
MONITOR

DE SERVIDORS JMS
Memòria del projecte

d'Enginyeria Tècnica en

Informàtica de Gestió

realitzat per

Jordi Manzano Ulloa

i dirigit per

Marc Talló Sendra

Escola Universitària d'Informàtica

Sabadell, setembre de 2010

El/la sotasignant, Marc Talló Sendra,

professor/a de l'Escola Universitària d'Informàtica de la UAB,

CERTIFICA:

Que el treball al que correspon la present memòria

ha estat realitzat sota la seva direcció

per en Jordi Manzano Ulloa

I per a que consti firma la present.

Sabadell, Setembre de 2010

Signat: Marc Talló Sendra

La tecnologia Java Message Service és una API que habilita la transmissió de missatges entre

aplicacions Java, actuant com a middleware i fent possible el funcionament d'aplicacions distribuïdes

sobre plataformes heterogènies.

El monitor de servidors JMS és un projecte basat en el disseny i implementació d'una eina GUI,

destinada a programadors i equips de proves, que treballin amb la tecnologia Java Message Service,

multiplataforma i multiservidor, que podrà monitoritzar un nombre variat de servidors JMS des de

qualsevol sistema que tingui una màquina virtual de Java instal·lada.

L'aplicació té com a principal objectiu visualitzar de forma clara i senzilla l'estat global d'un servidor

JMS, mostrant les cues i tòpics creats, juntament amb la possibilitat de realitzar accions sobre les

mateixes destinacions (enviament i eliminació de missatges residents al servidor) i la creació de

gràfiques sobre el tràfic de missatges. Així doncs, el monitor ha d'esdevenir una eina focalitzada al

tràfic de missatges, que permet a simple cop d'ull veure informació del servidor sense interactuar

gairebé amb la mateixa.

Index

1 Introducció...11

1.1 Presentació...11

1.2 Objectius del projecte..14

1.3 Estat de l'art..16

1.4 Motivacions...21

1.5 Estructura de la memòria..22

2 Estudi de viabilitat..23

2.1 Introducció..23

2.1.1 Avantatges de l'aplicació a implementar..24

2.1.2 Inconvenients de l'aplicació a implementar..25

2.2 Objecte..26

2.2.1 Descripció de la situació a tractar..26

2.2.2 Perfil de l'usuari...27

2.2.3 Objectius..28

2.3 Descripció del sistema..30

2.3.1 Anàlisi dels llenguatges de programació..30

2.3.2 Anàlisi de proveïdors JMS...32

2.3.3 Anàlisi d'entorns de desenvolupament integrats..34

2.3.4 Anàlisi de llibreries gràfiques...34

2.3.5 Avaluació de riscos..35

2.3.6 Recursos...36

2.4 Organització del projecte...38

2.5 Anàlisi cost - benefici...39

2.5.1 Costos recursos materials...39

2.5.2 Costos recursos humans...40

2.5.3 Pressupost...41

2.6 Planificació del projecte...42

2.6.1 Model de desenvolupament i etapes del projecte..42

2.6.2 Ús dels recursos..43

2.6.3 Tècniques de planificació i control...43

2.7 Conclusions...47

3 Fonaments teòrics...49

3.1 Introducció..49

3.2 Middleware..51

3.2.1 RPC...52

3.2.2 MOM i el paradigma de la missatgeria...54

3.2.3 RPC vs. Missatgeria Asíncrona...61

3.3 Java Message Service..65

3.3.1 Introducció..65

3.3.2 Models (publicador - subscriptor / punt a punt)..67

3.3.3 Fonaments bàsics de JMS...69

3.3.4 Escenaris...81

3.3.5 Consideracions d'una implantació amb JMS..82

4 Anàlisi de requeriments..87

4.1 Descripció del projecte...87

4.2 Requeriments funcionals...89

4.2.1 Interfície gràfica..89

4.2.2 Gestió de la configuració i connexió...90

4.2.3 Dades mostrades...91

4.2.4 Accions sobre el servidor...92

4.3 Requeriments no funcionals...93

5 Disseny de l'aplicació...94

5.1 Configuració de la plataforma..94

5.1.1 Sistema operatiu..95

5.1.2 Servidors JMS..96

5.1.3 Entorn desenvolupament integrat...98

5.1.4 Llibreries...99

5.1.5 Altres aplicacions...99

5.2 Casos d'ús...101

5.2.1 Gestionar connexió..101

5.2.2 Emmagatzemar sessió...103

5.2.3 Recuperar sessió...104

5.2.4 Refrescar dades...106

5.2.5 Enviar missatges..107

5.2.6 Netejar destinació...108

5.2.7 Consulta missatges de la destinació..109

5.2.8 Crear gràfica...110

5.2.9 Tancar gràfica..111

5.3 Altres consideracions del disseny..112

5.3.1 Interfície amb proveïdors..112

5.3.2 Interfície gràfica..114

5.3.3 Gestió d'excepcions...115

6 Implementació..117

6.1 Estructura de fitxers i directoris..117

6.1.1 JMSMonitorInterface..118

6.1.2 JMSMonitor..119

6.2 Configuració de la aplicació..121

6.2.1 Traces de l'aplicació..121

6.2.2 Multi idioma...123

6.2.3 Icones i imatges...124

6.3 Interfície d'administració..127

6.4 Client gràfic...142

6.4.1 Funcionalitat bàsica...145

6.4.2 Gestió de les sessions...154

6.4.3 Funcionalitats amb destinacions..161

6.4.4 Gràfiques...167

6.5 Proves...171

7 Conclusions...180

7.1 Objectius assolits..180

7.2 Desviacions...182

7.3 Línies de desenvolupament obertes..184

7.4 Valoració personal..185

BIBLIOGRAFIA..186

Monitor de servidors JMS Jordi Manzano Ulloa

CAPÍTOL

 1 Introducció

1.1 PRESENTACIÓ

La Java Message Service (JMS) és una API1 (interfície de programació d'aplicacions) de

l'empresa Sun Microsystems, que habilita la transmissió de missatges entre aplicacions

desenvolupades sota la plataforma Java 2. Actua doncs com middleware orientat a missatges

(MOM); basat en una infraestructura d'enviament i recepció de missatges, augmentant la

portabilitat i flexibilitat del sistema i fent possible el funcionament d'aplicacions distribuïdes sobre

plataformes heterogènies. Per la comunicació s'utilitzen cues o tòpics:

• CUES: La comunicació s'estableix punt a punt; un client productor de missatges envia

missatges a una cua. Un client consumidor es connecta a aquesta per tal d'obtenir

missatges que en ser consumits, seran eliminats de la cua. Aquest model assegura la

persistència del missatge en cas de no ser consumit.

1 API (Application Programming Interface) és el conjunt de procediments i funcions que ofereix una llibreria per ser utilitzada per un

altre programa com una capa de abstracció.

Escola Universitària d'Informàtica de Sabadell 11

Monitor de servidors JMS Jordi Manzano Ulloa

• TOPICS: Es basa en un model publicador / subscriptor: existeixen diversos clients que

publiquen missatges mitjançant el tòpic, que podran ser consumits al mateix temps per

diversos clients subscriptors. Aquest model no assegura la persistència del missatge en

cas de que no hagi subscriptors escoltant, provocant doncs la pèrdua de les dades que

contenia el missatge.

Cal dir que la implementació de la interfície JMS vindrà donada per un proveïdor de

missatgeria JMS que es situarà en el centre de la comunicació entre aplicacions: això permet que

es pugui canviar de servidor JMS sense modificar el codi de les aplicacions, ja que el programador

usarà la interfície definida per Sun Microsystems. Com a servidors de JMS podem destacar:

Programari lliure:

• JBoss

• ActiveMQ

• Fuse Message Broker

• JORAM

• Open JMS

Programari de propietari:

• TIBCO EMS

• WebSphere MQ

• WebSphere Application Server

• Bea Weblogic

La majoria de servidors JMS inclouen consoles i APIs d'administració per poder realitzar la

gestió dels mateixos:

Escola Universitària d'Informàtica de Sabadell 12

Monitor de servidors JMS Jordi Manzano Ulloa

No obstant, en la pràctica acostumen a ser aplicacions CLI (command-line interface) o GUI

(graphical user interface) enfocades a l'administració del servidor de missatgeria i no als rols que

efectuen els programadors o els equips de proves, centrats en les aplicacions que utilitzen el

servidor per comunicar-se i no en l'administració del mateix. Per tant, es podrien resumir les

necessitats d'aquests en:

• Control dels missatges entrants i sortints al servidor JMS, per veure la càrrega que hi ha al

sistema.

• Control dels missatges acumulats (no consumits) al servidor.

• Enviament de missatges a una destinació (tòpics o cues), de tal forma que l'usuari ràpidament

pot realitzar proves amb els seus desenvolupaments generant un missatge en una destinació

concreta.

• Eliminació de missatges no consumits en una destinació (tòpics o cues).

• Interfície gràfica intuïtiva i fàcil d'utilitzar.

• Gestió de servidors favorits, per tal de no introduir totes les dades requerides per la connexió,

cada vegada que es vulgui monitoritzar un servidor JMS.

Escola Universitària d'Informàtica de Sabadell 13

Figura 1: Consola d'administració de OPENJMS

Monitor de servidors JMS Jordi Manzano Ulloa

1.2 OBJECTIUS DEL PROJECTE

L'objectiu més rellevant a assolir amb el projecte és el disseny i la implementació d'una eina

fàcilment ampliable per la monitorització de servidors JMS, tal que el model inicial de la primera

versió contingui les següents funcionalitats:

• GUI: la disponibilitat d'una interfície gràfica per la representació de la informació fa més

comprensible les dades obtingudes i facilita l'ús a l'usuari.

• Funcionalitat mínima d'administració: malgrat l'objectiu no és la gestió pròpia del servidor,

el monitor ha de contenir unes funcionalitat mínimes que poden ser utilitzades pels

programadors o provadors. Aquestes poden ser la creació i eliminació de destinacions (cues

o tòpics) i l'eliminació dels missatges que persisteixen al servidor.

• Independència de plataforma: l'usuari pot treballar amb diferents sistemes operatius, per tan

és necessari que l' aplicació pugui córrer sota qualsevol plataforma.

• Aplicació enfocada al tràfic de missatges: la disposició dels elements i objectes gràfics, la

informació recollida i mostrada per l'aplicació, i les funcionalitats per interactuar amb les cues

i tòpics estan enfocades al tràfic de missatges entrants i sortints que es registra en el

servidor.

• Independència de servidor JMS: no té sentit fer un monitor per un servidor en concret, ja

que l'aplicació ha d'aprofitar una de les avantatges de la API JMS, com és la independència

del codi amb la implementació proporcionada pel servidor amb el que s'estigui treballant.

Escola Universitària d'Informàtica de Sabadell 14

Monitor de servidors JMS Jordi Manzano Ulloa

Tots aquest objectius descrits anteriorment són de caràcter funcional i resumeixen els serveis

que ha de proporcionar una aplicació de monitorització de servidors JMS. No obstant, una de les

fites més importants en el projecte és la independència del monitor amb els proveïdors JMS, de tal

manera que tingui una amplia compatibilitat amb diferents servidors de missatgeria JMS. Per tant,

el disseny de l'aplicació a implementar ha de contemplar futures actualitzacions d'

implementacions de servidors JMS, minimitzant el cost del manteniment i ampliacions sobre

l'aplicació a desenvolupar.

 Així doncs, el monitor de servidors JMS, ha d'esdevenir una solució ràpida i pràctica pels

programadors i equips de proves que desitgen un monitor amb funcionalitats bàsiques, enfocat al

tràfic de missatges i al contingut dels mateixos, ampliable en funció de les seves necessitats i

compatible amb diferents proveïdors de missatgeria JMS.

Escola Universitària d'Informàtica de Sabadell 15

Monitor de servidors JMS Jordi Manzano Ulloa

1.3 ESTAT DE L'ART

A dia d'avui, no existeixen gaires solucions que acompleixin amb totalitat amb totes les

necessitats descrites anteriorment; si que és cert que els proveïdors inclouen en les seves

implementacions consoles d'administració i API, però naturalment el perfil del destinatari

d'aquestes eines és el propi administrador del servidor JMS, quan el monitor que es pretén ha

d'incloure a més eines com per exemple, l'enviament de missatges i la lectura de missatges

enregistrats al servidor. Una de les poques aplicacions que acompleixen d'una forma excel·lent els

propòsits descrits en els anteriors apartats és HermesJMS.

HermesJMS és un consola extensible que ajuda a l'usuari a interactuar amb els proveïdors

JMS navegant per coles o tòpics, que permet enviar missatges, copiar-los i eliminar-los de les

destinacions escollides. Multiservidor, s'integra perfectament amb JNDI2 i permet gestionar les

connexions a servidors JMS de diferents proveïdors.

2 JNDI: API per a serveis de directori que permet als clients descobrir i buscar objectes a través d'un nom, sent independent de la

implementació subjacent.

Escola Universitària d'Informàtica de Sabadell 16

Taula 1: proveïdors suportats per HermesJMS

ActiveMQ Oracle
ArjunaMQ Pramati
EMS SAP
FioranoMQ SeeBeyond ICAN
HornetQ SeeBeyond JCAPS
JbossMQ SonicMQ
Jboss Messaging WeblogicMQ
JORAM WebMethods
OpenJMS WebSphereMQ

Monitor de servidors JMS Jordi Manzano Ulloa

Cost:

HermesJMS és una aplicació de programari lliure amb llicencia Apache versió 23, això

representa un cost inexistent pels drets del programari, fet que fa d'Hermes una alternativa molt

vàlida per qualsevol tasca de monitorització de servidors JMS.

Característiques principals:

La interfície gràfica es basa en una finestra principal (on es mostrarà la informació de les

destinacions seleccionades) i un marc amb totes les sessions configurades. Per tant, no hi ha un

resum global de l'estat del servidor, si no que, a mesura que es selecciona una destinació, es

mostren les dades relacionades amb aquesta.

3 Apache license v2.0: és una llicència de programari lliure creada per l'Apache Software Foundation (ASF). Permet a l'usuari del

programari plena llibertat d'ús per a qualsevol propòsit, distribuir-lo, modificar-lo, i distribuir versions modificades d'aquest programari.

Més informació a http://www.apache.org/licenses/LICENSE-2.0

Escola Universitària d'Informàtica de Sabadell 17

Figura 2: Hermes JMS

http://www.apache.org/licenses/LICENSE-2.0

Monitor de servidors JMS Jordi Manzano Ulloa

És possible accedir al contingut dels missatges sense esborrar-los en el servidor, a més de

filtrar-los i exportar-los a fitxers XML4. Juntament amb la possibilitat d'enviar i esborrar missatges,

Hermes JMS permet cercar cadenes de text en:

• Les capçaleres dels missatges

• Text en missatges de tipus TextMessage

• El resultat de trucar al mètode toString de qualsevol objecte en un ObjectMessage.

• Totes les claus i valors de un missatge MapMessage.

Una altra característica interessant és el conjunt de funcionalitats sobre emmagatzematge de

missatges rebuts. D'una banda, permet l'intercanvi de missatges entre destinacions, és a dir,

l'usuari pot moure missatges d'una cua a un tòpic fent un drag&drop del missatge en la interfície

gràfica. D'altra, implementa funcionalitats d'enregistrament de missatges rebuts en les

destinacions a un lloc extern en el servidor (disc dur, base de dades). Tot i això cal dir, que

aquesta funcionalitat és experimental.

Però sense dubte, la gran avantatge de l'aplicació és el seu suport a una gran quantitat de

proveïdors. A més d'obtenir dades concretes de les destinacions mitjançant la interfície de

l'estàndard JMS, permet la possibilitat d'incloure els connectors (normalment llibreries o API) que

els proveïdors faciliten en les seves implementacions, per tal d'obtenir dades i realitzar funcions

especifiques per aquell servidor JMS en concret.

4 XML o Extensible Markup Language és un metallenguatge extensible d'etiquetes desenvolupat pel World Wide Web Consortium.

És una manera de definir llenguatges per diferents necessitats. Més informació a http://www.w3.org/XML/

Escola Universitària d'Informàtica de Sabadell 18

http://www.w3.org/XML/

Monitor de servidors JMS Jordi Manzano Ulloa

Així doncs, Hermes JMS és una aplicació que permet realitzar tasques d'administració sobre

un gran nombre de servidors de missatgeria Java, on s'inclouen eines i funcionalitats molt

interessants sobre els missatges i les destinacions amb un cost nul. No obstant, encara que

aquesta alternativa acompleixi amb les funcionalitats bàsiques del propòsit del projecte, el disseny

de la interfície fa que el seu ús pels propòsits dels usuaris potencials que s'han descrit

anteriorment no sigui gaire efectiu; la navegació per destinacions fa que sigui difícil tenir una visió

global de les cues i tòpics. A més, és una aplicació força gran i més complicada de configurar i

mantenir, ja que adjunta gestions pròpies d'administració de servidors, funcions que no són

necessàries a priori per les tasques dels usuaris als que va destinat el desenvolupament a

realitzar en aquest projecte.

Altra alternativa és la utilització de les consoles i eines que proporciona el proveïdor.

Aquestes solen englobar totes les funcions relatives a l'administració del servidor; creació de cues,

Escola Universitària d'Informàtica de Sabadell 19

Figura 3: Configuració de connectors de

proveïdors a Hermes JMS

Monitor de servidors JMS Jordi Manzano Ulloa

tòpics, factories, gestió d'usuaris, estat del servidor i estadístiques generals de missatgeria, entre

d'altres.

No obstant, pels desenvolupadors i equips de proves, no és una alternativa prou efectiva; no

solament es vol monitoritzar el servidor, es vol accedir i manipular les destinacions realitzant

accions sobre aquestes com per exemple l'enviament de missatges o obtenció del contingut

d'aquests, tot en una interfície dissenyada envers la missatgeria i les destinacions en comptes de

l'administració del servidor.

Escola Universitària d'Informàtica de Sabadell 20

Figura 4: Consola d'administració de Active MQ

Monitor de servidors JMS Jordi Manzano Ulloa

1.4 MOTIVACIONS

Actualment, no hi ha gaires aplicacions de monitorització de servidors JMS extensibles a

diferents proveïdors, ja que normalment aquests inclouen en les seves implementacions petites

aplicacions i APIs d'administració per aquestes tasques. Malgrat tot, de l'experiència laboral pròpia

amb servidors JMS, sorgeix la necessitat de disposar d'una eina única per tal de realitzar proves

amb desenvolupaments que empren aquesta tecnologia; la lectura de missatges sense consumir-

los en el servidor, l'enviament de missatges sobre una destinació escoltada per un client en

desenvolupament, el comportament de les aplicacions davant la càrrega massiva de missatges...

són tasques rutinàries per programadors i equip de proves.

Així doncs, el monitor de servidors JMS neix com un projecte personal impulsat per una

experiència laboral, per l'aprenentatge de tecnologies i com una eina ampliable i gratuïta per tots

aquells usuaris que vulguin monitoritzar els seus servidors JMS fàcilment, oferint en un inici

funcionalitats bàsiques i una estructura escalable.

Escola Universitària d'Informàtica de Sabadell 21

Monitor de servidors JMS Jordi Manzano Ulloa

1.5 ESTRUCTURA DE LA MEMÒRIA

En aquest primer capítol s'ha realitzat una breu introducció a l'aplicació que es vol

desenvolupar, explicant els objectius més importants i destacables juntament amb exemples

d'aplicacions existents que desenvolupen tasques semblants a les proposades pel projecte

exposat. A més, es comenten les motivacions personals i el per què del monitor de servidors JMS.

En el segon capítol s'analitza la viabilitat tècnica i es realitza una planificació amb les fites a

acomplir en el desenvolupament del projecte. Es concretaran els punts i objectius que es pretenen

assolir en aquesta primera versió de l'aplicació.

En el tercer capítol s'exposen els fonaments teòrics necessaris per entendre el present

projecte, fent un breu resum del que s'entén per un programari d'intermediari o middleware i els

diferents tipus que es poden trobar, tot fent un major èmfasi en la tecnologia a la qual aquest

projecte vol facilitar una eina, la Java Message Service.

En el quart capítol es defineixen de manera més precisa les característiques del projecte i es

relacionen els diferents requeriments que el conformaran, previs al seu desenvolupament.

En el cinquè i sisè capítols es descriu de manera detallada les diferents fases del procés de

disseny i implementació de l'aplicació, incidint en aquelles parts que han suposat un major grau de

dificultat tècnica. Es comenten a més aquelles correccions més significatives detectades durant

les proves realitzades.

El capítol setè resumeix les conclusions extretes en la realització del projecte i

s'analitzen els resultats obtinguts. Es descriuen les línies del projecte que queden obertes i es

mostra una bibliografia completa dels recursos que s'han consultat a l'hora de desenvolupar el

projecte.

Escola Universitària d'Informàtica de Sabadell 22

Monitor de servidors JMS Jordi Manzano Ulloa

CAPÍTOL

 2 Estudi de viabilitat

2.1 INTRODUCCIÓ

En aquest capítol es descriuran de manera més precisa els objectius i requeriments del

projecte a desenvolupar per poder avaluar les diferents solucions possibles i determinar si es

tracta d'un projecte viable.

Una vegada s'hagin analitzat les diferents propostes s'escollirà, sota un criteri argumentat,

quina d'aquestes acompleix i satisfà els objectius i requeriments del projecte en els terminis

proposats. A més s'estableixen certes limitacions en el desenvolupament de les funcionalitats, els

recursos disponibles, analitzant els riscos futurs i amb una planificació per minimitzar les dificultats

que poden aparèixer durant el cicle de desenvolupament del projecte.

S'estudiarà el disseny i l' implementació d'una solució amb interfície gràfica que mostri de

forma ràpida i visual l'estat de les destinacions creades en un servidor de missatgeria JMS, que

inclourà utilitats per enviar, esborrar i mirar el contingut de missatges. A més, ha de ser fàcil de

mantenir i ampliar, ja que l'aplicació pretén ser una solució única pel monitorizatge de qualsevol

servidor JMS, destinada a perfils de programadors, equip de proves i suport de aplicacions.

Escola Universitària d'Informàtica de Sabadell 23

Monitor de servidors JMS Jordi Manzano Ulloa

2.1.1 Avantatges de l'aplicació a implementar

• Simplificació de l' informació de control: facilita l'administració i supervisió d'un servidor

mostrant d'una manera clara els missatges que hi ha en una cua o tòpic, a més

d'estadístiques (sempre que el proveïdors JMS tingui disponible aquesta funcionalitat).

• Seguiment i evolució: les gràfiques generades sobre l'activitat del servidor ajuden a tenir un

registre històric a l'usuari sobre el tràfic de missatges en el servidor. A més, és possible

l'exportació d'aquestes a altres formats, facilitant la incorporació de les gràfiques en

documents o informes.

• Independència de sistema operatiu: l'aplicació pot córrer sota diferents sistemes operatius

sense modificar el codi o utilitzar altres tipus de llibreries gràcies a la tecnologia Java.

• Control del tràfic de missatges: la interfície està disposada i dissenyada per veure el tràfic

de missatges entrants i sortints en les destinacions de forma que, amb un simple cop d'ull al

monitor sense cap interacció prèvia de l'usuari, es pot saber si aquest a arribat al seu destí, si

ha sigut consumit i el seu contingut.

• Eina multiservidor: El monitor està pensat per poder fer les seves tasques sobre qualsevol

monitor JMS. Així doncs, tant el disseny com la implementació contemplen la possibilitat

d'ampliar fàcilment l'aplicació a mesura que es treballin amb diferents servidors JMS i es

requereixi d'una actualització del monitor, ja que, la implementació de la comunicació amb el

servidor és independent de l'aplicació gràfica.

Escola Universitària d'Informàtica de Sabadell 24

Monitor de servidors JMS Jordi Manzano Ulloa

• Facilitat d'ús: la interfície gràfica, fa que la interacció amb el monitor per part de l'usuari sigui

menor en comparació amb una interfície de línia de comandes.

2.1.2 Inconvenients de l'aplicació a implementar

• La monitorització consumeix recursos de la xarxa: la comunicació amb el servidor JMS

requereix de la pròpia missatgeria JMS per obtenir les dades rellevants a la seva activitat.

Aquest és un fet decisiu a l'hora de realitzar el disseny del monitor, ja que s'ha de

minimitzar l'impacte dels missatges de monitorització en el sistema de missatgeria Java,

per tal d'afectar el menys possible al funcionament normal del servidor.

• Aplicació stand-alone: El monitor s'executa en totes aquelles màquines on treballen els

usuaris que volen utilitzar-lo; no és una solució centralitzada que corre sobre un ordinador

accessible a tots els usuaris i atén a les peticions d'aquests per accedir a la informació com

si es tractes d'una intranet. És una eina per ús local, fet que provoca que per cada

connexió per realitzar la connexió amb el servidor JMS, la quantitat de missatges de

monitorització vagi incrementant. Per això, és un tema crític que el disseny ha de resoldre,

minimitzant la quantitat de missatges obtinguts del servidor.

Escola Universitària d'Informàtica de Sabadell 25

Monitor de servidors JMS Jordi Manzano Ulloa

2.2 OBJECTE

2.2.1 Descripció de la situació a tractar

Es parteix de la necessitat de monitoritzar el tràfic de missatgeria en un servidor, per tal de

respondre a les necessitats que es donen en tot projecte on s'empra la tecnologia JMS, de tal

forma que els programadors, provadors i el suport tècnic de sistemes, tinguin una eina pràctica i

fàcil d'utilitzar que els faci estalviar temps davant les consoles d'administració, no enfocades al

tràfic i a la missatgeria i sí a tasques pròpies de gestió del propi servidor.

Així doncs, el monitor de servidors JMS ha d'aportar, a més de la pròpia monitorització, un

conjunt de facilitats i funcionalitats pels rols esmentats anteriorment que li donin un valor afegit i

permeti agilitzar tasques com:

• Determinació de problemes de connexió de clients al servidor: En qualsevol instant,

es poden veure el nombre de consumidors que te una destinació.

• Anàlisi del comportament del servidor davant sobrecarrega de missatges: Una gran

quantitat de missatges per segon pot fer que els recursos demandats pel servidor acabin

per enfonsar la màquina i alenteixi tot el sistema de missatgeria en general. Aquesta

situació no només afecta al servidor JMS, si no a tots els clients connectats a ell, ja que els

missatges s'aniran acumulant al servidor per ser consumits posteriorment, fet provocat per

l'embut creat pels clients destinataris al no poder processar els missatges pendents amb el

mateix ritme que els que es generen nous. En conseqüència, incrementa dramàticament la

memòria i l'escriptura a disc (en cas de les cues, per les seves propietats de persistència

de la informació) i que els clients que han de rebre altres missatges es vegin afectats pel

minvament de recursos en el servidor, baixant l'eficiència del sistema (components que

necessiten compartir informació i servidor de missatgeria).

Escola Universitària d'Informàtica de Sabadell 26

Monitor de servidors JMS Jordi Manzano Ulloa

• Proves de components: La inclusió de funcionalitats, com per exemple l'enviament de

missatges, permeten simular el comportament i realitzar proves unitàries i globals dels

components que conformen el sistema a desenvolupar.

• Redacció d'informes i estadístiques: Incorporant aquestes a una aplicació de

monitorizatge, l'usuari pot exportar-les a format gràfic per utilitzar-les amb un

processadors de textos o altres aplicacions, a més d'obtenir una ràpida visió de l'estat del

servidor JMS.

• Verificació del contingut dels missatges emmagatzemats al servidor: És possible que

sigui necessari contrastar el contingut dels missatges amb el resultat esperat per un client

productor en concret durant una fase de desenvolupament o proves.

2.2.2 Perfil de l'usuari

Aquesta aplicació està orientada a tots aquells perfils que analitzen, desenvolupen i mantenen

aplicacions que necessiten de la comunicació entre les mateixes mitjançant la figura middleware

del servidor JMS. Es distingeixen els següents rols:

• Programadors: tots aquells individus que fan tasques de desenvolupament o utilitzen

aquests servidors i necessiten comprovar i consultar l'estat en que es troben aquests de

manera ràpida.

• Equip de proves: Usuaris que fan proves sobre els desenvolupaments implementats per

l'equip anterior. Necessiten eines per poder interactuar amb el sistema i comprovar les

entrades amb els resultats esperats.

Escola Universitària d'Informàtica de Sabadell 27

Monitor de servidors JMS Jordi Manzano Ulloa

• Equip de suport del sistema: Són el punt de connexió del sistema a desenvolupar o

desenvolupat amb el client. Gestionen i fan un primer anàlisi sobre incidències en l'ús de

l'aplicació, per tant una eina que analitzi els continguts del missatges és útil per determinar

les causes del problema. En cas de que sigui una errada en el programari, deriven la

responsabilitat en forma d'una solicitud de correcció als programadors.

2.2.3 Objectius

El monitor de servidors JMS que es pretén desenvolupar en el present projecte, ha de ser una

eina amigable per l'usuari amb una representació de la informació clara. Des del procés

d'instal·lació, passant per la configuració i fins l'ús rutinari del programa, ha de resultar una

experiència que faciliti tots els processos d'implantació de l'aplicació.

La idea principal del monitor JMS és la de reflectir l'estat d'un servidor JMS en temps real.

Degut a la pròpia filosofia JMS, el monitor ha de ser capaç de suportar la connexió per diferents

proveïdors de Java Message Service, proporcionant mecanismes que facilitin la integració

d'aquests amb el present desenvolupament minimitzant els costos derivats de l'ampliació i

manteniment del monitor.

Agilitzar les tasques de l'usuari és sens dubte una de les raons del naixement del projecte;

l'enviament de missatges a una destinació per observar com es comporten els components d'un

sistema distribuït, la realització de proves de càrrega sobre el servidor de missatgeria, la generació

de gràfiques sobre paràmetres monitoritzats i la consulta de contingut de missatges són aspectes

necessaris en les activitats realitzades pels usuaris potencials del sistema, anomenats en l'anterior

apartat.

Per facilitar la configuració de les connexions als servidors JMS, el propi client gràfic ha de

permetre aquesta gestió, fent que l'usuari estalvii temps introduint dades cada vegada que es

Escola Universitària d'Informàtica de Sabadell 28

Monitor de servidors JMS Jordi Manzano Ulloa

vulgui connectar a un servidor JMS, que a la pràctica normalment solen ser una llista definida i poc

canviant. La gestió de tipus d'usuari a l'aplicació no és un qüestió a tenir en compte, ja que és

l'administrador del servidor JMS qui decideix en funció de la definició d'usuaris i permisos en la

pròpia configuració del servidor, fins on pot gestionar l'usuari del monitor.

El monitor JMS, és una aplicació que neix amb una vocació personal d'aprenentatge on la

versió desenvolupada en aquest projecte, vol ser el primer esglaó d'una eina al servei de tothom,

de cost mínim, facilitant el disseny i el codi a la comunitat d'usuaris i programadors.

Escola Universitària d'Informàtica de Sabadell 29

Monitor de servidors JMS Jordi Manzano Ulloa

2.3 DESCRIPCIÓ DEL SISTEMA

Existeixen diverses tecnologies i llenguatges de programació que poden ser vàlids per cercar

una solució al projecte exposat. Cal recordar, que es demana una aplicació simple i de baix cost

de manteniment que pugui créixer en funció de les necessitats del client. En el següent apartat es

descriuran les diferents plataformes i tecnologies analitzades i es justificarà l'elecció d'aquella que

ha sigut escollida. Seguidament s'indicaran els diferents riscos que hi podrien aparèixer durant el

desenvolupament i els recursos que s'hi disposaran per a la seva realització.

2.3.1 Anàlisi dels llenguatges de programació

D'una banda tenim llenguatges compilats5 com C (paradigma imperatiu) o C++

(multiparadigma). C és molt eficient però té un cost de desenvolupament més gran, ja que es

requereix més temps per realitzar una funcionalitat que altres llenguatges de més alt nivell. C++

permet un major nivell d'abstracció i es pot definir com multiparadigma, ja que afegeix a C eines

per la manipulació d'objectes però al mateix cop és possible seguir un model de programació

estructurat. Tot i que els dos són dels més eficients, al ésser llenguatges compilats, el cost de la

portabilitat és major: cal modificar el codi i utilitzar diferents llibreries, a més de compilar l'aplicació

de nou en funció de la plataforma on s'executarà el programa.

Els llenguatges interpretats com Perl o Python gaudeixen d'una major possibilitat de ser

portables i fan més ràpida la implementació del codi pel seu alt nivell d'abstracció. Perl permet la

comunicació entre ordinadors sota protocols TCP/IP; implementa fils d'execució o threads; i a més

té la opció de suportar l' estil de programació orientat a objectes, fet que facilita el disseny i

codificació de qualsevol tipus de programa. Python suporta els paradigmes de programació

orientada a objectes, programació estructurada i programació funcional, a més de ser un

5 En els llenguatges compilats, el compilador tradueix el codi d'alt nivell a codi màquina o de baix nivell per a que pugui ser

executada, generant així un arxiu executable per a una plataforma en concret.

Escola Universitària d'Informàtica de Sabadell 30

Monitor de servidors JMS Jordi Manzano Ulloa

llenguatge fàcil d'aprendre i de disposar d'una sintaxi molt llegible. No obstant, en diferencia amb

els compilats, un llenguatge interpretat necessita un intèrpret per executar el codi; això fa que en

la majoria dels casos siguin programes més lents. Són llenguatges molt utilitzats per fer prototips i

complements o connectors per altres programes.

Pel desenvolupament del projecte s'ha escollit Java, llenguatge orientat a objectes i amb una

alta portabilitat a nombroses plataformes: el mateix codi pot córrer sobre diferents màquines. El

codi Java és compilat primer generant un codi bytecode6 per a que la Java Virtual Machine7 que

estarà escrita en codi natiu a la plataforma en concret l'executi. A diferència d'altres, la màquina

virtual de Java utilitza un compilador en temps d'execució fet que millora el rendiment de sistemes

de programació que utilitzen bytecode. Cal dir, que no és tan ràpid com un executable natiu per a

una determinada plataforma, però la seva amplia API, la portabilitat i la gestió automatitzada de la

memòria; fet que redueix el temps d'implementació i elimina errors clàssics en la programació com

són les fuites de memòria o memory leaks provocats per la mala gestió en l'alliberació de la

memòria. Totes aquestes avantatges el fan un bon candidat pel desenvolupament del projecte,

però sens dubte el motiu principal de la seva elecció és la tecnologia que es vol monitoritzar; les

API's d'administració i accés a servidors JMS estan desenvolupades principalment en Java.

És important comentar, que la distinció realitzada en els anteriors paràgrafs entre interpretat i

compilat, és purament pràctica i no per propietats inherents al propi llenguatge. En teoria,

qualsevol llenguatge de programació pot ésser compilat o interpretat com per exemple Lisp, Basic

o el propi Python, que disposen de compiladors i intèrprets.

6 El bytecode es situa en mig del codi màquina i del d'alt nivell. Rep aquest nom ja que normalment la majoria de codis d'operació

té la longitud d'un byte.

7 La Java Virtual Machine o màquina virtual de Java, és un executable per a una determinada plataforma que interpreta i executa

les instruccions en Java bytecode, codi resultant del compilador de Java.

Escola Universitària d'Informàtica de Sabadell 31

Monitor de servidors JMS Jordi Manzano Ulloa

2.3.2 Anàlisi de proveïdors JMS

A l'actualitat existeixen un gran nombre de proveïdors de tecnologia JMS. Com que el

projecte és independent de proveïdors i es pretén reduir costos, es descartarà el programari

privatiu i de pagament. Així doncs s'escolliran dos proveïdors que no afectin als costos del present

projecte i que al mateix temps siguin productes emprats per diferents desenvolupaments i

projectes que utilitzin la tecnologia JMS.

Fuse Message Broker és un gestor de missatgeria JMS basat en Apache Active MQ alliberat

per Fuse Open Souce Community. Amb una llicència Apache v.2.0, és un producte provat i

certificat amb un equip de suport darrera, que disposa d'una notable capacitat per gestionar gran

volum de dades i amb un dels millors rendiments dintre del proveïdors de missatgeria JMS. A més

és compatible amb JMS 1.1 i altres tecnologies i protocols com poden ser com JDBC, JCA, i EJB,

AJAX, REST, HTTP, TCP, SSL, NIO i UDP. Les característiques principals d'aquest proveïdors

són:

FUSE MESSAGE BROKER
CARACTERISTIQUES AVANTATGES

Basat en estàndards – compatible amb JMS, J2EE,

JNDI,AJAX, REST, HTTP

Facilitat de desenvolupament– connectivitat sense

fissures amb actius nous i existents.

Publicador i subscriptor / missatgeria punt a punt –

permet broadcasting i/o missatgeria única.

Plataforma completa de missatgeria – compatible

amb durables i connexions d'alta disponibilitat.

SEDA, compressió, prefetch, JMS streams
Millor performance – capçar de gestionar grans

carregues de missatges i volum de dades.

Alta disponibilitat – clúster, capacitat per recuperar

dades davant caigudes.

No pèrdua de dades – resistent a les fallides de xarxa

o de sistemes.

Autentificació / autorització – compatible amb

aplicacions pròpies i solucions de tercers.

Fàcil integració – aprofita les inversions existents en

seguretat.

Taula 2: característiques i avantatges de Fuse Message Broker

Escola Universitària d'Informàtica de Sabadell 32

Monitor de servidors JMS Jordi Manzano Ulloa

D'altra banda, openJMS és una implementació de programari lliure de la API Java Message

Service 1.1. Un dels beneficis de openJMS és que és un proveïdor neutral. A causa de les

especificacions de JMS Java no s'especifica un protocol de connexió, l'aplicació de cada proveïdor

de JMS és diferent i no és interoperable amb altres. Les implementacions de JMS normalment són

alliberades com a part d'un proveïdor de servidor d'aplicacions, això fa l'aplicació d'un proveïdor de

JMS específica per aquest servidor d'aplicacions. OpenJMS, al igual que FUSE, no depèn de cap

servidor d'aplicacions i per tant pot ser una interfície comú entre els usuaris de diferents

proveïdors. Els usuaris de servidors d'aplicacions diferents poden posar-se d'acord per utilitzar

l'aplicació OpenJMS comuns per a la interoperabilitat de les seves capes. Destaquen les següents

funcionalitats:

OPEN JMS
CARACTERISTIQUES

PRINCIPALS
AVANTATGES

Publicador i subscriptor / missatgeria punt a punt –

permet broadcasting i/o missatgeria única.

Plataforma completa de missatgeria – compatible

amb durables i connexions d'alta disponibilitat.

Garantia d'entrega de missatges
Certificat d'entrega -

Els clients productors s'assabenten si el consumidor a

rebut el missatge correctament.

Persistència amb JDBC

Compatibilitat amb bases de dades – Permet

emmagatzemar les dades del missatges a una base de

dades per tal de recuper la informació en cas de fallida del

servidor.

Autentificació
Seguretat d'accés – Permet la gestió d'usuaris i

l'accés al servidor de missatgeria.

Detecció automàtica de desconnexions de clients
Millora de rendiment – El servidor detecta que aquell

client no es troba disponible i l'elimina de la seva llista de

connexions obertes.

Compatible amb TCP, RMI, HTTP i SSL
Millora integració - Afavoreix la integració i la

capacitat de desenvolupament amb altres aplicacions.

Taula 3: característiques i avantatges de OpenJMS

Tots els proveïdors anomenats anteriorment poden ser executats en plataformes Linux i

Windows i suposen un cost nul en llicències pels desenvolupaments que optin per un d'ells com

Escola Universitària d'Informàtica de Sabadell 33

Monitor de servidors JMS Jordi Manzano Ulloa

intermediari de comunicacions JMS.

2.3.3 Anàlisi d'entorns de desenvolupament integrats

Un entorn de desenvolupament integrat o IDE, facilita al programador la seva tasca oferint

múltiples funcionalitats de les que es poden destacar editor de text, compilador, control de

versions, casos de test, i depurador. Eclipse i Netbeans són els IDE més coneguts pel

desenvolupament en Java. Els dos disposen de les eines esmentades anteriorment i a més

accepten connectors per ampliar l'entorn, des de suport per altres llenguatges (com PHP, C, C++,

Ruby, Perl) fins editors de UML8. En el projecte s'utilitzarà Eclipse, que consta d'un suport molt

ampli de connectors i d'un editor de text excel·lent.

2.3.4 Anàlisi de llibreries gràfiques

A fi de poder implementar les gràfiques que generarà l'aplicació sobre les estadístiques

monitoritzades, s'opta per escollir una llibreria externa que permeti que el desenvolupament

d'aquesta funcionalitat sigui més ràpid.

8UML o unified modeling language és un llenguatge de modelatge i definició de sistemes de programari. Més informació en

http://www.uml.org/.

Escola Universitària d'Informàtica de Sabadell 34

Figura 5: gràfica generada amb la llibreria JfreeCharts

http://www.uml.org/

Monitor de servidors JMS Jordi Manzano Ulloa

JfreeCharts, és una llibreria per Java amb llicència LGPL9, amb una API simple i fàcil

d'entendre. Permet realitzar una gran quantitat de gràfiques, amb eines incrustades com

l'ampliació o disminució de la gràfica sobre el plànol i l'exportació d'aquestes a .PNG.

Elegant Jcharts és una altra alternativa per la generació de gràfiques en Java. Capaç de

generar gran quantitat de gràfiques amb efectes 2D i 3D, inclou també la capacitat d'scrolling que

tenia JfreeCharts amb una qualitat gràfica superior. No obstant, aquesta llibreria requereix d'un

cost de llicència, fet que situa a l'anterior com a la candidata pel present projecte.

2.3.5 Avaluació de riscos

Com s'ha comentat a apartats anteriors, l'aplicació ha de ser executada per cada usuari, no

es tracta d'un monitor centralitzat a una màquina a la qual es pot tenir accés, si no que és un client

que visualitza l'estat de les cues, tòpics i els missatges que existeixen a un servidor JMS. Així

doncs, l'ús massiu i distribuït d'aquesta eina pot provocar un tràfic elevat de missatges a la xarxa.

A més, també s'ha de tenir en compte que són peticions que ataquen contra el servidor JMS, fet

que influeix en el rendiment d'aquest, ja que ha de generar la resposta i respondre amb la dada

sol·licitada.

D'altra banda, la gran varietat de proveïdors JMS fa d'inici que no es puguin desenvolupar un

gran nombre de les interfícies que donen accés als diferents servidors amb el nombre d'hores

valorades pel present projecte, fet que implicarà que els futurs usuaris que utilitzin diferents

proveïdors hagin d'implementar la interfície. No obstant s'entregaran llibreries que implementaran

l'accés de dos proveïdors.

Cal remarcar la falta d'experiència prèvia i ús de tecnologies pel desenvolupament del

9 GNU Lesser General Public License és una llicència open source que permet l'ús del programari o llibreries a altres aplicacions

de propietari. Més informació en: http://www.gnu.org/licenses/lgpl.html

Escola Universitària d'Informàtica de Sabadell 35

http://www.gnu.org/licenses/lgpl.html

Monitor de servidors JMS Jordi Manzano Ulloa

projecte, fet que pot influir en el acompliment de les dades previstes per l'entrega. A més, es tracta

d'un projecte amb un cicle de salt d'aigua, amb el que qualsevol demora en una fase anterior

endarrereix la següent.

2.3.6 Recursos

RECURSOS HUMANS

Rol
• Analista

• Tècnic programador

• Equip de proves

Taula 4: recursos humans

PROGRAMARI
Servidor

monitoritzat
• Sistemes Operatius: Ubuntu 9.04

• Java Runtime Environment 1.6

Client per la
monitorització

• Sistema Operatiu: Ubuntu 9.04 / Windows

XP

• Java Runtime Environment 1.6
Entorns de

programació
• Diagrames UML: DIA

• Eclipse

Generació de
documentació

• OpenOffice 3.0

Llibreries i
aplicacions de

tercers

• JDK 1.6

• OpenJMS

• FUSE

• JFreeCharts
Gestió del
projecte

• Planificació: Microsoft Project

Taula 5: programari disponible

Escola Universitària d'Informàtica de Sabadell 36

Monitor de servidors JMS Jordi Manzano Ulloa

MAQUINARI

Recursos
mínims
clients*

• Memòria: 256 MB*

• Processador: AMD Sempron 2800+ 1600 Mhz /

mem. cau L2: 256KB

• Disc dur: 5 GB

• Unitat de reproducció de DVD

• Monitor SVGA

• Tarja de xarxa

• Teclat i ratolí
* la memòria mínima ve imposada en la majoria dels

casos pels requisits mínims del sistema operatiu, ja

que el monitor no té un consum molt elevat. Per

Windows Vista, la memòria mínima recomanable és de

1 GB.

Recursos
mínims
servidor

• Memòria: 2048 MB

• Processador: Intel Pentium Dual Core E6300

2800 Mhz / mem. cau L2: 2048 KB

• Unitat de reproducció i enregistrament de DVD

• Disc dur: 10 GB

• Tarja de xarxa

Taula 6: maquinari disponible

Escola Universitària d'Informàtica de Sabadell 37

http://ark.intel.com/Product.aspx?id=41493

Monitor de servidors JMS Jordi Manzano Ulloa

2.4 ORGANITZACIÓ DEL PROJECTE

En primera instància, serà necessària una cerca de requeriments i funcionalitats bàsiques que

tot sistema de monitorització ha de complir. Observant els productes existents al mercat es podrà

acotar els objectius d'aquest projecte amb els requeriments mínims.

Desprès d'una primera fase de documentació inicial i estudi de la viabilitat, es perfilaran els

requeriments funcionals i no funcionals, generant un diagrama de casos d'ús. També es realitzarà

la cerca de documentació i l'estudi de les diferents tecnologies disponibles pel desenvolupament

del projecte, tot instal·lant les eines i l'entorn de desenvolupament.

Una vegada establerts els requeriments funcionals i no funcionals i l'entorn tecnològic amb

que es desenvoluparà el projecte, es realitzarà el disseny dels mòduls que conformen l'aplicació

per codificar i implementar el codi. Posteriorment es farà una fase de proves, per poder fer

correccions i millores funcionals. La memòria es redactarà al mateix temps que es desenvolupen

les distintes fases del projecte.

Per a la documentació del programari i les tecnologies s'estableixen les següents vies per

captar informació; documentació oficial de les API, els entorns de programació i llibres sobre les

tecnologies emprades, tutorials i experiències de programadors (blogs, fòrums) i memòries de

projectes anteriors semblants.

Escola Universitària d'Informàtica de Sabadell 38

Monitor de servidors JMS Jordi Manzano Ulloa

2.5 ANÀLISI COST - BENEFICI

2.5.1 Costos recursos materials

De entrada, es disposen de recursos per realitzar el projecte i no caldria l'adquisició de nous.

No obstant s'ha de tenir en compte la amortització dels recursos, que s'ha calculat sobre 3 anys ja

que el maquinari i el programari solen canviar o renovar en aquest període de temps.

Escola Universitària d'Informàtica de Sabadell 39

Taula 7: costos recursos materials

AMORTITZACIÓ DELS COSTOS
Maquinari

5,81 €

8,16 €

0,58 €

Programari
Ubuntu 9.04 0,00 €

1,37 €
2,45 €

Eclipse IDE 0,00 €
JDK 1.6 0,00 €
JRE 1.6 0,00 €
DIA 0,00 €

0,00 €
5,71 €
0,00 €

FUSE 0,00 €
0,00 €

TOTAL 24,08 €

Compaq CQ60 Laptop
Intel Dual Core
3GB RAM
250GB HDD
(499€)
AMD 3600 Sempron
2,5GB RAM
250GB HDD
Monitor Acer 20''
(700€)
Router Comtrend 536+
(50€)

Windows XP Profesional SP3 (118€)
Windows Vista Home Basic SP1 (210€)

Openoffice 3.0
Microsoft Project 2003 (490€)
OpenJMS

JfreeChart

Monitor de servidors JMS Jordi Manzano Ulloa

2.5.2 Costos recursos humans

Escola Universitària d'Informàtica de Sabadell 40

Taula 8: cost de recursos per hora

RECURS €/h
Analista 18
Tècnic programador 10
Provador 9

Taula 9: costos RRHH

RECURS COST HORES
Analista 2.826,00 € 157
Descripció del projecte 54,00 € 3
Estudi d'alternatives 72,00 € 4
Anàlisis de viabilitat 360,00 € 20
Definició necessitats reals 72,00 € 4
Interficie gràfica 432,00 € 24
Gestor de connexions 270,00 € 15
Interficie amb els proveïdors JMS 144,00 € 8
Funcionalitats amb destinacions i missatges 180,00 € 10
Gràfiques 144,00 € 8
Memòria 1.098,00 € 61
Tècnic programador 1.340,00 € 134
Configuració de l'entorn de desenvolupament 20,00 € 2
Gestor de connexions 200,00 € 20
Interficie amb proveïdors JMS 100,00 € 10
Implementació de llibreria per OpenJMS 140,00 € 14
Implementació de llibreria per ActiveMQ (Fuse) 120,00 € 12
Gràfiques 120,00 € 12
Funcionalitats amb destinacions i missatges 120,00 € 12
Interficie gràfica 240,00 € 24
Correcció d'incidencies 100,00 € 10
Millores disseny / usabilitat 100,00 € 10
Annexos (documentació) 80,00 € 8
Provador 99,00 € 11
Proves locals 54,00 € 6
Proves finals 45,00 € 5
TOTAL COSTOS RRHH 4.265,00 €

Monitor de servidors JMS Jordi Manzano Ulloa

2.5.3 Pressupost

*el preu final no contempla impostos indirectes

Escola Universitària d'Informàtica de Sabadell 41

Taula 10: pressupost

Factura

6.629,21 €

TOTAL 6.629,21 €

Aplicació de monitor de servidors JMS
Instal·lador
Monitor:
-Enviament i esborrat de missatges pendents
-Generació de gràfiques
-Gestió de connexions
-Consulta del contingut missatges pendents
-Visualització d'estadístiques

Monitor de servidors JMS Jordi Manzano Ulloa

2.6 PLANIFICACIÓ DEL PROJECTE

2.6.1 Model de desenvolupament i etapes del projecte

El projecte seguirà un model de desenvolupament lineal seqüencial, ja que els requeriments

funcionals són establerts des de un principi sense riscos de que siguin modificats en fases

posteriors a la d'anàlisi de requeriments. No obstant un dels objectius del projecte és la

escalabilitat de la aplicació, per tant, no és descarten nous cicles en un futur, una vegada hagi

finalitzades les etapes que es descriuen a continuació:

Escola Universitària d'Informàtica de Sabadell 42

Taula 11: recursos i planificació

Tasques Hores Recurs
Anàlisi de requeriments 31
Descripció del projecte 3 Analista
Estudi d'alternatives 4 Analista
Anàlisis de viabilitat 20 Analista
Definició necessitats 4 Analista
Implementació 171
Configuració de l'entorn de desenvolupament 2 Tècnic programador
Disseny 65
Interficie gràfica 24 Analista
Gestor de connexions 15 Analista
Interficie amb proveïdors 8 Analista
Funcionalitats amb destinacions i missatges 10 Analista
Gràfiques 8 Analista
Codificació 104
Gestor de connexions 20 Tècnic programador
Interficie amb proveïdors 10 Tècnic programador
Implementació de llibreria OPENJMS 14 Tècnic programador
Implementació de llibreria ActiveMQ (Fuse) 12 Tècnic programador
Gràfiques 12 Tècnic programador
Funcionalitats amb destinacions i missatges 12 Tècnic programador
Interficie gràfica 24 Tècnic programador
Avaluació 31
Proves locals 6 Provador
Correcció d'incidencies 10 Tècnic programador
Millores disseny / usabilitat 10 Tècnic programador
Proves finals 5 Provador
Documentació 69
Memòria 61 Analista
Annexos 8 Tècnic programador
TOTAL 302

Monitor de servidors JMS Jordi Manzano Ulloa

2.6.2 Ús dels recursos

2.6.3 Tècniques de planificació i control

Tot seguit, es mostra la planificació realitzada mitjançant el programari Microsoft Project 2003.

És una tasca essencial i imprescindible per programar les fases i realitzar un bon seguiment del

projecte.

Escola Universitària d'Informàtica de Sabadell 43

Taula 12: ús dels recursos

RECURS HORES
Analista 157
Descripció del projecte 3
Estudi d'alternatives 4
Anàlisis de viabilitat 20
Definició necessitats reals 4
Interficie gràfica 24
Gestor de connexions 15
Interficie amb els proveïdors JMS 8
Funcionalitats amb destinacions i missatges 10
Gràfiques 8
Memòria 61
Tècnic programador 134
Configuració de l'entorn de desenvolupament 2
Gestor de connexions 20
Interficie amb proveïdors JMS 10
Implementació de llibreria per OPENJMS 14
Implementació de llibreria per ActiveMQ (Fuse) 12
Gràfiques 12
Funcionalitats amb destinacions i missatges 12
Interficie gràfica 24
Correcció d'incidencies 10
Millores disseny / usabilitat 10
Annexos 8
Provador 11
Proves locals 6
Proves finals 5

Monitor de servidors JMS Jordi Manzano Ulloa

Escola Universitària d'Informàtica de Sabadell 44

Monitor de servidors JMS Jordi Manzano Ulloa

Escola Universitària d'Informàtica de Sabadell 45

Monitor de servidors JMS Jordi Manzano Ulloa

Escola Universitària d'Informàtica de Sabadell 46

Monitor de servidors JMS Jordi Manzano Ulloa

2.7 CONCLUSIONS

El monitor de servidors JMS pretén ser una eina multiplataforma que ajudi als

desenvolupadors que utilitzin la tecnologia JMS, per obtenir de forma ràpida i clara l'estat de les

destinacions creades en un servidor JMS, oferint opcions com l'enviament de missatges a una

destinació i la consulta del contingut dels missatges existents a una cua o tòpic, funcionalitats que

s'utilitzen en el dia a dia durant les fases de desenvolupament i proves de sistemes i aplicacions

que utilitzen aquesta tecnologia.

Com s'ha comentat en el primer capítol, aquest projecte té com objectius l'aprenentatge de

tecnologies i la contribució d'un projecte de codi lliure per tots aquells usuaris que vulguin utilitzar

una eina de monitorització de servidors JMS orientada al tràfic de missatges i programadors que

vulguin millorar i ampliar aquest programa. És per tant, que els costos representats en aquest

estudi de viabilitat juntament amb la factura volen mostrar el cost orientatiu del que suposaria una

aplicació feta a mida amb les funcionalitats descrites.

Totes les etapes del projecte conformen el camí crític, això fa que qualsevol demora en el

temps en la realització d'una tasca endarrereixi totes les restants. A més, la gran varietat de

proveïdors JMS redueix la compatibilitat en aquesta primera versió del monitor, ja que per les

hores valorades en el present projecte, no és possible realitzar la implementació d'un gran

nombre d'interfícies que donen accés als diferents servidors fet que implicarà que els futurs

usuaris que utilitzin diferents proveïdors hagin de realitzar aquesta tasca.

És cert que l'alternativa al present projecte, Hermes JMS, és un aplicació que permet realitzar

gran part dels requeriments desitjats de forma notable i suporta una llarga llista de proveïdors

JMS, però a la pràctica és una aplicació amb una interfície centrada en la monitorització del

servidor i no tant en el tràfic de missatges, fet que la fa pesada a l'hora de treballar amb un gran

nombre de cues i tòpics. A més els objectius i motivacions personals, la contribució amb

Escola Universitària d'Informàtica de Sabadell 47

Monitor de servidors JMS Jordi Manzano Ulloa

programari lliure i l'ús de tecnologies amb un cost nul de llicencia utilitzades en l'àmbit

professional, fet que disminueix els costos del projecte, fan que el monitor de servidors JMS sigui

un projecte viable.

Escola Universitària d'Informàtica de Sabadell 48

Monitor de servidors JMS Jordi Manzano Ulloa

CAPÍTOL

 3 Fonaments teòrics

3.1 INTRODUCCIÓ

Amb l'arribada de Internet, la computació distribuïda ha guanyat importància en les

organitzacions que cercaven crear aplicacions escalables i flexibles. Un sistema distribuït implica

que diferents parts del sistema puguin estar en diferents màquines: aquestes poden ser a un

mateix edifici o a un altre país.

El disseny de sistemes distribuïts no és trivial; hi ha nombrosos factors que entren en joc quan

una mateixa aplicació es divideix en múltiples parts executades en diferents ordinadors; des de

l'arquitectura del maquinari (Intel, PPC), sistemes operatius variats (Microsoft Windows, Unix,

Linux, OsX) fins arribar a les pròpies comunicacions amb l'ample de banda i la velocitat de

transmissió entre les màquines que conformen el sistema. Per tant, es tracta de sistemes amb una

complexitat molt superior a un sistema equivalent que no ho sigui.

Escola Universitària d'Informàtica de Sabadell 49

Monitor de servidors JMS Jordi Manzano Ulloa

Un sistema distribuït pot ser dividit al menys en dos parts; una primera amb codi funcional (de

negoci) i una segona amb codi dependent de la infraestructura. El model de negoci seria la

funcionalitat que tracta d'assolir el desenvolupament, independentment de que el sistema sigui

distribuït o no. D'altra banda, el codi d'infraestructura és totalment dependent d'aquest model

d'aplicació distribuïda: si el sistema no ho és, aquesta part desapareix. Aquest és complexe i

l'objectiu principal és el de transferir dades d'una part de l'aplicació a una altra. Cal dir, que aquest

codi d'infraestructura depèn de la distribució i no dels objectius de negoci de l'aplicació, fet que

provoca que aquest sigui una part aprofitable per altres projectes. Així doncs, quan es parla de

codi d'infraestructura, es fa referència al que es coneix com middleware; que es podria definir com

aquell component software que s'utilitza per connectar aplicacions entre si.

Escola Universitària d'Informàtica de Sabadell 50

Figura 6: exemple de sistema distribuït

Monitor de servidors JMS Jordi Manzano Ulloa

3.2 MIDDLEWARE

Middleware o programari intermediari es defineix com la capa de programari que es troba

entre el sistema operatiu i les aplicacions del sistema. El principal objectiu del middleware és

resoldre els problemes de connectivitat i interacció entre aplicacions, servint de traductor entre

diferents tecnologies i protocols; és a dir, que qualsevol aplicació (independentment del seu

origen) es pugui executar sota qualsevol sistema operatiu o maquinari facilitant així el

desenvolupament de la mateixa i amagant detalls de programació de baix nivell. Cal dir que el

programari intermediari no és imprescindible pel correcte desenvolupament d'un procés

d'integració però sí que és cert que la seva utilització simplifica molt aquestes tasques.

Funcions del middleware

• Homogeneïtzar els diferents components del maquinari, sistemes operatius i protocols de

comunicació.

• En sistemes distribuïts, encapsular i ocultar les diferents parts o aplicacions connectades

entre si que s'executen en diferents llocs.

Escola Universitària d'Informàtica de Sabadell 51

Figura 7: rol del programi intermediari

Monitor de servidors JMS Jordi Manzano Ulloa

• Proporcionar interfícies uniformes d'alt nivell pels desenvolupadors i integradors

d'aplicacions, facilitant la composició, el reaprofitament del codi i la portabilitat d'aquestes

aplicacions.

A continuació es descriuran diferents tipus de programari intermediari fent més èmfasi en

l'anomenat MOM o Message Oriented Middleware, que és el que aplica al present projecte.

3.2.1 RPC

Remote procedure call (RPC) o crida a procedimets remots és una tecnologia que permet a

una aplicació executar un procediment en una altra màquina present en la mateixa xarxa, sense

que s'hagin de definir els detalls d'aquesta interacció remota, és a dir, el codi és el mateix tant si la

subrutina és local al programa executant, o remota.

RPC neix al 1976, quan va ser descrita al RFC707. La primera implementació popular de

RPC a Unix va ser la de Sun Microsystems, ara anomenada Open Network Computing RPC o

ONC RPC, feta servir com a base per al sistema de fitxers en xarxa NFS10. ONC RPC encara es

fa servir molt avui en diverses plataformes.

Una altra de les primeres implementacions de Unix va ser el Network Computing System

(NCS) de Apollo Computer. NCS va ser utilitzat posteriorment en la fundació de DCE/RPC al

Entorn de Computació Distribuïda (DCE) de la Open Software Foundation (marc de treball i eines

de desenvolupament per aplicacions client – servidor). Una dècada més tard, Microsoft va adoptar

DCE/RPC com a base per al seu mecanisme Microsoft RPC (MSRPC) i va implementar DCOM a

sobre d'ell.

10 NFS: protocol a nivell d'aplicació utilitzat com a sistema de fitxers en sistemes distribuïts en un entorn de xarxa local, possibilitant

que diversos sistemes tinguin accés a fitxers remots com si fossin locals.

Escola Universitària d'Informàtica de Sabadell 52

Monitor de servidors JMS Jordi Manzano Ulloa

A mitjans dels 90, ILU de Xerox i el CORBA de Object Management Group, van oferir un altre

paradigma de RPC basat en objectes distribuïts amb mecanisme d'herència. Cal notar que hi han

moltes tecnologies RPC diferents que es fan servir habitualment que són incompatibles, com ara

ONC RPC i DCE/RPC.

RPC permet implementar el model client - servidor de computació distribuïda. Un remote

procedure call és instanciat pel client, enviant un missatge de petició a un servidor remot conegut

per a executar el procediment especificat fent servir paràmetres subministrats, i mentre el servidor

processa la crida, el client queda bloquejat. A continuació, una resposta és retornada al client on

l'aplicació continua amb el seu procés.

Un aspecte important entre crides a procediments remots i crides locals és que les primeres

poden fracassar a causa de problemes de xarxa imprevisibles. També, els clients generalment

han de tractar aquests problemes sense saber si el procediment remot va ser invocat

correctament.

Per a permetre l'accés de diferents clients als servidors, un nombre de sistemes RPC

estandarditzats ha estat creat. La majoria d'aquests fan servir un Interface Description Language

(IDL) per a permetre a diverses plataformes cridar al RPC. Aquest és un llenguatge utilitzat per

descriure la interfície de components programari: descriu una interfície en un llenguatge neutral, la

qual cosa permet la comunicació entre components de programari desenvolupats en diferents

llenguatges de programació. Així doncs, IDL ofereix un pont entre dos sistemes diferents. Els

arxius IDL poden ser utilitzats per a generar codi que faci d'interfície entre el client i el servidor.

L'eina més habitualment utilitzada per aquest propòsit és RPCGEN.

Escola Universitària d'Informàtica de Sabadell 53

Monitor de servidors JMS Jordi Manzano Ulloa

3.2.2 MOM i el paradigma de la missatgeria

Els ordinadors i les persones poden comunicar-se mitjançant l'ús de sistemes de missatgeria

per a l'intercanvi missatges a través de xarxes electròniques. En el que es refereix a la

comunicació entre aplicacions, quan es parla en termes de negoci, es refereix generalment als

Enterprise Messaging Systems (EMS) o Message Oriented Middleware (MOM).

Els EMS permeten a dos o més aplicacions intercanviar informació a través de missatges. En

aquest cas, un missatge és un paquet amb dades de negoci. Aquestes poden ser qualsevol tipus

de informació i normalment conté dades sobre alguna transacció de negoci; els missatges

informen a les aplicacions de que ha esdevingut un succés en altre sistema.

Amb la utilització de programari de intermediari orientat a missatges, els missatges són

transmesos d'una aplicació a una altra a través de la xarxa. Els diferents productes que

implementen MOM, asseguren que aquests missatges són distribuïts apropiadament entre

aplicacions. A més, aquestes implementacions solen incloure funcionalitats d'alta disponibilitat,

balanceig de càrrega, escalabilitat i suport transaccional per situacions on es requereixi una gran

quantitat d'intercanvi de missatges.

El proveïdors de solucions MOM, utilitzen diferents formats de missatges i protocols de xarxa

per l'intercanvi de dades, però els fonaments a alt nivell són els mateixos. Una API és utilitzada

per crear un missatge, se li afegeix la informació en el cos, la informació de enrutament en la

capçalera i s'envia. La mateixa API serà utilitzava per rebre aquest missatge produït per altres

aplicacions.

En la gran majoria de EMS, l'intercanvi de missatges entre aplicacions es realitza mitjançant

canals virtuals anomenats destinacions. Quan un missatge es enviat, aquest serà entregat a una

destinació, no a una aplicació en concret; qualsevol aplicació que es registri o tingui una

Escola Universitària d'Informàtica de Sabadell 54

Monitor de servidors JMS Jordi Manzano Ulloa

subscripció en aquesta serà capaç de rebre el missatge. D'aquesta manera el programari que rep

missatges i aquells que n'envien estan totalment desacoblats.

Tots el proveïdors d'implementacions basades en MOM proveeixen als desenvolupadors

d'una API per l'enviament i recepció de missatges. No obstant, un dels problemes de la MOM és

la falta de estàndards. La majoria de proveïdors tenen la seva pròpia implementació, API i eines

d'administració i desenvolupament. Cal dir, que això no vol significa que no n'existeixin; la Java

Message Service és un estàndard de Java que defineix una interfície per la missatgeria entre

aplicacions i que la seva implementació vindrà donada pels diferents proveïdors.

Per tant, el programari intermediari MOM és una infraestructura focalitzada en enviar i rebre

missatges que permet que es puguin comunicar aplicacions o mòduls diferents sobre plataformes

heterogènies, reduïnt la complexitat del desenvolupament d'aplicacions que han de comunicar-se

amb altres de diferents plataformes, ocultant al desenvolupador els detalls dels diferents sistemes

operatius i protocols de xarxa. MOM és un programari que resideix en ambdues parts (dintre d'una

arquitectura client / servidor) i que suporta trucades asíncrones. Les cues de missatges

(destinacions) proveeixen de emmagatzematge temporal quan una aplicació està ocupada o no

està connectada.

Escola Universitària d'Informàtica de Sabadell 55

Figura 8: programari intermediari orientat a missatges

Monitor de servidors JMS Jordi Manzano Ulloa

La missatgeria és un mètode de comunicació entre els components de programari o

aplicacions. Un client pot enviar missatges a altres clients, al mateix temps que està capacitat per

rebre. Cada client es connectarà a un agent o proveïdor de missatgeria que oferirà facilitats per

crear, enviar, rebre, i llegir missatges. Aquest model habilita la comunicació distribuïda “imprecisa”;

un component envia un missatge a una destinació i el receptor pot recuperar aquest mateix

missatge quan estigui disponible per la comunicació. És per això que tant el client que envia el

missatge com el que el rep, no han de estar al mateix temps preparats per la comunicació, per

tant, no existeix la necessitat de que el remitent ni el destinatari es coneguin mútuament. Malgrat

aquesta independència, els dos es veuen obligats conèixer el format del missatge que enviaran o

rebran per tal d'utilitzar i entendre la informació continguda.

Les arquitectures MOM avui en dia varien la seva implementació; des d'una arquitectura

centralitzada que depèn de un servidor de missatgeria per realitzar la distribució dels missatges,

fins a una arquitectura descentralitzada que distribueix el procés de servidor entre els clients. Una

gran varietat de protocols que inclouen TCP/IP, HTTP, SSL i IP multicast són utilitzats en la capa

de transport. Alguns productes de missatgeria són híbrids dels dos models en funció de la forma

en que són utilitzats.

Abans de detallar les diferents arquitectures, és important descriure el terme client; els

sistemes de missatgeria estan composats per clients i un programari d'intermediari orientat a

missatges. El client doncs, és una aplicació o component que utilitza la API que proporciona el

proveïdor del MOM per enviar missatges.

Arquitectura centralitzada

Els EMS que utilitzen una arquitectura centralitzada confien en un servidor de missatgeria.

També anomenat broker de missatges, és responsable de la entrega de missatges de un client als

seu/s destinatari/s. La figura del servidor de missatgeria desacobla els clients que únicament

Escola Universitària d'Informàtica de Sabadell 56

Monitor de servidors JMS Jordi Manzano Ulloa

tenen visible a aquest i no als destinataris, fet que permet afegir i eliminar clients sense tenir

impacte en el sistema sencer.

Típicament, una arquitectura centralitzada utilitza una topologia d'estrella. En un cas senzill, hi

ha un servidor centralitzat de missatgeria i clients connectats a aquest tal com es mostra en la

següent figura:

Aquesta arquitectura presta per si mateixa una quantitat de connexions de xarxa mínima

mentre que permet a qualsevol part del sistema comunicar-se amb qualsevol altra. En la pràctica,

el servidor centralitzat acostuma a ser un clúster de servidors distribuïts operant com a una unitat

lògica.

Arquitectura descentralitzada

Totes les arquitectures descentralitzades solen utilitzar IP multicast11 a nivell de xarxa. Un

sistema de missatgeria basat en el multicasting no té un servidor centralitzat. Algunes de les

11 Multicast: consisteix en l'enviament de informació en un xarxa de diversos destinataris de forma simultània.

Escola Universitària d'Informàtica de Sabadell 57

Figura 9: arquitectura centralitzada d'un MOM

Monitor de servidors JMS Jordi Manzano Ulloa

funcionalitats de un servidor (persistència, transaccions, seguretat) són incrustades com una part

local del client, mentre que l'enrutament dels missatges és delegat a la capa de xarxa utilitzant el

protocol IP multicast. Aquest permet a les aplicacions ajuntar un o més grups IP multicast, on

cadascun utilitza una direcció IP que redistribuirà cada missatge que rebi a tots els membres del

seu grup. D'aquesta manera, les aplicacions poden enviar missatges a adreces IP multicast

confiant en que la capa de xarxa els redistribuirà correctament.

Al contrari que la arquitectura centralitzada, una arquitectura distribuïda no requereixi del

servidor pel que fa a l'enrutament de missatges; la xarxa el tracta automàticament. Malgrat això,

altres funcionalitats del servidor són requerides i s'inclouen en cada client, com la persistència dels

missatges .

Com s'ha comentat, aquestes dues arquitectures solen utilitzar per una banda el protocol

TCP/IP i per altra IP multicast. Entre les arquitectures implementades per diversos proveïdors

també es poden trobar productes que combinen aquestes dues; on els clients poden connectar-se

a un procés dimoni que utilitza TCP/IP i també a un altre que usi per la comunicació els grups IP

multicast.

Escola Universitària d'Informàtica de Sabadell 58

Figura 10: arquitectura descentralitzada d'un MOM

Monitor de servidors JMS Jordi Manzano Ulloa

Consideracions generals sobre ambdues arquitectures.

En aquest apartat s'exposen les dos arquitectures explicades anteriorment per tal d'analitzar

les avantatges i inconvenients.

Un sistema de missatgeria basat en TCP utilitza una arquitectura en estrella, on existeix la

figura d'un servidor centralitzat (o un clúster amb diversos servidors) que es comuniquen amb els

diferents clients utilitzant connexions TCP/IP, SSL12 o HTTP. Aquest és responsable de qui està

publicant i qui està rebent els missatges. Tenir servidors en clúster proporciona balanceig de

càrrega i ajuda a optimitzar el tràfic de la xarxa filtrant i seleccionant els missatges. Els servidors

s'encarregaran de la persistència de les dades, de l'accés a les destinacions i permisos dels

clients per rebre els missatges. A més, els clients no necessiten saber de l'existència dels altres,

només de la del servidor centralitzat.

Al mateix temps, aquesta arquitectura introdueix un únic punt de fallida; si el servidor principal

de un clúster cau, el servidor sencer es tornarà indisponible. Un proveïdor de EMS pot resoldre

aquest problema distribuint les connexions en servidors múltiples en un clúster, de tal forma que si

un cau, l'altre servidor pot continuar operant, minimitzant l'impacte de la fallida. La reconnexió ha

de ser gestionada pel client.

En canvi, el multicasting implica una arquitectura diferent, en la qual no existeix la figura del

servidor centralitzat. És per aquest motiu que no hi ha un únic punt de fallida: cada client

distribueix els missatges a la resta de clients. Una conseqüència directa d'aquest és que cada

publicador i cada subscriptor han de tenir una configuració local sobre cadascun dels clients

existents al sistema. Aquest fet ha de ser una consideració a tenir en compte pel

desenvolupament de solucions que utilitzin el paradigma de la missatgeria; en absència de un

marc de treball d'administració de alt nivell, les configuracions locals han de ser actualitzades en

12 SSL: Protocol que ofereix comunicacions segures mitjançant l'encriptació de dades utilitzat amb freqüència en la web i correu

electrònic .

Escola Universitària d'Informàtica de Sabadell 59

Monitor de servidors JMS Jordi Manzano Ulloa

cada client cada vegada que s'incorpora un de nou al sistema.

L'arquitectura descentralitzada necessitarà de mecanismes per garantir la persistència dels

missatges, que residirà en les màquines on corren els clients. No importa com d'eficient sigui

l'emmagatzematge, les escriptures i lectures de disc; aquest fet sempre serà el major coll

d'ampolla del sistema. Escollint aquest tipus d'arquitectura es requereix que les màquines client

tinguin un sistema d'emmagatzematge ràpid i de gran capacitat.

Escola Universitària d'Informàtica de Sabadell 60

Monitor de servidors JMS Jordi Manzano Ulloa

3.2.3 RPC vs. Missatgeria Asíncrona

Remote Procedure Call (RPC) és un terme usat per descriure un model distribuït que avui en

dia és usat en tecnologies de programari d'intermediari com CORBA, Java RMI i Microsoft DCOM.

Les tecnologies basades en RPC són una solució viable per diverses aplicacions, encara que el

model de missatgeria és més optim per alguns tipus de aplicacions distribuïdes. Aquest capítol

tractarà de analitzar els punts forts i dèbils de ambdós models.

RPC i la dependència modular.

Una de les àrees amb més èxit pel model RPC ha sigut la construcció d'aplicacions en 3-

capes o n-capes (3-tier, n-tier respectivament). En aquestes aplicacions cada capa és auto-

continguda de tal forma que la aplicació pot ésser dividida en diverses màquines en una xarxa

distribuïda; és a dir, cada capa normalment serà mantinguda per un servidor especific per fer-se

més independent de la resta. En aquest model, la capa de presentació (primera capa) es

comunica utilitzant RPC amb la lògica de negoci (segona capa), la qual accedirà a la capa que

emmagatzema les dades (tercera capa). La plataforma de Sun Microsystems J2EE i DNA de

Microsoft són exemples d'aquesta arquitectura. Sense entrar en detalls en cada tecnologia i

plataforma, el nucli d'aquestes és un programari basat en RPC.

Remote Procedure Call intenta imitar el comportament de un sistema que és executat en un

procés; quan un procediment remot és invocat, qui truca al procediment es bloqueja fins que el

procediment acaba i retorna el control a aquest. Aquest model sincronitzat permet al

desenvolupador tenir una visió del sistema com si es tractes d'un sol procés. El treball es realitza

de forma seqüencial, assegurant que les tasques són completades. La “sincronitzada” naturalesa

de RPC augmenta la dependència dels clients (aquells components que realitzen les trucades als

procediments) i el servidor (aquell qui dona servei a la trucada); el client és bloquejat fins que el

servidor no respon. Aquesta dependència modular crea sistemes interdependents on una fallida

en un té un impacte directe en els altres. En J2EE per exemple, el servidor EJB ha de funcionar

Escola Universitària d'Informàtica de Sabadell 61

Monitor de servidors JMS Jordi Manzano Ulloa

correctament si es vol que funcionin el servlets13 que utilitzen enterprise beans14.

RPC treballa correctament en diversos escenaris, però el seu sincronisme pot ser un punt

dèbil on aplicacions verticals són integrades totes juntes. En aquest escenari, les línies de

comunicació entre aquests sistemes verticals són diverses i multi-direccionals tal com es mostra a

la següent figura:

Si es considera la implementació d'aquesta infraestructura utilitzant un mecanisme RPC

existeixen diversos problemes a l'hora de gestionar les connexions entre aquests sistemes. Quan

s'afegeix un altre component a aquesta infraestructura, s'haurà de tornar enrere i fer saber a la

resta de sistemes la inclusió del nou. Al mateix temps, els sistemes poden fer fallida; quan una

part del sistema cau, tot es paralitza. Existeixen però solucions per aquest problema com el

13 Servlet: objectes que s'executen dintre d'un contenidor de servlets. A diferència dels applets, aquests corren en el servidor i no

en el client.

14 Enterprise bean: component de la part servidora, gestionat pel contenidor i pensat per la construcció modular d'aplicacions

d'empresa.

Escola Universitària d'Informàtica de Sabadell 62

Figura 11: exemple de sistema RPC

Monitor de servidors JMS Jordi Manzano Ulloa

multithreading o mecanismes CORBA, però aquestes solucions tenen força complexitat i

requereixen un desenvolupament sofisticat. Els fils són costosos quan no s'utilitzen amb criteri i

les trucades CORBA d'una direcció requereixen un nivell més en l'aplicació pel tractament

d'errors. Per aquests motius, en escenaris on no es pot donar aquesta situació, la missatgeria pot

ser considerada com alternativa.

 Enterprise Messaging

Els inconvenients comentats anteriorment sobre la disponibilitat dels subsistemes no és un

problema amb un programari d'intermediari orientat a missatges. Un concepte fonamental de

MOM és que la comunicació entre aplicacions tendeix a ser asíncrona. El codi escrit per connectar

els mòduls entre si assumeix que la resposta de l'altra aplicació no serà immediata, no és

bloquejant; una vegada que un missatge és enviat, el client pot continuar realitzant altres tasques.

Aquesta és la major diferència entre el RPC i la missatgeria asíncrona, on cada subsistema és

desacoblat dels altres sistemes com es mostra a continuació:

Escola Universitària d'Informàtica de Sabadell 63

Figura 12: arquitectura Enterprise Messaging

Monitor de servidors JMS Jordi Manzano Ulloa

Les diferents parts es comuniquen a través d'un servidor de missatgeria, fent que si una falla

no impedeix les operacions de la resta. Una fallida no esperada o la necessitat de reiniciar un

component és un fet que sol donar-se en sistemes en xarxa. La Java Message Service, com a

exemple de MOM, garanteix l'entrega assegurant que els destinataris rebran missatges inclús

quan una part del sistema cau. Aquest sistema utilitza un mecanisme d'emmagatzematge que

permet que en cas de que un missatge no es pugui entregar, aquest persisteix i no es perd, tot

esperant a que el seu destinatari torni a estar disponible.

En definitiva, a través del processat asíncron, la persistència i la garantia d'entrega de

missatges, la Java Message Service proveeix funcionalitats per mantenir les aplicacions en

continua operació i funcionament sense interrompre el servei. A més, ofereix flexibilitat en la

integració oferint el model de missatgeria de publicador / subscriptor i el punt a punt. Mitjançant

eines de control administratiu permet donar un servei robust per arquitectures basades en serveis.

Escola Universitària d'Informàtica de Sabadell 64

Monitor de servidors JMS Jordi Manzano Ulloa

3.3 JAVA MESSAGE SERVICE

3.3.1 Introducció

La Java Message Service (JMS) és una especificació que defineix un conjunt d'interfícies i

altres semàntiques associades, les quals permeten a les aplicacions escrites en Java l'accés a

serveis oferts per productes que compatibles amb JMS i el model MOM. Cal remarcar que JMS no

és un producte, si no una especificació a la que productes com MQSeries d'IBM, SonicMQ,

FioranoMQ donen la implementació.

Amb tot el potencial que els sistemes de missatgeria ofereixen, tal com s'ha comentat en

apartats anteriors, han aparegut diversos productes en el mercat, cadascú amb els seus

avantatges i inconvenients, més populars i menys. Com a sistemes populars de missatgeria es

poden remarcar a MQSeries de IBM i Tibco Rendezvous. Cal dir, que aquest últim no dona suport

a JMS, però si ho fa un altre producte de la mateixa companyia anomenat Tibco EMS. Tots

aquests productes tenen les seves pròpies interfícies i API i són entre ells lleugerament diferents.

 Es pot considerar la següent situació; un client que desenvolupa una aplicació requereix un

producte de missatgeria i crea una llista de requeriments. Desprès d'avaluar les diferents

alternatives existents, aquest client selecciona el proveïdor que millor s'ajusta als seus

requeriments i el client acaba per integrar aquest producte al seu desenvolupament. Un any

desprès, altre proveïdor ofereix un producte millor o apareixen nous requeriments que el producte

actual no assoleix. El client no pot migrar fàcilment el seu desenvolupament a un nou producte

degut a la forta dependència entre el producte de missatgeria i el seu codi. És en aquest punt on

entra en escena la Java Message Service, oferint un conjunt uniforme de interfícies i semàntiques

per sistemes de missatgeria. Per tant, permet als clients tenir una visió uniforme de tots els

productes que acompleixen amb aquest estàndard facilitant el canvi de proveïdor de missatgeria i

minimitzant els costos d'una migració.

Escola Universitària d'Informàtica de Sabadell 65

Monitor de servidors JMS Jordi Manzano Ulloa

Com es mostra en la figura anterior, aquest model allibera al client de l'ús d'un únic proveïdor i

amplia les diferents propostes en el mercat. JMS té com objectiu proporcionar una API uniforme

de missatgeria.

Un nombre important d'empreses com Allaire, BEA Systems, Fiorano Software, Progress

Software van col·laborar en un inici amb Sun Microsystems per definir un primer esborrador de la

especificació JMS. A més, es van rebre idees i comentaris d'altres companyies i organitzacions

educatives durant tres mesos de revisió pública. Aquesta és una de les claus de l'acceptació de

JMS, a part òbviament de les avantatges comentades anteriorment. Actualment empreses com

Oracle, Sybase, Novel i IBM patrocinen l'especificació JMS.

És important entendre que JMS no representa la unió de funcionalitats disponibles a través

dels diferents productes existents; la especificació seria massa voluminosa per a que qualsevol

proveïdor donés suport. Al mateix temps seria complicada pels desenvolupadors obtenir una

comprensió ràpida, ja que la corba d'aprenentatge creixeria. D'altra banda, JMS no és una

intersecció de un conjunt de funcionalitats de productes de missatgeria que existien amb

anterioritat; en comptes es va definir un conjunt de conceptes de missatgeria i facilitats que són

Escola Universitària d'Informàtica de Sabadell 66

Figura 13: interfície JMS i proveïdors

Monitor de servidors JMS Jordi Manzano Ulloa

bàsiques per implementar una aplicació de missatgeria. Es pot prendre de forma anàloga a

JDBC15, on aquest permet l'accés uniforme a diferents tipus de bases de dades relacionals mentre

que JMS ho fa amb els diferents productes de missatgeria.

3.3.2 Models (publicador - subscriptor / punt a punt)

El model de publicador / subscriptor permet al productor del missatge (també anomenat

publicador) fer arribar el seu missatge a més d'un consumidor o destinatari (anomenats

subscriptors). Cal tenir en compte tres aspectes importants d'aquest model:

• Els missatges són extrets del servidor cap als consumidors sense que ells tinguin una

petició sobre de rebuda d'aquests. Els missatges són intercanviats mitjançant un canal

virtual anomenat tòpic. Un tòpic és una destinació on els productors poden publicar i els

subscriptors poden consumir missatges. Els missatges entregats en tòpics són

automàticament extrets a tots els consumidors subscrits.

• No hi ha dependència entre productors i consumidors. Subscriptors i publicadors poden

ser afegits dinàmicament en temps d'execució, el que permet al sistema créixer o fer-se

més petit durant el cicle d'execució.

• Cada client que subscrit a un tòpic rep la seva copia del missatge publicat en un tòpic.

Un missatge produït per un publicador pot ser copiat i distribuït a centenars o milers de

subscriptors.

D'altra banda, en el model punt a punt, el productor és anomenat remitent i el consumidor

destinatari. Les característiques més importants d'aquest model són:

15 JDBC: Java DataBase Connectivity permet a les aplicacions en llenguatge Java accedir mitjançant una interfície comuna a les

bases de dades per a les que existixen drivers JDBC. Normalment, es tracta de bases de dades relacionals.

Escola Universitària d'Informàtica de Sabadell 67

Monitor de servidors JMS Jordi Manzano Ulloa

• El missatges són intercanviats a través de un canal virtual anomenat cua. Una cua és

una destinació que permet als remitents enviar missatges i als destinataris obtenir-los.

• Cada missatge és només entregat a un destinatari. Es poden connectar diversos

consumidors a una cua, però cada missatge només serà entregat a un d'ells.

• Els missatges són ordenats. Una cua entrega els missatges a un client consumidor en

l'ordre en que foren enviats pel productor. Quan un missatge es consumeix, s'elimina del

cap de la cua.

• No hi ha dependència entre productors i consumidors. Destinataris i remitents poden

ser afegits dinàmicament en temps d'execució (al igual que els tòpics).

En la majoria de casos, la decisió de quan utilitzar un model o un altre dependrà dels

avantatges que ofereixen ambdós. Amb subscriptors i publicadors, es pot tenir qualsevol nombre

de subscriptors en un tòpic i tots rebran una copia del mateix missatge. El publicador no tindrà en

compte si hi ha algú escoltant o no, per exemple; un client publicador envia informació sobre

quotes. Si cap subscriptor en particular no està connectat no rebrà mai aquest missatge i el

publicador no se'n donarà compte. D'altra banda, una sessió punt a punt està enfocada en una

conversació entre dos components. En aquest escenari cada missatge és realment important. El

rang i la varietat de dades que els missatges representen pot ser un factor a tenir en compte

també. Utilitzant el model de publicador i subscriptor, inclòs quan la missatgeria està sent utilitzada

per establir una conversa entre dos components que es coneixen, pot ser avantatjós utilitzant

diversos tòpics per diferenciar el tipus de missatges que s'estan enviant. Cada tipus de missatge

pot ser interpretat per separat a través d'un únic consumidor. No obstant, el punt a punt és més

convenient quan es vol assegurar que un destinatari processarà aquest missatge una sola

vegada.

Escola Universitària d'Informàtica de Sabadell 68

Monitor de servidors JMS Jordi Manzano Ulloa

Aquestes són les diferencies crítiques dels dos, el punt a punt assegura que només un

consumidor tractarà aquell missatge. Aquest fet és important quan els missatges han de ser

processats separadament però en tàndem, balancejant la carrega a través de diferents clients

JMS. Una altra avantatge és que el model punt a punt proveeix un QueueBrowser16, que permet al

client accedir a la cua per llegir els missatges que estan esperant ser consumits sense consumir-

los.

Cal afegir, que existeix un sistema a JMS per garantir la persistència dels missatges que

s'envien a través de tòpics; les subscripcions durables. Aquestes guarden els missatges quan el

subscriptor és inaccessible per evitar la pèrdua del missatge en clients que utilitzin aquest model i

que no es puguin permetre perdre missatges.

3.3.3 Fonaments bàsics de JMS

En aquest apartat es fa una descripció dels conceptes bàsics de JMS per tal d'entendre certs

aspectes del projecte que s'exposa. S'adjuntarà codi Java per mostrar un exemple

d'implementació de client JMS el qual utilitzarà les següents variables:

String queueName = null;
Context jndiContext = null;
QueueConnectionFactory queueConnectionFactory = null;
QueueConnection queueConnection = null;
QueueSession queueSession = null;
Queue queue = null;
QueueSender queueSender = null;
TextMessage message = null;
final int NUM_MSGS;

16 QueueBrowser: Interfície de la API de JMS. Les classes que la implementen proporcionen visibilitat als elements d'una cua però

sense treure'ls de la mateixa, i per tant, continuen en el servidor sense ser consumits.

Escola Universitària d'Informàtica de Sabadell 69

Monitor de servidors JMS Jordi Manzano Ulloa

Connection Factories

En el centre del nucli de JMS, una connexió representa un enllaç lògic amb els proveïdor de

JMS. És obvi que una de les primeres coses que ha de realitzar un client JMS és establir una

connexió amb un servidor JMS. Per obtenir aquesta connexió cada proveïdor JMS facilita una

connection factory. JMS no estandarditza la informació que conté aquesta connection factory o

com el client obté la aquesta connexió de un proveïdor de JMS.

Tal com es mostra a la figura anterior, existeixen dos tipus de connection factories: una per la

connexió punt a punt i una altra pel model publicació / subscripció. Basat en el model de

missatgeria que utilitzaran, els clients obtindran la connection factory apropiada i es connectaran

al proveïdor JMS.

 /*
 * Create a JNDI API InitialContext object if none exists
 * yet.
 */
 try {
 jndiContext = new InitialContext();
 } catch (NamingException e) {
 System.out.println("Could not create JNDI API " +
 "context: " + e.toString());

Escola Universitària d'Informàtica de Sabadell 70

Figura 14: interfície ConnectionFactory

Monitor de servidors JMS Jordi Manzano Ulloa

 System.exit(1);
 }

 /*
 * Look up connection factory and queue. If either does
 * not exist, exit.
 */
 try {
 queueConnectionFactory = (QueueConnectionFactory)
 jndiContext.lookup("QueueConnectionFactory");
 queue = (Queue) jndiContext.lookup(queueName);
 } catch (NamingException e) {
 System.out.println("JNDI API lookup failed: " +
 e.toString());
 System.exit(1);
 }

En el fragment de codi anterior, es pot observar com es busca la factory mitjançant JNDI.

Aquesta és la forma correcta d'establir una connexió amb un servidor JMS. Normalment els

proveïdors tenen mètodes propis dependents de la seva implementació i que no figuren a la

definició JMS. És per aquest motiu que si es vol fer un codi totalment independent del proveïdor

s'ha d'utilitzar aquest sistema.

Sessions

Una vegada que el client ha establert una connexió amb el proveïdor JMS, el següent pas es

començar una nova sessió; una vista privada del client sobre la connexió. Cada connexió pot tenir

diverses sessions obertes al mateix temps. Al mateix temps que una connexió és necessària per

comunicar-se amb el proveïdor JMS, una sessió serà necessària per comunicar-se amb la mateixa

connexió. Per entendre millor aquest concepte es pot posar un exemple: la connexió seria anàloga

a la línia de telefon que fa de servei a tot el barri, mentre que la sessió seria la trucada telefònica

que utilitza aquesta línia.

Escola Universitària d'Informàtica de Sabadell 71

Monitor de servidors JMS Jordi Manzano Ulloa

Al establir una sessió es defineix el tipus de acknowledge que s'utilitzarà per especificar quina

serà la forma de confirmar que la transacció d'un missatge ha sigut correcta. A JMS es

contemplen tres maneres:

• mode automàtic: quan una sessió empra aquest mode, els missatges enviats o rebuts

d'aquesta sessió automàticament són reconeguts (acknowledged).

• duplicates okay mode: els missatges rebuts o enviats d'una sessió són automàticament

reconeguts com en el mode anterior, però no al moment exacte. Aquest fet provoca que a

vegades els missatges puguin ser entregats més d'una vegada.

• mode client: en aquest cas l'aplicació serà l'encarregada de confirmar que el missatge ha

sigut enviat o rebut correctament, donant-li control complet però augmentant la complexitat

Escola Universitària d'Informàtica de Sabadell 72

Figura 15: interfície Session

Monitor de servidors JMS Jordi Manzano Ulloa

del codi.

Destinacions

En un sistema basat en missatgeria, sense tenir en compte el model que s'estigui utilitzant

(publicar/subscriure o punt a punt), cada missatge ha de ser entregat en algun lloc, que en JMS es

coneix com destinació. Els missatges són enviats una destinació, i són rebuts d'una destinació al

mateix temps. JMS no estandarditza quina és la informació que encapsula la destinació.

Hi ha dos tipus de destinacions en funció del model de enviament i recepció que s'estigui

utilitzant. Pel model punt a punt, la destinació s'anomena cua i per la publicació i subscripció tòpic.

Una sessió creada per un model punt a punt únicament pot ésser utilitzada per arribar a una cua,

fet que aplica també a les sessions creades per treballar amb tòpics.

Una vegada el client JMS ha obtingut una sessió mitjançant el establiment d'una connexió, a

través de la sessió s'obté la destinació. És en aquest moment on el client ja podrà enviar

missatges a aquell destí. Malgrat això, la sessió mateixa no pot ser utilitzada per rebre i enviar

missatges si no que actua com una factory que pot ser utilitzada per crear remitents i destinataris

que són utilitzats per enviar i rebre missatges respectivament.

Escola Universitària d'Informàtica de Sabadell 73

Monitor de servidors JMS Jordi Manzano Ulloa

 Una vegada finalitzada la connexió, s'ha de tancar. En el següent fragment de codi, es

mostra aquest procés:

 /*
 * Create connection.
 * Create session from connection; false means session is
 * not transacted.
 * Create sender and text message.
 * Send messages, varying text slightly.
 * Send end-of-messages message.
 * Finally, close connection.
 */
 try {
 queueConnection =
 queueConnectionFactory.createQueueConnection();
 queueSession =
 queueConnection.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 queueSender = queueSession.createSender(queue);
 message = queueSession.createTextMessage();

Escola Universitària d'Informàtica de Sabadell 74

Figura 16: interfície Destination

Monitor de servidors JMS Jordi Manzano Ulloa

 for (int i = 0; i < NUM_MSGS; i++) {
 message.setText("This is message " + (i + 1));
 System.out.println("Sending message: " +
 message.getText());
 queueSender.send(message);
 }
 } catch (JMSException e) {
 System.out.println("Exception occurred: " +
 e.toString());
 } finally {
 if (queueConnection != null) {
 try {
 queueConnection.close();
 } catch (JMSException e) {}
 }
 }

El missatge

El missatge és la part més important de la especificació JMS. Totes les dades i

esdeveniments en una aplicació JMS són comunicats mitjançant aquest medi, mentre que la resta

dels components JMS existeixen per facilitar la transferència d'aquest. En sistemes basats en

RPC (CORBA, Java RMI, DCOM), un missatge és una comanda per executar un mètode o un

procediment, el qual bloqueja al remitent fins que no rep una resposta. Un missatge JMS no és

una instrucció; transfereix les dades i diu al destinatari quelcom que ha passat. Aquest fet aïlla al

destinatari del remitent fent el sistema més dinàmic i flexible que aquests anteriors. Un missatge té

dos parts; el cos del missatge amb les dades, la capçalera i les propietats.

La capçalera proveeix informació sobre el missatge descrivint qui i què a creat el missatge,

quan ha sigut creat, la vigència de les dades, etc. La capçalera també inclou informació

d'enrutament que descriu el destí del missatge (tòpic o cua), com el missatge serà reconegut

(acknowledge) entre d'altres. A més poden també incloure propietats definides pel client JMS. La

majoria de vegades les capçaleres són automàticament inicialitzades, els seus valors són

assignats pel proveïdor JMS quan el missatge es entregat, per tant alguns dels valors definits pel

Escola Universitària d'Informàtica de Sabadell 75

Monitor de servidors JMS Jordi Manzano Ulloa

desenvolupador mitjançant el mètode setJMS<HEADER>() són ignorats.

Capçaleres d'assignació
automàtica

Capçaleres d'assignació
manual

JMSDestination

JMSDeliveryMode

JMSMessageID

JMSTimestamp

JMSExpiration

JMSRedelivered

JMSPriority

JMSReplyTo

JMSCorrelationID

JMSType

Taula 13: capçaleres dels missatges JMS

Les propietats actuen com capçaleres addicionals que poden ser assignades a un missatge.

Proveeixen als desenvolupadors més informació sobre el propi missatge. La interfície Message

dona mètodes d'accés i escriptura per establir propietats. Es donen tres categories bàsiques de

propietats en els missatges; especifiques de l'aplicació, definides per JMS i definides pel

proveïdor. Les primeres són definides i aplicades als missatges pel desenvolupador del client, la

segona i la tercera són opcionals i són en major part afegides pel proveïdor JMS.

JMS contempla sis tipus de missatges que han de suportar els proveïdors, on especifica les

seves interfícies però no la implementació; això fa que els proveïdors tinguin llibertat per

implementar el transport dels missatges tot mantenint-se transparent al codi del desenvolupador

JMS. En total són sis interfícies destinades al missatge on cinc són subinterfícies; TextMessage,

StreamMessage, MapMessage, ObjectMessage i BytesMessage. Aquestes estan definides en

funció del missatge que transportaran.

Escola Universitària d'Informàtica de Sabadell 76

Monitor de servidors JMS Jordi Manzano Ulloa

TIPUS DESCRIPCIÓ

TextMessage

El cos és una cadena de text. Són útils per intercanviar dades en

forma de caràcters o enviar XML.
...

TextMessage textMessage = session.createTextMessage();

textMessage.setText("Hello!");

topicPublisher.publish(textMessage);

...

TextMessage textMessage = session.createTextMessage("Hello!");

queueSender.send(textMessage);

...

StreamMessage

Aquest missatge transporta un stream de tipus primitius de Java (int,

double, char...). Proveeix un conjunt de mètodes pel mapeig de stream de

bytes en dades primitives de Java.

...
StreamMessage streamMessage = session.createStreamMessage(

streamMessage.writeLong(2938302);

short value = streamMessage.readShort();

...

MapMessage

El cos transporta un conjunt de parelles (nom-valor). La clase

MapMessage és útil per entregar dades referenciades per claus.

...
MapMessage mapMessage = session.createMapMessage();

mapMessage.setInt("Age", 88);

mapMessage.setFloat("Weight", 234);

mapMessage.setString("Name", "Smith");

mapMessage.setObject("Height", new Double(150.32));

....

ObjectMessage El missatge conté un objecte Serializable17 de Java. És útil per

l'intercanvi d'objectes.
...

Order order = new Order();

...

ObjectMessage objectMessage = session.createObjectMessage();

objectMessage.setObject(order);

queueSender.send(objectMessage);

...

17 Serializable: API de Java que permet la gestió de la serialització d'objectes. S'entén per serialització d'objectes la conversió en

bytes d'aquests per ser a posteriori llegits i restaurats.

Escola Universitària d'Informàtica de Sabadell 77

Monitor de servidors JMS Jordi Manzano Ulloa

ObjectMessage objectMessage = session.createObjectMessage(order);

topicPublisher.publish(objectMessage);

...

BytesMessage

El cos del missatge conté un vector format pel tipus primitiu byte. Útil

per intercanviar informació entre aplicacions que no suporten els altres

tipus de missatges.

...
BytesMessage bytesMessage = session.createBytesMessage();

bytesMessage.writeChar('R');

bytesMessage.writeInt(10);

bytesMessage.writeUTF("this is an example");

queueSender.send(bytesMessage);

...

Taula 14: tipus de missatges JMS

Escola Universitària d'Informàtica de Sabadell 78

Figura 17: interfície Message

Monitor de servidors JMS Jordi Manzano Ulloa

Transaccions

Les transaccions en JMS compleixen un conjunt de propietats conegudes com ACID, acrònim

que significa atomicity, consistency, isolation, durability. Quan es parla d'atomicitat es refereix a

que s'envien o reben tots els missatges d'una transacció o cap. La consistència significa que tots

els missatges d'una transacció són consistents. Aïllament vol dir que encara que existeixen

diverses transaccions en un sistema, aquestes no s'afecten entre sí. Per últim, la durabilitat es

defineix com que quan una transacció és confirmada, tots els canvis es fan efectius i sobreviuen a

fallides del sistema.

El suport de les transaccions de JMS es construeix en l'objecte sessió, el qual es podrà

especificar com transaccional :

 QueueConnection connection = // obtenir la connexió

 QueueSession session = null;

 session = connection.createQueueSession(true, Session.AUTO_ACKNOWLEDGE);

En aquest cas, el primer paràmetre de la trucada a createQueueSession és “true”, indicant

així que una sessió transaccional es requerida. La sessió transaccional agrupa els missatges

produïts en una unitat atòmica de treball. Quan la transacció és confirmada (commit) els missatges

són confirmats (acknowledged) com una única unitat i els missatges s'envien. Si la transacció és

cancel·la (rollback), els missatges produïts són destruïts i els missatges consumits són

automàticament recuperats.

JMS no requereix que un proveïdor implementi transaccions per ser acomplir amb XA18. Les

transaccions que acompleixen XA segueixen dues fases a l'hora de ser confirmades. Com a

exemple d'aquest fet, Fiorano MQ 3.0 que acompleix amb l'estàndard JMS, no acompleix amb XA.

18 XA: Especificació pel processament de transaccions distribuïdes. Descriu la interfície entre el gestor de transaccions global i el

gestor de recursos local. Els gestors de recursos que segueixen aquesta especificació s'anomenen com XA compliant.

Escola Universitària d'Informàtica de Sabadell 79

Monitor de servidors JMS Jordi Manzano Ulloa

De fet JMS tampoc requereix que els seus proveïdors suportin transaccions distribuïdes. No

obstant si un hi pot treballar, ho haurà de fer mitjançant la API JTA XA Resource19. La gran majoria

de productes que implementes JMS no suporten aquest tipus de transaccions.

Duplicació de missatges

La especificació JMS obliga a que un proveïdor JMS mai entregui una segona copia de un

missatge ja reconegut. Quan un client utilitza una sessió en mode automàtic

(AUTO_ACKNOWLEDGE), no té el control directe d'aquesta confirmació. D'aquesta manera

aquests no poden saber amb certesa si el missatge ha sigut rebut i per tant continuen preparats

en cas de que s'hagi de tornar a entregar aquest.

Un altre norma és que els proveïdors no han de produir missatges duplicats. Això significa

que el productor ha de confiar en que el proveïdor JMS farà arribar aquest missatge als

consumidors.

Multithreading

El multithreading està inclòs dintre de la plataforma Java profundament, és a dir, ofereix una

forma simple, elegant i potent per crear programes que utilitzin fils. JMS classifica els objectes en

dos categories, aquells que són compartits per clients multithread i aquells que són accedits

utilitzant un únic fil de control cada vegada. Els objectes que suporten concurrència són

Destination, ConnectionFactory i Connection. Session, MessageProducer i MessageConsumer en

canvi no.

Existeixen dues raons per restringir l'accés concurrent a les sessions. Un és el suport a les

transaccions, que són difícils d'implementar quan es treballa amb múltiples fils. L'altre és que les

19 JTA: La Java Transaction API és una de les API de JEE que permet transaccions distribuïdes a través de diversos recursos XA

en un entorn Java.

Escola Universitària d'Informàtica de Sabadell 80

Monitor de servidors JMS Jordi Manzano Ulloa

sessions suporten el consum asíncron de missatges. Si les sessions suportessin l'accés

concurrent, els clients haurien de codificar els seus propis gestors de missatges asíncrons per tal

de ser capaços de gestionar múltiples missatges concurrents.

3.3.4 Escenaris

En aquesta secció s'intenta descriure alguns escenaris del món real per donar una idea de

quin són els tipus de problemes que la tecnologia JMS pot esdevenir una eina important.

Integració d'aplicacions

La major part d'organitzacions tenen aplicacions que utilitzen des de fa anys i altres que són

noves. Pot existir doncs una necessitat d'integrar aquestes antigues aplicacions amb les noves per

tal de compartir dades i cooperar a fi de poder millora el servei i l'efectivitat. La integració d'aquest

tipus d'aplicacions generalment s'anomena Enterprise Application Integration (EAI).

Existeixen diverses solucions per aquest propòsit però sense dubte els sistemes de

missatgeria són una bona solució ja que permeten l'intercanvi de dades mantenint la

independència dels diferents sistemes. Amb tòpics i cues es poden informar d'esdeveniments o

simplement enviar dades que poden ser tractades per l'altra part. Com exemple, un sistema de

missatgeria podria ser utilitzat per integrar una comanda realitzada per Internet amb un Enterprise

Resource Planning (ERP20) com SAP, on la aplicació que gestiona la comanda enviaria les dades

de negoci al ERP mitjançant un tòpic o una cua.

20 ERP: Sistema de gestió de la informació que integra i automatitza moltes de les pràctiques de negoci associades als aspectes

operatius i productius d'una empresa.

Escola Universitària d'Informàtica de Sabadell 81

Monitor de servidors JMS Jordi Manzano Ulloa

Dispersió geogràfica

Avui en dia moltes companyies es troben dispersades geogràficament; sistemes destinats a la

gestió d'inventaris han de comunicar-se amb aplicacions ERP centralitzades, dades sensibles

d'empleats que són administrades localment en cada subdelegació necessiten estar

sincronitzades amb les de la delegació principal... JMS pot ajudar a assegurar l'intercanvi de

dades a través d'un model geogràfic distribuït d'una corporació.

3.3.5 Consideracions d'una implantació amb JMS

Rendiment i escalabilitat

Existeixen una gran varietat de productes que implementen l'estàndard JMS i no és una tasca

senzilla escollir un que s'adapti a les necessitats reals del sistema que es vol implementar. El

rendiment i la escabilitat són termes que es solen ajuntar, però cal distingir-los. El rendiment fa

referencia a la velocitat en que un proveïdor JMS pot processar missatges, en canvi la escalabilitat

al nombre de clients connectats de forma concurrent que aquell servidor JMS pot suportar. Així

Escola Universitària d'Informàtica de Sabadell 82

Figura 18: JMS en la integració d'aplicacions

Monitor de servidors JMS Jordi Manzano Ulloa

doncs, una prova amb dos o tres clients enviant i rebent missatges amb una altra amb milers de

clients poden determinar quin és el rendiment i la escabilitat d'aquella implementació de JMS.

Es important provar directament el producte tot realitzant un conjunt de test per veure quin és

el que s'adapta millor als requeriments del sistema. Abans però, s'hauran de tenir en compte certs

aspectes:

• La mida de la aplicació o solució a desenvolupar. És important fer una predicció del

creixement que tindrà en el temps.

• La carrega mitjana que requerirà la aplicació.

• Els màxims de càrrega que es poden produir al desenvolupament. Pot haver-hi certs dies o

hores al dia on l'intercanvi de missatges sigui més intents.

• El nombre de connexions que utilitzarà l'aplicació.

• La quantitat de dades que han de processar-se a través del sistema de missatgeria en un

període de temps. Es pot mesurar per segons, bytes per segon, missatges per mes...

• La mida que tindran els missatges.

• Ús de cues o tòpics; si l'aplicació utilitzarà cues segurament el rendiment es veurà afectat

ja que aquestes asseguren la persistència i per tant els missatges normalment són escrits

a disc, fet que fa baixar els ràtios de missatges entregats per segon si es compara amb un

tòpic.

Com ja s'ha comentat, provar amb un petit nombre de clients no és el mateix que amb cents o

milers. Una bona pràctica és veure el comportament del sistema en funció d'increments. Per

exemple es pot iniciar un test de 10 productors i 10 consumidors i 100.000 missatges. Desprès es

pot incrementar a 100 productors i 100 consumidors i 1.000.000 de missatges.

Escola Universitària d'Informàtica de Sabadell 83

Monitor de servidors JMS Jordi Manzano Ulloa

També és important saber les necessitats reals de maquinari; si la CPU o la memòria

utilitzada no arriba als màxims i el ràtio de missatges no millora, segurament és perquè l'escriptura

a disc (sobretot en missatgeria persistent) o la xarxa és el coll de ampolla del sistema. Per tant

serà important disposar d'un sistema de fitxers adequat i discs ràpids en operacions d'escriptura /

lectura, o d'un ample de banda superior en el cas del segon.

Multicast

En el protocol TCP/IP (Transmission Control Protocol / Internet Protolcol), un procés que

vulgui establir una comunicació amb un o més processos a través de la xarxa, crea una connexió

per cadascun d'aquest processos, enviant i rebent dades usant aquestes connexions. Aquest

protocol assegura que totes les dades arriben en el ordre correcte a més de descartar les dades

duplicades. Si esdevé un succés no esperat amb la connexió, immediatament els processos que

es comuniquen coneixen immediatament l'estat de la connexió.

En canvi en el protocol UDP (User Datagram Protocol) , les dades són enviades a un destí

però no s'assegura que aquestes arribaran. El procés que rep les dades mai sap que el remitent

envia dades. Així doncs, la responsabilitat de que els processos que envien dades entre ells

mitjançant UDP s'assabentin de que la informació ha sigut enviada correctament recau en les

mateixes aplicacions. No obstant, aquest comportament de UDP fa realitat un tipus de servei que

és completament diferent; TCP està fonamental limitat per comunicacions punt a punt. UDP

ofereix la noció multicast, en la que una aplicació pot enviar dades a un grup de destinataris. El

multicasting es basa en una classe especial d'adreces conegudes com classes D. Aquestes no

són assignades a cap destí en concret, si no a grups multicast. Les dades enviades a una adreça

multicast només seran rebudes per aquell grup multicast, per tant, l'opció multicast des d'un punt

de vista de la xarxa, sembla l'opció més eficient quan es parla d'enviar un missatge a diversos

destinataris.

Escola Universitària d'Informàtica de Sabadell 84

Monitor de servidors JMS Jordi Manzano Ulloa

Un sistema de missatgeria basat en TCP, normalment utilitzarà una arquitectura d'estrella on

existirà al centre un servidor de missatgeria o un clúster de servidors, que es comunicaran amb els

clients utilitzant TCP/IP, SSL o connexions HTTP. El servidor serà l'encarregat de saber quin client

envia i quin rep en cada moment. A més s'introdueix un únic punt de fallida, si el servidor principal

cau, tot el sistema cau.

No obstant, si un sistema de missatgeria es basa en multicasting, implica una arquitectura

diferent on desapareix la figura del servidor centralitzat de missatgeria. Com no hi ha servidor

central, no hi ha un únic punt de fallida; cada client envia directament als altres clients. Una

conseqüència d'aquest model és que cada productor i cada consumidor hauran de tenir una

configuració local sobre els dos en el sistema, fet que pot ésser complicat d'administrar quan

tenim desenes, centenes o milers de clients. A més, la persistència dels missatges recaurà en els

clients i dependrà dels seus sistema de fitxers i discs.

IP multicast aporta millores significatives en la càrrega de dades sobre la xarxa en missatges

d'un a molts. Un missatge multicast a múltiples destinacions implicarà menys trafic en la xarxa que

enviar un missatge per cada client utilitzant connexions TCP. Malgrat aquest fet, l'opció de quin

sistema escollir no és trivial; el rendiment de IP multicast únicament és viable per un tipus de

desenvolupaments depenent del tipus de missatges que s'utilitza, el maquinari de xarxa, l'entorn

del desenvolupament (intranet, internet) i la complexitat de l'administració, juntament amb altres

aspectes que s'han vist a aquest apartat.

Seguretat

Els proveïdors de JMS implementen les seves solucions donant mecanismes per garantir la

seguretat i l'accés als missatges. L'autenticació verifica la identitat del usuari que intenta accedir al

sistema de missatgeria; el client JMS s'haurà d'identificar per establir una comunicació amb el

servidor. L'autenticació està suportada en la API de JMS quan es crea un objecte Connection, a

Escola Universitària d'Informàtica de Sabadell 85

Monitor de servidors JMS Jordi Manzano Ulloa

més de la API de JNDI com es mostra a continuació:

Properties env = new Properties();

env.put(Context.SECURITY_PRINCIPAL, "username");

env.put(Context.SECURITY_CREDENTIALS, "password");

TopicFactory topicFactory = jndiContext.lookup("...");

...

TopicConnection con =

 topicFactory.createTopicConnection("username", "password");

A més, els proveïdors JMS també poden utilitzar sistemes més complexes per l'autenticació

com sistemes de clau privada i pública. Però l'autenticació només és el primer pas, una vegada

s'ha accedit a la connexió és poden establir permisos sobre les accions que es poden realitzar en

aquest servidor; l'autorització aplica polítiques de seguretat per garantir que pot fer o no un client.

Grups i usuaris poden ser definits per assignar permisos d'accés a diverses cues, tòpic o

connection factories.

Respecte als canals de comunicació entre clients i servidors, també són un aspecte important

quan es parla de seguretat. Un canal de comunicació pot ser assegurat mitjançant aïllament físic

(com una xarxa dedicada) o amb l'encriptació de la comunicació entre el client i el servidor. Aquest

últim implica un intercanvi de claus entre el client i el servidor. La clau permet al receptor

descodificar i llegir el missatge. Actualment els proveïdors JMS solen incorporar SSL i encriptació

del cos del missatge. SSL (Secure Socket Layer) és un estàndard per la comunicació segura

utilitzada amb freqüència a Internet. Amb SSL, el protocol del proveïdor JMS és encriptat protegint

cada aspecte amb l'intercanvi de missatges. L'encriptació del cos com a alternativa permet

minimitzar el cost d'aquesta aplicant-la únicament als missatges que necessiten per la naturalesa

de les dades que transporten, ser encriptats.

Escola Universitària d'Informàtica de Sabadell 86

Monitor de servidors JMS Jordi Manzano Ulloa

CAPÍTOL

 4 Anàlisi de requeriments

4.1 DESCRIPCIÓ DEL PROJECTE

L'objectiu d'aquest capítol és formalitzar les diferents necessitats i requisits del projecte amb

una major profunditat, per tal de definir els requeriments funcionals i no funcionals del sistema, els

quals seran necessaris en la fase de disseny i implementació de l'aplicació.

Es pretén doncs, un monitor de servidors JMS que permeti facilitar tasques rutinàries als

programadors i equips de proves com poden ser; la solució de problemes de connexió del clients

connectats al servidors, si hi ha una sobrecàrrega de missatges acumulats sense consumir,

l'enviament de missatges a destinacions, la consulta del contingut dels missatges emmagatzemats

a una cua... de tal forma que esdevingui una eina útil i gratuïta per aquests. A més, el servidor de

l'aplicació ha de poder executar-se en diverses plataformes.

Escola Universitària d'Informàtica de Sabadell 87

Monitor de servidors JMS Jordi Manzano Ulloa

L'equip de proves, necessita funcionalitats que permetin agilitzar les seves tasques. En primer

lloc, serà necessària una opció d'enviament de missatges, tal com s'ha comentat anteriorment en

aquest capítol. Normalment la comunicació entre components es realitza amb missatges XML, ja

que permet la validació del missatge a partir d'un esquema compartit pel generador i el

consumidor del missatge. És per això que per evitar possibles errades en el missatge a enviar,

s'inclou la opció de validar un missatge a partir d'un esquema XSD21. Una segona funcionalitat

seria la possibilitat d'esborrar missatges, per tal de que no es vagin acumulant missatges sense

consumir en les destinacions, cal una opció per poder esborrar els missatges pendents en una cua

concreta. Per últim, s'ha de poder examinar el contingut de missatges emmagatzemats en un

servidor JMS però sense esborrar-los.

D'altra banda, tota aplicació requereix de traces per poder realitzar un seguiment de les

activitats que es duen a terme, a més de tenir una eina per analitzar possibles errors

d'implementació i facilitar la seva correcció. Per tant, és necessari un sistema de traces amb

possibilitat de configurar nivells (warning, debug, error, info) i poder així filtrar el contingut

d'aquestes.

Degut a les múltiples connexions que es poden realitzar amb diferents servidors JMS, és

requereix la gestió i configuració d'aquestes de tal forma que no s'hagin d'introduir totes les dades

necessàries per la connexió cada vegada que es vulgui accedir a un servidor JMS. L'usuari podrà

guardar aquestes dades i recuperar-les en qualsevol moment.

21 XSD: és un llenguatge d'esquema utilitzat per descriure l'estructura i les restriccions dels continguts dels documents XML d'una

forma molt precisa, més enllà de les normes sintàctiques imposades pel propi llenguatge XML.

Escola Universitària d'Informàtica de Sabadell 88

Monitor de servidors JMS Jordi Manzano Ulloa

4.2 REQUERIMENTS FUNCIONALS

4.2.1 Interfície gràfica

L'aplicació consistirà en una finestra principal des d'on es podran accedir als diferents mòduls

i funcionalitats, juntament amb informació bàsica sobre les destinacions ja que és de gran utilitat i

així s'evita que l'usuari hagi d'interactuar amb l'aplicació (a través de menús o finestres) per

demanar aquests tipus de dades. La interfície gràfica contindrà doncs:

• Finestra principal: adjuntarà les funcionalitats i components descrits en aquest apartat.

En funció del gestor de finestres que tingui l'usuari, l'aplicació prendrà l'aspecte definit en el

sistema operatiu. La finestra principal contindrà una barra de menú, una barra d'eines i la

descripció de les destinacions.

• Barra de menú: a través de la qual s'accediran a totes les funcionalitats del monitor; des

de la configuració de paràmetres del servidor, fins la configuració de connexions, gràfiques,

enviament de missatges, esborrament de missatges pendents i consulta del contingut de

missatges.

• Barra d'eines: contindrà dreceres de les funcionalitats més rellevants de l'aplicació, com

els botons de refresc o l'accés a la connexió d'un servidor JMS.

• Informació de les destinacions: tindrà una llista amb les destinacions creades al

servidors dividides en funció de la seva naturalesa; cues, tòpics o durables, i es mostraran

dades generals sobre aquestes, com els missatges pendents o la quantitat de missatges

processats. A més, s'ha de poder escollir entre un refresc automàtic o manual de les

dades. En aquest últim cas l'usuari ha de poder actualitzar les dades amb un botó situat a

la finestra central. La informació a mostrar doncs, es compon de:

Escola Universitària d'Informàtica de Sabadell 89

Monitor de servidors JMS Jordi Manzano Ulloa

◦ Destinacions creades en el servidor JMS (cues, tòpics)

◦ Estadístiques de missatges: En funció del servidor (degut a les limitacions que tingui

aquest per accedir a les seves dades), es poden llegir:

▪ Missatges entrants i sortints (parcials i totals)

▪ Missatges pendents

• Estadístiques generals del servidor: serien el total del conjunt de paràmetres monitoritzats

per cada destinació. Ajuden a tenir una primera impressió sobre l'estat del servidor JMS.

4.2.2 Gestió de la configuració i connexió

a) Creació i configuració d'una sessió amb un servidor JMS.

L'usuari podrà crear sessions de connexions contra un servidor JMS de forma gràfica.

Aquestes sessions es podran carregar, guardar o modificar tal com s'explica en el següents

apartats.

Per tal d'establir una connexió amb un servidor JMS, s'haurà d'introduir el nom de la sessió, la

direcció i port del servidor, el nom de usuari, contrasenya com a mínim. Les dades introduïdes

seran emmagatzemades de forma persistent, a fi de recuperar-les en un futur.

b) Emmagatzemar les sessions:

El sistema guardarà en un fitxer en el directori d'instal·lació del monitor amb totes les

configuracions que l'usuari ha introduït, per a la seva posterior recuperació.

c) Recuperar les sessions:

L'usuari podrà recuperar una configuració emmagatzemada per tal d'establir una sessió de

connexió amb un servidor JMS.

Escola Universitària d'Informàtica de Sabadell 90

Monitor de servidors JMS Jordi Manzano Ulloa

d) Editar les sessions:

Es podran editar les sessions existents per tal de canviar alguns paràmetres a posteriori

mitjançant sempre una interfície gràfica.

4.2.3 Dades mostrades

a) Cues, tòpics i durables.

Es mostrarà el nom de les destinacions creades en el servidor JMS (cues, tòpics i

subscripcions durables) en la finestra principal de l'aplicació.

b) Estadístiques.

Per cada destinació es mostrarà informació diversa com pot ser els missatges que estan en el

servidor per una destinació en concret, els missatges entrants i de sortida, etc. El nombre

d'estadístiques disponibles dependrà del servidor JMS, ja que en funció de la seva API i mètodes

d'accés al mateix, es podrà mostrar unes dades o unes altres. En general es mostraran els

missatges entrants i sortints (parcials calculats des de l'últim refresc de dades i totals) i missatges

pendents (numero de missatges) sempre que el servidor JMS tingui aquestes dades accessibles.

S'hauran de mostrar en la finestra principal de l'aplicació.

c) Refresc de les dades.

Es podrà optar per un refresc automàtic de les dades cada segon o per un refresc manual

forçat per l'usuari. D'aquesta forma es redueix el tràfic de missatges durant temps d'inactivitat per

part de l'usuari amb el servidor JMS.

d) Gràfiques.

Serà possible obrir gràfiques sobre un conjunt d'estadístiques, per tal de monitoritzar més

fàcilment les dades generals del servidor, amb possibilitat de copiar-les o exportar-les a un altre

format. Les gràfiques disponibles seran:

Escola Universitària d'Informàtica de Sabadell 91

Monitor de servidors JMS Jordi Manzano Ulloa

• Total de missatges entrants en el servidor.

• Total de missatges de sortida en el servidor.

• Total de missatges entrants parcials (des de l'últim refresc).

• Total de missatges de sortida parcials (des de l'últim refresc).

• Missatges total pendents

• Número total de cues, tòpics i subscripcions durables.

4.2.4 Accions sobre el servidor

a) Enviar missatge.

Es permetrà l'enviament d'un missatge de tipus TextMessage especificat per l'usuari, a una

destinació. Es podrà adjuntar un esquema XSD, per tal de validar el missatge en cas que sigui un

XML. En aquesta fase del projecte només es tindrà en compte aquest tipus de missatges, però

s'haurà de tenir en compte possibles ampliacions i permetre més tipus de missatge JMS per

enviar.

b) Netejar destinació.

Habilitarà l'eliminació dels missatges pendents en una destinació en concret.

c) Consultar missatges d'una destinació

S'obtindran els missatges pendents en una cua, per tal de consultar el seu contingut, però

sense consumir els mateixos.

d) Creació de destinacions

Sempre que l'usuari introduït per les tasques d'administració tingui permisos (definits

òbviament al servidor JMS), es podran crear cues, tòpic i subscripcions durables.

Escola Universitària d'Informàtica de Sabadell 92

Monitor de servidors JMS Jordi Manzano Ulloa

e) Eliminar destinacions

Es permetrà eliminar cues, tòpics i subscripcions durables (sempre que es disposi de

permisos d'administració en aquell servidor JMS).

4.3 REQUERIMENTS NO FUNCIONALS

A més de les funcionalitats explicades anteriorment, el monitor haurà de tenir en compte les

següents consideracions.

En primer lloc, és prioritari minimitzar el tràfic de missatges. Cal que el disseny del monitor no

saturi al servidor JMS amb peticions excessives de refresc de dades. A més, com s'ha dit en

nombroses ocasions, la interfície ha de ser simple i fàcil d'utilitzar: l'aplicació GUI ha de ser

intuïtiva i ha de mostrar les dades necessàries i fonamentals, si no, seria qüestionable la utilitat del

present projecte per l'usuari final.

Un altre aspecte és la inclusió de traces en el monitor per a mostrar informació sobre els

processos interns del monitor i ajudi a la depuració del codi. El sistema ha de generar traces que

es puguin configurar en funció d'un nivell (depuració, informació, errors...) sense necessitat de

recompilar el codi.

Per últim, cal destacar la capacitat d'independència de servidor JMS; el monitor ha de ser

independent a la implementació de la lògica d'administració d'un servidor JMS, assegurant la

compatibilitat amb qualsevol proveïdor sense fer canvis en el codi del monitor.

Escola Universitària d'Informàtica de Sabadell 93

Monitor de servidors JMS Jordi Manzano Ulloa

CAPÍTOL

 5 Disseny de l'aplicació

5.1 CONFIGURACIÓ DE LA PLATAFORMA

En aquest apartat es resumiran totes aquelles decisions i detalls sobre els aspectes de

l'entorn de desenvolupament i proves que afecten al present projecte, des de els sistemes

operatius fins les llibreries emprades en la implementació de l'aplicació.

Escola Universitària d'Informàtica de Sabadell 94

Figura 19: entorn de desenvolupament i proves del projecte

Monitor de servidors JMS Jordi Manzano Ulloa

5.1.1 Sistema operatiu.

En el present projecte es faran servir dos sistemes operatius, per provar que efectivament el

monitor és multiplataforma i ajudar a pal·liar possibles incompatibilitats de l'aplicació en diferents

sistemes. Els sistemes operatius escollits són Windows Vista Home Edition i Windows XP

Profesional de Microsoft i Ubuntu 9.04. de Canonical. L'elecció de Vista es basa en un motiu

econòmic; es disposaven d'una llicència pel seu ús, malgrat que el consum de recursos d'aquest

és elevat, serà útil per realitzar proves del sistema a implementar en altra plataforma que no sigui

Linux. Windows XP s'utilitzarà a més de les proves, en la gestió del projecte, ja que s'utilitza

Microsoft Project 2003. Per la resta del projecte, Ubuntu 9.04 serà l'utilitzat per tasques de

desenvolupament, elaboració de la memòria, proves i fins i tot la realització de diagrames

mitjançant l'aplicació DIA. L'elecció de Ubuntu es recolza en la facilitat d'ús i l'alta compatibilitat

amb diferents tipus de maquinari, sent una distribució Linux amigable per l'usuari, reduïnt així

problemes i per tant, dedicant menys temps a la configuració del propi sistema en favor del

present projecte. Ubuntu es pot descarregar gratuïtament de la pàgina oficial i està disponible per

diferents tipus de processadors.

Serà recomanable que es disposi en els ordinadors que es dediquin al desenvolupament, una

partició amb els dos sistemes operatius. Així doncs es procedirà a instal·lar primer el sistema de

Microsoft, ja que Ubuntu instal·larà per defecte un gestor d'arrancada anomenat GRUB, que

permetrà escollir entre ambdós sistemes al arrencar la computadora.

Escola Universitària d'Informàtica de Sabadell 95

Monitor de servidors JMS Jordi Manzano Ulloa

5.1.2 Servidors JMS

Al projecte es treballarà amb dos proveïdors de missatgeria JMS. Es recomanable tenir una

màquina dedicada on instal·lar aquest servidors, accessible a tots els equips de desenvolupament

per tal d'alliberar els recursos d'aquestes maquines dedicades a la implementació del projecte. No

obstant, les llibreries que subministren aquests pel desenvolupament d'aplicacions, s'hauran de

copiar a tots els equips destinats a implementar l'aplicació. Cal dir, que s'ha de garantir que els

usuaris d'aquestes aplicacions tinguin permisos per poder executar-les.

OPENJMS

El proveïdor de missatgeria OpenJMS és pot descarregar a la següent direcció:

http://openjms.sourceforge.net/downloads.html

El paquet no conté cap instal·lable. Es descomprimeix i es copia directament al directori on

pengen les aplicacions de l'usuari. L'execució del servidor es realitza mitjançant un script i no cal

compilar-lo. El servidor arranca amb la següent instrucció, dintre del directori bin de l'aplicació:

nohup ./openjms.sh start &

Escola Universitària d'Informàtica de Sabadell 96

Figura 20: captura de pantalla del gestor d'arrancada GRUB

http://openjms.sourceforge.net/downloads.html

Monitor de servidors JMS Jordi Manzano Ulloa

Per parar-lo:

./openjms.sh stop

FUSE

Caldrà registrar-se prèviament per descarregar el producte. Una vegada es té un compte

d'usuari, es pot baixar la versió Linux, Mac o Windows de la següent direcció:

http://fusesource.com/downloads/ . Es tracta d'un instal·lable amb interfície gràfica:

 Per arrancar el servidor s'utilitzarà la següent instrucció dintre del directori bin de l'aplicació:

nohup ./activemq &

Per parar el servidor es pot matar el procés:

ps -ef | grep activemq
kill [PID]

 On [PID] és l'identificador del procés imprès pel comand “ps”.

Escola Universitària d'Informàtica de Sabadell 97

Figura 21: instal·lació de Fuse

http://fusesource.com/downloads/

Monitor de servidors JMS Jordi Manzano Ulloa

Per provar que efectivament el servidor està funcionant correctament, s'obre un navegador i

s'introdueix la següent URL http://localhost:8161/admin/ . Cal dir que Fuse és una implementació de

ActiveMQ, per tant l'estructura de directoris de l'aplicació és semblant a la d'aquest.

5.1.3 Entorn desenvolupament integrat.

Tal com ja es va dir a l'anàlisi de viabilitat, Eclipse és el entorn de desenvolupament escollit.

Accedint a la pàgina web oficial (http://www.eclipse.org/downloads/) es pot descarregar l'última

versió disponible de aquest IDE disponible per plataformes Windows, Linux i Mac.

Pel projecte actual, s'opta per baixar la versió clàssica de Eclipse, ja que no seran

necessàries eines per desenvolupaments web o Java EE.

A més de l'entorn de desenvolupament integrat, serà necessari obtenir el Java Development

Kit (JDK) per tal de poder compilar el codi. Es pot descarregar de la pàgina oficial de Sun

Microsystems (http://java.sun.com/javase/downloads/widget/jdk6.jsp) , i existeixen versions per

plataformes Windows, Linux, Mac i Unix. Pot ser interessant tenir varies JDK instal·lades per a

Escola Universitària d'Informàtica de Sabadell 98

Figura 22: descàrrega de Eclipse Classic

http://java.sun.com/javase/downloads/widget/jdk6.jsp
http://www.eclipse.org/downloads/
http://localhost:8161/admin/

Monitor de servidors JMS Jordi Manzano Ulloa

compilar amb diferents versions d'aquesta. Per tant, s'instal·laran a un directori les diferents

versions de JDK amb que es vulguin treballar, i es crearà un enllaç simbòlic a la versió actual. Així

doncs, es podrà indicar al IDE, quina versió de JDK utilitzarem per compilar i executar el codi

implementat.

5.1.4 Llibreries.

A més de les llibreries que s'inclouen en els proveïdors de JMS emprats en el projecte, pel

desenvolupament s'utilitzarà una llibreria per la generació de gràfiques (JFreecharts) i una per

logging de l'aplicació (Log4j). Ambdues llibreries són gratuïtes i es poden descarregar de les seves

pàgines web corresponents:

• http://www.jfree.org/jfreechart/download.html

• http://logging.apache.org/log4j/1.2/download.html

 Per tant, s'inclouran dintre del classpath22 de l'aplicació les llibreries log4j-1.2.15.jar,

jcommon-1.0.16.jar i jfreechart-1.0.13.jar .

5.1.5 Altres aplicacions.

MICROSOFT PROJECT 2003

Microsoft Project és un programari d'administració de projectes dissenyat, desenvolupat i

comercialitzat per Microsoft per assistir a administradors de projectes en el desenvolupament de

plans, assignació de recursos a tasques, donar seguiment al progrés, administrar pressupost i

22 Classpath: és el conjunt de rutes on es troben les llibreries i classes a l'hora d'executar el programa.

Escola Universitària d'Informàtica de Sabadell 99

http://logging.apache.org/log4j/1.2/download.html
http://www.jfree.org/jfreechart/download.html

Monitor de servidors JMS Jordi Manzano Ulloa

analitzar càrregues de treball. Aquest serà instal·lat a les màquines que disposin d'un dels dos

sistemes operatius Microsoft disponibles a l'entorn de desenvolupament del projecte (Vista / XP).

OPENOFFICE 3.0

OpenOffice.org és un projecte comunitari per crear una paquet ofimàtic basat en codi obert

(amb llicència LGPL), procedent d'una versió antiga de Star Office de Sun Microsystems. Aquest

serà instal·lat en totes les màquines i particions disponibles en el projecte, ja que serà necessari

per la redacció de documentació i de la present memòria. OpenOffice es pot descarregar de la

pàgina oficial del projecte (http:// download.openoffice.org).

DIA

Dia és una aplicació informàtica per a la creació de diagrames, desenvolupada com a part del

projecte GNOME. Està dissenyat com un substitut de l'aplicació comercial Visio de Microsoft. Es

pot utilitzar per dibuixar diferents tipus de diagrames. Actualment s'inclouen diagrames entitat-

relació, diagrames UML, diagrames de flux, diagrames de xarxes, diagrames de circuits elèctrics,

etc. S'instal·larà en totes les particions amb Ubuntu per la creació de diagrames en la

documentació del projecte.

Escola Universitària d'Informàtica de Sabadell 100

Figura 23: aplicació DIA

http://download.openoffice.org/
http://download.openoffice.org/
http://download.openoffice.org/

Monitor de servidors JMS Jordi Manzano Ulloa

5.2 CASOS D'ÚS

L'objectiu és tenir una visió a alt nivell del comportament de l'aplicació i per això és

convenient realitzar un diagrama de casos d'ús:

Tot seguit es resumiran els casos d'ús que descriuen el sistema a desenvolupar en el present

projecte.

5.2.1 Gestionar connexió

Aquest cas d'ús té com a finalitat l'administració de la connexió amb els diferents servidors

JMS. Mitjançant unes dades facilitades per l'usuari, intentarà establir contacte amb el servidor per

tal de que es puguin obtenir les dades sol·licitades pel monitor. En cas d'error es mostrarà a

l'usuari la causa de l'excepció.

Escola Universitària d'Informàtica de Sabadell 101

Figura 24: diagrama de casos d'ús de JMSMonitor

Monitor de servidors JMS Jordi Manzano Ulloa

Aquesta funcionalitat es podrà activar mitjançant el menú principal de l'aplicació i carregarà en

el sistema les dades necessàries per poder establir una connexió. Cal dir que l'usuari podrà forçar

la connexió i desconnexió d'una mateixa sessió, directament en la interfície principal de la

aplicació mitjançant un botó desprès de ser carregada.

L'usuari haurà de complimentar la següent informació:

Paràmetre Descripció

Nom de la sessió
Nom que dona l'usuari a la sessió de connexió a guardar en

el monitor.

Direcció de administració
URL del servidor JMS i port habilitada per l'administració del

servidor.

Usuari

Nom de l'usuari del servidor JMS(recomanable que tingui

permisos d'administració per tal d'assegurar la màxima

funcionalitat del monitor).
Clau Contrasenya de l'usuari.

Factory

Nom JNDI d'una factory del servidor per tal de realitzar

accions (enviament i consulta de missatges) sobre el servidor

JMS.

Direcció de connexió
Direcció i port del servidor per poder rebre i consultar

missatges.
Tipus de servidor JMS Proveïdors de JMS (OpenJMS, ActiveMQ...)

Llibreries d'implementació

del proveïdors

Ubicació de la llibreria proporcionada pel monitor, que

implementa els mètodes d'obtenció de dades per aquell

proveïdor de JMS.
Temps de refresc de dades Interval de refrescs automàtics de dades en mili-segons.

Taula 15: paràmetres del gestor de sessions

Com es pot veure al diagrama de casos d'ús en l'apartat anterior, hi ha dos casos d'ús que

completaran la funcionalitat; emmagatzemar i recuperar sessió. Aquests complementen la

funcionalitat bàsica afegint la possibilitat de guardar les dades introduïdes per l'usuari, carregar-les

de nou i canviar-les a posteriori.

Escola Universitària d'Informàtica de Sabadell 102

Monitor de servidors JMS Jordi Manzano Ulloa

En el cas que s'estableixi una connexió amb èxit amb el servidor JMS s'executen dos casos

d'ús, “refrescar dades” i “mostrar dades”, ja que l'usuari no demanarà explícitament les dades

estadístiques del servidor si no que el monitor anirà refrescant cada cert temps la vista amb les

dades actualitzades.

5.2.2 Emmagatzemar sessió

S'encarrega de guardar en un fitxer les dades introduïdes per l'usuari referents a la connexió

amb el servidor JMS per poder-les recuperar més endavant. Una vegada l'usuari a introduït les

dades en el cas d'ús anterior, podrà escollir emmagatzemar-les. Aquesta funcionalitat serà

accessible mitjançant la interfície de la gestió de connexions; on es disposà d'un botó per tal de

poder salvar la sessió.

Escola Universitària d'Informàtica de Sabadell 103

Figura 25: diagrama de seqüència de la connexió amb un servidor JMS

Monitor de servidors JMS Jordi Manzano Ulloa

Les dades candidates a emmagatzemar seran comprovades i validades per assegurar de que

tots els camps obligatoris estan correctament informats. En cas negatiu, s'informarà a l'usuari dels

camps que falten. Si la comprovació és positiva, el sistema mostrarà a l'usuari quin nom tindrà el

fitxer i on es guardarà, per poder crear l'arxiu i escriure'l a disc.

5.2.3 Recuperar sessió

Habilita a l'usuari la possibilitat d'obrir les dades que va emmagatzemar en l'anterior cas d'ús.

Una vegada ha recuperat les dades de la sessió, l'usuari podrà editar-les i emmagatzemar-les de

nou (veure 'emmagatzemar sessió') o establir una connexió (veure 'gestionar connexió'). Aquesta

funcionalitat serà accessible mitjançant la interfície de la gestió de connexions; on es disposà d'un

botó per tal de poder recuperar la sessió.

Escola Universitària d'Informàtica de Sabadell 104

Figura 26: diagrama de seqüència de "guardar dades"

Monitor de servidors JMS Jordi Manzano Ulloa

L'usuari seleccionarà l'opció de recuperar sessió i escollirà un fitxer mitjançant un diàleg. Una

vegada accepta, el sistema intentarà obrir el fitxer indicat. En cas d'excepció d'entrada i sortida, es

mostrarà a l'usuari i el cas d'ús finalitzarà. Si el procés de càrrega es correcte, el sistema verificarà

la integritat del fitxer i en cas positiu, mostrarà les dades a l'usuari per a que pugui realitzar una

acció amb aquestes (establir connexió o editar-les), en cas contrari, informarà a l'usuari de que el

fitxer no era vàlid.

Escola Universitària d'Informàtica de Sabadell 105

Figura 27: diagrama de seqüència de recuperar sessió

Monitor de servidors JMS Jordi Manzano Ulloa

5.2.4 Refrescar dades

El present cas d'ús s'encarrega de actualitzar les dades mostrades en el monitor. El refresc

de l'aplicació per defecte serà automàtic, però l'usuari pot desactivar aquesta opció mitjançant un

botó a la interfície principal de l'aplicació. L'usuari podrà refrescar de forma manual les dades amb

un altre botó situat a la interfície principal.

L'usuari (o el procés d'autorefresc) demanarà l'actualització de les dades a l'administrador

connectat amb el servidor. Les dades una vegada retornades per aquest, es mostraran de nou en

la interfície principal de l'aplicació. En cas que s'aixequés una excepció durant el procés

d'obtenció de les dades, el sistema mostrarà l'excepció a l'usuari i desactivarà l'autorefresc per

evitar la continua creació de missatges d'excepció ja que podria ser que la connexió s'hagi caigut

o hi hagi problemes amb la xarxa.

Escola Universitària d'Informàtica de Sabadell 106

Figura 28: diagrama de seqüència de "refrescar dades"

Monitor de servidors JMS Jordi Manzano Ulloa

5.2.5 Enviar missatges

Aquest cas d'ús permet a l'usuari la creació i l'enviament de missatges de tipus TextMessage.

Així doncs, l'usuari mitjançant el menú de l'aplicació o el menú contextual de la destinació

seleccionada accedirà a omplir un formulari per tal de crear i enviar un missatge. Haurà

d'emplenar els següents camps:

Per tal de que el codi sigui independent de les funcions que proporciona cadascuna de les

distintes llibreries dels proveïdors de JMS, es buscarà el nom de la factory realitzant un “lookup”

del JNDI d'aquesta al server, amb la finalitat de crear una sessió que permeti establir una

connexió del productor que crearà i enviarà el missatge a la destinació indicada per l'usuari. Es

recorda que la factory es defineix al crear una sessió de connexió del monitor.

Escola Universitària d'Informàtica de Sabadell 107

Taula 16: camps per l'enviament de missatges

C onc epte D es c ripc ió T ipus d'objec te V a lor per defec te

Dades bàsiques

Destinació Llista desplegable SI

XML Cercador de fitxer NO N/D

Enviar Botó N/D N/D

Cancel·lar Botó N/D N/D

Cos del missatge
Contingut El contingut del missatge Àrea de text NO buit

O blig a tori a
om plir per

l'us ua ri

Cua o tòpic on s'enviarà el
missatge

Si s'ha accedit mitjançant
el menú contextual de la
destinació seleccionada
serà ella mateixa, si no

cap.
S'indicarà la ruta del XSD
a adjuntar per validar el

cos del missatge (en cas
de que es vulgui enviar un

XML)
Confirmar la creació i

l'enviament del missatge
Cancel·lar la creació del

missatge

Monitor de servidors JMS Jordi Manzano Ulloa

5.2.6 Netejar destinació

Permetrà a l'usuari netejar tots els missatges que es troben a una cua pendents de consumir-

se. Es podrà accedir mitjançant el menú principal de l'aplicació o amb el menú contextual de la

destinació seleccionada (només per cues i durables). Abans però de realitzar la neteja, es

demanarà la confirmació de l'usuari.

El client utilitzarà la interfície d'administració per gestionar l'esborrament dels missatges, ja

que ni han proveïdors que proporcionen funcionalitats per aquest tipus de tasques. En cas que no

existeixi cap mètode, s'haurà d'implementar dintre del connector que uneix el client amb el

servidor de JMS.

Escola Universitària d'Informàtica de Sabadell 108

Figura 29: diagrama de seqüència de "enviar missatge"

Monitor de servidors JMS Jordi Manzano Ulloa

5.2.7 Consulta missatges de la destinació

Aquest cas d'ús habilita la possibilitat a l'usuari de consultar el contingut dels missatges

emmagatzemats a una cua sense consumir-los de la mateixa, és a dir, no desapareixen del

servidor en el moment de ser llegits. Serà accessible mitjançant el menú contextual de la

destinació o fent un doble click a la destinació objectiu. La informació que mostrarà serà tant la

capçalera com el cos del missatge.

Escola Universitària d'Informàtica de Sabadell 109

Figura 30: diagrama de seqüència de "esborrar missatges"

Monitor de servidors JMS Jordi Manzano Ulloa

L'usuari primer sol·licitarà que el monitor mostri una llista amb els missatges que n'hi han al

destí sol·licitat. Una vegada es mostra i l'usuari selecciona un missatge en concret, el sistema

obtindrà la informació d'aquest i la visualitzarà.

5.2.8 Crear gràfica

Permet a l'usuari crear gràfiques sobre variables del servidor JMS. Aquests paràmetres en

ser actualitzats pel cas d'ús “refrescar dades”, forçaran també l'actualització de les gràfiques. La

funcionalitat serà accessible mitjançant el menú principal de l'aplicació el tipus de gràfica

seleccionat.

En el següent diagramà de seqüència, s'observa com l'usuari demanarà al sistema per la

creació d'una gràfica en concret. El sistema crearà la gràfica i la situarà al front de la vista.

Escola Universitària d'Informàtica de Sabadell 110

Figura 31: diagrama de seqüència de "obtenir missatges"

Monitor de servidors JMS Jordi Manzano Ulloa

5.2.9 Tancar gràfica

Aquest cas d'ús elimina una gràfica en el monitor. L'usuari únicament tindrà que tancar la

finestra creada on es mostrà la gràfica. Aquesta acció farà que s'actualitzi la llista on es guarda la

referència de les gràfiques eliminant aquella que s'ha donat de baixa per tal de no intentar

actualitzar-la de nou.

Escola Universitària d'Informàtica de Sabadell 111

Figura 32: diagrama de seqüència de "crear gràfica"

Figura 33: diagrama de seqüència de tancar gràfica

Monitor de servidors JMS Jordi Manzano Ulloa

5.3 ALTRES CONSIDERACIONS DEL DISSENY

5.3.1 Interfície amb proveïdors

Un dels aspectes més crítics del projecte sens dubte, és assegurar la compatibilitat del

monitor amb els diferents servidors JMS, de manera que encara que en aquesta primera versió

només s'entregui la implementació de connectors per a dos servidors, el disseny de l'aplicació

faciliti el desenvolupament i la integració futura de més proveïdors JMS.

El problema principal resideix en que els objectes que necessiten de la informació dels

servidors no poden utilitzar explícitament els mètodes i classes específics que subministra cada

proveïdor de JMS, ja que el codi no seria genèric i qualsevol canvi de proveïdors JMS afectaria

tant a aquelles classes que realitzessin operacions amb aquestes dades com a aquelles que

representin la informació a l'usuari.

 Una de les solucions seria desacoblar la part que adapta els mètodes específics de les API

que proporcionen els proveïdors del codi del client. Amb el patró de disseny “Adapter”, es pot

acomplir aquesta tasca tal com es mostra en el següent diagrama:

Escola Universitària d'Informàtica de Sabadell 112

Figura 34: connexió del monitor amb el proveïdors de JMS

Monitor de servidors JMS Jordi Manzano Ulloa

El client utilitzarà l'abstracció JMSAdmin per tal d'accedir mitjançant la classe connectora

(JMSAdminImplementation) als mètodes de la API d'administració del servidor JMS a monitoritzar.

Encara que l'objectiu del adapter és connectar dues parts que per si són incompatibles, per

maximitzar la independència entre el client i la implementació de les classes adaptadores,

aquelles que com s'ha comentat anteriorment s'encarreguen de connectar les API del proveïdors,

es farà servir el patró de disseny “Bridge”. Aquest patró de disseny és recomanat quan es vol

realitzar tasques com:

• Evitar un enllaç permanent entre l'abstracció i la seva implementació. Això pot ser degut a

que la implementació ha de ser seleccionada o canviada en temps d'execució.

• Canvis en la implementació d'una abstracció no han impactar en els clients, és a dir, el

codi no s'ha de recompilar.

Escola Universitària d'Informàtica de Sabadell 113

Figura 35: diagrama de classes amb el patró de disseny Adapter

Monitor de servidors JMS Jordi Manzano Ulloa

5.3.2 Interfície gràfica

Amb l'objectiu de garantir la independència entre la vista i el model de dades i facilitar el

desenvolupament de millores i ampliacions de l'eina, es decideix utilitzar les llibreries Swing de

Java. Swing no té una arquitectura estrictament MVC23 (el controlador i la vista es col·lapsen en

una entitat), però permet separar la vista del model de dades. La API Swing de Java aporta:

• Àmplia varietat de components: Existeixen una amplia gama de objectes gràfics com

botons, taules, menús... a més de contenidors per aquests.

• Aspecte modificable: Es pot personalitzar l'aspecte de les interfícies o utilitzar diversos

aspectes que hi ha per defecte.

• Desacoblament de la vista i el model: Donant lloc a tot un enfocament de desenvolupament

molt arrelat en els entorns gràfics d'usuari realitzats amb tècniques orientades a objectes.

Cada element té associat una classe de model de dades i una interfície que utilitza. Es pot

crear un model de dades personalitzat per a cada component, amb només heretar de la

classe Model.

• Contenidors niats: Qualsevol component pot estar inclòs en un altre. Per exemple, un

gràfic es pot niar en una llista.

• Diàlegs personalitzats: Es poden crear multitud de formes de missatges i opcions de diàleg

amb l'usuari, mitjançant la classe JoptionPane.

• Classes per diàlegs habituals: Es pot utilitzar JFileChooser per triar un fitxer, i

JColorChooser per triar un color.

23 MVC: Model-View-Controller és un patró de disseny per al desenvolupament de programari que separa el model de dades, la

interfície usuari i la lògica de control.

Escola Universitària d'Informàtica de Sabadell 114

Monitor de servidors JMS Jordi Manzano Ulloa

• Components per taules i arbres de dades: Mitjançant les classes JTable i Jtree.

• Potents manipuladors de text: A més de camps i àrees de text, es presenten camps de

sintaxi oculta JPassword, i text amb múltiples fonts JTextPane. A més hi ha paquets per

utilitzar fitxers en format HTML o RTF.

Existeixen nombrosos marcs de desenvolupaments MVC per treballar amb Java, però la

corba d'aprenentatge d'aquests és alta i incrementa el nombre d'hores destinats pel projecte i per

tant, serà menys costós utilitzar la llibreria de Swing per la representació de la informació que

permet també separar el model de dades de la vista.

5.3.3 Gestió d'excepcions

Amb la finalitat d'unificar els tipus d'excepcions de diferents servidors, es crearan dintre de la

package d'administració (que és la que connectarà el client monitor amb el servidor JMS), una

serie de classes que serviran per separar el codi del connector del servidor JMS amb el client

gràfic.

Escola Universitària d'Informàtica de Sabadell 115

Figura 36: exemple de trucada del client GUI al connector.

Monitor de servidors JMS Jordi Manzano Ulloa

En el següent exemple, es mostra la implementació de la funció de connexió per servidors

TIBCO (no alliberat en el present projecte per qüestions de llicencies privatives). Com es pot veure

en la declaració, la classe que utilitzi aquest mètode, haurà de gestionar l'excepció en cas que

s'aixequi:

// IMPLEMENTACIO DE LA CONNEXIO DEL CONNECTOR PEL JMS SERVER TIBCO

public void connect(String URL, String USER, String PASSWORD)throws
 JMSAdminException
{

 try{
admin = new TibjmsAdmin(URL,USER,PASSWORD);

 } catch (TibjmsAdminException e){
 throw new JMSAdminException(e.getStackTrace());
 }
 }

Dintre del codi del connector, quan es gestioni l'excepció del servidor JMS concret (en

l'exemple TibjmsAddminException), s'haurà de escalar l'excepció a través d'una nova

JMSAdminException. Això vol dir, que en el codi del client monitor, s'aixecarà aquesta excepció i

no s'haurà de gestionar directament l'excepció del servidor JMS; no es pot fer un codi dependent

del servidor JMS amb que s'està treballant. Les excepcions seran mostrades a l'usuari com una

finestra d'error perquè sigui informat del problema.

Escola Universitària d'Informàtica de Sabadell 116

Monitor de servidors JMS Jordi Manzano Ulloa

CAPÍTOL

 6 Implementació

6.1 ESTRUCTURA DE FITXERS I DIRECTORIS

La implementació del monitor té dos parts diferenciades; d'una banda la llibreria

JMSMonitorInterface, que permet obtenir les dades dels diferents proveïdors suportats, i el propi

client gràfic JMSMonitor, que utilitzarà la llibreria anterior per poder mostrar la informació a l'usuari

i oferir el total de les seves funcionalitats.

Escola Universitària d'Informàtica de Sabadell 117

Monitor de servidors JMS Jordi Manzano Ulloa

6.1.1 JMSMonitorInterface

Consta de tres directoris principals; bin, lib i src. Dintre de src es troba el codi font de la

llibreria, que està distribuït en diferents subdirectoris en funció dels packages Java creats. En

aquest directori es troben dos fitxers que serveixen per llençar la compilació de la llibreria i muntar

la llibreria en un fitxer jar24.

Dintre de la carpeta lib, es troben les llibreries necessàries per poder compilar el codi font i a

bin es trobaran les classes compilades.

Per executar el script que compila la interfície s'ha d'establir la variable d'entorn JAVA_HOME

apuntant al directori principal de la instal·lació de la JDK, ja que es buscarà el compilador de Java

“javac”:

...

if [-z "$JAVA_HOME"] ; then

 echo "fatal error -> JAVA_HOME is not setted!"

...

Amb les llibreries incloses dintre de la entrega, es genera el classpath per poder dir al

compilador de Java, quines són les llibreries a incloure per tal de compilar el codi:

export OPENJMSLIB="$JMSINTERFACEHOME/lib/openjms"

export ACTIVEMQLIB="$JMSINTERFACEHOME/lib/activemq"

export CLASSPATH="$OPENJMSLIB/openjms-0.7.6.1.jar:$OPENJMSLIB/jms-1.0.2a.jar :

$OPENJMSLIB/jndi-1.2.1.jar"

export CLASSPATH="$ACTIVEMQLIB/activemq-core-5.3.0.5-fuse.jar:..

Cal dir que amb tota ampliació d'aquesta part del projecte s'hauran de revisar els fitxers que

automatitzen la compilació, afegint les noves llibreries utilitzades o nous paquets de Java

desenvolupats per ser compilats.

24 Jar: Un java archive és un format de arxiu utilitzat per empaquetar tots els components d'una aplicació o projecte Java.

Escola Universitària d'Informàtica de Sabadell 118

Monitor de servidors JMS Jordi Manzano Ulloa

Una vegada s'inicia la compilació, els fitxers .class són emmagatzemats al directori bin, per a

que tot seguit es generi el fitxer jar per poder utilitzar-lo en la part gràfica:

export SRC_HOME="./org/jmsmonitor/bridge"

javac -cp $CLASSPATH -d ../bin $SRC_HOME/model/*.java $SRC_HOME/exceptions/*.java

$SRC_HOME/plugins/*.java $SRC_HOME/main/*.java

cd ../bin

jar cf ../JMSMonitorInterface.jar .

A més del script bash, també s'inclou un fitxer bat per poder compilar en entorns Windows.

6.1.2 JMSMonitor

La entrega de JMSMonitor consta de sis directoris; bin, conf, icons, lib, sessions i src. Els

directoris bin, lib i src tindran el mateix paper que en la interfície. El directori sessions tindrà els

fitxers amb les sessions de connexió del monitor emmagatzemades mentre que el directori icons

contindrà les icones i imatges emprades pel client gràfic. Per tal de configurar les traces de

l'aplicació, dintre de conf es trobarà el fitxer log4j.properties. Cal recordar que, qualsevol canvi en

la llibreria JMSMonitorInterface no implica recompilar el codi de la part gràfica, únicament s'haurà

d'incloure dintre del directori lib.

Al igual que amb la llibreria, s'inclouen scripts de compilació (tant per Linux com Windows)

que necessitaran que la variable d'entorn JAVA_HOME estigui correctament declarada. Aquests

són semblants als anteriorment descrits però cal destacat algunes diferencies a l'hora de generar

el fitxer jar que servirà per poder executar l'aplicació.

Com s'observa a continuació, s'inclou un manifest dintre del jar que es generà a partir de les

classes compilades:

jar cfvm $JMSMONITOR_HOME/lib/JMSMonitor.jar Manifest.txt

Escola Universitària d'Informàtica de Sabadell 119

Monitor de servidors JMS Jordi Manzano Ulloa

Aquest indicarà quina és la classe principal i quin és el classpath per tal de que es trobin totes

les classes que utilitza JMSMonitor:

//Contingut del manifest

Class-Path: geronimo-jms_1.1_spec-1.1.1.jar jcommon-1.0.16.jar

JMSMonitorInterface.jar jfreechart-1.0.13.jar log4j-1.2.15.jar

Main-Class: org.jmsmonitor.JMSMonitor

El fitxer resultant del script de compilació es trobarà al directori lib. Per tant, l'usuari per

executar l'aplicació haurà de situar-se al directori bin i executar el script que llença el monitor.

Aquest requereix dos paràmetres per indicar l'idioma de la aplicació:

jordi@jordi-laptop:~/Escriptori/JMSMonitor/bin$ JMSMonitor.sh en us
Checking environment...

JMS MONITOR HOME: /home/jordi/Escriptori/JMSMonitor

java -jar /home/jordi/Escriptori/JMSMonitor/lib/JMSMonitor.jar en us
2010-08-22 12:47:03,159 [INFO] org.jmsmonitor.JMSMonitor > Starting JMSMonitor...

2010-08-22 12:47:03,161 [DEBUG] org.jmsmonitor.JMSMonitor > JMSMONITOR_HOME =

/home/jordi/Escriptori/JMSMonitor

2010-08-22 12:47:03,561 [DEBUG] org.jmsmonitor.gui.frames.MainFrame > Starting main window...

2010-08-22 12:47:03,561 [DEBUG] org.jmsmonitor.gui.frames.MainFrame > setting look&feel...

2010-08-22 12:47:03,996 [DEBUG] org.jmsmonitor.gui.frames.MainFrame > setting locale...

2010-08-22 12:47:04,003 [DEBUG] org.jmsmonitor.gui.frames.MainFrame > creating interface components...

2010-08-22 12:47:04,078 [DEBUG] org.jmsmonitor.gui.elements.MainMenu > disabling charts...

...

Tal com s'inicia l'aplicació les traces començaran a donar informació sobre els processos

interns de l'aplicació i possibles advertències i errors que es vagin donant, com es mostra en

l'exemple anterior.

Escola Universitària d'Informàtica de Sabadell 120

Monitor de servidors JMS Jordi Manzano Ulloa

6.2 CONFIGURACIÓ DE LA APLICACIÓ

En aquest apartat es resumeixen totes aquelles decisions preses sobre els aspectes relatius a

la configuració de l'aplicació i com l'usuari podrà modificar certs paràmetres per tal de

personalitzar l'eina.

6.2.1 Traces de l'aplicació

Tota aplicació necessita mostrar o registrar informació dels processos interns a la mateixa i de

cadascuna de les tasques que realitza durant el seu funcionament per facilitar treballs de

depuració i detecció d'errors de l'aplicació. Per realitzar una gestió intel·ligent i fàcilment

configurable s'opta per l'ús de la llibreria log4j, un dels nombrosos projectes de la Apache

Software Foundation. representant un cost econòmic mínim al projecte per la seva llicència

Apache License.

Log4j anirà imprimint per pantalla, escrivint en fitxer o inclús fent insercions a bases de dades,

missatges que es definiran en el codi en punts del flux d'execució que es considerin importants o

crítics. Per tal de no inundar els registres amb missatges de traces o millorar el rendiment de

l'aplicació, Log4j permet establir diferents nivells de seguretat (de menor a major detall):

• FATAL: s'utilitza per a missatges crítics del sistema, generalment després de guardar el

missatge el programa fallarà.

• ERROR: s'utilitza en missatges d'error de l'aplicació que es vol guardar, aquests

esdeveniments afecten el programa però el deixen continuar funcionant, com per exemple

que algun paràmetre de configuració no és correcte i es carrega el paràmetre per defecte.

Escola Universitària d'Informàtica de Sabadell 121

Monitor de servidors JMS Jordi Manzano Ulloa

• WARNER: s'utilitza per a missatges d'alerta sobre esdeveniments que es vol mantenir

constància, però que no afecten el correcte funcionament del programa.

• INFO: s'utilitza per a missatges similars a la manera "verbose" en altres aplicacions.

• DEBUG: s'utilitza per escriure missatges de depuració. Aquest nivell no ha d'estar activat

quan l'aplicació es trobi en producció.

• TRACE: s'utilitza per mostrar missatges amb un major nivell de detall que debug.

La configuració de Log4j s'haurà de definir en un fitxer per indicar-li quin format tindran

aquestes traces, la mida màxima del registre i una gran varietat de paràmetres que es poden

consultar en la documentació oficial del projecte. A continuació es mostra un exemple del fitxer de

configuració de log4j, on s'estableixen les propietats per les traces de DEBUG responent al

següent format; [5 espais per la prioritat del missatge] {categoria del missatge} data -> missatge

de l'aplicació + retorn.

##
 ### LOG4j CONFIG ###
 ##
log4j.rootCategory=DEBUG, CONSOLE
log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender
log4j.appender.CONSOLE.layout=org.apache.log4j.PatternLayout
log4j.appender.CONSOLE.layout.ConversionPattern=[%-5p] {%c} %x -> %m%n

En el codi de l'aplicació s'utilitzarà de la següent forma:

// obtenció de l'objecte logger
private static Logger log =
 Logger.getLogger(ManageSessionForm.class.getName());
...
// mostrar missatge al log
log.debug("Load files...");

Escola Universitària d'Informàtica de Sabadell 122

Monitor de servidors JMS Jordi Manzano Ulloa

log.debug("Checking files...");
log.info (“Loading session OK”);

Per tant en aquest cas, si el nivell en la configuració és DEBUG, el log mostrarà tots els

missatges i si és INFO, només mostrarà l'últim. Cal afegir, que en el fitxer de configuració de log4j

es pot redirigir la informació de log a fitxers i fins i tot a una base de dades, de tal forma que

sempre es pot modificar sense recompilar codi el comportament global del logging de l'aplicació.

6.2.2 Multi idioma

Un dels altres aspectes importants que es té en compte és la possibilitat de canviar l'idioma

dels diàlegs i menús de l'aplicació.

Per dur a terme aquesta característica de l'eina, s'utilitzarà la classe ResourceBundle de

Java. Aquesta facilita la creació d'aplicacions traduïdes en diferents idiomes a més de poder

utilitzar diferents escenaris al mateix temps. Per treballar amb aquesta classe caldrà definir fitxers

de propietats amb l'extensió “.properties”. Aquest fitxers contindran el següent patró:

 # Messages_cat_ES.properties

 camp1 = valor1

 camp2 = valor2

 camp3 = valor3

On ' # ' és un caràcter per indicar que es tracta de un comentari i 'valorN' serà el contingut

assignat a la variable 'campN'. Tot seguit es mostra un exemple de la utilització de

ResourceBundle:

 //obtenir missatges en català

Escola Universitària d'Informàtica de Sabadell 123

Monitor de servidors JMS Jordi Manzano Ulloa

 Locale l = new Locale(“cat”,”ES”);

 ResourceBundle messages = (ResourceBundle.getBundle("Messages",l));
 String text = messages.getString(“camp1”);

El mètode estàtic getBundle retorna un ResourceBundle estàtic amb el contingut del fitxer

Messages_cat_ES.properties. Una vegada ja s'ha carregat el contingut del fitxer en memòria, es

poden obtenir els diferents valors que s'han assignat als camps de l'arxiu mitjançant el mètode

getString, que com a paràmetre d'entrada espera el nom del camp del que es vol obtenir el valor.

Per aquesta fase del projecte, s'alliberen tres fitxers Messages_cat_ES.properties,

Messages_esp_ES.properties, Messages_en_US.properties on es definiran els missatges i

cadenes de text en català, castellà i anglès respectivament.

6.2.3 Icones i imatges

Per les icones i imatges emprades en la interfície gràfica s'ha optat per Tango, una llibreria

gratuïta i oberta d'icones força utilitzada en entorns d'escriptori Linux com Gnome o KDE. A partir

de la versió 0.8.90 és de domini públic mentre que les antigues tenen un llicència Attribution-

ShareAlike 2.5 Generic de Creative Commons.

Escola Universitària d'Informàtica de Sabadell 124

Monitor de servidors JMS Jordi Manzano Ulloa

Únicament s'inclouen a la versió alliberada del present projecte aquelles icones que s'han

utilitzat i no tota la llibreria sencera. S'empren dos conjunts de mides, una de 16x16 píxels, molt

apropiada per menús i capçaleres de finestres, i l'altre de 22x22 més orientada a botons.

Swing permet afegir icones als seus elements de forma fàcil a través dels mètodes de la

classe en qüestió. Per exemple, a la classe MainMenu dintre de la package

org.jmsmonitor.gui.elements es declaren les entrades que tindrà el menú principal de la aplicació.

Aquests tindran una petita icona per identificar cada opció amb una acció concreta de forma més

visual:

...

//create entries of the "ACTIONS" component

String path = this.homepath + fsep + "icons" + fsep + "small" + fsep + "_purge.png";
ImageIcon iconPurge = new ImageIcon(path);
JMenuItem actionsPurge = new JMenuItem(messages.getString("MenuActionsPurge"),
 iconPurge);
actionsPurge.setToolTipText(messages.getString("MenuActionsPurgeHelp"));

 ...

Escola Universitària d'Informàtica de Sabadell 125

Figura 37: llibreria d'icones Tango

Monitor de servidors JMS Jordi Manzano Ulloa

Cal anotar que en el codi anterior es fa servir la variable d'entorn JMSMONITOR_HOME i una

cadena on es guarda el valor del separador que utilitza aquell sistema operatiu per construir les

rutes (per exemple, a sistemes Linux s'utilitza el caràcter '/'):

private String homepath = System.getenv("JMSMONITOR_HOME");
 private String fsep = System.getProperty("file.separator");

Escola Universitària d'Informàtica de Sabadell 126

Monitor de servidors JMS Jordi Manzano Ulloa

6.3 INTERFÍCIE D'ADMINISTRACIÓ

Com s'ha comentat al apartat de disseny, separar el codi del client gràfic del monitor de la

gestió de la connexió als diferents servidors és una part fonamental del projecte. Per tal de

mantenir la màxima independència en el codi del client, de les classes que adapten les diferents

interfícies dels múltiples servidors JMS, s'ha optat pel patró de disseny bridge.

La interfície està integrada per 4 packages que contenen les classes mostrades a l'anterior

diagrama. A continuació es mostrà el nom d'aquests amb els components que tenen inclosos:

Escola Universitària d'Informàtica de Sabadell 127

Figura 38: diagrama de classes amb el patró de disseny Bridge

Monitor de servidors JMS Jordi Manzano Ulloa

PACKAGE CLASSES / INTERFACES
org.jmsmonitor.bridge.main JMSAdmin

JMSAdminAbstraction (abstract)

JMSAdminImplementor (interface)
org.jmsmonitor.bridge.model JMSDestinationInfo

JMSDurableInfo

JMSMessageInfo
org.jmsmonitor.bridge.plugins JMSAdminActiveMQ

JMSAdminArjunaMQ

JMSAdminBossMessaging

JMSAdminFioranoMQ

JMSAdminHornetQ

JMSAdminJBossMQ

JMSAdminJORAM

JMSAdminOpenJMS

JMSAdminSonicMQ

JMSAdminTIBCOEMS

JMSAdminWeblogicMQ

JMSAdminWebsphereMQ
org.jmsmonitor.bridge.exceptions JMSAdminException

JMSAdminConnectionException

JMSAdminNonAvailableMethod

Taula 17: estructura de JMSMonitorInterface

org.jmsmonitor.bridge.main

JMSAdminAbstraction és una classe abstracta on es descriuen i defineixen els mètodes

genèrics que utilitzarà el client (en aquest cas, la interfície gràfica del monitor) per accedir a les

funcionalitats de l'API d'administració del servidor JMS. Inclou la interfície JMSAdminImplementor i

les classes JMSDestinationInfo, JMSDurableInfo i JMSMessageInfo. A més, es defineixen unes

constants per identificar els diferents proveïdors de JMS que existeixen en el mercat. D'entrada

s'han escollit un subconjunt de 12 proveïdors bastant comuns en els desenvolupaments amb

Escola Universitària d'Informàtica de Sabadell 128

Monitor de servidors JMS Jordi Manzano Ulloa

tecnologia JMS:

//Supported providers
public final static int OPENJMS = 1;
public final static int ACTIVEMQ = 2;
public final static int TIBCOEMS = 3;
public final static int HORNETQ = 4;
public final static int FIORANOMQ = 5;
public final static int JBOSSMQ = 6;
public final static int JBOSSMESSAGING = 7;
public final static int JORAM = 8;
public final static int ARJUNAMQ = 9;
public final static int SONICMQ = 10;
public final static int WEBLOGICMQ = 11;
public final static int WEBSPHEREMQ = 12;

Aquesta és una subclasse d' Observable. Java proporciona un sistema basat en el patró de

disseny Observer força senzill d'usar i molt útil quan s'ha de notificar un esdeveniment a diversos

objectes. Així doncs, cada vegada que es cridi al mètode refreshModel, que s'encarrega

d'actualitzar el model de dades d'un objecte de la classe JMSAdmin, es notificarà als observadors

per a que puguin tornar a obtenir el model de dades d'aquest i així poder gestionar la informació

en la part gràfica del sistema.

public abstract class JMSAdminAbstraction extends Observable{
...
}

JMSAdmin és una classe filla de JMSAdminAbstraction, que implementa els mètodes descrits

en la seva classe pare i per tant, les seves instàncies seran els objectes que crearà i utilitzarà el

client del monitor per obtenir la informació. Així doncs, el client construirà l'objecte de la classe

JMSAdmin indicant el tipus de proveïdor del que vol obtenir la informació:

JMSAdmin administrador = new JMSAdmin(JMSAdminAbstraction.ACTIVEMQ);

Escola Universitària d'Informàtica de Sabadell 129

Monitor de servidors JMS Jordi Manzano Ulloa

En el constructor, es crearà el nou implementador (JMSAdminImplementor) pel servidor en

concret:

public JMSAdmin (int provider){
switch(provider){
 case JMSAdminAbstraction.ACTIVEMQ:

implementor = new JMSAdminActiveMQ();
break;

case JMSAdminAbstraction.ARJUNAMQ:
implementor = new JMSAdminArjunaMQ();
break;

 ...

Com s'ha comentat anteriorment, en la classe JMSAdmin es farà la notificació als

observadors:

public void refreshModel() throws JMSAdminException{
 ...
 this.tDurables = durableInfo.length;
 setChanged();
 notifyObservers();
 ...
}

Degut a que la interfície tindrà només un objecte JMSAdmin i serà un recurs compartit per

diversos objectes, s'haurà d'assegurar la mútua exclusió en algunes situacions que es tractaran

més endavant, quan es parli del client gràfic.

JMSAdminImplementor és la interfície que connectarà les classes que utilitza el client amb

aquelles que implementaran els mètodes necessaris per adaptar les API dels diferents proveïdors

JMS.

Escola Universitària d'Informàtica de Sabadell 130

Monitor de servidors JMS Jordi Manzano Ulloa

org.jmsmonitor.bridge.model

JMSDestinationInfo, JMSDurableInfo i JMSMessageInfo són classes que representen la

pròpia naturalesa de la informació que es tracta; informació sobre destinacions (cues / tòpics) ,

dades sobre els durables creats i el model de dades d'un missatge respectivament. Aquest últim

s'utilitza per representar els camps del missatge que s'utilitzaran des del client gràfic sense emprar

la interfície Message de la API de JMS; això permet desacoblar el codi del client d'aquestes

llibreries i guanyar independència envers les diferents implementacions de JMS. És a dir, el client

mai haurà de cridar a mètodes de la API JMS, si no que utilitzarà sempre la present interfície per

obtenir les dades que necessiti.

org.jmsmonitor.bridge.plugins

En aquesta package s'inclouen totes les classes que serveixen per connectar el monitor amb

les classes pròpies del proveïdor objectiu; transformen el model de dades que s'obté mitjançant

les API d'administració de les diferents implementacions de JMS al model de dades amb que

treballa el monitor. En aquesta versió no s'implementen totes, però per concordança amb les

constants definides en la classe JMSAdminAbstraction, s'inclouen en el projecte sense la

funcionalitat desenvolupada. Les implementacions disponibles són les de ActiveMQ i OpenJMS on

més endavant es detallaran.

org.jmsmonitor.bridge.exceptions

S'inclouen totes les excepcions produïdes per les diferents implementacions de JMS.

Aquestes seran gestionades pel client monitor, per tant, en el codi dels connectors o de les

classes que formen la interfície mai es farà un tractament d'aquestes excepcions concretes

Escola Universitària d'Informàtica de Sabadell 131

Monitor de servidors JMS Jordi Manzano Ulloa

dependents de la implementació JMS, si no que es propagaran les genèriques que inclou aquest

paquet per a que el client pugui determinar l'acció a realitzar (mostrar un missatge per pantalla,

sortir de la connexió, etc.). En el següent exemple es mostrà com una excepció que llença el

proveïdor de JMS s'escala a una excepció definida en la package d'excepcions de la interfície:

public void connect(String URL, String USER, String PASSWORD)
throws JMSAdminConnectionException {

 try {
 admin = AdminConnectionFactory.create(URL, USER, PASSWORD);
 } catch (MalformedURLException e) {

throw new JMSAdminConnectionException(e.getStackTrace());

 } catch (JMSException e) {
throw new JMSAdminConnectionException(e.getStackTrace());
}

}

Es pot trobar el cas, en que la implementació d'un connector sigui incompleta o que hi hagi

algun mètode que no estigui desenvolupat. La classe JMSAdminNonAvailableMethod permetrà

gestionar aquest tipus de situacions. En el codi del connector es trobarà el mètode que té una

funcionalitat no suportada.

Així doncs en el codi de la interfície gràfica, es podrà tractar aquesta excepció tot indicant a

l'usuari el per què del error:

...
try{

 log.debug("managing new connection...");
 GUI.getSession().getConnection().connect();
 ...
 } catch (JMSAdminNonAvailableMethod f){
 log.error(Utils.StackTrace2String(f.getStackTrace()));
 GUI.showError(...);
 }
 ...

Escola Universitària d'Informàtica de Sabadell 132

Monitor de servidors JMS Jordi Manzano Ulloa

Connector per OpenJMS

Abans de començar la implementació, el servidor OpenJMS ha de configurar-se per tal de

definir els paràmetres per la connexió; s'ha d'editar el fitxer <openjmshome>/config/openjms.xml

que s'entrega per defecte (on <openjmshome> és el directori principal de la instal·lació del

producte), ja que si no serà impossible connectar-se al servidor perquè no està definit per acceptar

connexions TCP:

...

<Configuration>

 <!-- Optional. This represents the default configuration -->

 <ServerConfiguration host="192.168.1.45" embeddedJNDI="true" />

 <Connectors>

 ...

 <Connector scheme="tcp">

 <ConnectionFactories>

 <QueueConnectionFactory name="TCPQueueConnectionFactory"/>

 <TopicConnectionFactory name="TCPTopicConnectionFactory"/>

 </ConnectionFactories>

 </Connector>

...

 </Connectors>

 <TcpConfiguration port="3030" jndiPort="3035"/>

<SecurityConfiguration securityEnabled="true"/>

 <Users>

 <User name="admin" password="admin"/>

 </Users>

...

Com es pot veure en l'anterior fitxer, es defineix la IP del servidor i el port (3030 en aquest

cas) a més d'habilitar la seguretat del servidor indicant quins usuaris i amb quina clau podran

accedir.

En la implementació de la classe JMSAdminOpenJMS, que és la que connecta els mètodes

Escola Universitària d'Informàtica de Sabadell 133

Monitor de servidors JMS Jordi Manzano Ulloa

del servidor amb la aplicació a desenvolupar, es farà servir una interfície que proporciona el

proveïdor per tasques de administració:

 admin = AdminConnectionFactory.create(URL, USER, PASSWORD);

S'ha pogut comprovar que es recomanable incloure el protocol al passar la direcció de

connexió del servidor (p.e; tcp://localhost:3030). Hi ha implementacions JMS on no es cal

especificar i amb indicar només la direcció i el port és suficient, però a OpenJMS és necessari.

Respecte als mètodes d'enviament i neteja de missatges (consistent en un client que

consumirà tots els missatges d'una cua), s'utilitza JNDI per establir la connexió amb la factory. En

el següent fragment es poden veure les diferencies a l'hora de treballar amb l'API de OpenJMS

entre tòpics i cues:

public void sendTextMessage...{
 context = loadInitialContext(initcontext, jndiServerUrl);
 ...
 if (!isTopic){
 QueueConnectionFactory qfactory = (QueueConnectionFactory)
 context.lookup(factory);
 ...
 }
 else{
 TopicConnectionFactory tfactory = (TopicConnectionFactory)
 context.lookup(factory);
 ...
 }

En el mètode loadInitialContext és retorna un objecte Context que serveix com a punt

d'entrada al sistema de noms de Java. En el paràmetre initContext, que l'usuari haurà d'especificar

mitjançant la interfície gràfica, s'espera el valor que el proveïdor JMS ens indica a la

Escola Universitària d'Informàtica de Sabadell 134

Monitor de servidors JMS Jordi Manzano Ulloa

documentació, per OpenJms és “org.exolab.jms.jndi.InitialContextFactory”.

Per les dades de les cues i destinacions, OpenJMS no disposa d'un mètode explícit per

obtenir cadascuna d'aquestes per separat, si no que s'han d'obtenir totes i després dividir-les en

funció de la seva classe (veure mètode splitDestinations de la classe JMSAdminOpenJMS).

Durant la implementació dels mètodes que connecten amb el servidor de OpenJMS, s'han

observat algunes mancances de la API d'aquest proveïdor JMS sobretot a nivell de estadístiques

generals del servidor (número de consumidors, missatges entrants i missatges sortints). Aquest fet

ha condicionat el desenvolupament del connector, ja que hi han dades estadístiques que no són

calculades i no es podran utilitzar en el client gràfic del monitor (es retornaran els valors sempre a

0). No obstant permet realitzar algunes funcionalitats bàsiques; obtenir el nom de cues, tòpics,

durables i crear usuaris i destinacions. Una possible solució seria revisar el codi de OpenJMS ja

que és una aplicació de codi obert, però està fora del abast del present projecte. En concret els

mètodes i dades que no es poden obtenir pel seu ús en el monitor són:

• Missatges d'entrada i de sortida en el servidor: no hi ha cap mètode per obtenir-los. Això

també implica al ràtio calculat en cada refresc del nous missatges entrants i sortints.

• Nombre de consumidors

Aquesta limitació de la API de OpenJMS afecta a la funcionalitat de l'aplicació i es podria

revisar en un futur lliurament o evolució de la mateixa.

Connector per ActiveMQ

Per tal d'obtenir els paràmetres a monitoritzar de ActiveMQ s'ha utilitzat JMX. Java Manage

eXtensions és una tecnologia que defineix una arquitectura de gestió, API, patrons de disseny i

Escola Universitària d'Informàtica de Sabadell 135

Monitor de servidors JMS Jordi Manzano Ulloa

serveis per la monitorització de aplicacions desenvolupades sota Java. Aquest fet, no va ser

contemplat al principi del projecte i es van realitzar les modificacions pertinents per incloure aquest

nou requeriment. Cal dir que altres proveïdors JMS també utilitzen aquesta tecnologia i per tant no

és un recurs especific per un connector, si no que pot ser extensible en el desenvolupament

d'altres. S'afegeix doncs a la interfície de connexió amb els proveïdors un mètode per dir si el

connector utilitzarà JMX o no. D'aquesta manera, la interfície gràfica podrà distingir quines dades

són les que necessita que l'usuari ompli en el gestor de connexions per tal de poder establir una

sessió JMX contra el servidor JMS.

En el servidor es podrà configurar l'accés JMX amb autenticació o sense. Si no es requereix

aquest nivell de seguretat bastaria amb comprovar que al fitxer de configuració de ActiveMQ

apareix una configuració equivalent a la següent:

...
 <broker xmlns="http://activemq.org/config/1.0" useJmx="true"
 brokerName="localhost"
 dataDirectory="${activemq.base}/data">
 <managementContext>
 <managementContext connectorPort="2011" jmxDomainName="my-broker"/>
 </managementContext>
 <!-- The transport connectors ActiveMQ will listen to -->
 <transportConnectors>
...

En canvi si es vol tenir restringit l'accés s'hauran de realitzar les següents accions:

· Canviar el fitxer anterior amb aquest valor:

 <managementContext>
 <managementContext createConnector="false"/>
 </managementContext>

· Crear dos fitxers; jmx.access i jmx.password dintre de la carpeta de configuració de

ActiveMQ. Aquest últim haurà de tenir permisos 600 (escriptura i lectura només pel propietari) per

Escola Universitària d'Informàtica de Sabadell 136

Monitor de servidors JMS Jordi Manzano Ulloa

a que el servidor ActiveMQ arranqui correctament:

conf/jmx.access:

The "monitorRole" role has readonly access.

The "controlRole" role has readwrite access.

monitorRole readonly

controlRole readwrite

conf/jmx.password:

The "monitorRole" role has password "abc123".

The "controlRole" role has password "abcd1234".

monitorRole abc123

controlRole abcd1234

· Canviar el valor de la variable SUNJMX (dintre del fitxer /bin/activemq) per incloure els dos

fitxers anteriors:

if [-z "$SUNJMX"] ; then
#SUNJMX="-Dcom.sun.management.jmxremote.port=1099

-Dcom.sun.management.jmxremote.authenticate=false

-Dcom.sun.management.jmxremote.ssl=false"

#SUNJMX="-Dcom.sun.management.jmxremote"

SUNJMX="-Dcom.sun.management.jmxremote.port=1616
-Dcom.sun.management.jmxremote.authenticate=true
-Dcom.sun.management.jmxremote.ssl=false \

-Dcom.sun.management.jmxremote.password.file=${ACTIVEMQ_BASE}/conf/jmx.password
\

-Dcom.sun.management.jmxremote.access.file=${ACTIVEMQ_BASE}/conf/jmx.access"
fi

Com a ajuda per treballar amb JMX també s'ha utilitzat jconsole, una utilitat proporcionada

per Java, que permet navegar pels diferents valors i paràmetres de les aplicacions que poden

treballar amb JMX.

Així doncs, per establir la sessió d'administració als servidor ActiveMQ, es carregaran les

Escola Universitària d'Informàtica de Sabadell 137

Monitor de servidors JMS Jordi Manzano Ulloa

credencials proporcionades per l'usuari i mitjançant la direcció i el nom de l'objecte JMX s'obtindrà

una instància de BrokerViewBean, una classe que permetrà administrar el servidor. Mitjançant la

classe MbeanServerConnection (connection) es podran obtenir les dades sobre destinacions. Tot

seguit s'inclou un exemple per establir una connexió del plugin d'ActiveMQ:

 JMXServiceURL urlJMX;
 try {
 ...
 urlJMX = new JMXServiceURL("service:jmx:rmi:///jndi/"+ url +"/jmxrmi");
 connector = JMXConnectorFactory.connect(urlJMX, credentials);
 connector.connect();
 connection = connector.getMBeanServerConnection();
 ObjectName name = new ObjectName(this.objectName);

 adminBean = (BrokerViewMBean)
 MbeanServerInvocationHandler.newProxyInstance(
 connection, name, BrokerViewMBean.class, true);
 ...
}

El valor de la cadena objectName tindrà forma que s'indica a continuació, on “localhost” serà

substituït pel nom (BrokerName) que se li ha donat en la configuració a l'intermediari que ens

proporcionarà les dades del servidor (es pot veure anteriorment a aquest capítol quan es parlava

sobre la configuració d'ActiveMQ):

"org.apache.activemq:localhost,Type=Broker"

 Cal notar que la declaració d'aquest mètode és diferent a la de OpenJMS que té un tipus de

paràmetres diferent, ja que aquest només necessita el nom de l'usuari, la direcció i la contrasenya

(dades bàsiques per a una connexió administrativa). El connector de ActiveMQ només suporta

l'administració mitjançant JMX, per tant, si des de el client s'invoqués a aquest mètode s'ha

Escola Universitària d'Informàtica de Sabadell 138

Monitor de servidors JMS Jordi Manzano Ulloa

d'informar que no està disponible:

public void connect(String url, String user, String pass)
throws JMSAdminConnectionException,

JMSAdminNonAvailableMethod {
 throw new JMSAdminNonAvailableMethod("Only JMX connection is available");

}

Amb la API d'administració de ActiveMQ si s'han pogut obtenir totes les dades que necessita

el monitor per complir amb les especificacions dels tòpics, cues i durables:

 ...
 ObjectName [] queueNames = adminBean.getQueues();
 this.queues = new JMSDestinationInfo[queueNames.length];

 for (int i=0;i<queueNames.length;i++) {
 QueueViewMBean queueMbean = (QueueViewMBean)
 MBeanServerInvocationHandler.newProxyInstance(connection,
 queueNames[i], QueueViewMBean.class, true);
 this.queues[i] = new JMSDestinationInfo();
 this.queues[i].setName(queueMbean.getName());
 ...

En el l'exemple anterior, mitjançant l'objecte adminBean s'obtenen el nom de les cues en un

vector. Per obtenir les dades relatives a cada cua es recorrerà el vector obtenint una instància de

la classe QueueViewMBean que permetrà accedir a les dades de la cua corresponent a cada

iteració. Per tòpics i per durables el mètode és semblant però utilitzant les classes

TopicViewMBean i DurableSubscriptionViewMBean respectivament.

En quan a la creació i destrucció de destinacions, s'utilitza l'objecte adminBean per realitzar

aquestes gestions. Per exemple, en la creació de tòpics i cues, s'utilitzaria el mètode addTopic i

addQueue respectivament.

Escola Universitària d'Informàtica de Sabadell 139

Monitor de servidors JMS Jordi Manzano Ulloa

Per poder realitzar les funcions d'enviament de missatges i totes les funcionalitats que

impliquen crear un client per tal de produir, consumir missatges o consultar les dades de les cues

(browse), no s'utilitzarà JNDI fet que ens servirà per provar altra de les modificacions que es van

realitzar al mateix temps que es creava el mètode per indicar si aquell connector utilitzava JMX o

no.

 Com que hi pot haver connectors que pot ser interessant utilitzar directament les llibreries

pròpies del proveïdor JMS per connectar-se i enviar o rebre missatges, es crea un mètode estàtic

a la classe JMSAdminAbstraction per indicar a la interfície gràfica si aquest connector requereix

que l'usuari indiqui les dades JNDI a l'hora de configurar una sessió del monitor:

static public boolean isJMXPlugin(int p){...}
 static public boolean usesJNDI(int p){...}

Aquestes funcions estàtiques (són relatives a la classe, no cal instanciar un objecte per

utilitzar-les) truquen a altres mètodes estàtics que han de definir tots els proveïdors implementats.

Per tant, s'afegeix al mòdul que fa d'adaptador entre el client gràfic i les API del diferents

proveïdors, un mecanisme per donar certa flexibilitat a la interfície gràfica per decidir quina

informació es requerida per treballar amb aquella connexió i quina altra no, i per tant, construir els

formularis que l'usuari ha d'omplir per establir la connexió de forma adequada sense dades

innecessàries.

Consideracions per a futures ampliacions

Per afegir nous proveïdors no definits en la classe JMS, en la package

org.jmsmonitor.bridge.plugins s'hauran de crear les noves classes que implementin els mètodes

per adaptar el codi dels administradors del proveïdors amb el model de dades del monitor JMS.

Escola Universitària d'Informàtica de Sabadell 140

Monitor de servidors JMS Jordi Manzano Ulloa

Conjuntament s'hauran d'editar i recompilar les classes:

• JMSAdminAbstraction: s'haurà de definir la nova constant que identifiqui al nou proveïdor a

implementar, a més de la revisió dels mètodes estàtics comentats anteriorment per

incloure els nous connectors dintre d'aquests.

• JMSAdmin: al constructor s'afegirà un nou cas en el selector per crear un implementador

pel nou server a monitoritzar.

switch(provider){
...

 case JMSAdminAbstraction.NOUSERVERJMS:
 implementor = new JMSNOUSERVERJMS();
break;

...

Com es veurà més endavant, el client gràfic és totalment independent i la inclusió o exclusió

de connectors no afecten al codi d'aquest.

Escola Universitària d'Informàtica de Sabadell 141

Monitor de servidors JMS Jordi Manzano Ulloa

6.4 CLIENT GRÀFIC

Una vegada que ja s'ha desenvolupat la llibreria JMSMonitorInterface, és el torn de la

implementació del client gràfic pel monitorizatge de servidors JMS. A continuació es nombren les

diferents packages, classes i interfícies que conformen JMSMonitor:

PACKAGE CLASSES / INTERFACES
org.jmsmonitor JMSMonitor (punt d'entrada)

org.jmsmonitor.admin Connection

Session

Updater

org.jmsmonitor.gui.model MainTableModel ServerInfoModel

org.jmsmonitor.gui.elements ButtonAutoRefresh

ButtonConnection

ButtonRefresh

BrowseMessageFormEvents

MainTableEvents

CommonList

MainMenu

MainServerInfo

MainTabs

MainToolbar

PanelInfo

org.jmsmonitor.gui.frames AbstractFrame (abstracte)

AvailableSessionsForm

BrowseMessageForm

ClasspathForm

ChartPieFrame

Charts (interfície)

ChartXYFrame

Form

InfoFrame

MainFrame

ManageDestinationForm

ManageSessionForm

PurgeForm

SendMSGForm

org.jmsmonitor.io Printer

SessionFile

SessionManager

org.jmsmonitor.utils FileFilterCustom Utils

XMLManager

Taula 18: estructura de JMSMonitor

Escola Universitària d'Informàtica de Sabadell 142

Monitor de servidors JMS Jordi Manzano Ulloa

org.jmsmonitor

El punt d'entrada a l'aplicació es troba en aquesta package i espera dos paràmetres per

indicar-li el idioma de la aplicació fent servir la classe ResourceBundle de Java, tal com s'ha

comentat a l'inici d'aquest capítol. A més, es comprova que la variable d'entorn

JMSMONITOR_HOME existeixi tot apuntant al directori actual del executable del monitor. Cal dir,

que aquesta variable no cal que l'assigni l'usuari, si no que al script que llença l'aplicació ja

s'estableix el valor correcte.

org.jmsmonitor.admin

Conté aquelles classes que s'utilitzen per establir una connexió amb els diferents proveïdors

de JMS tot utilitzant la llibreria JMSMonitorInterface. Cal destacar la classe Updater, que és un

thread que s'encarrega d'anar trucant al mètode de refresc de l'administrador JMSAdmin i per tant

actualitzant el model de dades. Més endavant es descriurà aquest procés.

org.jmsmonitor.gui.model

Representa el model de dades del monitor. D'una banda, la informació general del servidor

amb els totals acumulats com per exemple, el nombre total de missatges entrants i sortints, i per

l'altra, les dades que conté la taula de la finestra principal del monitor.

org.jmsmonitor.gui.elements

Aquesta package recopila tots els elements que hi són dintre de les finestres del monitor

Escola Universitària d'Informàtica de Sabadell 143

Monitor de servidors JMS Jordi Manzano Ulloa

juntament amb les seves accions. Per exemple, aquí es trobaran la classe que representa el menú

de la aplicació, que llença les diferents funcionalitats del monitor, o la barra d'eines que incorpora

els botons pel refresc de les dades o per connectar/desconnectar-se del servidor.

org.jmsmonitor.gui.frames

Totes les finestres, inclosa la finestra principal de l'aplicació, es troba en aquest package. A

més, també es recopilen els diferents formularis que l'usuari haurà d'omplir per determinades

accions. Cal destacar també les classes que representen les gràfiques ChartPieFrame i

ChartXYFrame, que implementen la interfície Charts. La primera seran les gràfiques de tipus

circular i les segones seran gràfiques pintades sobre els eixos X i Y.

org.jmsmonitor.io

Les classes que es troben dintre d'aquest package s'encarreguen de totes les operacions de

lectura i escriptura a disc. SessionFile representa un fitxer que emmagatzema una sessió mentre

que SessionManager té els mètodes necessaris per salvar i carregar els fitxers que contenen

sessions.

org.jmsmonitor.utils

Aquest paquet conté classes que implementes certes funcions i utilitzats de caràcter més

general i no tan vinculat al monitor, com per exemple la verificació de XML a partir d'un XSD.

Escola Universitària d'Informàtica de Sabadell 144

Monitor de servidors JMS Jordi Manzano Ulloa

Una vegada s'ha descrit l'estructura general del JMSMonitor, a continuació s'aniran

comentant els aspectes més rellevant de la implementació del client gràfic agrupant per

funcionalitats generals o parts més diferenciades.

6.4.1 Funcionalitat bàsica

L'aplicació consta d'una finestra principal que tindrà un conjunt d'elements que podran

disparar accions o representar dades. Aquesta representa la classe principal del client gràfic;

controla i es comunica amb els seus components integrants. Quan es llença l'aplicació mitjançant

el script, es crida a la classe que conté el mètode main JMSMonitor. Aquesta s'encarrega de

comprovar els paràmetres de entrada, agafar la configuració de log4j i crear la finestra principal

instanciant la classe MainFrame:

 GUI = new MainFrame(Language,Country);

La classe MainFrame hereta de la classe abstracta AbstractFrame, que defineix mètodes que

utilitzen totes les finestres com situar-les al centre de la pantalla, i altres més generals com la

generació de missatges d'advertència, error i confirmació. MainFrame té els següents

components:

private MainMenu miMenu;
 private MainToolbar miToolBar;
 private MainTabs miTab;
 private List <Charts> misCharts;
 private MainServerInfo miInfoServidor;
 private Session session = null;
 private ManageSessionForm sessionForm = null;
 private ServerInfoModel serverInfoModel;

Escola Universitària d'Informàtica de Sabadell 145

Monitor de servidors JMS Jordi Manzano Ulloa

Com es pot observar, hi són el menú de l'aplicació, la barra d'eines, els tabuladors per escollir

la taula a mostrar (cues, tòpics o subscripcions durables), una llista amb totes les gràfiques que

són visualitzades en aquell moment i el panell amb la informació general del servidor juntament

amb el seu model de dades. A la següent figura es mostra la representació gràfica d'aquests

elements:

El menú principal de l'aplicació es representat per la classe MainMenu, que hereta de la

classe JMenubar de la API de Swing. En el constructor d'aquesta classe es van afegint tots els

menús i submenus que tindrà l'aplicació, podent-hi assignar icones i utilitzant els fitxers de text en

funció de l'idioma en que s'hagi carregat l'aplicació. Amb el mètode setToolTipText s'afegeix un

missatge per ajudar a l'usuari a entendre que farà aquella opció de menú; si passa el ratolí per

sobre del menú apareixerà una descripció en d'ajuda de l'acció que s'executarà aquell ítem del

menú. També es defineixen les accions que realitzaran aquest ítems quan l'usuari els seleccioni,

de tal forma que es crearan noves finestres i formularis tal com es mostra en el següent exemple:

Escola Universitària d'Informàtica de Sabadell 146

Figura 39: finestra principal de JMSMonitor

Monitor de servidors JMS Jordi Manzano Ulloa

//action FILE -> EXIT
 fileClose.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 GUI.exit();
 }
});

 Cal dir, que els components del menú poden ser habilitats i deshabilitats en funció de quina

sigui la situació del monitor. Per exemple, si no hi ha una sessió carregada, l'usuari no podrà

seleccionar les opcions com “enviar missatge” o “crear cua” per evitar possibles errades.

La barra d'eines es representada per la classe MainToolbar, que hereta de la classe de la

API de Swing Jtoolbar, conté tres botons i un camp per mostrar a quin servidor s'està intentant

connectar:

...
private ButtonConnection connection;

 private ButtonRefresh refresh;
 private ButtonAutoRefresh autoRefresh;
 private JLabel lSessionHeader;
 private JLabel lSessionInfo;
 ...

Al igual que passava amb el menú, aquests elements també poden ser habilitats i

deshabilitats en funció de la situació del monitor.

Les dades de les cues, tòpics i durables representades per la classe MainTabs contindran

també un menú contextual, el qual serà accessible amb el botó dret del ratolí. La classe

MainTableEvents (hereta de la classe MouseAdapter) contindrà la implementació d'aquest menú.

Escola Universitària d'Informàtica de Sabadell 147

Monitor de servidors JMS Jordi Manzano Ulloa

public void mouseClicked(MouseEvent arg0){
 ...
 int row = table.getSelectedRow();
 if (arg0.getClickCount() == 2 &&
 arg0.getButton() == MouseEvent.BUTTON1)
 {
 String name = (String) table.getValueAt(row,0);
 BrowseMessagesForm m = new BrowseMessagesForm(GUI);
 m.start(name,type);
 }
 ...
}

En fer click sobre la taula, s'invoca el mètode mouseClicked, que en funció de si s'ha realitzat

amb el botó dret o és un doble amb el botó principal, mostrarà un menú o el contingut de la cua

respectivament.

Cal dir, que en el constructor d'aquests elements, es passa com paràmetre la referència de la

finestra principal de la aplicació MainFrame, per tal d'obtenir accés a altres objectes com per

Escola Universitària d'Informàtica de Sabadell 148

Figura 40: menú contextual de la taula principal

Monitor de servidors JMS Jordi Manzano Ulloa

exemple el mètode que connecta el monitor amb el servidor JMS (botó de connexió). Així doncs,

el botó de refresc crida al mètode refresh de MainFrame (finestra principal) per tal d'obtenir una

vegada les dades del servidor JMS i actualitzar el model de dades. En canvi, el botó d'habilitació

del refresc automàtic llença un thread mitjançant la classe Updater, per tal de fer aquest refresc en

la freqüència de milisegons que l'usuari ha definit en la sessió, mentre que el botó de connexió fa

que s'inicii o es tanqui una connexió amb un servidor JMS. A continuació es detallaran aquestes

funcionalitats.

Establiment de la connexió

Un dels components de la classe MainFrame és la classe Session, que representa les dades

d'una sessió de connexió i gestiona junt amb els seus components, la comunicació amb el

servidor JMS mitjançant la llibreria JMSMonitorInterface. La següent figura ajuda a entendre

aquesta relació:

Escola Universitària d'Informàtica de Sabadell 149

Figura 41: relació entre les classes que gestionen la

connexió

Monitor de servidors JMS Jordi Manzano Ulloa

El gestor de sessions (veure apartat "gestio de sessions") omple les dades l'objecte instanciat

de Session juntament amb les dades de connexió. La classe Connection tindrà un component

JMSAdmin (la classe del connector que s'ha implementat per tal de relacionar client i servidor

JMS). Per tant, quan es vulgui iniciar una connexió es trucarà al següent mètode:

GUI.getSession().getConnection().connect();

En l'anterior exemple es pot veure com mitjançant la classe MainFrame es pot accedir a la

sessió i a la connexió, per tal d'establir la connexió. El mètode connect utilitza les dades de la

sessió per determinar quin tipus de connexió establir, si JMX o directament el mètode estàndard

que proporcioni la implementació del connector:

public void connect() (...) {
 ...
 if (isJMX){
 admin.connect(host, user, pass, objectName);
 }
 else{
 admin.connect(host, user, pass);
 }

En cas que la connexió es perdi o el servidor no estigui disponible, es mostrarà una excepció

a l'usuari ja que s'haurà aixecat l'excepció JMSAdminConnectionException, inclosa dintre del

mòdul interfície JMSMonitorInterface.

Escola Universitària d'Informàtica de Sabadell 150

Monitor de servidors JMS Jordi Manzano Ulloa

Refresc de les dades

 En el mètode connect de la classe Connection, si la connexió s'estableix amb èxit s'afegeix

a l'objecte admin (JMSAdmin) un observador. Aquest serà l'encarregat de dir a la resta de

components que JMSAdmin ha actualitzat el seu model i que poden obtenir-lo per fer les seves

operacions. Per poder dur a terme aquesta tasca s'ha de sobrescriure el mètode update en la

classe MainFrame (implementa la interfície Observer). Aquest notificarà el canvi del model als

diferents components com la taula principal, el propi botó de connexió (perquè canvii el seu estat),

la informació general del servidor i les gràfiques per a que siguin pintades de nou amb els valors

obtinguts.

Per l'actualització de la taula principal, s'invoca el mètode refresh de la classe MainTabs.

Aquesta representa tres pestanyes on cadascuna conté una taula amb el model de dades

monitoritzades per cues, tòpics i subscripcions durables. El model de dades es vincula amb la la

vista en el constructor d'aquesta indicant el tipus de dades que contindrà mitjançant les constants

de la mateixa classe MainTableModel:

public MainTabs(MainFrame GUI){
 this.GUI = GUI;

Escola Universitària d'Informàtica de Sabadell 151

Figura 42: excepció de connexió

Monitor de servidors JMS Jordi Manzano Ulloa

 dtmQueues = new MainTableModel(MainTableModel.QUEUE,
 GUI.getTextMessages());
 dtmTopics = new MainTableModel (MainTableModel.TOPIC,
 GUI.getTextMessages());
 dtmDurables = new MainTableModel(MainTableModel.DURABLE,
 GUI.getTextMessages());

Per tal de recopilar les dades generals del servidor, es fa servir una classe per acumular

aquestes anomenada ServerInfoModel. Quan MainFrame observa que hi ha una actualització en

l'administrador, comptabilitza les dades de cada cua, tòpic i durable per tal de tenir un model amb

el conjunt de dades global, que a més de ser representat en la vista principal del monitor, serà

utilitzat per les gràfiques.

Refresc automàtic de les dades

D'altra banda, la classe Updater es llença cada vegada que s'estableix una nova connexió.

Aquest no és més que un thread que truca al mètode que refresca el model de l'objecte admin

(classe JMSAdmin).

Es important comentar el paper de synchronized en el moment d'invocar el mètode

d'actualització del model de JMSAdmin, que és un recurs compartit i accessible a tots els

elements que conformen el monitor. Així doncs, es pot donar el cas que en el moment que

s'actualitza el model del administrador, l'usuari sol·liciti la creació/destrucció d'una cua. Això

evidentment fa que el resultat del conjunt de les operacions sigui indeterminat; no es pot

assegurar quin serà el nombre de cues comptabilitzar en el model, si l'anterior o el posterior a

l'operació de creació/destrucció. El bloc synchronized s'executarà quan aquell objecte no estigui

sent utilitzat per altre fil, assegurant així la mútua exclusió.

Escola Universitària d'Informàtica de Sabadell 152

Monitor de servidors JMS Jordi Manzano Ulloa

Amb el botó de connexió es destrueix el fil que actualitza les dades de forma automàtica i

s'esborra la referència del component updater. En aquesta situació la interfície gràfica canviarà la

seva vista per representar la desconnexió i no permetre que l'usuari fagi accions que si podia fer

abans, acotant així possibles errors d'execució.

Escola Universitària d'Informàtica de Sabadell 153

Monitor de servidors JMS Jordi Manzano Ulloa

6.4.2 Gestió de les sessions

Per tal de poder carregar les dades de la connexió en el monitor, s'utilitza el gestor de

sessions. Aquesta funcionalitat està representada per la classe ManageSessionForm, que

visualitza un formulari (per omplir el model de dades Session i Connection) i quatre botons per tal

de poder carregar, emmagatzemar, acceptar o cancel·lar una sessió. A més es poden incloure

llibreries al classpath de forma dinàmica, per tal de poder connectar-se amb un servidor concret

S'ha de recordar que cada proveïdor implementa les seves pròpies llibreries i que la interfície

JMSMonitorInterface només assegura que el client “s'entengui” de forma transparent amb

aquestes API. A continuació s'explicarà amb més detall les parts més rellevants del gestor de

sessions.

emmagatzemar i recuperar sessions

Quan el botó per salvar la sessió es prem, s'activa el mètode per emmagatzemar la sessió a

disc. El que farà es utilitzar la classe SessionManager per escriure a disc la informació del

formulari.

 //SAVE
...
 sManager.loadSessions();
 sManager.saveSession(session);
 log.info("saved session " +
 session.getName() +" ok");
...

En l'anterior exemple, primer es carrega la informació general de les sessions que hi són ja

guardades (mètode loadSessions), per veure si és una sessió nova o s'ha de reescriure. Aquesta

informació està en un fitxer anomenat sessions.monitor, ubicat en el directori sessions de la

Escola Universitària d'Informàtica de Sabadell 154

Monitor de servidors JMS Jordi Manzano Ulloa

instal·lació del monitor. Té el següent format:

nom de la sessió = ruta del fitxer amb les dades de la sessió i connexió

Una vegada la classe SessionManager obté una llista amb la referencia dels noms de les

sessions amb els fitxers, ja pot salvar la sessió al fitxer. Aquesta referencia ve representada per la

classe SessionFile, que no és més que una subclasse de la classe File de Java, on s'inclou un

camp amb el nom de la sessió.

Per salvar el fitxer, s'empra el mètode saveConcreteSession de SessionManager que utilitza

la classe Properties de Java per muntant el fitxer amb el mètode setProperty com es mostra a

continuació:

private void saveConcreteSession (...){
 Properties prop = new Properties ();
 OutputStream os = null;
 try{
 os = new FileOutputStream(file);
 Calendar cal = new GregorianCalendar();

 //CONNECTION
 Connection c = session.getConnection();
 prop.setProperty(FNAME,session.getName());
 prop.setProperty(FHOST, c.getHost());
 ...
 prop.store(os, (FCOMMENT + " SESSION"));
 ...
 }

Quan l'objecte prop ha sigut establert assignant-li per cada etiqueta el seus valors

corresponents, es crida al mètode store on se li passarà un objecte OutputStream per tal de crear

el fitxer a disc. Cal dir que el nom que tindran les etiquetes dintre del fitxer per identificar cadascun

Escola Universitària d'Informàtica de Sabadell 155

Monitor de servidors JMS Jordi Manzano Ulloa

dels valors guardats de la sessió i connexió són constants definides en la classe:

...
 private static final String sFile = "sessions.monitor";
 private static final String FNAME = "session_name";
 private static final String FHOST = "connection_host";
 private static final String FUSER = "connection_user";
 private static final String FPASS = "connection_pass";
...

D'aquesta manera el fitxer de la sessió, anomenat com nom_de_la_sessió.monitor, tindrà un

contingut semblant al següent:

SESSION
#Mon Aug 23 00:00:28 CEST 2010
connection_user=admin
jmx_objectname=
session_name=openjms_queue
isJMX=false
connection_initcontext=org.exolab.jms.jndi.InitialContextFactory
delay=2000
connection_jndiserver=tcp\://localhost\:3035
connection_pass=admin
cp=/opt/openjms_default/lib/jms.jar;/opt/openjms_default/lib/jndi
-1.2.1.jar;/opt/openjms_default/lib/openjms-0.7.6.1.jar
connection_provider=1
connection_factory=QueueCF
connection_host=tcp\://localhost\:3030
last=1282514362906

 D'altra banda, qualsevol error que aparegui en el procés serà notificat a l'usuari aixecant una

excepció en la vista del gestor de sessions (ManageSessionForm).

Per carregar una sessió, s'obrirà una nova finestra que mostrarà totes les sessions

disponibles, que seran totes aquelles que estiguin registrades al fitxer sessions.monitor. La classe

AvailableSessionsForm representa aquest formulari on l'usuari podrà carregar o esborrar una

Escola Universitària d'Informàtica de Sabadell 156

Monitor de servidors JMS Jordi Manzano Ulloa

sessió. En el constructor es passarà la referencia de la sessió que conté el formulari principal:

public AvailableSessionsForm (MainFrame g, Session s){
 this.GUI = g;
 session = s;
 setTextMessages (GUI.getTextMessages());
 sManager = GUI.getSessionForm().getSManager();
}

Com es mostra a la següent figura, aquesta finestra conté un botó per esborrar, un altre per

carregar la sessió al formulari del gestor de sessions i un altre per sortir.

En el cas de que s'esborri una sessió emmagatzemada, es cridara al mètode de la classe

SessionManager deleteSession i es descartarà de la llista que es visualitza l'entrada corresponent:

try {
 sManager.deleteSession(sf);
 listModelSessions.removeElement(sf.getSessionName());
 } catch (IOException e) {
 log.error("Session file not found: " + sf.getPath());
 ...
}

Escola Universitària d'Informàtica de Sabadell 157

Figura 43: sessions guardades

Monitor de servidors JMS Jordi Manzano Ulloa

Quan es vol carregar una sessió s'utilitza el mètode getConcreteSession de SessionManager,

que retornarà un objecte Session amb les dades llegides del fitxer. Per tal d'actualitzar-lo al

formulari principal del gestor de sessions, es copien les dades d'aquesta sessió obtinguda en la

sessió referenciada en el formulari principal.

carregar la sessió en el monitor

El formulari principal conté una llista desplegable amb els proveïdors disponibles de

JMSMonitorInterface (no necessàriament implementats). El nom d'aquest s'obté directament de la

interfície fent més independent el client gràfic de la implementació dels connectors:

int i = 1;
String aux = JMSAdminAbstraction.getProvider(i);
do{

 comboJMSServer.addItem(aux);
 i++;
 aux = JMSAdminAbstraction.getProvider(i);
 }while(aux.equals((Integer.toString
 (JMSAdminAbstraction.UNDEFINED))) != true);

// Determinar la activacion de los campos exclusivos para JMX con
el valor por default del JCOMBO
filterFieldsWithProviders();
...

En funció del proveïdor escollit, la vista del formulari canvia en funció de si aquell connector

suporta JNDI o utilitza JMX, tal com es va comentar en la explicació de JMSMonitorInterface. El

mètode filterFieldsWithProviders habilita o amaga els diferents camps del formulari en funció

d'aquests paràmetres.

Una vegada que l'usuari ha introduït les dades o les ha obtingut des d'un fitxer, es poden

carregar les dades al monitor, per tal de poder connectar-se al servidor. La primera acció que es

realitzarà serà un comprovació de les dades que s'han introduït al formulari, per verificar que no hi

Escola Universitària d'Informàtica de Sabadell 158

Monitor de servidors JMS Jordi Manzano Ulloa

ha camps obligatoris que hi manquen o amb caràcters no vàlids. El mètode que fa aquesta

comprovació en la classe ManageSessionForm és parseSessionForm.

Com s'observa en la figura anterior, quan hi ha camps que no són vàlids, s'informa al usuari

indicant el nombre dels camps. El mètode ParseSessionForm mira cadascun dels camps

comprovant que aquests no estiguin buits i que no continguin caràcters que no estiguin dintre d'un

rang determinat. Aquests mètodes es troben en la classe Utils, que recopila un conjunt de

mètodes més globals:

 // valid characters
 if (!((aux >= 'a' && aux<='z') ||
 (aux >= 'A' && aux<='Z') ||
 (aux >= '0' && aux<='9') ||
 (aux == ' ') ||

Escola Universitària d'Informàtica de Sabadell 159

Figura 44: gestor de sessions

Monitor de servidors JMS Jordi Manzano Ulloa

 (aux == '_') ||
 (aux == '.' ||
 (aux == ':'))))
 return false;

Desprès de validar la informació, es comprova que no hi havia cap sessió prèvia. Si fos així

es mostraria un missatge per advertit a l'usuari que es tancarà la sessió actual. Una vegada es

realitzen totes les comprovacions, es carrega la informació del formulari en el monitor, creant un

objecte Session amb les dades del formulari i assignant-lo a la classe MainFrame (pantalla

principal del monitor):

 createSessionObjects();
 session.loadClasspath();
 GUI.setSession(session);

Un altre punt a comentar és la càrrega de les llibreries adjuntades per l'usuari en el classpath

de l'aplicació de forma dinàmica. Mitjançant la classe URLClassLoader, s'obtindrà la referencia a

al carregador de classes del sistema per afegir les introduïdes per l'usuari:

 URLClassLoader classLoader = (URLClassLoader)
 ClassLoader.getSystemClassLoader();

En cas de que una llibreria ja estigui carregada, s'ignorarà per no fer-ho un segon cop. Cal dir

que es va valorar la possibilitat d'implementar un carregador de classes múltiple, capaç de

descarregar i carregar classes en temps d'execució, però no és quelcom senzill i s'escapa al

volum d'hores de treball destinades al projecte. En una possible ampliació o revisió de la eina,

podria ser un tema interessant a desenvolupar.

Escola Universitària d'Informàtica de Sabadell 160

Monitor de servidors JMS Jordi Manzano Ulloa

6.4.3 Funcionalitats amb destinacions

La aplicació afegeix funcionalitats addicionals per treballar amb destinacions i missatgeria.

Aquestes són la consulta de missatges en cues, l'enviament de missatges a destinacions, crear i

destruir destinacions i eliminar els missatges d'un destí. Tot seguit es detallaran els aspectes més

important del desenvolupament d'aquestes.

enviament de missatges

La classe que s'encarrega de mostrar el formulari i realitzar la petició a l'administrador és

SendMSGForm, que consistirà en una finestra amb un quadre de text per introduir el cos del

missatge, una secció per seleccionar cua o tòpic, botons de cancel·lació, confirmació i associació

de XSD.

Així doncs, s'utilitzarà el objecte administrador que conté la sessió actual per enviar un

Escola Universitària d'Informàtica de Sabadell 161

Figura 45: enviament de missatges i validació XML

Monitor de servidors JMS Jordi Manzano Ulloa

missatge a una destinació, ja sigui cua o tòpic. Primer es comprovara si l'usuari a afegit un XSD a

validar contra el cos del missatge; la classe XMLManager de la package del monitor Utils,

s'encarrega de llençar una excepció en cas de que el XML no acompleixi amb l'especificació del

XSD (veure imatge anterior):

 ...
 String sXsd = "";

 XMLManager xmlManager = new XMLManager();
 sXsd = fxsd.getText();
 if (sXsd.length() > 0){
 //parseamos el XML
 log.debug ("parsing text with the XSD '" + fxsd.getText()
 + "'");
 xmlManager.validate(fxsd.getText(),text.getText());
 }

Si la validació és correcta (o pel contrari no calia validar el contingut del missatge), es trucarà

a l'administrador de la sessió per sol·licitar l'enviament del missatge. Amb una mateixa sentència

es podrà diferenciar entre el que és un enviament a una cua i a un tòpic, a més de si usarà

l'adreça JNDI o la de administració del proveïdors JMS; cal recordar que si el connector utilitza

una de les dues adreces per l'enviament de missatges serà una dada acotada en el formulari per

la informació que s'obté del propi connector:

c.getAdmin().sendTextMessage(
((c.getJNDIServer()==null||c.getJNDIServer().equals(""))?c.getHost():c.getJNDIServer()),
 c.getCurrentInitContext(), c.getCurrentFactory(), (String)comboDest.getSelectedItem(),
 text.getText(), c.getName(), c.getPass(), (rbuttonTopics.isSelected()));

Cal dir que el formulari d'enviament de missatges estarà disponible a través del menú

contextual de la taula principal i el menú de l'aplicació. Si es selecciona aquest últim, el

desplegable del formulari es situarà automàticament a la destinació que ja es trobava

seleccionada en la pestanya corresponent visualitzada per l'usuari. Aquesta informació es

Escola Universitària d'Informàtica de Sabadell 162

Monitor de servidors JMS Jordi Manzano Ulloa

sol·licitarà a la classe MainTab, on els mètodes getActiveTopicName, getActiveQueueName i

getDurableName retornaran el nom de la destinació seleccionada en cadascuna de les pestanyes.

neteja de missatges

Amb la classe PurgeForm es podran netejar els missatges continguts en cues i subscripcions

durables. Amb una vista molt senzilla es presenta un selector per ambdós tipus de destinacions i

una llista desplegable per seleccionar la cua o subscripció durable a buida, tal com es mostra a

continuació:

En funció si la destinació te associada un tòpic o no es podrà determinar si és una cua o un

tòpic; si té aquest últim es tractarà d'una subscripcions durable i es trucarà al mètode purge

passant el nom d'aquest:

GUI.getSession().getConnection().purge(aux,null);

Escola Universitària d'Informàtica de Sabadell 163

Figura 46: formulari de neteja de destinacions

Monitor de servidors JMS Jordi Manzano Ulloa

creació i eliminació de destinacions

Tant per crear i destruir destinacions, ja siguin cues, tòpic o durables s'utilitzarà una sola

classe, ManageDestinationForm. En el constructor s'indicarà el tipus de destinació que és i l'acció

disponible:

public ManageDestinationForm(MainFrame g,
 int destination_type, int available_action)

Aquest dos últims enters, són constants definides en dues classes. El tipus de destinació es

defineix a la classe que representa el model de la taula principal MainTableModel i l'acció

disponible vindrà donada en la mateixa classe ManageDestinationForm:

public final static int CREATE = 0;
 public final static int DESTROY= 1;

Per cada destinació doncs, es trucaran als mètodes de l'administrador de la sessió de forma

diferent, utilitzant un selector pel tipus de destinació:

switch(destination_type){
 case (MainTableModel.QUEUE):
 if (action == CREATE)

 a.createDestination(dName.getText(), false);
 else
 a.destroyDestination(comboDest.getSelectedItem().toString(), false);
 break;

 case (MainTableModel.TOPIC):

...

Escola Universitària d'Informàtica de Sabadell 164

Monitor de servidors JMS Jordi Manzano Ulloa

Si al crear una destinació, el nom ja existeix, el monitor no deixarà que s'executi la trucada a

l'administrador. Aquesta comprovació prèvia la realitza el mètode parseName del mateix formulari

de gestió de destinacions.

consulta de missatges en cues

Aquesta funcionalitat està únicament disponible per les cues fent doble-click damunt d'una

d'aquestes en la taula principal o mitjançant el menú contextual de la taula principal. La finestra de

consulta de missatges està formada per dues parts, una que enumera els missatges que i són

dintre de la cua, i l'altre els detalls del missatge seleccionat. La classe BrowseMessagesForm és

l'encarregada de representar i gestionar la consulta de missatges. Aquesta trucarà al mètode

browse de l'administrador de la sessió, recuperant així una llista de JMSMessageInfo per tal

d'omplir la taula que enumera els missatges:

...
synchronized (GUI.getSession().getConnection().getAdmin()) {

 JMSMessages = GUI.getSession().getConnection().browse(destName);
 }
 llenaTabla();
...

Per tal de mostrar la informació del missatge a la part inferior de la finestra quan es

selecciona un missatge, s'utilitza una altra classe que emmagatzema els esdeveniments del

formulari de consulta de missatges; BrowseMessageFormEvents. S'implementen dos accions

Escola Universitària d'Informàtica de Sabadell 165

Figura 47: formulari de creació de destinacions

Monitor de servidors JMS Jordi Manzano Ulloa

amb el ratolí per la finestra de consulta de missatges, la primera ja s'havia comentat anteriorment;

refresca les dades inferiors de la vista amb el missatge seleccionat. La segona servirà per poder

copiar les dades com el contingut del missatge, tot fent doble-click en la taula inferior damunt la fila

del elements corresponent del missatge seleccionat. Aquesta acció obrirà una finestra amb un

camp amb el valor seleccionat per tal de poder copiar el valor:

Cal destacar que la taula també mostra el nom de la classe de missatge que implementa el

proveïdor JMS gràcies a que la classe JMSMessageInfo emmagatzema el nom original d'aquesta.

D'altra banda, s'incorpora la possibilitat d'exportar els missatges seleccionats a un directori,

generant un fitxer pla de text amb el cos del missatge (sempre que sigui de tipus TextMessage).

Aquesta opció és disponible mitjançant el menú de la finestra de consulta de missatges. Aquest

procés escriu per cada missatge un fitxer amb un nom format pel nom de la cua més la data del

missatge.Per imprimir les dades a fitxer, s'utilitza una classe del package IO de JMSMonitor;

Printer. El mètode print2File, escriu una cadena de text a un fitxer tot indicant-li el nom:

print2File(String path,String filename,String body)

Escola Universitària d'Informàtica de Sabadell 166

Figura 48: consulta de missatges: selecció de valors

Monitor de servidors JMS Jordi Manzano Ulloa

6.4.4 Gràfiques

Per tal de dibuixar les gràfiques s'opta per utilitzar JfreeCharts, una llibreria de codi obert i

gratuïta que permet desenvolupar-les de forma senzilla i que incorpora un conjunt de funcionalitats

que la fa força interessant; com l'exportació del gràfic a png, la impressió de la gràfica, la

modificació de les propietats de la gràfica (colors, nom de les etiquetes...) i gestió d'augment i

allunyament dels eixos entre d'altres. Sens dubte es tracta d'una eina que redueix el temps i el

cost d'implementació de la funcionalitat de gràfiques amb una gran qualitat i possibilitat de

personalització, ja que és de codi obert.

La llibreria implementa molts tipus de gràfiques. El monitor n'utilitzarà dues; una consistent en

eixos de coordenades, per representar quantitats en el temps, utilitzada sobretot per monitoritzar

missatges entrants i sortints en temps real, i una altra gràfica circular, per comparar diferents

paràmetres a la vegada. Aquesta última es mostra en la següent figura:

Escola Universitària d'Informàtica de Sabadell 167

Figura 49: funcionalitats afegides de JFreeCharts

Monitor de servidors JMS Jordi Manzano Ulloa

Les dues classes que representen aquestes dues gràfiques en el monitor seran

ChartXYFrame i ChartPieFrame, que implementen la interfície Charts:

package org.jmsmonitor.gui.frames;
 import org.jmsmonitor.gui.elements.ServerInfoModel;

public interface Charts {
 public void refresh(ServerInfoModel s);
 public void destroy();
 public void clean();
}

El per què de l'ús d'aquesta interfície és que es simplificarà el codi de la classe principal que

controla els diferents objectes i esdeveniments del monitor (MainFrame) quan s'hagi de treballar

amb gràfiques. Per exemple, quan es crea una gràfica, aquesta s'afegeix a una llista de la classe

MainFrame que anirà acumulant les referències a objectes que implementen la interfície Charts:

Escola Universitària d'Informàtica de Sabadell 168

Figura 50: funcionalitats afegides de JFreeCharts

Monitor de servidors JMS Jordi Manzano Ulloa

public class MainFrame extends AbstractFrame implements Observer{
...
private List <Charts> misCharts;
...

}

D'aquesta manera quan s'invoqui el mètode refresh de la classe MainFrame (cal recordar que

es trucarà cada vegada que el model de dades de JMSAdmin ,“observat” per la classe

MainFrame, s'actualitzi), es cridarà també al mètode refresh de cada objecte que implementi la

interfície Charts, actualitzant així gràfiques de línies i circulars indistintament:

...
if ((this.misCharts!=null)&&(this.misCharts.size()>0)){

for (int i=0;i<misCharts.size();i++){
 misCharts.get(i).refresh(this.serverInfoModel);
}

 }
 ...

L'usuari per crear una gràfica ho fa mitjançant el menú del monitor. Quan es construeix

l'objecte s'indica el tipus de gràfica que serà i s'afegirà a la llista de la classe MainFrame, que

contindrà totes les gràfiques creades:

 GUI.addChart((new ChartXYFrame(ChartXYFrame.INBOUNDMESSAGERATE,GUI)));

Els tipus d'informació que poden gestionar vénen definits a la pròpia classe com a constants,

de tal forma que la gràfica en funció del seu tipus adquireix les dades necessàries per pintar la

seva representació:

Escola Universitària d'Informàtica de Sabadell 169

Monitor de servidors JMS Jordi Manzano Ulloa

public class ChartXYFrame implements Charts{
// CONSTANTS
public static final int INBOUNDMESSAGERATE = 0;
public static final int INBOUNDMESSAGETOTAL = 1;
public static final int OUTBOUNDMESSAGERATE = 2;
public static final int OUTBOUNDMESSAGETOTAL = 3;
public static final int QUEUES = 4;
public static final int TOPICS = 5;
public static final int DURABLES = 6;
public static final int CONSUMERS = 7;
public static final int PENDINGMSGS = 8;

D'altra banda quan es tanqui una gràfica, aquesta cridarà a la instància de MainFrame perquè

la tregui de la llista i s'alliberi memòria:

//CLASS XYCHART
// metode Destroy

 public void destroy(){
 GUI.removeChart(this);
 }

// CLASS MAINFRAME
public void removeChart(Charts chart){

misCharts.remove(chart);
 }

Escola Universitària d'Informàtica de Sabadell 170

Monitor de servidors JMS Jordi Manzano Ulloa

6.5 PROVES

Una vegada assolits els objectius plantejats al inici, s'ha realitzat una fase d'anàlisi i proves

per tal de verificar les diferents situacions que poden sorgir durant la utilització de l'aplicació.

L'estratègia seguida ha sigut la realització de proves funcionals observant i corregint els possibles

problemes i desviaments en el desenvolupament.

L'entorn de desenvolupament escollit, Eclipse, aporta mecanismes de depuració del codi

força útils per trobar i corregir problemes en aquest. A més, l'ús en el projecte de Log4j, permet

ràpidament detectar un problema en temps d'execució, ja que es van mostrant en consola totes

les anotacions en el codi i les excepcions que han aparegut.

A continuació es comentaran els problemes més rellevants trobats en les proves funcionals.

Escola Universitària d'Informàtica de Sabadell 171

Figura 51: depuració del codi en Eclipse

Monitor de servidors JMS Jordi Manzano Ulloa

Sessions

El formulari en ser acceptat es sotmet a una validació dels seus camps. En concret per validar

la direcció es fa servir el mètode isValidDirection de la classe Utils. El problema és que hi havia

protocols no contemplats en un inici que el mètode de comprovació no suportava:

Concretament, protocols com rmi, https, o tcps es donaven com invàlids i no es podia

carregar la sessió correctament. El mètode de validació en concret feia el següent:

 try {
 u = new URL(s);
 }catch (MalformedURLException e)
 {
 b = false;
 }

Escola Universitària d'Informàtica de Sabadell 172

Figura 52: parseig de dades de direccions

Monitor de servidors JMS Jordi Manzano Ulloa

S'intentava crear un objecte URL i si ho feia satisfactòriament, es donava aquella direcció

com vàlida. No obstant la classe URL només admet aquest protocols; file, ftp , gopher , http ,

mailto , appletresource ,doc ,netdoc, systemresource i verbatim. Per tant, basar-se en aquest

criteri no és compatible amb la connexió via JMX.

La solució ha sigut modificar el mètode per tal de separar la direcció de connexió en tres

parts; protocol, adreça i port, i poder-les validar per separat:

 static public boolean isValidDirection(String s)
{
 boolean b = true;
 String aux [] = s.split(":");
 if (aux.length!=3){

return false;
 }
 if (!isValidProtocol(aux[0])){
 return false;
 }
 if (!isStringValid(aux[1].replace("/", ""))){

 return false;
 }

 String string = aux[2];
 for (int i=0;i<string.length();i++){
 char c=string.charAt(i);
 if (!(c >= '0' && c<='9')){
 return false;
 }
 }
 return b;
 }

En primer lloc, el mètode isValidProtocol diu si la cadena representa un protocol vàlid (es

compararà el paràmetre d'entrada amb una llista de protocols suportats). L'adreça es compara

amb un mapa de caràcters limitat (alfanumèric) i per últim, pel port, es recorre cada caràcter de la

cadena per verificar si corresponen a nombres reals.

Escola Universitària d'Informàtica de Sabadell 173

Monitor de servidors JMS Jordi Manzano Ulloa

Un altre desviament, es va trobar en la vista. Si es carregava una nova sessió quan una altra

ja estava activa i connectada, la interfície es quedava en aquest estat:

Aquesta vista no reflexa la situació real: si una sessió ha sigut tancada i s'ha carregat una de

nova, no pot aparèixer com connectada. Mirant el mètode de la classe ManageSessionForm que

tanca la sessió oberta per carregar la nova, es va veure que no s'indica a la vista que es modifiqui

desprès de tancar la sessió:

//es tancarà la sessio anterior...
GUI.getSession().close();
if(!GUI.getSession().getName().
 equals(session.getName()))
{

 log.debug("trying to save session to the file");
 //salvar l'ultima data de connexió...

Per tant s'afegeix desprès de tancar la sessió el mètode setGUItoDisconnect() que es troba a

la classe ButtonConnection per a que el botó de connexió canvii el seu estat, i no hi hagi conflictes

quan es tingui carregada la nova versió.

Altre problema detectat, es produïa al carregar per segon cop una mateixa sessió ja

carregada. Això provoca un NullPointerException:

Escola Universitària d'Informàtica de Sabadell 174

Figura 53: bug en la vista al desconnectar

Monitor de servidors JMS Jordi Manzano Ulloa

2010-08-25 19:36:54,236 [INFO]org.jmsmonitor.gui.frames.ManageSessionForm
> Session 'openjms_queue' parsed ok.
Exception in thread "AWT-EventQueue-0" java.lang.NullPointerException

Hi ha un mètode que comprova si la sessió actual és igual a la nova per carregar, de tal forma

que si és cert, no es torna a carregar. Aquest mètode anomenat compare pertany a la classe

Session i concretament amb el depurador s'ha pogut comprovar que el bug estava en aquesta

sentència:

if (caux.getObjectName().equals(c.getObjectName()))

El problema radicava en que el objecte Connection inicialitzava a null la variable on

s'emmagatzemava el valor a comparar. Així doncs, la correcció consistia en inicialitzar la cadena

com buida:

//private String objectName = null;
private String objectName = “”;

Consultar missatges

El codi del client gràfic no pot incloure trucades directes a la api JMS, és a dir, sempre ha

d'utilitzar la llibreria JMSMonitorInterface per tal d'obtenir les dades a monitoritzar. Es va trobar

que el codi del formulari de consulta de missatges, treballava amb la classe Message, pròpia de la

interfície JMS. El problema era que el mètode browse de JMSAdmin (JMSMonitorInterface),

retornava una llista de Message.

Escola Universitària d'Informàtica de Sabadell 175

Monitor de servidors JMS Jordi Manzano Ulloa

abstract List<Message> browseMessages (String url,String
initcontext,String factory, String dest,String user, String pass)

 throws JMSAdminConnectionException, JMSAdminException,
 JMSAdminNonAvailableMethod,NoClassDefFoundError;

Així doncs es va crear una nova classe que emmagatzema aquelles dades importants pel

client gràfic dels missatges JMS: JMSMessageInfo:

public class JMSMessageInfo {

 private String text;
 private Message message;
 private String original_classname;

...

Aquesta oculta l'especificació JMS al codi del client i guarda el nom de la classe original del

proveïdor que implementa la interfície Message de l'estàndard JMS. Per tant a

BrowseMessageForm, el formulari de consulta de missatges en cues, es canvia el mètode per

directament utilitzar aquesta nova classe de JMSMonitorInterface:

if (type==MainTableModel.QUEUE){
 synchronized (GUI.getSession().getConnection().getAdmin()) {

 JMSMessages = GUI.getSession().getConnection().browse(destName);
 }
 ...

Excepcions

Quan s'estableix una sessió, es necessita tenir carregades les llibreries originals del proveïdor

per tal de que JMSMonitorInterface pugui utilitzar els seus connectors per adaptar el codi

d'aquestes API a una interfície genèrica que entengui el client monitor. Si un usuari no carrega

Escola Universitària d'Informàtica de Sabadell 176

Monitor de servidors JMS Jordi Manzano Ulloa

una llibreria del proveïdor utilitzada pel connector, es llençarà l'excepció NoClassDefFoundError.

Com que en un inici, durant el desenvolupament es tenien totes les llibreries carregades en el

classpath del projecte d'Eclipse, no es va tenir en compte aquesta excepció.

Per solucionar-lo es va retocar el codi de JMSMonitorInterface i JMSMonitor per a

contemplar-la:

//JMSMONITORINTERFACE
//JMSAdminAbstraction
abstract void connect (String url, String user, String pass) throws

JMSAdminConnectionException, JMSAdminNonAvailableMethod,NoClassDefFoundError;

//JMSMONITOR
//ButtonConnection
try{

 GUI.getSession().getConnection().connect();
 ...
 }catch (NoClassDefFoundError a) {
 log.error(Utils.StackTrace2String(a.getStackTrace()));

...
 }

Ara doncs, s'informarà al usuari de que una de les classes no s'ha pogut trobar i es mostrarà

quina és, per tal de que es pugui cercar quina és la llibreria que falta per incloure en el classpath.

Enviament de missatges

Es va detectar, que si s'accedia al formulari mitjançant el menú contextual dintre de la taula

de tòpics, i en el mateix formulari es canviava la destinació per que fos a una cua, el missatge

s'estava enviant a un tòpic amb el nom de la cua escollida:

2010-08-25 18:54:36,447 [DEBUG] org.jmsmonitor.gui.frames.SendMSGForm >
host (tcp://localhost:3035) ,initContext
(org.exolab.jms.jndi.InitialContextFactory) ,factory (QueueCF) ,dest
(queue1) ,body (Write message content here...) ,name(admin) , pass
(admin) ,type(TOPIC)

Escola Universitària d'Informàtica de Sabadell 177

Monitor de servidors JMS Jordi Manzano Ulloa

Gràcies al log es va veure la part del codi que estava errònia com es mostra en l'anterior

imatge. La crida al mètode d'enviament de missatges era incorrecte i es soluciona afegint a la

trucada el valor del botó selector de tòpics:

c.getAdmin().sendTextMessage(
((c.getJNDIServer()==null||c.getJNDIServer().equals(""))?
 c.getHost():c.getJNDIServer()),
c.getCurrentInitContext(),c.getCurrentFactory(),
(String)comboDest.getSelectedItem(), text.getText(), c.getName(),

 c.getPass(), (rbuttonTopics.isSelected()));

És a dir, el paràmetre del mètode sendTextMessage isTopic agafaria el valor de veure si

aquest està seleccionat o no.

Interfície JMSMonitorInterface

Amb el connector d'OpenJMS, si s'intentava accedir a una factory de cues quan s'estava

connectat a una de tòpics s'aixecava la següent excepció:

2010-08-25 19:46:13,452 [INFO] org.jmsmonitor.gui.frames.SendMSGForm > Send
 request to purge durable sub2:topic1

Exception in thread "AWT-EventQueue-0" java.lang.ClassCastException:
org.exolab.jms.client.JmsQueueConnectionFactory cannot be cast to
javax.jms.TopicConnectionFactory at
org.jmsmonitor.bridge.plugins.JMSAdminOpenJMS.purge(JMSAdminOpenJMS.java:361)
at org.jmsmonitor.bridge.main.JMSAdmin.purge(JMSAdmin.java:181)

El conflicte és que no es pot convertir una QueueConnectionFactory (amb la que s'està

connectat) en una TopicConnectionFactory:

TopicConnectionFactory factory = (TopicConnectionFactory) context
 .lookup(factoryName);

Escola Universitària d'Informàtica de Sabadell 178

Monitor de servidors JMS Jordi Manzano Ulloa

Per tant s'opta per informar a l'usuari de que no es pot accedir al recurs tot indicant l'excepció:

En el codi del connector de OpenJMS, s'afegeix un bloc de tractament per l'excepció

ClassCastException i es retorna el missatge per mostrar-lo al usuari com es veu en l'anterior

figura:

...
} catch (ClassCastException e){

 throw new JMSAdminException (e.getLocalizedMessage());
} ...

Al codi de client, s'afegeixen els canvis necessaris per a que el missatge es mostri amb la

causa del problema:

} catch (JMSAdminException e) {
 log.error(Utils.StackTrace2String(e.getStackTrace()));
 GUI.showError(frame,GUI.getTextMessages().getString("ErrorSend"),
 GUI.getTextMessages().getString("ErrorSendDescription")
 + ":\n" + e.getLocalizedMessage());
 }

 Cal dir que aquesta modificació afecta al formulari de neteja de destinacions i consulta de

missatges.

Escola Universitària d'Informàtica de Sabadell 179

Figura 54: missatge d'error al enviar missatges

Monitor de servidors JMS Jordi Manzano Ulloa

CAPÍTOL

 7 Conclusions

7.1 OBJECTIUS ASSOLITS

Com s'ha anat veient al capítol de la implementació del projecte, els objectius plantejats en

les pàgines inicials de la present memòria s'han anat assolint.

Des del naixement de l'idea, es tenia molt clar que s'havia de separar al màxim la part gràfica

de les diferents implementacions de Java Message Service. Realitzar una llibreria que doni abast

a un nombre gran de proveïdors JMS era un repte que no es podia desenvolupar amb el nombre

d'hores destinat al projecte, per tant, realitzant el disseny de la llibreria i implementant dos

connectors és el primer pas per a que en funció de les necessitats del usuaris, es puguin fer

ampliacions en aquesta sense tenir un gran impacte en la part gràfica.

Durant les primeres proves es va poder comprovar que la manera de plantejar la interfície és

realment funcional i ràpida d'utilitzar. Aquesta simplicitat fa que en aquest aspecte sigui més

Escola Universitària d'Informàtica de Sabadell 180

Monitor de servidors JMS Jordi Manzano Ulloa

amigable que l'aplicació que ha sigut referent durant les fases de l'elaboració d'aquest programari;

HermesJMS, encara que aquest és un projecte més gran i més consolidat i amb una compatibilitat

entre diferents proveïdors excel·lent. Per tant, un dels objectius que més es volia realçar es pot dir

que s'ha acomplert de forma satisfactòria. Cal dir però, que és una eina molt focalitzada a un tipus

de tecnologia, i la desconeixença d'alguns conceptes que potser un usuari que realitza test

d'aplicacions no ha de conèixer, fan que pugui tenir una certa dificultat per configurar una

connexió de forma correcta.

Actualment és una eina que s'està utilitzant per controlar el contingut de cues i enviar

missatges a destinacions en un projecte real, que utilitza la tecnologia JMS per integrar un nou

component amb la resta de mòduls de l'empresa. Fins a dia d'avui, està facilitant la tasca a l'equip

de suport i és un recurs que mica en mica es fa indispensable en el dia a dia.

Escola Universitària d'Informàtica de Sabadell 181

Monitor de servidors JMS Jordi Manzano Ulloa

7.2 DESVIACIONS

En aquest apartat es descriuen les desviacions produïdes en el projecte, tot indicant el motiu i

la incidència en l'augment del cost final.

Seguint l'anterior taula, es va destinar en un inici poc temps a la configuració de l'entorn de

desenvolupament. En la pràctica, el fet de desconèixer el funcionament i l'administració mínima

pels dos servidors JMS que s'han utilitzat en el projecte ha supossat un esforç extra. A més, en el

cas d'ActiveMQ, quan s'estava en la fase d'implementació del codi, es va veure que les funcions

per obtenir la informació de destinacions i missatgeria que proporcionava la API d'aquest

requerien de l'ús de JMX, una tecnologia desconeguda fins a aquell moment. Així doncs, les hores

per la implementació de la interfície van ser superades gairebé amb el doble (10 hores més).

D'altra banda, les funcionalitats definides inicialment de creació i destrucció de destinacions

no es van tenir en compte, ja que la eina com bé s'ha anat comentant al llarg de la memòria,

estava destinada a la interacció amb missatges i l'obtenció de dades estadístiques per usuaris

amb rols de desenvolupament i proves que utilitzin la tecnologia JMS. No obstant, desprès d'una

Escola Universitària d'Informàtica de Sabadell 182

Taula 19: resum del cost de les desviacions

Tasques Total

Anàlisi de requeriments 31 0 31
Implementació 171 23 194
Configuració de l'entorn de desenvolupament 2 5 7
Disseny 65 0 65
Codificació 104 18 122
Implementació de llibreria per ActiveMQ (Fuse) 12 10 22
Funcionalitats amb destinacions i misstages 12 8 20
Avaluació 31 0 31
Documentació 69 8 77
Memòria 61 8 69
TOTAL 302 31 333

Hores
Pressupost.

Hores
Extra

Monitor de servidors JMS Jordi Manzano Ulloa

primera llista de funcionalitats tancada i pressupostada, es va decidir incloure aquestes ja que

poden ser útils també per aquests perfils; en total es van emprar vuit hores més.

En la redacció de la memòria, no es va reflexar el cost que tindria l'apartat de fonaments

teòrics. Degut a que la lògica de negoci de l'aplicació és treballar amb un tecnologia concreta,

calia explicar amb una mica més de detall la Java Message Service i què és el programari

d'intermediari.

A més, la falta d'experiència en desenvolupament Java i aquest tipus de solucions, van

accentuar més el cost en hores del projecte. A continuació es mostra el cost econòmic total:

Escola Universitària d'Informàtica de Sabadell 183

Taula 20: costos RRHH finals

RECURS COST HORES
Analista 2.970,00 € 165
Descripció del projecte 54,00 € 3
Estudi d'alternatives 72,00 € 4
Anàlisis de viabilitat 360,00 € 20
Definició necessitats reals 72,00 € 4
Interficie gràfica 432,00 € 24
Gestor de connexions 270,00 € 15
Interficie amb els proveïdors JMS 144,00 € 8
Funcionalitats amb destinacions i missatges 180,00 € 10
Gràfiques 144,00 € 8
Memòria 1.242,00 € 69
Tècnic programador 1.570,00 € 157
Configuració de l'entorn de desenvolupament 70,00 € 7
Gestor de connexions 200,00 € 20
Interficie amb proveïdors JMS 100,00 € 10
Implementació de llibreria per OpenJMS 140,00 € 14
Implementació de llibreria per ActiveMQ (Fuse) 220,00 € 22
Gràfiques 120,00 € 12
Funcionalitats amb destinacions i missatges 200,00 € 20
Interficie gràfica 240,00 € 24
Correcció d'incidencies 100,00 € 10
Millores disseny / usabilitat 100,00 € 10
Annexos (documentació) 80,00 € 8
Provador 99,00 € 11
Proves locals 54,00 € 6
Proves finals 45,00 € 5
TOTAL COSTOS RRHH FINAL 4.639,00 €
TOTAL COSTOS RRHH ESPERAT 4.265,00 €
DIFERÈNCIA 374,00 €

Monitor de servidors JMS Jordi Manzano Ulloa

7.3 LÍNIES DE DESENVOLUPAMENT OBERTES

Aquesta primera versió de JMSMonitor implementa funcionalitats bàsiques que ajuden a

programadors, equips de proves i en definitiva, a tots aquells perfils que treballen amb tecnologia

JMS. No obstant, durant la implementació s'han anant observant certs aspectes que es podrien

millorar i ampliar.

Un dels temes interessants seria la gestió de la càrrega i descàrrega de classes de forma

dinàmica en temps d'execució. JMSMonitor és una aplicació dissenyada per treballar amb un gran

nombre de proveïdors JMS, no obstant es necessita que es carreguin les llibreries dels proveïdors

per tal de poder monitoritzar el servidors concrets. En aquesta versió s'inclou la possibilitat de

afegir llibreries en forma de fitxers jar en temps d'execució al classpath, però és un primer

plantejament bàsic; millorar la gestió de les classes necessàries per la monitorització dels

servidors implementant un sistema per carregar o descarregar-les seria una bona millora per

l'aplicació.

S'ha de recordar que només s'han implementat dos connectors pels proveïdors ActiveMQ i

OpenJMS. Ampliar la llibreria JMSMonitorInterface amb més connectors potenciaria l'eina sense

canvis significatius en el client gràfic. A més, ja es va comentar els diferents problemes amb

OpenJMS per obtenir informació com per exemple el ràtio de missatges entrants i sortints del

servidor. La revisió del connector i la cerca de alternatives per solventar aquest fet podria

completar la funcionalitat de la llibreria i per tant seria un valor afegit al programa.

D'altra banda, l'aspecte del client gràfic sempre pot ser millorable i es pot optimitzar el

comportament general de la vista, afegint nous menús, nous accessos directes a funcionalitats o

fins i tot crear noves gràfiques que comparin diferents paràmetres al mateix temps.

Escola Universitària d'Informàtica de Sabadell 184

Monitor de servidors JMS Jordi Manzano Ulloa

7.4 VALORACIÓ PERSONAL

Amb el desenvolupament de JMSMonitor s'ha aconseguit millorar els coneixements personals

sobre Java i programari d'intermediari orientat a missatgeria. Motivat per una situació del món

laboral, es va decidir cobrir la necessitat de tenir una eina fàcil d'utilitzar que ajudés a realitzar la

feina diària respecte a la missatgeria entre aplicacions, creant una aplicació ampliable i

multiplataforma.

L'anàlisi i el disseny, tot cercant diferents solucions, proveïdors i llibreries per desenvolupar

l'aplicació sens dubte és una de les parts que més treball va portar. Encara que el planning

d'hores i treball que es va fer en un inici no s'ha complert pel temps setmanal del que al final es

disposava per dedicar al projecte, s'ha pogut alliberar en el temps requerit i amb una funcionalitat

inicial més que suficient pels objectius establerts.

Amb la implementació, s'han pogut conèixer llibreries i altres tecnologies no directament

relacionades amb el projecte, però que ajuden a millorar el desenvolupament i personalment es

tindran en compte en un futur. Log4j ha sorprès per la seva senzillesa i facilitat d'ús, i com afegeix

flexibilitat a l'hora de gestionar els logs només modificant un fitxer. D'altra banda, l'elecció de

JfreeCharts com a lllibreria per generar gràfiques ha sigut més que encertada, aporta molta

funcionalitat extra (exportació, zoom...) amb poques hores d'aprenentatge i desenvolupament.

JMSMonitor ha suposat la realització d'un projecte amb totes les seves etapes; anàlisi,

viabilitat, planificació i desenvolupament, sent així una experiència enriquidora a l'hora d'iniciar-se

en projectes i desenvolupament de programari. Es cert però, que hi ha aspectes que amb més

temps hagués estat interessant millorar. No obstant el resultat global és satisfactori, perquè

personalment no es tenien precedents semblants a l'actual implementació i l'aprenentatge i

fonaments adquirits durant l'elaboració d'aquesta eina han ajudat enriquir els coneixements sobre

les tecnologies emprades.

Escola Universitària d'Informàtica de Sabadell 185

Monitor de servidors JMS Jordi Manzano Ulloa

BIBLIOGRAFIA

Monson-Haefel, Richard; Chapell, David A. (2001).Java Message Service. O'Reilly.

Snyder Bruce; Bosanac Dejan; Davies Rob. (2008). ActiveMQ in action. Manning.

Grant, Scott; P. Kovacs,Michael; Kunnumpurath, Meeraj ; Maffeis, Silvano; Morrison, K.
Scott; Suresh Raj , Gopalan; Giotta,Paul; McGovern James. (2000). Professional JMS
Programming. Wrox Press.

Burd, Barry. (2005). Eclipse for Dummies. Wiley Publishing.

Sullins, Benjamin G.;Whipple, Mark B. (2002). JMX in Action. Manning.

Freeman, Eric T; Robson,Elisabeth; Bates Bert; Sierra Kathy. (2004). Head First Design
Patterns. O'Reilly.

Cooper, Mendel. (2010). Advanced Bash-Scripting Guide [Documentació en línia].
<http://tldp.org/LDP/abs/html/>

Allen, William; Allen, Linda; (2008). MS-DOS/MSDOS Batch Files: Batch File Tutorial and
Reference. [Documentació en línia].
<http://www.allenware.com/icsw/icswidx.htm>

RatCliff, Rob. Intro to CORBA [Documentació en línia].
<www.futuretek.com/presents/corba/IntroToCorba.pdf>

Escola Universitària d'Informàtica de Sabadell 186

http://www.futuretek.com/presents/corba/IntroToCorba.pdf
http://www.allenware.com/icsw/icswidx.htm
http://tldp.org/LDP/abs/html/

Monitor de servidors JMS Jordi Manzano Ulloa

Recursos en línia

Oracle. PATH and CLASSPATH (The Java™ Tutorials > Essential Classes > The Platform
Environment).
<http://download.oracle.com/javase/tutorial/essential/environment/paths.html>

DIA – Gnome Live!
<http://live.gnome.org/Dia>

Eclipse.org home
<http://www.eclipse.org/>

Hermes JMS - Confluence
<http://www.hermesjms.com/confluence/display/HJMS/Home>

OpenJMS
<http://openjms.sourceforge.net>

Apache ActiveMQ
<http://activemq.apache.org/>

Apache Logging Services Project
<http://logging.apache.org/log4j/>

JfreeChart
<http://www.jfree.org/jfreechart/>

Trail: Creating a GUI With JFC/Swing
<http://download.oracle.com/javase/tutorial/uiswing/index.html>

Escola Universitària d'Informàtica de Sabadell 187

http://download.oracle.com/javase/tutorial/uiswing/index.html
http://www.jfree.org/jfreechart/
http://logging.apache.org/log4j/
http://activemq.apache.org/
http://openjms.sourceforge.net/
http://www.hermesjms.com/confluence/display/HJMS/Home
http://www.eclipse.org/
http://live.gnome.org/Dia
http://download.oracle.com/javase/tutorial/essential/environment/paths.html

Monitor de servidors JMS Jordi Manzano Ulloa

Escola Universitària d'Informàtica de Sabadell 188

Monitor de servidors JMS Jordi Manzano Ulloa

Jordi Manzano Ulloa

Sabadell, Setembre 2010

Escola Universitària d'Informàtica de Sabadell 189

