnologies disponibles pel desenvolupament

del projecte, tot instal-lant les eines i I'entorn de desenvolupament.

Una vegada establerts els requeriments funcionals i no funcionals i I'entorn tecnoldgic amb
que es desenvolupara el projecte, es realitzara el disseny dels moduls que conformen I'aplicacié
per codificar i implementar el codi. Posteriorment es fara una fase de proves, per poder fer
correccions i millores funcionals. La memoria es redactara al mateix temps que es desenvolupen

les distintes fases del projecte.

Per a la documentacié del programari i les tecnologies s'estableixen les segients vies per
captar informacio; documentacio oficial de les API, els entorns de programacié i llibres sobre les
tecnologies emprades, tutorials i experiéncies de programadors (blogs, forums) i memories de

projectes anteriors semblants.

Escola Universitaria d'Informatica de Sabadell 38



Monitor de servidors JMS

Jordi Manzano Ulloa

2.5 ANALISI COST - BENEFICI

2.5.1 Costos recursos materials

De entrada, es disposen de recursos per realitzar el projecte i no caldria I'adquisicié de nous.

No obstant s'ha de tenir en compte la amortitzacié dels recursos, que s'ha calculat sobre 3 anys ja

que el maquinari i el programari solen canviar o renovar en aquest periode de temps.

AMORTITZACIO DELS COSTOS

Maquinari
Compaq CQ60 Laptop
Intel Dual Core
3GB RAM 5,81 €
250GB HDD
(499€)
AMD 3600 Sempron
2,5GB RAM
250GB HDD 8,16 €
Monitor Acer 20"
(700€)
Router Comtrend 536+
(50€) 0,58 €
Programari
Ubuntu 9.04 0,00 €
Windows XP Profesional SP3 (118€) 1,37 €
Windows Vista Home Basic SP1 (210€) 2,45 €
Eclipse IDE 0,00 €
JDK 1.6 0,00 €
JRE 1.6 0,00 €
DIA 0,00 €
Openoffice 3.0 0,00 €
Microsoft Project 2003 (490€) 571€
OpenJMS 0,00 €
FUSE 0,00 €
JfreeChart 0,00 €
TOTAL 24,08 €

Taula 7: costos recursos materials

Escola Universitaria d'Informatica de Sabadell

39



Monitor de servidors JMS

Jordi Manzano Ulloa

2.5.2 Costos recursos humans

RECURS €/h

Analista 18

Técnic programador 10

Provador 9

Taula 8: cost de recursos per hora

RECURS COST HORES
Analista 2.826,00 € 157
Descripcio del projecte 54,00 € 3
Estudi d'alternatives 72,00 € 4
Analisis de \iabilitat 360,00 € 20
Definicid necessitats reals 72,00 € 4
Interficie grafica 432,00 € 24
Gestor de connexions 270,00 € 15
Interficie amb els proveidors JMS 144,00 € 8
Funcionalitats amb destinacions i missatges 180,00 € 10
Grafiques 144,00 € 8
Memoria 1.098,00 € 61
Técnic programador 1.340,00 € 134
Configuracioé de I'entorn de desenwolupament 20,00 € 2
Gestor de connexions 200,00 € 20
Interficie amb proweidors JMS 100,00 € 10
Implementacio de llibreria per OpendMS 140,00 € 14
Implementacio de llibreria per ActiveMQ (Fuse) 120,00 € 12
Grafiques 120,00 € 12
Funcionalitats amb destinacions i missatges 120,00 € 12
Interficie grafica 240,00 € 24
Correccio d'incidencies 100,00 € 10
Millores disseny / usabilitat 100,00 € 10
Annexos (documentacio) 80,00 € 8
Provador 99,00 € 11
Prowes locals 54,00 € 6
Prowes finals 45,00 € 5
TOTAL COSTOS RRHH 4.265,00 €

Taula 9: costos RRHH

Escola Universitaria d'Informatica de Sabadell

40



Monitor de servidors JMS

Jordi Manzano Ulloa

2.5.3 Pressupost

Aplicacié de monitor de servidors JMS
Instal-lador

Monitor:

-Enviament i esborrat de missatges pendents
-Generacio de grafiques

-Gesti6 de connexions

-Consulta del contingut missatges pendents
-Visualitzacio d'estadistiques

TOTAL 6.629,21 €

6.629,21 €

Taula 10: pressupost

*el preu final no contempla impostos indirectes

Escola Universitaria d'Informatica de Sabadell

41



Monitor de servidors JMS

Jordi Manzano Ulloa

2.6 PLANIFICACIO DEL PROJECTE

2.6.1 Model de desenvolupament i etapes del projecte

El projecte seguira un model de desenvolupament lineal sequencial, ja que els requeriments

funcionals sén establerts des de un principi sense riscos de que siguin modificats en fases

posteriors a la d'analisi de requeriments. No obstant un dels objectius del projecte és la

escalabilitat de la aplicacid, per tant, no és descarten nous cicles en un futur, una vegada hagi

finalitzades les etapes que es descriuen a continuacio:

Tasques Hores Recurs
Analisi de requeriments 31

Descripci6 del projecte 3 Analista
Estudi d'alternatives 4 Analista
Analisis de viabilitat 20 Analista
Definicio necessitats 4 Analista
Implementacio 171

Configuracié de I'entorn de desenwolupament 2| Técnic programador
Disseny 65

Interficie grafica 24 Analista
Gestor de connexions 15 Analista
Interficie amb proweidors 8 Analista
Funcionalitats amb destinacions i missatges 10 Analista
Grafiques 8 Analista
Codificacié 104

Gestor de connexions 20| Teécnic programador
Interficie amb proweidors 10)  Técnic programador
Implementacié de llibreria OPENJMS 14|  Tecnic programador
Implementacié de llibreria ActiveMQ (Fuse) 12| Técnic programador
Grafiques 12/ Técnic programador
Funcionalitats amb destinacions i missatges 12/ Técnic programador
Interficie grafica 24| Tecnic programador
Avaluacioé 31

Proves locals 6 Provador
Correcci6 d'incidencies 10, Técnic programador
Millores disseny / usabilitat 10, Tecnic programador
Prowves finals 5 Provador
Documentacio 69

Memoria 61 Analista
Annexos 8  Técnic programador
TOTAL 302

Taula 11: recursos i planificacio

Escola Universitaria d'Informatica de Sabadell

42



Monitor de servidors JMS

Jordi Manzano Ulloa

2.6.2 Us dels recursos

RECURS HORES

Analista 157
Descripcio del projecte 3
Estudi d'alternatives 4
Analisis de viabilitat 20
Definicié necessitats reals 4
Interficie grafica 24
Gestor de connexions 15
Interficie amb els proweidors JMS 8
Funcionalitats amb destinacions i missatges 10
Grafiques 8
Memoria 61
Técnic programador 134
Configuracio6 de I'entorn de desenvolupament 2
Gestor de connexions 20
Interficie amb proweidors JMS 10
Implementacio de llibreria per OPENJMS 14
Implementacié de llibreria per ActiveMQ (Fuse) 12
Grafiques 12
Funcionalitats amb destinacions i missatges 12
Interficie grafica 24
Correcci6 d'incidencies 10
Millores disseny / usabilitat 10
Annexos 8
Provador 1
Prowes locals 6
Proves finals 5

Taula 12: us dels recursos

2.6.3 Tecniques de planificacié i control

Tot seguit, es mostra la planificacio realitzada mitjangant el programari Microsoft Project 2003.

Es una tasca essencial i imprescindible per programar les fases i realitzar un bon seguiment del

projecte.

Escola Universitaria d'Informatica de Sabadell

43



Jordi Manzano Ulloa

Monitor de servidors JMS

[12 oct0g

28 =ep '09 05 oct "09 19 oct 09 256 oct'09 02 nov "09 09 nov '09 16 nov '09 23 nov "09 30 nov '09 07 dic "09 14 dic "09 :
LMy viso[Lm[xIvsolcmx A vso[cmx[a[v[s oL mx[s[vIs[o|cMx [ v]s[olcmx[av]s[o[cm[x[avIs[plLmx[s[v[s[olLMx[J]v]s[o|cImx[J[v[s[D[L[M][x[s V]S [D

Andlisi de requeriments

1810

v

Descripcio del projecte

Analista[43%]

Estudi d'qfernatives

Analista[57%]

Andlisis de vi

Con

iabilitat

Definicid n

.

ssitats reals
i Analista[57%]

Implementacio

b

figuracio de I'enforn ”nmanmma_._ch pament

E«HEW&QJ&.&S

Disseny

H i»ﬁ..:nﬁ grafica

Hﬁ@u»oq de connexions

Interficie amp els _uquccﬁ.iﬁq“ JMS

Funcionalitats am

uz.._m.nuo_._m i missatges

p, fiques

29114

G Analista[36%]

stor de connexions

Técnic _uqouqm_.___m_n@.
Intgrficie amb proveidors ._-.._..

44

Escola Universitaria d'Informatica de Sabadell



Jordi Manzano Ulloa

Monitor de servidors JMS

21 dic '09 28 dic '09 04 ene 10 11 ene 10 18 ene 10 25 ene 10 01 feb 10 08 feb'10 15 feb 10 22 feb'10 (
LM v[so[Lmxdv]s oL M x[dIv[so[cmx[Iv[sp[LMxAvs[olL[MxXAIv[s[o[LMX[Iv[s[D[Lmx[y[v[s[D[L[M[x[Jv][s[D|L[M][x[J[v][s]D
P 13102
Codificacio
w:wmé
15
&cni r[86%]

Implementggio de llibreria per OpenJMS
- Técnic programador[86%]

J

Implemgptacio de llibreria per Fuse

TR i mador[86%]
,:nE”w L

Documentacic

Funcionali

r[E6%]

w_.:_u destinacions i missatges
Técnic programador[86%]

Interficie u”qw:nm

Técnic programador([86%]
! Avaluacic
Provgs locals
Provador[86%]

reccio d'incidencies

Memaoria

45

Escola Universitaria d'Informatica de Sabadell




Jordi Manzano Ulloa

Monitor de servidors JMS

01 mar"10 08 mar "10 15 mar "10

22 mar 10

25 mar "10

05 abr"10 12 abr 10

Lm[x[yv[s[p[Lmx[Jv][s[p L M[x[Jv][s]D

Lmx[J]v[s]D

LMy v[so[Lm[x[J[v][s[o|L M[x[Jv]sD

0703

@n:.n programador[86%]

3 disseny / usabilitat
: Técnic programador[86%]

finals
Provador[71%]

Pr

n. Técnic programador[§6%]

46

Escola Universitaria d'Informatica de Sabadell



Monitor de servidors JMS Jordi Manzano Ulloa

2.7 CONCLUSIONS

El monitor de servidors JMS pretén ser una eina multiplataforma que ajudi als
desenvolupadors que utilitzin la tecnologia JMS, per obtenir de forma rapida i clara I'estat de les
destinacions creades en un servidor JMS, oferint opcions com I'enviament de missatges a una
destinacio i la consulta del contingut dels missatges existents a una cua o topic, funcionalitats que
s'utilitzen en el dia a dia durant les fases de desenvolupament i proves de sistemes i aplicacions

que utilitzen aquesta tecnologia.

Com s'ha comentat en el primer capitol, aquest projecte t& com objectius I'aprenentatge de
tecnologies i la contribucié d'un projecte de codi lliure per tots aquells usuaris que vulguin utilitzar
una eina de monitoritzacié de servidors JMS orientada al trafic de missatges i programadors que
vulguin millorar i ampliar aquest programa. Es per tant, que els costos representats en aquest
estudi de viabilitat juntament amb la factura volen mostrar el cost orientatiu del que suposaria una

aplicacio feta a mida amb les funcionalitats descrites.

Totes les etapes del projecte conformen el cami critic, aixd fa que qualsevol demora en el
temps en la realitzacié d'una tasca endarrereixi totes les restants. A més, la gran varietat de
proveidors JMS redueix la compatibilitat en aquesta primera versié del monitor, ja que per les
hores valorades en el present projecte, no és possible realitzar la implementaci6 d'un gran
nombre d'interficies que donen accés als diferents servidors fet que implicara que els futurs

usuaris que utilitzin diferents proveidors hagin de realitzar aquesta tasca.

Es cert que l'alternativa al present projecte, Hermes JMS, és un aplicacié que permet realitzar
gran part dels requeriments desitjats de forma notable i suporta una llarga llista de proveidors
JMS, perd a la practica és una aplicaci6 amb una interficie centrada en la monitoritzacié del
servidor i no tant en el trafic de missatges, fet que la fa pesada a I'hora de treballar amb un gran

nombre de cues i topics. A més els objectius i motivacions personals, la contribucié amb

Escola Universitaria d'Informatica de Sabadell 47



Monitor de servidors JMS Jordi Manzano Ulloa

programari lliure i I'is de tecnologies amb un cost nul de llicencia utilitzades en ['ambit
professional, fet que disminueix els costos del projecte, fan que el monitor de servidors JMS sigui

un projecte viable.

Escola Universitaria d'Informatica de Sabadell 48



Monitor de servidors JMS Jordi Manzano Ulloa

CAPITOL

Fonaments teorics

3.1 INTRODUCCIO

Amb [l'arribada de Internet, la computacié distribuida ha guanyat importancia en les
organitzacions que cercaven crear aplicacions escalables i flexibles. Un sistema distribuit implica
que diferents parts del sistema puguin estar en diferents maquines: aquestes poden ser a un

mateix edifici o a un altre pais.

El disseny de sistemes distribuits no és trivial; hi ha nombrosos factors que entren en joc quan
una mateixa aplicacié es divideix en multiples parts executades en diferents ordinadors; des de
l'arquitectura del maquinari (Intel, PPC), sistemes operatius variats (Microsoft Windows, Unix,
Linux, OsX) fins arribar a les propies comunicacions amb I'ample de banda i la velocitat de
transmissio entre les maquines que conformen el sistema. Per tant, es tracta de sistemes amb una

complexitat molt superior a un sistema equivalent que no ho sigui.

Escola Universitaria d'Informatica de Sabadell 49



Monitor de servidors JMS Jordi Manzano Ulloa

Sales tax
component
Cl;ent Inventory
component
Sales tax "
component 5
N Windows WT
[i] server
Lo
, 5
Client
Sales tax
component

N

Client™

Figura 6: exemple de sistema distribuit

Un sistema distribuit pot ser dividit al menys en dos parts; una primera amb codi funcional (de
negoci) i una segona amb codi dependent de la infraestructura. EI model de negoci seria la
funcionalitat que tracta d'assolir el desenvolupament, independentment de que el sistema sigui
distribuit o no. D'altra banda, el codi d'infraestructura és totalment dependent d'aquest model
d'aplicacio distribuida: si el sistema no ho és, aquesta part desapareix. Aquest és complexe i
I'objectiu principal és el de transferir dades d'una part de I'aplicacié a una altra. Cal dir, que aquest
codi d'infraestructura depén de la distribucié i no dels objectius de negoci de I'aplicacio, fet que
provoca que aquest sigui una part aprofitable per altres projectes. Aixi doncs, quan es parla de
codi d'infraestructura, es fa referéncia al que es coneix com middleware; que es podria definir com

aquell component software que s'utilitza per connectar aplicacions entre si.

Escola Universitaria d'Informatica de Sabadell 50



Monitor de servidors JMS Jordi Manzano Ulloa

3.2 MIDDLEWARE

Middleware o programari intermediari es defineix com la capa de programari que es troba
entre el sistema operatiu i les aplicacions del sistema. El principal objectiu del middleware és
resoldre els problemes de connectivitat i interaccié entre aplicacions, servint de traductor entre
diferents tecnologies i protocols; és a dir, que qualsevol aplicacié (independentment del seu
origen) es pugui executar sota qualsevol sistema operatiu o maquinari facilitant aixi el
desenvolupament de la mateixa i amagant detalls de programacié de baix nivell. Cal dir que el
programari intermediari no és imprescindible pel correcte desenvolupament d'un proceés

d'integracio perd si que és cert que la seva utilitzacié simplifica molt aquestes tasques.

Application . .. Application

APIs

Middleware
(distributed system services)

I 1

Platform interface Platform interface
Platform Platform
e OS L e OS
e Hardware e Hardware

Figura 7: rol del programi intermediari

Funcions del middleware
* Homogeneitzar els diferents components del maquinari, sistemes operatius i protocols de

comunicacio.

» En sistemes distribuits, encapsular i ocultar les diferents parts o aplicacions connectades

entre si que s'executen en diferents llocs.

Escola Universitaria d'Informatica de Sabadell 51



Monitor de servidors JMS Jordi Manzano Ulloa

* Proporcionar interficies uniformes d'alt nivell pels desenvolupadors i integradors
d'aplicacions, facilitant la composicié, el reaprofitament del codi i la portabilitat d'aquestes

aplicacions.

A continuacié es descriuran diferents tipus de programari intermediari fent més émfasi en

I'anomenat MOM o Message Oriented Middleware, que és el que aplica al present projecte.

3.2.1 RPC

Remote procedure call (RPC) o crida a procedimets remots és una tecnologia que permet a
una aplicacié executar un procediment en una altra maquina present en la mateixa xarxa, sense
que s'hagin de definir els detalls d'aquesta interaccié remota, és a dir, el codi és el mateix tant si la

subrutina és local al programa executant, o remota.

RPC neix al 1976, quan va ser descrita al RFC707. La primera implementacié popular de
RPC a Unix va ser la de Sun Microsystems, ara anomenada Open Network Computing RPC o
ONC RPC, feta servir com a base per al sistema de fitxers en xarxa NFS’>. ONC RPC encara es

fa servir molt avui en diverses plataformes.

Una altra de les primeres implementacions de Unix va ser el Network Computing System
(NCS) de Apollo Computer. NCS va ser utilitzat posteriorment en la fundacié de DCE/RPC al
Entorn de Computacié Distribuida (DCE) de la Open Software Foundation (marc de treball i eines
de desenvolupament per aplicacions client — servidor). Una década més tard, Microsoft va adoptar
DCE/RPC com a base per al seu mecanisme Microsoft RPC (MSRPC) i va implementar DCOM a

sobre d'ell.

10 NFS: protocol a nivell d'aplicacié utilitzat com a sistema de fitxers en sistemes distribuits en un entorn de xarxa local, possibilitant

que diversos sistemes tinguin accés a fitxers remots com si fossin locals.

Escola Universitaria d'Informatica de Sabadell 52



Monitor de servidors JMS Jordi Manzano Ulloa

A mitjans dels 90, ILU de Xerox i el CORBA de Object Management Group, van oferir un altre
paradigma de RPC basat en objectes distribuits amb mecanisme d'herencia. Cal notar que hi han
moltes tecnologies RPC diferents que es fan servir habitualment que sén incompatibles, com ara

ONC RPC i DCE/RPC.

RPC permet implementar el model client - servidor de computacio distribuida. Un remote
procedure call és instanciat pel client, enviant un missatge de peticié a un servidor remot conegut
per a executar el procediment especificat fent servir parametres subministrats, i mentre el servidor
processa la crida, el client queda bloquejat. A continuacio, una resposta és retornada al client on

I'aplicacié continua amb el seu procés.

Un aspecte important entre crides a procediments remots i crides locals és que les primeres
poden fracassar a causa de problemes de xarxa imprevisibles. També, els clients generalment
han de tractar aquests problemes sense saber si el procediment remot va ser invocat

correctament.

Per a permetre l'accés de diferents clients als servidors, un nombre de sistemes RPC
estandarditzats ha estat creat. La majoria d'aquests fan servir un Interface Description Language
(IDL) per a permetre a diverses plataformes cridar al RPC. Aquest és un llenguatge utilitzat per
descriure la interficie de components programari: descriu una interficie en un llenguatge neutral, la
qual cosa permet la comunicacié entre components de programari desenvolupats en diferents
llenguatges de programacio. Aixi doncs, IDL ofereix un pont entre dos sistemes diferents. Els
arxius IDL poden ser utilitzats per a generar codi que faci d'interficie entre el client i el servidor.

L'eina més habitualment utilitzada per aquest proposit és RPCGEN.

Escola Universitaria d'Informatica de Sabadell 53



Monitor de servidors JMS Jordi Manzano Ulloa

3.2.2 MOM i el paradigma de la missatgeria

Els ordinadors i les persones poden comunicar-se mitjangant I'is de sistemes de missatgeria
per a lintercanvi missatges a través de xarxes electroniques. En el que es refereix a la
comunicacio entre aplicacions, quan es parla en termes de negoci, es refereix generalment als

Enterprise Messaging Systems (EMS) o Message Oriented Middleware (MOM).

Els EMS permeten a dos o més aplicacions intercanviar informacio a través de missatges. En
aquest cas, un missatge és un paquet amb dades de negoci. Aquestes poden ser qualsevol tipus
de informacié i normalment conté dades sobre alguna transaccié de negoci; els missatges

informen a les aplicacions de que ha esdevingut un succeés en altre sistema.

Amb la utilitzacié de programari de intermediari orientat a missatges, els missatges son
transmesos d'una aplicaci6 a una altra a través de la xarxa. Els diferents productes que
implementen MOM, asseguren que aquests missatges soén distribuits apropiadament entre
aplicacions. A més, aquestes implementacions solen incloure funcionalitats d'alta disponibilitat,
balanceig de carrega, escalabilitat i suport transaccional per situacions on es requereixi una gran

quantitat d'intercanvi de missatges.

El proveidors de solucions MOM, utilitzen diferents formats de missatges i protocols de xarxa
per l'intercanvi de dades, pero els fonaments a alt nivell sén els mateixos. Una API és utilitzada
per crear un missatge, se li afegeix la informacié en el cos, la informacié de enrutament en la
capcgalera i s'envia. La mateixa API sera utilitzava per rebre aquest missatge produit per altres

aplicacions.

En la gran majoria de EMS, l'intercanvi de missatges entre aplicacions es realitza mitjangant
canals virtuals anomenats destinacions. Quan un missatge es enviat, aquest sera entregat a una

destinacié, no a una aplicacid en concret; qualsevol aplicacié que es registri o tingui una

Escola Universitaria d'Informatica de Sabadell 54



Monitor de servidors JMS Jordi Manzano Ulloa

subscripcié en aquesta sera capac de rebre el missatge. D'aquesta manera el programari que rep

missatges i aquells que n'envien estan totalment desacoblats.

Application A Application B
Messaging API Messaging AP
Message-

Oriented
Messaging Clients Middiowars Messaging Clients

Figura 8: programari intermediari orientat a missatges

Tots el proveidors d'implementacions basades en MOM proveeixen als desenvolupadors
d'una API per I'enviament i recepcié de missatges. No obstant, un dels problemes de la MOM és
la falta de estandards. La majoria de proveidors tenen la seva propia implementacio, API i eines
d'administracié i desenvolupament. Cal dir, que aixd no vol significa que no n'existeixin; la Java
Message Service és un estandard de Java que defineix una interficie per la missatgeria entre

aplicacions i que la seva implementacié vindra donada pels diferents proveidors.

Per tant, el programari intermediari MOM és una infraestructura focalitzada en enviar i rebre
missatges que permet que es puguin comunicar aplicacions o moduls diferents sobre plataformes
heterogénies, reduint la complexitat del desenvolupament d'aplicacions que han de comunicar-se
amb altres de diferents plataformes, ocultant al desenvolupador els detalls dels diferents sistemes
operatius i protocols de xarxa. MOM és un programari que resideix en ambdues parts (dintre d'una
arquitectura client / servidor) i que suporta trucades asincrones. Les cues de missatges
(destinacions) proveeixen de emmagatzematge temporal quan una aplicacié esta ocupada o no

esta connectada.

Escola Universitaria d'Informatica de Sabadell 55



Monitor de servidors JMS Jordi Manzano Ulloa

La missatgeria és un métode de comunicacié entre els components de programari o
aplicacions. Un client pot enviar missatges a altres clients, al mateix temps que esta capacitat per
rebre. Cada client es connectara a un agent o proveidor de missatgeria que oferira facilitats per
crear, enviar, rebre, i llegir missatges. Aquest model habilita la comunicacié distribuida “imprecisa”;
un component envia un missatge a una destinacié i el receptor pot recuperar aquest mateix
missatge quan estigui disponible per la comunicacié. Es per aixd que tant el client que envia el
missatge com el que el rep, no han de estar al mateix temps preparats per la comunicacio, per
tant, no existeix la necessitat de que el remitent ni el destinatari es coneguin mutuament. Malgrat
aquesta independéncia, els dos es veuen obligats conéixer el format del missatge que enviaran o

rebran per tal d'utilitzar i entendre la informacié continguda.

Les arquitectures MOM avui en dia varien la seva implementacié; des d'una arquitectura
centralitzada que depén de un servidor de missatgeria per realitzar la distribucioé dels missatges,
fins a una arquitectura descentralitzada que distribueix el procés de servidor entre els clients. Una
gran varietat de protocols que inclouen TCP/IP, HTTP, SSL i IP multicast sén utilitzats en la capa
de transport. Alguns productes de missatgeria sén hibrids dels dos models en funcié de la forma

en que son utilitzats.

Abans de detallar les diferents arquitectures, és important descriure el terme client; els
sistemes de missatgeria estan composats per clients i un programari d'intermediari orientat a
missatges. El client doncs, és una aplicacié o component que utilitza la APl que proporciona el

proveidor del MOM per enviar missatges.

Arquitectura centralitzada
Els EMS que utilitzen una arquitectura centralitzada confien en un servidor de missatgeria.
També anomenat broker de missatges, és responsable de la entrega de missatges de un client als

seu/s destinatari/s. La figura del servidor de missatgeria desacobla els clients que uUnicament

Escola Universitaria d'Informatica de Sabadell 56



Monitor de servidors JMS Jordi Manzano Ulloa

tenen visible a aquest i no als destinataris, fet que permet afegir i eliminar clients sense tenir

impacte en el sistema sencer.

Tipicament, una arquitectura centralitzada utilitza una topologia d'estrella. En un cas senzill, hi
ha un servidor centralitzat de missatgeria i clients connectats a aquest tal com es mostra en la

seguent figura:

Appfication A Appiication B
JMS JMS
Client Client
= Py
. s
Message
Server
v f
//f A e
x L
JMS JMS
Client Client
Application D Application C

Figura 9: arquitectura centralitzada d'un MOM

Aquesta arquitectura presta per si mateixa una quantitat de connexions de xarxa minima
mentre que permet a qualsevol part del sistema comunicar-se amb qualsevol altra. En la practica,

el servidor centralitzat acostuma a ser un cluster de servidors distribuits operant com a una unitat

logica.

Arquitectura descentralitzada
Totes les arquitectures descentralitzades solen utilitzar IP multicast’’ a nivell de xarxa. Un

sistema de missatgeria basat en el multicasting no té un servidor centralitzat. Algunes de les

11 Multicast: consisteix en I'enviament de informacié en un xarxa de diversos destinataris de forma simultania.

Escola Universitaria d'Informatica de Sabadell 57



Monitor de servidors JMS Jordi Manzano Ulloa

funcionalitats de un servidor (persisténcia, transaccions, seguretat) sén incrustades com una part
local del client, mentre que I'enrutament dels missatges és delegat a la capa de xarxa utilitzant el
protocol IP multicast. Aquest permet a les aplicacions ajuntar un o més grups IP multicast, on
cadascun utilitza una direccié IP que redistribuira cada missatge que rebi a tots els membres del
seu grup. D'aquesta manera, les aplicacions poden enviar missatges a adreces IP multicast

confiant en que la capa de xarxa els redistribuira correctament.

Application A

JMS o
Client o Router

Local “Server” L4 k J
Local “Server” Local “Sarver” Local “Sarver”

JMS JMS JMS
Client Client Client

Application Application ¢ Application G

Figura 10: arquitectura descentralitzada d'un MOM

Al contrari que la arquitectura centralitzada, una arquitectura distribuida no requereixi del
servidor pel que fa a l'enrutament de missatges; la xarxa el tracta automaticament. Malgrat aixo,
altres funcionalitats del servidor sén requerides i s'inclouen en cada client, com la persisténcia dels

missatges .

Com s'ha comentat, aquestes dues arquitectures solen utilitzar per una banda el protocol
TCP/IP i per altra IP multicast. Entre les arquitectures implementades per diversos proveidors
també es poden trobar productes que combinen aquestes dues; on els clients poden connectar-se
a un procés dimoni que utilitza TCP/IP i també a un altre que usi per la comunicacio els grups IP

multicast.

Escola Universitaria d'Informatica de Sabadell 58



Monitor de servidors JMS Jordi Manzano Ulloa

Consideracions generals sobre ambdues arquitectures.
En aquest apartat s'exposen les dos arquitectures explicades anteriorment per tal d'analitzar

les avantatges i inconvenients.

Un sistema de missatgeria basat en TCP utilitza una arquitectura en estrella, on existeix la
figura d'un servidor centralitzat (o un cluster amb diversos servidors) que es comuniquen amb els
diferents clients utilitzant connexions TCP/IP, SSL' o HTTP. Aquest és responsable de qui esta
publicant i qui esta rebent els missatges. Tenir servidors en cluster proporciona balanceig de
carrega i ajuda a optimitzar el trafic de la xarxa filtrant i seleccionant els missatges. Els servidors
s'encarregaran de la persisténcia de les dades, de l'accés a les destinacions i permisos dels
clients per rebre els missatges. A més, els clients no necessiten saber de I'existéncia dels altres,

nomeés de la del servidor centralitzat.

Al mateix temps, aquesta arquitectura introdueix un unic punt de fallida; si el servidor principal
de un cluster cau, el servidor sencer es tornara indisponible. Un proveidor de EMS pot resoldre
aquest problema distribuint les connexions en servidors multiples en un cluster, de tal forma que si
un cau, l'altre servidor pot continuar operant, minimitzant l'impacte de la fallida. La reconnexié ha

de ser gestionada pel client.

En canvi, el multicasting implica una arquitectura diferent, en la qual no existeix la figura del
servidor centralitzat. Es per aquest motiu que no hi ha un unic punt de fallida: cada client
distribueix els missatges a la resta de clients. Una consequéncia directa d'aquest és que cada
publicador i cada subscriptor han de tenir una configuracié local sobre cadascun dels clients
existents al sistema. Aquest fet ha de ser una consideraci6 a tenir en compte pel
desenvolupament de solucions que utilitzin el paradigma de la missatgeria; en abséncia de un

marc de treball d'administracié de alt nivell, les configuracions locals han de ser actualitzades en

12 SSL: Protocol que ofereix comunicacions segures mitjangant I'encriptacié de dades utilitzat amb freqiiencia en la web i correu

electronic .

Escola Universitaria d'Informatica de Sabadell 59



Monitor de servidors JMS Jordi Manzano Ulloa

cada client cada vegada que s'incorpora un de nou al sistema.

L'arquitectura descentralitzada necessitara de mecanismes per garantir la persisténcia dels
missatges, que residira en les maquines on corren els clients. No importa com d'eficient sigui
I'emmagatzematge, les escriptures i lectures de disc; aquest fet sempre sera el major coll
d'ampolla del sistema. Escollint aquest tipus d'arquitectura es requereix que les maquines client

tinguin un sistema d'emmagatzematge rapid i de gran capacitat.

Escola Universitaria d'Informatica de Sabadell 60



Monitor de servidors JMS Jordi Manzano Ulloa

3.2.3 RPC vs. Missatgeria Asincrona

Remote Procedure Call (RPC) és un terme usat per descriure un model distribuit que avui en
dia és usat en tecnologies de programari d'intermediari com CORBA, Java RMI i Microsoft DCOM.
Les tecnologies basades en RPC son una solucié viable per diverses aplicacions, encara que el
model de missatgeria és més optim per alguns tipus de aplicacions distribuides. Aquest capitol

tractara de analitzar els punts forts i débils de ambdds models.

RPC i la dependéncia modular.

Una de les arees amb més éxit pel model RPC ha sigut la construccié d'aplicacions en 3-
capes o n-capes (3-tier, n-tier respectivament). En aquestes aplicacions cada capa és auto-
continguda de tal forma que la aplicacié pot ésser dividida en diverses maquines en una xarxa
distribuida; és a dir, cada capa normalment sera mantinguda per un servidor especific per fer-se
més independent de la resta. En aquest model, la capa de presentacié (primera capa) es
comunica utilitzant RPC amb la logica de negoci (segona capa), la qual accedira a la capa que
emmagatzema les dades (tercera capa). La plataforma de Sun Microsystems J2EE i DNA de
Microsoft son exemples d'aquesta arquitectura. Sense entrar en detalls en cada tecnologia i

plataforma, el nucli d'aquestes és un programari basat en RPC.

Remote Procedure Call intenta imitar el comportament de un sistema que és executat en un
procés; quan un procediment remot és invocat, qui truca al procediment es bloqueja fins que el
procediment acaba i retorna el control a aquest. Aquest model sincronitzat permet al
desenvolupador tenir una visi¢ del sistema com si es tractes d'un sol procés. El treball es realitza
de forma sequencial, assegurant que les tasques sén completades. La “sincronitzada” naturalesa
de RPC augmenta la dependéncia dels clients (aquells components que realitzen les trucades als
procediments) i el servidor (aquell qui dona servei a la trucada); el client és bloquejat fins que el
servidor no respon. Aquesta dependéncia modular crea sistemes interdependents on una fallida

en un té un impacte directe en els altres. En J2EE per exemple, el servidor EJB ha de funcionar

Escola Universitaria d'Informatica de Sabadell 61



Monitor de servidors JMS Jordi Manzano Ulloa

correctament si es vol que funcionin el servlets™ que utilitzen enterprise beans™.

RPC treballa correctament en diversos escenaris, perd el seu sincronisme pot ser un punt
debil on aplicacions verticals sén integrades totes juntes. En aquest escenari, les linies de
comunicacio entre aquests sistemes verticals son diverses i multi-direccionals tal com es mostra a

la segient figura:

Accounts
Receivable

CRM
Application Inventory
-
..r""""

Sales Order HelpDesk

Figura 11: exemple de sistema RPC

Si es considera la implementacié d'aquesta infraestructura utilitzant un mecanisme RPC
existeixen diversos problemes a I'hnora de gestionar les connexions entre aquests sistemes. Quan
s'afegeix un altre component a aquesta infraestructura, s'haura de tornar enrere i fer saber a la
resta de sistemes la inclusié del nou. Al mateix temps, els sistemes poden fer fallida; quan una

part del sistema cau, tot es paralitza. Existeixen perd solucions per aquest problema com el

13 Servlet: objectes que s'executen dintre d'un contenidor de serviets. A diferéncia dels applets, aquests corren en el servidor i no
en el client.

14 Enterprise bean: component de la part servidora, gestionat pel contenidor i pensat per la construccié modular d'aplicacions
d'empresa.

Escola Universitaria d'Informatica de Sabadell 62



Monitor de servidors JMS Jordi Manzano Ulloa

multithreading o mecanismes CORBA, perd aquestes solucions tenen forca complexitat i
requereixen un desenvolupament sofisticat. Els fils son costosos quan no s'utilitzen amb criteri i
les trucades CORBA d'una direccidé requereixen un nivell més en l'aplicacié pel tractament
d'errors. Per aquests motius, en escenaris on no es pot donar aquesta situacié, la missatgeria pot

ser considerada com alternativa.

Enterprise Messaging

Els inconvenients comentats anteriorment sobre la disponibilitat dels subsistemes no és un
problema amb un programari d'intermediari orientat a missatges. Un concepte fonamental de
MOM és que la comunicacioé entre aplicacions tendeix a ser asincrona. El codi escrit per connectar
els moduls entre si assumeix que la resposta de l'altra aplicacié no sera immediata, no és
bloguejant; una vegada que un missatge és enviat, el client pot continuar realitzant altres tasques.
Aquesta és la major diferéncia entre el RPC i la missatgeria asincrona, on cada subsistema és

desacoblat dels altres sistemes com es mostra a continuacio:

Accounts
Receivahle

CRM
Application

JMS
Client

Client
Sales Order HelpDesk

Figura 12: arquitectura Enterprise Messaging

Escola Universitaria d'Informatica de Sabadell 63



Monitor de servidors JMS Jordi Manzano Ulloa

Les diferents parts es comuniquen a través d'un servidor de missatgeria, fent que si una falla
no impedeix les operacions de la resta. Una fallida no esperada o la necessitat de reiniciar un
component és un fet que sol donar-se en sistemes en xarxa. La Java Message Service, com a
exemple de MOM, garanteix l'entrega assegurant que els destinataris rebran missatges inclus
quan una part del sistema cau. Aquest sistema utilitza un mecanisme d'emmagatzematge que
permet que en cas de que un missatge no es pugui entregar, aquest persisteix i no es perd, tot

esperant a que el seu destinatari torni a estar disponible.

En definitiva, a través del processat asincron, la persisténcia i la garantia d'entrega de
missatges, la Java Message Service proveeix funcionalitats per mantenir les aplicacions en
continua operacié i funcionament sense interrompre el servei. A més, ofereix flexibilitat en la
integracié oferint el model de missatgeria de publicador / subscriptor i el punt a punt. Mitjancant

eines de control administratiu permet donar un servei robust per arquitectures basades en serveis.

Escola Universitaria d'Informatica de Sabadell 64



Monitor de servidors JMS Jordi Manzano Ulloa

3.3 JAVA MESSAGE SERVICE

3.3.1 Introduccié

La Java Message Service (JMS) és una especificacido que defineix un conjunt d'interficies i
altres semantiques associades, les quals permeten a les aplicacions escrites en Java l'accés a
serveis oferts per productes que compatibles amb JMS i el model MOM. Cal remarcar que JMS no
és un producte, si no una especificacié a la que productes com MQSeries d'IBM, SonicMQ,

FioranoMQ donen la implementacio.

Amb tot el potencial que els sistemes de missatgeria ofereixen, tal com s'ha comentat en
apartats anteriors, han aparegut diversos productes en el mercat, cadascu amb els seus
avantatges i inconvenients, més populars i menys. Com a sistemes populars de missatgeria es
poden remarcar a MQSeries de IBM i Tibco Rendezvous. Cal dir, que aquest ultim no dona suport
a JMS, perd si ho fa un altre producte de la mateixa companyia anomenat Tibco EMS. Tots

aquests productes tenen les seves propies interficies i APl i sén entre ells lleugerament diferents.

Es pot considerar la seguent situacio; un client que desenvolupa una aplicacié requereix un
producte de missatgeria i crea una llista de requeriments. Després d'avaluar les diferents
alternatives existents, aquest client selecciona el proveidor que millor s'ajusta als seus
requeriments i el client acaba per integrar aquest producte al seu desenvolupament. Un any
despres, altre proveidor ofereix un producte millor o apareixen nous requeriments que el producte
actual no assoleix. El client no pot migrar facilment el seu desenvolupament a un nou producte
degut a la forta dependéncia entre el producte de missatgeria i el seu codi. Es en aquest punt on
entra en escena la Java Message Service, oferint un conjunt uniforme de interficies i semantiques
per sistemes de missatgeria. Per tant, permet als clients tenir una visid uniforme de tots els
productes que acompleixen amb aquest estandard facilitant el canvi de proveidor de missatgeria i

minimitzant els costos d'una migracio.

Escola Universitaria d'Informatica de Sabadell 65



Monitor de servidors JMS Jordi Manzano Ulloa

o

hMessages

Java Message Service (JMS) API

)
y

|BM
TIBCO
Redezvou

w &
@ o=
= [=]
@ &=
g s
= [

Sun Java
Message Queu

Progress

Sanich Q2

Figura 13: interficie JMS i proveidors

Com es mostra en la figura anterior, aquest model allibera al client de I'is d'un Unic proveidor i
amplia les diferents propostes en el mercat. JMS té com objectiu proporcionar una API uniforme

de missatgeria.

Un nombre important d'empreses com Allaire, BEA Systems, Fiorano Software, Progress
Software van col-laborar en un inici amb Sun Microsystems per definir un primer esborrador de la
especificacio JMS. A més, es van rebre idees i comentaris d'altres companyies i organitzacions
educatives durant tres mesos de revisié publica. Aquesta és una de les claus de l'acceptacio de
JMS, a part obviament de les avantatges comentades anteriorment. Actualment empreses com

Oracle, Sybase, Novel i IBM patrocinen I'especificacio JMS.

Es important entendre que JMS no representa la unié de funcionalitats disponibles a través
dels diferents productes existents; la especificacidé seria massa voluminosa per a que qualsevol
proveidor donés suport. Al mateix temps seria complicada pels desenvolupadors obtenir una
comprensio rapida, ja que la corba d'aprenentatge creixeria. D'altra banda, JMS no és una
interseccidé de un conjunt de funcionalitats de productes de missatgeria que existien amb

anterioritat; en comptes es va definir un conjunt de conceptes de missatgeria i facilitats que sén

Escola Universitaria d'Informatica de Sabadell 66



Monitor de servidors JMS Jordi Manzano Ulloa

basiques per implementar una aplicaci6 de missatgeria. Es pot prendre de forma analoga a
JDBC™, on aquest permet I'accés uniforme a diferents tipus de bases de dades relacionals mentre

que JMS ho fa amb els diferents productes de missatgeria.

3.3.2 Models (publicador - subscriptor / punt a punt)
El model de publicador / subscriptor permet al productor del missatge (també anomenat
publicador) fer arribar el seu missatge a més d'un consumidor o destinatari (anomenats

subscriptors). Cal tenir en compte tres aspectes importants d'aquest model:

+ Els missatges sén extrets del servidor cap als consumidors sense que ells tinguin una
petici6 sobre de rebuda d'aquests. Els missatges sén intercanviats mitjangant un canal
virtual anomenat topic. Un topic és una destinacié on els productors poden publicar i els
subscriptors poden consumir missatges. Els missatges entregats en topics sbén

automaticament extrets a tots els consumidors subscrits.

* No hi ha dependéncia entre productors i consumidors. Subscriptors i publicadors poden
ser afegits dinamicament en temps d'execucié, el que permet al sistema créixer o fer-se

més petit durant el cicle d'execucio.

. Cada client que subscrit a un topic rep la seva copia del missatge publicat en un topic.
Un missatge produit per un publicador pot ser copiat i distribuit a centenars o milers de

subscriptors.

D'altra banda, en el model punt a punt, el productor és anomenat remitent i el consumidor

destinatari. Les caracteristiques més importants d'aquest model sén:

15 JDBC: Java DataBase Connectivity permet a les aplicacions en llenguatge Java accedir mitjangant una interficie comuna a les

bases de dades per a les que existixen drivers JDBC. Normalment, es tracta de bases de dades relacionals.

Escola Universitaria d'Informatica de Sabadell 67



Monitor de servidors JMS Jordi Manzano Ulloa

+ El missatges son intercanviats a través de un canal virtual anomenat cua. Una cua és

una destinacié que permet als remitents enviar missatges i als destinataris obtenir-los.

+ Cada missatge és només entregat a un destinatari. Es poden connectar diversos

consumidors a una cua, pero cada missatge només sera entregat a un d'ells.

+ Els missatges son ordenats. Una cua entrega els missatges a un client consumidor en
l'ordre en que foren enviats pel productor. Quan un missatge es consumeix, s'elimina del

cap de la cua.

* No hi ha dependéncia entre productors i consumidors. Destinataris i remitents poden

ser afegits dinamicament en temps d'execucio (al igual que els topics).

En la majoria de casos, la decisié de quan utilitzar un model o un altre dependra dels
avantatges que ofereixen ambdds. Amb subscriptors i publicadors, es pot tenir qualsevol nombre
de subscriptors en un topic i tots rebran una copia del mateix missatge. El publicador no tindra en
compte si hi ha algu escoltant o no, per exemple; un client publicador envia informacié sobre
quotes. Si cap subscriptor en particular no esta connectat no rebra mai aquest missatge i el
publicador no se'n donara compte. D'altra banda, una sessié punt a punt esta enfocada en una
conversacio entre dos components. En aquest escenari cada missatge és realment important. El
rang i la varietat de dades que els missatges representen pot ser un factor a tenir en compte
també. Utilitzant el model de publicador i subscriptor, incldos quan la missatgeria esta sent utilitzada
per establir una conversa entre dos components que es coneixen, pot ser avantatjos utilitzant
diversos topics per diferenciar el tipus de missatges que s'estan enviant. Cada tipus de missatge
pot ser interpretat per separat a través d'un unic consumidor. No obstant, el punt a punt és més
convenient quan es vol assegurar que un destinatari processara aquest missatge una sola

vegada.

Escola Universitaria d'Informatica de Sabadell 68



Monitor de servidors JMS Jordi Manzano Ulloa

Aquestes sén les diferencies critiques dels dos, el punt a punt assegura que només un
consumidor tractara aquell missatge. Aquest fet és important quan els missatges han de ser
processats separadament perd en tandem, balancejant la carrega a través de diferents clients
JMS. Una altra avantatge és que el model punt a punt proveeix un QueueBrowser’®, que permet al
client accedir a la cua per llegir els missatges que estan esperant ser consumits sense consumir-

los.

Cal afegir, que existeix un sistema a JMS per garantir la persisténcia dels missatges que
s'envien a través de topics; les subscripcions durables. Aquestes guarden els missatges quan el
subscriptor és inaccessible per evitar la pérdua del missatge en clients que utilitzin aquest model i

que no es puguin permetre perdre missatges.

3.3.3 Fonaments basics de JMS
En aquest apartat es fa una descripcié dels conceptes basics de JMS per tal d'entendre certs
aspectes del projecte que s'exposa. S'adjuntara codi Java per mostrar un exemple

d'implementacio de client JMS el qual utilitzara les seguents variables:

String queueName = null;
Context jndiContext = null;

QueueConnectionFactory queueConnectionFactory = null;

QueueConnection queueConnection = null;
QueueSession queueSession = null;
Queue queue = null;
QueueSender queueSender = null;
TextMessage message = null;

final int NUM MSGS;

16 QueueBrowser: Interficie de la APl de JMS. Les classes que la implementen proporcionen visibilitat als elements d'una cua pero

sense treure'ls de la mateixa, i per tant, continuen en el servidor sense ser consumits.

Escola Universitaria d'Informatica de Sabadell 69



Monitor de servidors JMS Jordi Manzano Ulloa

Connection Factories

En el centre del nucli de JMS, una connexié representa un enllag logic amb els proveidor de
JMS. Es obvi que una de les primeres coses que ha de realitzar un client JMS és establir una
connexié amb un servidor JMS. Per obtenir aquesta connexié cada proveidor JMS facilita una
connection factory. JMS no estandarditza la informacié que conté aquesta connection factory o

com el client obté la aquesta connexié de un proveidor de JMS.

interface
ConnectionFactory

interface interface
QueneConnectonFactory TopicConnectionFactory

+rregtelueueConhection QueleConnaction +oregteTopicConhechion Toplc Connection
+rregtelueueConhection QueleConnection +oregteTopicConnection ToplcConnection

Figura 14: interficie ConnectionFactory

Tal com es mostra a la figura anterior, existeixen dos tipus de connection factories: una per la
connexié punt a punt i una altra pel model publicacié / subscripcié. Basat en el model de
missatgeria que utilitzaran, els clients obtindran la connection factory apropiada i es connectaran

al proveidor JMS.

/*
* Create a JNDI API InitialContext object if none exists
* yet.
*/
try {
jndiContext = new InitialContext();
} catch (NamingException e) {

System.out.println ("Could not create JNDI API " +

"context: " + e.toString());

Escola Universitaria d'Informatica de Sabadell 70



Monitor de servidors JMS Jordi Manzano Ulloa

System.exit (1) ;

/*
* Look up connection factory and queue. If either does
* not exist, exit.
*/
try {
queueConnectionFactory = (QueueConnectionFactory)
jndiContext.lookup ("QueueConnectionFactory") ;
queue = (Queue) jndiContext.lookup (queueName) ;
} catch (NamingException e) {
System.out.println ("JNDI API lookup failed: " +
e.toString());
System.exit (1) ;

En el fragment de codi anterior, es pot observar com es busca la factory mitjangant JNDI.
Aquesta és la forma correcta d'establir una connexié amb un servidor JMS. Normalment els
proveidors tenen métodes propis dependents de la seva implementacié i que no figuren a la
definicié JMS. Es per aquest motiu que si es vol fer un codi totalment independent del proveidor

s'ha d'utilitzar aquest sistema.

Sessions

Una vegada que el client ha establert una connexié amb el proveidor JMS, el segient pas es
comengar una nova sessio; una vista privada del client sobre la connexié. Cada connexié pot tenir
diverses sessions obertes al mateix temps. Al mateix temps que una connexidé és necessaria per
comunicar-se amb el proveidor JMS, una sessio sera necessaria per comunicar-se amb la mateixa
connexid. Per entendre millor aquest concepte es pot posar un exemple: la connexié seria analoga
a la linia de telefon que fa de servei a tot el barri, mentre que la sessi6 seria la trucada telefonica

que utilitza aquesta linia.

Escola Universitaria d'Informatica de Sabadell 71



Monitor de servidors JMS Jordi Manzano Ulloa

l:'] interface

Sessfon
+AUTO ACKMNOWLEDGE:int
+CLIENT ACKNOWLEDGE:int
+DUPS Ok ACKNOWLEDGE:int
+toreateBytestessage. Bteslfessage
+ereateMapliessage Mapllessage
+otegteMessageMessage
+ereateObjectilessage. Objeciessage
+ereateQbjectfessage.Obfecifessage
+oreateStrearmMeassage Streamie ssage
+otegteTexiWessage Texd\Wessage
+oreateTend\essage TextWessage
+eommitvold
+roliback:vold
+olosevosid
+recover vold
+runvioicd
transacted:boalean
messagelistenerhessagelistener

interface intetface

TopicSession QueneSession
+createTonic Toplc +oregteualeusle
+oregtesubactiber TopicSubscriber +icregleReceiverQuensRecelver
+oregtesubactber TopicSubscrber +createRecaiverQuelaReceivar
+oreatelurableSubscriber: TopicSubscriber +createSender.QueneSendear
+oregtelurableSubscriber TopicSubscribar +cregte Browser Quene Browsar
+oregteFubiisher ToplcPubiisher +createBrowser ueueBrowser
+cregteTemparanToplc TermporanTopic +cregteTemporanQuele TemporanClene
+unsubscripeoid

Figura 15: interficie Session
Al establir una sessio6 es defineix el tipus de acknowledge que s'utilitzara per especificar quina
sera la forma de confirmar que la transaccié d'un missatge ha sigut correcta. A JMS es

contemplen tres maneres:

«  mode automatic: quan una sessié6 empra aquest mode, els missatges enviats o rebuts

d'aquesta sessi6 automaticament son reconeguts (acknowledged).

* duplicates okay mode: els missatges rebuts o enviats d'una sessié son automaticament
reconeguts com en el mode anterior, perd no al moment exacte. Aquest fet provoca que a

vegades els missatges puguin ser entregats més d'una vegada.

* mode client: en aquest cas I'aplicacié sera I'encarregada de confirmar que el missatge ha

sigut enviat o rebut correctament, donant-li control complet perd augmentant la complexitat

Escola Universitaria d'Informatica de Sabadell 72



Monitor de servidors JMS Jordi Manzano Ulloa

del codi.

Destinacions
En un sistema basat en missatgeria, sense tenir en compte el model que s'estigui utilitzant
(publicar/subscriure o punt a punt), cada missatge ha de ser entregat en algun lloc, que en JMS es
coneix com destinaci6. Els missatges s6n enviats una destinacid, i sén rebuts d'una destinacio al

mateix temps. JMS no estandarditza quina és la informacié que encapsula la destinacié.

Hi ha dos tipus de destinacions en funcié del model de enviament i recepcié que s'estigui
utilitzant. Pel model punt a punt, la destinacié s'anomena cua i per la publicacié i subscripcio topic.
Una sessi6é creada per un model punt a punt unicament pot ésser utilitzada per arribar a una cua,

fet que aplica també a les sessions creades per treballar amb topics.

Una vegada el client JMS ha obtingut una sessié mitjangant el establiment d'una connexid, a
través de la sessid s'obté la destinacié. Es en aquest moment on el client ja podra enviar
missatges a aquell desti. Malgrat aix0, la sessid6 mateixa no pot ser utilitzada per rebre i enviar
missatges si no que actua com una factory que pot ser utilitzada per crear remitents i destinataris

que soén utilitzats per enviar i rebre missatges respectivament.

Escola Universitaria d'Informatica de Sabadell 73



Monitor de servidors JMS Jordi Manzano Ulloa

interface
Destination
interface intetface
Topic Quene
+Hosthing Siring +Hiostning: Sthing
topicklame: String queuerame:String
interface interface
Temporary Topic TemporaryQuene
+delelevaid +elatavioid

Figura 16: interficie Destination

Una vegada finalitzada la connexid, s'ha de tancar. En el seguent fragment de codi, es

mostra aquest proces:

/*
* Create connection.
* Create session from connection; false means session is
* not transacted.
* Create sender and text message.
* Send messages, varying text slightly.
* Send end-of-messages message.
* Finally, close connection.
=/
try {
queueConnection =
queueConnectionFactory.createQueueConnection () ;
queueSession =
queueConnection.createQueueSession (false,
Session.AUTO ACKNOWLEDGE) ;
queueSender = gqueueSession.createSender (queue) ;

message = queueSession.createTextMessage () ;

Escola Universitaria d'Informatica de Sabadell 74



Monitor de servidors JMS Jordi Manzano Ulloa

for (int i = 0; i < NUM MSGS; i++) {
message.setText ("This is message " + (i + 1));
System.out.println ("Sending message: " +
message.getText ()) ;
queueSender.send (message) ;
}
} catch (JMSException e) {
System.out.println ("Exception occurred: " +
e.toString());
} finally {
if (queueConnection != null) {
try {
queueConnection.close() ;

} catch (JMSException e) {}

El missatge

El missatge és la part més important de la especificaci6 JMS. Totes les dades i
esdeveniments en una aplicacié JMS sén comunicats mitjangant aquest medi, mentre que la resta
dels components JMS existeixen per facilitar la transferéncia d'aquest. En sistemes basats en
RPC (CORBA, Java RMI, DCOM), un missatge és una comanda per executar un metode o un
procediment, el qual bloqueja al remitent fins que no rep una resposta. Un missatge JMS no és
una instruccio; transfereix les dades i diu al destinatari quelcom que ha passat. Aquest fet ailla al
destinatari del remitent fent el sistema més dinamic i flexible que aquests anteriors. Un missatge té

dos parts; el cos del missatge amb les dades, la capgalera i les propietats.

La capcalera proveeix informacié sobre el missatge descrivint qui i qué a creat el missatge,
quan ha sigut creat, la vigéncia de les dades, etc. La capgalera també inclou informacié
d'enrutament que descriu el desti del missatge (tdpic o cua), com el missatge sera reconegut
(acknowledge) entre d'altres. A més poden també incloure propietats definides pel client JMS. La
majoria de vegades les capgaleres sén automaticament inicialitzades, els seus valors son

assignats pel proveidor JMS quan el missatge es entregat, per tant alguns dels valors definits pel

Escola Universitaria d'Informatica de Sabadell 75



Monitor de servidors JMS Jordi Manzano Ulloa

desenvolupador mitjangant el métode set/MS<HEADER>() son ignorats.

Capcgaleres d'assignacio Capcaleres d'assignacio
automatica manual
JMSDestination JMSReplyTo

JMSDeliveryMode JMSCorrelationID
JMSMessagelD JMSType
JMSTimestamp

JMSExpiration
JMSRedelivered
JMSPriority

Taula 13: capgaleres dels missatges JMS

Les propietats actuen com capcgaleres addicionals que poden ser assignades a un missatge.
Proveeixen als desenvolupadors més informacié sobre el propi missatge. La interficie Message
dona métodes d'accés i escriptura per establir propietats. Es donen tres categories basiques de
propietats en els missatges; especifiques de l'aplicacio, definides per JMS i definides pel
proveidor. Les primeres son definides i aplicades als missatges pel desenvolupador del client, la

segona i la tercera sén opcionals i sdn en major part afegides pel proveidor JMS.

JMS contempla sis tipus de missatges que han de suportar els proveidors, on especifica les
seves interficies perd no la implementacié; aixd fa que els proveidors tinguin llibertat per
implementar el transport dels missatges tot mantenint-se transparent al codi del desenvolupador
JMS. En total sén sis interficies destinades al missatge on cinc sén subinterficies; TextMessage,
StreamMessage, MapMessage, ObjectMessage i BytesMessage. Aquestes estan definides en

funcié del missatge que transportaran.

Escola Universitaria d'Informatica de Sabadell 76



Monitor de servidors JMS Jordi Manzano Ulloa

TIPUS DESCRIPCIO

El cos és una cadena de text. S6n utils per intercanviar dades en

forma de caracters o enviar XML.

TextMessage textMessage = session.createTextMessage( );
textMessage.setText("Hello!");
TextMessage topicPublisher.publish(textMessage);

TextMessage textMessage = session.create TextMessage("Hello!");

queueSender.send(textMessage);

Aquest missatge transporta un stream de tipus primitius de Java (int,
double, char...). Proveeix un conjunt de métodes pel mapeig de stream de

bytes en dades primitives de Java.

StreamMessage
StreamMessage streamMessage = session.createStreamMessage(

streamMessage.writeLong(2938302);

short value = streamMessage.readShort( );

El cos transporta un conjunt de parelles (nom-valor). La clase

MapMessage és util per entregar dades referenciades per claus.

MapMessage mapMessage = session.createMapMessage( );

MapMessage mapMessage.setint("Age”, 88);
mapMessage.setFloat("Weight", 234);

mapMessage.setString("Name", "Smith");
mapMessage.setObject("Height", new Double(150.32));

ObjectMessage El missatge conté un objecte Serializable’ de Java. Es util per

l'intercanvi d'objectes.

Order order = new Order( );

ObjectMessage objectMessage = session.createObjectMessage( );
objectMessage.setObject(order);

queueSender.send(objectMessage);

17 Serializable: AP| de Java que permet la gestié de la serialitzacié d'objectes. S'entén per serialitzacié d'objectes la conversié en

bytes d'aquests per ser a posteriori llegits i restaurats.

Escola Universitaria d'Informatica de Sabadell 77



Monitor de servidors JMS

Jordi Manzano Ulloa

ObjectMessage objectMessage = session.create ObjectMessage(order);

topicPublisher.publish(objectMessage);

El cos del missatge conté un vector format pel tipus primitiu byte. Util

per intercanviar informacié entre aplicacions que no suporten els altres

tipus de missatges.

BytesMessage

interface
Maplfessage

mapMarmes:Enumeration

BytesMessage bytesMessage = session.createBytesMessage( );

bytesMessage.writeChar('R’);

bytesMessage.writelnt(10);

bytesMessage.writeUTF("this is an example”);

queueSender.send(bytesMessage);

Taula 14: tipus de missatges JMS

interface
Wessage

IhEMessagelD: String

I ETimestamp:long
JmSCorrelationlD:String

I EReplyTo:Destination

It SDestination: Destination
JnSDeliveryiode:int
JwSRedelivered:boolean

I SType:String
JMESExpiratian:long

ISP riarity:int
propertyMames Enumeration

interface
Bytesiessage

il A

interface interface
| Streamifessage |

Textifessage

textString

Figura 17: interficie Message

interface

Oljectifessage

object:Serializakle

Escola Universitaria d'Informatica de Sabadell

78



Monitor de servidors JMS Jordi Manzano Ulloa

Transaccions

Les transaccions en JMS compleixen un conjunt de propietats conegudes com ACID, acronim
que significa atomicity, consistency, isolation, durability. Quan es parla d'atomicitat es refereix a
que s'envien o reben tots els missatges d'una transaccio o cap. La consisténcia significa que tots
els missatges d'una transaccido sén consistents. Aillament vol dir que encara que existeixen
diverses transaccions en un sistema, aquestes no s'afecten entre si. Per ultim, la durabilitat es
defineix com que quan una transaccio és confirmada, tots els canvis es fan efectius i sobreviuen a

fallides del sistema.

El suport de les transaccions de JMS es construeix en l'objecte sessio, el qual es podra
especificar com transaccional :

QueueConnection connection = // obtenir la connexié

QueueSession session = null;

session = connection.createQueueSession(true, Session.AUTO_ACKNOWLEDGE);

En aquest cas, el primer parametre de la trucada a createQueueSession és “true”, indicant
aixi que una sessié transaccional es requerida. La sessio transaccional agrupa els missatges
produits en una unitat atdmica de treball. Quan la transaccié és confirmada (commit) els missatges
sén confirmats (acknowledged) com una Unica unitat i els missatges s'envien. Si la transacci6 és
cancella (rollback), els missatges produits son destruits i els missatges consumits sén

automaticament recuperats.

JMS no requereix que un proveidor implementi transaccions per ser acomplir amb XA, Les
transaccions que acompleixen XA segueixen dues fases a I'hora de ser confirmades. Com a

exemple d'aquest fet, Fiorano MQ 3.0 que acompleix amb I'estandard JMS, no acompleix amb XA.

18 XA: Especificacio pel processament de transaccions distribuides. Descriu la interficie entre el gestor de transaccions global i el

gestor de recursos local. Els gestors de recursos que segueixen aquesta especificacié s'anomenen com XA compliant.

Escola Universitaria d'Informatica de Sabadell 79



Monitor de servidors JMS Jordi Manzano Ulloa

De fet JMS tampoc requereix que els seus proveidors suportin transaccions distribuides. No
obstant si un hi pot treballar, ho haura de fer mitjangant la APl JTA XA Resource™. La gran majoria

de productes que implementes JMS no suporten aquest tipus de transaccions.

Duplicaci6é de missatges
La especificaci6 JMS obliga a que un proveidor JMS mai entregui una segona copia de un
missatge ja reconegut. Quan un client utilitza una sessi6 en mode automatic
(AUTO_ACKNOWLEDGE), no té el control directe d'aquesta confirmacié. D'aquesta manera
aquests no poden saber amb certesa si el missatge ha sigut rebut i per tant continuen preparats

en cas de que s'hagi de tornar a entregar aquest.

Un altre norma és que els proveidors no han de produir missatges duplicats. Aixo significa
que el productor ha de confiar en que el proveidor JMS fara arribar aquest missatge als

consumidors.

Multithreading
El multithreading esta inclds dintre de la plataforma Java profundament, és a dir, ofereix una
forma simple, elegant i potent per crear programes que utilitzin fils. JMS classifica els objectes en
dos categories, aquells que son compartits per clients multithread i aquells que son accedits
utilitzant un unic fil de control cada vegada. Els objectes que suporten concurréncia son
Destination, ConnectionFactory i Connection. Session, MessageProducer i MessageConsumer en

canvi no.

Existeixen dues raons per restringir I'accés concurrent a les sessions. Un és el suport a les

transaccions, que son dificils d'implementar quan es treballa amb multiples fils. L'altre és que les

19 JTA: La Java Transaction API és una de les AP| de JEE que permet transaccions distribuides a través de diversos recursos XA

en un entorn Java.

Escola Universitaria d'Informatica de Sabadell 80



Monitor de servidors JMS Jordi Manzano Ulloa

sessions suporten el consum asincron de missatges. Si les sessions suportessin l'accés
concurrent, els clients haurien de codificar els seus propis gestors de missatges asincrons per tal

de ser capacgos de gestionar multiples missatges concurrents.

3.3.4 Escenaris

En aquesta seccié s'intenta descriure alguns escenaris del mén real per donar una idea de

quin so6n els tipus de problemes que la tecnologia JMS pot esdevenir una eina important.

Integracié d'aplicacions

La major part d'organitzacions tenen aplicacions que utilitzen des de fa anys i altres que soén
noves. Pot existir doncs una necessitat d'integrar aquestes antigues aplicacions amb les noves per
tal de compartir dades i cooperar a fi de poder millora el servei i I'efectivitat. La integracié d'aquest

tipus d'aplicacions generalment s'anomena Enterprise Application Integration (EAI).

Existeixen diverses solucions per aquest propdsit perd sense dubte els sistemes de
missatgeria sén una bona solucid ja que permeten lintercanvi de dades mantenint la
independéncia dels diferents sistemes. Amb topics i cues es poden informar d'esdeveniments o
simplement enviar dades que poden ser tractades per l'altra part. Com exemple, un sistema de
missatgeria podria ser utilitzat per integrar una comanda realitzada per Internet amb un Enterprise
Resource Planning (ERP?°) com SAP, on la aplicacié que gestiona la comanda enviaria les dades

de negoci al ERP mitjangant un topic o una cua.

20 ERP: Sistema de gestio de la informacié que integra i automatitza moltes de les practiques de negoci associades als aspectes

operatius i productius d'una empresa.

Escola Universitaria d'Informatica de Sabadell 81



Monitor de servidors JMS Jordi Manzano Ulloa

Application A Application &
JMS JMS
Client Client
Fublish .
Subscribe
JMS
Putiish Server(s) \Euju-r:
IMS " sybserine Jns
Client Client
Application 0 Subscribe Application G
JWS
Client
Auditing
& Logging

Figura 18: JMS en la integracié d'aplicacions

Dispersio geografica

Avui en dia moltes companyies es troben dispersades geograficament; sistemes destinats a la
gestié d'inventaris han de comunicar-se amb aplicacions ERP centralitzades, dades sensibles
d'empleats que so6n administrades localment en cada subdelegaci6 necessiten estar
sincronitzades amb les de la delegacidé principal... JMS pot ajudar a assegurar l'intercanvi de

dades a través d'un model geografic distribuit d'una corporacio.

3.3.5 Consideracions d'una implantacié amb JMS

Rendiment i escalabilitat

Existeixen una gran varietat de productes que implementen I'estandard JMS i no és una tasca
senzilla escollir un que s'adapti a les necessitats reals del sistema que es vol implementar. El
rendiment i la escabilitat son termes que es solen ajuntar, perd cal distingir-los. El rendiment fa
referencia a la velocitat en que un proveidor JMS pot processar missatges, en canvi la escalabilitat

al nombre de clients connectats de forma concurrent que aquell servidor JMS pot suportar. Aixi

Escola Universitaria d'Informatica de Sabadell 82



Monitor de servidors JMS Jordi Manzano Ulloa

doncs, una prova amb dos o tres clients enviant i rebent missatges amb una altra amb milers de

clients poden determinar quin és el rendiment i la escabilitat d'aquella implementacié de JMS.

Es important provar directament el producte tot realitzant un conjunt de test per veure quin és
el que s'adapta millor als requeriments del sistema. Abans pero, s'hauran de tenir en compte certs

aspectes:

+ La mida de la aplicacid o solucid6 a desenvolupar. Es important fer una prediccié del
creixement que tindra en el temps.

* La carrega mitjana que requerira la aplicacio.

+ Els maxims de carrega que es poden produir al desenvolupament. Pot haver-hi certs dies o
hores al dia on l'intercanvi de missatges sigui més intents.

* El nombre de connexions que utilitzara l'aplicacio.

* La quantitat de dades que han de processar-se a través del sistema de missatgeria en un
periode de temps. Es pot mesurar per segons, bytes per segon, missatges per mes...

* La mida que tindran els missatges.

+ Us de cues o topics; si l'aplicacié utilitzara cues segurament el rendiment es veura afectat
ja que aquestes asseguren la persisténcia i per tant els missatges normalment sén escrits
a disc, fet que fa baixar els ratios de missatges entregats per segon si es compara amb un

topic.

Com ja s'ha comentat, provar amb un petit nombre de clients no és el mateix que amb cents o
milers. Una bona practica és veure el comportament del sistema en funcié d'increments. Per
exemple es pot iniciar un test de 10 productors i 10 consumidors i 100.000 missatges. Després es

pot incrementar a 100 productors i 100 consumidors i 1.000.000 de missatges.

Escola Universitaria d'Informatica de Sabadell 83



Monitor de servidors JMS Jordi Manzano Ulloa

També és important saber les necessitats reals de maquinari; si la CPU o la memodria
utilitzada no arriba als maxims i el ratio de missatges no millora, segurament és perque l'escriptura
a disc (sobretot en missatgeria persistent) o la xarxa és el coll de ampolla del sistema. Per tant
sera important disposar d'un sistema de fitxers adequat i discs rapids en operacions d'escriptura /

lectura, o d'un ample de banda superior en el cas del segon.

Multicast

En el protocol TCP/IP (Transmission Control Protocol / Internet Protolcol), un procés que
vulgui establir una comunicacié amb un o més processos a través de la xarxa, crea una connexio
per cadascun d'aquest processos, enviant i rebent dades usant aquestes connexions. Aquest
protocol assegura que totes les dades arriben en el ordre correcte a més de descartar les dades
duplicades. Si esdevé un succés no esperat amb la connexié, immediatament els processos que

es comuniquen coneixen immediatament I'estat de la connexié.

En canvi en el protocol UDP (User Datagram Protocol) , les dades sén enviades a un desti
perd no s'assegura que aquestes arribaran. El procés que rep les dades mai sap que el remitent
envia dades. Aixi doncs, la responsabilitat de que els processos que envien dades entre ells
mitjangcant UDP s'assabentin de que la informacié ha sigut enviada correctament recau en les
mateixes aplicacions. No obstant, aquest comportament de UDP fa realitat un tipus de servei que
és completament diferent; TCP esta fonamental limitat per comunicacions punt a punt. UDP
ofereix la nocié multicast, en la que una aplicacio pot enviar dades a un grup de destinataris. El
multicasting es basa en una classe especial d'adreces conegudes com classes D. Aquestes no
son assignades a cap desti en concret, si no a grups multicast. Les dades enviades a una adrega
multicast només seran rebudes per aquell grup multicast, per tant, I'opcié multicast des d'un punt
de vista de la xarxa, sembla I'opcié més eficient quan es parla d'enviar un missatge a diversos

destinataris.

Escola Universitaria d'Informatica de Sabadell 84



Monitor de servidors JMS Jordi Manzano Ulloa

Un sistema de missatgeria basat en TCP, normalment utilitzara una arquitectura d'estrella on
existira al centre un servidor de missatgeria o un clister de servidors, que es comunicaran amb els
clients utilitzant TCP/IP, SSL o connexions HTTP. El servidor sera I'encarregat de saber quin client
envia i quin rep en cada moment. A més s'introdueix un unic punt de fallida, si el servidor principal

cau, tot el sistema cau.

No obstant, si un sistema de missatgeria es basa en multicasting, implica una arquitectura
diferent on desapareix la figura del servidor centralitzat de missatgeria. Com no hi ha servidor
central, no hi ha un unic punt de fallida; cada client envia directament als altres clients. Una
consequéncia d'aquest model és que cada productor i cada consumidor hauran de tenir una
configuracié local sobre els dos en el sistema, fet que pot ésser complicat d'administrar quan
tenim desenes, centenes o milers de clients. A més, la persisténcia dels missatges recaura en els

clients i dependra dels seus sistema de fitxers i discs.

IP multicast aporta millores significatives en la carrega de dades sobre la xarxa en missatges
d'un a molts. Un missatge multicast a multiples destinacions implicara menys trafic en la xarxa que
enviar un missatge per cada client utilitzant connexions TCP. Malgrat aquest fet, I'opcié de quin
sistema escollir no és ftrivial; el rendiment de IP multicast Gnicament és viable per un tipus de
desenvolupaments depenent del tipus de missatges que s'utilitza, el maquinari de xarxa, I'entorn
del desenvolupament (intranet, internet) i la complexitat de I'administracid, juntament amb altres

aspectes que s'han vist a aquest apartat.

Seguretat

Els proveidors de JMS implementen les seves solucions donant mecanismes per garantir la
seguretat i I'accés als missatges. L'autenticacié verifica la identitat del usuari que intenta accedir al
sistema de missatgeria; el client JMS s'haura d'identificar per establir una comunicacié amb el

servidor. L'autenticacio esta suportada en la APl de JMS quan es crea un objecte Connection, a

Escola Universitaria d'Informatica de Sabadell 85



Monitor de servidors JMS Jordi Manzano Ulloa

més de la APl de JNDI com es mostra a continuacio:

Properties env = new Properties( );
env.put(Context. SECURITY_PRINCIPAL, "username”);
env.put(Context. SECURITY_CREDENTIALS, "password");

TopicFactory topicFactory = jndiContext.lookup("...");

TopicConnection con =

"om

topicFactory.create TopicConnection("username”, "password");

A més, els proveidors JMS també poden utilitzar sistemes més complexes per l'autenticacié
com sistemes de clau privada i publica. Perd l'autenticacio només és el primer pas, una vegada
s'ha accedit a la connexi6 és poden establir permisos sobre les accions que es poden realitzar en
aquest servidor; l'autoritzacié aplica politiques de seguretat per garantir que pot fer o no un client.
Grups i usuaris poden ser definits per assignar permisos d'accés a diverses cues, topic o

connection factories.

Respecte als canals de comunicacio entre clients i servidors, també s6n un aspecte important
quan es parla de seguretat. Un canal de comunicacio pot ser assegurat mitjancant aillament fisic
(com una xarxa dedicada) o amb I'encriptacié de la comunicacié entre el client i el servidor. Aquest
ultim implica un intercanvi de claus entre el client i el servidor. La clau permet al receptor
descaodificar i llegir el missatge. Actualment els proveidors JMS solen incorporar SSL i encriptacio
del cos del missatge. SSL (Secure Socket Layer) és un estandard per la comunicacié segura
utilitzada amb freqiiencia a Internet. Amb SSL, el protocol del proveidor JMS és encriptat protegint
cada aspecte amb l'intercanvi de missatges. L'encriptacié del cos com a alternativa permet
minimitzar el cost d'aquesta aplicant-la Unicament als missatges que necessiten per la naturalesa

de les dades que transporten, ser encriptats.

Escola Universitaria d'Informatica de Sabadell 86



Monitor de servidors JMS Jordi Manzano Ulloa

CAPITOL

4 Analisi de requeriments

4.1 DESCRIPCIO DEL PROJECTE

L'objectiu d'aquest capitol és formalitzar les diferents necessitats i requisits del projecte amb
una major profunditat, per tal de definir els requeriments funcionals i no funcionals del sistema, els

quals seran necessaris en la fase de disseny i implementacié de I'aplicacié.

Es pretén doncs, un monitor de servidors JMS que permeti facilitar tasques rutinaries als
programadors i equips de proves com poden ser; la solucié de problemes de connexi6 del clients
connectats al servidors, si hi ha una sobrecarrega de missatges acumulats sense consumir,
I'enviament de missatges a destinacions, la consulta del contingut dels missatges emmagatzemats
a una cua... de tal forma que esdevingui una eina util i gratuita per aquests. A més, el servidor de

I'aplicacioé ha de poder executar-se en diverses plataformes.

Escola Universitaria d'Informatica de Sabadell 87



Monitor de servidors JMS Jordi Manzano Ulloa

L'equip de proves, necessita funcionalitats que permetin agilitzar les seves tasques. En primer
lloc, sera necessaria una opcié d'enviament de missatges, tal com s'ha comentat anteriorment en
aquest capitol. Normalment la comunicacié entre components es realitza amb missatges XML, ja
que permet la validacid del missatge a partir d'un esquema compartit pel generador i el
consumidor del missatge. Es per aixd que per evitar possibles errades en el missatge a enviar,
s'inclou la opcié de validar un missatge a partir d'un esquema XSD?'. Una segona funcionalitat
seria la possibilitat d'esborrar missatges, per tal de que no es vagin acumulant missatges sense
consumir en les destinacions, cal una opcio per poder esborrar els missatges pendents en una cua
concreta. Per ultim, s'ha de poder examinar el contingut de missatges emmagatzemats en un

servidor JMS pero sense esborrar-los.

D'altra banda, tota aplicacié requereix de traces per poder realitzar un seguiment de les
activitats que es duen a terme, a més de tenir una eina per analitzar possibles errors
d'implementacio i facilitar la seva correccié. Per tant, és necessari un sistema de traces amb
possibilitat de configurar nivells (warning, debug, error, info) i poder aixi filtrar el contingut

d'aquestes.

Degut a les multiples connexions que es poden realitzar amb diferents servidors JMS, és
requereix la gestié i configuracié d'aquestes de tal forma que no s'hagin d'introduir totes les dades
necessaries per la connexié cada vegada que es vulgui accedir a un servidor JMS. L'usuari podra

guardar aquestes dades i recuperar-les en qualsevol moment.

21 XSD: és un llenguatge d'esquema utilitzat per descriure I'estructura i les restriccions dels continguts dels documents XML d'una

forma molt precisa, més enlla de les normes sintactiques imposades pel propi llenguatge XML.

Escola Universitaria d'Informatica de Sabadell 88



Monitor de servidors JMS Jordi Manzano Ulloa

4.2 REQUERIMENTS FUNCIONALS

4.2.1 Interficie grafica

L'aplicacié consistira en una finestra principal des d'on es podran accedir als diferents moduls
i funcionalitats, juntament amb informacié basica sobre les destinacions ja que és de gran utilitat i
aixi s'evita que l'usuari hagi d'interactuar amb l'aplicacié (a través de menus o finestres) per

demanar aquests tipus de dades. La interficie grafica contindra doncs:

* Finestra principal: adjuntara les funcionalitats i components descrits en aquest apartat.
En funcid del gestor de finestres que tingui l'usuari, I'aplicacié prendra I'aspecte definit en el
sistema operatiu. La finestra principal contindra una barra de menu, una barra d'eines i la

descripcio de les destinacions.

+ Barra de menu: a través de la qual s'accediran a totes les funcionalitats del monitor; des
de la configuracié de parametres del servidor, fins la configuracié de connexions, grafiques,
enviament de missatges, esborrament de missatges pendents i consulta del contingut de

missatges.

+ Barra d'eines: contindra dreceres de les funcionalitats més rellevants de I'aplicacié, com

els botons de refresc o I'accés a la connexidé d'un servidor JMS.

* Informacié de les destinacions: tindra una llista amb les destinacions creades al
servidors dividides en funcio de la seva naturalesa; cues, topics o durables, i es mostraran
dades generals sobre aquestes, com els missatges pendents o la quantitat de missatges
processats. A més, s'ha de poder escollir entre un refresc automatic o manual de les
dades. En aquest ultim cas l'usuari ha de poder actualitzar les dades amb un boté situat a

la finestra central. La informacié a mostrar doncs, es compon de:

Escola Universitaria d'Informatica de Sabadell 89



Monitor de servidors JMS Jordi Manzano Ulloa

o Destinacions creades en el servidor JMS (cues, tdpics)

o Estadistiques de missatges: En funcié del servidor (degut a les limitacions que tingui
aquest per accedir a les seves dades), es poden llegir:
= Missatges entrants i sortints (parcials i totals)

= Missatges pendents

» Estadistiques generals del servidor: serien el total del conjunt de parametres monitoritzats

per cada destinacid. Ajuden a tenir una primera impressié sobre I'estat del servidor JMS.

4.2.2 Gestid de la configuracioé i connexié

a) Creaci6 i configuracié d'una sessié amb un servidor JMS.

L'usuari podra crear sessions de connexions contra un servidor JMS de forma grafica.
Aquestes sessions es podran carregar, guardar o modificar tal com s'explica en el seguents

apartats.

Per tal d'establir una connexié amb un servidor JMS, s'haura d'introduir el nom de la sessio, la
direccié i port del servidor, el nom de usuari, contrasenya com a minim. Les dades introduides

seran emmagatzemades de forma persistent, a fi de recuperar-les en un futur.

b) Emmagatzemar les sessions:
El sistema guardara en un fitxer en el directori d'instal-laci6 del monitor amb totes les

configuracions que l'usuari ha introduit, per a la seva posterior recuperacio.

¢) Recuperar les sessions:
L'usuari podra recuperar una configuracido emmagatzemada per tal d'establir una sessio de

connexié amb un servidor JMS.

Escola Universitaria d'Informatica de Sabadell 90



Monitor de servidors JMS Jordi Manzano Ulloa

d) Editar les sessions:
Es podran editar les sessions existents per tal de canviar alguns parametres a posteriori

mitjangant sempre una interficie grafica.

4.2.3 Dades mostrades
a) Cues, topics i durables.
Es mostrara el nom de les destinacions creades en el servidor JMS (cues, topics i

subscripcions durables) en la finestra principal de I'aplicacio.

b) Estadistiques.

Per cada destinacié es mostrara informacié diversa com pot ser els missatges que estan en el
servidor per una destinacid en concret, els missatges entrants i de sortida, etc. El nombre
d'estadistiques disponibles dependra del servidor JMS, ja que en funcié de la seva API i métodes
d'accés al mateix, es podra mostrar unes dades o unes altres. En general es mostraran els
missatges entrants i sortints (parcials calculats des de I'iltim refresc de dades i totals) i missatges
pendents (numero de missatges) sempre que el servidor JMS tingui aquestes dades accessibles.

S'hauran de mostrar en la finestra principal de I'aplicaci6.

c) Refresc de les dades.
Es podra optar per un refresc automatic de les dades cada segon o per un refresc manual
forgat per l'usuari. D'aquesta forma es redueix el trafic de missatges durant temps d'inactivitat per

part de l'usuari amb el servidor JMS.

d) Grafiques.
Sera possible obrir grafiques sobre un conjunt d'estadistiques, per tal de monitoritzar més
facilment les dades generals del servidor, amb possibilitat de copiar-les o exportar-les a un altre

format. Les grafiques disponibles seran:

Escola Universitaria d'Informatica de Sabadell 91



Monitor de servidors JMS Jordi Manzano Ulloa

* Total de missatges entrants en el servidor.

* Total de missatges de sortida en el servidor.

* Total de missatges entrants parcials (des de I'ultim refresc).

* Total de missatges de sortida parcials (des de I'Ultim refresc).
* Missatges total pendents

* Numero total de cues, topics i subscripcions durables.

4.2.4 Accions sobre el servidor

a) Enviar missatge.

Es permetra I'enviament d'un missatge de tipus TextMessage especificat per l'usuari, a una
destinacio. Es podra adjuntar un esquema XSD, per tal de validar el missatge en cas que sigui un
XML. En aquesta fase del projecte només es tindra en compte aquest tipus de missatges, pero
s'haura de tenir en compte possibles ampliacions i permetre més tipus de missatge JMS per

enviar.

b) Netejar destinacio.

Habilitara I'eliminacié dels missatges pendents en una destinacié en concret.

c) Consultar missatges d'una destinacié
S'obtindran els missatges pendents en una cua, per tal de consultar el seu contingut, pero

sense consumir els mateixos.

d) Creaci6 de destinacions

Sempre que l'usuari introduit per les tasques d'administracié tingui permisos (definits

Obviament al servidor JMS), es podran crear cues, topic i subscripcions durables.

Escola Universitaria d'Informatica de Sabadell 92



Monitor de servidors JMS Jordi Manzano Ulloa

e) Eliminar destinacions

Es permetra eliminar cues, topics i subscripcions durables (sempre que es disposi de

permisos d'administracié en aquell servidor JMS).

4.3 REQUERIMENTS NO FUNCIONALS

A més de les funcionalitats explicades anteriorment, el monitor haura de tenir en compte les

seguents consideracions.

En primer lloc, és prioritari minimitzar el trafic de missatges. Cal que el disseny del monitor no
saturi al servidor JMS amb peticions excessives de refresc de dades. A més, com s'ha dit en
nombroses ocasions, la interficie ha de ser simple i facil d'utilitzar: I'aplicaci6 GUI ha de ser
intuitiva i ha de mostrar les dades necessaries i fonamentals, si no, seria qlestionable la utilitat del

present projecte per l'usuari final.

Un altre aspecte és la inclusié de traces en el monitor per a mostrar informacié sobre els
processos interns del monitor i ajudi a la depuracié del codi. El sistema ha de generar traces que
es puguin configurar en funcié d'un nivell (depuracid, informacio, errors...) sense necessitat de

recompilar el codi.

Per ultim, cal destacar la capacitat d'independéncia de servidor JMS; el monitor ha de ser
independent a la implementacié de la logica d'administracié d'un servidor JMS, assegurant la

compatibilitat amb qualsevol proveidor sense fer canvis en el codi del monitor.

Escola Universitaria d'Informatica de Sabadell 93



Monitor de servidors JMS Jordi Manzano Ulloa

CAPITOL

Disseny de l'aplicacio

5.1 CONFIGURACIO DE LA PLATAFORMA

En aquest apartat es resumiran totes aquelles decisions i detalls sobre els aspectes de
I'entorn de desenvolupament i proves que afecten al present projecte, des de els sistemes

operatius fins les llibreries emprades en la implementacio de I'aplicaci6.

=3
DESENVO LUPAMENT
UBUNTU 8,04/ WINDOWS VISTA

!
m—

=
ALTRES enrutador |11
UBUNTU 9.04/ WINDOWS VISTA SERVIDORS JMS
UBUNTU 9.04

Figura 19: entorn de desenvolupament i proves del projecte

Escola Universitaria d'Informatica de Sabadell 94



Monitor de servidors JMS Jordi Manzano Ulloa

5.1.1 Sistema operatiu.

En el present projecte es faran servir dos sistemes operatius, per provar que efectivament el
monitor és multiplataforma i ajudar a pal-liar possibles incompatibilitats de I'aplicacié en diferents
sistemes. Els sistemes operatius escollits sén Windows Vista Home Edition i Windows XP
Profesional de Microsoft i Ubuntu 9.04. de Canonical. L'eleccié de Vista es basa en un motiu
economic; es disposaven d'una llicencia pel seu Us, malgrat que el consum de recursos d'aquest
és elevat, sera util per realitzar proves del sistema a implementar en altra plataforma que no sigui
Linux. Windows XP s'utilitzara a més de les proves, en la gestié del projecte, ja que s'utilitza
Microsoft Project 2003. Per la resta del projecte, Ubuntu 9.04 sera l'utilitzat per tasques de
desenvolupament, elaboracié de la memoria, proves i fins i tot la realitzaci6 de diagrames
mitjancant I'aplicacié DIA. L'eleccié de Ubuntu es recolza en la facilitat d'us i I'alta compatibilitat
amb diferents tipus de maquinari, sent una distribucié Linux amigable per l'usuari, reduint aixi
problemes i per tant, dedicant menys temps a la configuracié del propi sistema en favor del
present projecte. Ubuntu es pot descarregar gratuitament de la pagina oficial i esta disponible per

diferents tipus de processadors.

Sera recomanable que es disposi en els ordinadors que es dediquin al desenvolupament, una
particié6 amb els dos sistemes operatius. Aixi doncs es procedira a instal-lar primer el sistema de
Microsoft, ja que Ubuntu instal-lara per defecte un gestor d'arrancada anomenat GRUB, que

permetra escollir entre ambdds sistemes al arrencar la computadora.

Escola Universitaria d'Informatica de Sabadell 95



Monitor de servidors JMS Jordi Manzano Ulloa

Ubuntu §.84, kernel 2.6.24-16-generic

Ubuntu §.84, kernmel 2.6.24-16-generic (recovery Hode)
Ubuntu 8.84, HemtestB6+

Dther operating systems:

Hindows VistasLonghorn (loader)

Use the t and + keys to select which entry is highlighted.
Press enter to boot the selected 05, 'e’ to edit the
comMands before booting, or 'c’ for a command-line.

The highlighted entry will be booted automatically in 5 seconds.

Figura 20: captura de pantalla del gestor d'arrancada GRUB

5.1.2 Servidors JMS

Al projecte es treballara amb dos proveidors de missatgeria JMS. Es recomanable tenir una
maquina dedicada on instal-lar aquest servidors, accessible a tots els equips de desenvolupament
per tal d'alliberar els recursos d'aquestes maquines dedicades a la implementacio del projecte. No
obstant, les llibreries que subministren aquests pel desenvolupament d'aplicacions, s'hauran de
copiar a tots els equips destinats a implementar I'aplicacio. Cal dir, que s'ha de garantir que els

usuaris d'aquestes aplicacions tinguin permisos per poder executar-les.

OPENJMS

El proveidor de missatgeria OpendJMS és pot descarregar a la seguent direccio:

http://openjms.sourceforge.net/downloads.html

El paquet no conté cap instal-lable. Es descomprimeix i es copia directament al directori on
pengen les aplicacions de l'usuari. L'execucié del servidor es realitza mitjangant un script i no cal

compilar-lo. El servidor arranca amb la seglient instruccio, dintre del directori bin de I'aplicacié:

nohup ./openjms.sh start &

Escola Universitaria d'Informatica de Sabadell 96


http://openjms.sourceforge.net/downloads.html

Monitor de servidors JMS Jordi Manzano Ulloa

Per parar-lo:

./openjms.sh stop

Caldra registrar-se préviament per descarregar el producte. Una vegada es té un compte
d'usuari, es pot baixar la versi6 Linux, Mac o Windows de la seguent direccio:

http://fusesource.com/downloads/ . Es tracta d'un instal-lable amb interficie grafica:

Y2 Progress FUSE Message Broker 5.3.0.5

Choose Install Folder

@ Introduction Where would you like to install?

@ License Agreement Jopt/progress/fuse-message-broker-5.3.0.5 |
& Choose Install Folder

| Restore Default Folder || Choose... |

00000

InstallArywhere by Macrovision

Cancel | Previous| | Mewt

Figura 21: instal-lacié de Fuse

Per arrancar el servidor s'utilitzara la seglent instruccié dintre del directori bin de I'aplicacio:

nohup ./activemqg &

Per parar el servidor es pot matar el procés:

ps —ef | grep activemgq

kill [PID]

On [PID] és l'identificador del procés imprés pel comand “ps”.

Escola Universitaria d'Informatica de Sabadell 97


http://fusesource.com/downloads/

Monitor de servidors JMS Jordi Manzano Ulloa

Per provar que efectivament el servidor esta funcionant correctament, s'obre un navegador i

s'introdueix la seglient URL http://localhost:8161/admin/ . Cal dir que Fuse és una implementacié de

ActiveMQ, per tant I'estructura de directoris de I'aplicacio és semblant a la d'aquest.

5.1.3 Entorn desenvolupament integrat.

Tal com ja es va dir a l'analisi de viabilitat, Eclipse és el entorn de desenvolupament escollit.
Accedint a la pagina web oficial (http://www.eclipse.org/downloads/) es pot descarregar I'Ultima

versi6 disponible de aquest IDE disponible per plataformes Windows, Linux i Mac.

@ eclipse Downloads — Mozilla Firefox
Fitxer Edit A

& B -
fiMes visitadesv [o|The Java swing tu. M Tutorial de Java . [o|https://correoweb..

L manufacturers. More... Linux 32bit 64bit ~
Downloads: 50,057

= Q @ ‘ http:/ /v eclipse.org/downloads / |v‘ ‘v eclipse @,

Eclipse SOA Platform for Java and SOA Developers (136 MB)

Eclipse SOA Platform is a runtimes and tools integration platform for SOA developers. it Windows 32bit

Mac Carbon 32bit
Mac Cocoa 32bit 6
Linux 32bit 64bit

.‘ makes easy 1o get the environment you need for developing and executing SOA. ltincludes
e a Java IDE, Swordfish Tooling, the Plugin Development Environment (PDE), an XML Editor
V‘ and a WSDL Editor. Note that the SOA package includes some incubating components, as
indicated by feature numbers less than 1.0.0 on the feature list. More...
Downloads: 37,030

Eclipse Classic 3.5.1 (162 MB)

The classic Eclipse download: the Eclipse Platform, Java Development Tools, and Plug-in Windows 32bit 64bit
Develapment Environment, including source and both user and programmer Mac Carbon 32bit
documentation. Please look also atthe Eclipse Project download page. More: Mac Cocoa 32bit 64
Release notes | Other downloads | Documentation Linux 32bit  64bit
Downloads: 853,712

The Eclipse/SWT Test Tool Eclipse ESB
Automate your Ecipse/SWT GUI regression The Eciipse ESB Developed & supported by
testing with QF-Test | SOPERA

'Ads by Google|

Copyright @ 2010

( S——S—  — — — — —  — —————, >

Figura 22: descarrega de Eclipse Classic

Pel projecte actual, s'opta per baixar la versié classica de Eclipse, ja que no seran

necessaries eines per desenvolupaments web o Java EE.

A més de l'entorn de desenvolupament integrat, sera necessari obtenir el Java Development
Kit (JDK) per tal de poder compilar el codi. Es pot descarregar de la pagina oficial de Sun

Microsystems (http://java.sun.com/javase/downloads/widget/jdk6.jsp) , i existeixen versions per

plataformes Windows, Linux, Mac i Unix. Pot ser interessant tenir varies JDK instal-lades per a

Escola Universitaria d'Informatica de Sabadell 98


http://java.sun.com/javase/downloads/widget/jdk6.jsp
http://www.eclipse.org/downloads/
http://localhost:8161/admin/

Monitor de servidors JMS Jordi Manzano Ulloa

compilar amb diferents versions d'aquesta. Per tant, s'instal-laran a un directori les diferents
versions de JDK amb que es vulguin treballar, i es creara un enllag simbdlic a la versié actual. Aixi
doncs, es podra indicar al IDE, quina versié de JDK utilitzarem per compilar i executar el codi

implementat.

5.1.4 Llibreries.

A més de les llibreries que s'inclouen en els proveidors de JMS emprats en el projecte, pel
desenvolupament s'utilitzara una llibreria per la generacié de grafiques (JFreecharts) i una per
logging de l'aplicacié (Log4j). Ambdues llibreries sén gratuites i es poden descarregar de les seves

pagines web corresponents:

« http://www.jfree.org/jfreechart/download.html

«  http://logging.apache.org/log4j/1.2/download.html

Per tant, s'inclouran dintre del classpath?> de l'aplicacio les llibreries log4j-1.2.15 jar,

jcommon-1.0.16.jar i jfreechart-1.0.13.jar .

5.1.5 Altres aplicacions.

MICROSOFT PROJECT 2003

Microsoft Project és un programari d'administracié de projectes dissenyat, desenvolupat i
comercialitzat per Microsoft per assistir a administradors de projectes en el desenvolupament de

plans, assignacié de recursos a tasques, donar seguiment al progrés, administrar pressupost i

22 Classpath: és el conjunt de rutes on es troben les llibreries i classes a I'hora d'executar el programa.

Escola Universitaria d'Informatica de Sabadell 99


http://logging.apache.org/log4j/1.2/download.html
http://www.jfree.org/jfreechart/download.html

Monitor de servidors JMS Jordi Manzano Ulloa

analitzar carregues de treball. Aquest sera instal-lat a les maquines que disposin d'un dels dos

sistemes operatius Microsoft disponibles a I'entorn de desenvolupament del projecte (Vista / XP).

OPENOFFICE 3.0

OpenOffice.org és un projecte comunitari per crear una paquet ofimatic basat en codi obert
(amb llicencia LGPL), procedent d'una versio antiga de Star Office de Sun Microsystems. Aquest
sera instal-lat en totes les maquines i particions disponibles en el projecte, ja que sera necessari
per la redacci6 de documentacio i de la present memoria. OpenOffice es pot descarregar de la

pagina oficial del projecte (http://download.openoffice.org).

DI

Dia és una aplicacio informatica per a la creaci6 de diagrames, desenvolupada com a part del
projecte GNOME. Esta dissenyat com un substitut de I'aplicacié comercial Visio de Microsoft. Es
pot utilitzar per dibuixar diferents tipus de diagrames. Actualment s'inclouen diagrames entitat-
relacié, diagrames UML, diagrames de flux, diagrames de xarxes, diagrames de circuits eléctrics,
etc. S'instal'lara en totes les particions amb Ubuntu per la creacié de diagrames en la

documentacio del projecte.

% Diagraml.dia [ =1
File Edit Diagram View Objects Select Tools Input Methods Dialogs |2 Hibul

IO AR DR e ST oD e e 1 o R Eile Help
o |

1 [ (&% T
- o Jil O JUE = R =
5] e TA VRS
: 5
: Misc .
T m | (] {1 =
U_ " = =

K

: -
= . _:

o | ——f—»

Zenion ) - 0 -

Figura 23: aplicacio DIA

Escola Universitaria d'Informatica de Sabadell 100


http://download.openoffice.org/
http://download.openoffice.org/
http://download.openoffice.org/

Monitor de servidors JMS Jordi Manzano Ulloa

5.2 CASOS D'US

L'objectiu és tenir una visi6 a alt nivell del comportament de l'aplicacié i per aix0 és

convenient realitzar un diagrama de casos d'Us:

Crear destinacid

Eliminar destinacid

7 <<indlude>>

Enviar
missatge

<<include= =

/
/-
y
e
e
! //’ - -
// H_.r""l.

<<incjude> :;t
™, lI ."ll / P -

. féﬁh:l!,[ |:I ex> :s-\‘\\‘ [

e " 1l

MNetejar
destinacié

~ Consultar
missatge

Servidor

Gestionar
connexio

" <<include>>""

A . Recuperar sessio
Ky Tancar grafica .
\

Y Refrescar dades
Crear grafica - =
<<include==>

Figura 24: diagrama de casos d'us de JMSMonitor

Tot seguit es resumiran els casos d'us que descriuen el sistema a desenvolupar en el present

projecte.

5.2.1 Gestionar connexio

Aquest cas d'Us té com a finalitat I'administracié de la connexié6 amb els diferents servidors
JMS. Mitjangant unes dades facilitades per l'usuari, intentara establir contacte amb el servidor per
tal de que es puguin obtenir les dades sol-licitades pel monitor. En cas d'error es mostrara a

l'usuari la causa de l'excepcid.

Escola Universitaria d'Informatica de Sabadell 101



Monitor de servidors JMS Jordi Manzano Ulloa

Aquesta funcionalitat es podra activar mitjangant el menu principal de I'aplicacié i carregara en
el sistema les dades necessaries per poder establir una connexié. Cal dir que l'usuari podra forgar
la connexié i desconnexié d'una mateixa sessid, directament en la interficie principal de la

aplicacié mitjangant un boté després de ser carregada.

L'usuari haura de complimentar la seglient informacio:

Parametre Descripcio

» Nom que dona l'usuari a la sessié de connexio a guardar en
Nom de la sessio

el monitor.

. . o . URL del servidor JMS i port habilitada per I'administracio del
Direccio de administracio

servidor.

Nom de l'usuari del servidor JMS(recomanable que tingui
Usuari permisos d'administracié per tal d'assegurar la maxima

funcionalitat del monitor).

Clau Contrasenya de l'usuari.

Nom JNDI d'una factory del servidor per tal de realitzar
Factory accions (enviament i consulta de missatges) sobre el servidor
JMS.
) . . Direccio i port del servidor per poder rebre i consultar
Direccié de connexi6 ]
missatges.
Tipus de servidor JMS Proveidors de JMS (OpenJMS, ActiveMQ...)

Ubicacio de la llibreria proporcionada pel monitor, que

Llibreries d'implementacio

. implementa els métodes d'obtencié de dades per aquell
del proveidors

proveidor de JMS.

Temps de refresc de dades Interval de refrescs automatics de dades en mili-segons.

Taula 15: parametres del gestor de sessions

Com es pot veure al diagrama de casos d'Us en l'apartat anterior, hi ha dos casos d'Us que
completaran la funcionalitat; emmagatzemar i recuperar sessid. Aquests complementen la
funcionalitat basica afegint la possibilitat de guardar les dades introduides per I'usuari, carregar-les

de nou i canviar-les a posteriori.

Escola Universitaria d'Informatica de Sabadell 102



Monitor de servidors JMS Jordi Manzano Ulloa

Lt o O QO O

Controlador Admin Interficie del
servidor
I

, Interficie grafica
Usuari

[

[

1 ' |
-

InfroduTr dades conrexi —

Enfra dades connels

Connectar
Connectar =

onneciar ldade!
onnectar (dade!

RotoTnT rEs T

~“etoina resoltat -

L

S TRTormar error -
*ostra excepaio si OK,dispara els casos

- = d'ls 'refrescar dades' i
s1i KO I 'mostrar dades'

- I
I

|
I

|

I .

Figura 25: diagrama de seqtiéncia de la connexié amb un servidor JMS

En el cas que s'estableixi una connexié amb éxit amb el servidor JMS s'executen dos casos
d'us, “refrescar dades” i “mostrar dades”, ja que l'usuari no demanara explicitament les dades
estadistiques del servidor si no que el monitor anira refrescant cada cert temps la vista amb les

dades actualitzades.

5.2.2 Emmagatzemar sessi6

S'encarrega de guardar en un fitxer les dades introduides per l'usuari referents a la connexié
amb el servidor JMS per poder-les recuperar més endavant. Una vegada l'usuari a introduit les
dades en el cas d'Us anterior, podra escollir emmagatzemar-les. Aquesta funcionalitat sera
accessible mitjangant la interficie de la gestié de connexions; on es disposa d'un boté per tal de

poder salvar la sessio.

Escola Universitaria d'Informatica de Sabadell 103



Monitor de servidors JMS Jordi Manzano Ulloa

o O O KO

N Controlador Gestor Interficie del
Interficie grafica : , .
Usuari g de fitxers sistema operatiu

I | | ' I
— | | | |
Guardardades ™ [ ! : [
AT gates » | |—————3 | I
comprova dades : I
|
Yrormar va daco—4 | . N |
| | ™bstracamps imvandats | | | st KO o |

) T \ comprovacid |
o 1 _ N | |
Yorraa eq destl — I
T - i oK | |

hosM¥ar dialeg 'guardar como 51 D
comprovacié | [
|
Indicar ruta Bl |

Asignar ruta -
Escriu fitxer a disc fd
- = . efornaTesulat™ -~
*Retorn3 resiat

- S Tormar resuftat — ! I
- Mostra resultat T I |

Figura 26: diagrama de seqliéncia de "guardar dades”

Les dades candidates a emmagatzemar seran comprovades i validades per assegurar de que
tots els camps obligatoris estan correctament informats. En cas negatiu, s'informara a l'usuari dels
camps que falten. Si la comprovacié és positiva, el sistema mostrara a l'usuari quin nom tindra el

fitxer i on es guardara, per poder crear l'arxiu i escriure'l a disc.

5.2.3 Recuperar sessio

Habilita a l'usuari la possibilitat d'obrir les dades que va emmagatzemar en I'anterior cas d'us.
Una vegada ha recuperat les dades de la sessio, I'usuari podra editar-les i emmagatzemar-les de
nou (veure 'emmagatzemar sessid') o establir una connexid (veure 'gestionar connexid'). Aquesta
funcionalitat sera accessible mitjancant la interficie de la gestié de connexions; on es disposa d'un

botoé per tal de poder recuperar la sessio.

Escola Universitaria d'Informatica de Sabadell 104



Monitor de servidors JMS Jordi Manzano Ulloa

o O O RO

Controlador Gestor Interficie del

Interficie grafica de fitxers sistema operatiu

Usuari

|

|

|
.

-
Obrir dades =

Obrr dades

oo
Mcﬂrar dialeg "Abrir Archins s1 KO
en obrir
- ]

Seleccionar fitxer W"
elecciona fitxer—"
nirrtxer rir fitxer D

- “Aei5inT rEitat T ma Tem Tt
ormar Excepcin 10 L

Mostra EexCepcio 10 - I

' |
T =] : '
T --_T' si 0K I
e comprova dades | | en obrir I
- *ﬁErmarvalidacic’: |
| I |
|
|
1

Mostra error

T T
T 1| siko —
] comprovac 1o =i OK
" | " cemprovacia
< Carrega Jades
- Mostra dades L

Figura 27: diagrama de seqliéncia de recuperar sessioé

L'usuari seleccionara I'opcié de recuperar sessioé i escollira un fitxer mitjangant un dialeg. Una
vegada accepta, el sistema intentara obrir el fitxer indicat. En cas d'excepcié d'entrada i sortida, es
mostrara a l'usuari i el cas d'Us finalitzara. Si el procés de carrega es correcte, el sistema verificara
la integritat del fitxer i en cas positiu, mostrara les dades a l'usuari per a que pugui realitzar una
accié amb aquestes (establir connexié o editar-les), en cas contrari, informara a l'usuari de que el

fitxer no era valid.

Escola Universitaria d'Informatica de Sabadell 105



Monitor de servidors JMS Jordi Manzano Ulloa

5.2.4 Refrescar dades

El present cas d'Us s'encarrega de actualitzar les dades mostrades en el monitor. El refresc
de l'aplicacié per defecte sera automatic, perd l'usuari pot desactivar aquesta opcié mitjangant un
botd a la interficie principal de I'aplicacié. L'usuari podra refrescar de forma manual les dades amb

un altre bot6 situat a la interficie principal.

L O QO O

Interficie grafica Controlador . )
Uslllari Admin JMS Admin

I | | l

' |

1 | | | |

. | I
Obtenir aaaes. | | I
Obtenir aaae! —e? I
Obtenir dad Obtenir dades ’D
(5ra Jades | “etorha Jades ™ n
I
-t W§ua ftzar dades
Mostra dades || 'I t | proces 0K
|

+ | | | :

| " i | proces KO

e etorma excepcid
torna excepcio

esactiva autorefre

M?s_'_f_" Visualitzar excepcido
tra info excepcid | |

I I ' !

Figura 28: diagrama de seqtiencia de "refrescar dades"

L'usuari (o el procés d'autorefresc) demanara l'actualitzacié de les dades a l'administrador
connectat amb el servidor. Les dades una vegada retornades per aquest, es mostraran de nou en
la interficie principal de l'aplicacié. En cas que s'aixequés una excepcié durant el procés
d'obtencio de les dades, el sistema mostrara I'excepcio a l'usuari i desactivara I'autorefresc per
evitar la continua creacié de missatges d'excepcio ja que podria ser que la connexié s'hagi caigut

o hi hagi problemes amb la xarxa.

Escola Universitaria d'Informatica de Sabadell 106



Monitor de servidors JMS Jordi Manzano Ulloa

5.2.5 Enviar missatges

Aquest cas d'us permet a l'usuari la creacio i I'enviament de missatges de tipus TextMessage.
Aixi doncs, l'usuari mitjancant el menu de l'aplicaci6 o el menu contextual de la destinacio
seleccionada accedira a omplir un formulari per tal de crear i enviar un missatge. Haura

d'emplenar els seglients camps:

Obligatori a
Concepte Descripcio Tipus d'objecte | omplir per | Valor per defecte
l'usuari
Dades basiques
Si s'ha accedit mitjangant
Cua o topic on s'enviara el el ment contextual de la
Destinacié P . Llista desplegable Sl destinacio seleccionada
missatge N . .
sera ella mateixa, si no
cap.
S'indicara la ruta del XSD
a adjuntar per validar el
XML cos del missatge (en cas | Cercador de fitxer NO N/D
de que es vulgui enviar un
XML)
Enviar  Confirmar la creacio | Boto N/D N/D
I'enviament del missatge
Cancellar Gancetlar la creacio del Bot6 N/D N/D
missatge
Cos del missatge
Contingut El contingut del missatge Area de text NO buit

Taula 16: camps per I'enviament de missatges

Per tal de que el codi sigui independent de les funcions que proporciona cadascuna de les
distintes llibreries dels proveidors de JMS, es buscara el nom de la factory realitzant un “lookup”
del JNDI d'aquesta al server, amb la finalitat de crear una sessié que permeti establir una
connexi6é del productor que creara i enviara el missatge a la destinacié indicada per l'usuari. Es

recorda que la factory es defineix al crear una sessié de connexié del monitor.

Escola Universitaria d'Informatica de Sabadell 107



Monitor de servidors JMS Jordi Manzano Ulloa

* 0O O O Q tO

Vista del formulari Formulari Control del Gestor de Ms
Usuari Formulari missatges
|

— 1

L
Omplr formu Fig

|
Umpw mmugn[]

F— -
F—-

Cancella

opcid 1 I

Sortir I

r
F——1

|
|
|
|
Testruex > D
|
|
|
|
I
1

Envia

opcid 2 | Envia
a |:|

Y

T
i .

I
I
I
I
______ Informa_error | |
Mostra error T [ |
I
T ! |

| I
I

| |
I

| 1

I
I
I
I
I
|
I
|
|
|
|
|
|
|
|
|
|
I
I
I
|
I
:
|
Envia []
|
|
I
I
I
I
I
I
I
I

Figura 29: diagrama de seqliéncia de "enviar missatge"

5.2.6 Netejar destinacio

Permetra a l'usuari netejar tots els missatges que es troben a una cua pendents de consumir-
se. Es podra accedir mitjiangant el menu principal de I'aplicaci6 o amb el menu contextual de la
destinacié seleccionada (només per cues i durables). Abans perd de realitzar la neteja, es

demanara la confirmacio de l'usuari.

El client utilitzara la interficie d'administracié per gestionar I'esborrament dels missatges, ja
que ni han proveidors que proporcionen funcionalitats per aquest tipus de tasques. En cas que no
existeixi cap meétode, s'haura d'implementar dintre del connector que uneix el client amb el

servidor de JMS.

Escola Universitaria d'Informatica de Sabadell 108



Monitor de servidors JMS Jordi Manzano Ulloa

L O O QO 1o

Interficie grafica Controlador i
s I Admin M5 Admin
]
| | !
L ) I
Nete]a destinact !

UeEe]a aeSEII"Ia!D
cEEFB confirmacio

N _ﬁ—’

F----

o Tonfrma ™
Opcio 2

Confirma ’

etefalcua — e ™
etejalcua

Tt Fefajalcia b T hic etefa(cua)
arma resu EBE

Figura 30: diagrama de seqliéncia de "esborrar missatges"

5.2.7 Consulta missatges de la destinacio

Aquest cas d'uUs habilita la possibilitat a l'usuari de consultar el contingut dels missatges
emmagatzemats a una cua sense consumir-los de la mateixa, és a dir, no desapareixen del
servidor en el moment de ser llegits. Sera accessible mitjancant el menu contextual de la
destinacié o fent un doble click a la destinacioé objectiu. La informacié que mostrara sera tant la

capcalera com el cos del missatge.

Escola Universitaria d'Informatica de Sabadell 109



Monitor de servidors JMS Jordi Manzano Ulloa

KO O O KO

Interficie grafica : :
Usyari Controlador Admin M5 Admin
[ ! | I
| I
1 ! [
| I
e | |
Obtenir mlssafgg I | |
I

DEtenlrmlssataes m
enir missatges m@?ﬂ
Rema'ﬂis'fa_mﬁsi’cg‘e
R n

Reﬁa'ﬂis’fa?ﬂﬁsa”cg’e aMistaissatg
Mo™rsTheta missatges| | |

Obtenirinio ISSEEaE

}
}
}

ﬁﬁfemrlnFDMmsatHe
OBtenr nFoMmsafEe

Mforna mssatge "

Mtorna missat T

Metorna mssat ge "

WI®TTa o missatge |

ra info missatge T | 'I |
I I
| !

Figura 31: diagrama de seqliéncia de "obtenir missatges”

L'usuari primer sol-licitara que el monitor mostri una llista amb els missatges que n'hi han al
desti sol-licitat. Una vegada es mostra i l'usuari selecciona un missatge en concret, el sistema

obtindra la informacié d'aquest i la visualitzara.

5.2.8 Crear grafica

Permet a l'usuari crear grafiques sobre variables del servidor JMS. Aquests parametres en
ser actualitzats pel cas d'Us “refrescar dades”, forgaran també l'actualitzacié de les grafiques. La
funcionalitat sera accessible mitjangant el menu principal de l'aplicacié el tipus de grafica

seleccionat.

En el seguent diagrama de seqiéncia, s'observa com l'usuari demanara al sistema per la

creacio d'una grafica en concret. El sistema creara la grafica i la situara al front de la vista.

Escola Universitaria d'Informatica de Sabadell 110



Monitor de servidors JMS Jordi Manzano Ulloa

o O O

Interficie grafica Controlador Gestor

Usuari de grafiques
I | | |
— | |
Seleccionar grafica o :
|
|
SElecciona granon |
|
|
|
|

rea granca

%geix graficalN)

U !ua Tzar granca
G !ua IEZBFgI’E ca
Mostra granca — |

Figura 32: diagrama de seqliéncia de "crear grafica"

5.2.9 Tancar grafica

Aquest cas d'Us elimina una grafica en el monitor. L'usuari Unicament tindra que tancar la
finestra creada on es mostra la grafica. Aquesta acci6 fara que s'actualitzi la llista on es guarda la
referéncia de les grafiques eliminant aquella que s'ha donat de baixa per tal de no intentar

actualitzar-la de nou.

T o O O

Interficie grafica Controlador Cestor
Usuari g de grafiques

[
| ' !
‘lancar grafnca - I :
ancar graﬁca.I
[

Elimina grafica (N)

aﬂna grafica (N}

Ellﬂna finestra gratic

Figura 33: diagrama de seqliéncia de tancar grafica

Escola Universitaria d'Informatica de Sabadell 111



Monitor de servidors JMS Jordi Manzano Ulloa

5.3 ALTRES CONSIDERACIONS DEL DISSENY

5.3.1 Interficie amb proveidors

Un dels aspectes més critics del projecte sens dubte, és assegurar la compatibilitat del
monitor amb els diferents servidors JMS, de manera que encara que en aquesta primera versio
nomes s'entregui la implementacié de connectors per a dos servidors, el disseny de l'aplicacié

faciliti el desenvolupament i la integracié futura de més proveidors JMS.

] . SERVIDOR
<——>| JMsadmin f---- éMSAdmtn Serverle Java Message
onnector SERVICE
Client
(Monitor)

Figura 34: connexio del monitor amb el proveidors de JMS

El problema principal resideix en que els objectes que necessiten de la informacié dels
servidors no poden utilitzar explicitament els métodes i classes especifics que subministra cada
proveidor de JMS, ja que el codi no seria genéric i qualsevol canvi de proveidors JMS afectaria
tant a aquelles classes que realitzessin operacions amb aquestes dades com a aquelles que

representin la informacio a l'usuari.

Una de les solucions seria desacoblar la part que adapta els métodes especifics de les API
que proporcionen els proveidors del codi del client. Amb el patré de disseny “Adapter”, es pot

acomplir aquesta tasca tal com es mostra en el seguent diagrama:

Escola Universitaria d'Informatica de Sabadell 112



Monitor de servidors JMS Jordi Manzano Ulloa

Target Adapter
JMSAdmin JMSAdminimplementation
+connect (url, user, pass) +connect (url,user,pass)
+close() +close()
+refreshinfo() 4 +refreshInfo()
+getServerInfo() -getProviderServerInfo()
+getQueues () -getProviderQueues()
+getTopics () -getProviderTopics()
+getDurables() _|-9etProviderDurables ()
+...0) P T
JMSMessagelnfo - T
+getIMSTimestamp () / Adaptee
+getIMSMessageld() yd
+getIMSCorrelationID() JMSAdminException JMS Customer Classes
+getIMSDeliveryMode ()
+getText ()
+... 0
Admin Customer API
0..N 0..N FRFARF AR R AR AR
JMSDestinationinfo JMSDurablelnfo OpenJis API
ActiveM;
+getDestinationConsumers () +getName ()
+getInMsg () +getMsg()
+getMsgPend () +getDurableTopic()
+gethame ()
+... ()

Figura 35: diagrama de classes amb el patr6é de disseny Adapter

El client utilitzara I'abstracci6 JMSAdmin per tal d'accedir mitjangant la classe connectora

(JMSAdminimplementation) als métodes de la APl d'administracié del servidor JMS a monitoritzar.

Encara que l'objectiu del adapter és connectar dues parts que per si s6n incompatibles, per
maximitzar la independéncia entre el client i la implementacid de les classes adaptadores,
aquelles que com s'ha comentat anteriorment s'encarreguen de connectar les API del proveidors,
es fara servir el patré de disseny “Bridge”. Aquest patré de disseny és recomanat quan es vol

realitzar tasques com:

« Evitar un enllag permanent entre I'abstraccio i la seva implementacio. Aixd pot ser degut a

que la implementacio ha de ser seleccionada o canviada en temps d'execucid.

* Canvis en la implementacié d'una abstraccié no han impactar en els clients, és a dir, el

codi no s'ha de recompilar.

Escola Universitaria d'Informatica de Sabadell 113



Monitor de servidors JMS Jordi Manzano Ulloa

5.3.2 Interficie grafica

Amb l'objectiu de garantir la independéncia entre la vista i el model de dades i facilitar el
desenvolupament de millores i ampliacions de l'eina, es decideix utilitzar les llibreries Swing de
Java. Swing no té una arquitectura estrictament MVC?® (el controlador i la vista es col-lapsen en

una entitat), perd permet separar la vista del model de dades. La API Swing de Java aporta:

« Amplia varietat de components: Existeixen una amplia gama de objectes grafics com

botons, taules, menus... a més de contenidors per aquests.

+ Aspecte modificable: Es pot personalitzar I'aspecte de les interficies o utilitzar diversos

aspectes que hi ha per defecte.

+ Desacoblament de la vista i el model: Donant lloc a tot un enfocament de desenvolupament
molt arrelat en els entorns grafics d'usuari realitzats amb técniques orientades a objectes.
Cada element té associat una classe de model de dades i una interficie que utilitza. Es pot
crear un model de dades personalitzat per a cada component, amb només heretar de la

classe Model.

* Contenidors niats: Qualsevol component pot estar inclds en un altre. Per exemple, un

grafic es pot niar en una llista.

+ Dialegs personalitzats: Es poden crear multitud de formes de missatges i opcions de dialeg

amb l'usuari, mitjangant la classe JoptionPane.

+ Classes per dialegs habituals: Es pot utilitzar JFileChooser per triar un fitxer, i

JColorChooser per triar un color.

23 MVC: Model-View-Controller és un patr6é de disseny per al desenvolupament de programari que separa el model de dades, la
interficie usuari i la logica de control.

Escola Universitaria d'Informatica de Sabadell 114



Monitor de servidors JMS Jordi Manzano Ulloa

+ Components per taules i arbres de dades: Mitjangant les classes JTable i Jtree.

* Potents manipuladors de text: A més de camps i arees de text, es presenten camps de
sintaxi oculta JPassword, i text amb multiples fonts JTextPane. A més hi ha paquets per

utilitzar fitxers en format HTML o RTF.

Existeixen nombrosos marcs de desenvolupaments MVC per treballar amb Java, perd la
corba d'aprenentatge d'aquests és alta i incrementa el nombre d'hores destinats pel projecte i per
tant, sera menys costés utilitzar la llibreria de Swing per la representacié de la informacié que

permet també separar el model de dades de la vista.

5.3.3 Gestié d'excepcions

Amb la finalitat d'unificar els tipus d'excepcions de diferents servidors, es crearan dintre de la
package d'administracié (que és la que connectara el client monitor amb el servidor JMS), una

serie de classes que serviran per separar el codi del connector del servidor JMS amb el client

grafic.
Client I"TERFICIEE IMSAdmin Server
Servidor | 1 connector
JMSAdmin a = new JMSAdminServerConnector(): i iz | public void connect (String URL,String User, String Pass)
tryd ! T throws JMSAdminException {
" W g " T try{
. t ("localhost", "ad L"1234%) -
a-comnect (*localhos admn ! ! 1 connect (URL, User, PASS) ;
] ; | | teatch (TibjmsAdminException e){
Jeatch (MSAdninException )¢ | i e Mkt en o, e, getStackTrace ());
H H }
1

Figura 36: exemple de trucada del client GUI al connector.

Escola Universitaria d'Informatica de Sabadell 115



Monitor de servidors JMS Jordi Manzano Ulloa

En el seglent exemple, es mostra la implementacié de la funcié de connexié per servidors
TIBCO (no alliberat en el present projecte per qliestions de llicencies privatives). Com es pot veure
en la declaracid, la classe que utilitzi aquest métode, haura de gestionar I'excepcié en cas que
s'aixequi:

// IMPLEMENTACIO DE LA CONNEXIO DEL CONNECTOR PEL JMS SERVER TIBCO

public void connect (String URL, String USER, String PASSWORD) throws
JMSAdminException

try{
admin = new TibjmsAdmin (URL,USER, PASSWORD) ;
} catch (TibjmsAdminException e) {
throw new JMSAdminException (e.getStackTrace())

Dintre del codi del connector, quan es gestioni I'excepcié del servidor JMS concret (en
I'exemple TibjmsAddminException), s'haura de escalar I'excepci6 a través d'una nova
JMSAdminException. Aixo vol dir, que en el codi del client monitor, s'aixecara aquesta excepcio i
no s'haura de gestionar directament I'excepcié del servidor JMS; no es pot fer un codi dependent
del servidor JMS amb que s'esta treballant. Les excepcions seran mostrades a l'usuari com una

finestra d'error perqué sigui informat del problema.

Escola Universitaria d'Informatica de Sabadell 116



Monitor de servidors JMS Jordi Manzano Ulloa

CAPITOL

LI 4

Implementacio

6.1 ESTRUCTURA DE FITXERS | DIRECTORIS

La implementacié del monitor té dos parts diferenciades; d'una banda la llibreria
JMSMonitorinterface, que permet obtenir les dades dels diferents proveidors suportats, i el propi
client grafic JMSMonitor, que utilitzara la llibreria anterior per poder mostrar la informacié a l'usuari

i oferir el total de les seves funcionalitats.

Escola Universitaria d'Informatica de Sabadell 117



Monitor de servidors JMS Jordi Manzano Ulloa

6.1.1 JMSMonitorinterface

Consta de tres directoris principals; bin, lib i src. Dintre de src es troba el codi font de la
llibreria, que esta distribuit en diferents subdirectoris en funcié dels packages Java creats. En
aquest directori es troben dos fitxers que serveixen per llengar la compilacio de la llibreria i muntar

la llibreria en un fitxer jar?.,

Dintre de la carpeta lib, es troben les llibreries necessaries per poder compilar el codi font i a

bin es trobaran les classes compilades.

Per executar el script que compila la interficie s'ha d'establir la variable d'entorn JAVA_HOME
apuntant al directori principal de la instal-lacié de la JDK, ja que es buscara el compilador de Java

“‘javac™

if [ -z "$JAVA_HOME" | ; then
echo "fatal error -> JAVA_HOME is not setted!"

Amb les llibreries incloses dintre de la entrega, es genera el classpath per poder dir al
compilador de Java, quines son les llibreries a incloure per tal de compilar el codi:

export OPENJMSLIB="$JMSINTERFACEHOME/lib/openjms"

export ACTIVEMQLIB="$JMSINTERFACEHOME/lib/activemq"

export CLASSPATH="$OPENJMSLIB/openjms-0.7.6.1.jar:$OPENJMSLIB/jms-1.0.2a.jar :
$OPENJMSLIB/jndi-1.2.1.jar"

export CLASSPATH="$ACTIVEMQLIB/activemg-core-5.3.0.5-fuse jar:..

Cal dir que amb tota ampliacié d'aquesta part del projecte s'hauran de revisar els fitxers que
automatitzen la compilacio, afegint les noves llibreries utilitzades o nous paquets de Java

desenvolupats per ser compilats.

24 Jar: Un java archive és un format de arxiu utilitzat per empaquetar tots els components d'una aplicacié o projecte Java.

Escola Universitaria d'Informatica de Sabadell 118



Monitor de servidors JMS Jordi Manzano Ulloa

Una vegada s'inicia la compilacio, els fitxers .class sébn emmagatzemats al directori bin, per a
que tot seguit es generi el fitxer jar per poder utilitzar-lo en la part grafica:

export SRC_HOME="./org/jmsmonitor/bridge"

javac -cp $CLASSPATH -d ../bin $SRC_HOME/model/*.java $SRC_HOME/exceptions/*.java
$SRC_HOME/plugins/*.java $SRC_HOME/main/*.java

cd ../bin

jar cf ...JMSMonitorinterface.jar .

A més del script bash, també s'inclou un fitxer bat per poder compilar en entorns Windows.

6.1.2 JMSMonitor

La entrega de JMSMonitor consta de sis directoris; bin, conf, icons, lib, sessions i src. Els
directoris bin, lib i src tindran el mateix paper que en la interficie. El directori sessions tindra els
fitxers amb les sessions de connexié del monitor emmagatzemades mentre que el directori icons
contindra les icones i imatges emprades pel client grafic. Per tal de configurar les traces de
I'aplicacio, dintre de conf es trobara el fitxer log4j.properties. Cal recordar que, qualsevol canvi en
la llibreria JMSMonitorinterface no implica recompilar el codi de la part grafica, unicament s'haura

d'incloure dintre del directori lib.

Al igual que amb la llibreria, s'inclouen scripts de compilacié (tant per Linux com Windows)
que necessitaran que la variable d'entorn JAVA_HOME estigui correctament declarada. Aquests
son semblants als anteriorment descrits perd cal destacat algunes diferencies a I'hora de generar

el fitxer jar que servira per poder executar I'aplicacio.

Com s'observa a continuacio, s'inclou un manifest dintre del jar que es genera a partir de les

classes compilades:

jar cfvm $JMSMONITOR_HOME/lib/JMSMonitor.jar Manifest.txt

Escola Universitaria d'Informatica de Sabadell 119



Monitor de servidors JMS Jordi Manzano Ulloa

Aquest indicara quina és la classe principal i quin és el classpath per tal de que es trobin totes

les classes que utilitza JMSMonitor:

/[Contingut del manifest
Class-Path: geronimo-jms_1.1_spec-1.1.1.jar jcommon-1.0.16.jar
JMSMonitorlnterface.jar jfreechart-1.0.13.jar log4j-1.2.15.jar

Main-Class: org.jmsmonitor.JMSMonitor

El fitxer resultant del script de compilacié es trobara al directori lib. Per tant, I'usuari per
executar l'aplicacié haura de situar-se al directori bin i executar el script que llenga el monitor.

Aquest requereix dos parametres per indicar l'idioma de la aplicacié:

jordi@jordi-laptop:~/Escriptori/JMSMonitor/bin$ JMSMonitor.sh en us
Checking environment...

JMS MONITOR HOME: /homel/jordi/Escriptori/JMSMonitor

java -jar /home/jordi/Escriptori/JMSMonitor/lib/JMSMonitor.jar en us

2010-08-22 12:47:03,159 [INFO ] org.jmsmonitor.JMSMonitor > Starting JMSMonitor...
2010-08-22 12:47:03,161 [DEBUG] org.jmsmonitor.JMSMonitor > JMSMONITOR_HOME =

/home/jordi/Escriptori/JMSMonitor
2010-08-22 12:47:03,561 [DEBUG] org.jmsmonitor.gui.frames.MainFrame > Starting main window...
2010-08-22 12:47:03,561 [DEBUG] org.jmsmonitor.gui.frames.MainFrame > setting look&feel...
2010-08-22 12:47:03,996 [DEBUG] org.jmsmonitor.gui.frames.MainFrame > setting locale...
2010-08-22 12:47:04,003 [DEBUG] org.jmsmonitor.gui.frames.MainFrame > creating interface components...
2010-08-22 12:47:04,078 [DEBUG] org.jmsmonitor.gui.elements.MainMenu > disabling charts...

Tal com s'inicia I'aplicacio les traces comencaran a donar informacié sobre els processos
interns de l'aplicacio i possibles adverténcies i errors que es vagin donant, com es mostra en

I'exemple anterior.

Escola Universitaria d'Informatica de Sabadell 120



Monitor de servidors JMS Jordi Manzano Ulloa

6.2 CONFIGURACIO DE LA APLICACIO

En aquest apartat es resumeixen totes aquelles decisions preses sobre els aspectes relatius a
la configuracié de l'aplicacié i com [l'usuari podra modificar certs parametres per tal de

personalitzar I'eina.

6.2.1 Traces de l'aplicacid

Tota aplicacioé necessita mostrar o registrar informacié dels processos interns a la mateixa i de
cadascuna de les tasques que realitza durant el seu funcionament per facilitar treballs de
depuracié i deteccio d'errors de l'aplicacio. Per realitzar una gestio intel-ligent i facilment
configurable s'opta per I'is de la llibreria log4j, un dels nombrosos projectes de la Apache
Software Foundation. representant un cost econdmic minim al projecte per la seva llicéncia

Apache License.

Log4j anira imprimint per pantalla, escrivint en fitxer o inclus fent insercions a bases de dades,
missatges que es definiran en el codi en punts del flux d'execucié que es considerin importants o
critics. Per tal de no inundar els registres amb missatges de traces o millorar el rendiment de

l'aplicacié, Log4j permet establir diferents nivells de seguretat (de menor a major detall):

+ FATAL: s'utilitza per a missatges critics del sistema, generalment després de guardar el

missatge el programa fallara.

« ERROR: s'utilitza en missatges d'error de l'aplicacié que es vol guardar, aquests
esdeveniments afecten el programa pero el deixen continuar funcionant, com per exemple

que algun parametre de configuracio no és correcte i es carrega el parametre per defecte.

Escola Universitaria d'Informatica de Sabadell 121



Monitor de servidors JMS Jordi Manzano Ulloa

« WARNER: s'utilitza per a missatges d'alerta sobre esdeveniments que es vol mantenir

constancia, perd que no afecten el correcte funcionament del programa.

* INFO: s'utilitza per a missatges similars a la manera "verbose" en altres aplicacions.

+ DEBUG: s'utilitza per escriure missatges de depuracié. Aquest nivell no ha d'estar activat

quan l'aplicacio es trobi en produccio.

+ TRACE: s'utilitza per mostrar missatges amb un major nivell de detall que debug.

La configuracié de Log4j s'haura de definir en un fitxer per indicar-li quin format tindran
aquestes traces, la mida maxima del registre i una gran varietat de parametres que es poden
consultar en la documentacio oficial del projecte. A continuacié es mostra un exemple del fitxer de
configuracié de log4j, on s'estableixen les propietats per les traces de DEBUG responent al
seguent format; [5 espais per la prioritat del missatge] {categoria del missatge} data -> missatge

de l'aplicacio + retorn.

E i

### LOG4j CONFIG #H#

G o o o o
log4j.rootCategory=DEBUG, CONSOLE
log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender
log4j.appender.CONSOLE. layout=0rg.apache.log4j.PatternLayout

oe

log4j.appender.CONSOLE. layout.ConversionPattern=[%-5p] {%c} %$x -> %m%n

En el codi de I'aplicacié s'utilitzara de la seguent forma:

// obtencid de 1l'objecte logger
private static Logger log =

Logger.getLogger (ManageSessionForm.class.getName ()) ;

// mostrar missatge al log

log.debug ("Load files...");

Escola Universitaria d'Informatica de Sabadell 122



Monitor de servidors JMS Jordi Manzano Ulloa

log.debug ("Checking files...");

log.info (“Loading session OK”);

Per tant en aquest cas, si el nivell en la configuraci6 és DEBUG, el log mostrara tots els
missatges i si és INFO, només mostrara I'Giltim. Cal afegir, que en el fitxer de configuracié de log4j
es pot redirigir la informacié de log a fitxers i fins i tot a una base de dades, de tal forma que

sempre es pot modificar sense recompilar codi el comportament global del logging de I'aplicacio.

6.2.2 Multi idioma

Un dels altres aspectes importants que es té en compte és la possibilitat de canviar l'idioma

dels dialegs i menus de l'aplicacio.

Per dur a terme aquesta caracteristica de I'eina, s'utilitzara la classe ResourceBundle de
Java. Aquesta facilita la creacié d'aplicacions traduides en diferents idiomes a més de poder
utilitzar diferents escenaris al mateix temps. Per treballar amb aquesta classe caldra definir fitxers

de propietats amb l'extensio “.properties”. Aquest fitxers contindran el seglent patré:

# Messages_cat_ES.properties
camp1 = valor1
camp2 = valor2
camp3 = valor3

On ' # ' és un caracter per indicar que es tracta de un comentari i 'valorN' sera el contingut
assignat a la variable 'campN'. Tot seguit es mostra un exemple de la utilitzacié de

ResourceBundle:

/lobtenir missatges en catala

Escola Universitaria d'Informatica de Sabadell 123



Monitor de servidors JMS Jordi Manzano Ulloa

Locale | = new Locale(“cat”,”ES");
ResourceBundle messages = (ResourceBundle.getBundle("Messages",1l));

String text = messages.getString(“camp1”);

El métode estatic getBundle retorna un ResourceBundle estatic amb el contingut del fitxer
Messages cat _ES.properties. Una vegada ja s'ha carregat el contingut del fitxer en memoria, es
poden obtenir els diferents valors que s'han assignat als camps de I'arxiu mitjangcant el métode

getString, que com a parametre d'entrada espera el nom del camp del que es vol obtenir el valor.

Per aquesta fase del projecte, s'alliberen tres fitxers Messages cat ES.properties,
Messages _esp_ES.properties, Messages_en_US.properties on es definiran els missatges i

cadenes de text en catala, castella i anglés respectivament.

6.2.3 Icones i imatges

Per les icones i imatges emprades en la interficie grafica s'ha optat per Tango, una llibreria
gratuita i oberta d'icones forga utilitzada en entorns d'escriptori Linux com Gnome o KDE. A partir
de la versio 0.8.90 és de domini public mentre que les antigues tenen un llicencia Attribution-

ShareAlike 2.5 Generic de Creative Commons.

Escola Universitaria d'Informatica de Sabadell 124



Monitor de servidors JMS Jordi Manzano Ulloa

EIZO0eUCHI/eEY 08 00CANL 0 WI@R G M
BMEEGFQOPANEEGNNBNCOTEYOXARASORE
APOMEFI* D0 00POPOC0OC0CEREBEDE
BLRAFVEEEEAAAASIIKRAINDPECTLAOE
BETYeEO+ -0 R REs 2AAEON > 0 @
il L L L L L L L L
AEPIBSOXE RO BRERANQRABORE DG
DEHEEETQANE0 A LARD RPN B E E €@

Figura 37: llibreria d'icones Tango

Unicament s'inclouen a la versié alliberada del present projecte aquelles icones que s'han
utilitzat i no tota la llibreria sencera. S'empren dos conjunts de mides, una de 16x16 pixels, molt

apropiada per menus i capgaleres de finestres, i I'altre de 22x22 més orientada a botons.

Swing permet afegir icones als seus elements de forma facil a través dels métodes de la
classe en questi6. Per exemple, a la classe MainMenu dintre de Ila package
org.jmsmonitor.qui.elements es declaren les entrades que tindra el menu principal de la aplicacié.
Aquests tindran una petita icona per identificar cada opcido amb una accié concreta de forma més

visual:

//create entries of the "ACTIONS" component
String path = this.homepath + fsep + "icons" + fsep + "small" + fsep + " purge.png";
ImagelIcon iconPurge = new Imagelcon (path) ;
JMenultem actionsPurge = new JMenultem(messages.getString ("MenuActionsPurge"),
iconPurge) ;

actionsPurge.setToolTipText (messages.getString ("MenuActionsPurgeHelp")) ;

Escola Universitaria d'Informatica de Sabadell 125



Monitor de servidors JMS Jordi Manzano Ulloa

Cal anotar que en el codi anterior es fa servir la variable d'entorn JMSMONITOR_HOME i una
cadena on es guarda el valor del separador que utilitza aquell sistema operatiu per construir les

rutes (per exemple, a sistemes Linux s'utilitza el caracter '/ ):

private String homepath = System.getenv ("JMSMONITOR HOME") ;
private String fsep = System.getProperty("file.separator");

Escola Universitaria d'Informatica de Sabadell 126



Monitor de servidors JMS

Jordi Manzano Ulloa

6.3 INTERFICIE D'ADMINISTRACIO

Com s'ha comentat al apartat de disseny, separar el codi del client grafic del monitor de la
gestié de la connexio als diferents servidors és una part fonamental del projecte. Per tal de

mantenir la maxima independéncia en el codi del client, de les classes que adapten les diferents

interficies dels multiples servidors JMS, s'ha optat pel patré de disseny bridge.

JMSAdmin JMSAdminAbstraction JMSAdminimplementation
+connect (url, user, pass) +connect (url, user, pass) +connect (url, user, pass)
+clase() +close() +close()
trefreshInfol) —>|+refreshinfo() e~ 1 0.1 LirefreshInfo() ’
+getServerInfo() +getServerInfo() -getProviderServerInfo()
+getQueues () +getQueues() -getProviderqueues ()
+getTopics() +get Topics() -getProviderTopics () .
+getDurables () +getDurables() __|-getProviderpurables ) JMSAdminOpenjMs
+...0) A+ 0 ) |+connect {url, user, pass)
) 1 +close()
’ o | |+refreshInfo()
JMSMessageinfo 7 +getServerInfo ()
+getIMsTimestamp () ) - N Implementacions, +getQueues()
+getIMsMessageld() ___,..--""" una per cada API +getTopics ()
+getIMsCorrelationID() _.__,.---""" a "adaptar” +getburables ()
+getIMsDeliveryMode () T +...0)
+getText () =
o0 (L] Open JMS Admin
| AL lo..N
JMSDestinationinfo JMSDurablelnfo JMSAdminActiveMQ

+getDestinationConsumers () +gethame () +connect (url, user, pass)

+getInMsg() +getMsg () +close ()

+getInTotalMsg () +getMsgBytes () +refreshInfo()

+getInMsgBytes () +getDurableTopic () +getServerInfo()

+getMsgPend () £...0 +getQueues()

+getMsgPendBytes () +getTopics()

+gethame () +getDurables ()

+getOutMsg () o0 1]

+getOutTotalMsg() T

+getOutMsgBytes() . _

. () ActiveMQ Admin

Figura 38: diagrama de classes amb el patré de disseny Bridge

La interficie esta integrada per 4 packages que contenen les classes mostrades a l'anterior

diagrama. A continuaci6 es mostra el nom d'aquests amb els components que tenen inclosos:

Escola Universitaria d'Informatica de Sabadell




Monitor de servidors JMS Jordi Manzano Ulloa

PACKAGE CLASSES / INTERFACES
org.jmsmonitor.bridge.main JMSAdmin
JMSAdminAbstraction (abstract)

JMSAdminimplementor (interface)

org.jmsmonitor.bridge.model JMSDestinationlInfo
JMSDurablelnfo
JMSMessagelnfo

org.jmsmonitor.bridge.plugins JMSAdminActiveMQ
JMSAdminArjunaMQ
JMSAdminBossMessaging
JMSAdminFioranoMQ
JMSAdminHornetQ
JMSAdmindBossMQ
JMSAdminJORAM
JMSAdmMinOpenJMS
JMSAdminSonicMQ
JMSAdmInTIBCOEMS
JMSAdminWeblogicMQ
JMSAdminWebsphereMQ

org.jmsmonitor.bridge.exceptions JMSAdminException

JMSAdminConnectionException
JMSAdminNonAvailableMethod

Taula 17: estructura de JMSMonitorinterface

org.jmsmonitor.bridge.main

JMSAdminAbstraction és una classe abstracta on es descriuen i defineixen els métodes
generics que utilitzara el client (en aquest cas, la interficie grafica del monitor) per accedir a les
funcionalitats de I'API d'administracié del servidor JMS. Inclou la interficie JMSAdminlmplementor i
les classes JMSDestinationinfo, JMSDurableinfo i JMSMessagelnfo. A més, es defineixen unes
constants per identificar els diferents proveidors de JMS que existeixen en el mercat. D'entrada

s'han escollit un subconjunt de 12 proveidors bastant comuns en els desenvolupaments amb

Escola Universitaria d'Informatica de Sabadell 128



Monitor de servidors JMS Jordi Manzano Ulloa

tecnologia JMS:

//Supported providers

public final static int OPENJMS =
public final static int ACTIVEMQ =
public final static int TIBCOEMS =
public final static int HORNETQ =

public final static int JBOSSMQO =

1
2
3
4
public final static int FIORANOMQ = 5;
6
public final static int JBOSSMESSAGING = 7
8

public final static int JORAM =
public final static int ARJUNAMO = 9;

public final static int SONICMO = 10;
public final static int WEBLOGICMQO = 11;
public final static int WEBSPHEREMQO =12;

Aquesta és una subclasse d' Observable. Java proporciona un sistema basat en el patré de
disseny Observer forga senzill d'usar i molt util quan s'ha de notificar un esdeveniment a diversos
objectes. Aixi doncs, cada vegada que es cridi al métode refreshModel, que s'encarrega
d'actualitzar el model de dades d'un objecte de la classe JMSAdmin, es notificara als observadors
per a que puguin tornar a obtenir el model de dades d'aquest i aixi poder gestionar la informacio

en la part grafica del sistema.

public abstract class JMSAdminAbstraction extends Observable({

JMSAdmin és una classe filla de JMSAdminAbstraction, que implementa els métodes descrits
en la seva classe pare i per tant, les seves instancies seran els objectes que creara i utilitzara el
client del monitor per obtenir la informaci6. Aixi doncs, el client construira I'objecte de la classe

JMSAdmin indicant el tipus de proveidor del que vol obtenir la informacio6:

JMSAdmin administrador = new JMSAdmin (JMSAdminAbstraction.ACTIVEMQ) ;

Escola Universitaria d'Informatica de Sabadell 129



Monitor de servidors JMS Jordi Manzano Ulloa

En el constructor, es creara el nou implementador (JMSAdminimplementor) pel servidor en

concret:

public JMSAdmin (int provider) {
switch (provider) {
case JMSAdminAbstraction.ACTIVEMQ:
implementor = new JMSAdminActiveMQ () ;

break;

case JMSAdminAbstraction.ARJUNAMQ:
implementor = new JMSAdminArjunaMQ () ;

break;

Com s'ha comentat anteriorment, en la classe JMSAdmin es fara la notificacid als

observadors:
public void refreshModel () throws JMSAdminException{

this.tDurables = durableInfo.length;
setChanged() ;

notifyObservers () ;

Degut a que la interficie tindra només un objecte JMSAdmin i sera un recurs compartit per
diversos objectes, s'haura d'assegurar la mutua exclusié en algunes situacions que es tractaran

més endavant, quan es parli del client grafic.

JMSAdminimplementor és la interficie que connectara les classes que utilitza el client amb
aquelles que implementaran els métodes necessaris per adaptar les API dels diferents proveidors

JMS.

Escola Universitaria d'Informatica de Sabadell 130



Monitor de servidors JMS Jordi Manzano Ulloa

org.jmsmonitor.bridge.model

JMSDestinationinfo, JMSDurableInfo i JMSMessagelnfo son classes que representen la
propia naturalesa de la informacié que es tracta; informacié sobre destinacions (cues / topics)
dades sobre els durables creats i el model de dades d'un missatge respectivament. Aquest ultim
s'utilitza per representar els camps del missatge que s'utilitzaran des del client grafic sense emprar
la interficie Message de la APl de JMS; aix0 permet desacoblar el codi del client d'aquestes
libreries i guanyar independéncia envers les diferents implementacions de JMS. Es a dir, el client
mai haura de cridar a métodes de la APl JMS, si no que utilitzara sempre la present interficie per

obtenir les dades que necessiti.

org.jmsmonitor.bridge.plugins

En aquesta package s'inclouen totes les classes que serveixen per connectar el monitor amb
les classes propies del proveidor objectiu; transformen el model de dades que s'obté mitjangant
les API d'administracié de les diferents implementacions de JMS al model de dades amb que
treballa el monitor. En aquesta versié no s'implementen totes, perd per concordangca amb les
constants definides en la classe JMSAdminAbstraction, s'inclouen en el projecte sense la
funcionalitat desenvolupada. Les implementacions disponibles sén les de ActiveMQ i OpenJMS on

més endavant es detallaran.

org.jmsmonitor.bridge.exceptions

S'inclouen totes les excepcions produides per les diferents implementacions de JMS.
Aquestes seran gestionades pel client monitor, per tant, en el codi dels connectors o de les

classes que formen la interficie mai es fara un tractament d'aquestes excepcions concretes

Escola Universitaria d'Informatica de Sabadell 131



Monitor de servidors JMS Jordi Manzano Ulloa

dependents de la implementacié JMS, si no que es propagaran les genériques que inclou aquest
paquet per a que el client pugui determinar l'accié a realitzar (mostrar un missatge per pantalla,
sortir de la connexid, etc.). En el seguent exemple es mostra com una excepcidé que llenga el

proveidor de JMS s'escala a una excepcio definida en la package d'excepcions de la interficie:

public void connect (String URL, String USER, String PASSWORD)

throws JMSAdminConnectionException {

try {
admin = AdminConnectionFactory.create(URL, USER, PASSWORD) ;
} catch (MalformedURLException e) {

throw new JMSAdminConnectionException(e.getStackTrace()) ;

} catch (JMSException e) {
throw new JMSAdminConnectionException (e.getStackTrace());

}

Es pot trobar el cas, en que la implementacié d'un connector sigui incompleta o que hi hagi
algun métode que no estigui desenvolupat. La classe JMSAdminNonAvailableMethod permetra
gestionar aquest tipus de situacions. En el codi del connector es trobara el métode que té una

funcionalitat no suportada.

Aixi doncs en el codi de la interficie grafica, es podra tractar aquesta excepcioé tot indicant a

l'usuari el per qué del error:

try({
log.debug ("managing new connection...");

GUI.getSession () .getConnection () .connect () ;

} catch (JMSAdminNonAvailableMethod f) {
log.error (Utils.StackTrace2String(f.getStackTrace()));
GUI.showError(...);

Escola Universitaria d'Informatica de Sabadell 132



Monitor de servidors JMS Jordi Manzano Ulloa

Connector per OpenJMS

Abans de comencar la implementacié, el servidor OpenJMS ha de configurar-se per tal de
definir els parametres per la connexio; s'ha d'editar el fitxer <openjmshome>/config/openjms.xml|
que s'entrega per defecte (on <openjmshome> és el directori principal de la instal-lacié del
producte), ja que si no sera impossible connectar-se al servidor perque no esta definit per acceptar

connexions TCP:

<Configuration>
<l-- Optional. This represents the default configuration -->
<ServerConfiguration host="192.168.1.45" embeddedJNDI="true" />

<Connectors>

<Connector scheme="tcp">
<ConnectionFactories>
<QueueConnectionFactory name="TCPQueueConnectionFactory"/>
<TopicConnectionFactory name="TCPTopicConnectionFactory"/>
</ConnectionFactories>

</Connector>

</Connectors>
<TcpConfiguration port="3030" jndiPort="3035"/>
<SecurityConfiguration securityEnabled="true"/>
<Users>
<User name="admin" password="admin"/>

</Users>

Com es pot veure en l'anterior fitxer, es defineix la IP del servidor i el port (3030 en aquest
cas) a més d'habilitar la seguretat del servidor indicant quins usuaris i amb quina clau podran

accedir.

En la implementacié de la classe JMSAdminOpenJMS, que és la que connecta els métodes

Escola Universitaria d'Informatica de Sabadell 133



Monitor de servidors JMS Jordi Manzano Ulloa

del servidor amb la aplicacié a desenvolupar, es fara servir una interficie que proporciona el

proveidor per tasques de administracio:

admin = AdminConnectionFactory.create(URL, USER, PASSWORD) ;

S'ha pogut comprovar que es recomanable incloure el protocol al passar la direccio de
connexié del servidor (p.e; tep://localhost:3030). Hi ha implementacions JMS on no es cal

especificar i amb indicar només la direccio i el port és suficient, perd a OpenJMS és necessari.

Respecte als métodes d'enviament i neteja de missatges (consistent en un client que
consumira tots els missatges d'una cua), s'utilitza JNDI per establir la connexié amb la factory. En
el seguent fragment es poden veure les diferencies a I'hora de treballar amb I'API de OpenJMS

entre topics i cues:

public void sendTextMessage... {

context = loadInitialContext (initcontext, jndiServerUrl) ;

if (!isTopic) {
QueueConnectionFactory gfactory = (QueueConnectionFactory)

context.lookup (factory) ;

}
else(
TopicConnectionFactory tfactory = (TopicConnectionFactory)

context.lookup (factory) ;

En el métode loadinitialContext és retorna un objecte Context que serveix com a punt
d'entrada al sistema de noms de Java. En el parametre initContext, que l'usuari haura d'especificar

mitjangant la interficie grafica, s'espera el valor que el proveidor JMS ens indica a la

Escola Universitaria d'Informatica de Sabadell 134



Monitor de servidors JMS Jordi Manzano Ulloa

documentacio, per Opendms és “org.exolab.jms.jndi.Initial ContextFactory’.

Per les dades de les cues i destinacions, OpenJMS no disposa d'un métode explicit per
obtenir cadascuna d'aquestes per separat, si no que s'han d'obtenir totes i després dividir-les en

funcié de la seva classe (veure métode splitDestinations de la classe JMSAdminOpenJMS).

Durant la implementacié dels métodes que connecten amb el servidor de OpenJMS, s'han
observat algunes mancances de la API d'aquest proveidor JMS sobretot a nivell de estadistiques
generals del servidor (nUmero de consumidors, missatges entrants i missatges sortints). Aquest fet
ha condicionat el desenvolupament del connector, ja que hi han dades estadistiques que no soén
calculades i no es podran utilitzar en el client grafic del monitor (es retornaran els valors sempre a
0). No obstant permet realitzar algunes funcionalitats basiques; obtenir el nom de cues, topics,
durables i crear usuaris i destinacions. Una possible solucié seria revisar el codi de OpendMS ja
que és una aplicacié de codi obert, perd esta fora del abast del present projecte. En concret els

meétodes i dades que no es poden obtenir pel seu Us en el monitor son:

» Missatges d'entrada i de sortida en el servidor: no hi ha cap métode per obtenir-los. Aixd

també implica al ratio calculat en cada refresc del nous missatges entrants i sortints.

«  Nombre de consumidors

Aquesta limitacié de la APl de OpenJMS afecta a la funcionalitat de I'aplicacio i es podria

revisar en un futur lliurament o evolucié de la mateixa.

Connector per ActiveMQ

Per tal d'obtenir els parametres a monitoritzar de ActiveMQ s'ha utilitzat JMX. Java Manage

eXtensions és una tecnologia que defineix una arquitectura de gestio, API, patrons de disseny i

Escola Universitaria d'Informatica de Sabadell 135



Monitor de servidors JMS Jordi Manzano Ulloa

serveis per la monitoritzacid de aplicacions desenvolupades sota Java. Aquest fet, no va ser
contemplat al principi del projecte i es van realitzar les modificacions pertinents per incloure aquest
nou requeriment. Cal dir que altres proveidors JMS també utilitzen aquesta tecnologia i per tant no
és un recurs especific per un connector, si no que pot ser extensible en el desenvolupament
d'altres. S'afegeix doncs a la interficie de connexié amb els proveidors un métode per dir si el
connector utilitzara JMX o no. D'aquesta manera, la interficie grafica podra distingir quines dades
son les que necessita que l'usuari ompli en el gestor de connexions per tal de poder establir una

sessio JMX contra el servidor JMS.

En el servidor es podra configurar lI'accés JMX amb autenticacié o sense. Si no es requereix
aquest nivell de seguretat bastaria amb comprovar que al fitxer de configuracié de ActiveMQ

apareix una configuracié equivalent a la seguent:

<broker xmins="http://activemq.org/config/1.0" useJmx="true"
brokerName="localhost"
dataDirectory="${activemq.base}/data">
<managementContext>
<managementContext connectorPort="2011" jmxDomainName="my-broker"/>
</managementContext>
<I-- The transport connectors ActiveMQ will listen to -->
<transportConnectors>

En canvi si es vol tenir restringit I'accés s'hauran de realitzar les seguents accions:

- Canviar el fitxer anterior amb aquest valor:

<managementContext>
<managementContext createConnector="false"/>
</managementContext>

Crear dos fitxers; jmx.access i jmx.password dintre de la carpeta de configuracié de

ActiveMQ. Aquest ultim haura de tenir permisos 600 (escriptura i lectura només pel propietari) per

Escola Universitaria d'Informatica de Sabadell 136



Monitor de servidors JMS Jordi Manzano Ulloa

a que el servidor ActiveMQ arranqui correctament:

- Canviar el valor de la variable SUNJMX (dintre del fitxer /bin/activemq) per incloure els dos

fitxers anteriors:

Com a ajuda per treballar amb JMX també s'ha utilitzat jconsole, una utilitat proporcionada
per Java, que permet navegar pels diferents valors i parametres de les aplicacions que poden

treballar amb JMX.

Aixi doncs, per establir la sessié d'administracié als servidor ActiveMQ, es carregaran les

Escola Universitaria d'Informatica de Sabadell 137



Monitor de servidors JMS Jordi Manzano Ulloa

credencials proporcionades per l'usuari i mitjangant la direcci6 i el nom de I'objecte JMX s'obtindra
una instancia de BrokerViewBean, una classe que permetra administrar el servidor. Mitjangant la
classe MbeanServerConnection (connection) es podran obtenir les dades sobre destinacions. Tot

seguit s'inclou un exemple per establir una connexié del plugin d'ActiveMQ:

JMXServiceURL urlJMX;

try {

urlJMX = new JMXServiceURL ("service:jmx:rmi:///jndi/"+ url +"/jmxrmi") ;
connector = JMXConnectorFactory.connect (urlJMX, credentials);
connector.connect () ;

connection = connector.getMBeanServerConnection () ;

ObjectName name = new ObjectName (this.objectName) ;

adminBean = (BrokerViewMBean)
MbeanServerInvocationHandler.newProxyInstance (

connection, name, BrokerViewMBean.class, true):;

El valor de la cadena objectName tindra forma que s'indica a continuacid, on “localhost’ sera
substituit pel nom (BrokerName) que se li ha donat en la configuracié a l'intermediari que ens
proporcionara les dades del servidor (es pot veure anteriorment a aquest capitol quan es parlava

sobre la configuracio d'ActiveMQ):

"org.apache.activemq:localhost, Type=Broker"

Cal notar que la declaracié d'aquest métode és diferent a la de OpenJMS que té un tipus de
parametres diferent, ja que aquest només necessita el nom de l'usuari, la direcci6 i la contrasenya
(dades basiques per a una connexié administrativa). El connector de ActiveMQ només suporta

l'administracié mitjancant JMX, per tant, si des de el client s'invoqués a aquest métode s'ha

Escola Universitaria d'Informatica de Sabadell 138



Monitor de servidors JMS Jordi Manzano Ulloa

d'informar que no esta disponible:

public void connect (String url, String user, String pass)
throws JMSAdminConnectionException,
JMSAdminNonAvailableMethod {

throw new JMSAdminNonAvailableMethod ("Only JMX connection is available");

Amb la API d'administracié de ActiveMQ si s'han pogut obtenir totes les dades que necessita

el monitor per complir amb les especificacions dels topics, cues i durables:

ObjectName [] queueNames = adminBean.getQueues () ;

this.queues = new JMSDestinationInfo[queueNames.length];

for (int i=0;i<queueNames.length;i++) {
QueueViewMBean queueMbean = (QueueViewMBean)
MBeanServerInvocationHandler.newProxyInstance (connection,
queueNames [1], QueueViewMBean.class, true);
this.queues[i] = new JMSDestinationInfo () ;

this.queues[i] .setName (queueMbean.getName ()) ;

En el I'exemple anterior, mitjangant I'objecte adminBean s'obtenen el nom de les cues en un
vector. Per obtenir les dades relatives a cada cua es recorrera el vector obtenint una instancia de
la classe QueueViewMBean que permetra accedir a les dades de la cua corresponent a cada
iteracié. Per topics i per durables el métode és semblant perd utilitzant les classes

TopicViewMBean i DurableSubscriptionViewMBean respectivament.

En quan a la creacio i destruccidé de destinacions, s'utilitza I'objecte adminBean per realitzar
aquestes gestions. Per exemple, en la creacié de topics i cues, s'utilitzaria el métode addTopic i

addQueue respectivament.

Escola Universitaria d'Informatica de Sabadell 139



Monitor de servidors JMS Jordi Manzano Ulloa

Per poder realitzar les funcions d'enviament de missatges i totes les funcionalitats que
impliquen crear un client per tal de produir, consumir missatges o consultar les dades de les cues
(browse), no s'utilitzara JNDI fet que ens servira per provar altra de les modificacions que es van
realitzar al mateix temps que es creava el métode per indicar si aquell connector utilitzava JMX o

no.

Com que hi pot haver connectors que pot ser interessant utilitzar directament les llibreries
propies del proveidor JMS per connectar-se i enviar o rebre missatges, es crea un métode estatic
a la classe JMSAdminAbstraction per indicar a la interficie grafica si aquest connector requereix
que l'usuari indiqui les dades JNDI a I'hora de configurar una sessié del monitor:

static public boolean isiMxPlugin (intp){...}

static public boolean usesJNDI (int p){...}

Aquestes funcions estatiques (soén relatives a la classe, no cal instanciar un objecte per
utilitzar-les) truquen a altres metodes estatics que han de definir tots els proveidors implementats.
Per tant, s'afegeix al modul que fa d'adaptador entre el client grafic i les API del diferents
proveidors, un mecanisme per donar certa flexibilitat a la interficie grafica per decidir quina
informacié es requerida per treballar amb aquella connexié i quina altra no, i per tant, construir els
formularis que l'usuari ha d'omplir per establir la connexié de forma adequada sense dades

innecessaries.

Consideracions per a futures ampliacions

Per afegir nous proveidors no definits en la classe JMS, en la package
org.jmsmonitor.bridge.plugins s'hauran de crear les noves classes que implementin els métodes

per adaptar el codi dels administradors del proveidors amb el model de dades del monitor JMS.

Escola Universitaria d'Informatica de Sabadell 140



Monitor de servidors JMS Jordi Manzano Ulloa

Conjuntament s'hauran d'editar i recompilar les classes:

+ JMSAdminAbstraction: s'haura de definir la nova constant que identifiqui al nou proveidor a
implementar, a més de la revisi6 dels métodes estatics comentats anteriorment per

incloure els nous connectors dintre d'aquests.

+ JMSAdmin: al constructor s'afegira un nou cas en el selector per crear un implementador
pel nou server a monitoritzar.
switch (provider) {
case JMSAdminAbstraction.NOUSERVERJMS:

implementor = new JMSNOUSERVERJMS () ;

break;

Com es veura més endavant, el client grafic és totalment independent i la inclusié o exclusié

de connectors no afecten al codi d'aquest.

Escola Universitaria d'Informatica de Sabadell 141



Monitor de servidors JMS Jordi Manzano Ulloa

6.4 CLIENT GRAFIC

Una vegada que ja s'ha desenvolupat la llibreria JMSMonitorinterface, és el torn de la
implementacio del client grafic pel monitorizatge de servidors JMS. A continuacié es nombren les

diferents packages, classes i interficies que conformen JMSMonitor:

PACKAGE CLASSES / INTERFACES
org.jmsmonitor JMSMonitor (punt d'entrada)
org.jmsmonitor.admin Connection Updater
Session

org.jmsmonitor.gui.model MainTableModel ServerinfoModel

org.jmsmonitor.gui.elements ButtonAutoRefresh CommonlList
ButtonConnection MainMenu
ButtonRefresh MainServerinfo
BrowseMessageFormEvents MainTabs
MainTableEvents MainToolbar

Panelinfo

org.jmsmonitor.gui.frames AbstractFrame (abstracte) InfoFrame

AvailableSessionsForm MainFrame

BrowseMessageForm ManageDestinationForm

ClasspathForm ManageSessionForm

ChartPieFrame PurgeForm
Charts (interficie) SendMSGForm
ChartXYFrame
Form

org.jmsmonitor.io Printer SessionManager
SessionFile

org.jmsmonitor.utils FileFilterCustom Utils

XMLManager

Taula 18: estructura de JMSMonitor

Escola Universitaria d'Informatica de Sabadell 142



Monitor de servidors JMS Jordi Manzano Ulloa

org.jmsmonitor

El punt d'entrada a l'aplicacié es troba en aquesta package i espera dos parametres per
indicar-li el idioma de la aplicacié fent servir la classe ResourceBundle de Java, tal com s'ha
comentat a linici d'aquest capitol. A més, es comprova que la variable d'entorn
JMSMONITOR_HOME existeixi tot apuntant al directori actual del executable del monitor. Cal dir,
que aquesta variable no cal que l'assigni l'usuari, si no que al script que llenga l'aplicacié ja

s'estableix el valor correcte.

org.jmsmonitor.admin

Conté aquelles classes que s'utilitzen per establir una connexié amb els diferents proveidors
de JMS tot utilitzant la llibreria JMSMonitorinterface. Cal destacar la classe Updater, que és un
thread que s'encarrega d'anar trucant al metode de refresc de I'administrador JMSAdmin i per tant

actualitzant el model de dades. Més endavant es descriura aquest proceés.

org.jmsmonitor.gui.model

Representa el model de dades del monitor. D'una banda, la informacié general del servidor
amb els totals acumulats com per exemple, el nombre total de missatges entrants i sortints, i per

I'altra, les dades que conté la taula de la finestra principal del monitor.

org.msmonitor.gui.elements

Aquesta package recopila tots els elements que hi sén dintre de les finestres del monitor

Escola Universitaria d'Informatica de Sabadell 143



Monitor de servidors JMS Jordi Manzano Ulloa

juntament amb les seves accions. Per exemple, aqui es trobaran la classe que representa el menu
de la aplicacié, que llenga les diferents funcionalitats del monitor, o la barra d'eines que incorpora

els botons pel refresc de les dades o per connectar/desconnectar-se del servidor.

org.jmsmonitor.gui.frames

Totes les finestres, inclosa la finestra principal de I'aplicacié, es troba en aquest package. A
més, també es recopilen els diferents formularis que l'usuari haura d'omplir per determinades
accions. Cal destacar també les classes que representen les grafiques ChartPieFrame i
ChartXYFrame, que implementen la interficie Charts. La primera seran les grafiques de tipus

circular i les segones seran grafiques pintades sobre els eixos X i Y.

org.jmsmonitor.io

Les classes que es troben dintre d'aquest package s'encarreguen de totes les operacions de
lectura i escriptura a disc. SessionFile representa un fitxer que emmagatzema una sessié mentre

que SessionManager té els metodes necessaris per salvar i carregar els fitxers que contenen

sessions.

org.jmsmonitor.utils

Aquest paquet conté classes que implementes certes funcions i utilitzats de caracter més

general i no tan vinculat al monitor, com per exemple la verificacié de XML a partir d'un XSD.

Escola Universitaria d'Informatica de Sabadell 144



Monitor de servidors JMS Jordi Manzano Ulloa

Una vegada s'ha descrit l'estructura general del JMSMonitor, a continuacié s'aniran
comentant els aspectes més rellevant de la implementaciéo del client grafic agrupant per

funcionalitats generals o parts més diferenciades.

6.4.1 Funcionalitat basica

L'aplicacié consta d'una finestra principal que tindra un conjunt d'elements que podran
disparar accions o representar dades. Aquesta representa la classe principal del client grafic;
controla i es comunica amb els seus components integrants. Quan es llenga l'aplicacié mitjangant
el script, es crida a la classe que conté el métode main JMSMonitor. Aquesta s'encarrega de
comprovar els parametres de entrada, agafar la configuracié de log4j i crear la finestra principal

instanciant la classe MainFrame:

GUI = new MainFrame (Language, Country) ;

La classe MainFrame hereta de la classe abstracta AbstractFrame, que defineix métodes que
utilitzen totes les finestres com situar-les al centre de la pantalla, i altres més generals com la
generaci6 de missatges d'adverténcia, error i confirmacié. MainFrame té els seglents

components:

private MainMenu miMenu;

private MainToolbar miToolBar;

private MainTabs miTab;

private List <Charts> misCharts;

private MainServerInfo miInfoServidor;
private Session session = null;

private ManageSessionForm sessionForm = null;

private ServerInfoModel serverInfoModel;

Escola Universitaria d'Informatica de Sabadell 145



Monitor de servidors JMS

Jordi Manzano Ulloa

Com es pot observar, hi sén el menu de l'aplicacio, la barra d'eines, els tabuladors per escollir

la taula a mostrar (cues, topics o subscripcions durables), una llista amb totes les grafiques que

son visualitzades en aquell moment i el panell amb la informacié general del servidor juntament

amb el seu model de dades. A la seglent figura es mostra la representacié grafica d'aquests

elements:

Startup

£ o @ | Connacted to Open JMS

admin@top:/Mlocalhost: 3030

Queues | Topics Dulﬁbbﬂ‘
‘name Hconsumers Hsize ”incoming ”outmming ”total in mags ”total out m... |
queus 0 0 0 0 0 0
queus? 0 2 0 0 0 0
queus3 0 0 0 0 0 0
GLOBAL STATS - total in msgs: 0
ConSUMmers: 0 total out msgs: 0
panding mags: 2 queues: 3
incoming msgs: 0 topics: 2
outcoming msgs: 0 dumables: 3

Figura 39: finestra principal de JMSMonitor

El menu principal de l'aplicacio es representat per la classe MainMenu, que hereta de la

classe JMenubar de la API de Swing. En el constructor d'aquesta classe es van afegint tots els

menus i submenus que tindra I'aplicacié, podent-hi assignar icones i utilitzant els fitxers de text en

funcié de l'idioma en que s'hagi carregat I'aplicacié. Amb el métode setToolTipText s'afegeix un

missatge per ajudar a l'usuari a entendre que fara aquella opcié de menu; si passa el ratoli per

sobre del menu apareixera una descripcié en d'ajuda de I'accié que s'executara aquell item del

menu. També es defineixen les accions que realitzaran aquest items quan l'usuari els seleccioni,

de tal forma que es crearan noves finestres i formularis tal com es mostra en el seguent exemple:

Escola Universitaria d'Informatica de Sabadell

146



Monitor de servidors JMS Jordi Manzano Ulloa

//action FILE -> EXIT
fileClose.addActionlistener (new ActionListener () {
public void actionPerformed (ActionEvent event) {

GUI.exit () ;

}) s

Cal dir, que els components del menu poden ser habilitats i deshabilitats en funcié de quina
sigui la situacié del monitor. Per exemple, si no hi ha una sessié carregada, l'usuari no podra

seleccionar les opcions com “enviar missatge” o “crear cua” per evitar possibles errades.

La barra d'eines es representada per la classe MainToolbar, que hereta de la classe de la
API de Swing Jtoolbar, conté tres botons i un camp per mostrar a quin servidor s'esta intentant

connectar:

private ButtonConnection connection;
private ButtonRefresh refresh;

private ButtonAutoRefresh autoRefresh;
private JLabel 1lSessionHeader;

private JLabel lSessionInfo;

Al igual que passava amb el menu, aquests elements també poden ser habilitats i

deshabilitats en funcid de la situacié del monitor.

Les dades de les cues, topics i durables representades per la classe MainTabs contindran
també un menu contextual, el qual sera accessible amb el boté dret del ratoli. La classe

MainTableEvents (hereta de la classe MouseAdapter) contindra la implementacié d'aquest menu.

Escola Universitaria d'Informatica de Sabadell 147



Monitor de servidors JMS Jordi Manzano Ulloa

public void mouseClicked (MouseEvent arg0) {

int row = table.getSelectedRow () ;

String name = (String) table.getValueAt (row,0);

m.start (name, type) ;

En fer click sobre la taula, s'invoca el métode mouseClicked, que en funcié de si s'ha realitzat
amb el boté dret o és un doble amb el botd principal, mostrara un menu o el contingut de la cua

respectivament.

IMS Monitor
Startup Server Charts Actions Help
| e oo | £ Connected to Open JMS admin @tcp: /flocalhost: 3030
Queues | Topics | Durables
name CONSUMErs size incoming outcoming total in msgs total out msgs
queuel o 2 o ] o o
queus? 0 1 0 0 0 0

q 0 0 0 0
[ Send message

b Purge destination

= Browse messages

GLOBAL STATS - total in msgs: 1]
CONSUMErs: 0 total out msgs: 1}
pending msgs: 4  queues: 3
incoming msgs: 0  topics: 3
outcoming msgs: 0 durables: 3

Cal dir, que en el constructor d'aquests elements, es passa com parametre la referéncia de la

finestra principal de la aplicaci6 MainFrame, per tal d'obtenir accés a altres objectes com per

Figura 40: menu contextual de la taula principal

Escola Universitaria d'Informatica de Sabadell



Monitor de servidors JMS Jordi Manzano Ulloa

exemple el métode que connecta el monitor amb el servidor JMS (bot6é de connexid). Aixi doncs,
el bot6 de refresc crida al métode refresh de MainFrame (finestra principal) per tal d'obtenir una
vegada les dades del servidor JMS i actualitzar el model de dades. En canvi, el boté d'habilitacio
del refresc automatic llenga un thread mitjangant la classe Updater, per tal de fer aquest refresc en
la freqiiéncia de milisegons que l'usuari ha definit en la sessié, mentre que el boté de connexio fa
que s'inicii o es tanqui una connexié amb un servidor JMS. A continuacié es detallaran aquestes

funcionalitats.

Establiment de la connexio

Un dels components de la classe MainFrame és la classe Session, que representa les dades
d'una sessi6 de connexid i gestiona junt amb els seus components, la comunicacié amb el
servidor JMS mitjangant la llibreria JMSMonitorinterface. La seglent figura ajuda a entendre

aquesta relacio:

Session | 2 [Urmmmmmmmmmmmmmmmmmmmmmmmme
Tgethane () JMSMaonitorinterface
+sethame () !
+getConnection() JMSAdmin
+getDelayTime() '
+setDelayTime() ; +connect (url, user, pass)
+...0 i +close()

5 1 |+refreshInfo()
+getServerInfo()
+getQueues ()
+getTopics ()

: +getDurables ()

! A ;
Connection <>———
+connect () 0
+purge ()
+hrowse () Updater
+...0 1

+run ()
+Heill ()
+... ()

Figura 41: relacio entre les classes que gestionen la

connexio

Escola Universitaria d'Informatica de Sabadell 149



Monitor de servidors JMS Jordi Manzano Ulloa

El gestor de sessions (veure apartat "gestio de sessions") omple les dades I|'objecte instanciat

de Session juntament amb les dades de connexid. La classe Connection tindra un component
JMSAdmin (la classe del connector que s'ha implementat per tal de relacionar client i servidor

JMS). Per tant, quan es vulgui iniciar una connexio es trucara al seglient métode:

GUI.getSession () .getConnection () .connect () ;

En I'anterior exemple es pot veure com mitjancant la classe MainFrame es pot accedir a la
sessio i a la connexid, per tal d'establir la connexié. EI métode connect utilitza les dades de la

sessio per determinar quin tipus de connexié establir, si JMX o directament el métode estandard

que proporcioni la implementacié del connector:
public void connect () (...) {

if (isJMX) {

admin.connect (host, user, pass, objectName) ;
}

else(

admin.connect (host, user, pass);

En cas que la connexié es perdi o el servidor no estigui disponible, es mostrara una excepcio

a l'usuari ja que s'haura aixecat I'excepcid6 JMSAdminConnectionException, inclosa dintre del

modul interficie JMSMonitorinterface.

Escola Universitaria d'Informatica de Sabadell 150



Monitor de servidors JMS Jordi Manzano Ulloa

[&]

Startup  Serw ons

S | ofiine |
‘name ||oonsumers stzze ”inooming Houtmming Htotal in msgs ”total out ms. |
queue 1 0 o o o o 0

queus? 0 - __ 1

queued 0 [ Communication exception X 0

e |s not possible to conned with top:/flocalhost: 3030
| S—

GLOBAL STATS

consumers: - total out msgs:
pending msgs: - gueuss
incoming msgs: - topics
outcoming msgs: - durables:

Figura 42: excepcio de connexio

Refresc de les dades

En el métode connect de la classe Connection, si la connexié s'estableix amb éxit s'afegeix
a l'objecte admin (JMSAdmin) un observador. Aquest sera l'encarregat de dir a la resta de
components que JMSAdmin ha actualitzat el seu model i que poden obtenir-lo per fer les seves
operacions. Per poder dur a terme aquesta tasca s'ha de sobrescriure el métode update en la
classe MainFrame (implementa la interficie Observer). Aquest notificara el canvi del model als
diferents components com la taula principal, el propi boté de connexié (perqué canvii el seu estat),
la informacié general del servidor i les grafiques per a que siguin pintades de nou amb els valors

obtinguts.

Per l'actualitzacié de la taula principal, s'invoca el metode refresh de la classe MainTabs.
Aquesta representa tres pestanyes on cadascuna conté una taula amb el model de dades
monitoritzades per cues, topics i subscripcions durables. El model de dades es vincula amb la la
vista en el constructor d'aquesta indicant el tipus de dades que contindra mitjangant les constants

de la mateixa classe MainTableModel:

public MainTabs (MainFrame GUI) {
this.GUI = GUI;

Escola Universitaria d'Informatica de Sabadell 151



Monitor de servidors JMS Jordi Manzano Ulloa

dtmQueues = new MainTableModel (MainTableModel .QUEUE,
GUI.getTextMessages()) ;
dtmTopics = new MainTableModel (MainTableModel.TOPIC,

GUI.getTextMessages()) ;
dtmDurables = new MainTableModel (MainTableModel.DURABLE,

GUI.getTextMessages()) ;

Per tal de recopilar les dades generals del servidor, es fa servir una classe per acumular
aquestes anomenada ServerinfoModel. Quan MainFrame observa que hi ha una actualitzacié en
I'administrador, comptabilitza les dades de cada cua, topic i durable per tal de tenir un model amb
el conjunt de dades global, que a més de ser representat en la vista principal del monitor, sera

utilitzat per les grafiques.

Refresc automatic de les dades

D'altra banda, la classe Updater es llenga cada vegada que s'estableix una nova connexid.
Aquest no és més que un thread que truca al métode que refresca el model de I'objecte admin

(classe JMSAdmin).

Es important comentar el paper de synchronized en el moment d'invocar el metode
d'actualitzacio del model de JMSAdmin, que és un recurs compartit i accessible a tots els
elements que conformen el monitor. Aixi doncs, es pot donar el cas que en el moment que
s'actualitza el model del administrador, l'usuari sol-liciti la creacié/destruccié d'una cua. Aixo
evidentment fa que el resultat del conjunt de les operacions sigui indeterminat; no es pot
assegurar quin sera el nombre de cues comptabilitzar en el model, si I'anterior o el posterior a
l'operacié de creacié/destruccio. El bloc synchronized s'executara quan aquell objecte no estigui

sent utilitzat per altre fil, assegurant aixi la mutua exclusio.

Escola Universitaria d'Informatica de Sabadell 152



Monitor de servidors JMS Jordi Manzano Ulloa

Amb el boté de connexié es destrueix el fil que actualitza les dades de forma automatica i
s'esborra la referéncia del component updater. En aquesta situacié la interficie grafica canviara la
seva vista per representar la desconnexié i no permetre que l'usuari fagi accions que si podia fer

abans, acotant aixi possibles errors d'execucio.

Escola Universitaria d'Informatica de Sabadell 153



Monitor de servidors JMS Jordi Manzano Ulloa

6.4.2 Gestio de les sessions

Per tal de poder carregar les dades de la connexid en el monitor, s'utilitza el gestor de
sessions. Aquesta funcionalitat esta representada per la classe ManageSessionForm, que
visualitza un formulari (per omplir el model de dades Session i Connection) i quatre botons per tal
de poder carregar, emmagatzemar, acceptar o cancel-lar una sessido. A més es poden incloure
llibreries al classpath de forma dinamica, per tal de poder connectar-se amb un servidor concret
S'ha de recordar que cada proveidor implementa les seves propies llibreries i que la interficie
JMSMonitorinterface només assegura que el client “s'entengui” de forma transparent amb
aquestes API. A continuacié s'explicara amb més detall les parts més rellevants del gestor de

sessions.

emmagatzemar i recuperar sessions

Quan el boto per salvar la sessio es prem, s'activa el métode per emmagatzemar la sessié a
disc. El que fara es utilitzar la classe SessionManager per escriure a disc la informacid del

formulari.
//SAVE

sManager.loadSessions () ;
sManager.saveSession (session) ;
log.info ("saved session " +

session.getName () +" ok");

En l'anterior exemple, primer es carrega la informacié general de les sessions que hi son ja
guardades (métode loadSessions), per veure si és una sessié nova o s'ha de reescriure. Aquesta

informacié esta en un fitxer anomenat sessions.monitor, ubicat en el directori sessions de la

Escola Universitaria d'Informatica de Sabadell 154



Monitor de servidors JMS Jordi Manzano Ulloa

instal-lacié del monitor. Té el seglent format:

nom de la sessio = ruta del fitxer amb les dades de la sessio i connexio

Una vegada la classe SessionManager obté una llista amb la referencia dels noms de les
sessions amb els fitxers, ja pot salvar la sessié al fitxer. Aquesta referencia ve representada per la
classe SessionFile, que no és més que una subclasse de la classe File de Java, on s'inclou un

camp amb el nom de la sessio.

Per salvar el fitxer, s'empra el métode saveConcreteSession de SessionManager que utilitza
la classe Properties de Java per muntant el fitxer amb el métode setProperty com es mostra a

continuacio:

private void saveConcreteSession (...){
Properties prop = new Properties ();
OutputStream os = null;
try({
os = new FileOutputStream(file);

Calendar cal = new GregorianCalendar () ;

//CONNECTION

Connection ¢ = session.getConnection|();
prop.setProperty (FNAME, session.getName ()) ;
prop.setProperty (FHOST, c.getHost()):;

prop.store(os, (FCOMMENT + " SESSION"));

Quan l'objecte prop ha sigut establert assignant-li per cada etiqueta el seus valors
corresponents, es crida al métode store on se li passara un objecte OutputStream per tal de crear

el fitxer a disc. Cal dir que el nom que tindran les etiquetes dintre del fitxer per identificar cadascun

Escola Universitaria d'Informatica de Sabadell 155



Monitor de servidors JMS

Jordi Manzano Ulloa

dels valors guardats de la sessi6 i connexié sén constants definides en la classe:

private
private
private
private

private

static
static
static
static

static

final
final
final
final

final

String
String
String
String
String

sFile
FNAME
FHOST
FUSER
FPASS

"sessions.monitor";
"session name";

"connection host";
"connection user";

"connection pass";

D'aquesta manera el fitxer de la sessid, anomenat com nom_de_la_sessié.monitor, tindra un

contingut semblant al seguent:

## SESSION
#Mon Aug 23 00:00:28 CEST 2010

connection user=admin

jmx_objectname=

session name=openjms_queue

isJMX=false

connection initcontext=org.exolab.jms.jndi.InitialContextFactory

delay=2000

connection jndiserver=tcp\://localhost\:3035

connection pass=admin

cp=/opt/openjms default/lib/jms.Jjar;/opt/openjms_default/lib/jndi

-1.2.1.jar;/opt/openjms default/lib/openjms-0.7.6.1.jar

connection provider=1

connection factory=QueueCF

connection host=tcp\://localhost\:3030

last=1282514362906

D'altra banda, qualsevol error que aparegui en el procés sera notificat a 'usuari aixecant una

excepcio en la vista del gestor de sessions (ManageSessionfForm).

Per carregar una sessid, s'obrira una nova finestra que mostrara totes les sessions

disponibles, que seran totes aquelles que estiguin registrades al fitxer sessions.monitor. La classe

AvailableSessionsForm representa aquest formulari on l'usuari podra carregar o esborrar una

Escola Universitaria d'Informatica de Sabadell

156



Monitor de servidors JMS Jordi Manzano Ulloa

sessio. En el constructor es passara la referencia de la sessi6é que conté el formulari principal:

public AvailableSessionsForm (MainFrame g, Session s) {
this.GUI = g;
session = s;
setTextMessages (GUI.getTextMessages())

sManager = GUI.getSessionForm () .getSManager () ;

Com es mostra a la seguent figura, aquesta finestra conté un boté per esborrar, un altre per

carregar la sessi6 al formulari del gestor de sessions i un altre per sortir.

. . —_— o~
= Available sessions X

ﬁ Delete | [oPenms_gueue

activeMQ. localhost

openjms_topic

| @ Lccad” B Cancel|

Figura 43: sessions guardades

En el cas de que s'esborri una sessié6 emmagatzemada, es cridara al métode de la classe

SessionManager deleteSession i es descartara de la llista que es visualitza I'entrada corresponent:

try {
sManager.deleteSession (sf) ;
listModelSessions.removeElement (sf.getSessionName ()) ;
} catch (IOException e) {

log.error ("Session file not found: " + sf.getPath());

Escola Universitaria d'Informatica de Sabadell 157



Monitor de servidors JMS Jordi Manzano Ulloa

Quan es vol carregar una sessio6 s'utilitza el métode getConcreteSession de SessionManager,
que retornara un objecte Session amb les dades llegides del fitxer. Per tal d'actualitzar-lo al
formulari principal del gestor de sessions, es copien les dades d'aquesta sessié obtinguda en la

sessio referenciada en el formulari principal.

carregar la sessié en el monitor

El formulari principal conté una llista desplegable amb els proveidors disponibles de
JMSMonitorinterface (no necessariament implementats). El nom d'aquest s'obté directament de la
interficie fent més independent el client grafic de la implementacié dels connectors:

int 1 = 1;
String aux = JMSAdminAbstraction.getProvider (i) ;
do{

comboJMSServer.addItem (aux) ;

kg

aux = JMSAdminAbstraction.getProvider (i) ;

}while (aux.equals ((Integer. toString

(IMSAdminAbstraction.UNDEFINED))) != true);

// Determinar la activacion de los campos exclusivos para JMX con
el valor por default del JCOMBO
filterFieldsWithProviders () ;

En funcié del proveidor escollit, la vista del formulari canvia en funcié de si aquell connector
suporta JNDI o utilitza JMX, tal com es va comentar en la explicacié de JMSMonitorinterface. El
meétode filterFieldsWithProviders habilita o amaga els diferents camps del formulari en funcio

d'aquests parametres.

Una vegada que l'usuari ha introduit les dades o les ha obtingut des d'un fitxer, es poden
carregar les dades al monitor, per tal de poder connectar-se al servidor. La primera accié que es

realitzara sera un comprovacio de les dades que s'han introduit al formulari, per verificar que no hi

Escola Universitaria d'Informatica de Sabadell 158



Monitor de servidors JMS

Jordi Manzano Ulloa

ha camps obligatoris que hi manquen o amb caracters no valids. El métode que fa aquesta

comprovacioé en la classe ManageSessionForm és parseSessionForm.

o5

se5sion name

JMS Server | Open JMS ‘ ~ ‘

admin JMS URL ‘tcp:ﬂlocalhost:ﬂ(]ﬁ(]

usar

Ehdhd

password

admin ‘

connection URL ‘tcp:ﬂlocalhost:ﬁ(]iﬂﬁ

init context . = Invalid session data

factoryName | Queu Q These fields are not valid

* session name

| @g dasspath | fopt/of

foptio

loptiol
fopts -(25 oK

* refrash time

refresh time

last session Sun Aug 22 23:59:22 CEST 2010

‘ Available sessionsH&-‘ SaveH @. AmeptHIE Cancel‘

Figura 44: gestor de sessions

Com s'observa en la figura anterior, quan hi ha camps que no sén valids, s'informa al usuari

indicant el nombre dels camps. El métode ParseSessionForm mira cadascun dels camps

comprovant que aquests no estiguin buits i que no continguin caracters que no estiguin dintre d'un

rang determinat. Aquests métodes es troben en la classe Utils, que recopila un conjunt de

métodes més globals:

// valid characters

if (! ((aux >= 'a' && aux<='z') ||
(aux >= 'A' && aux<='2z"') ||
(aux >= '0' && aux<='9'") ||

(aux == ")

Escola Universitaria d'Informatica de Sabadell

159



Monitor de servidors JMS Jordi Manzano Ulloa

(aux == " ") ||
(aux == "'.' ||
(aux == ':' ))))

return false;

Després de validar la informacid, es comprova que no hi havia cap sessi6 prévia. Si fos aixi
es mostraria un missatge per advertit a l'usuari que es tancara la sessié actual. Una vegada es
realitzen totes les comprovacions, es carrega la informacié del formulari en el monitor, creant un
objecte Session amb les dades del formulari i assignant-lo a la classe MainFrame (pantalla

principal del monitor):

createSessionObjects () ;
session.loadClasspath() ;

GUl.setSession(session);

Un altre punt a comentar és la carrega de les llibreries adjuntades per l'usuari en el classpath
de l'aplicacié de forma dinamica. Mitjangant la classe URLClassLoader, s'obtindra la referencia a

al carregador de classes del sistema per afegir les introduides per l'usuari:

URLClassLoader classLoader = (URLClassLoader)

ClassLoader.getSystemClassLoader () ;

En cas de que una llibreria ja estigui carregada, s'ignorara per no fer-ho un segon cop. Cal dir
que es va valorar la possibilitat d'implementar un carregador de classes multiple, capag¢ de
descarregar i carregar classes en temps d'execucio, perd no és quelcom senzill i s'escapa al
volum d'hores de treball destinades al projecte. En una possible ampliacié o revisié de la eina,

podria ser un tema interessant a desenvolupar.

Escola Universitaria d'Informatica de Sabadell 160



Monitor de servidors JMS Jordi Manzano Ulloa

6.4.3 Funcionalitats amb destinacions

La aplicacié afegeix funcionalitats addicionals per treballar amb destinacions i missatgeria.
Aquestes sén la consulta de missatges en cues, I'enviament de missatges a destinacions, crear i
destruir destinacions i eliminar els missatges d'un desti. Tot seguit es detallaran els aspectes mes

important del desenvolupament d'aquestes.

enviament de missatges

La classe que s'encarrega de mostrar el formulari i realitzar la peticié a I'administrador és
SendMSGForm, que consistira en una finestra amb un quadre de text per introduir el cos del
missatge, una seccid per seleccionar cua o topic, botons de cancel-lacié, confirmacié i associacio

de XSD.

Message Body |<7xml version="1.0" encoding="UTF-8"7=
<Libro xmins:xsi="http: /fwww. w3.crg/2001/XMLS chema-instance”
xsi:noNamespaceSchemalocation="libro.xsd" precio="abc"=
<Titulo=Moby Dick=/Titulo=
<Autores=Herman Melville</Autores=
<Editorial>Planeta</Editorial>

</Libro=

XML Validation error

a ovcdatatype-valid. 1.2.1: ‘abc is not a valid 'double’ value.
() Topics —

O Queues |

Thome/jordi/E scriptori/ficha. libro.xsd ‘

Bl

Figura 45: enviament de missatges i validacié XML

‘ Open XSD‘

Aixi doncs, s'utilitzara el objecte administrador que conté la sessi6 actual per enviar un

Escola Universitaria d'Informatica de Sabadell 161



Monitor de servidors JMS Jordi Manzano Ulloa

missatge a una destinacio, ja sigui cua o topic. Primer es comprovara si l'usuari a afegit un XSD a
validar contra el cos del missatge; la classe XMLManager de la package del monitor Utils,
s'encarrega de llengar una excepcié en cas de que el XML no acompleixi amb I'especificacié del

XSD (veure imatge anterior):

String sXsd = "";
XMILManager xmlManager = new XMLManager () ;
sXsd = fxsd.getText () ;
if (sXsd.length() > 0){
//parseamos el XML
log.debug ("parsing text with the XSD '" + fxsd.getText ()
+ ")

xmlManager.validate (fxsd.getText (), text.getText ()) ;

Si la validaci6 és correcta (o pel contrari no calia validar el contingut del missatge), es trucara
a l'administrador de la sessié per sol-licitar I'enviament del missatge. Amb una mateixa senténcia
es podra diferenciar entre el que és un enviament a una cua i a un topic, a més de si usara
I'adreca JNDI o la de administracié del proveidors JMS; cal recordar que si el connector utilitza
una de les dues adreces per I'enviament de missatges sera una dada acotada en el formulari per

la informacio que s'obté del propi connector:

c.getAdmin () .sendTextMessage (

((c.getJNDIServer ()==null| |c.getJNDIServer () .equals(""))?c.getHost () :c.getINDIServer()),
c.getCurrentInitContext (), c.getCurrentFactory(), (String)comboDest.getSelectedItem(),
text.getText (), c.getName(), c.getPass(), (rbuttonTopics.isSelected())):

Cal dir que el formulari d'enviament de missatges estara disponible a través del menu
contextual de la taula principal i el menu de l'aplicacié. Si es selecciona aquest ultim, el
desplegable del formulari es situara automaticament a la destinaci6 que ja es trobava

seleccionada en la pestanya corresponent visualitzada per l'usuari. Aquesta informacidé es

Escola Universitaria d'Informatica de Sabadell 162



Monitor de servidors JMS Jordi Manzano Ulloa

sol-licitara a la classe MainTab, on els métodes getActiveTopicName, getActiveQueueName i

getDurableName retornaran el nom de la destinacio seleccionada en cadascuna de les pestanyes.

neteja de missatges

Amb la classe PurgeForm es podran netejar els missatges continguts en cues i subscripcions
durables. Amb una vista molt senzilla es presenta un selector per ambdds tipus de destinacions i
una llista desplegable per seleccionar la cua o subscripcié durable a buida, tal com es mostra a

continuacio:

Purge destination

D Queues |gueued V‘

) Durables

‘ﬁ DK‘ ‘ [x] C.ancel‘

Figura 46: formulari de neteja de destinacions

En funcié si la destinacio te associada un topic o no es podra determinar si és una cua o un
topic; si té aquest ultim es tractara d'una subscripcions durable i es trucara al métode purge

passant el nom d'aquest:

GUI.getSession () .getConnection () .purge (aux,null) ;

Escola Universitaria d'Informatica de Sabadell 163



Monitor de servidors JMS Jordi Manzano Ulloa

creacio i eliminacio de destinacions

Tant per crear i destruir destinacions, ja siguin cues, topic o durables s'utilitzara una sola
classe, ManageDestinationForm. En el constructor s'indicara el tipus de destinacié que és i I'accié

disponible:

public ManageDestinationForm (MainFrame g,

int destination type, int available action)

Aquest dos ultims enters, son constants definides en dues classes. El tipus de destinacié es
defineix a la classe que representa el model de la taula principal MainTableModel i I'accié
disponible vindra donada en la mateixa classe ManageDestinationForm:

public final static int CREATE = 0;
public final static int DESTROY= 1;

Per cada destinacié doncs, es trucaran als métodes de I'administrador de la sessié de forma

diferent, utilitzant un selector pel tipus de destinacio:

switch (destination_type) ¢
case (MainTableModel.QUEUE) :
if (action == CREATE)
a.createDestination (dName.getText (), false);
else
a.destroyDestination (comboDest.getSelectedItem() .toString (), false);

break;

case (MainTableModel.TOPIC) :

Escola Universitaria d'Informatica de Sabadell 164



Monitor de servidors JMS Jordi Manzano Ulloa

Si al crear una destinacio, el nom ja existeix, el monitor no deixara que s'executi la trucada a
I'administrador. Aquesta comprovacio previa la realitza el métode parseName del mateix formulari

de gestio de destinacions.

It Create = o X

MName of the Topic

‘@ DK‘ ‘[3 Cam:el‘

Figura 47: formulari de creacié de destinacions

consulta de missatges en cues

Aquesta funcionalitat esta Unicament disponible per les cues fent doble-click damunt d'una
d'aquestes en la taula principal o mitjangant el menu contextual de la taula principal. La finestra de
consulta de missatges esta formada per dues parts, una que enumera els missatges que i sén
dintre de la cua, i l'altre els detalls del missatge seleccionat. La classe BrowseMessagesfForm és
I'encarregada de representar i gestionar la consulta de missatges. Aquesta trucara al métode
browse de l'administrador de la sessid, recuperant aixi una llista de JMSMessagelnfo per tal

d'omplir la taula que enumera els missatges:

synchronized (GUI.getSession().getConnection().getAdmin()) {
JMSMessages = GUI.getSession () .getConnection () .browse (destName) ;

}
llenaTabla () ;

Per tal de mostrar la informacié del missatge a la part inferior de la finestra quan es
selecciona un missatge, s'utilitza una altra classe que emmagatzema els esdeveniments del

formulari de consulta de missatges; BrowseMessageFormEvents. S'implementen dos accions

Escola Universitaria d'Informatica de Sabadell 165



Monitor de servidors JMS Jordi Manzano Ulloa

amb el ratoli per la finestra de consulta de missatges, la primera ja s'havia comentat anteriorment;
refresca les dades inferiors de la vista amb el missatge seleccionat. La segona servira per poder
copiar les dades com el contingut del missatge, tot fent doble-click en la taula inferior damunt la fila
del elements corresponent del missatge seleccionat. Aquesta accié obrira una finestra amb un

camp amb el valor seleccionat per tal de poder copiar el valor:

HTimestamp

Sat Aug 21 20:02:28 CEST 2010 omg.exolab.jms. message. TextMessagelmpl
2 Sat Aug 21 20:08:18 CEST 2010 |omg.exclab.jms. message. TextMessagelmpl
3 Tus Aug 24 17:36:53 CEST 2010 |org.exclab.jms. message. TextMessagelmpl

‘Oontent H Description ‘

JMS MessagelD 1D: 12452 7d 0-cbf9-1004-8dfe-fif4ad 2 SF86a
JMS Correlation 1D
0 -

2
0
4
Wi

J
J
B l rite message content here. ..

|D: 1a4 5e7d0-cbf 5-1004-8dfe-fOf4ad 2 Sf85a

Figura 48: consulta de missatges: seleccié de valors

Cal destacar que la taula també mostra el nom de la classe de missatge que implementa el

proveidor JMS gracies a que la classe JMSMessagelnfo emmagatzema el nom original d'aquesta.

D'altra banda, s'incorpora la possibilitat d'exportar els missatges seleccionats a un directori,
generant un fitxer pla de text amb el cos del missatge (sempre que sigui de tipus TextMessage).
Aquesta opcid és disponible mitjangant el menu de la finestra de consulta de missatges. Aquest
procés escriu per cada missatge un fitxer amb un nom format pel nom de la cua més la data del
missatge.Per imprimir les dades a fitxer, s'utilitza una classe del package 10 de JMSMonitor,;

Printer. EI métode print2File, escriu una cadena de text a un fitxer tot indicant-li el nom:

print2File (String path,String filename, String body)

Escola Universitaria d'Informatica de Sabadell 166



Monitor de servidors JMS Jordi Manzano Ulloa

6.4.4 Grafiques

Per tal de dibuixar les grafiques s'opta per utilitzar JfreeCharts, una llibreria de codi obert i
gratuita que permet desenvolupar-les de forma senzilla i que incorpora un conjunt de funcionalitats
que la fa forca interessant; com l'exportacid del grafic a png, la impressié de la grafica, la
modificacié de les propietats de la grafica (colors, nom de les etiquetes...) i gestié d'augment i
allunyament dels eixos entre d'altres. Sens dubte es tracta d'una eina que redueix el temps i el
cost d'implementacid de la funcionalitat de grafiques amb una gran qualitat i possibilitat de

personalitzacié, ja que és de codi obert.

i - o

XY Plot;

- de missatges rebuts

~Ceneral:

Label: [ | \ ‘ w
Font: [Dialog.bold, 14 | [setect..| !

s

rOther

Ticks E

Show tick labels

Tick label font: |Dia|o-_:\‘plam, 12 ||Se|ectm| 200 225 250 275 3200 325 350

Show tick marks F Tasa ce missatges rebuts

Figura 49: funcionalitats afegides de JFreeCharts

La llibreria implementa molts tipus de grafiques. ElI monitor n'utilitzara dues; una consistent en
eixos de coordenades, per representar quantitats en el temps, utilitzada sobretot per monitoritzar
missatges entrants i sortints en temps real, i una altra grafica circular, per comparar diferents

parametres a la vegada. Aquesta ultima es mostra en la seguent figura:

Escola Universitaria d'Informatica de Sabadell 167



Monitor de servidors JMS

Jordi Manzano Ulloa

Startup Server Charts Adions

Total IN / OUT messages

Total IN / OUT messages

Tatal
outbound
messages

GLOEA

Total
inbound

messages

QonsuUrT

total out

outcoming msgs: 0  durables: 0

pending @ Total inbound rmessages @ Total outbound messages
incoming W 3

Figura 50: funcionalitats afegides de JFreeCharts

Les dues classes que representen aquestes dues grafiques en el

ChartXYFrame i ChartPieFrame, que implementen la interficie Charts:

package org.jmsmonitor.gui.frames;

import org.jmsmonitor.gui.elements.ServerInfoModel;

public interface Charts {

public void refresh(ServerInfoModel s);

public void destroy();
public void clean();

seran

El per qué de I'is d'aquesta interficie és que es simplificara el codi de la classe principal que

controla els diferents objectes i esdeveniments del monitor (MainFrame) quan s'hagi de treballar

amb grafiques. Per exemple, quan es crea una grafica, aquesta s'afegeix a una llista de la classe

MainFrame que anira acumulant les referéncies a objectes que implementen la interficie Charts:

Escola Universitaria d'Informatica de Sabadell

168



Monitor de servidors JMS Jordi Manzano Ulloa

public class MainFrame extends AbstractFrame implements Observer{

private List <Charts> misCharts;

D'aquesta manera quan s'invoqui el métode refresh de la classe MainFrame (cal recordar que
es trucara cada vegada que el model de dades de JMSAdmin ,“observat’ per la classe
MainFrame, s'actualitzi), es cridara també al métode refresh de cada objecte que implementi la

interficie Charts, actualitzant aixi grafiques de linies i circulars indistintament:

if ((this.misCharts!=null) && (this.misCharts.size()>0)) {
for (int i=0;i<misCharts.size () ;i++) {

misCharts.get (i) .refresh (this.serverInfoModel) ;

L'usuari per crear una grafica ho fa mitjangant el menud del monitor. Quan es construeix
l'objecte s'indica el tipus de grafica que sera i s'afegira a la llista de la classe MainFrame, que

contindra totes les grafiques creades:

GUI.addChart ( (new ChartXYFrame (ChartXYFrame.INBOUNDMESSAGERATE,GUI))) ;

Els tipus d'informacié que poden gestionar vénen definits a la propia classe com a constants,
de tal forma que la grafica en funcié del seu tipus adquireix les dades necessaries per pintar la

seva representacio:

Escola Universitaria d'Informatica de Sabadell 169



Monitor de servidors JMS Jordi Manzano Ulloa

D'altra banda quan es tanqui una grafica, aquesta cridara a la instancia de MainFrame perqué

la tregui de la llista i s'alliberi memoria:

Escola Universitaria d'Informatica de Sabadell 170



Monitor de servidors JMS

Jordi Manzano Ulloa

6.5 PROVES

Una vegada assolits els objectius plantejats al inici, s'ha realitzat una fase d'analisi i proves

per tal de verificar les diferents situacions que poden sorgir durant la utilitzacié de l'aplicacio.

L'estrategia seguida ha sigut la realitzacio de proves funcionals observant i corregint els possibles

problemes i desviaments en el desenvolupament.

L'entorn de desenvolupament escollit, Eclipse, aporta mecanismes de depuracié del codi

forga utils per trobar i corregir problemes en aquest. A més, I'is en el projecte de Log4j, permet

rapidament detectar un problema en temps d'execucid, ja que es van mostrant en consola totes

les anotacions en el codi i les excepcions que han aparegut.

Debug - JMSMonitor/srciorg/jmsmonitor/gui/elements/ButtonConnection.java - Eclipse SDK

- Sd B 0% @Y 5 v

=} %’Suebug %’Java

%5 Debug 3% . 5= omune] 'S

o .2 5| 3 Y T O||41 Express (M: Variable (Ge Breakpo 33 & Search‘} =0

= o Thread [AWT-EventQueue-0] (Suspended)

= ButtonConnection.actionPerformed(ActionEvent) line: 114 '

= ButtonConnection(AbstractButton).fireActionPerformed(Actio

= AbstractButton$Handler.actionPerformed(ActionEvent) line: 2318

= DefaultButtonModel. fireActionPerformed(ActionEvent) line: 387

* BB oW WEHE T

2 ButtonConnection [line: 113] - actionPerformed(Action
nEvent) line: 1995 @ ChartXYFrame [line: 146] - ChartXYFrame
® ChartXYFrame [line: 221] - ChartXYFrame

- @ JMSAdminActiveMQ [line: 210] - connect(String, Strin

[J] MainMenu.java [4] ButtonCennection.java &2

Messages_en_US.properties ] =08

@ MainMenu [line: 61] - MainMenu

}

} catch (JMSAdminNonAvailableMethod f)
log.error{Utils.StackTrace25tring(
GUI.showError(GUI, GUI.getTextMess

}catch (NoClassDefFoundError a) {
log.error(Utils. StackTrace2String(
GUI.showError(GUI, GUI.getTextMess|

& Tasks | L& Debug output | 5 Browser output | El Console 52 <

JMSMonitor [Java Application] /opt/jdk1.6.0_14/bin/java (25/08/2010 18:26:3

e bE[E]EE ot B v

{
f.getStackTrace()));
ages () .getString("Errortl

[sgetStackTrace()));

- % a= NoClassDefFoundEmor (id=78)

P = cause= ClassNotFoundException (id=83)

b o= de g ‘org/ fims/administrat onnectionFactory™ (id=86)

= stackTrace= null

| /opt/progress/fuse-message-broker-5.3.8.5/1lib/geronin
| /home/jordif1ib/SIGAR/sigar.jar

2010-88-25 18:26:42,822 [DEBUG] org.jmsmonitor.gui.elemg
2010-88-25 18:26:42,823 [DEBUG] org.jmsmonitor.admin. Corf

IMIH_AR_IE 1R-IA-A2 822 _[NERIG] nra imemanitar admin Car

ljava.lang.NoClassDefFoundError: org/exolab/jms/administration/AdminConnec ~

B

Figura 51: depuracio del codi en Eclipse

A continuacié es comentaran els problemes més rellevants trobats en les proves funcionals.

Escola Universitaria d'Informatica de Sabadell

171



Monitor de servidors JMS Jordi Manzano Ulloa

Sessions

El formulari en ser acceptat es sotmet a una validacié dels seus camps. En concret per validar
la direcci6 es fa servir el métode isValidDirection de la classe Utils. El problema és que hi havia

protocols no contemplats en un inici que el métode de comprovacié no suportava:

admin JMS URL ‘rmi:fflocalhost 1618 |

JMX Object Name |he activemq:BrokeMName=localhost, Type=B roker

user (admin

password

g |

connection URL ‘tqa:f;‘localhost:mmﬁ

factoryName [l Invalid session data

‘Q% dasspath e These fields are not valid ~
* admin JMS URL 1] .
* connedtion URL H

>

1000 |

rafrash tima

last session Sat Aug 21 14:35:37 CEST 2010

& SaveH @' Acoept” B Cancel‘

=1 T T
| Available sassions

Figura 52: parseig de dades de direccions

Concretament, protocols com rmi, https, o tcps es donaven com invalids i no es podia

carregar la sessio correctament. El métode de validacié en concret feia el seglent:

try {
u = new URL(s);
}catch (MalformedURLException e)
{
b = false;

Escola Universitaria d'Informatica de Sabadell 172



Monitor de servidors JMS Jordi Manzano Ulloa

S'intentava crear un objecte URL i si ho feia satisfactoriament, es donava aquella direccio
com valida. No obstant la classe URL només admet aquest protocols; file, fip , gopher , http ,
mailto , appletresource ,doc ,netdoc, systemresource i verbatim. Per tant, basar-se en aquest

criteri no és compatible amb la connexié via JMX.

La solucié ha sigut modificar el métode per tal de separar la direccié6 de connexié en tres

parts; protocol, adrecga i port, i poder-les validar per separat:
static public boolean isValidDirection(String s)

boolean b = true;
String aux [] = s.split(":");
if (aux.length!=3) {

return false;

}
if (!isValidProtocol (aux[0])) {
return false;

}
if (!isStringValid(aux[l].replace("/"™, ""))){

return false;

String string = aux[2];

for (int i=0;i<string.length();i++) {
char c=string.charAt (i) ;
if (!(c >= '0' && c<='9")){

return false;

}

return b;

}

En primer lloc, el métode isValidProtocol diu si la cadena representa un protocol valid (es
comparara el parametre d'entrada amb una llista de protocols suportats). L'adreca es compara
amb un mapa de caracters limitat (alfanuméric) i per ultim, pel port, es recorre cada caracter de la

cadena per verificar si corresponen a nombres reals.

Escola Universitaria d'Informatica de Sabadell 173



Monitor de servidors JMS Jordi Manzano Ulloa

Un altre desviament, es va trobar en la vista. Si es carregava una nova sessié quan una altra

ja estava activa i connectada, la interficie es quedava en aquest estat:

[&]

Startup  Server Charts  Ad
E-:g D @ Conneded to Open JMS

| Cueues | Topics Durables

Figura 53: bug en la vista al desconnectar

Aquesta vista no reflexa la situacié real: si una sessié ha sigut tancada i s'ha carregat una de
nova, no pot aparéixer com connectada. Mirant el métode de la classe ManageSessionForm que

tanca la sessi6 oberta per carregar la nova, es va veure que no s'indica a la vista que es modifiqui

després de tancar la sessio:

//es tancara la sessio anterior...
GUI.getSession () .close() ;
if (!GUI.getSession () .getName () .

equals (session.getName () ))

log.debug ("trying to save session to the file");

//salvar 1'ultima data de connexid...

Per tant s'afegeix després de tancar la sessié el métode setGUIfoDisconnect() que es troba a
la classe ButtonConnection per a que el boté de connexidé canvii el seu estat, i no hi hagi conflictes

quan es tingui carregada la nova versioé.

Altre problema detectat, es produia al carregar per segon cop una mateixa sessio ja

carregada. Aixo provoca un NullPointerException:

Escola Universitaria d'Informatica de Sabadell 174



Monitor de servidors JMS Jordi Manzano Ulloa

2010-08-25 19:36:54,236 [INFO ]Jorg.jmsmonitor.gui.frames.ManageSessionForm

> Session 'openjms queue' parsed ok.

Exception in thread "AWT-EventQueue-0" java.lang.NullPointerException

Hi ha un métode que comprova si la sessi6 actual és igual a la nova per carregar, de tal forma
que si és cert, no es torna a carregar. Aquest métode anomenat compare pertany a la classe
Session i concretament amb el depurador s'ha pogut comprovar que el bug estava en aquesta

senténcia:

if (caux.getObjectName () .equals (c.getObjectName()))

El problema radicava en que el objecte Connection inicialitzava a null la variable on
s'emmagatzemava el valor a comparar. Aixi doncs, la correccio consistia en inicialitzar la cadena

com buida:

//private String objectName = null;

private String objectName = “7;

Consultar missatges

El codi del client grafic no pot incloure trucades directes a la api JMS, és a dir, sempre ha
d'utilitzar la llibreria JMSMonitorinterface per tal d'obtenir les dades a monitoritzar. Es va trobar
que el codi del formulari de consulta de missatges, treballava amb la classe Message, propia de la
interficie JMS. El problema era que el métode browse de JMSAdmin (JMSMonitorinterface),

retornava una llista de Message.

Escola Universitaria d'Informatica de Sabadell 175



Monitor de servidors JMS Jordi Manzano Ulloa

abstract List<Message> browseMessages (String url, String
initcontext,String factory, String dest,String user, String pass)
throws JMSAdminConnectionException, JMSAdminException,

JMSAdminNonAvailableMethod, NoClassDefFoundError;

Aixi doncs es va crear una nova classe que emmagatzema aquelles dades importants pel

client grafic dels missatges JMS: JMSMessagelnfo:

public class JMSMessageInfo ({

private String text;
private Message message;

private String original classname;

Aquesta oculta l'especificacié JMS al codi del client i guarda el nom de la classe original del
proveidor que implementa la interficie Message de l'estandard JMS. Per tant a
BrowseMessageForm, el formulari de consulta de missatges en cues, es canvia el métode per

directament utilitzar aquesta nova classe de JMSMonitorinterface:

if (type==MainTableModel.QUEUE) {
synchronized (GUI.getSession().getConnection().getAdmin()) {

JMSMessages = GUI.getSession () .getConnection () .browse (destName) ;

Excepcions

Quan s'estableix una sessid, es necessita tenir carregades les llibreries originals del proveidor
per tal de que JMSMonitorinterface pugui utilitzar els seus connectors per adaptar el codi

d'aquestes API a una interficie genérica que entengui el client monitor. Si un usuari no carrega

Escola Universitaria d'Informatica de Sabadell 176



Monitor de servidors JMS

Jordi Manzano Ulloa
una llibreria del proveidor utilitzada pel connector, es llencara I'excepcidé NoClassDefFoundError.

Com que en un inici, durant el desenvolupament es tenien totes les llibreries carregades en el

classpath del projecte d'Eclipse, no es va tenir en compte aquesta excepcio.

Per solucionar-lo es va retocar el codi de JMSMonitorinterface i JMSMonitor per a

contemplar-la:

//JMSMONITORINTERFACE
//JMSAdminAbstraction

abstract wvoid connect (String wurl, String wuser, String pass) throws

JMSAdminConnectionException, JMSAdminNonAvailableMethod,NoClassDefFoundError;

//JMSMONITOR
//ButtonConnection

try({

GUI.getSession () .getConnection () .connect () ;

}catch (NoClassDefFoundError a) {

log.error (Utils.StackTrace2String(a.getStackTrace())) s

Ara doncs, s'informara al usuari de que una de les classes no s'ha pogut trobar i es mostrara

quina és, per tal de que es pugui cercar quina és la llibreria que falta per incloure en el classpath.

Enviament de missatges

Es va detectar, que si s'accedia al formulari mitjangant el menu contextual dintre de la taula
de topics, i en el mateix formulari es canviava la destinacié per que fos a una cua, el missatge

s'estava enviant a un topic amb el nom de la cua escollida:

2010-08-25 18:54:36,447
host

[DEBUG]

org.Jjmsmonitor.qgui.frames.SendMSGForm >
(tcp://localhost:3035)

,initContext
(org.exolab.jms.jndi.InitialContextFactory)

, factory (QueueCF) ,dest
(queuel) ,body

(Write message content here...)

,name (admin)
(admin) , type (TOPIC)

, pass

Escola Universitaria d'Informatica de Sabadell

177



Monitor de servidors JMS Jordi Manzano Ulloa

Gracies al log es va veure la part del codi que estava errdnia com es mostra en l'anterior
imatge. La crida al métode d'enviament de missatges era incorrecte i es soluciona afegint a la
trucada el valor del boto selector de topics:

c.getAdmin () .sendTextMessage (

((c.getJNDIServer ()==null| |c.getJNDIServer ().equals(""))?

c.getHost () :c.getIJNDIServer()),

c.getCurrentInitContext (), c.getCurrentFactory(),
(String) comboDest.getSelectedItem(), text.getText (), c.getName(),
c.getPass (), (rbuttonTopics.isSelected())):;

Es a dir, el parametre del métode sendTextMessage isTopic agafaria el valor de veure si

aquest esta seleccionat o no.

Interficie JMSMonitorinterface

Amb el connector d'OpenJMS, si s'intentava accedir a una factory de cues quan s'estava
connectat a una de topics s'aixecava la seglent excepcio:

2010-08-25 19:46:13,452 [INFO ] org.jmsmonitor.gui.frames.SendMSGForm > Send

request to purge durable sub2:topicl

Exception in thread "AWT-EventQueue-0" java.lang.ClassCastException:

org.exolab.jms.client.JmsQueueConnectionFactory cannot be cast to

javax.jms.TopicConnectionFactory at

org.jmsmonitor.bridge.plugins.JMSAdminOpendMS.purge (JMSAdminOpenJMS. java:361)

at org.jmsmonitor.bridge.main.JMSAdmin.purge (JMSAdmin.java:181)

El conflicte és que no es pot convertir una QueueConnectionFactory (amb la que s'esta

connectat) en una TopicConnectionFactory:

TopicConnectionFactory factory = (TopicConnectionFactory) context

.lookup (factoryName) ;

Escola Universitaria d'Informatica de Sabadell 178



Monitor de servidors JMS Jordi Manzano Ulloa

Per tant s'opta per informar a I'usuari de que no es pot accedir al recurs tot indicant I'excepcio:

& Message has not sent! x

a An excepdon ocurred and message has not sended. Check log for details.:

org.exolab.jms. dient. JmsQueue ConnectionFactory cannct be cast to javax jms. TopicConnectionFacory

Figura 54: missatge d'error al enviar missatges

En el codi del connector de OpenJMS, s'afegeix un bloc de tractament per l'excepcid
ClassCastException i es retorna el missatge per mostrar-lo al usuari com es veu en l'anterior

figura:

} catch (ClassCastException e) {

throw new JMSAdminException (e.getLocalizedMessage()):;

Al codi de client, s'afegeixen els canvis necessaris per a que el missatge es mostri amb la

causa del problema:

} catch (JMSAdminException e) {
log.error (Utils.StackTrace2String(e.getStackTrace())) ;
GUI.showError (frame, GUI.getTextMessages () .getString ("ErrorSend"),
GUI.getTextMessages () .getString ("ErrorSendDescription™)

+ ":\n" + e.getlocalizedMessage());

Cal dir que aquesta modificacié afecta al formulari de neteja de destinacions i consulta de

missatges.

Escola Universitaria d'Informatica de Sabadell 179



Monitor de servidors JMS Jordi Manzano Ulloa

CAPITOL

7 Conclusions

7.1 OBJECTIUS ASSOLITS

Com s'ha anat veient al capitol de la implementacié del projecte, els objectius plantejats en

les pagines inicials de la present memoria s'han anat assolint.

Des del naixement de l'idea, es tenia molt clar que s'havia de separar al maxim la part grafica
de les diferents implementacions de Java Message Service. Realitzar una llibreria que doni abast
a un nombre gran de proveidors JMS era un repte que no es podia desenvolupar amb el nombre
d'hores destinat al projecte, per tant, realitzant el disseny de la llibreria i implementant dos
connectors és el primer pas per a que en funcié de les necessitats del usuaris, es puguin fer

ampliacions en aquesta sense tenir un gran impacte en la part grafica.

Durant les primeres proves es va poder comprovar que la manera de plantejar la interficie és

realment funcional i rapida d'utilitzar. Aquesta simplicitat fa que en aquest aspecte sigui més

Escola Universitaria d'Informatica de Sabadell 180



Monitor de servidors JMS Jordi Manzano Ulloa

amigable que l'aplicacié que ha sigut referent durant les fases de I'elaboracié d'aquest programari;
HermesJMS, encara que aquest és un projecte més gran i més consolidat i amb una compatibilitat
entre diferents proveidors excel-lent. Per tant, un dels objectius que més es volia realgar es pot dir
que s'ha acomplert de forma satisfactoria. Cal dir perd, que és una eina molt focalitzada a un tipus
de tecnologia, i la desconeixenga d'alguns conceptes que potser un usuari que realitza test
d'aplicacions no ha de conéixer, fan que pugui tenir una certa dificultat per configurar una

connexio de forma correcta.

Actualment és una eina que s'esta utilitzant per controlar el contingut de cues i enviar
missatges a destinacions en un projecte real, que utilitza la tecnologia JMS per integrar un nou
component amb la resta de moduls de I'empresa. Fins a dia d'avui, esta facilitant la tasca a I'equip

de suport i és un recurs que mica en mica es fa indispensable en el dia a dia.

Escola Universitaria d'Informatica de Sabadell 181



Monitor de servidors JMS

Jordi Manzano Ulloa

7.2 DESVIACIONS

En aquest apartat es descriuen les desviacions produides en el projecte, tot indicant el motiu i

la incidencia en I'augment del cost final.

Hores Hores

UK Pressupost. | Extra el
Analisi de requeriments 3N 0 Ky
Implementacié 171 23 194
Configuracié de I'entorn de desenvolupament 2l 5 7
Disseny 65 0 65
Codificacio 104/ 18 122
Implementacié de llibreria per ActiveMQ (Fuse) 12| 10 22
Funcionalitats amb destinacions i misstages 12| 8 20
Avaluacié AN 0 A
Documentacio 69 8 77
Memoria 61 8 69
TOTAL 302 31 333

Taula 19: resum del cost de les desviacions

Seguint I'anterior taula, es va destinar en un inici poc temps a la configuracié de l'entorn de

desenvolupament. En la practica, el fet de desconéixer el funcionament i I'administracié minima

pels dos servidors JMS que s'han utilitzat en el projecte ha supossat un esforg extra. A més, en el

cas d'ActiveMQ), quan s'estava en la fase d'implementacio del codi, es va veure que les funcions

per obtenir la informacié de destinacions i missatgeria que proporcionava la APl d'aquest

requerien de I'is de JMX, una tecnologia desconeguda fins a aquell moment. Aixi doncs, les hores

per la implementacio de la interficie van ser superades gairebé amb el doble (10 hores més).

D'altra banda, les funcionalitats definides inicialment de creacio i destruccié de destinacions

no es van tenir en compte, ja que la eina com bé s'ha anat comentant al llarg de la memoria,

estava destinada a la interacci6 amb missatges i l'obtencié de dades estadistiques per usuaris

amb rols de desenvolupament i proves que utilitzin la tecnologia JMS. No obstant, després d'una

Escola Universitaria d'Informatica de Sabadell

182



Monitor de servidors JMS Jordi Manzano Ulloa

primera llista de funcionalitats tancada i pressupostada, es va decidir incloure aquestes ja que

poden ser Utils també per aquests perfils; en total es van emprar vuit hores més.

En la redaccié de la memoria, no es va reflexar el cost que tindria I'apartat de fonaments
tedrics. Degut a que la logica de negoci de l'aplicacié és treballar amb un tecnologia concreta,
calia explicar amb una mica més de detall la Java Message Service i qué és el programari

d'intermediari.

A més, la falta d'experiéncia en desenvolupament Java i aquest tipus de solucions, van

accentuar meés el cost en hores del projecte. A continuacio es mostra el cost economic total:

RECURS COST HORES

Analista 2.970,00 € 165
Descripcio del projecte 54,00 € 3
Estudi d'altemnatives 72,00 € 4
Analisis de viabilitat 360,00 € 20
Definicié necessitats reals 72,00 € 4
Interficie grafica 432,00 € 24
Gestor de connexions 270,00 € 15
Interficie amb els proveidors JMS 144,00 € 8
Funcionalitats amb destinacions i missatges 180,00 € 10
Grafiques 144,00 € 8|
Memoria 1.242,00 € 69
Técnic programador 1.570,00 € 157
Configuracié de I'entorn de desenwolupament 70,00 € 7
Gestor de connexions 200,00 € 20
Interficie amb prowveidors JMS 100,00 € 10
Implementacié de llibreria per OpenJMS 140,00 € 14
Implementacié de llibreria per ActiveMQ (Fuse) 220,00 € 22
Grafiques 120,00 € 12
Funcionalitats amb destinacions i missatges 200,00 € 20
Interficie grafica 240,00 € 24
Correcci6 d'incidencies 100,00 € 10
Millores disseny / usabilitat 100,00 € 10
Annexos (documentacid) 80,00 € 8
Provador 99,00 € 11
Proves locals 54,00 € 6
Proves finals 45,00 € 5
TOTAL COSTOS RRHH FINAL 4.639,00 €
TOTAL COSTOS RRHH ESPERAT 4.265,00 €
DIFERENCIA 374,00 €

Taula 20: costos RRHH finals

Escola Universitaria d'Informatica de Sabadell 183



Monitor de servidors JMS Jordi Manzano Ulloa

7.3 LINIES DE DESENVOLUPAMENT OBERTES

Aquesta primera versio de JMSMonitor implementa funcionalitats basiques que ajuden a
programadors, equips de proves i en definitiva, a tots aquells perfils que treballen amb tecnologia
JMS. No obstant, durant la implementacié s'han anant observant certs aspectes que es podrien

millorar i ampliar.

Un dels temes interessants seria la gestié de la carrega i descarrega de classes de forma
dinamica en temps d'execucio. JMSMonitor és una aplicacié dissenyada per treballar amb un gran
nombre de proveidors JMS, no obstant es necessita que es carreguin les llibreries dels proveidors
per tal de poder monitoritzar el servidors concrets. En aquesta versié s'inclou la possibilitat de
afegir llibreries en forma de fitxers jar en temps d'execucid al classpath, perd és un primer
plantejament basic; millorar la gesti®é de les classes necessaries per la monitoritzacié dels
servidors implementant un sistema per carregar o descarregar-les seria una bona millora per

I'aplicacio.

S'ha de recordar que només s'han implementat dos connectors pels proveidors ActiveMQ i
OpendMS. Ampliar la llibreria JMSMonitorinterface amb més connectors potenciaria I'eina sense
canvis significatius en el client grafic. A més, ja es va comentar els diferents problemes amb
OpendMS per obtenir informacié com per exemple el ratio de missatges entrants i sortints del
servidor. La revisid del connector i la cerca de alternatives per solventar aquest fet podria

completar la funcionalitat de la llibreria i per tant seria un valor afegit al programa.

D'altra banda, l'aspecte del client grafic sempre pot ser millorable i es pot optimitzar el
comportament general de la vista, afegint nous menus, nous accessos directes a funcionalitats o

fins i tot crear noves grafiques que comparin diferents parametres al mateix temps.

Escola Universitaria d'Informatica de Sabadell 184



Monitor de servidors JMS Jordi Manzano Ulloa

7.4 VALORACIO PERSONAL

Amb el desenvolupament de JMSMonitor s'ha aconseguit millorar els coneixements personals
sobre Java i programari d'intermediari orientat a missatgeria. Motivat per una situacié del mén
laboral, es va decidir cobrir la necessitat de tenir una eina facil d'utilitzar que ajudés a realitzar la
feina diaria respecte a la missatgeria entre aplicacions, creant una aplicaci6 ampliable i

multiplataforma.

L'analisi i el disseny, tot cercant diferents solucions, proveidors i llibreries per desenvolupar
I'aplicaciéo sens dubte és una de les parts que més treball va portar. Encara que el planning
d'hores i treball que es va fer en un inici no s'ha complert pel temps setmanal del que al final es
disposava per dedicar al projecte, s'ha pogut alliberar en el temps requerit i amb una funcionalitat

inicial més que suficient pels objectius establerts.

Amb la implementacié, s'han pogut conéixer llibreries i altres tecnologies no directament
relacionades amb el projecte, perdo que ajuden a millorar el desenvolupament i personalment es
tindran en compte en un futur. Log4j ha sorprés per la seva senzillesa i facilitat d'us, i com afegeix
flexibilitat a I'nora de gestionar els logs només modificant un fitxer. D'altra banda, l'eleccié de
JfreeCharts com a lllibreria per generar grafiques ha sigut més que encertada, aporta molta

funcionalitat extra (exportacié, zoom...) amb poques hores d'aprenentatge i desenvolupament.

JMSMonitor ha suposat la realitzacié d'un projecte amb totes les seves etapes; analisi,
viabilitat, planificacio i desenvolupament, sent aixi una experiéncia enriquidora a I'hora d'iniciar-se
en projectes i desenvolupament de programari. Es cert perd, que hi ha aspectes que amb més
temps hagués estat interessant millorar. No obstant el resultat global és satisfactori, perqué
personalment no es tenien precedents semblants a I'actual implementacié i l'aprenentatge i
fonaments adquirits durant I'elaboracié d'aquesta eina han ajudat enriquir els coneixements sobre

les tecnologies emprades.

Escola Universitaria d'Informatica de Sabadell 185



Monitor de servidors JMS Jordi Manzano Ulloa

BIBLIOGRAFIA

Monson-Haefel, Richard; Chapell, David A. (2001).Java Message Service. O'Reilly.

Snyder Bruce; Bosanac Dejan; Davies Rob. (2008). ActiveMQ in action. Manning.

Grant, Scott; P. Kovacs,Michael; Kunnumpurath, Meeraj ; Maffeis, Silvano; Morrison, K.
Scott; Suresh Raj , Gopalan; Giotta,Paul; McGovern James. (2000). Professional JMS
Programming. Wrox Press.

Burd, Barry. (2005). Eclipse for Dummies. Wiley Publishing.

Sullins, Benjamin G.;Whipple, Mark B. (2002). JMX in Action. Manning.

Freeman, Eric T; Robson,Elisabeth; Bates Bert; Sierra Kathy. (2004). Head First Design
Patterns. O'Reilly.

Cooper, Mendel. (2010). Advanced Bash-Scripting Guide [Documentacio en linia].
<http://tidp.org/LDP/abs/html/>

Allen, William; Allen, Linda; (2008). MS-DOS/MSDOS Batch Files: Batch File Tutorial and
Reference. [Documentacié en linia].
<http://www.allenware.com/icsw/icswidx.htm>

RatCliff, Rob. Intro to CORBA [Documentacié en linia].
<www.futuretek.com/presents/corba/lntroToCorba.pdf>

Escola Universitaria d'Informatica de Sabadell 186


http://www.futuretek.com/presents/corba/IntroToCorba.pdf
http://www.allenware.com/icsw/icswidx.htm
http://tldp.org/LDP/abs/html/

Monitor de servidors JMS Jordi Manzano Ulloa

Recursos en linia

Oracle. PATH and CLASSPATH (The Java™ Tutorials > Essential Classes > The Platform
Environment).
<http://download.oracle.com/javase/tutorial/essential/environment/paths.html>

DIA — Gnome Live!

<http://live.gnome.org/Dia>

Eclipse.org home
<http://www.eclipse.org/>

Hermes JMS - Confluence
<http://www.hermesjms.com/confluence/display/HIMS/Home>

OpenJMS
<http://openjms.sourceforge.net>

Apache ActiveMQ
<http://activemq.apache.org/>

Apache Logging Services Project
<http://logging.apache.org/log4j/>

JfreeChart
<http://www.ifree.org/ifreechart/>

Trail: Creating a GUI With JFC/Swing
<http://download.oracle.com/javase/tutorial/uiswing/index.htmI>

Escola Universitaria d'Informatica de Sabadell 187


http://download.oracle.com/javase/tutorial/uiswing/index.html
http://www.jfree.org/jfreechart/
http://logging.apache.org/log4j/
http://activemq.apache.org/
http://openjms.sourceforge.net/
http://www.hermesjms.com/confluence/display/HJMS/Home
http://www.eclipse.org/
http://live.gnome.org/Dia
http://download.oracle.com/javase/tutorial/essential/environment/paths.html

Monitor de servidors JMS Jordi Manzano Ulloa

Escola Universitaria d'Informatica de Sabadell 188



Monitor de servidors JMS Jordi Manzano Ulloa

Jordi Manzano Ulloa

Sabadell, Setembre 2010

Escola Universitaria d'Informatica de Sabadell 189



