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Capitulo 1

Introduccion.

Consideraremos la ecuacién de Beltrami

6(2) = u(2)06(2) s e, (L.1)

donde 4 sera una funcion medible definida en C que cumpla la condicién de elip-
ticidad ||ulleo < k < 1, y a la que se le llamara coeficiente de Beltrami. Ya en 1938,
Morrey en [9] establecié un resultado donde se garantiza que existe, modulo trans-
formaciones de Mdbius, un tnico homeomorfismo perteneciente a I/Vlif((C) solucion

de la ecuacién. A dicho homeomorfismo solucién se le llama u-cuasiconforme o K-

Lot ||| oo
1=[lplleo

Wlicz((C) se les llamara u-cuasirequlares.

. Al resto de las soluciones de la ecuacién en

cuasiconforme, donde K :=

Es sabido que, dado i con soporte compacto, el método para encontrar la solucién

u-cuasiconforme de la ecuacién de Beltrami consiste en tomar
#(z) = z+ Ch(z) (1.2)

con C la transformada de Cauchy y h(z) = 0¢(z). La solucién dada por este método
es conocida como solucion principal, de la que se sabe que existe y es Unica.

Con un sencillo calculo, puede verse que si f es analitica y ¢ es una solucién
p-cuasiconforme de (1.1), entonces f o ¢ también es solucién de (1.1). Podemos ir
més alld. Mediante el Teorema de Stoilow, se asegura que toda solucion de (1.1) es la
composiciéon de una funcién holomorfa y la aplicacién cuasiconforme. Este teorema,
nos permite centrarnos tnicamente en encontrar la solucién principal, ya que por

composicién con holomorfas podemos obtener el resto de soluciones.
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Para encontrar el potencial h de la representacién (1.2), lo que hacemos es insertar
este cambio de variables en la ecuacién de Beltrami. Ello nos lleva a una ecuacion
integral para h,

h = uBh+ p

donde B es la transformada de Beurling. Equivalentemente,
(I — uB)h = p.

Esto explica la profunda relacién entre las aplicaciones cuasiconformes y la invertibil-
idad del operador I — uB3, que ha sido fuente de estudio de muchos autores, y también
es el objeto central de este trabajo.

En un primer momento, Astala en [1] demuestra que si el coeficiente de Beltrami
w estéd en L*°(C), entonces el operador I — uBB tiene inverso acotado en LP(C) para
p € (14+k1+4) conk = ||ufoo. Para ello, se basé en el teorema de distorsion
de Astala [1] y argumentos de la teorfa de pesos de Muckenhoupt. Por su parte,
Iwaniec en [8] establece que cuando el coeficiente de Beltrami p estd en VMO(C)
con soporte compacto, entonces el operador (I — uB)fl es invertible en LP(C) para
todo p € (1,00). Equivalentemente, la solucién principal ¢ de (1.1) estd en V[/llof (©)
para todo p € (1,00). Por otro lado, Ahlfors muestra en [2] que en el caso de que
pertenezca a W1P(C) con p > 2 y con soporte compacto, entonces la solucién principal
¢ es de V[/fog7 (C). Y finalmente Victor Cruz, en [3] muestra que si p € By (C) de
soporte compacto con 0 < a <1, ap > 2y 1 < g < oo entonces la solucion principal
es ¢(z) = z + Ch(z) con h perteneciente a By (C).

Cabe mencionar también resultados referentes a coeficientes de tipo u = xq - fo,
donde g es una funcién globalmente regular, y 2 es un dominio con frontera suave.
Véase para ésto las referencias [14] o [15].

Por otra parte, es de sobra conocido que si ¢ es una aplicacién p-cuasiconforme,

entonces el homeomorfismo inverso ¢! también cumplird una ecuacién de Beltrmi
0ot = vt

para un cierto coeficiente v [6]. Este hecho, despierta nuestro interés en estudiar si
la pertenencia de p en ciertos espacios determina o no la pertenencia de v en dichos

espacios u otros.
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Por nuestra parte, este trabajo se centrara en deducir propiedades del homeomor-
fismo principal ¢ del coeficiente de Beltrami v y del homeomorfismo ¢! segin las
propiedades que conozcamos del coeficiente de Beltrami u, asi como saber si dichos
resultados son optimos o no. Pero antes de entrar en materia, tenemos que dar algunos

conociemientos previos con los que poder trabajar.



Capitulo 2

Preliminares.

2.1. Espacios de funciones.

Para poder estudiar las soluciones de la ecuacion

9¢(z) = u(2)9¢(z) z €C,

nos es necesario restringirnos a algin espacio de funciones en el cual trabajar. Por
ello, primero daremos algunas definiciones de espacios de funciones que nos seran
utiles a lo largo del trabajo. Como suele ser natural en el marco de las ecuaciones
diferenciales, estaremos interesados principalmente en espacios medibles con algin
grado de diferenciabilidad distribucional, como por ejemplo los espacios W™P () entre

otros.

Definicion 2.1.1. Dado Q2 C C y 0 < a < 1, se define el conjunto de las funciones

a-Holder continuas como el conjunto de las funciones f tales que
| f(z1) = f(22) | S C |21 — 22|" V21,20 € Q.
Y se denotard por CO(£2).

Definicion 2.1.2. Dada una funcion f: Q +— C se define el soporte de f como

supp (f) := {z € Q tal que f(z) # 0}.
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Definicion 2.1.3. Con el fin de poder definir la clase de Schwartz, tomaremos una
familia de seminormas sobre C§°(C). Para cada par de indices o y B, se define la
seminorma pq.g de f como
pas(f) = sup [2°D ().
zeC
Diremos que una funcion f pertenece a la clase de Schwartz si po g(f) < oo para todo
a y B. Esta clase se denotard por S(C).

Nota: observemos que se tiene la siguiente inclusion de clases
C5°(C) Cc S(C) c C*=(C).

Definicién 2.1.4. Dado Q C C yp € [1,00), se define el espacio de funciones LP(SY)

como el conjunto de funciones medibles en §) tales que

1 fllzr() = (/ﬂ |f(z)P dA(z)>; < .

Para el caso p = oo se define L () como el conjunto de las funciones esencialmente

acotadas en 2, es decir,
| f lLeo(o) == esssup| f| < oo.
z2€Q

Definicién 2.1.5. Dado Q C C yp € [1,00], se define el espacio de funciones L7 (£2)

loc

como

Lp

loc

(Q) := {f tales que f € LP(K) YK C Q con K compacto } .

Definicion 2.1.6. Dada una funcion medible f y una bola B C C, se denotard por

fB al promedio de la funcién f sobre la bola B, es decir,
1
fB::/fz dA(z).
B [ 124G
También puede hacerse la misma definicion fo con C C C un cubo.

Definicion 2.1.7. Se define el espacio de funciones de oscilacién media acotada,
que denotaremos por BMO(C), como el subconjunto de L}, .(C) donde las funciones

cumplen

. . 1 _
Ifllssi0) = 11 = sup {|B [ 156 fB\dA<z>}<oo.

donde || ||« es una seminorma en general. Y los elementos de BMO(C) estdn definidas

modulo constantes aditivas.
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Definicion 2.1.8. Se define el espacio de funciones de oscilacién media nula, que

denotaremos por VMO(C), como

IR
| *

VMO(C) := C=(C) " = €0(C)

Definicion 2.1.9. Se define el espacio de funciones VMO(@) como el subconjunto

de VMO(C) tales que el el limite

existe y es finito.

Definicién 2.1.10. Sean f,g € L} () y k € N. Se dice que g es la derivada

loc

distribucional de orden k de f, y se denotard por D*f = g, si

/Q (D*6(2)) f(2) dA(z) = (-1)* /Q 6(2)g(x)dA(z) Vo € C=(Q).

Definicion 2.1.11. Dados 2, k € N y 1 < p < co. Se define el espacio de Sobolev
como

WEP(Q) = {f € LP(Q) tales que Va < k,D*f € LP(Q)},

y se le asociard la norma

I flweo@ == D 1D fllre(e)-

0<a<k

Nota: WZIZCP(Q) serd el conjunto de funciones que VK C Q con K compacto sean de

WhP(K).

Definicién 2.1.12. Dados o € R\ {0} y 1 < p < 00, se define el espacio Sobolev

fraccionario como

W*P(C) = {f € LP(C) tales que existe g € LP(C) con f = G, x g € LP(C)}

@

donde Gy = F~1 ((1 + |§\2) 2) con F~1 la transformada inversa de Fourier. Y
la funcion g que cumple f = G4 * g, determinard la norma de f en este espacio.

Concretamente

HfHWavp((C) = HgHLp(C) .
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Nota: [3]

» En el caso de tener a € N, entonces los espacios de Sobolev y de Sobolev

fraccionario coinciden.

» Para todo 0 < f < a<1ype (1,0), se tiene la siguiente inclusion entre
espacios de funciones

WeP(C) — WHP(C).

» Para todo 0 < B < a < 1, se tiene la siguiente cadena de inclusiones entre

espacios de funciones

WL2(C) «— W*2(C) — WPF(C) < VMO(C).

Definicion 2.1.13. Dados 0 < a <1yl < p,gq < oo se definen los espacios de

Besov By (C) como las funciones f tales que

feLP(C) vy ademds

1
q

Mp z % w 00
/(C<[C< |z_w|%+a ) dA( )> dA( ) < 00.

Definicion 2.1.14. Consideremos una aplicacion i tal que

1, si|z|<1
¥ (z) =
0, silz|>2
y construyamos a partir de ella la particion de la unidad {1} como sigue:

Yo=1, =19 (27j2) - (2*j+1z) para toda z € C yn € N.

Entonces, dadas 0 < a <1 y1l < p,gq < oo se definen los espacios de Triebel-

Lizorkin FY%(C) como las funciones f tales que

Q=

1l gpaey = ||| D2 [F~' (wy- F(£)]* < o0.
Jj=0

Lr(C)

Donde los simbolos F y F~1 representan la transformada de Fourier y su inversa

respectivamenne.
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Nota: Se tienen las siguientes igualdades entre espacios de funciones
WeP(C) = FP(C), F*(C)=W2(C) y F3>*(C)= BMO(C)

Definicién 2.1.15. Dado un espacio normado (E, || - ||g) se dice que es un Espacio

de Banach si es un espacio completo para la norma asociada.

Proposicion 2.1.1. Los siguientes espacios son Banach con su norma asociada.
» [P(Q) sil<p<oo.
» WHP(Q) si0<a<ooyl<p<oo.

Proposicién 2.1.2. Los espacios L*>(Q) y W™2(Q) conn € N son espacios de Hilbert

con el producto escalar usual, a saber:

<f7.g>L2(Q) = /Qfg,

gy = Y [ DD,
k=09

Definicién 2.1.16. Decimos que A(C) es un algebra de Banach si A(C) es un espacio
de Banach y dadas f,g € A(C), 3C € R tal que

I f9ll.acc) < Cllfllac) llgllacc)-

Ejemplo: los espacios W*P(Q) con ap > 2 son algebras de Banach. También lo son
los espacios W*P(Q) N L>(Q), para todo a € (0,1) y p € (1,00).

Nota: el caso ap > 2 se tiene ademds la inclusion a VMO(C).
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2.2. Operadores entre espacios de funciones.
Definicién 2.2.1. Dada ¢ € S(C), se define la transformada de Cauchy como

Co(z) == L[ o) dA(w).

T Joz—w

Si ¢ € §(C), puede demostrarse que

1€l < Cli¢ll L2

lo que nos dice que que toda transformada de Cauchy de un funcién de L?(C) es un
elemento de BMO(C).
Observemos que también podemos considerar la transformada de Cauchy como

un operador de convolucién

Co(z) = (ﬂlw * ¢> (2).
Para ¢ € S(C) se tiene

ocos) =9 (v o) (= (0(L) » o)
~6(2)

ya que % es la solucién fundamental del operador 9. De aqui se deduce la siguiente

proposicion.
Proposicién 2.2.1. Si f € LP(C) para 1 < p < oo entonces se tiene que
acf=f.
Proposiciéon 2.2.2. Dado p > 2, el operador
C: LE(C) — WhP(C)
es continuo.
Proposiciéon 2.2.3. El operador
C:Cy°(C)— C(C)

es continuo.
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Definicién 2.2.2. Dada ¢ € S(C) se define la transformada de Beurling como el

stguiente valor principal

Bo(z) :=— lim 1/_ N (d)(w)QdA(w).

z—w)

Observemos que B puede considerarse como el operador de convoluciéon
1
W

Bo(z) = (-vp2 x ¢> (2).

Nétese que para ¢ € S(C), la transformada de Beurling y la de Cauchy se relacionan

de la siguietne manera

ACH(z) = <7T1w \ a¢> (2) = <7Ti2 ] a¢> (2) = Bo(2).

Definicién 2.2.3. Dada ¢ € C§°(C) se define la transformada adjunta de Beurling

como

B6(z) = Ba(2).
Proposicién 2.2.4. Para todan € N, p € (1,00) y « € R\ N, se cumple que
» BoB* =1Ipn)-
= El operador B : L*(C) — L?(C) es una isometria.
» Los operadores B, B* : LP(C) — LP(C) son continuos e invertibles.
» Los operadores B, B* : WP (C) — W™P(C) son continuos e invertibles.
» Los operadores B, B* : W*P(C) — W*P(C) son continuos e invertibles.

Proposicion 2.2.5. La composicion de N operadores de Beurling con N € N cumple

que
IBN | 2o (cys £o(cy < C(p)N?

para 1 < p < o0.
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Definicion 2.2.4. Dados dos espacios de Banach E y F, y un operador lineal
T-E—TF

se dird que es un operador compacto cuando cumpla alguna de las dos condiciones

siguientes:

(1) ¥ {zn}nen C E acotada = {T(zp)}nen C F admite una subsucesion conver-

gente.
(i) T(Bg) es relativamete compacto en FF.

Y al conjunto de todos los operadores compactos entre E y F se le denotard por

K(E,F).
Proposicion 2.2.6. Dados tres espacios de Banach E, F y G. Se cumple que:
» K(E,F) es un subespacio cerrado de L(E,F).

» Dados los operadores T € L(E,F) y S € L(F,G) si uno de los dos es compacto,

entonces S o T también.
» T € L(E,F) es compacto si y sdlo si el adjunto T* € L(F*,E*) lo es.

Proposicién 2.2.7. [1] (Capitulo 4). Dado @ C C un acotado medible entonces, los

siguientes operadores son compactos.
» Para p € (2,00] y0§a<1—%
xqoC : LP(C) — C¥(Q).
» Parap € [1,2] y1§5<22?pp
xaoC: LP(C)w— L*(C).
Lema 2.2.8. Supongamos que b es de BMO(C) yp € (1,00). Entonces el conmutador
[B,b] =Bb—bB

se extiende a un operador acotado de LP(C) en si mismo con cota uniforme

1B, 0] ¢llr(cy = 1(Bb = bB)o| Loy < Cop [1bll« @]l Lo (c)-
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Teorema 2.2.9. Dado una funcion b € VMO(C) el operador lineal
[B,b] : ¢ (Bb— bB)o
es un operador compacto de LP(C) en si mismo Vp € (1,00).

Demostracion. Primero veremos el caso de b € C§°(C) y luego razonaremos por
densidad. Consideremos una funcién arbitraria w € LP(C) y sea f := Cw. Entonces se
cumple que
a(bf) = BA(bf).
Y por otro lado:
(bB —Bb)w =b0f — B (bgf) =B((9b) f) — (b) f =
— B((3b) Cw) — (9b) Cu
de donde se deduce la compacidad cuando b € C§°(C) gracias a la Proposicién 2.2.7.

Para el caso general b € VM O(C) nos aproximaremos mediante una sucesion de

funciones {b;};en C C5°(C) tal que b; — b en BMO(C). Por tanto,

| (6B — Bb) — (b;8 — Bbj) || e (c)srr(cy = || (b= bj) B—= B (b —bj) || o (c)s ()
< Cpl[b = bl — 0

con lo que se garantiza la compacidad del operador. ]

Definicion 2.2.5. Dado un operador acotado T : E — F se dice que es de Fredholm
si cumple que Ker(T') y Coker(T') son finito dimensionales.
Al conjunto de todos los operadores de Fredholm entre E y F se les denotard por

F(E,F).

Lema 2.2.10. Caracterizacion de Atkinson: Un operador acotado T : E— F es

Fredholm si y solo si
dAe L(F,E), 3K, € K(E) y IK» € K(F)
tales que AoT = Ig + K1 y To A = Ir+ Ko.
Definicién 2.2.6. Dado T € F(E,F) se define el indice del operador T como:

Ind(7T) := dim(Ker(T")) — dim(Coker(T)).
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Proposicion 2.2.11. Sean E, F y G tres Espacios de Banach.

1. SiT:E—~TF yS:F— G son operadores acotados y dos de los siguientes tres

operadores T, S, S oT son Fredholm, entonces el tercero también, y ademds

Ind(SoT) = Ind(S) 4+ Ind(T).

2. T e F(E,F) siysolo si T* € F(F*,E*), y ademds

Ind(T) = Ind(T*).

3. SiK e K(E,F) yT € F(E,F) entonces T + K € F(E,F) y ademds
Ind(T + K) = Ind(T).
4. SiT € F(E,F) entonces Ind(T') = 0 si y sdlo si T = A+ K para algin par de
operadores A, K con A invertible y K compacto.
5. 8T e F(E) conInd(T) = 0 e inyectivo, entonces T' es invertible.

Proposicién 2.2.12. Embedding Sobolev.[3] Dadas n > 1 y p € [1,00) se tienen

las siguientes inclusiones continuas entre espacios de funciones:

(1)

1 n 1
(C) (©) 573 %5
(i)
W"™P(C) — LYC) para toda q € [p,0) Si}—g:O
p
(ii)
W (C) < L¥(C) si + — 2 <0.
p 2

(iv)

W™P(C) — C%*(C) para a =n — ; €(0,1).



Capitulo 3

Preliminares cuasiconformes.

A lo largo de este capitulo veremos algunos de los resultados méas importantes sobre
aplicaciones cuasiregulares. Nuestro objetivo en este capitulo, es llegar a recolectar
todas las nociones y herramientas necesarias para demostrar el Teorema de Riemann
que nos garantizan la existencia de un tnico homeomorfismo soluciéon de la ecuacién
de Beltrami, y el Teorema de Stoilow que nos clasifica el resto de soluciones. Asi, estas
mismas herramientas no seran de gran utilidad en el resto de capitulos para llegar a
probar los resultados que expondremos. Por ello, primero daremos algunas definiciones

y propiedades sobre las aplicaciones cuasiregulares que nos seran necesarias.

3.1. Definiciones y Propiedades Basicas.

Definicion 3.1.1. Se define la ecuacion de Beltrami como la siguiente ecuacion en

derivadas parciales
86 (2) = 1 (2) 96 (2) (3.1)

donde p es una funcién dada con |p(z)| < 1 para casi todo z € C.

Definicion 3.1.2. Una funcion f se dice que es p-cuasiregular si es una funcion de

VV;’CQ((C) y es solucion de la ecuacion de Beltrami (3.1).

Definicion 3.1.3. Una funcion ¢ se dice que es p-cuasiconforme si es un homeo-

morfismo perteneciente a VV&)’?((C) y es solucion de la ecuacion de Beltrami (3.1).

18
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Definicion 3.1.4. Una funcion f se dice que es débilmente cuasiregular si es una

funcion de VVlicq((C) para alguna ¢ > 1 y cumple la desiqualdad de distorsion
0f| < klof], k<1
para casi toda z € C.

Definicion 3.1.5. Dado un homeomorfismo ¢, diremos que es un homeomorfismo

normalizado si cumple la condicion

6(0) =0 y ¢(1) = 1. (3.2)

Asi mismo, se llama solucién normalizada de la ecuacion de Beltrami (3.1) a toda

aplicacion p-cuasiconforme que satisfaga la condicion (3.2).

Definicion 3.1.6. Dado K > 1, se dice que una funcion ¢ es K-cuasiconforme si ¢

pertenece a VV;E((C), es biyectiva y satisface la condicion de distorsion
méx [0p¢| < K min |04¢|
(0% (0%
para casi toda z € C.

Observemos un segundo que la condicién de distorsion impuesta para las aplica-

ciones K-cuasiconformes es equivalente a
— K-1
WMSE:TWW
por lo que se puede asegurar que toda aplicacién p-cuasiconforme con ||p)|oo < 1 es a
su vez una aplicacién K-cuasiconforme sin més que tomar
_ 14 [plls
1l

Y reciprocamente, toda aplicacion K-cuasiconforme es una aplicacién p-cuasiconforme

K

para cierta funcién medible p tal que

K_1<1
K+1 ’

concretamente la funcién p viene expresada por

_B()
“0) = 36 ()

La gran diferencia entre ambas definiciones radica en que mientras que dada una

ltllse <

K > 1 pueden existir una multitud de aplicaciones K-cuasiconformes, dada una

funcién p existird, moédulo aplicaciones de Mobius, una tinica funcién p-cuasiconforme.
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Definicion 3.1.7. Dado un homeomorfismo ¢, diremos que es un homeomorfismo

principal st cumple la siguiente condicion

lim |¢(z) — 2| = 0. (3.3)

|z]—o0

Asi mismo, se llama solucién principal de la ecuacion de Beltrami (3.1) a toda apli-

cacion p-cuasiconforme que satifaga la condicion (3.3).

Definicion 3.1.8. Dada ¢ una funcion se define su funcién de distorsién como

2
Ko Do

J (2, 9)
Fijémonos que, en nuestro caso, la funcion de distorsién de toda solucién de la

ecuacion de Beltrami 3.1 se puede expresar en términos de p como sigue

_ Do (x)P? _ (199 (2)] + |09 (2)])* 100 (2)| + |99 (2)]

K (z = = —
D= T8 T oe P [e ) eI - 196
1), 2
e T

Proposicién 3.1.1. [1] (PAG. 79). El limite uniforme f de aplicaciones cuasicon-

formes fn, : C — C normalizadas por las condiciones
fn(0) =0y fn(l) =1 para toda n € N,
es un homeomorfismo cuasiconforme de la esfera de Riemann C.

Definicién 3.1.9. Diremos que un homemomorfismo f satisface la condicién N de

Lusin st se cumple la siguiente implicacion:
|E|=0=[f(E)[=0.

Proposicién 3.1.2. Un homeomorfismo f cumple la condicion N de Lusin si y sdlo

st f preserva los conjuntos medibles Lebesque.

Demostracion. Empezaremos con la implicacién directa. Sea A un conjunto medible,
entonces existen dos conjuntos B borel y N de medida nula tal que A = BUN. Y al

tratase f de un homeomorfismo, se cumple que

f(A)=f(B)Uf(N)



PRELIMINARES CUASICONFORMES. 21

con f (B) un borel y f (N) un conjunto de medida nula por la condicién N. De aqui se
sigue que f (A) es medible. Con lo que terminamos la primera implicacion.

Para la otra implicacién, razonaremos por (R.A.) suponiendo que existe un con-
junto N de medida nula cuya imagen f (V) tenga medida positiva. En tal caso, existe
un conjunto no medible A tal que A C f (N).Y definimos H = f~! (A)NN. Entonces

tendremos por un lado que
f(H)=ANf(N)= A no medible,

y por otro que

HCNy |[N|=0

lo que implica que H es medible con medida nula. Por lo tanto, hemos construido un

conjunto H medible tal que f (H) = A no medible, contradiciendo la tesis. O

Definicién 3.1.10. Diremos que un homeomorfismo f satisface la condicion N1 de

Lusin st se cumple la siguiente implicacion:
|E|=0=|f'(E)|=0.

Proposicién 3.1.3. Un homeomorfismo f cumple la condicion N~' de Lusion si

para toda funcion medible u, la composicion u o f también es medible.

Demostracion. Primero, observemos que al tratarse f de un homeomorfismo, entonces
que f cumpla la condicién N ! de Lusin es equivalente a que f~! cumpla la condicién
N de Lusin. Y por la Proposicién 3.1.2, son equivalente que f~! envie conjuntos
medibles en medibles, ie, si F es un conjunto medible, entonces f~! (E) es medible.
Por lo que sélo habra que probar que f~! conserva los conjuntos medibles.

Sea E un conjunto medible, sabemos que E es un conjunto medible si y sélo si xg
es una funcién medible. Definamos u = x g, entonces por hipétesis v o f es medible,

y por construccién (u o f) = Xf-1(E) por lo que f~1(E) es un conjunto medible. [J
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3.2. El operador [ — uBB y el intervalo critico.

Observemos que si tomamos una solucién principal ¢ de

0¢(z) = p(2)0¢(z) z€C

esta se puede escribir como ¢(z) = z + Ch(z), y entonces sus derivadas parciales
satisfacen

0¢(z) =1+ Bh(z)

9¢(2) = h(z).
Mediante estas relaciones, la ecuacién de Beltrami, se convierte en la ecuacién funda-
mental

(I —pB)h = p

lo que levanta nuestro interés en estudiar la invertibilidad del operador I — uB. Si

fuese tal el caso, entonces

h= (- puB) p.

Y la invertibilidad del operador nos permitira transferir propiedades del coeficiente p
a la aplicacién h (y por ende a ¢). Por ello, nos es de vital importancia saber bajo
que condiciones impuestas a u se tendra (o no) la invertibilidad del operador I — uBB
en un rango mas o menos amplio de espacios LP(C) u otros.

Respecto a este estudio, hay, como ya habiamos enfatizado, dos aportaciones prin-
cipales. Una es la de Astala [1] el cual no supone nada més que p € L*(C) con soporte
compacto. Y la otra es la de Iwaniec [8] para el caso de que p € VMO(C) en el cual
nos adentraremos en breve en el Capitulo 4. Sera el resultado de Astala el que dare-
mos en esta seccidn, aunque primero puntualizaremos un par de resultados inmediatos
facilmente deducibles mediante la serie de Neumann. Para saber mas sobre como de-

terminar el intervalo critico, se recomienda la lectura del Capitulo 14 de la referencia

[1].
Lema 3.2.1. Dado A € L(E) con ||Allz@&) <1, entonces el operador
Ig—A:E—E

es invertible.
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Corolario 3.2.2. El operador
I —uB: L*(C) — L*(C)
es un operador invertible.

Definicion 3.2.1. Intervalo critico: Se sabe que la aplicacion

p — 1By ()= Lr(C)

es una aplicacion continua, y que ||B||2c)sr2c) = 1 (véase [1], Pag 95). Por tanto,
dado 0 < k < 1, existird todo un entorno de p = 2 para el cual todo operador I — ulBB
con ||pt|loo < k es un operador invertible de LP(C) con p en dicho intervalo con cota
dependiente sdlo de p y de k. Al mayor de todos estos intervalos se le conoce como

rango critico y lo denotaremos por (Q (k) , P (k)).

Puntualicemos que si p es del rango critico el operador (I — uBB) con ||p]|e < k es

invertible, y por lo tanto su inverso, definido formalmente por la serie de Neumann
(I —uB)™' =T+ pB+ puBuB + puBuBulB + ...
serd un operador acotado de LP(C) — LP(C). Lo que nos asegura que

(I = uB) " | o) 1oy < C (K, p)
siempre y cuando p pertenezca a (Q(k), P(k)).

Teorema 3.2.3. [1] Para cada 0 < k < 1, el intervalo critico es

P ) T\K+y1UK-1)

Este teorema, fue demostrado por K. Astala mediante su teorema de distorsién de
area, argumentos con pesos de Muckenhuop y el Teorema de Factorizacién de Stoilow
que veremos en la proxima seccién. En particular, este teorema nos asegurara que la
serie de Neumann que define al operador (I — MB)_1

operadores de LP(C) — LP(C).

, es convergente como serie de
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3.3. Teorema de la aplicacién medible de Riemman.

Se sabe, que si la aplicacion p es de soporte compacto, entonces siempre exis-
tird una solucién principal, pero en caso de que p no tenga soporte compacto, la
solucién principal podria no existir y hay que recurrir a las soluciones normalizadas
para seguir encontrando homeomorfismos soluciones. Es el Teorema de la aplicacion
de Riemman el que nos asegurard la existencia de un homeomorfismo solucién de la

ecuacién de Beltrami
96 (2) = p(2) 06 (2),
para cualquier g medible con ||ullcc = k < 1. Para su demostracién, necesitare-

mos resultados previos sobre existencia de soluciones de la ecuacién de Beltrami no

homogénea
of = udf +¢

bajo ciertas condiciones sobre py ¢. Para ello, nos basaremos en el libro [1].

Teorema 3.3.1. Sean p tal que |pu(2)] < kxp, & < 1, ¢ € LP(C) con soporte

compacto y p € (Q (k), P (k)), entonces la ecuacion de Beltrami no homogénea
Of (2) = u(2)0f (2) + ¢(2)  para casi todo z € C

admite una tnica solucion f tal que D f € LP(C) y lim|, | f (2) = 0. En particular,

si p > 2, entonces tenemos que f € W1P(C).

Demostracion. Veamos primero la existencia. Como p estd en el rango critico, ten-
emos que la funcién definida como (I — uB)~! ¢ pertenece a LP(C) y tiene soporte

compacto. Por otro lado, si definimos
f=c(-uB) "),

entonces tendremos por un lado el comportamiento deseado en el infinito, y por el

otro que

df =0C(I—puB)to=(I—pB) ' pelP(C)
Of =0C(I —uB) o =B(I —uB) e LP(C).

Y si llamamos w = (I — uB) ™" ¢ tenemos que

Of =w= (I — puB)w + puBw = ¢ + udf.
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Por lo que sigue que f tiene derivadas en LP(C) y cumple la ecuacién. Ademads si
p > 2, al ser f la imagen mediante Cauchy de una funcién de soporte compcato, por
la Proposicién 2.2.2 se asegura que f pertenece a W1P(C).

Para ver la unicidad sélo hay que observar que dadas dos soluciones f1, fo entonces,

h = f1 — fo cumple la ecuacién
(I — uB)Oh = Oh — pudh = 0.

Y como (I — uB) es invertible, tiene nucleo trivial, es decir, 9h = 0 y haciendo
Beurling tenemos que BOh = 0h = 0. Por esto, afirmamos que h es una constante, y
por el comportamiento en el infinito que h hereda de f1 y f2, podemos asegurar que

dicha constante es cero. OJ

Teorema 3.3.2. Dada p tal que |pu(2)] < kxpy con 0 < k < 1 exite una tnica
NS VVlicz((C) que cumpla:
96 (2) = pu(2) 09 (2)
lim ¢(z) —z=0.

|z]—o0

Ademds, ¢ € V[/llof(C) para todo 2 < p < P (k).

Demostracion. Fijemos 2 < p < P (k). Aplicando el Teorema 3.3.1, con ¢ = p,

obtendremos una unica f con Df € LP(C) que es solucién de

of = nof + p

y ademés puede construirse como f = C ( (I —uB) ' (p) ), es decir la transforma-

da de Cauchy de una funcién LP(C) con soporte compacto. Por otro lado, tomando

¢(z) = z + f(2) tendremos que

)
¢ € LP (C) por la Proposicién 2.2.7,

loc

h’m|z\%oo ¢ (Z) —z2=0
86 = 8f = udf + p € I(C),
96 =1+ af € L?. (C),

loc

¢ e Whr(C).

loc

Y ademds ¢ cumple la ecuacién

D¢ = pnoo,
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consiguiendo asi la prueba de la existencia.

Para asegurar la unicidad, supongamos que tenemos otra solucién ¢, (z) € VVZL? (C).

Si defino fa (2) = ¢2 (2) — z, entonces fo cumple la ecuacién

of = ndf + u,
y Dfy € L*(C). Por otro lado, si defino h = f — f, entonces tendremos que

(I — uB)Oh = 0.
Y al tratarse B : L?(C) + L?(C) de una isometria, necesariamente

Oh = Boh = 0.
Por lo que h es una constante perteneciente a L?(C) y esa constante tiene que ser
cero, y por tanto f = fo v ¢ = ¢o. O

Observemos que de forma implicita, el Teorema 3.3.1 y el Teorema 3.3.2 nos dan
la expresion constructiva de la solucion principal ¢ = z 4+ C (5(]5). Recordemos que si
f es la solucién del Teorema 3.3.1 con ¢ = 0, entonces ¢ (z) = z + f(z) es solucién

del Teorema 3.3.2. Y ademas f y ¢ cumplen que

Of = p+ pdf,
06 = pdg,
of =B(df),
¢ = 0f,
96 =1+ 8.

Por lo que podemos asegurar que

0¢ = 0f = p + pdf = p+ pBof

[e.9]

= p+uBi¢ = p+ pBu + pBuBu + .. = (uB)" (n).
k=0

Ya que claramente la serie converge en LP(C) para todo p € (Q (k), P (k)), podemos
asegurar la igualdad de la segunda linea. Y ademads, de las expresiones anteriores
puede deducirse que

0p = 1+ Bog

#(z) = 2 + COp(2).

De donde sale la expresién para la solucion principal.
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Lema 3.3.3. Sean ||, |n2] < kxp, con 0 < k < 1. Y consideremos las soluciones

principales ¢1, po de las ecuaciones de Beltramsi

¢ = uidg; con i =1,2.
Entonces para todo par de nimeros p,s tales que 2 <p <p-s < P (k) se tiene que

[0¢1 — 02|l Lo(c) < C (p; s,k R) || — MQHLSP_—SI(C)-

Demostracién. Observemos que por el Teorema 3.3.2, tenemos que d¢; = jui; + p1; BOd;

para i = 1,2. Entonces
b1 — Oa = 1 — pig + p1 BOG1 — 12802
= (1 — p2) Xy + (11 — p2) BOd1 + paB (061 — 8¢s) |
y por lo tanto,

Oy — 0y = (I — p12B) ™" (11 — p2) (X, + BOG1)]

y asi

”5¢1 - 5¢2||Z£1a(<c) < ” (I - M2B)_1 Hip(c)HLp((c)” (Ml - M2) (X]D)R + Bg(bl) ||Z£p(c)-

Y gracias a la invertibilidad del operador (I — pupB)™" : LP(C) — LP(C) y a la de-
sigualdad de Hoélder en la norma de LP(C) tenemos que

s—1
s

1
1061~ Boalf ey < C o) ([l = al#) ([ o+ 5001 ]")

1
ps) s

o (/ ’X]D)R +B(I - mB)

_ _ P
=C(p,k) || uzllL%(

=C(pk,s,R — P
(P, k, 5, R) |11 — po| 210,
O

Lema 3.3.4. Sean p € C§°(C) con ||ullec = k < 1 y ¢ € WHP(C) para algin p €

(2, P (k)), ambas funciones de soporte compacto. Y planteamos la ecuacion diferencial

Of = udf + .

Entonces, la solucién f de la ecuacion cumple que f € W2P(C).
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Demostracion. Observemos que las hipotesis de este Teorema son un caso partic-
ular de las hipdtesis del Teorema 3.3.1, por lo que aplicando éste, deducimos que
3! f € WHP(C) solucién del problema planteado con 2 < p < P (k). Ademas si
actuamos como lo hicimos en el Teorema 3.3.1 (con 2 < p < P (k)) definiendo

w=C(I - ,uB)_1 ©, tendremos como en dicho teorema que
w € WHP(C) por la Proposicién 2.2.2,
of =w,
0f = Bw.
Y como B : W1P(C) — WLP(C) es invertible por la Proposicién 2.2.4, tenemos que
FEW(C), 0f eW'P(C) y 0f e WH(C),
por lo que tenemos que efectivamente f € W2P(C). O

Lema 3.3.5. Sean p,p € C§°(C) con ||pllec <k <1, y2 <p< P(k), y planteamos

la ecuacion diferencial
Of = pof + .

Entonces, la solucion f es de C*°(C).

Demostracion. Definamos w = C (I — uB) ™' ¢ € WHP(C), y observemos que por el
Lema 3.3.4 tenemos que

f e W*P(C).
Y por ser solucién de la ecuacién, para todo operador diferencial D se tiene
DOf = uDOf + Dy + (Du) 0f o equivalentemente,
ODf = udDf + Dy + (Dp) Bw
donde trivialmente Dy + (D) Bw es de WP (C), por lo que podemos aplicarle a D f
el Lema 3.3.4 para concluir que Df € W2P(C) y por tanto f € W3P(C). Reiterando

el razonamiento, se sigue que f € W¥*P(C) para toda k € N y por tanto que f €
C>(C). O
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Lema 3.3.6. Sea 1 € C§°(C) con ||pl|lc < k < 1 para todo z € C, y consideremos
¢ € WH2(C) la solucién principal de

loc
¢ = pudap.
Entonces, ¢ € C°(C) y ademas J (z, ¢) > 0 para todo z € C.

Demostracion. Gracias al Lema 3.3.5, podemos asegurar ¢ € C°°(C) sin mds que
suponer ¢ = 0. Por tanto, sélo tendremos que asegurarnos que J (z, ¢ ) sea distinto

de cero. Para ello, consideremos la ecuacion auxiliar
Of = pof + op

que para 2 < p < P (k) tiene una tinica solucién f € W1P(C) N C*(C) gracias a el
Teorema 3.3.1 y el Lema 3.3.4. Ademds, como f € WhP(C) N C™ con f(z) = O (1)

z

cuando z — 00, se tiene que ef — 1 € WLP(C), y de aqui se sigue que
ef —1=¢ (5 (ef — 1)) =C (,uﬁfef —I-auef)

e (oo =5 (o).

B (uef> =ef —1. (3.4)

y por tanto

Por otro lado, consideremos también la funcién auxiliar

F(z) =z +C(pel)(2),

que al tratarse p de una funcién de C§°(C), por la Proposicién 2.2.3, podemos asegurar

que F € C*°(C). Ademés F asi definida cumple que

OF = pe’, yanlJrB(uef) =ef

dénde en la ultima igualdad hemos usado la equacion (3.4). De aqui se deduce que F
es solucién de OF = pdF y por la unicidad de solucién del Teorema 3.3.2, aseguramos

que ¢ = F. Y ya para terminar, observemos que
J(z,¢)=J(z, F)=|oF — |oF|°
= ‘le‘ <1 — \,u\2> > 0 para toda z € C,

con lo que concluimos la demostracion. O
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Teorema 3.3.7. Sea pn € C§°(C) con ||p||cc = k < 1, entonces la solucién principal

NS VV;E(C) de la ecuacion de Beltrami

0¢ = pdg
es un C*®°-difeomorfismo de la Esfera de Riemann C.

Demostracion. Por el Teorema 3.3.6, ya tenemos que ¢ € C°(C)y J(z,¢) > 0,
lo que en particular nos dice que ¢ es un homeomorfismo local. Por lo que sélo nos
queda ver que es también homeomorfismo global.

Como C es compacto, existe un recubrimiento finito por bolas de @, y como ¢ es
un homeomorfismo local, ¢ es inyectiva en cada una de dichas bolas. Por otro lado no
es dificil probar que el conjunto de puntos con una tinica preimagen es un conjunto a
la vez abierto y cerrado en C. Por lo tanto, dicho conjunto debe ser vacio o C y como

¢ € C°(C) la opcién de que el conjunto sea vacia queda descartada. O

Teorema 3.3.8. Supongamos que tenemos una funcion f € I/Vllog (Q) para alguna

q € (Q(k), P(k)) y que satisface la desigualdad de distorsion
|0f (z)| < k[0f ()], para casi todo z € .

Entonces f € I/Vllof(Q) para toda p € (Q(k), P(k)), en particular f es continua y
ademds, para toda funcidin n Lipschitz con soporte compacto en ) se cumple la de-

stgualdad de Caccioppoli

D fllze) < C (p, k) [ FVNllLe (-

Atn teniendo ya las herramientas necesarias para ver la demostracion del teorema,
remitiremos al lector o bien al libro [1] o bien a la demostracién del Teorema 4.2.1,
yva que el argumento de la prueba es el basicamente el mismo en ambos teoremas,
salvo que en el Teorema 4.2.1 podemos aplicar el resultado a toda p perteneciente al
intervalo (1,00) y en este caso sélo podemos hacer valer la prueba para el intervalo

critico.
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Teorema 3.3.9. Teorema de la aplicacion medible de Riemann.
Sea |p| < k < 1 con soporte compacto y definida en C. Entonces existe una tunica

solucién principal ¢ de la ecuacion de Beltrami
0¢ (2) = p(2) 09 (2) para casi toda z € C.

Ademds la solucion ¢ estd en I/Vli’f((C) para todo p € (Q (k), P (k)) y es un homeo-

morfismo de C.

Demostracion. Vamos a definir una aproximacién a la identidad. Primero tomemos

la funcion
1
¥ ()= C o (1 ) w
2" — 1

con C tal que fC ¥ =1.Y tomamos la aproximacién como

U, (2) = &V (E) .

€

Si definimos g (2) := We * p(z), entonces e € C°(C) con ||ptelloc < k para todo
e > 0y ademads pue — p en todos los espacios L(C) con 1 < ¢ < oo cuando € — 0 por
el Teorema de Lebesgue.

Ahora fijemos p y s tales que 2 < p < ps < P (k), obviamente pe — p en LfTSl((C).

Y definamos ¢, como la tnica solucién principal de la ecuacién

99 (2) = pe (2) 09 (2),

que por el Teorema 3.3.7, cada ¢, es un C°°-difeomorfismo de C.

Del Lema 3.3.3 se sigue que

B0 = B0ll1r(c) < Clp sk, R)llae = sl s o) = 0

con R el radio de un disco centrado en el origen que contenga al soporte de p.
Por otro lado, de la expresién que tenemos para la imagen de la O-derivada medi-

ante Beurling de una solucion principal, tenemos que

106 — 0| o (cy < |1+ BOge — 1 = BOG| ) = [|BOGe — BOG| e

<IBllo(cyps Loy 108 = 06| Loy — 0.
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Por lo que tenemos que ¢, v ¢ son las transformadas de Cauchy de sus O-derivadas,

y por lo tanto

pe—¢=C (gd)e - 5¢) (Z) =C (Meagbe - M8¢) (z)
= C (e — p) 00c) (2) + C (1 (9pe — 09)) (z) — 0.

Donnde la convergencia se tiene por la Proposicién 2.2.7, que nos asegura que es
convergencia uniforme en C ya que 0¢. = p0pe vy 0p = pd¢ de dénde tenemos
el soporte compacto. Por esto, tenemos que ¢ es el limite de ¢, en particular es el
limite de la sucesién de homoeomorfismos cuasiconformes y por la Proposicién 3.1.1,

aseguramos que ¢ es efectivamente un homeomorfismo. O

Teorema 3.3.10. Sea ;1 con |[p]loc = k < 1 para toda z € C, entonces existe una
unica funcion f : C — C homoeomorfismo quasiconforme y solucion de la ecuacion

del Beltramsi
06 = pde

normalizada con las condiciones

$(0) =0, ¢(1)=1, y ¢(o0) = oo.

Este teorema no lo demostraremos ya que nuestro interés esta centrado en el caso

de p con soporte compacto.

3.4. La Factorizacion de Stoilow.

El teorema de factorizacion de Stoilow serd la herramienta que nos permitira clasi-
ficar todas las soluciones de la ecuacion de Beltrami con cierta regularidad. Estas
soluciones, se buscaran entre las llamadas funciones débilmente causirequlares.

Este teorema usa resultados de topologia que atestiguan que toda aplicacién abier-
ta y discreta h es topologicamente equivalente a una funcién analitica. Es decir,

h =go f con f un homeomorfismo del plano y g un holomorphismo.
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Teorema 3.4.1. Factorizaciéon de Stoilow Sea ¢ : Q — Q' un homeomorfismo

solucion de la ecuacion de Beltrami
36 = pdp, € WhH(Q),

con |p| < k <1 para casi todo z € Q. Y supongamos que g € VV&)S(Q) es otra solucion

de la ecuacion de Beltrami, entonces existe un holomorfismo ® : Q' — C tal que

g(z) =@(¢p(2)), paraze Q.

, . 1,2
Y reciprocamente, si ® es un holomorfismo en Q' entonces ® o ¢ es una W, (Q)-

solucion de la ecuacion de Beltrami.

Corolario 3.4.2. Si f es una aplicacion cuasiregular definida en un subdominio

Q C C, entonces
1. f es o bien abierta y discreta, o bien constante.
2. f es Hélder-continua con exponente o = L‘r—’; = %
3. f cumple las condiciones N y N1,

4. f es diferenciable con Jacobiano no nulo en casi todo punto.

Corolario 3.4.3. Sea f cuasireqular y definida en un dominio simple §2, entonces
f=®o¢p con ® holomorfa en Q y ¢ cuasiconforme que puede tomarse bien ¢ : Q — €,

o bien, ¢ : C — C.



Capitulo 4

Resultados para € VMO(C).

4.1. Mejora del intervalo critico.

Una de las limitaciones de la resolubilidad de la ecuacién de Beltrami en LP(C)
consiste en que el rango de valores admisibles para p depende de la elipticidad. Conc-
retamente, hemos mencionado antes que si € L®(C) y ||p|loc = k < 1 entonces el

operador

I—uB:LP(C)— LP(C)

es invertible siempre y cuando 1 +k < p < 1+ % Ademsds, este rango es 6ptimo.
Veremos en este capitulo que, sin embargo, hipétesis adicionales sobre 1 pueden mejo-
rar sensiblemente el rango. La idea fundamental es de T. Iwaniec [8], y estd basada
en argumentos de compacidad de commutadores e invertibilidad de operadores de

Fredholm.

Lema 4.1.1 (Desigualdad Isoperimétrica, [1]). Sea Q un dominio de Jordan acotado,

tal que OS2 es rectificable. Entonces se cumple que

HA(Q) < —(H'(09))?

1
47

donde H? es la medida de drea y H' la medida de longitud.

34
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Lema 4.1.2. [16] Sea una funcidn g perteneciente a I/Vlicl (C), donde su Jacobiano

J (-, 9), y su funcion de distorsion K (-, g) cumplen que

J (-, 9) € Ljy(C)

loc

K (-, g)€L(C)

loc
IDg(VP<K(-,9)J(-,g) en casitodo punto.

Entonces la funcion g o bien es constante, o bien es una funcidén discreta y abierta.

Teorema 4.1.3. [7],[8]. Supongamos que g es localmente integrable, perteneciente a
WP(C) con p > 2 y tal que su funcidn de distorsion K(z,g), es finita en casi todo

punto. Supongamos, ademds, que
1

2l

con Ry suficientemente grande, y que J(-, g) es localmente integrable y ademds pertenece

Koo
Koo—

K(z,9) < K, para toda R > Rg > 1

a L1(C) para alguna 1 < q <

7. Entonces g es constante.

Demostracion. Primero observemos que dadas las hipétesis sobre g, K(-,g) v J(-, g)
podemos asegurar que ¢ es una funcién o bien discreta y abierta, o bien constante
por el Lema 4.1.2. Por tanto, supondremos que g no es constante. Y ademds, como
g estd en WP (C) con p > 2, en particular g es una funcién continua y como ya

habiamos indicado, también es abierta, por tanto g cumple que
g(0OF)=0(g(FE)), para todo conjunto F C C.

Para simplificar, denotaremos J := J(z,9) y K := K(z,g).
Usando el Lema 4.1.1 (con Q = g(ID;)) obtendremos que

9] < 1D = 1-lg(@D)?

que en términos del Jacobiano y la diferencial queda

[ i < ([ palaer)

y como |Dy| = wt? y |0D4|? = 47%¢? obtenemos que

1 1 2
J(z,9)dA(z) < | —— Dgll|dz
(z.0)da(2) < (557 [ 10l

ID¢| Jp,
1 Dg ) ( 1 )
< | = —Z |dz _ Kldz
<!3Dt oD, K| | 10D Jap, 421

1 1
= J dz> < K dz> .
( 10D Ja, 421 |ODy| Jom, 421
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De aqui, deducimos que

1 1 1
— | JdA(z S( sz) ( Kdz). (4.1
|D¢| Jp, (=) 10D:| Jap, 4z oDy Jop, 421 )

Definamos, como hemos visto en (4.1)

1
W)= — [ Klds| v o) = [ J(zg)dA(z) = / JdA(2).
oDy Jap, D; Dy
y observemos que
o(t) = 1im 2EED) =00 g 1 (/ JdA(z) —/ JdA(z))
e—0 € e—0 € Dt+e Dy
1 1 t+e 21 )
= lfm ~ JdA(z) = lim = / J(re®)r df dr
e—0 € Dyre\Dy e—=0 € Jy 0

1 27 t+e ) 2 )
= lim — (/ rJ(rew)dr> do = / J(te®)td = / J(z,9) |dz|.
=0¢€ Jo t 0 oDy

Luego, reescribiendo (4.1) obtenemos

1 1 | D |

B0 < Gpp? WAB = 6lt) < g e (DR "
= 9l0) < SO (Oh()
Probamos a continuacién que
o(t) = o(tﬁ) cuando t — oo. (4.3)

Observemos que VE C Dy se cumple que

H(t) = /DtJdA(z):/Dt\EJdA(z)jL/EJdA(z) <

<D\ B (/D\E Ja dA(z)> e (/E g dA(z))é

de donde se tiene que

it () (L) (B )

Ahora tomamos lim sup,_, ., y tenemos en cuenta que por hipétesis J € L?(C). Obten-

=

€110S:

q
lim sup gb(t)tgf2 < ] < J1 dA(z)) .
C\E

t—o00
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Por otro lado

1<g< K
1=K
de modo que
lo que concluye la demostracién de (4.3) ya que el conjunto E puede tomarse arbitraio.

Ahora, procedemos a definir una nueva variable y dos nuevas funciones, y veremos

como quedan las férmulas (4.2),(4.3), en cuestién de estas definiciones.

— . ) — =
s:=t> |, H(t?) := 7ok B(t) == (T(t?))Fes .
(4.2) se reescribe como
U(s) < sU'(s)H(s) (4.4)

y (4.3) se reescribe como

Koo

Tq
lim sup ¥(s) Koo g2 (/ J4 dA(z)) (4.5)
s—00 S C\E

de dénde se deduce que: ¥(s) = o(s) cuando s — oo.

IN
3

Trabajemos ahora con la hipétesis sobre K (z, f) ie,

1

2 K(z,9)dz < Ko YR> Ry >1
Dr

para Ry suficientemente grande. Se tiene

1 1 r 27 1 T
Koo > —5 | K(z,9)dz=—5 </ th9> dt = —5 ( K|dz]> dt =
72 Jp, 2 Jo \Jo = Jo \Jon,
2

1 r 2 r 2 [F
- oth(e)dt = / My =2 / Koo H (u)du >
0 0

2

0
1 S
> / Ko H(u)du,
s Jo

obteniendo por tanto

1 S
1> s/ H(u)du Vs> 0. (4.6)
0

Por otro lado ¢(t) es absolutamente continua, por tanto ¥(s) también y gracias a

(4.4) tendremos que:
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S du
T = OBV (s) ~ log(¥() > / i =

= U(a) < \I/(s)e_f; T Vs > 0. (4.7)

Por tanto, si conseguimos probar que f

UH(U) > log(s) — C(a) tendriamos la

demostracién ya que (4.7) se traduce como
U(a) < C(a)\l,is) Vs >0
y tomando limsup,_, ., por (4.5), tenemos
U(a)=0VYa>0 = ¢a)=0VYa>0

y de la definicién de ¢(t) sale la demostraciéon de que g es constante.

Procedamos por tanto, a probar que efectivamente [” > log(s) — C(a).

a uH( )
Definamos G(s) := [’ H(u)du. Por (4.6) tenemos:

121/ H(u)du Vs >1=0<G(s) <s Vs>1
Sa

Y de la desigualdad genérica H + % > 2 tenemos que:

H 1 _2 1
U uH — u uH

T

>210g —1—/ — =log(s) — (1 +loga)

>

2\1\7

A
u

Por lo tanto

como queriamos demostrar. O

En este teorema, se pueden relajar las hipdtesis para conseguir el mismo resultado

en un marco mas general. Para verlo se recomiendan las referencias [7] y [8].

Teorema 4.1.4. Dada p € VMO(C) con ||p]lec = k < 1, entonces el operador
I —uB: LP(C) — LP(C)

es un operador de Fredholm, con Ind (I — uBB) =0 para todo p € (1,00).
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Demostracion. Primero recordemos que la Proposicion 2.2.5 nos asegura que 3m € N

para el cudl se tiene ||uB™( 1r(c)—rr(c) < 1. Esto es debido a que

6" B" | Lo (c)s o) < |1 oo (@ 1B o @) o () < N1l Foo () 1Bl o (s ()

< k"n? — 0 cuando n — oo.

Con ésto, por el Lema 3.2.1 se deduce que I — u™B"™ es invertible en LP(C).
Por otro lado, definiendo

n —1

n=0

obtendremos que:
P (I = pB) = (I — pB) Py =1 — (uB)™ = (I — p"™B™) + (" B™ — (uB)™),

donde el primer sumando es un operador invertible en LP(C). Sélo falta ver que
umB™ — (uB)™ es un operador compacto.
Recordemos que el Teorema 2.2.9. nos dice que By = puBB + K con K un operador

compacto. Por tanto

(uB)™ = uBuB...uBuB = pu(puB + K)B...uBulB =
= upuBB...uBuB + pKB...uBuB
dénde el ultimo sumando es un operador compacto (ya que K lo es). Por tanto, pode-
mos asegurar que permutar el orden de u y B puede hacerse a costa de un operador
compacto. Y como m € N, sélo hace falta una cantidad finita de permutaciones para
que partiendo de (uB)™ se obtenga p™B™ + I?, con K la suma de todos y cada uno
de los operadores compactos que genera cada permutaciéon. Y céomo el nimero de

permutaciones puede tomarse finito, K serd un operador compacto. En definitiva,
"B — (uB)" = B — BT — K=K

con K un operador compacto. El valor nulo del indice se deduce de su invarianza

topoldgica, dado que se tiene una homotopia
t I —tuB,tel0,1]

entre [ e I — ubB5. O
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Teorema 4.1.5. Sea pu € VMO(C) con ||p||oe = k < 1. Entonces, el operador I — uB3
es invertible en LP(C) sip > 2.

Demostracion. Puntualicemos antes de nada dos hechos. El primero es que, dado
que I — pBB es un operador Fredholm con indice cero, gracias a la Proposicién 2.2.11
tendremos que el operador es invertible sin mas que demostrar que es inyectivo. En
segundo lugar, si p = 2 entonces la inyectividad es immediata. En efecto, y dado
que ||B[z2c) = 1, se tiene que [|uB||r2c)sr2(c) < k < 1y gracias a la Proposicién
3.2.1 se deduce que I — uB es inyectivo en L?(C). Asi pues, supondremos de ahora
en adelante que p > 2.

Veremos que, dada una funcién ¥ € LP(C) tal que (I — uB)¥ = 0, entonces f :=CVU
resuelve la ecuacién de Beltrami

of o

55 )5, =0, (4.8)

e intentaremos aplicar Teorema 4.1.3 para deducir que f es constante. Ello concluye
la demostracién, dado que ¥ = df y por lo tanto ¥ = 0.

Veamos primero que

R—o0

1
lim / z) — u(oo)| = 0. 4.9
7 [y M) ) (49)

Sean Ry € > 0 fijados y ¢ € C5°(C) tal que || — ¢||« < €, entonces

i | ) (ool <

< /
_7'('.R2 Dgr

1
e — @l + |ppg — p(o0)| + 7 Jy | — ©Dg|

1= 9) = e =2l + =g [ (o= gl + iy o)) =

IN

1
<t by ~p(e+ gz [ lo—omal.

Observemos que el segundo sumando converge a 0 si R — oo, por definicién de p(00).
Finalmente, la integral también converge a 0 cuando R — oo dado que ¢ € VMO.

Luego

3 1
limsup /D 11(2) — p(o0)] < e,
R

R—oo T
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lo que concluye la demostracién de (4.9). Por otro lado,

1
1i d
Rlﬁr\%o TR2 /(0 R) M(Z) :

1 1
< lim —= dz < lim —= kdz =k
A e / o NS i S /D(O,m ?

Sea ahora f una solucién de (4.8) con df,df € LP(C), y definamos

|1(o0)] = <

P(2) =z — p(o0)z,
9(2) = (f o ¢)(2).
Claramente, ¢ es un homeomorfismo C* (C) que cumple ¢(Dg) C Do para todo R.

Por hipétesis, df,df € LP(C), por tanto, Vg € LP(C) y por la regla de la cadena se

sigue que

9g(z) = 0f (¢(2)) D p(2) + Of (6(2)) 96(2) = Bf (9(2)) — p(00)f (¥(2)) =
= 0f (0(2)) [(ne ¢) (2) — p(o0)]

0g(z) = 0f (6(2)) 96(2) + 0f (6(2)) 0b(2) = Of (¢(2)) — u(o0) Of (¢(2)) =

=0/ (9(2)) |1 = (o) (o 9) (2)]
y por tanto g cumple la ecuacion de Beltrami

9g(z) = n(2) 9g(2)

o (o d)() — ()
M e o)

Nétese que al tratarse de una transdormacién de Mébius, entonces ||7i(2)]|so = k < 1

y que ademds fi(o0) = 0 ya que
(nog)(z) — p(0)

7 ( <11m2/\ z)| dA(z) = lim 1/ ——
R—oo TR R—o0 TR? D |1 — p(o0)(pod)(2)

<am k/ (10 8) (=) — u(o0)| dA(2)
1 1
S (e PNCRTCORZE

, 1 1
= ok 2R (1 12)? /Dw =) = ool dA() =

dA(z)
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Vamos ahora que g cumple las condiciones del Teorema 4.1.3. Por un lado,

o Dg()PE (99l +8g()))” 1+l 28()
K050~ 2g(-)* — |9g()|* T RO T A
<1+—2(-)
1—k

por lo tanto

Por otro lado, sabemos que J(-,g) € L1(C),1 < ¢ = g < 00 por construccién. Luego,
podemos aplicar el Teorema 4.1.3 y deducir que g es constante, con lo que acabamos

la demostracion. O

~

Teorema 4.1.6. Supongamos que p € VMO(C) y que ||plo < 1. Entonces los
operadores

I—uB e I—Bpu,
son operadores invertibles en LP(C) para todo p € (1,00).

Demostracion. Si p > 2, entonces ya sabemos que I — uB3 es invertible en LP(C)

gracias al Teorema 4.1.5. Pasando al adjunto
(I —pB)"=1-BR

obtenemos que I —B*[i es invertible en LI(C) para ¢ € (1, 2] por la Proposicién 2.2.11.

Ademsés tenemos la igualdad de operadores

(I =Bp)(-) = -B7)(-)

por lo que deducimos que I — By es invertible en LP(C), para p € (1,2]. Por otro lado,
sabemos que los operadores B, B* son invertibles en LP(C), para todo p € (1,00), con

BB* = I. Por lo tanto,
» [ —puB=DB*"(I—-Bp)B=I— uB es invertible en LP(C) con p € (1,2].

» [ — Bu=B(I— puB)B* = I — Bpu es invertible en LP(C) con p € [2,00).
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4.2. Automejora de la regularidad.

Teorema 4.2.1. Dada pn € VMO(C), entonces las soluciones débilmente cuasireg-
ulares f de la ecuacion de Beltrami 0f(z) = u(2)0f(z) cumplen que f € VVlf)f((C)
Vp € (1,00).

Demostracion. Supongamos que tenemos una funcion f soluciéon de la ecuacién en

VVllo’cq(C) para alguna ¢ € (1,00). Para cada conjunto acotado E C C, tomamaremos

un disco Dp tal que E C Dy para R suficientemente grande, y una funcién 7 de

C°(C) con soporte compacto conteniendo a F y tal que

n(z) = 1 para toda z en un entorno de E
|77’ < XDgy1-

Por otro lado, definamos F = 7 f que estd en W14(C) y ademds cumple la ecuacién
OF = pdF + (0n — pon) f.

Y al tratarse F' de una funcién de soporte compacto, es la transformada de Cauchy
de su 0-derivada. Y por ello, si denotamos 1) = (577 — ;u?n) f se cumple que

OF =(I—pB)~'y

OF = Bo (I —uB) ',

consiguiéndose asi la desigualdad
IDF| < |(1 = uB)~ | + |Bo (I - uB) ™" u)|. (4.10)

Observemos antes de continuar que la integrabilidad global de F' determina la inte-
grabilidad local de f al tratase n de una funcién de C*°(C) arbitraria. Concretamente,

dada dado un conjunto acotado E C C se tiene que

L= [ = [1rr< [ ey
Lipse=[10@nr= [ wrr< [ DEP

para toda p € (1, 00) y todo conjunto E acotado. Por tanto, probando que F' pertenece
a WP(C) para toda p € (1,00) se tendrd que f pertenece a Wli)’f((C) para toda
p € (1,00).
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Supongamos que g > 2, entonces por el embeging de Sobolev ( Proposicién 2.2.12),
tendremos que F pertenece a L>(C). Por ello, f pertenece a L7 (C) para toda p €
(1,00) y por tanto ¥ pertenece a LP(C) para toda p € (1,00) y por la invertibilidad del
operador I — uBB : LP(C) + LP(C) se sigue que efectivamente F pertenece a WP (C)
para toda p € (1,00) y por lo tanto f € VV;?((C) para toda p € (1, 00).

Supongamos que g < 2, por construccién F perteneces a W14(C) y entonces,
por la Proposicién 2.2.12, tendremos que F' € L%*(C) con ¢*x = ;qu > 2. Por otro
lado, de la definicién de F, se sigue que f estd en L} (C) y por tanto ¥ pertenece
a L?*(C). Ahora, por la invertibilidad del operador I — uBB : LP(C) — LP(C) para
toda p € (100), se tiene que F pertenece a Wh4*(C) con gx > 2, por lo que podemos

aplicar el parrafo anterior y concluir la demostracién.

O

Anteriormente menciondbamos un teorema andlogo a éste (ver Teorema 3.3.8)
vélido incluso sin las hipétesis de p € VMO(C) cuya demostracién sigue estas mis-
mas lineas. Al relajar las hipotesis sobre el coeficiente de Beltrami se cobra un precio:
el intervalo critico se reduce draticamente, éste pasa a ser de (1,00) a quedarse sim-
plemente en (1 + k,1 + %) Para la demostracion del Teorema 3.3.8, solo hay que
observar que el criterio de invertibilidad del operador (I — uBB) sélo puede usarse en
el intervalo critico y no en todo el intervalo (1,00). Por ello, en dicho teorema sélo
tenemos pertenencia en Wli’cp(C) para p en el intervalo critico. Por su parte, la de-
sigualdad del Teorema 3.3.8 es una consecuencia de la desigualdad (4.10) que vimos
més arriba, y de que en el intervalo critico (Q(k), P(k)) el operador I — uBB es un

operador acotado e invertible con constantes dependientes sélo de p y k.



Capitulo 5

Resultados para p € WHP(C).

En este capitulo seguimos estudiando como la regularidad de p condiciona la
regularidad esperada de la soluciéon principal de la solucion de Beltrami asociada a
dicha p. Para ello, nos centraremos en algunos resultados generales suponinendo que la
regularidad de p es de tipo Sobolev, es decir, u € W1P(C). Este estudio nos dard una
guia para demostrar resultados similares para otros espacios mas generales como los
espacios de Besov o de Sobolev fraccionario. Concretamente, Cruz en [3] prueba que
siu € Bﬁq((C) de soporte compacto con 0 < a <1, ap > 2y 1 < ¢ < 0o entonces la
solucién principal es ¢(z) = z + Ch(z) con h perteneciente a By (C) y parte de las

ideas que llevan a tal resultados se basan en lo que expondremos acontinuacién.

5.1. WY con p > 2.

Lema 5.1.1. [2/ (Pag. 94) Sean p y q dos funciones continuas con derivadas dis-
tribucionales localmente integrables en C, y que cumplan que Op = Oq. Entonces

existe f € C1(C) tal que
of =q
of =p.

Demostracion. Aplicando el Teorema de Stokes y el Lema de Poincaré, se ve que para

probar el Lema, sélo es necesario llegar a probar la igualdad:

/ pdz + qdz = 0 para todo rectangulo R C C.
OR

45
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Para ello, haremos uso una regularizacién. Para cada ¢ > 0 definimos el operador
de (2) = # cuando |z| < €, d.(2) = 0 cuando z > e. Entonces los operadores

(p*6c *0r) ¥y (q % e * 6o) son de clase C?, y ademds cumplen

O(p*0c*xde) = O(q*0e % 0cr).

Y por lo tanto
/(p>|<(5E % 0 ) dz + (q % 0¢ % der ) dZ = 0,
A

y sin mas que tomar € y € tendiendo a 0 se consigue el resultado, debido a la regu-

laridad de p y gq. Il

Lema 5.1.2. Sea p € WHP(C) con 2 < p, ||pllec = k < 1 y con soporte compacto,

entonces la solucion principal ¢ de la ecuacion de Beltrami

06 = pdo
es un homeomorfismo y ademds ¢ € C*(C).

Demostracion. Antes de empezar con la demostracién, tenemos que puntualizar, que
debido a que p estd en WHP(C) con p > 2, en particular, y es de VMO(C). Por ello
el operador (I — uB) ™! es invertible de L?(C) en si mismo para toda ¢ € (1, 00).
Veamos que 3\ tal que
dp=X\y 0¢p=p\

en caso de que exista, se ha de cumplir que
O\ =0 (p\) = pOX + \ou

0 equivalentemente

d (log\) = pd (log \) + dp. (5.1)

Por un lado, definamos h = (I — Bu) ™ (By) que trivialmente estd en LP(C) con
p > 2. Por otro, definamos g = C (uh + du), que al tratarse de la transformada de
Cauchy de una funcién con soporte compacto de LP(C) con p > 2, es de WHP(C) con

p > 2,y en particular, es continua. Adema&s g cumple que
09 = ph + 0 € LP(C) con p > 2 y de soporte compacto,
0g = B(uh + 0u) =h € LP(C) con p > 2.
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Por tanto, g satisface la ecuacion
dg = pdg + op. (5.2)

Y por el Teorema 3.3.1, podemos asegurar que g existe y es inica. Ademads, la ecuacién
(5.1) coincide con la ecuacién (5.2) que cumple g, y por la unicidad de solucién
tendremos que log A = g y por tanto A = €9 = 0¢. En particular, tenemos que A
existe, y por el Lema 5.1.1, ¢ € C*(C) y cumple ¢ = ud¢. El hecho de que ¢ sea un

homeomorfismo se sigue del Teorema 3.3.9. (I
Observemos que de hecho acabamos de ver que
¢ = €9 con g € WHP(C).
Es decir, la prueba del resultado anterior nos dice que para todo p > 2, se cumple que
p € WhHP(C) = log(d¢) € WHP(C).

Este resultado, nos serd muy 1ltil en los dos 1iltimos capitulos. También es importatne
observar que la prueba descarta el caso u € WH2(C). Efectivamente, si tal fuese el
caso, el tomar g = C (uh + Op) no nos garantiza que g = log d¢ sea de W12(C) por
ser la transformada de Cauchy de una funcién de LP(C) con soporte compacto. Sin
embargo, podemos tomar directamente g como la solucién principal de de la ecuacién
de Beltrami

dg = pdg + u,

y por la serie de Neumann, deducir que efectivamente dg € L?(C) con soporte com-
pacto. Mediante la igualdad Bdg = g, se consigue que dg € L?(C) y por lo tanto,
mediante la igualdad COg = Cg = g se consigue por fin que g € L?(C). De he-
cho, usando la proposicién 2.2.7, se deduce que efectivametne g € L%(C) para toda

1 <s <.

Teorema 5.1.3. [{/ Sea u € WHP(C) con soporte compacto contenido en D, tal que

lltelloo < k < 1. Entonces la aplicacion p-quasiconforme ¢ pertenece a VVif((C)

Demostracion. Razonando como en el Lema 5.1.2, podemos construir una funciéon
g € WHP(C) tal que d¢ = e9. Y como g en particular es continua, existird una
constante C' tal que

1
ag |€g| SC
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Y para finalizar, s6lo hay que observar que
00¢ = 0 (e9) = €90y,

y por tanto
|00¢| = |€9] |0g| < C'|dg| € LY (C).

loc

Y con esto se concluye que D?¢ € LP (C). O

loc

5.2. WP(C) para p < 2.

La gran diferencia entre el caso de tener el coeficiente de Beltrami en un espacio
de Sobolev WP(C) con p > 2 o tenerlo en p < 2 radica principalmente en que en
el primer caso tenemos continuidad del coeficiente u que se transmite a las derivadas
de la cuasiconforme. Notese que, sin embargo, existen funciones p continuas para las
que ¢ no tiene derivadas continuas. Es decir, lo importante no es ser continua, lo
importante es ser Holder-continuas. Ahora ya no tenemos tanta regularidad de las

primeras derivadas por lo que el resultado que obtendremos sera menor.

Teorema 5.2.1. [{/ Sea u € WHP(C) con soporte compacto contenido en D, tal que

[elloo < % Y sea ¢(z) una aplicacion p-quasiconforme, entonces se tiene:

a) Sip=2 entonces ¢(z) € W,22(C) ¥g < 2.

b) i 75 < p < 2 entonces 6() € WEI(C) Vo < o donde & 5= 4+ 5.

Demostracion.

b) Probaremos primero este apartado ya que para el apartado a) nos basaremos en
parte de éste.
Tomemos ¥,, € C§°(C) una aproximacién a la identidad tal que
0<%, <1, [U, =1 consupp(¥,) C Dy que cumpla ¥, (2) = n*¥(nz).
Y sea p, 1= p* Uy, entonces p, € C5° con supp(pn) C 2Dy [|ptnlloo < 11400,
entonces ji, converge a yu en W1iP(C).
Y definamos

On(2) := 24 Chy(2),  hp:= pupBhy + pin,
#(z) :=z+Ch(z), h:=uBh+ pu.
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La existencia de h,, y h esta garantizada gracias a que el operador I —u, B es invertible
para todos los espacios LP(C) con p € (I?—ffl, %), y ademas tenerse las expresiones

b= (I = pinB) ™ pin y h = (I — uB)™" 1. entonces, observemos que
=l = | (1 = puB) ™ o = (1 = uB) ™ g
< | = uB) ™ = )| + | (T = paB) ™ = (L= 1B) ) 1

con lo que

1B = Bllzocy < 1T = 1nB) " | oy ooy lim — pillzoicy+
+ (I = pB) ™ = (I = uB) Moy o il 2o () -

Y observemos que la sucesion de operadores (I — u,B3) cumple que

| (I = pnB) — (I = uB) lr©)srrcy = I (1 = ) BllLr(c)—1r(c) — 0

para toda r € (1,00) y ademads son invertibles. Por tanto, tendremos convergencia
como operadores de las inversas de la sucesion, es decir de la sucesién de operadores
(I — pnB) ™", alld dénde se tenga la invertibilidad. Concretamente en LP(C) para toda
p perteneciente al intervalo critico. De aqui se sigue que [|hy — h|| 15y = 0 en LP(C)
para toda p € (I?—i_(l, 1371—(1) y también lo que nos asegura que ¢, — ¢ en VVllo’cp(C)
para toda p en el rango critico, en particular para p = 2.

Por otro lado, de la ecuacién 0, = u,0¢, se consigue derivando que

— 00y, 00y,
8a¢n*,un88¢n = aﬂn8¢n = 8@2? — HUn 82 = a:un =
= glog(ad)n) — un0log(0¢n) = Opy = (5 — un0)(log(99)) = O =
pn . .
aon (I = pnB)™ (Opn) =

= gaén = a¢n(I - ,U/nB)il(aﬂn)-

Tenfamos que ¢, — d¢ en L] (C) para r € (Ig—fl, %) Y fijado ]?—fl <p<2

loc

tenemos que

1006 Laccy < I = pnB) ™ (Opn) | o) 19n r ()

con + = 1% + % y tomando los valores maximos para p,r tendremos que

q

L1 K-1_ - 2K
o 2 2k TP T ok
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por lo que se tiene que {58¢n} es una sucesién acotada en L?O .(C) para toda 1 <

q < qo. Para terminar, como tenemos la convergencia de ¢, y de D¢, en Lj (C) para
re (I?—fl, %), nos es suficiente ver que {dd¢y, } es una sucesién de Cauchy Li (C)

con q < 2[2{; y por lo tanto ¢, — ¢ en I/Vlif((C) para todo g < 2[2(151. Vedmoslo:

Hgaqbn - 58¢mHLq(C) = “8¢n ) (I - MnB)il Oin, — OPn, - (I - :UJmB)il aﬂm‘

La(C)

< H(ad’n —06m) - (I = pnB)™" Spin L4(C)
+ 960 (1= 1aB) ™" (Opn — Opim) ) La()

+ Haqﬁm ' ((I —pmB) = (I = pmB) ™! 8“"‘)‘

La(c)

Y razonando como antes con los mismos exponentes p < 2y r < [?7[_(1 se tiene que

18061 — 906w | ey < 106 — Obml iy - || (= 1)~ O

Lr(C)

100l () - || (2 = 10B) ™ 1t = Bpan)|

Lr(C)

+106mll ey - (= 1aB) ™ = (I = )™ aumHLp(C) 0.

a) p = 2. Razonando como en el apartado b) se vuelve a llegar a que

56¢n = 0¢n(I — UnB)_l(aﬂn)

y con un simple Holder tendremos que para ¢ < r, % = % + % se cumpe que:

106 (I — pnB) ™ (Opn) I za(cy < N0¢nllzr @)l — 1nB) ™ (Opn) | 2o (c)-

Ademas, ahora los operadores I — uBB'y I — p,BB son invertbiles en LP(C) para
toda p € (1,00). Veamos ahora, dénde converge hy, := (I — 1nBB) ™"

(I = pnB) — (I — uB)||Lrcysrr(c)y = I (n — 1) Bl Lo () o) = O

para todo p € (1,00). Por lo que tendremos también la convergencia de la sucesién
de los operadores inversos en dichos espacios, es decir (I — pu,B)~! — (I — uB)~! en
como operadores de LP(C) a LP(C). De aqui se sigue que h,, — h en LP(C) para toda
p € (1,00) y por lo tanto d¢,, — d¢ en L? (C) para toda p € (1,00).

loc
Haciendo el mismo razonamiento sobre 0d¢,, que hicimos antes, pero ahora para

q < 2, % = % + %, se vuelve a cumplir, gracias a que ahora {J¢,} es convergente en
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LT‘

loc

(C) para toda r € (1,00), que

1006, — 806w 01cy < 1900 = 0ml - |1 = 12B) ™ Oy

L2(C)
+196ull ) - (2 = #nB) ™ (Bptn = )|

L2(C)
+ Ha@bmHLr(C) ’ H(I - MnB)_l - - ,UJmB)_l a,um‘ L2(C) — 0.
Y por lo tanto
00¢n — 0p(I — uB) ™' (Op)
en L} (C) para toda ¢ < 2. O
5.3. Optimalidad del Resultado.
Si planteamos la siguiente ecuacion de Beltrami
36 (:) = 4 (2)06(2), conp(e) =2 gt € WH(Q)
-k ’ piE == 2log|z|—1

obtendremos como solucién a

¢ (2) =z (1 —log|z|) € W2YC) para toda ¢ < 2.

loc
Ademsas D¢ ¢ LZQOC((C), lo que nos asegura que el teorema anteior es 6ptimo en el
caso p = 2. Para el caso p < 2, tomaremos la ecuacién de Beltrami
1-K =z

06 (2) = p(2) 09 (2), con u(z)= 15K 3 e WIP(C) para todo p < 2.

Y tendremos como solucién

2K

b (2) :z-|z|%_1 € W2’q(C) para toda q < 5% 1

loc

2K
Ademés D?¢ ¢ L%~ (C), con lo que tenemos dos contraejemplos que nos dicen que

loc
no deberfamos esperar la pertenencia de D?¢ en algiin Lf +o(C) mas halla de lo que
nos dice el teorema.
Problema abierto ;Qué ocurre cuando p € W1P(C) con p < [?—fl? ,Cémo
podriamos actuar en este caso?. En este caso ya no tenemos ni la inyectividad del

operador (I —uB3), por lo que hay que buscar un camino alternativo para encontrar la
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regularidad de la solucién principal. Es mds, la expresién que tenemos de la solucién
principal como

¢(z)=24+Ch, conh=(I—uB) " p

deja de garantizarnos que podamos tener ¢ — z € W2!(C), aunque podamos saber
por otros medios que ¢ — z € W12(C) y por el Teorema 3.3.8 que esté en todos los

Wh4(C) con q en el intervalo critico.



Capitulo 6

Resultados para y € W*P(C).

Una de las méas importantes generalizaciones de los espacios de Sobolev, son los
llamados espacios de Sobolev fraccionarios. El nombre de dichos espacios viene de un
intento de generalizar el concepto mismo de derivada. Para mas informacién sobre
dichos espacios nos remitiremos al libro [11].

Recordemos que en el capitulo anteirior, distinguiamos tres casos asi estubiésemos
trabajando en W1P(C) con p > 2,p = 2 o p < 2. Esta separacién proviene de que
cuando p > 2, tenemos continuidad de la funcién en cuestion, si p = 2 perdemos la
continuidad pero el espacio en si mismo es confortable para trabajar, y en el caso p < 2
perdemos todas estas buenas propiedades. Ahora, para el caso de Sobolev fraccionario
WeP(C) con a € (0,1), tendremos una separacién similar segin ap > 2, ap = 2
6 ap < 2. Esta separacién viene promovida por un teorema de tipo Embedding para
Sobolev fraccionario que nos relaciona WP (C) con otros espacios, igual que pasaba

en el Embedding Sobolev para el caso con derivadas enteras (ver Proposicién 2.2.12).

6.1. Los espacios W*?(C).

Definicion 6.1.1. Los espacios Sobolev Fraccionarios son:
WeP(C) = {f € LP(C) tales que existe g € LP(C) con f = Gy * g},
donde G, es el nucleo de Bessel definido como

G, =F! <<1 + |£|2>2> con F~1 la transformada inversa de Fourier.

93
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La norma que se le asocia al espacio es:

1 lwercy = 9l o)

En esta seccién daremos varias nociones de la derivada fraccionaria. Todas el-
las darédn lugar al mismo espacio WP (C). Aunque primero, daremos un resultado
andlogo al Teorema de Embedding de Sobolev (ver Proposicién 2.2.12) para el caso

fraccionario.

Teorema 6.1.1. Embedding Sobolev Fraccionario Dada 0 < a <1 yp € [1,00),

se tienen las siguientes inclusiones continuas entre espacios de funciones:

(i)
WYP(C) — CO”B((C) con B =a— ]27 siempre que ap > 2.

(ii)
WP(C) < VMO(C) con ap = 2.

En particular, las funciones de W*P(C) estdn localmente en L1(C) para toda

q€[l,00).

(iii)

" 2
WeP(C) — LP (C) conp* = 5 p siempre que ap < 2.

Proposicién 6.1.2. Para toda funcion f de W*P(C)NL>®(C) conp >1y0<a <1

se cumple la siguiente cota de normas.

Py ey < 118y M sy
para toda 6 € [0, 1].

Este resultado sale automaticamente al hacer una interpolacién compleja entre
L>(C) y W*P(C).

Veamos la primera nocién de derivada fraccionaria. Viene dada en términos de
cocientes incrementales, y sirve para caracterizar los espacios W®P(C) siempre que

2
| <p.
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Lema 6.1.3. [3].Primera caracterizacion de W*P(C).

Sean 0 < a <1y %H < p, denotemos

o !
Do f(2) :( WdA(w)) .

c |z-ul

Entonces, una funcion f pertenece al espacio W*P(C) si y solo si
feLP(C) yademds Df e LP(C).
Mads ain, se tiene la equivalencia de normas

[ fllwercy = 1 fllLec) + 1D fllzr(c)-

Uno de los obstaculos de la derivada fraccionaria es la ausencia de una regla de
Leibnitz. Sin embargo, existen generalizaciones a dicha regla. La siguente se refiere al

operador D® que acabamos de definir.
Lema 6.1.4. Para toda o € (0,1) se tiene que:

» Si f,g € C§°(C) entonces se tiene la desigualdad
1D (f - Dllpecy < N - Dllwiey + 19 D fll o) -

1 1 1 1 1 -
] 525:10—14—])—2:1)—3—1—])—4,1<p1,p3<ooy1§p2,p4§oo, entonces se tiene

la destgualdad
1D (f - Dllzecy < ey - 190Gl Lea ey + N9l Los ey - 1P fll Loaey -

A continuacién, veremos una segunda nociéon de derivada fraccionaria. Esta vez,

la derivada vendré formulada en términos de la transformada de Fourier.
Lema 6.1.5. [3].Segunda caracterizacion de W*P(C). Sea 0 < a < 1, denotemos
d*f(z) = FH(IE" - F(f ()
entonces una funcion f pertenece al espacio W*P(C) si y solo si
feLP(C) yademds d“f e LP(C).
Mas ain, se tiene la equivalencia de normas

I fllwercy = 1 fllzec) + 1 fllLr(c)-
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Proposicién 6.1.6. Dadas dos funciones f y g pertenecientes a C3°(C), se cumplen

las siguientes cotas en mormas:

a Dados a € (0,1), a1, 0 € [0,0] tales que a1 + ag = « y dados p € (1,00),

1_ 1,1
p1,p2 € (1,00) tales que 5 = o T 35, tenemos que

1d* (fg) = fd* (g) = gd® (f) | (C) < Clld** fllzo () ld** gl Lr2(c)

con C := C(Oé,alaa%pvpl?pQ)'

b Dados o € (0,1], p € (1,00), p1 € (1,00], y p2 € (1,00) tales que % = pil + p%

se sigue que

[d* (f o g)llLec) < CI(Df)o(9) I (c)ld®gllLrz(c)
con C = C(aapaplva)‘

¢ Dados a € (0,1) y p € (1,00) entonces:

|d* (fg) — fd%g — gd® fllLrc) < Cld*fllzr()llgllLe(c)
con C := C(a,p).

En lo que sigue, gracias a las las caracterizaciones que tenemos de W*P(C) y a
la equivalencia de normas que nos dan dichas caracterizaciones, haremos un abuso de
notacién y usaremos indistintamente una nocién de dervida fraccionaria u otra asf nos
convenga en unos casos u otros. Efectivamente, una vez probada la pertenencia de una
nocién de derivada fracionaria (bien d®f o bien D®f) en un cierto espacios LP(C), se

tiene automatciamente la pertenencia a dicho espacio LP(C) de la otra nocién.
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6.2. W*P(C) con ap > 2.

Este es el caso mas sencillo que nos ocupa ya que en este caso tenemos por el
Embedding Sobolev Fraccionario continuidad del coeficiente p y por lo tanto, perte-
nencia en VMO(C). Este hecho nos ahorra mucho esfuerzo al tener ya probada la

invertibilidad del operador
I—uB:LP(C)— LP(C)

para toda p € (1,00), aunque no para W*P(C).
Fue Cruz en su tesis doctoral [3] el que prueba el siguiente teorema que nos da la

regularidad esperada de ¢ la solucién principal de la ecuacién de Beltrami
¢ = udap.

Teorema 6.2.1. [3/, Supongamos que tenemos 0 < a < 1 y p € W*»P(C) con
ap > 2, de soporte compacto y satisfaciendo la condicion de elipticidad ||p||, < k < 1.

Entonces, la solucion principal ¢ de la ecuacion de Beltrams

¢ = pdg

es de la forma

¢ (2) =2+Ch(z)
con h(z) perteneciente a WP (C).

Para demostrar este resultado, Cruz se basa en dos resultados que él mismo prueba
en su tesis. El primero de ellos nos asegura que el operador I — p”B" es invertible en
WeP(C) con ap > 2 para algin n € N, el segundo que el operador comnutador [y, B]
es compacto en espacios W*P(C) si ap > 2. Con esto, actuando de forma similar a
Iwaniec en [8] consigue demostrar que h = (I — uB) "'y es precisamente una funcién
de W®P(C). Para saber méds sobre este estos resultados y muchos otros, remitimos al

lector a la referencia [3] (Capitulo 2).
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6.3. W*?(C) con ap < 2.

En este caso, ya no tenemos la invertibilidad del operador (I — ul3) en todos
los LP(C) como teniamos en el caso de Cruz. Tampoco tenemos continuidad del co-
eficiente. Pero ain asi, con ayuda del Lema 6.1.6, se demuestra en [3] el siguiente

resultado.

Teorema 6.3.1. [5]. Sean a € (0,1) y u € W*2(C) con soporte compacto en D tal

que < K-l Ysea ¢:C s C la solucién principal de
M= K11

¢ = uoo.
Entonces se cumple que:
= §(2) — 2z € WHOX(C) Vo € (0, %) .
< 1D (6 — 2) [ 12c) < Cllullyane) con € = C(K. 6,a).

Demostracion. Consideremos ¥,, € C§°(C) una aproximacién a la Id. tal que ¥,,(z) =
n*¥(nz). Y definamos p, := p* ¥, que cumple que sop(p,) C “HD. Observemos

antes de nada que [|pn — pul[yye2(cy — 0. Ya que:
l14n — pll2(cy — O por el Teorema de Lebesgue.
Y por otro lado, al ser u, p, € W*P(C), tenemos que existen g y g, tales que

pn = Ga x gn y ademés ||,U7LHW‘%2((C) = ||9n||L2((C)a
p==Gaoxg yademds |pullwezc)= 9l

de donde se deduce que g, = g * ¥,, y por tanto

ltn — pllwezc) =llgn — 9llr2(c)

=[lg* ¥, —gll2@c) = 0 por el teorema de Lebesgue.

Y de la Proposicién 6.1.2 se deduce que {D*,} es una sucesién acotada en L%(C)
para toda 6 € [0, 1].

Por otro lado, para cada u, existe una tunica solucién normalizada ¢,, la cual
cumple que

On(2) = 2z + Chy(2),
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dénde hy,(z) es la tinica solucién en L?(C) de hy, = pinBhy, + pin que ademés hace que
hn = (I — uB)~!py,. Por tanto h, € LP(C) para todo p € (Ig—ﬁ, 25-) y ademés su
norma en el espacio LP(C) cumple que || || 1p(c) < € con C' = C(K, p) independiente
den € N.

Y de la definicién de ¢ y de las Proposiciones 2.2.2 y 2.2.4 se sigue que

¢n(z) — 2 =Chy(z) € LP(C) con p € ([g—fl, I?—I_(l) ,
On(2) =1 = Bhy € LP(C) con p € (£, 25),
An(2) = hn(z) € LP(T) con p € (13—{51 g—f_ﬂ) .

Por lo que efectivamente ¢, (z) — 2 € WHP(C).

Ahora definiremos

Hp(2) = ¢(2) — 2z = Chn(z) € W'P(C) con p € < 2K 2K )

K+1 K-1
que cumple la ecuacién

OH,(2) = punOHy,(2) + fin.

De donde deduciremos que ¢,, — z € W1+e9:2(C).

Sean 8 = af y DP, entonces
DPdH,, = D?(u,0H,) + D"y,

y existird un ET’? = Dﬁ(unﬁHn) — (D*uyn)0H, — punDBOH,, + DPpu,, perteneciente a

L?(C), cémo veremos més adelante, tal que:
DPOH, = pn D 0H, + (Duy) Hy+ Ef
DP9H, — u,DPOH, = (D%n> H, + Ef (6.1)

(I = 11, 8) (épﬁﬂn) = DPu,0H, + EP

1
= se
p

Y por la Proposicién 6.1.6 se puede afirmar que para p1, po tales que p% + p% =
tiene que:
IE | 2o (c) < Coll DP pnl 11 () |0 Hn | 12 ()

por lo que tomando 0 € (07 %), p1 = % y p2 = ﬁ € (2, %) se consigue que



60 Antonio L. Baisén Olmo.

€s mas

| (D% ) 9Hn + Bl z2() < (Co+ DD all 3, |10Hall 1 c)-

Y ya sabemos que (I — uB) es un operador invertible de L?(C) y que ademds puede

probarse (mediante la Serie de Neumman) que || (I — uB)™" || L2(C)=12(C) < %

Por tanto, de la Férmula 6.1, de la cota en norma de Eg y la invertibilidad de

(I — uB) en L?(C), se sigue que

— 1
10D Hy || 12y < 5 E+D(Co+1) 1DP ]| >

Y por construcciéon de H,(z) tenfamos que
|0Hy || Lr2 () =l0Cha|Lr2(c) = |BhallLr2(c)
<IB| ez (c)s o2 (@) 1nl o2 () < C (p2, K, 0) .

Que juntandolo con lo anterior y usando la Proposicion 6.1.2, se llega a
10D Hy| 2y < (Co + 1) C(K, 0) |t | fyaz(c) -
Ahora, haciendo uso de un argumento de compacidad estandar, se obtiene que:
18D (6 — 2) llz2(e) < (Co+1) C (K, 0) lll e

por lo que ¢(z) — z € WT52(C) = W't292(C) cémo queriamos ver. Y ademds se
tiene la cota
o 1
Dl (¢ — 2) Iz2(c) < CHMH%,Q,Q(C) con C=C(K,n,0) y 0¢ <O, K) .
U

Démonos cuenta de que la demostracién anterior puede repetirse con p € WP con
pE (1 +k,1+ %) El 1inico obstaculo con el que nos encontramos es en el paso de ver
que efectivamente el error E% pertenece a LP (C). Para ello, usabamos la desigualdad
general

IES | 1o(c) < Coll D pn | s () |0 Hun | 12 ()

y tomando los valores adecuados para p1, p2 y 8 se obtenia que Eﬁ pertenecia a L?(C)

y de la cota para la invertibilidad del operador (I — uB) en L?(C) conseguiamos los
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resultados. Ahora, podremos extender el resultado siempre y cuando po perdenezca
al intervalo critico, que es dénde tenemos convergencia de 0H,,. Por ello, si tomamos
p1 =5, p2 = %5 vy B = ab, tendremos convergencia cuando py € (Ig—fl, %) Es
decir siempre y cuando

2K 2K K—-1
K+1<1€0<K—1 o simplemente cuando 0 <60 <1 — e

P
Es decir, tenemos el siguiente teorema.

Teorema 6.3.2. Dada p € W*P(C) con p € (ﬁ—ﬁ,%), 0 < a <1, de soporte

compacto contenido en D y tal que |u| < % Y sea ¢ : C— C la solucion principal
de la ecuacion de Beltrami
¢ = pudap.

Entonces se cumple que:

¢ —z € WIH0%P(C)  para toda § < 1 — % - p-
|79 (6 = Dl ey < C liliyenniey con € =C (K.0.a.p).

La constante de la cota sale al tenerse en cuenta que ahora la constante de invert-
ibilidad del operador (I — uB3) depende de K y de p y no sélo de K. Observemos, que
mientras en el caso p € W1P(C) con p < 2, se tenfa ¢ € VVlzocq((C) para toda ¢ menor
que una g dada (ver Teorema 5.2.1), ahora en cambio podemos mantener la misma
integrabilidad pero a costa de reducir el orden de derivacién. Como antes, la cuestién
de si se pudiera ganar un orden de derivabilidad mayor o igual que o admitiendo una
pérdida en la integrabilidad queda sin respuesta. La demostracion del teorema falla
si se intenta tomar un orden de derivacién § superior a a.

Problema abierto: ;Son 6ptimos estos indices para estos casos?.

6.4. El caso critico a-p =2

A la luz de este ultimo Teorema y de la discrepancia con su homdlogo en el caso
Sobolev WP(C) con p < 2 nos hace dudar de si en el caso limite ap = 2 se pudieran
mantener simultdneamente la derivabilidad y la integrabilidad o no. Sabemos que si
u € WH2(C), entonces se gana todo un grado de derivabilidad para ¢ y como mucho
se pierde el extremo de integrabilidad. En el espacio W (C) tenemos la inclusién a

VMO, lo que nos sera suficiente para probar el siguiente teorema.
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Proposicion 6.4.1. Sea p perteneciente a Wa’%(C) con 0 < o < 1, de soporte
compacto contenido en D y que satisfaga la condicion de elipticidad ||p||, < k < 1.

Y sea ¢ la solucion principal de la ecuacion del Beltrami

¢ = pudap.

1+5,2

o “(C) para todo B € (0,). Y ademds se tiene la siguiente cota

Entonces, ¢ € W,

de normas:
8
107760 =)l 30 < Ol ¢y com O =Clkof) y B, 0).

Demostracion. Para ser formales en la demostracion, habria que volver a hacer uso
de regularizaciones la misma forma que hicimos en el Teorema 6.3.1. En enfecto, si
seguimos la prueba alli mostrada, se observa que sigue siendo aplicable a nuestro
caso e incluso en un marco mads general. De ahi la mejora de este nuevo resulta-
do. Recordemos que el esquema de aquella prueba consistia tomar una ecuaciéon de
Beltrami equivalente

0¢ = pdgp <= 0H = pdH + p.

Donde ahora, H € W"(C) para toda r € (1,00). Luego aplicabamos una a D’-

derivada esta nueva ecuacion de Beltrami con 0 < 8 < « para obtener asi que
OH = pidH + = D°0H = DP1- 0H + nDPOH + Dy + EP
= (I — uB) DP0H = DPu+ DPp - 9H + EP,

con EP un cierto error que sabemos que para totdo % = p% + p% se cumple la desigual-

dad de normas:

1Bl ey < € D%

S L s

Y sin més que tomar p; = %, Py = ai_ﬁ yp= %, gracias a que el operador I — uBB
ahora es invertible en todos los LP(C) se tiene el resultado.

O

Observemos la discrepancia de este caso extremo ap = 2 con el anterior ap < 2.
Antes, pudimos mantener la integrabilidad a costa de una pérdida grande en la deriv-
abilidad, ahora mantendremos la integrabilidad a costa a lo sumo del extremo en la
derivabilidad. La prueba ha sido una copia de la demostracién del Teorema 6.3.1 sim-

plemente teniendo en cuenta que ahora podemos dilatar la automejora en las derivadas
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de ¢ hasta 8 < a y no sélo hasta § < 1 — %p con K = % Resumidamente, para

|1l o, < k con soporte compacto, ap < 2y ag > 2 se cumple que:

€ WeP(C) = ¢ € W-HP(C) para toda 6 € (o, - ~p) .
14+0a,2

pe WO"%((C) =¢pecW, (C) para toda 6 € (0,1).

pe WeiI(C) = ¢ € WE*I(C).

oc



Capitulo 7

Resultados para ¢ 1.

Es sabido que si tenemos un homeomorfismo K-cuasiconforme ¢, entonces ¢!
serd, también un homeomorfismo K-cuasiconforme. Por tanto, ¢! pertenecerd a

1,2 [ . . . . _
W,72(C), lo que nos asegurard la existencia de las primeras derivadas de ¢—' y por

loc

tanto que el coeficiente de Beltrmi v de ¢! estara bien definido. A lo largo de esta
seccion, nuestro interés estara enfocado a deducir propiedades de v segun el coeficiente
de Beltrami u de ¢ esté en un espacio de funciones u otro.

Antes de poder entrar en materia, necesitaremos algunos resultados previos sobre

operadores de composicion.

7.1. Operadores de composicion con aplicaciones cuasi-

conformes.

Teorema 7.1.1. [13] Sea ¢ una aplicacién cuasiconforme, y definamos el operador
de composicion
Ty X — X
u— Ty (u) :=wuo¢.
Entonces los operadores
Ty, Ty-r : WH? s W2
Ty, Ty-1 : BMO — BMO

son acotados.

64
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Corolario 7.1.2. Dada ¢ una aplicacion cuasiconforme, entonces los operadores de
cOmposicion

Ty, Tyr : Wha s W
son acotados para toda o € (0,1).

Demostracion. Para demostrar este corolario, s6lo hay que observar por un lado que
)2 a, 2,2 _ 71,2 00,2 __
EPe=w*r  F>"=W"% y F,"=BMO,

y por otro que por el Teorema 7.1.1 tenemos acotacién para Fl2’2 y FDOO’Q. Y ya sin

mas que aplicar la interpolaciéon compleja
29 2
[F22 F=?] = Fe® =wes,
(0%
se consigue el resultado. O

Teorema 7.1.3. [13] Sea ¢ una homeomorfismo de clase I/Vli’cl((C), y definimos el

operador de composicion
Ty : X — X
Ty (u) :=uo ot
Se cumple que:

» Si Ty es acotado para X = W12 6 X = BMO entonces ¢ es cuasiconforme.

» Si Ty-1 es acotado para WP para toda o € (0,1) y para toda p € (1,00),

entonces ¢ es Bilipschitsz.

Teorema 7.1.4. Dada ¢ una aplicacion K -cuasiconforme, definamos Ty-1 como el

operador de composicion
Ty :X — X
Ty (u) :=wuo ot
Se cumple cumple que

(a) si ¢ es Lipschitz, entonces Ty : WhP — WPP es un operador acotado para
todo € [0,1] yp < 2.
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(b) si ¢ es Bilipschitz, entonces Ty-1: WhP — WPP es un operador acotado para
todo € [0,1] yp € (1,00).
Demostracion.

(a) Por un lado, si ¢ es Lipschitz, entonces J (z, ¢) < C < oo para casi todo z € C con
C una constante. Ademds al ser ¢! una aplicacién K-cuasiconforme, tenemos ase-
gurado que ‘D¢_1}2 <K-J (z, qS_l) y por lo tanto, tomando w = ¢! (2) tendremos

que

-1 P = [ P (w)J (w w uP (w w).
[lwee) @ da@) = [ @@ 1@ daw <C [ ww i
Y ademés D (uo ¢~ 1) (2) = (Du) (¢~ (2)) - (D¢~ 1) (2), por lo que

‘/‘D(uo¢_ ) dA(2) /“‘Du L) D (o)) dA(2)
C
<K% /’Du z))|p (z,071)2 d

ey / Du (@) T (w0, 8)' % dA ()

donde en el Gltimo paso, hemos usado que p < 2. Y de ambas desigualdades se deduce

que para todo p < 2 los operadores
Ty :LP(C) = LP(C) y
Ty-1 :WHP(C) — WP(C).
son acotados, y por interpolacién se consigue el resultado.
(b) Como ¢ es Bilipschitz, entonces existe una constante C' que depende de K tal que

1

ESJ@@,MwWUSC

dénde w = ¢~ (2). Y al igual que antes, tendremos que

o V) ()P 2) = uP (w w w uP (w w
/Cy(uqb)()! dA(2) /C <>J<,¢>dA<>sc/C (@) dA (),
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y de la regla de la cadena deducimos que
/ D (uoo™) (2)]" dA(2) = / [(Du) (671 (2))[" | Do~ (2)]" dA(2)

C C
- /(C (Dw) (671 ()" T (2,671) "
= [P 7.0 aa ()

~ C/«: D (W) dA (),

dA (2)

donde las equivalencias entre normas son con constantes dependientes solo de K y

el ultimo paso puede darse independientemente de p. Por tanto, tenemos que los

operadores
Ty :LP(C) — LP(C) y
Ty :W'P(C) = WHP(C).
son acotados para todo p € (1,00) y por interpolacién se consigue el resultado. ]

7.2. Coeficiente de la composicion y del inverso.

Teorema 7.2.1. [1]. Supongamos que tenemos f : Q — Q' cuasiconforme y g :
Q1+ C cuasiregular con coeficientes de Beltrami py.pg respectivamente. Entonces, la

COMposicion (g ) f‘l) es cuasireqular en Q' con coeficiente de Beltrami.

W) = pg(z) — pg(2) 0f(2)
Foor ) = ) 916)

Demostracién. Calcularemos primero las parciales de f~! y con ellas, las de h =

donde w := f(z).

(g of _1), que nos permitiran conocer el coeficiente de Beltrami de la composicién, es
decir prgop-1.

Sea w = f(z). Por la regla de la cadena tenemos que

0ld(z) = 0f H(w) - 0f(2) +0f H(w) - Of(2

~—

=1y (7.1)

Ild(z) = 0f H(w) - 9f(2) +0f H(w) - 9f (=

~—

~0. (7.2)

De donde haciendo
Af(2) - (7.1) = df(2) - (7.2) 'y

0f(z) - (1.1) = 9f(2) - (7.2)
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obtenemos que

. af ()
0f ' (w) = —

0f (2)|° - 0f (=)
af—l (OJ) _8f (Z)

T s - r P

Tomemos ahora h(w) = (g of _1) (w), por la regla de la cadena

Y sin més que recordar que por definiciéon

ya puede deducirse que

Oh (w Z) — g (2 of (z
) = Do) G s D)

f(z) = o(2), g(z) = z con lo que obtenemos:
Mf(z) = ,u(z), Mg(z> =0, V= fgof—1

se consigue una expresién siempre valida para v coeficiente de Beltrami de ¢~ . Conc-
retamente:

= - (2 % Tz
v(z) = —p(¢7'(2)) a—q,)(@ﬁ H(2)) -

Seré esta expresion la que usaremos a lo largo de este capitulo y la que nos ayudara a
localizar al coeficiente v segiin al espacio al que pertenezca . De entrada, la férmula
nos indica que v € L*°(C) con soporte compacto. Ahora entraremos a estudiar la

regularidad de v segun la regularidad de p.

Teorema 7.2.2. Consideremos una aplicacion ¢ que sea p-cuasiconforme con coe-
ficiente de Beltrami p € WY2(C), ||ulle = k < 1 y supp (u) C D. Entonces, ¢~

serd una apliacacion v-cuasiconforme con v € WhH2(C).
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Demostracion. Por un lado, de las observaciones hechas tras la prueba del Lema 5.1.2,
podemos asegurar que g tal que d¢ = €9 que ademds cumple g € W12(C). Y por el
otro, de las definiciones se sigue que v y v o ¢ tienen soporte compacto y ademas
v (6(2) = —(2) 22 = i (z)eriinato) ¢ [%(C),
99(2)
D(vog¢) = —(Dp(2)) ™) — 2D (Img (9(2))) p(z)e* ™99y

D (vo¢)| <[Du|l+2ul |D(Img(g))l,

donde ambos sumandos estdn en L?(C). Por tanto (v o ¢) € W12(C). Y gracias al
Teroema 7.1.1, se consigue finalmente que v € W1H2(C) por composicién por cuasi-

conforme. O

Si u € WHP(C) con p > 2, la misma demostraciéon nos sirve para asegurar que
también v € WHP(C). Por contra, si p < 2, la demostracién anterior falla. Concre-
tamente, ya no estd asegurado que exista una funcién g € WP(C) tal que 0¢ = e9.
Esto nos despierta el interés por saber qué pasa cuando p pertenece a otros espacios
W®P(C) con 0 < a < 1. Antes daremos un lema que nos permitird destapar alguna

propiedad de v para el caso fraccionario.

Lema 7.2.3. Dada 0 < a < 1, una funcién f € W2 P(C) y una funcién Lipschitz F,

NP a,p
entonces la composicion F o f € W, 'F(C).

Demostracion. La pertenencia de Fo f en L} (C) es inmediata por la continuidad de
F. Para ver la pertencia a W’ (C) haremos uso de la definicién de la D®-derivada

dada por la caracterizacién del Lema 6.1.3.

CFo (P ;
D% (Fo f)(z):< /C\(F f)‘(zz) (Fo ) (@) dAM)

2 >
<ow ( [LEI iaw) e
SR
donde C (F) es la constante Lipschitz de F. O

Teorema 7.2.4. Consideremos una aplicacion ¢ que sea p-cuasiconforme con co-
eficiente de Beltrami € W*P(C) con ap > 2, ||pflec = k < 1 y supp () C D.

Entonces, ¢~ serd una aplicacion v-cuasiconforme con v € WP (C).
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Demostracion. En primer lugar, la expresion que nos da el Teorema 7.2.1 de v(z), nos
dice que v € L*>®(C). Por otro lado, p € W*P(C) con ap > 2, por lo que se deduce
del Teorema 6.2.1 que

Q€ WHa’p((C), por tanto D¢ es Localmente Bilipchipsz.

loc

Luego, existen C, M € R\ {0} tales que

< J(-,¢) < C en compactos,

¢(2) — (W)

|2 = wl

2|~ =

< M. Idem para ¢ L.

Si conseguimos ver que

99
96

estd en W*P(C), habremos terminado la demostracién. Efectivamente, si tal fuese el

(o) (z) = —p(2)

caso, como ¢ es Bilipschitz, el Teorema 7.1.4 nos garantizard que v € WP(C). Para
ello, tengamos primero en cuenta que los espacios WP (C) N L* son un &dlgebra de
Banach. Y segundo, que al ser p > 2 tenemos que 0¢ no se anula en ningtn punto,
y como la funcién F (z) = = es Lipschitz lejos del 0, tenemos por el lema anterior
que g:f; € WpP(C) n L>®(C). Por tanto v o ¢ € W*P(C), y por composicién por
cuasiconforme tenemos que v € W*P(C). O

7.3. Relacién con el log (0¢).
Nuestro interés es poder estudiar la ecuacién de Beltrami
0™t = vt
mediante los conocimientos previos que tengamos sobre la ecuacién de Beltrami
¢ = pdo

dénde ¢! es el homeomorfismo inverso de ¢. Ya sabemos que la funcién v cumplird la
misma condicién de elipticidad que p y ademés que siempre tendremos las expresiones

puntuales:
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. - z.8¢(2)—— Z.eg(Z)
o) () = = () 5= = —(2) =5

donde hemos llamado g = log 0¢. Esta funcién g estd bien definida en casi todo punto

= —U (Z) . €2i-lmg(g)‘

y es medible. Mas aun, los argumentos que hemos visto muestran que
peWP(C),p>2 = geWh(C).
E incluso se tiene para p = 2
pewh?C) = gewh?QC).
La regularidad de g permite deducir la de v. En efecto, la representacion
Vod=—p-e2Ima9)

y las propiedades del algebra W<P(C) N L*>°(C) permiten obtener la regularidad de
v o ¢. La de v se obtiene automaticamente por medio de la accién del operador de
composicién

Ur> U0 P
en el espacio de Sobolev adecuado.

Nada se sabia con anterioridad sobre estas cuestiones en espacios fraccionarios.

Sin embargo, acabamos de demostrar que
weWsP(C),a-p>2 = veW>*(C)

y conjeturamos que la misma implicacién sera cierta si o - p = 2. Para demostrar esta
conjetura, basta responter afirmativamente a la siguiente pregunta.
Pregunta: ;Es cierto que u € wea(© implica g € Wa’%((C)?

Efectivamente, supongamos que la respuesta es afirmativa. Entonces, la representacion
_ 2i-Img(g)
vo (b = —ue )

corresponde a un producto de elementos de W""%((C) N L>*(C), que es un algebra
invariante por composicién de cuasiconforme. Ello implicarfa, pues, que v € W2 (C).

Noétese que:

» Este argumento, sirve incluso si a = 1 y tamibén para u € WHP(C) con p > 2.
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= No importa la regularidad de 0¢, si no la de su logaritmo g = log 0¢.
= Desconocemos, de momento, si las implicaciones
peVMO(C) = veVMO(C)

pweVMO(C) = ¢geVMO(C)

son ciertas, o no. Y de serlo, tampoco sabemos si nos aportaria alguna informa-

cién al respecto.



Nomenclatura

N conjunto de los ntimeros naturales.

Q cuerpo de los ntimeros racionales.

R cuerpo de los nimeros reales.

C cuerpo de los nimeros complejos.

C esfera de Riemman, ie, C U {o0}.

Q conjunto abierto y conexo del plano complejo. Puede ser C.
0f1 la frontera del conjunto €.

Q7 cierre de Q en la topologfa 7.

|E| la medida lebesgue del conjunto E (en la dimensién que corresponda).
D disco con radio la unidad en C.

Dp disco de centro cero y radio R en C.

Bg la bola unidad del espacio E.

f = g igualdad entre f y g dada bien por definicién, o bien por un cambio de

notacion.

C(a) constante que depende tnicamente de otra constante a definida anteri-
ormente. Idem para C(a,b),C(a,b,c), etc. Cuando la constante es absoluta se

usard C.

C f transformada de Cauchy de la funcién f.

73
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B f transformada de Berling de la funcién f.
CY(9) el espacio de las funciones continuas en 2.

C*(Q) el subconjunto de C*(Q) tal que todas sus derivadas de orden igual o

inferior a k estan en C°(Q).

C>(Q) el subconjunto de las funciones de C°(f2) tales que tienen derivadas de

cualquier orden en C°(w).
C¥(9) el subconjunto de C*(Q) con k € NU {oc} y soporte compacto.

CE(9Q) el subconjunto de C*(Q) con k € NU {oo} tales que valen cero en 99, o

que tiendan a cero en el infinito en el caso de 2 no acotado.

S(C) la clase de Schwartz.

L(E,F) el conjunto de las aplicaciones lineales y continuas de E a F.
E* el dual topoldgico del espacio [E.

T* el operador adjunto del operador 7.
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