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Caṕıtulo 1

Introducción.

Consideraremos la ecuación de Beltrami

∂φ(z) = µ(z)∂φ(z) z ∈ C, (1.1)

donde µ será una función medible definida en C que cumpla la condición de elip-

ticidad ‖µ‖∞ ≤ k < 1, y a la que se le llamará coeficiente de Beltrami. Ya en 1938,

Morrey en [9] estableció un resultado donde se garantiza que existe, modulo trans-

formaciones de Möbius, un único homeomorfismo perteneciente a W 1,2
loc (C) solución

de la ecuación. A dicho homeomorfismo solución se le llama µ-cuasiconforme o K-

cuasiconforme, donde K := 1+‖µ‖∞
1−‖µ‖∞ . Al resto de las soluciones de la ecuación en

W 1,2
loc (C) se les llamará µ-cuasiregulares.

Es sabido que, dado µ con soporte compacto, el método para encontrar la solución

µ-cuasiconforme de la ecuación de Beltrami consiste en tomar

φ(z) = z + Ch(z) (1.2)

con C la transformada de Cauchy y h(z) = ∂φ(z). La solución dada por este método

es conocida como solución principal, de la que se sabe que existe y es única.

Con un sencillo cálculo, puede verse que si f es anaĺıtica y φ es una solución

µ-cuasiconforme de (1.1), entonces f ◦ φ también es solución de (1.1). Podemos ir

más allá. Mediante el Teorema de Stoilow, se asegura que toda solución de (1.1) es la

composición de una función holomorfa y la aplicación cuasiconforme. Este teorema,

nos permite centrarnos únicamente en encontrar la solución principal, ya que por

composición con holomorfas podemos obtener el resto de soluciones.
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Para encontrar el potencial h de la representación (1.2), lo que hacemos es insertar

este cambio de variables en la ecuación de Beltrami. Ello nos lleva a una ecuación

integral para h,

h = µBh+ µ

donde B es la transformada de Beurling. Equivalentemente,

(I − µB)h = µ.

Ésto explica la profunda relación entre las aplicaciones cuasiconformes y la invertibil-

idad del operador I−µB, que ha sido fuente de estudio de muchos autores, y también

es el objeto central de este trabajo.

En un primer momento, Astala en [1] demuestra que si el coeficiente de Beltrami

µ está en L∞(C), entonces el operador I − µB tiene inverso acotado en Lp(C) para

p ∈ (1 + k, 1 + 1
k ) con k = ‖µ‖∞. Para ello, se basó en el teorema de distorsión

de Astala [1] y argumentos de la teoŕıa de pesos de Muckenhoupt. Por su parte,

Iwaniec en [8] establece que cuando el coeficiente de Beltrami µ está en VMO(C)

con soporte compacto, entonces el operador (I − µB)−1 es invertible en Lp(C) para

todo p ∈ (1,∞). Equivalentemente, la solución principal φ de (1.1) está en W 1,p
loc (C)

para todo p ∈ (1,∞). Por otro lado, Ahlfors muestra en [2] que en el caso de que µ

pertenezca aW 1,p(C) con p > 2 y con soporte compacto, entonces la solución principal

φ es de W 2,p
loc (C). Y finalmente Vı́ctor Cruz, en [3] muestra que si µ ∈ Bα

p,q(C) de

soporte compacto con 0 < α < 1, α p > 2 y 1 ≤ q ≤ ∞ entonces la solución principal

es φ(z) = z + Ch(z) con h perteneciente a Bα
p,q(C).

Cabe mencionar también resultados referentes a coeficientes de tipo µ = χΩ · µ0,

donde µ0 es una función globalmente regular, y Ω es un dominio con frontera suave.

Véase para ésto las referencias [14] o [15].

Por otra parte, es de sobra conocido que si φ es una aplicación µ-cuasiconforme,

entonces el homeomorfismo inverso φ−1 también cumplirá una ecuación de Beltrmi

∂φ−1 = ν∂φ−1

para un cierto coeficiente ν [6]. Este hecho, despierta nuestro interés en estudiar si

la pertenencia de µ en ciertos espacios determina o no la pertenencia de ν en dichos

espacios u otros.
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Por nuestra parte, este trabajo se centrará en deducir propiedades del homeomor-

fismo principal φ del coeficiente de Beltrami ν y del homeomorfismo φ−1 según las

propiedades que conozcamos del coeficiente de Beltrami µ, aśı como saber si dichos

resultados son optimos o no. Pero antes de entrar en materia, tenemos que dar algunos

conociemientos previos con los que poder trabajar.



Caṕıtulo 2

Preliminares.

2.1. Espacios de funciones.

Para poder estudiar las soluciones de la ecuación

∂φ(z) = µ(z)∂φ(z) z ∈ C,

nos es necesario restringirnos a algún espacio de funciones en el cual trabajar. Por

ello, primero daremos algunas definiciones de espacios de funciones que nos serán

útiles a lo largo del trabajo. Como suele ser natural en el marco de las ecuaciones

diferenciales, estaremos interesados principalmente en espacios medibles con algún

grado de diferenciabilidad distribucional, como por ejemplo los espaciosWn,p(Ω) entre

otros.

Definición 2.1.1. Dado Ω ⊂ C y 0 < α ≤ 1, se define el conjunto de las funciones

α-Hölder continuas como el conjunto de las funciones f tales que

| f(z1)− f(z2) | ≤ C | z1 − z2 |α ∀z1, z2 ∈ Ω.

Y se denotará por C0,α(Ω).

Definición 2.1.2. Dada una función f : Ω 7→ C se define el soporte de f como

supp (f) := {z ∈ Ω tal que f(z) 6= 0}.

8
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Definición 2.1.3. Con el fin de poder definir la clase de Schwartz, tomaremos una

familia de seminormas sobre C∞
0 (C). Para cada par de ı́ndices α y β, se define la

seminorma ρα,β de f como

ρα,β(f) := sup
z∈C

∣∣∣zαDβf(z)
∣∣∣ .

Diremos que una función f pertenece a la clase de Schwartz si ρα,β(f) <∞ para todo

α y β. Esta clase se denotará por S(C).

Nota: observemos que se tiene la siguiente inclusión de clases

C∞
0 (C) ⊂ S(C) ⊂ C∞(C).

Definición 2.1.4. Dado Ω ⊆ C y p ∈ [1,∞), se define el espacio de funciones Lp(Ω)

como el conjunto de funciones medibles en Ω tales que

‖f‖Lp(Ω) :=

(ˆ
Ω
|f(z)|p dA(z)

) 1
p

<∞.

Para el caso p = ∞ se define L∞(Ω) como el conjunto de las funciones esencialmente

acotadas en Ω, es decir,

‖ f ‖L∞(Ω) := ess sup
z∈Ω

| f | <∞.

Definición 2.1.5. Dado Ω ⊆ C y p ∈ [1,∞], se define el espacio de funciones Lp
loc(Ω)

como

Lp
loc(Ω) := {f tales que f ∈ Lp(K) ∀K ⊂ Ω con K compacto } .

Definición 2.1.6. Dada una función medible f y una bola B ⊂ C, se denotará por

fB al promedio de la función f sobre la bola B, es decir,

fB :=
1

|B|

ˆ
B
f(z) dA(z).

También puede hacerse la misma definición fC con C ⊂ C un cubo.

Definición 2.1.7. Se define el espacio de funciones de oscilación media acotada,

que denotaremos por BMO(C), como el subconjunto de L1
loc(C) donde las funciones

cumplen

‖f‖BMO(C)
.
= ‖f‖∗ := sup

B⊂C

{
1

|B|

ˆ
B
| f(z)− fB | dA(z)

}
<∞.

dónde ‖·‖∗ es una seminorma en general. Y los elementos de BMO(C) están definidas

módulo constantes aditivas.
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Definición 2.1.8. Se define el espacio de funciones de oscilación media nula, que

denotaremos por VMO(C), como

VMO(C) := C∞
c (C)‖·‖∗ = C0

0 (C)
‖·‖∗

.

Definición 2.1.9. Se define el espacio de funciones VMO(Ĉ) como el subconjunto

de VMO(C) tales que el el ĺımite

f(∞) := ĺım
R→∞

1

πR2

ˆ
DR

f(z) dA(z),

existe y es finito.

Definición 2.1.10. Sean f, g ∈ L1
loc(Ω) y k ∈ N. Se dice que g es la derivada

distribucional de orden k de f , y se denotará por Dkf
.
= g, si

ˆ
Ω

(
Dkφ(z)

)
f(z) dA(z) = (−1)k

ˆ
Ω
φ(z)g(z) dA(z) ∀φ ∈ C∞

c (Ω).

Definición 2.1.11. Dados Ω, k ∈ N y 1 ≤ p < ∞. Se define el espacio de Sobolev

como

W k,p(Ω) ≡ {f ∈ Lp(Ω) tales que ∀α ≤ k,Dαf ∈ Lp(Ω)} ,

y se le asociará la norma

‖f‖Wk,p(Ω) :=
∑

0≤α≤k

‖Dαf‖Lp(Ω).

Nota: W k,p
loc (Ω) será el conjunto de funciones que ∀K ⊂ Ω con K compacto sean de

W k,p(K).

Definición 2.1.12. Dados α ∈ R \ {0} y 1 ≤ p < ∞, se define el espacio Sobolev

fraccionario como

Wα,p(C) = {f ∈ Lp(C) tales que existe g ∈ Lp(C) con f = Gα ∗ g ∈ Lp(C)}

donde Gα := F−1
((

1 + |ξ|2
)−α

2

)
con F−1 la transformada inversa de Fourier. Y

la función g que cumple f = Gα ∗ g, determinará la norma de f en este espacio.

Concretamente

‖f‖Wα,p(C) = ‖g‖Lp(C) .
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Nota: [3]

En el caso de tener α ∈ N, entonces los espacios de Sobolev y de Sobolev

fraccionario coinciden.

Para todo 0 < β < α < 1 y p ∈ (1,∞), se tiene la siguiente inclusión entre

espacios de funciones

Wα,p(C) ↪→ W β,p(C).

Para todo 0 < β < α < 1, se tiene la siguiente cadena de inclusiones entre

espacios de funciones

W 1,2(C) ↪→ Wα, 2
α (C) ↪→ W

β, 2
β (C) ↪→ VMO(C).

Definición 2.1.13. Dados 0 < α < 1 y 1 ≤ p, q ≤ ∞ se definen los espacios de

Besov Bα
p.q(C) como las funciones f tales que

f ∈ Lp(C) y ademásˆ
C

(ˆ
C

(
|f (z) − f (ω)|

|z − ω|
2
q
+α

)p

dA(z)

) p
q

dA(ω)

 1
q

<∞.

Definición 2.1.14. Consideremos una aplicación ψ tal que

ψ (z) =

1, si |z| ≤ 1

0, si |z| > 2
3

y construyamos a partir de ella la partición de la unidad {ψn} como sigue:

ψ0 = ψ, ψj = ψ
(
2−jz

)
− ψ

(
2−j+1z

)
para toda z ∈ C y n ∈ N.

Entonces, dadas 0 < α < 1 y 1 ≤ p, q ≤ ∞ se definen los espacios de Triebel-

Lizorkin F p.q
α (C) como las funciones f tales que

‖f‖F p,q
α (C) =

∥∥∥∥∥∥∥
 ∞∑

j=0

2jsq
[
F−1 (ψj · F (f) )

]q 1
q

∥∥∥∥∥∥∥
Lp(C)

<∞.

Donde los śımbolos F y F−1 representan la transformada de Fourier y su inversa

respectivamenne.
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Nota: Se tienen las siguientes igualdades entre espacios de funciones

Wα,p(C) ≡ F p,2
α (C), F 2,2

1 (C) ≡W 1,2(C) y F∞,2
0 (C) ≡ BMO(C)

Definición 2.1.15. Dado un espacio normado (E, ‖ · ‖E) se dice que es un Espacio

de Banach si es un espacio completo para la norma asociada.

Proposición 2.1.1. Los siguientes espacios son Banach con su norma asociada.

Lp(Ω) si 1 ≤ p <∞.

Wα,p(Ω) si 0 < α <∞ y 1 ≤ p <∞.

Proposición 2.1.2. Los espacios L2(Ω) y Wn,2(Ω) con n ∈ N son espacios de Hilbert

con el producto escalar usual, a saber:

〈f, g〉L2(Ω) :=

ˆ
Ω
f g,

〈f, g〉Wn,2(Ω) :=

n∑
k=0

ˆ
Ω
Dkf Dkg.

Definición 2.1.16. Decimos que A(C) es un álgebra de Banach si A(C) es un espacio

de Banach y dadas f, g ∈ A(C), ∃C ∈ R tal que

‖fg‖A(C) ≤ C‖f‖A(C) ‖g‖A(C).

Ejemplo: los espacios Wα,p(Ω) con αp > 2 son álgebras de Banach. También lo son

los espacios Wα,p(Ω) ∩ L∞(Ω), para todo α ∈ (0, 1) y p ∈ (1,∞).

Nota: el caso αp ≥ 2 se tiene además la inclusión a VMO(C).
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2.2. Operadores entre espacios de funciones.

Definición 2.2.1. Dada φ ∈ S(C), se define la transformada de Cauchy como

Cφ(z) := 1

π

ˆ
C

φ(ω)

z − ω
dA(ω).

Si φ ∈ S(C), puede demostrarse que

‖Cφ‖∗ ≤ C‖φ‖L2(C),

lo que nos dice que que toda transformada de Cauchy de un función de L2(C) es un

elemento de BMO(C).

Observemos que también podemos considerar la transformada de Cauchy como

un operador de convolución

Cφ(z) :=
(

1

πω
∗ φ
)
(z).

Para φ ∈ S(C) se tiene

∂Cφ(z) = ∂

(
1

πω
∗ φ
)
(z) =

(
∂

(
1

πω

)
∗ φ
)
(z)

= φ(z)

ya que 1
πω es la solución fundamental del operador ∂. De aqúı se deduce la siguiente

proposición.

Proposición 2.2.1. Si f ∈ Lp(C) para 1 < p <∞ entonces se tiene que

∂Cf = f.

Proposición 2.2.2. Dado p > 2, el operador

C : Lp
0(C) 7→W 1,p(C)

es cont́ınuo.

Proposición 2.2.3. El operador

C : C∞
0 (C) 7→ C∞(C)

es cont́ınuo.
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Definición 2.2.2. Dada φ ∈ S(C) se define la transformada de Beurling como el

siguiente valor principal

Bφ(z) := − ĺım
ε→ 0+

1

π

ˆ
|z−ω|>ε

φ(ω)

(z − ω)2
dA(ω).

Observemos que B puede considerarse como el operador de convolución

Bφ(z) =
(
−V P 1

πω2
∗ φ
)
(z).

Nótese que para φ ∈ S(C), la transformada de Beurling y la de Cauchy se relacionan

de la siguietne manera

∂Cφ(z) = ∂

(
1

πω
∗ ∂φ

)
(z) =

(
1

πω2
∗ ∂φ

)
(z) = Bφ(z).

Definición 2.2.3. Dada φ ∈ C∞
0 (C) se define la transformada adjunta de Beurling

como

B∗φ(z) := Bφ(z).

Proposición 2.2.4. Para toda n ∈ N, p ∈ (1,∞) y α ∈ R \ N, se cumple que

B ◦ B∗ ≡ ILp(C).

El operador B : L2(C) 7→ L2(C) es una isometŕıa.

Los operadores B,B∗ : Lp(C) 7→ Lp(C) son continuos e invertibles.

Los operadores B,B∗ :Wn,p(C) 7→Wn,p(C) son continuos e invertibles.

Los operadores B,B∗ :Wα,p(C) 7→Wα,p(C) son continuos e invertibles.

Proposición 2.2.5. La composición de N operadores de Beurling con N ∈ N cumple

que

‖BN‖Lp(C) 7→Lp(C) ≤ C(p)N2

para 1 < p <∞.
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Definición 2.2.4. Dados dos espacios de Banach E y F, y un operador lineal

T : E 7→ F

se dirá que es un operador compacto cuando cumpla alguna de las dos condiciones

siguientes:

(i) ∀ {xn}n∈N ⊂ E acotada ⇒ {T (xn)}n∈N ⊂ F admite una subsucesión conver-

gente.

(ii) T (BE) es relativamete compacto en F.

Y al conjunto de todos los operadores compactos entre E y F se le denotará por

K(E,F).

Proposición 2.2.6. Dados tres espacios de Banach E, F y G. Se cumple que:

K(E,F) es un subespacio cerrado de L(E,F).

Dados los operadores T ∈ L(E,F) y S ∈ L(F,G) si uno de los dos es compacto,

entonces S ◦ T también.

T ∈ L(E,F) es compacto si y sólo si el adjunto T ∗ ∈ L(F∗,E∗) lo es.

Proposición 2.2.7. [1] (Caṕıtulo 4). Dado Ω ⊂ C un acotado medible entonces, los

siguientes operadores son compactos.

Para p ∈ (2,∞] y 0 ≤ α < 1− 2
p

χΩ ◦ C : Lp(C) 7→ Cα(Ω).

Para p ∈ [1, 2] y 1 ≤ s < 2p
2−p

χΩ ◦ C : Lp(C) 7→ Ls(C).

Lema 2.2.8. Supongamos que b es de BMO(C) y p ∈ (1,∞). Entonces el conmutador

[B, b ] = Bb− bB

se extiende a un operador acotado de Lp(C) en śı mismo con cota uniforme

‖ [B, b ]φ‖Lp(C) = ‖(Bb− bB)φ‖Lp(C) ≤ Cp ‖b‖∗ ‖φ‖Lp(C).
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Teorema 2.2.9. Dado una función b ∈ VMO(C) el operador lineal

[B, b ] : φ 7→ (Bb− bB)φ

es un operador compacto de Lp(C) en śı mismo ∀p ∈ (1,∞).

Demostración. Primero veremos el caso de b ∈ C∞
0 (C) y luego razonaremos por

densidad. Consideremos una función arbitraria ω ∈ Lp(C) y sea f := Cω. Entonces se

cumple que

∂(bf) = B∂(bf).

Y por otro lado:

(bB − Bb)ω = b∂f − B
(
b∂f

)
= B

((
∂b
)
f
)
− (∂b) f =

= B
((
∂b
)
Cω
)
− (∂b) Cω

de donde se deduce la compacidad cuando b ∈ C∞
0 (C) gracias a la Proposición 2.2.7.

Para el caso general b ∈ VMO(C) nos aproximaremos mediante una sucesión de

funciones {bj}j∈N ⊂ C∞
0 (C) tal que bj → b en BMO(C). Por tanto,

|| (bB − Bb)− (bjB − Bbj) ||Lp(C)7→Lp(C) = || (b− bj)B − B (b− bj) ||Lp(C)7→Lp(C)

≤ Cp||b− bj ||∗ → 0

con lo que se garantiza la compacidad del operador. �

Definición 2.2.5. Dado un operador acotado T : E 7→ F se dice que es de Fredholm

si cumple que Ker(T ) y Coker(T ) son finito dimensionales.

Al conjunto de todos los operadores de Fredholm entre E y F se les denotará por

F(E,F).

Lema 2.2.10. Caracterización de Atkinson: Un operador acotado T : E 7→ F es

Fredholm si y sólo si

∃A ∈ L(F,E), ∃K1 ∈ K(E) y ∃K2 ∈ K(F)

tales que A ◦ T = IE + K1 y T ◦A = IF +K2.

Definición 2.2.6. Dado T ∈ F(E,F) se define el ı́ndice del operador T como:

Ind(T ) := dim(Ker(T ))− dim(Coker(T )).
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Proposición 2.2.11. Sean E, F y G tres Espacios de Banach.

1. Si T : E 7→ F y S : F 7→ G son operadores acotados y dos de los siguientes tres

operadores T, S, S ◦ T son Fredholm, entonces el tercero también, y además

Ind(S ◦ T ) = Ind(S ) + Ind(T ).

2. T ∈ F(E,F) si y sólo si T ∗ ∈ F(F∗,E∗), y además

Ind(T ) = Ind(T ∗ ).

3. Si K ∈ K(E,F) y T ∈ F(E,F) entonces T +K ∈ F(E,F) y además

Ind(T + K ) = Ind(T ).

4. Si T ∈ F(E,F) entonces Ind(T ) = 0 si y sólo si T = A+K para algún par de

operadores A,K con A invertible y K compacto.

5. Si T ∈ F(E) con Ind(T ) = 0 e inyectivo, entonces T es invertible.

Proposición 2.2.12. Embedding Sobolev.[3] Dadas n ≥ 1 y p ∈ [1,∞) se tienen

las siguientes inclusiones continuas entre espacios de funciones:

(i)

Wn,p(C) ↪→ Lq(C) con
1

q
=

1

p
− n

2
si

1

p
− n

2
> 0.

(ii)

Wn,p(C) ↪→ Lq(C) para toda q ∈ [p,∞) si
1

p
− n

2
= 0.

(iii)

Wn,p(C) ↪→ L∞(C) si
1

p
− n

2
< 0.

(iv)

Wn,p(C) ↪→ C 0,α(C) para α = n− 2

p
∈ (0, 1) .



Caṕıtulo 3

Preliminares cuasiconformes.

A lo largo de este caṕıtulo veremos algunos de los resultados más importantes sobre

aplicaciones cuasiregulares. Nuestro objetivo en este caṕıtulo, es llegar a recolectar

todas las nociones y herramientas necesarias para demostrar el Teorema de Riemann

que nos garantizan la existencia de un único homeomorfismo solución de la ecuación

de Beltrami, y el Teorema de Stoilow que nos clasifica el resto de soluciones. Aśı, estas

mismas herramientas no serán de gran utilidad en el resto de caṕıtulos para llegar a

probar los resultados que expondremos. Por ello, primero daremos algunas definiciones

y propiedades sobre las aplicaciones cuasiregulares que nos serán necesarias.

3.1. Definiciones y Propiedades Básicas.

Definición 3.1.1. Se define la ecuación de Beltrami como la siguiente ecuación en

derivadas parciales

∂φ (z) = µ (z) ∂φ (z) (3.1)

dónde µ es una función dada con |µ (z)| < 1 para casi todo z ∈ C.

Definición 3.1.2. Una función f se dice que es µ-cuasiregular si es una función de

W 1,2
loc (C) y es solución de la ecuación de Beltrami (3.1).

Definición 3.1.3. Una función φ se dice que es µ-cuasiconforme si es un homeo-

morfismo perteneciente a W 1,2
loc (C) y es solución de la ecuación de Beltrami (3.1).

18
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Definición 3.1.4. Una función f se dice que es débilmente cuasiregular si es una

función de W 1,q
loc (C) para alguna q > 1 y cumple la desigualdad de distorsión∣∣∂f ∣∣ ≤ k |∂f | , k < 1

para casi toda z ∈ C.

Definición 3.1.5. Dado un homeomorfismo φ, diremos que es un homeomorfismo

normalizado si cumple la condición

φ ( 0 ) = 0 y φ ( 1 ) = 1. (3.2)

Aśı mismo, se llama solución normalizada de la ecuación de Beltrami (3.1) a toda

aplicación µ-cuasiconforme que satisfaga la condición (3.2).

Definición 3.1.6. Dado K ≥ 1, se dice que una función φ es K-cuasiconforme si φ

pertenece a W 1,2
loc (C), es biyectiva y satisface la condición de distorsión

máx
α

|∂αφ| ≤ Kmı́n
α

|∂αφ|

para casi toda z ∈ C.

Observemos un segundo que la condición de distorsión impuesta para las aplica-

ciones K-cuasiconformes es equivalente a∣∣∂φ∣∣ ≤ K − 1

K + 1
|∂φ|

por lo que se puede asegurar que toda aplicación µ-cuasiconforme con ‖µ‖∞ < 1 es a

su vez una aplicación K-cuasiconforme sin más que tomar

K =
1 + ‖µ‖∞
1− ‖µ‖∞

.

Y rećıprocamente, toda aplicaciónK-cuasiconforme es una aplicación µ-cuasiconforme

para cierta función medible µ tal que

‖µ‖∞ ≤ K − 1

K + 1
< 1,

concretamente la función µ viene expresada por

µ (z) =
∂φ (z)

∂φ (z)
.

La gran diferencia entre ambas definiciones radica en que mientras que dada una

K ≥ 1 pueden existir una multitud de aplicaciones K-cuasiconformes, dada una

función µ existirá, módulo aplicaciones de Möbius, una única función µ-cuasiconforme.
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Definición 3.1.7. Dado un homeomorfismo φ, diremos que es un homeomorfismo

principal si cumple la siguiente condición

ĺım
|z|→∞

|φ (z)− z| = 0. (3.3)

Aśı mismo, se llama solución principal de la ecuación de Beltrami (3.1) a toda apli-

cación µ-cuasiconforme que satifaga la condición (3.3).

Definición 3.1.8. Dada φ una función se define su función de distorsión como

K (z) =
|Dφ (z)|2

J (z, φ)
.

Fijémonos que, en nuestro caso, la función de distorsión de toda solución de la

ecuación de Beltrami 3.1 se puede expresar en términos de µ como sigue

K (z) =
|Dφ (z)|2

J (z, φ)
=

(
|∂φ (z)|+

∣∣∂φ (z)∣∣)2
|∂φ (z)|2 −

∣∣∂φ (z)∣∣2 =
|∂φ (z)|+

∣∣∂φ (z)∣∣
|∂φ (z)| −

∣∣∂φ (z)∣∣
=

1 + |µ (z)|
1− |µ (z)|

= 1 +
2 |µ (z)|

1− |µ (z)|
.

Proposición 3.1.1. [1] (PAG. 79). El ĺımite uniforme f de aplicaciones cuasicon-

formes fn : C → C normalizadas por las condiciones

fn(0) = 0 y fn(1) = 1 para toda n ∈ N,

es un homeomorfismo cuasiconforme de la esfera de Riemann Ĉ.

Definición 3.1.9. Diremos que un homemomorfismo f satisface la condición N de

Lusin si se cumple la siguiente implicación:

|E | = 0 ⇒ | f (E ) | = 0.

Proposición 3.1.2. Un homeomorfismo f cumple la condición N de Lusin si y sólo

si f preserva los conjuntos medibles Lebesgue.

Demostración. Empezaremos con la implicación directa. Sea A un conjunto medible,

entonces existen dos conjuntos B borel y N de medida nula tal que A = B ∪N . Y al

tratase f de un homeomorfismo, se cumple que

f (A) = f (B) ∪ f (N)
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con f (B) un borel y f (N) un conjunto de medida nula por la condición N . De aqúı se

sigue que f (A) es medible. Con lo que terminamos la primera implicación.

Para la otra implicación, razonaremos por (R.A.) suponiendo que existe un con-

junto N de medida nula cuya imagen f (N) tenga medida positiva. En tal caso, existe

un conjunto no medible A tal que A ⊂ f (N). Y definimos H = f−1 (A)∩N . Entonces

tendremos por un lado que

f (H) = A ∩ f (N) = A no medible,

y por otro que

H ⊂ N y |N | = 0

lo que implica que H es medible con medida nula. Por lo tanto, hemos construido un

conjunto H medible tal que f (H) = A no medible, contradiciendo la tesis. �

Definición 3.1.10. Diremos que un homeomorfismo f satisface la condición N−1 de

Lusin si se cumple la siguiente implicación:

|E | = 0 ⇒
∣∣ f−1 (E )

∣∣ = 0.

Proposición 3.1.3. Un homeomorfismo f cumple la condición N−1 de Lusion si

para toda función medible u, la composición u ◦ f también es medible.

Demostración. Primero, observemos que al tratarse f de un homeomorfismo, entonces

que f cumpla la condición N−1 de Lusin es equivalente a que f−1 cumpla la condición

N de Lusin. Y por la Proposición 3.1.2, son equivalente que f−1 env́ıe conjuntos

medibles en medibles, ie, si E es un conjunto medible, entonces f−1 (E) es medible.

Por lo que sólo habrá que probar que f−1 conserva los conjuntos medibles.

Sea E un conjunto medible, sabemos que E es un conjunto medible si y sólo śı χE

es una función medible. Definamos u = χE , entonces por hipótesis u ◦ f es medible,

y por construcción (u ◦ f) = χf−1(E) por lo que f−1 (E) es un conjunto medible. �
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3.2. El operador I − µB y el intervalo cŕıtico.

Observemos que si tomamos una solución principal φ de

∂φ(z) = µ(z)∂φ(z) z ∈ C

esta se puede escribir como φ(z) = z + Ch(z), y entonces sus derivadas parciales

satisfacen

∂φ(z) = 1 + Bh(z)

∂φ(z) = h(z).

Mediante estas relaciones, la ecuación de Beltrami, se convierte en la ecuación funda-

mental

(I − µB)h = µ

lo que levanta nuestro interés en estudiar la invertibilidad del operador I − µB. Si

fuese tal el caso, entonces

h = (I − µB)−1µ.

Y la invertibilidad del operador nos permitirá transferir propiedades del coeficiente µ

a la aplicación h (y por ende a φ). Por ello, nos es de vital importancia saber bajo

que condiciones impuestas a µ se tendrá (o no) la invertibilidad del operador I − µB

en un rango más o menos amplio de espacios Lp(C) u otros.

Respecto a este estudio, hay, como ya hab́ıamos enfatizado, dos aportaciones prin-

cipales. Una es la de Astala [1] el cual no supone nada más que µ ∈ L∞(C) con soporte

compacto. Y la otra es la de Iwaniec [8] para el caso de que µ ∈ VMO(C) en el cual

nos adentraremos en breve en el Caṕıtulo 4. Será el resultado de Astala el que dare-

mos en esta sección, aunque primero puntualizaremos un par de resultados inmediatos

facilmente deducibles mediante la serie de Neumann. Para saber más sobre cómo de-

terminar el intervalo cŕıtico, se recomienda la lectura del Caṕıtulo 14 de la referencia

[1].

Lema 3.2.1. Dado A ∈ L(E) con ‖A‖L(E) < 1, entonces el operador

IE −A : E 7→ E

es invertible.



PRELIMINARES CUASICONFORMES. 23

Corolario 3.2.2. El operador

I − µB : L2(C) 7→ L2(C)

es un operador invertible.

Definición 3.2.1. Intervalo cŕıtico: Se sabe que la aplicación

p→ ‖B‖Lp(C)7→Lp(C)

es una aplicación continua, y que ‖B‖L2(C)7→L2(C) = 1 (véase [1], Pag 95). Por tanto,

dado 0 ≤ k < 1, existirá todo un entorno de p = 2 para el cual todo operador I − µB

con ‖µ‖∞ ≤ k es un operador invertible de Lp(C) con p en dicho intervalo con cota

dependiente sólo de p y de k. Al mayor de todos estos intervalos se le conoce como

rango cŕıtico y lo denotaremos por (Q (k) , P (k)).

Puntualicemos que si p es del rango cŕıtico el operador (I − µB) con ‖µ‖∞ ≤ k es

invertible, y por lo tanto su inverso, definido formalmente por la serie de Neumann

(I − µB)−1 = I + µB + µBµB + µBµBµB + ...

será un operador acotado de Lp(C) 7→ Lp(C). Lo que nos asegura que

‖ (I − µB)−1 ‖Lp(C) 7→Lp(C) ≤ C (k, p)

siempre y cuando p pertenezca a (Q(k), P (k)).

Teorema 3.2.3. [1] Para cada 0 ≤ k < 1, el intervalo cŕıtico es

p ∈
(
1 + k, 1 +

1

k

)
≡
(

2K

K + 1
,

2K

K − 1

)
.

Este teorema, fue demostrado por K. Astala mediante su teorema de distorsión de

área, argumentos con pesos de Muckenhuop y el Teorema de Factorización de Stoilow

que veremos en la próxima sección. En particular, este teorema nos asegurará que la

serie de Neumann que define al operador (I − µB)−1, es convergente como serie de

operadores de Lp(C) → Lp(C).
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3.3. Teorema de la aplicación medible de Riemman.

Se sabe, que si la aplicación µ es de soporte compacto, entonces siempre exis-

tirá una solución principal, pero en caso de que µ no tenga soporte compacto, la

solución principal podŕıa no existir y hay que recurrir a las soluciones normalizadas

para seguir encontrando homeomorfismos soluciones. Es el Teorema de la aplicación

de Riemman el que nos asegurará la existencia de un homeomorfismo solución de la

ecuación de Beltrami

∂φ (z) = µ (z) ∂φ (z) ,

para cualquier µ medible con ‖µ‖∞ = k < 1. Para su demostración, necesitare-

mos resultados previos sobre existencia de soluciones de la ecuación de Beltrami no

homogénea

∂f = µ∂f + ϕ

bajo ciertas condiciones sobre µ y ϕ. Para ello, nos basaremos en el libro [1].

Teorema 3.3.1. Sean µ tal que |µ (z)| ≤ k χDr k < 1, ϕ ∈ Lp(C) con soporte

compacto y p ∈ (Q (k) , P (k)), entonces la ecuación de Beltrami no homogénea

∂f (z) = µ (z) ∂f (z) + ϕ (z) para casi todo z ∈ C

admite una única solución f tal que Df ∈ Lp(C) y ĺım|z|→∞ f (z) = 0. En particular,

si p > 2, entonces tenemos que f ∈W 1,p(C).

Demostración. Veamos primero la existencia. Como p está en el rango cŕıtico, ten-

emos que la función definida como (I − µB)−1 ϕ pertenece a Lp(C) y tiene soporte

compacto. Por otro lado, si definimos

f = C
(
(I − µB)−1 ϕ

)
,

entonces tendremos por un lado el comportamiento deseado en el infinito, y por el

otro que

∂f = ∂C (I − µB)−1 ϕ = (I − µB)−1 ϕ ∈ Lp (C)

∂f = ∂C (I − µB)−1 ϕ = B (I − µB)−1 ϕ ∈ Lp (C) .

Y si llamamos ω = (I − µB)−1 ϕ tenemos que

∂f = ω = (I − µB)ω + µBω = ϕ+ µ∂f.
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Por lo que sigue que f tiene derivadas en Lp(C) y cumple la ecuación. Además si

p > 2, al ser f la imagen mediante Cauchy de una función de soporte compcato, por

la Proposición 2.2.2 se asegura que f pertenece a W 1,p(C).

Para ver la unicidad sólo hay que observar que dadas dos soluciones f1, f2 entonces,

h = f1 − f2 cumple la ecuación

(I − µB) ∂h = ∂h− µ∂h = 0.

Y como (I − µB) es invertible, tiene nucleo trivial, es decir, ∂h = 0 y haciendo

Beurling tenemos que B∂h = ∂h = 0. Por esto, afirmamos que h es una constante, y

por el comportamiento en el infinito que h hereda de f1 y f2, podemos asegurar que

dicha constante es cero. �

Teorema 3.3.2. Dada µ tal que |µ(z)| ≤ kχDR
con 0 ≤ k < 1 exite una única

φ ∈W 1,2
loc (C) que cumpla:

∂φ (z) = µ (z) ∂φ (z)

ĺım
|z|→∞

φ (z)− z = 0.

Además, φ ∈W 1,p
loc (C) para todo 2 ≤ p < P (k).

Demostración. Fijemos 2 ≤ p < P (k). Aplicando el Teorema 3.3.1, con ϕ = µ,

obtendremos una única f con Df ∈ Lp(C) que es solución de

∂f = µ∂f + µ

y además puede construirse como f = C
(
( I − µB )−1 (µ )

)
, es decir la transforma-

da de Cauchy de una función Lp(C) con soporte compacto. Por otro lado, tomando

φ (z) = z + f (z) tendremos que

φ ∈ Lp
loc (C) por la Proposición 2.2.7,

ĺım|z|→∞ φ (z)− z = 0

∂φ = ∂f = µ∂f + µ ∈ Lp(C),

∂φ = 1 + ∂f ∈ Lp
loc(C),

φ ∈W 1,p

loc (C).

Y además φ cumple la ecuación

∂ φ = µ∂φ ,
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consiguiendo aśı la prueba de la existencia.

Para asegurar la unicidad, supongamos que tenemos otra solución φ2 (z) ∈W 1,2
loc (C).

Si defino f2 (z) = φ2 (z)− z, entonces f2 cumple la ecuación

∂f = µ∂f + µ,

y Df2 ∈ L2(C). Por otro lado, si defino h = f − f2, entonces tendremos que

(I − µB) ∂h = 0.

Y al tratarse B : L2(C) 7→ L2(C) de una isometŕıa, necesariamente

∂h = B∂h = 0.

Por lo que h es una constante perteneciente a L2(C) y esa constante tiene que ser

cero, y por tanto f = f2 y φ = φ2. �

Observemos que de forma implicita, el Teorema 3.3.1 y el Teorema 3.3.2 nos dan

la expresión constructiva de la solución principal φ = z + C
(
∂φ
)
. Recordemos que si

f es la solución del Teorema 3.3.1 con ϕ = 0, entonces φ (z) = z + f (z) es solución

del Teorema 3.3.2. Y además f y φ cumplen que

∂f = µ+ µ∂f,

∂φ = µ∂φ,

∂f = B
(
∂f
)
,

∂φ = ∂f,

∂φ = 1 + ∂f.

Por lo que podemos asegurar que

∂φ = ∂f = µ + µ∂f = µ + µB∂f

= µ+ µB∂φ = µ + µBµ + µBµBµ + ... =
∞∑
k=0

(µB)k (µ) .

Ya que claramente la serie converge en Lp(C) para todo p ∈ (Q (k) , P (k)), podemos

asegurar la igualdad de la segunda ĺınea. Y además, de las expresiones anteriores

puede deducirse que

∂φ = 1 + B∂φ

φ (z) = z + C∂φ (z) .
De donde sale la expresión para la solución principal.
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Lema 3.3.3. Sean |µ1| , |µ2| ≤ kχDR
con 0 ≤ k < 1. Y consideremos las soluciones

principales φ1, φ2 de las ecuaciones de Beltrami

∂φi = µi∂φi con i = 1, 2.

Entonces para todo par de números p, s tales que 2 ≤ p < p · s < P (k) se tiene que

‖∂φ1 − ∂φ2‖Lp(C) ≤ C (p, s, k,R) ‖µ1 − µ2‖
L

ps
s−1 (C)

.

Demostración. Observemos que por el Teorema 3.3.2, tenemos que ∂φi = µi+µiB∂φi
para i = 1, 2. Entonces

∂φ1 − ∂φ2 = µ1 − µ2 + µ1B∂φ1 − µ2B∂φ2

= (µ1 − µ2)χDR
+ (µ1 − µ2)B∂φ1 + µ2B

(
∂φ1 − ∂φ2

)
,

y por lo tanto,

∂φ1 − ∂φ2 = (I − µ2B)−1 [(µ1 − µ2)
(
χDR

+ B∂φ1
)]

y aśı

‖∂φ1 − ∂φ2‖pLp(C) ≤ ‖ (I − µ2B)−1 ‖pLp(C)7→Lp(C)‖ (µ1 − µ2)
(
χDR

+ B∂φ1
)
‖pLp(C).

Y gracias a la invertibilidad del operador (I − µ2B)−1 : Lp(C) 7→ Lp(C) y a la de-

sigualdad de Hölder en la norma de Lp(C) tenemos que

‖∂φ1 − ∂φ2‖pLp(C) ≤ C (p, k)

(ˆ
|µ1 − µ2|

ps
s−1

) s−1
s
(ˆ ∣∣χDR

+ B∂φ1
∣∣ps) 1

s

= C (p, k) ‖µ1 − µ2‖p
L

ps
s−1 (C)

(ˆ ∣∣∣χDR
+ B (I − µ1B)−1 µ1

∣∣∣ps) 1
s

= C (p, k, s, R) ‖µ1 − µ2‖p
L

ps
s−1 (C).

�

Lema 3.3.4. Sean µ ∈ C∞
0 (C) con ‖µ‖∞ = k < 1 y ϕ ∈ W 1,p(C) para algún p ∈

(2, P (k)), ambas funciones de soporte compacto. Y planteamos la ecuación diferencial

∂f = µ∂f + ϕ.

Entonces, la solución f de la ecuación cumple que f ∈W 2,p(C).
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Demostración. Observemos que las hipótesis de este Teorema son un caso partic-

ular de las hipótesis del Teorema 3.3.1, por lo que aplicando éste, deducimos que

∃! f ∈ W 1,p(C) solución del problema planteado con 2 < p < P (k). Además si

actuamos como lo hicimos en el Teorema 3.3.1 (con 2 < p < P (k)) definiendo

ω = C (I − µB)−1 ϕ, tendremos como en dicho teorema que
ω ∈W 1,p(C) por la Proposición 2.2.2,

∂f = ω,

∂f = Bω.

Y como B :W 1,p(C) 7→W 1,p(C) es invertible por la Proposición 2.2.4, tenemos que

f ∈W 1,p(C) , ∂f ∈W 1,p(C) y ∂f ∈W 1,p(C),

por lo que tenemos que efectivamente f ∈W 2,p(C). �

Lema 3.3.5. Sean µ, ϕ ∈ C∞
0 (C) con ‖µ‖∞ ≤ k < 1, y 2 < p < P (k), y planteamos

la ecuación diferencial

∂f = µ∂f + ϕ.

Entonces, la solución f es de C∞(C).

Demostración. Definamos ω = C (I − µB)−1 ϕ ∈ W 1,p(C), y observemos que por el

Lema 3.3.4 tenemos que

f ∈W 2,p(C).

Y por ser solución de la ecuación, para todo operador diferencial D se tiene

D∂f = µD∂f +Dϕ+ (Dµ) ∂f o equivalentemente,

∂Df = µ∂Df +Dϕ+ (Dµ)Bω

donde trivialmente Dϕ+(Dµ)Bω es de W 1,p(C), por lo que podemos aplicarle a Df

el Lema 3.3.4 para concluir que Df ∈ W 2,p(C) y por tanto f ∈ W 3,p(C). Reiterando

el razonamiento, se sigue que f ∈ W k,p(C) para toda k ∈ N y por tanto que f ∈

C∞(C). �
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Lema 3.3.6. Sea µ ∈ C∞
0 (C) con ‖µ‖∞ ≤ k < 1 para todo z ∈ C, y consideremos

φ ∈W 1,2
loc (C) la solución principal de

∂φ = µ∂φ.

Entonces, φ ∈ C∞(C) y además J ( z , φ ) > 0 para todo z ∈ C.

Demostración. Gracias al Lema 3.3.5, podemos asegurar φ ∈ C∞(C) sin más que

suponer ϕ = 0. Por tanto, sólo tendremos que asegurarnos que J ( z , φ ) sea distinto

de cero. Para ello, consideremos la ecuación auxiliar

∂f = µ∂f + ∂µ

que para 2 < p < P (k) tiene una única solución f ∈ W 1,p(C) ∩ C∞(C) gracias a el

Teorema 3.3.1 y el Lema 3.3.4. Además, como f ∈ W 1,p(C) ∩ C∞ con f (z) = O
(
1
z

)
cuando z → ∞, se tiene que ef − 1 ∈W 1,p(C), y de aqúı se sigue que

ef − 1 = C
(
∂
(
ef − 1

))
= C

(
µ∂fef + ∂µef

)
= C

(
∂
(
µef
))

= B
(
µef
)
,

y por tanto

B
(
µef
)
= ef − 1. (3.4)

Por otro lado, consideremos también la función auxiliar

F ( z ) = z + C
(
µef

)
( z ) ,

que al tratarse µ de una función de C∞
0 (C), por la Proposición 2.2.3, podemos asegurar

que F ∈ C∞(C). Además F aśı definida cumple que

∂F = µef , y ∂F = 1 + B
(
µef

)
= ef

dónde en la última igualdad hemos usado la equación (3.4). De aqúı se deduce que F

es solución de ∂F = µ∂F y por la unicidad de solución del Teorema 3.3.2, aseguramos

que φ ≡ F . Y ya para terminar, observemos que

J ( z , φ ) = J ( z , F ) = |∂F |2 −
∣∣∂F ∣∣2

=
∣∣∣e2f ∣∣∣ ( 1 − |µ|2

)
> 0 para toda z ∈ C,

con lo que concluimos la demostración. �
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Teorema 3.3.7. Sea µ ∈ C∞
0 (C) con ‖µ‖∞ = k < 1, entonces la solución principal

φ ∈W 1,2
loc (C) de la ecuación de Beltrami

∂φ = µ∂φ

es un C∞-difeomorfismo de la Esfera de Riemann Ĉ.

Demostración. Por el Teorema 3.3.6, ya tenemos que φ ∈ C∞(C) y J ( z , φ ) > 0,

lo que en particular nos dice que φ es un homeomorfismo local. Por lo que sólo nos

queda ver que es también homeomorfismo global.

Como Ĉ es compacto, existe un recubrimiento finito por bolas de Ĉ, y como φ es

un homeomorfismo local, φ es inyectiva en cada una de dichas bolas. Por otro lado no

es dificil probar que el conjunto de puntos con una única preimagen es un conjunto a

la vez abierto y cerrado en Ĉ. Por lo tanto, dicho conjunto debe ser vaćıo o Ĉ y como

φ ∈ C∞(C) la opción de que el conjunto sea vaćıa queda descartada. �

Teorema 3.3.8. Supongamos que tenemos una función f ∈ W 1,q
loc (Ω) para alguna

q ∈ (Q(k), P (k)) y que satisface la desigualdad de distorsión

∣∣∂f (z)∣∣ ≤ k |∂f (z)| , para casi todo z ∈ Ω.

Entonces f ∈ W 1,p
loc (Ω) para toda p ∈ (Q(k), P (k)), en particular f es cont́ınua y

además, para toda funcióin η Lipschitz con soporte compacto en Ω se cumple la de-

sigualdad de Caccioppoli

‖ηDf‖Lp(Ω) ≤ C (p, k) ‖f∇η‖Lp(Ω).

Aún teniendo ya las herramientas necesarias para ver la demostración del teorema,

remitiremos al lector o bien al libro [1] o bien a la demostración del Teorema 4.2.1,

ya que el argumento de la prueba es el básicamente el mismo en ambos teoremas,

salvo que en el Teorema 4.2.1 podemos aplicar el resultado a toda p perteneciente al

intervalo (1,∞) y en este caso sólo podemos hacer valer la prueba para el intervalo

cŕıtico.
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Teorema 3.3.9. Teorema de la aplicación medible de Riemann.

Sea |µ| ≤ k < 1 con soporte compacto y definida en C. Entonces existe una única

solución principal φ de la ecuación de Beltrami

∂φ (z) = µ (z) ∂φ (z) para casi toda z ∈ C.

Además la solución φ está en W 1,p
loc (C) para todo p ∈ (Q (k) , P (k)) y es un homeo-

morfismo de C.

Demostración. Vamos a definir una aproximación a la identidad. Primero tomemos

la función

Ψ (z) = C exp

(
1

|z|2 − 1

)
χD

con C tal que
´
CΨ = 1. Y tomamos la aproximación como

Ψε (z) = ε2Ψ
(z
ε

)
.

Si definimos µε (z) := Ψε ∗ µ (z), entonces µε ∈ C∞(C) con ‖µε‖∞ ≤ k para todo

ε > 0 y además µε → µ en todos los espacios Lq(C) con 1 ≤ q <∞ cuando ε→ 0 por

el Teorema de Lebesgue.

Ahora fijemos p y s tales que 2 ≤ p < ps < P (k), obviamente µε → µ en L
ps
s−1 (C).

Y definamos φε como la única solución principal de la ecuación

∂φε (z) = µε (z) ∂φε (z) ,

que por el Teorema 3.3.7, cada φε es un C
∞-difeomorfismo de Ĉ.

Del Lema 3.3.3 se sigue que

‖∂φε − ∂φ‖Lp(C) ≤ C(p, s, k,R)‖µε − µ‖
L

ps
s−1 (C)

→ 0

con R el radio de un disco centrado en el origen que contenga al soporte de µ.

Por otro lado, de la expresión que tenemos para la imagen de la ∂-derivada medi-

ante Beurling de una solución principal, tenemos que

‖∂φε − ∂φ‖Lp(C) ≤
∥∥1 + B∂φε − 1− B∂φ

∥∥
Lp(C) =

∥∥B∂φε − B∂φ
∥∥
Lp(C)

≤ ‖B‖Lp(C)7→Lp(C)
∥∥∂φε − ∂φ

∥∥
Lp(C) → 0.
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Por lo que tenemos que φε y φ son las transformadas de Cauchy de sus ∂-derivadas,

y por lo tanto

φε − φ = C
(
∂φε − ∂φ

)
(z) = C (µε∂φε − µ∂φ) (z)

= C ((µε − µ) ∂φε) (z) + C (µ (∂φε − ∂φ)) (z) → 0.

Donnde la convergencia se tiene por la Proposición 2.2.7, que nos asegura que es

convergencia uniforme en C ya que ∂φε = µε∂φε y ∂φ = µ∂φ de dónde tenemos

el soporte compacto. Por esto, tenemos que φ es el ĺımite de φε, en particular es el

ĺımite de la sucesión de homoeomorfismos cuasiconformes y por la Proposición 3.1.1,

aseguramos que φ es efectivamente un homeomorfismo. �

Teorema 3.3.10. Sea µ con ‖µ‖∞ = k < 1 para toda z ∈ C, entonces existe una

única función f : C 7→ C homoeomorfismo quasiconforme y solución de la ecuación

del Beltrami

∂φ = µ∂φ

normalizada con las condiciones

φ(0) = 0, φ(1) = 1, y φ(∞) = ∞.

Este teorema no lo demostraremos ya que nuestro interés está centrado en el caso

de µ con soporte compacto.

3.4. La Factorización de Stoilow.

El teorema de factorización de Stoilow será la herramienta que nos permitirá clasi-

ficar todas las soluciones de la ecuación de Beltrami con cierta regularidad. Estas

soluciones, se buscarán entre las llamadas funciones débilmente causiregulares.

Este teorema usa resultados de topoloǵıa que atestiguan que toda aplicación abier-

ta y discreta h es topologicamente equivalente a una función anaĺıtica. Es decir,

h = g ◦ f con f un homeomorfismo del plano y g un holomorphismo.
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Teorema 3.4.1. Factorización de Stoilow Sea φ : Ω → Ω′ un homeomorfismo

solución de la ecuación de Beltrami

∂φ = µ∂φ, φ ∈W 1,1
loc (Ω),

con |µ| ≤ k < 1 para casi todo z ∈ Ω. Y supongamos que g ∈W 1,2
loc (Ω) es otra solución

de la ecuación de Beltrami, entonces existe un holomorfismo Φ : Ω′ → C tal que

g ( z ) = Φ (φ ( z ) ) , para z ∈ Ω.

Y rećıprocamente, si Φ es un holomorfismo en Ω′ entonces Φ ◦ φ es una W 1,2
loc (Ω)-

solución de la ecuación de Beltrami.

Corolario 3.4.2. Si f es una aplicación cuasiregular definida en un subdominio

Ω ⊂ C, entonces

1. f es o bien abierta y discreta, o bien constante.

2. f es Hölder-continua con exponente α = 1−k
1+k = 1

K .

3. f cumple las condiciones N y N−1.

4. f es diferenciable con Jacobiano no nulo en casi todo punto.

Corolario 3.4.3. Sea f cuasiregular y definida en un dominio simple Ω, entonces

f = Φ◦φ con Φ holomorfa en Ω y φ cuasiconforme que puede tomarse bien φ : Ω 7→ Ω,

o bien, φ : C 7→ C.



Caṕıtulo 4

Resultados para µ ∈ VMO(C).

4.1. Mejora del intervalo cŕıtico.

Una de las limitaciones de la resolubilidad de la ecuación de Beltrami en Lp(C)

consiste en que el rango de valores admisibles para p depende de la elipticidad. Conc-

retamente, hemos mencionado antes que si µ ∈ L∞(C) y ‖µ‖∞ = k < 1 entonces el

operador

I − µB : Lp(C) → Lp(C)

es invertible siempre y cuando 1 + k < p < 1 + 1
k . Además, este rango es óptimo.

Veremos en este caṕıtulo que, sin embargo, hipótesis adicionales sobre µ pueden mejo-

rar sensiblemente el rango. La idea fundamental es de T. Iwaniec [8], y está basada

en argumentos de compacidad de commutadores e invertibilidad de operadores de

Fredholm.

Lema 4.1.1 (Desigualdad Isoperimétrica, [1]). Sea Ω un dominio de Jordan acotado,

tal que ∂Ω es rectificable. Entonces se cumple que

H2(Ω) ≤ 1

4π
(H1(∂Ω))2

dónde H2 es la medida de área y H1 la medida de longitud.

34



RESULTADOS PARA µ ∈ VMO(C). 35

Lema 4.1.2. [16] Sea una función g perteneciente a W 1,1
loc (C), donde su Jacobiano

J ( · , g ), y su función de distorsión K ( · , g ) cumplen que
J ( · , g ) ∈ L1

loc(C)

K ( · , g ) ∈ L1
loc(C)

|Dg ( · ) |2 ≤ K ( · , g ) J ( · , g ) en casi todo punto.

Entonces la función g o bien es constante, o bien es una función discreta y abierta.

Teorema 4.1.3. [7],[8]. Supongamos que g es localmente integrable, perteneciente a

Ẇ 1,p(C) con p > 2 y tal que su función de distorsión K(z, g), es finita en casi todo

punto. Supongamos, además, que

1

πR2

ˆ
DR

K(z, g) ≤ K∞, para toda R > R0 > 1

con R0 suficientemente grande, y que J(·, g) es localmente integrable y además pertenece

a Lq(C) para alguna 1 < q ≤ K∞
K∞−1 . Entonces g es constante.

Demostración. Primero observemos que dadas las hipótesis sobre g, K(·, g) y J(·, g)

podemos asegurar que g es una función o bien discreta y abierta, o bien constante

por el Lema 4.1.2. Por tanto, supondremos que g no es constante. Y además, cómo

g está en Ẇ 1,p(C) con p > 2, en particular g es una función continua y como ya

hab́ıamos indicado, también es abierta, por tanto g cumple que

g (∂E) ≡ ∂ (g (E)) , para todo conjunto E ⊂ C.

Para simplificar, denotaremos J := J(z, g) y K := K(z, g).

Usando el Lema 4.1.1 (con Ω = g(Dt)) obtendremos que

|g(Dt)| ≤
1

4π
|∂(g(Dt))|2 =

1

4π
|g(∂Dt)|2

que en términos del Jacobiano y la diferencial quedaˆ
Dt

J(z, g) dA(z) ≤ 1

4π

(ˆ
∂Dt

|Dg| |dz|
)2

y como |Dt| = πt2 y |∂Dt|2 = 4π2t2 obtenemos que

1

|Dt|

ˆ
Dt

J(z, g) dA(z) ≤
(

1

|∂Dt|

ˆ
∂Dt

|Dg| |dz|
)2

≤
(

1

|∂Dt|

ˆ
∂Dt

Dg

K
|dz|

) (
1

|∂Dt|

ˆ
∂Dt

K |dz|
)

=

(
1

|∂Dt|

ˆ
∂Dt

J |dz|
) (

1

|∂Dt|

ˆ
∂Dt

K |dz|
)
.
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De aqúı, deducimos que

1

|Dt|

ˆ
Dt

J dA(z) ≤
(

1

|∂Dt|

ˆ
∂Dt

J |dz|
) (

1

∂Dt

ˆ
∂Dt

K |dz|
)
. (4.1)

Definamos, como hemos visto en (4.1)

h(t) :=
1

∂Dt

ˆ
∂Dt

K |dz| y φ(t) :=

ˆ
Dt

J(z, g) dA(z) =

ˆ
Dt

J dA(z).

y observemos que

φ′(t) = ĺım
ε→0

φ(t+ ε)− φ(t)

ε
= ĺım

ε→0

1

ε

(ˆ
Dt+ε

J dA(z)−
ˆ
Dt

J dA(z)

)
= ĺım

ε→0

1

ε

ˆ
Dt+ε\Dt

J dA(z) = ĺım
ε→0

1

ε

ˆ t+ε

t

ˆ 2π

0
J(reiθ)r dθ dr

= ĺım
ε→0

1

ε

ˆ 2π

0

(ˆ t+ε

t
rJ(reiθ)dr

)
dθ =

ˆ 2π

0
J(teiθ)tdθ =

ˆ
∂Dt

J(z, g) |dz|.

Luego, reescribiendo (4.1) obtenemos

1

|Dt|
φ(t) ≤ 1

|∂Dt|
φ′(t)h(t) ⇒ φ(t) ≤ |Dt|

|∂Dt|
φ′(t)h(t)

⇒ φ(t) ≤ t

2
φ′(t)h(t)

(4.2)

Probamos a continuación que

φ(t) = o(t
2

K∞ ) cuando t→ ∞. (4.3)

Observemos que ∀E ⊂ Dt se cumple que

φ(t) :=

ˆ
Dt

J dA(z) =

ˆ
Dt\E

J dA(z) +

ˆ
E
J dA(z) ≤

≤ |Dt \ E|1−
1
q

(ˆ
Dt\E

Jq dA(z)

) 1
q

+ |E|1−
1
q

(ˆ
E
Jq dA(z)

) 1
q

de donde se tiene que

φ(t)

|Dt|1−
1
q

≤
(
|Dt \ E|
|Dt|

)1− 1
q

(ˆ
Dt\E

Jq dA(z)

) 1
q

+

(
|E|
|Dt|

)1− 1
q
(ˆ

E
Jq dA(z)

) 1
q

.

Ahora tomamos ĺım supt→∞, y tenemos en cuenta que por hipótesis J ∈ Lq(C). Obten-

emos:

ĺım sup
t→∞

φ(t)t
2
q
−2 ≤ π

1− 1
q

(ˆ
C\E

Jq dA(z)

) 1
q

.
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Por otro lado

1 < q ≤ K∞
K∞ − 1

⇐⇒ 2

K∞
≥ 2− 2

q
> 0 ⇔

de modo que

t
2

K∞ ≥ t
2− 2

q > 1

lo que concluye la demostración de (4.3) ya que el conjunto E puede tomarse arbitraio.

Ahora, procedemos a definir una nueva variable y dos nuevas funciones, y veremos

como quedan las fórmulas (4.2),(4.3), en cuestión de estas definiciones.

s := t2 , H(t2) :=
h(t)

K∞
, φ(t) := (Ψ(t2))

1
K∞ .

(4.2) se reescribe como

Ψ(s) ≤ sΨ′(s)H(s) (4.4)

y (4.3) se reescribe como

ĺım sup
s→∞

Ψ(s)

s
≤ π

K∞−K∞
q

(ˆ
C\E

Jq dA(z)

)K∞
q

(4.5)

de dónde se deduce que: Ψ(s) = o(s) cuando s→ ∞.

Trabajemos ahora con la hipótesis sobre K(z, f) ie,

1

πR2

ˆ
DR

K(z, g)dz ≤ K∞ ∀R > R0 > 1

para R0 suficientemente grande. Se tiene

K∞ ≥ 1

πt2

ˆ
Dt

K(z, g)dz =
1

πr2

ˆ r

0

(ˆ 2π

0
tKdθ

)
dt =

1

πr2

ˆ r

0

(ˆ
∂Dt

K |dz|
)
dt

.
=

.
=

1

πr2

ˆ r

0
2πth(t)dt =

2

r2

ˆ r2

0
h(
√
u)du =

2

s

ˆ s

0
K∞H(u)du ≥

≥ 1

s

ˆ s

0
K∞H(u)du,

obteniendo por tanto

1 ≥ 1

s

ˆ s

0
H(u)du ∀s > 0. (4.6)

Por otro lado φ(t) es absolutamente continua, por tanto Ψ(s) también y gracias a

(4.4) tendremos que:
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Ψ′(s)

Ψ(s)
≥ 1

sH(s)
⇒ log(Ψ(s))− log(Ψ(a)) ≥

ˆ s

a

du

uH(u)
⇒

⇒ Ψ(a) ≤ Ψ(s)e
−
´ s
a

du
uH(u) ∀s > 0. (4.7)

Por tanto, si conseguimos probar que
´ s
a

du
uH(u) ≥ log(s) − C(a) tendŕıamos la

demostración ya que (4.7) se traduce como

Ψ(a) ≤ C(a)
Ψ(s)

s
∀s > 0

y tomando ĺım sups→∞, por (4.5), tenemos

Ψ(a) ≡ 0 ∀a > 0 ⇒ φ(a) ≡ 0 ∀a > 0

y de la definición de φ(t) sale la demostración de que g es constante.

Procedamos por tanto, a probar que efectivamente
´ s
a

du
uH(u) ≥ log(s)− C(a).

Definamos G(s) :=
´ s
a H(u)du. Por (4.6) tenemos:

1 ≥ 1

s

ˆ s

a
H(u)du ∀s > 1 ⇒ 0 ≤ G(s) ≤ s ∀s > 1

Y de la desigualdad genérica H + 1
H ≥ 2 tenemos que:

H

u
+

1

uH
≥ 2

u
⇒ 1

uH
≥ 2

u
− H

u

Por lo tanto
ˆ s

a

du

uH(u)
≥ 2

ˆ s

a

du

u
−
ˆ s

a

H(u)du

u
= 2 log

( s
a

)
− G (s)

s
−
ˆ s

a

G (u) du

u2
≥

≥ 2 log
( s
a

)
− 1−

ˆ s

a

du

u
= log (s)− (1 + log a)

como queŕıamos demostrar. �

En este teorema, se pueden relajar las hipótesis para conseguir el mismo resultado

en un marco más general. Para verlo se recomiendan las referencias [7] y [8].

Teorema 4.1.4. Dada µ ∈ VMO(C) con ‖µ‖∞ = k < 1, entonces el operador

I − µB : Lp(C) 7→ Lp(C)

es un operador de Fredholm, con Ind (I − µB) = 0 para todo p ∈ (1,∞).
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Demostración. Primero recordemos que la Proposición 2.2.5 nos asegura que ∃m ∈ N

para el cuál se tiene ‖µmBm‖Lp(C) 7→Lp(C) < 1. Esto es debido a que

‖µnBn‖Lp(C)7→Lp(C) ≤ ‖µn‖L∞(C)‖Bn‖Lp(C)7→Lp(C) ≤ ‖µ‖nL∞(C)‖B‖
n
Lp(C)7→Lp(C)

≤ knn2 → 0 cuando n→ ∞.

Con ésto, por el Lema 3.2.1 se deduce que I − µmBm es invertible en Lp(C).

Por otro lado, definiendo

Pm :=

n=m−1∑
n=0

(µB)n

obtendremos que:

Pm (I − µB) = (I − µB)Pm = I − (µB)m = (I − µmBm) + (µmBm − (µB)m) ,

donde el primer sumando es un operador invertible en Lp(C). Sólo falta ver que

µmBm − (µB)m es un operador compacto.

Recordemos que el Teorema 2.2.9. nos dice que Bµ = µB + K con K un operador

compacto. Por tanto

(µB)m = µBµB...µBµB = µ(µB +K)B...µBµB =

= µµBB...µBµB + µKB...µBµB

dónde el último sumando es un operador compacto (ya que K lo es). Por tanto, pode-

mos asegurar que permutar el orden de µ y B puede hacerse a costa de un operador

compacto. Y como m ∈ N, sólo hace falta una cantidad finita de permutaciones para

que partiendo de (µB)m se obtenga µmBm + K̂, con K̂ la suma de todos y cada uno

de los operadores compactos que genera cada permutación. Y cómo el número de

permutaciones puede tomarse finito, K̂ será un operador compacto. En definitiva,

µmBm − (µB)m = µmBm − µmBm − K̂ = K̂

con K̂ un operador compacto. El valor nulo del ı́ndice se deduce de su invarianza

topológica, dado que se tiene una homotoṕıa

t 7→ I − tµB, t ∈ [0, 1]

entre I e I − µB. �
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Teorema 4.1.5. Sea µ ∈ VMO(Ĉ) con ‖µ‖∞ = k < 1. Entonces, el operador I−µB

es invertible en Lp(C) si p ≥ 2.

Demostración. Puntualicemos antes de nada dos hechos. El primero es que, dado

que I − µB es un operador Fredholm con ı́ndice cero, gracias a la Proposición 2.2.11

tendremos que el operador es invertible sin más que demostrar que es inyectivo. En

segundo lugar, si p = 2 entonces la inyectividad es immediata. En efecto, y dado

que ‖B‖L2(C) = 1, se tiene que ‖µB‖L2(C)7→L2(C) ≤ k < 1 y gracias a la Proposición

3.2.1 se deduce que I − µB es inyectivo en L2(C). Aśı pues, supondremos de ahora

en adelante que p > 2.

Veremos que, dada una función Ψ ∈ Lp(C) tal que (I − µB)Ψ = 0, entonces f := CΨ

resuelve la ecuación de Beltrami

∂f

∂z
− µ(z)

∂f

∂z
= 0, (4.8)

e intentaremos aplicar Teorema 4.1.3 para deducir que f es constante. Ello concluye

la demostración, dado que Ψ = ∂f y por lo tanto Ψ = 0.

Veamos primero que

ĺım
R→∞

1

πR2

ˆ
D(0,R)

|µ(z)− µ(∞)| = 0. (4.9)

Sean R y ε > 0 fijados y ϕ ∈ C∞
0 (C) tal que ‖µ− ϕ‖∗ < ε, entonces

1

πR2

ˆ
DR

|µ(z)− µ(∞)| ≤

≤ 1

πR2

ˆ
DR

∣∣∣(µ− ϕ)− (µ− ϕ)DR

∣∣∣+ 1

πR2

ˆ
DR

( |ϕ− ϕDR
|+ |µDR

− µ(∞)| ) =

≤ ‖µ− ϕ‖∗ + |µDR
− µ(∞)|+ 1

πR2

ˆ
DR

|ϕ− ϕDR
|

≤ ε+ |µDR
− µ(∞)|+ 1

πR2

ˆ
DR

|ϕ− ϕDR
| .

Observemos que el segundo sumando converge a 0 si R→ ∞, por definición de µ(∞).

Finalmente, la integral también converge a 0 cuando R → ∞ dado que ϕ ∈ VMO.

Luego

ĺım sup
R→∞

1

πR2

ˆ
DR

|µ(z)− µ(∞)| ≤ ε,
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lo que concluye la demostración de (4.9). Por otro lado,

|µ(∞)| =

∣∣∣∣∣ ĺımR→∞

1

πR2

ˆ
D(0,R)

µ(z)dz

∣∣∣∣∣ ≤
≤ ĺım

R→∞

1

πR2

ˆ
D(0,R)

|µ(z)|dz ≤ ĺım
R→∞

1

πR2

ˆ
D(0,R)

k dz = k

Sea ahora f una solución de (4.8) con ∂f, ∂f ∈ Lp(C), y definamos

φ(z) = z − µ(∞)z,

g(z) = (f ◦ φ)(z).

Claramente, φ es un homeomorfismo C∞ (C) que cumple φ(DR) ⊂ D2R para todo R.

Por hipótesis, ∂f, ∂f ∈ Lp(C), por tanto, ∇g ∈ Lp(C) y por la regla de la cadena se

sigue que

∂g(z) = ∂f (φ(z)) ∂ φ(z) + ∂f (φ(z)) ∂φ(z) = ∂f (φ(z))− µ(∞)∂f (φ(z)) =

= ∂f (φ(z)) [(µ ◦ φ) (z)− µ(∞)]

∂g(z) = ∂f (φ(z)) ∂φ(z) + ∂f (φ(z)) ∂φ(z) = ∂f (φ(z))− µ(∞) ∂f (φ(z)) =

= ∂f (φ(z))
[
1− µ(∞) (µ ◦ φ) (z)

]
y por tanto g cumple la ecuación de Beltrami

∂g(z) = µ̂(z) ∂g(z)

con

µ̂(z) =
(µ ◦ φ)(z)− µ(∞)

1− µ(∞)(µ ◦ φ)(z)
.

Nótese que al tratarse de una transdormación de Möbius, entonces ‖µ̂(z)‖∞ = k̂ < 1

y que además µ̂(∞) = 0 ya que

|µ̂(∞)| ≤ ĺım
R→∞

1

πR2

ˆ
DR

|µ̂(z)| dA(z) = ĺım
R→∞

1

πR2

ˆ
DR

∣∣∣∣∣ (µoφ)(z)− µ(∞)

1− µ(∞)(µoφ)(z)

∣∣∣∣∣ dA(z)
≤ ĺım

R→∞

1

πR2

1

1− k2

ˆ
DR

|(µ ◦ φ) (z)− µ(∞)| dA(z)

≤ ĺım
R→∞

1

πR2

1

(1− k2) 2

ˆ
φ(DR)

|µ(z)− µ(∞)| dA(z)

≤ ĺım
2R→∞

4

π(2R)2
1

(1− k2)2

ˆ
D2R

|µ(z)− µ(∞)| dA(z) = 0.
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Vamos ahora que g cumple las condiciones del Teorema 4.1.3. Por un lado,

K(·, g) := |Dg( · )|2

J( · , g)
=

(
|∂g( · )|+

∣∣∂g( · )∣∣)2
|∂g( · )|2 −

∣∣∂g( · )∣∣2 =
1 + |µ̂( · )|
1− |µ̂( · )|

= 1 +
2µ̂( · )

1− µ̂( · )

≤ 1 +
2

1− k̂
µ̂( · )

por lo tanto

ĺım
R→∞

1

πR2

ˆ
D(0,R)

K(z, g)dz = 1.

Por otro lado, sabemos que J(·, g) ∈ Lq(C), 1 < q = p
2 <∞ por construcción. Luego,

podemos aplicar el Teorema 4.1.3 y deducir que g es constante, con lo que acabamos

la demostración. �

Teorema 4.1.6. Supongamos que µ ∈ VMO(Ĉ) y que ‖µ‖∞ < 1. Entonces los

operadores

I − µB e I − Bµ,

son operadores invertibles en Lp(C) para todo p ∈ (1,∞).

Demostración. Si p > 2, entonces ya sabemos que I − µB es invertible en Lp(C)

gracias al Teorema 4.1.5. Pasando al adjunto

(I − µB)∗ = I − B∗µ

obtenemos que I−B∗µ es invertible en Lq(C) para q ∈ (1, 2] por la Proposición 2.2.11.

Además tenemos la igualdad de operadores

(I − Bµ)( · ) ≡ (I − B∗µ)( · )

por lo que deducimos que I−Bµ es invertible en Lp(C), para p ∈ (1, 2]. Por otro lado,

sabemos que los operadores B,B∗ son invertibles en Lp(C), para todo p ∈ (1,∞), con

BB∗ = I. Por lo tanto,

I − µB ≡ B∗(I − Bµ)B =⇒ I − µB es invertible en Lp(C) con p ∈ (1, 2].

I − Bµ ≡ B(I − µB)B∗ =⇒ I − Bµ es invertible en Lp(C) con p ∈ [2,∞).

�
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4.2. Automejora de la regularidad.

Teorema 4.2.1. Dada µ ∈ VMO(C), entonces las soluciones débilmente cuasireg-

ulares f de la ecuación de Beltrami ∂f(z) = µ(z)∂f(z) cumplen que f ∈ W 1,p
loc (C)

∀p ∈ (1,∞).

Demostración. Supongamos que tenemos una función f solución de la ecuación en

W 1,q
loc (C) para alguna q ∈ (1,∞). Para cada conjunto acotado E ⊂ C, tomamaremos

un disco DR tal que E ⊂ DR para R suficientemente grande, y una función η de

C∞(C) con soporte compacto conteniendo a E y tal queη(z) = 1 para toda z en un entorno de E

|η| ≤ χDR+1
.

Por otro lado, definamos F = η f que está en W 1,q(C) y además cumple la ecuación

∂F = µ∂F +
(
∂η − µ∂η

)
f.

Y al tratarse F de una función de soporte compacto, es la transformada de Cauchy

de su ∂-derivada. Y por ello, si denotamos ψ =
(
∂η − µ∂η

)
f se cumple que

∂F = (I − µB)−1 ψ

∂F = B ◦ (I − µB)−1 ψ,

consiguiéndose aśı la desigualdad

|DF | ≤
∣∣∣(I − µB)−1 ψ

∣∣∣+ ∣∣∣B ◦ (I − µB)−1 ψ
∣∣∣ . (4.10)

Observemos antes de continuar que la integrabilidad global de F determina la inte-

grabilidad local de f al tratase η de una función de C∞(C) arbitraria. Concretamente,

dada dado un conjunto acotado E ⊂ C se tiene que
ˆ
E
|f |p =

ˆ
E
|ηf |p =

ˆ
E
|F |p ≤

ˆ
DR

|F |p

ˆ
E
|Df |p =

ˆ
E
|D (ηf)|p =

ˆ
E
|DF |p ≤

ˆ
DR

|DF |p

para toda p ∈ (1,∞) y todo conjunto E acotado. Por tanto, probando que F pertenece

a W 1,p(C) para toda p ∈ (1,∞) se tendrá que f pertenece a W 1,p
loc (C) para toda

p ∈ (1,∞).
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Supongamos que q > 2, entonces por el embeging de Sobolev ( Proposición 2.2.12),

tendremos que F pertenece a L∞(C). Por ello, f pertenece a Lp
loc(C) para toda p ∈

(1,∞) y por tanto Ψ pertenece a Lp(C) para toda p ∈ (1,∞) y por la invertibilidad del

operador I − µB : Lp(C) 7→ Lp(C) se sigue que efectivamente F pertenece a W 1,p(C)

para toda p ∈ (1,∞) y por lo tanto f ∈W 1,p
loc (C) para toda p ∈ (1,∞).

Supongamos que q < 2, por construcción F perteneces a W 1,q(C) y entonces,

por la Proposición 2.2.12, tendremos que F ∈ Lq∗(C) con q∗ = 2q
2−q > 2. Por otro

lado, de la definición de F , se sigue que f está en Lq∗
loc(C) y por tanto Ψ pertenece

a Lq∗(C). Ahora, por la invertibilidad del operador I − µB : Lp(C) 7→ Lp(C) para

toda p ∈ (1∞), se tiene que F pertenece a W 1,q∗(C) con q∗ > 2, por lo que podemos

aplicar el párrafo anterior y concluir la demostración.

�

Anteriormente mencionábamos un teorema análogo a éste (ver Teorema 3.3.8)

válido incluso sin las hipótesis de µ ∈ VMO(C) cuya demostración sigue estas mis-

mas ĺıneas. Al relajar las hipótesis sobre el coeficiente de Beltrami se cobra un precio:

el intervalo cŕıtico se reduce dráticamente, éste pasa a ser de (1,∞) a quedarse sim-

plemente en (1 + k, 1 + 1
k ). Para la demostración del Teorema 3.3.8, solo hay que

observar que el criterio de invertibilidad del operador (I − µB) sólo puede usarse en

el intervalo cŕıtico y no en todo el intervalo (1,∞). Por ello, en dicho teorema sólo

tenemos pertenencia en W 1,p
loc (C) para p en el intervalo cŕıtico. Por su parte, la de-

sigualdad del Teorema 3.3.8 es una consecuencia de la desigualdad (4.10) que vimos

más arriba, y de que en el intervalo cŕıtico (Q(k), P (k)) el operador I − µB es un

operador acotado e invertible con constantes dependientes sólo de p y k.



Caṕıtulo 5

Resultados para µ ∈ W 1,p(C).

En este caṕıtulo seguimos estudiando como la regularidad de µ condiciona la

regularidad esperada de la solución principal de la solución de Beltrami asociada a

dicha µ. Para ello, nos centraremos en algunos resultados generales suponinendo que la

regularidad de µ es de tipo Sobolev, es decir, µ ∈W 1,p(C). Este estudio nos dará una

gúıa para demostrar resultados similares para otros espacios más generales como los

espacios de Besov o de Sobolev fraccionario. Concretamente, Cruz en [3] prueba que

si µ ∈ Bα
p,q(C) de soporte compacto con 0 < α < 1, α p > 2 y 1 ≤ q ≤ ∞ entonces la

solución principal es φ(z) = z + Ch(z) con h perteneciente a Bα
p,q(C) y parte de las

ideas que llevan a tal resultados se basan en lo que expondremos acontinuación.

5.1. W 1,p con p > 2.

Lema 5.1.1. [2] (Pag. 94) Sean p y q dos funciones continuas con derivadas dis-

tribucionales localmente integrables en C, y que cumplan que ∂p = ∂q. Entonces

existe f ∈ C1(C) tal que ∂f = q

∂f = p.

Demostración. Aplicando el Teorema de Stokes y el Lema de Poincaré, se ve que para

probar el Lema, sólo es necesario llegar a probar la igualdad:

ˆ
∂R
p dz + q dz = 0 para todo rectángulo R ⊂ C.

45
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Para ello, haremos uso una regularización. Para cada ε > 0 definimos el operador

δε (z) = 1
πε2

cuando |z| ≤ ε, δε (z) = 0 cuando z > ε. Entonces los operadores

(p ∗ δε ∗ δε′) y (q ∗ δε ∗ δε′) son de clase C2, y además cumplen

∂ (p ∗ δε ∗ δε′) = ∂ (q ∗ δε ∗ δε′) .

Y por lo tanto ˆ
λ
(p ∗ δε ∗ δε′) dz + (q ∗ δε ∗ δε′) dz = 0,

y sin mas que tomar ε y ε′ tendiendo a 0 se consigue el resultado, debido a la regu-

laridad de p y q. �

Lema 5.1.2. Sea µ ∈ W 1,p(C) con 2 < p, ‖µ‖∞ = k < 1 y con soporte compacto,

entonces la solución principal φ de la ecuación de Beltrami

∂φ = µ∂φ

es un homeomorfismo y además φ ∈ C1(C).

Demostración. Antes de empezar con la demostración, tenemos que puntualizar, que

debido a que µ está en W 1,p(C) con p > 2, en particular, µ es de VMO(C). Por ello

el operador (I − µB)−1 es invertible de Lq(C) en śı mismo para toda q ∈ (1,∞).

Veamos que ∃λ tal que

∂φ = λ y ∂φ = µλ

en caso de que exista, se ha de cumplir que

∂λ = ∂ (µλ) = µ∂λ+ λ∂µ

o equivalentemente

∂ (log λ) = µ∂ (log λ) + ∂µ. (5.1)

Por un lado, definamos h = (I − Bµ)−1 (B∂µ) que trivialmente está en Lp(C) con

p > 2. Por otro, definamos g = C (µh+ ∂µ), que al tratarse de la transformada de

Cauchy de una función con soporte compacto de Lp(C) con p > 2, es de W 1,p(C) con

p > 2, y en particular, es continua. Además g cumple que

∂g = µh+ ∂µ ∈ Lp(C) con p > 2 y de soporte compacto,

∂g = B (µh+ ∂µ) = h ∈ Lp(C) con p > 2.
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Por tanto, g satisface la ecuación

∂g = µ∂g + ∂µ. (5.2)

Y por el Teorema 3.3.1, podemos asegurar que g existe y es única. Además, la ecuación

(5.1) coincide con la ecuación (5.2) que cumple g, y por la unicidad de solución

tendremos que log λ = g y por tanto λ = eg = ∂φ. En particular, tenemos que λ

existe, y por el Lema 5.1.1, φ ∈ C1(C) y cumple ∂φ = µ∂φ. El hecho de que φ sea un

homeomorfismo se sigue del Teorema 3.3.9. �

Observemos que de hecho acabamos de ver que

∂φ = eg con g ∈W 1,p(C).

Es decir, la prueba del resultado anterior nos dice que para todo p > 2, se cumple que

µ ∈W 1,p(C) ⇒ log (∂φ) ∈W 1,p(C).

Este resultado, nos será muy últil en los dos últimos caṕıtulos. También es importatne

observar que la prueba descarta el caso µ ∈ W 1,2(C). Efectivamente, si tal fuese el

caso, el tomar g = C (µh+ ∂µ) no nos garantiza que g = log ∂φ sea de W 1,2(C) por

ser la transformada de Cauchy de una función de Lp(C) con soporte compacto. Sin

embargo, podemos tomar directamente g como la solución principal de de la ecuación

de Beltrami

∂g = µ∂g + ∂µ,

y por la serie de Neumann, deducir que efectivamente ∂g ∈ L2(C) con soporte com-

pacto. Mediante la igualdad B∂g = ∂g, se consigue que ∂g ∈ L2(C) y por lo tanto,

mediante la igualdad C∂g = ∂Cg = g se consigue por fin que g ∈ L2(C). De he-

cho, usando la proposición 2.2.7, se deduce que efectivametne g ∈ Ls(C) para toda

1 ≤ s <∞.

Teorema 5.1.3. [4] Sea µ ∈ W 1,p(C) con soporte compacto contenido en D, tal que

‖µ‖∞ ≤ k < 1. Entonces la aplicación µ-quasiconforme φ pertenece a W 2,p
loc (C).

Demostración. Razonando como en el Lema 5.1.2, podemos construir una función

g ∈ W 1,p(C) tal que ∂φ = eg. Y como g en particular es cont́ınua, existirá una

constante C tal que
1

C
≤ |eg| ≤ C.
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Y para finalizar, sólo hay que observar que

∂∂φ = ∂ (eg) = eg∂g,

y por tanto ∣∣∂∂φ∣∣ = |eg|
∣∣∂g∣∣ ≤ C

∣∣∂g∣∣ ∈ Lp
loc(C).

Y con esto se concluye que D2φ ∈ Lp
loc(C). �

5.2. W 1,p(C) para p ≤ 2.

La gran diferencia entre el caso de tener el coeficiente de Beltrami en un espacio

de Sobolev W 1,p(C) con p > 2 o tenerlo en p ≤ 2 radica principalmente en que en

el primer caso tenemos continuidad del coeficiente µ que se transmite a las derivadas

de la cuasiconforme. Nótese que, sin embargo, existen funciones µ continuas para las

que φ no tiene derivadas continuas. Es decir, lo importante no es ser continua, lo

importante es ser Hölder-continuas. Ahora ya no tenemos tanta regularidad de las

primeras derivadas por lo que el resultado que obtendremos será menor.

Teorema 5.2.1. [4] Sea µ ∈ W 1,p(C) con soporte compacto contenido en D, tal que

‖µ‖∞ ≤ K−1
K+1 . Y sea φ(z) una aplicación µ-quasiconforme, entonces se tiene:

a) Si p = 2 entonces φ(z) ∈W 2,q
loc (C) ∀q < 2.

b) Si 2K
K+1 < p < 2 entonces φ(z) ∈W 2,q

loc (C) ∀q < q0 donde 1
q0

:= 1
p + K−1

2K .

Demostración.

b) Probaremos primero este apartado ya que para el apartado a) nos basaremos en

parte de éste.

Tomemos Ψn ∈ C∞
0 (C) una aproximación a la identidad tal que

0 ≤ Ψn ≤ 1,
´
Ψn = 1 con supp(Ψn) ⊂ D y que cumpla Ψn(z) = n2Ψ(nz).

Y sea µn := µ ∗ Ψn, entonces µn ∈ C∞
0 con supp(µn) ⊂ 2D y ‖µn‖∞ ≤ ‖µ‖∞,

entonces µn converge a µ en W 1,p(C).

Y definamos

φn(z) := z + Chn(z), hn := µnBhn + µn,

φ(z) := z + Ch(z), h := µBh+ µ.
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La existencia de hn y h está garantizada gracias a que el operador I−µnB es invertible

para todos los espacios Lp(C) con p ∈
(

2K
K+1 ,

2K
K−1

)
, y además tenerse las expresiones

hn = (I − µnB)−1 µn y h = (I − µB)−1 µ. entonces, observemos que

|hn − h| =
∣∣∣(I − µnB)−1 µn − (I − µB)−1 µ

∣∣∣
≤
∣∣∣(I − µnB)−1 (µn − µ)

∣∣∣+ ∣∣∣((I − µnB)−1 − (I − µB)−1
)
µ
∣∣∣

con lo que

‖hn − h‖Lp(C) ≤ ‖ (I − µnB)−1 ‖Lp(C) 7→Lp(C)‖µn − µ‖Lp(C)+

+ ‖ (I − µnB)−1 − (I − µB)−1 ‖Lp(C) 7→Lp(C)‖µ‖Lp(C).

Y observemos que la sucesión de operadores (I − µnB) cumple que

‖ (I − µnB)− (I − µB) ‖Lr(C)7→Lr(C) = ‖ (µ− µn)B‖Lr(C)7→Lr(C) → 0

para toda r ∈ (1,∞) y además son invertibles. Por tanto, tendremos convergencia

como operadores de las inversas de la sucesión, es decir de la sucesión de operadores

(I − µnB)−1, allá dónde se tenga la invertibilidad. Concretamente en Lp(C) para toda

p perteneciente al intervalo cŕıtico. De aqúı se sigue que ‖hn − h‖Lp(C) → 0 en Lp(C)

para toda p ∈
(

2K
K+1 ,

2K
K−1

)
y también lo que nos asegura que φn → φ en W 1,p

loc (C)

para toda p en el rango cŕıtico, en particular para p = 2.

Por otro lado, de la ecuación ∂φn = µn∂φn se consigue derivando que

∂∂φn−µn∂∂φn = ∂µn∂φn ⇒ ∂∂φn
∂φn

− µn
∂∂φn
∂φ

= ∂µn ⇒

⇒ ∂ log(∂φn)− µn∂ log(∂φn) = ∂µn ⇒ (∂ − µn∂)(log(∂φ)) = ∂µn ⇒

⇒ ∂∂φn
∂φn

= (I − µnB)−1(∂µn) ⇒

⇒ ∂∂φn = ∂φn(I − µnB)−1(∂µn).

Teńıamos que ∂φn → ∂φ en Lr
loc(C) para r ∈ ( 2K

K+1 ,
2K
K−1). Y fijado 2K

K+1 < p < 2

tenemos que

‖∂∂φn‖Lq(C) ≤ ‖(I − µnB)−1(∂µn)‖Lp(C)‖∂φn‖Lr(C)

con 1
q = 1

p + 1
r y tomando los valores máximos para p, r tendremos que

1

q0
=

1

2
+
K − 1

2K
⇒ q0 =

2K

2K − 1
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por lo que se tiene que
{
∂∂φn

}
es una sucesión acotada en Lq

loc(C) para toda 1 ≤

q < q0. Para terminar, como tenemos la convergencia de φn y de Dφn en Lr
loc(C) para

r ∈ ( 2K
K+1 ,

2K
K−1), nos es suficiente ver que

{
∂∂φn

}
es una sucesión de Cauchy Lq

loc(C)

con q < 2K
2K−1 y por lo tanto φn → φ en W 2,q

loc (C) para todo q < 2K
2K−1 . Veámoslo:∥∥∂∂φn − ∂∂φm

∥∥
Lq(C) =

∥∥∥∂φn · (I − µnB)−1 ∂µn − ∂φm · (I − µmB)−1 ∂µm

∥∥∥
Lq(C)

≤
∥∥∥(∂φn − ∂φm) · (I − µnB)−1 ∂µn

∥∥∥
Lq(C)

+
∥∥∥∂φn ·

(
(I − µnB)−1 (∂µn − ∂µm)

)∥∥∥
Lq(C)

+
∥∥∥∂φm ·

(
(I − µnB)−1 − (I − µmB)−1 ∂µm

)∥∥∥
Lq(C)

.

Y razonando como antes con los mismos exponentes p < 2 y r < 2K
K−1 se tiene que∥∥∂∂φn − ∂∂φm

∥∥
Lq(C) ≤ ‖∂φn − ∂φm‖Lr(C) ·

∥∥∥(I − µnB)−1 ∂µn

∥∥∥
Lp(C)

+ ‖∂φn‖Lr(C) ·
∥∥∥(I − µnB)−1 (∂µn − ∂µm)

∥∥∥
Lp(C)

+ ‖∂φm‖Lr(C) ·
∥∥∥(I − µnB)−1 − (I − µmB)−1 ∂µm

∥∥∥
Lp(C)

→ 0.

a) p = 2. Razonando como en el apartado b) se vuelve a llegar a que

∂∂φn = ∂φn(I − µnB)−1(∂µn)

y con un simple Hölder tendremos que para q < r, 1
q = 1

r +
1
p se cumpe que:

‖∂φn(I − µnB)−1(∂µn)‖Lq(C) ≤ ‖∂φn‖Lr(C)‖(I − µnB)−1(∂µn)‖Lp(C).

Además, ahora los operadores I − µB y I − µnB son invertbiles en Lp(C) para

toda p ∈ (1,∞). Veamos ahora, dónde converge hn := (I − µnB)−1 µn

‖(I − µnB)− (I − µB)‖Lp(C)7→Lp(C) = ‖(µn − µ)B‖Lp(C)7→Lp(C) → 0

para todo p ∈ (1,∞). Por lo que tendremos también la convergencia de la sucesión

de los operadores inversos en dichos espacios, es decir (I − µnB)−1 → (I − µB)−1 en

como operadores de Lp(C) a Lp(C). De aqúı se sigue que hn → h en Lp(C) para toda

p ∈ (1,∞) y por lo tanto ∂φn → ∂φ en Lp
loc(C) para toda p ∈ (1,∞).

Haciendo el mismo razonamiento sobre ∂∂φn que hicimos antes, pero ahora para

q < 2, 1
q = 1

r + 1
2 , se vuelve a cumplir, gracias a que ahora {∂φn} es convergente en
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Lr
loc(C) para toda r ∈ (1,∞), que∥∥∂∂φn − ∂∂φm

∥∥
Lq(C) ≤ ‖∂φn − ∂φm‖Lr(C) ·

∥∥∥(I − µnB)−1 ∂µn

∥∥∥
L2(C)

+ ‖∂φn‖Lr(C) ·
∥∥∥(I − µnB)−1 (∂µn − ∂µm)

∥∥∥
L2(C)

+ ‖∂φm‖Lr(C) ·
∥∥∥(I − µnB)−1 − (I − µmB)−1 ∂µm

∥∥∥
L2(C)

→ 0.

Y por lo tanto

∂∂φn → ∂φ(I − µB)−1(∂µ)

en Lq
loc(C) para toda q < 2. �

5.3. Optimalidad del Resultado.

Si planteamos la siguiente ecuación de Beltrami

∂φ (z) = µ (z) ∂φ (z) , con µ (z) =
z

z
· 1

2 log | z | − 1
∈W 1,2(C)

obtendremos como solución a

φ (z) = z (1− log | z |) ∈W 2,q
loc (C) para toda q < 2.

Además D2φ /∈ L2
loc(C), lo que nos asegura que el teorema anteior es óptimo en el

caso p = 2. Para el caso p < 2, tomaremos la ecuación de Beltrami

∂φ (z) = µ (z) ∂φ (z) , con µ (z) =
1−K

1 +K
· z
z
∈W 1,p(C) para todo p < 2.

Y tendremos como solución

φ (z) = z · | z |
1
K
−1 ∈W 2,q

loc (C) para toda q <
2K

2K − 1
.

Además D2φ /∈ L
2K

2K−1

loc (C), con lo que tenemos dos contraejemplos que nos dicen que

no debeŕıamos esperar la pertenencia de D2φ en algún Lp
loc(C) más hallá de lo que

nos dice el teorema.

Problema abierto ¿Qué ocurre cuando µ ∈ W 1,p(C) con p < 2K
K+1? ¿Cómo

podŕıamos actuar en este caso?. En este caso ya no tenemos ni la inyectividad del

operador (I−µB), por lo que hay que buscar un camino alternativo para encontrar la
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regularidad de la solución principal. Es más, la expresión que tenemos de la solución

principal como

φ (z) = z + C h, con h = (I − µB)−1 µ

deja de garantizarnos que podamos tener φ − z ∈ W 2,1(C), aunque podamos saber

por otros medios que φ − z ∈ W 1,2(C) y por el Teorema 3.3.8 que esté en todos los

W 1,q(C) con q en el intervalo cŕıtico.



Caṕıtulo 6

Resultados para µ ∈ Wα,p(C).

Una de las más importantes generalizaciones de los espacios de Sobolev, son los

llamados espacios de Sobolev fraccionarios. El nombre de dichos espacios viene de un

intento de generalizar el concepto mismo de derivada. Para más información sobre

dichos espacios nos remitiremos al libro [11].

Recordemos que en el caṕıtulo anteirior, distingúıamos tres casos aśı estubiésemos

trabajando en W 1,p(C) con p > 2, p = 2 o p < 2. Esta separación proviene de que

cuando p > 2, tenemos continuidad de la función en cuestión, si p = 2 perdemos la

continuidad pero el espacio en śı mismo es confortable para trabajar, y en el caso p < 2

perdemos todas estas buenas propiedades. Ahora, para el caso de Sobolev fraccionario

Wα,p(C) con α ∈ (0, 1), tendremos una separación similar según αp > 2, αp = 2

ó αp < 2. Esta separación viene promovida por un teorema de tipo Embedding para

Sobolev fraccionario que nos relaciona Wα,p(C) con otros espacios, igual que pasaba

en el Embedding Sobolev para el caso con derivadas enteras (ver Proposición 2.2.12).

6.1. Los espacios W α,p(C).

Definición 6.1.1. Los espacios Sobolev Fraccionarios son:

Wα,p(C) = {f ∈ Lp(C) tales que existe g ∈ Lp(C) con f = Gα ∗ g} ,

donde Gα es el nucleo de Bessel definido como

Gα = F−1

((
1 + |ξ|2

)−α
2

)
con F−1 la transformada inversa de Fourier.

53
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La norma que se le asocia al espacio es:

‖f‖Wα,p(C) = ‖g‖Lp(C)

En esta sección daremos varias nociones de la derivada fraccionaria. Todas el-

las darán lugar al mismo espacio Wα,p(C). Aunque primero, daremos un resultado

análogo al Teorema de Embedding de Sobolev (ver Proposición 2.2.12) para el caso

fraccionario.

Teorema 6.1.1. Embedding Sobolev Fraccionario Dada 0 < α < 1 y p ∈ [1,∞),

se tienen las siguientes inclusiones continuas entre espacios de funciones:

(i)

Wα,p(C) ↪→ C0,β(C) con β = α− 2

p
siempre que αp > 2.

(ii)

Wα,p(C) ↪→ VMO(C) con αp = 2.

En particular, las funciones de Wα,p(C) están localmente en Lq(C) para toda

q ∈ [1,∞).

(iii)

Wα,p(C) ↪→ Lp∗(C) con p∗ =
2p

2− αp
siempre que αp < 2.

Proposición 6.1.2. Para toda función f de Wα,p(C)∩L∞(C) con p > 1 y 0 < α < 1

se cumple la siguiente cota de normas.

‖f‖
Wαθ,

p
θ (C)

≤ ‖f‖1−θ
L∞(C) ‖f‖

θ
Wα,p(C)

para toda θ ∈ [0, 1].

Este resultado sale automaticamente al hacer una interpolación compleja entre

L∞(C) y Wα,p(C).

Veamos la primera noción de derivada fraccionaria. Viene dada en términos de

cocientes incrementales, y sirve para caracterizar los espacios Wα,p(C) siempre que

2
α+1 < p.
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Lema 6.1.3. [3].Primera caracterización de Wα,p(C).

Sean 0 < α < 1 y 2
α+1 < p, denotemos

Dαf(z) :=

(ˆ
C

|f(z)− f(ω)|2

|z − ω|2+2α dA(ω)

) 1
2

.

Entonces, una función f pertenece al espacio Wα,p(C) si y solo śı

f ∈ Lp(C) y además Dαf ∈ Lp(C).

Más aún, se tiene la equivalencia de normas

‖f‖Wα,p(C) ∼= ‖f‖Lp(C) + ‖Dαf‖Lp(C).

Uno de los obstáculos de la derivada fraccionaria es la ausencia de una regla de

Leibnitz. Sin embargo, existen generalizaciones a dicha regla. La siguente se refiere al

operador Dα que acabamos de definir.

Lema 6.1.4. Para toda α ∈ (0, 1) se tiene que:

Si f, g ∈ C∞
0 (C) entonces se tiene la desigualdad

‖Dα (f · g)‖Lp(C) ≤ ‖f ·Dαg‖Lp(C) + ‖g ·Dαf‖Lp(C) .

Si 1
p = 1

p1
+ 1

p2
= 1

p3
+ 1

p4
, 1 < p1, p3 < ∞ y 1 ≤ p2, p4 ≤ ∞, entonces se tiene

la desigualdad

‖Dα (f · g)‖Lp(C) ≤ ‖f‖Lp1 (C) · ‖D
αg‖Lp2 (C) + ‖g‖Lp3 (C) · ‖D

αf‖Lp4 (C) .

A continuación, veremos una segunda noción de derivada fraccionaria. Esta vez,

la derivada vendrá formulada en términos de la transformada de Fourier.

Lema 6.1.5. [3].Segunda caracterización de Wα,p(C). Sea 0 < α < 1, denotemos

dαf(z) := F−1 (|ξ|α · F (f (ξ)))

entonces una función f pertenece al espacio Wα,p(C) si y solo śı

f ∈ Lp(C) y además dαf ∈ Lp(C).

Más aún, se tiene la equivalencia de normas

‖f‖Wα,p(C) ∼= ‖f‖Lp(C) + ‖dαf‖Lp(C).
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Proposición 6.1.6. Dadas dos funciones f y g pertenecientes a C∞
0 (C), se cumplen

las siguientes cotas en normas:

a Dados α ∈ (0, 1), α1, α2 ∈ [0, α] tales que α1 + α2 = α y dados p ∈ (1,∞),

p1, p2 ∈ (1,∞) tales que 1
p = 1

p1
+ 1

p2
, tenemos que

‖dα (fg)− fdα (g)− gdα (f) ‖Lp(C) ≤ C‖dα1f‖Lp1(C)‖dα2g‖Lp2 (C)

con C := C(α, α1, α2, p, p1, p2).

b Dados α ∈ (0, 1], p ∈ (1,∞), p1 ∈ (1,∞], y p2 ∈ (1,∞) tales que 1
p = 1

p1
+ 1

p2

se sigue que

‖dα (f ◦ g) ‖Lp(C) ≤ C‖ (Df) ◦ (g) ‖Lp1 (C)‖dαg‖Lp2 (C)

con C := C(α, p, p1, p2).

c Dados α ∈ (0, 1) y p ∈ (1,∞) entonces:

‖dα (fg)− fdαg − gdαf‖Lp(C) ≤ C‖dαf‖Lp(C)‖g‖L∞(C)

con C := C(α, p).

En lo que sigue, gracias a las las caracterizaciones que tenemos de Wα,p(C) y a

la equivalencia de normas que nos dan dichas caracterizaciones, haremos un abuso de

notación y usaremos indistintamente una noción de dervida fraccionaria u otra aśı nos

convenga en unos casos u otros. Efectivamente, una vez probada la pertenencia de una

noción de derivada fracionaria (bien dαf o bien Dαf) en un cierto espacios Lp(C), se

tiene automátciamente la pertenencia a dicho espacio Lp(C) de la otra noción.
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6.2. W α,p(C) con αp > 2.

Este es el caso más sencillo que nos ocupa ya que en este caso tenemos por el

Embedding Sobolev Fraccionario continuidad del coeficiente µ y por lo tanto, perte-

nencia en VMO(C). Este hecho nos ahorra mucho esfuerzo al tener ya probada la

invertibilidad del operador

I − µB : Lp(C) 7→ Lp(C)

para toda p ∈ (1,∞), aunque no para Wα,p(C).

Fue Cruz en su tesis doctoral [3] el que prueba el siguiente teorema que nos da la

regularidad esperada de φ la solución principal de la ecuación de Beltrami

∂φ = µ∂φ.

Teorema 6.2.1. [3], Supongamos que tenemos 0 < α < 1 y µ ∈ Wα,p(C) con

αp > 2, de soporte compacto y satisfaciendo la condición de elipticidad ‖µ‖∞ ≤ k < 1.

Entonces, la solución principal φ de la ecuación de Beltrami

∂φ = µ∂φ

es de la forma

φ (z) = z + Ch (z)

con h(z) perteneciente a Wα,p(C).

Para demostrar este resultado, Cruz se basa en dos resultados que él mismo prueba

en su tesis. El primero de ellos nos asegura que el operador I − µnBn es invertible en

Wα,p(C) con αp > 2 para algún n ∈ N, el segundo que el operador comnutador [µ,B]

es compacto en espacios Wα,p(C) si αp > 2. Con esto, actuando de forma similar a

Iwaniec en [8] consigue demostrar que h = (I − µB)−1µ es precisamente una función

de Wα,p(C). Para saber más sobre este estos resultados y muchos otros, remitimos al

lector a la referencia [3] (Caṕıtulo 2).
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6.3. W α,p(C) con αp < 2.

En este caso, ya no tenemos la invertibilidad del operador (I − µB) en todos

los Lp(C) como teńıamos en el caso de Cruz. Tampoco tenemos continuidad del co-

eficiente. Pero aún aśı, con ayuda del Lema 6.1.6, se demuestra en [3] el siguiente

resultado.

Teorema 6.3.1. [5]. Sean α ∈ (0, 1) y µ ∈ Wα,2(C) con soporte compacto en D tal

que |µ| ≤ K−1
K+1 . Y sea φ : C 7→ C la solución principal de

∂φ = µ∂φ.

Entonces se cumple que:

φ(z)− z ∈W 1+θα,2(C) ∀θ ∈
(
0, 1

K

)
.

‖D1+θα (φ− z) ‖L2(C) ≤ C‖µ‖θWα,2(C) con C = C(K, θ, α).

Demostración. Consideremos Ψn ∈ C∞
0 (C) una aproximación a la Id. tal que Ψn(z) =

n2Ψ(nz). Y definamos µn := µ ∗ Ψn que cumple que sop(µn) ⊂ n+1
n D. Observemos

antes de nada que ‖µn − µ‖Wα,2(C) → 0. Ya que:

‖µn − µ‖L2(C) → 0 por el Teorema de Lebesgue.

Y por otro lado, al ser µ, µn ∈Wα,p(C), tenemos que existen g y gn tales que

µn = Gα ∗ gn y además ‖µn‖Wα,2(C) = ‖gn‖L2(C),

µ = Gα ∗ g y además ‖µ‖Wα,2(C) = ‖g‖L2(C),

de donde se deduce que gn = g ∗Ψn y por tanto

‖µn − µ‖Wα,2(C) =‖gn − g‖L2(C)

=‖g ∗Ψn − g‖L2(C) → 0 por el teorema de Lebesgue.

Y de la Proposición 6.1.2 se deduce que {Dαθµn} es una sucesión acotada en L
2
θ (C)

para toda θ ∈ [0, 1].

Por otro lado, para cada µn existe una única solución normalizada φn, la cual

cumple que

φn(z) = z + Chn(z),
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dónde hn(z) es la única solución en L2(C) de hn = µnBhn + µn que además hace que

hn = (I − µB)−1µn. Por tanto hn ∈ Lp(C) para todo p ∈ ( 2K
K+1 ,

2K
K−1) y además su

norma en el espacio Lp(C) cumple que ‖hn‖Lp(C) ≤ C con C = C(K, p) independiente

de n ∈ N.

Y de la definición de φ y de las Proposiciones 2.2.2 y 2.2.4 se sigue que
φn(z)− z = Chn(z) ∈ Lp(C) con p ∈

(
2K
K+1 ,

2K
K−1

)
,

∂φn(z)− 1 = Bhn ∈ Lp(C) con p ∈
(

2K
K+1 ,

2K
K−1

)
,

∂φn(z) = hn(z) ∈ Lp(C) con p ∈
(

2K
K+1 ,

2K
K−1

)
.

Por lo que efectivamente φn(z)− z ∈W 1,p(C).

Ahora definiremos

Hn(z) = φ(z)− z = Chn(z) ∈W 1,p(C) con p ∈
(

2K

K + 1
,

2K

K − 1

)
que cumple la ecuación

∂Hn(z) = µn∂Hn(z) + µn.

De donde deduciremos que φn − z ∈W 1+αθ,2(C).

Sean β = α θ y Dβ, entonces

Dβ∂Hn = Dβ(µn∂Hn) +Dβµn

y existirá un Eβ
n := Dβ(µn∂Hn) − (Dαµn)∂Hn − µnD

β∂Hn +Dβµn perteneciente a

L2(C), cómo veremos más adelante, tal que:

Dβ∂Hn = µnD
β∂Hn +

(
Dβµn

)
Hn + Eβ

n

Dβ∂Hn − µnD
β∂Hn =

(
Dβµn

)
Hn + Eβ

n

(I − µnB)
(
∂DβHn

)
= Dβµn∂Hn +Eβ

n

(6.1)

Y por la Proposición 6.1.6 se puede afirmar que para p1, p2 tales que 1
p1

+ 1
p2

= 1
p se

tiene que:

‖Eβ
n‖Lp(C) ≤ C0‖Dβµn‖Lp1 (C)‖∂Hn‖Lp2 (C),

por lo que tomando θ ∈
(
0, 1

K

)
, p1 =

2
θ y p2 =

2
1−θ ∈

(
2, 2K

2K−1

)
se consigue que

‖Eβ
n‖L2(C) <∞,
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es más

‖
(
Dβµn

)
∂Hn + Eβ

n‖L2(C) ≤ (C0 + 1) ‖Dβµn‖
L

2
θ (C)

‖∂Hn‖Lp2 (C).

Y ya sabemos que (I − µB) es un operador invertible de L2(C) y que además puede

probarse (mediante la Serie de Neumman) que ‖ (I − µB)−1 ‖L2(C) 7→L2(C) ≤ K+1
2 .

Por tanto, de la Fórmula 6.1, de la cota en norma de Eβ y la invertibilidad de

(I − µB) en L2(C), se sigue que

‖∂DβHn‖L2(C) ≤
1

2
(K + 1) (C0 + 1) ‖Dβµn‖

L
2
θ (C)

‖∂Hn‖Lp2 (C).

Y por construcción de Hn(z) teńıamos que

‖∂Hn‖Lp2 (C) =‖∂Chn‖Lp2 (C) = ‖Bhn‖Lp2 (C)

≤‖B‖Lp2 (C)7→Lp2 (C)‖hn‖Lp2 (C) ≤ C (p2,K, θ) .

Que juntándolo con lo anterior y usando la Proposición 6.1.2, se llega a

‖∂DβHn‖L2(C) ≤ (C0 + 1)C(K, θ)‖µn‖θWα,2(C).

Ahora, haciendo uso de un argumento de compacidad estándar, se obtiene que:

‖∂Dβ (φ− z) ‖L2(C) ≤ (C0 + 1)C (K, θ) ‖µ‖θWα,2(C)

por lo que φ(z) − z ∈ W 1+β,2(C) ≡ W 1+αθ,2(C) cómo queriamos ver. Y además se

tiene la cota

‖D1+αθ (φ− z) ‖L2(C) ≤ C‖µ‖θWα,2(C) con C = C (K,α, θ) y θ ∈
(
0 ,

1

K

)
.

�

Démonos cuenta de que la demostración anterior puede repetirse con µ ∈Wα,p con

p ∈
(
1 + k, 1 + 1

k

)
. El único obstaculo con el que nos encontramos es en el paso de ver

que efectivamente el error En
β pertenece a Lp(C). Para ello, usabamos la desigualdad

general

‖Eβ
n‖Lp(C) ≤ C0‖Dβµn‖Lp1 (C)‖∂Hn‖Lp2 (C),

y tomando los valores adecuados para p1, p2 y θ se obteńıa que Eβ
n pertenećıa a L2(C)

y de la cota para la invertibilidad del operador (I − µB) en L2(C) consegúıamos los
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resultados. Ahora, podremos extender el resultado siempre y cuando p2 perdenezca

al intervalo cŕıtico, que es dónde tenemos convergencia de ∂Hn. Por ello, si tomamos

p1 = p
θ , p2 = p

1−θ y β = αθ, tendremos convergencia cuando p2 ∈
(

2K
K+1 ,

2K
K−1

)
. Es

decir siempre y cuando

2K

K + 1
<

p

1− θ
<

2K

K − 1
o simplemente cuando 0 ≤ θ < 1− K − 1

2K
· p

Es decir, tenemos el siguiente teorema.

Teorema 6.3.2. Dada µ ∈ Wα,p(C) con p ∈
(

2K
K+1 ,

2K
K−1

)
, 0 < α < 1, de soporte

compacto contenido en D y tal que |µ| ≤ K−1
K+1 . Y sea φ : C 7→ C la solución principal

de la ecuación de Beltrami

∂φ = µ∂φ.

Entonces se cumple que:φ− z ∈W 1+θα,p(C) para toda θ < 1− K−1
2K · p.∥∥D1+αθ (φ− z)

∥∥
Lp(C) ≤ C ‖µ‖θWα,p(C) con C = C (K, θ, α, p) .

La constante de la cota sale al tenerse en cuenta que ahora la constante de invert-

ibilidad del operador (I −µB) depende de K y de p y no sólo de K. Observemos, que

mientras en el caso µ ∈ W 1,p(C) con p < 2, se teńıa φ ∈ W 2,q
loc (C) para toda q menor

que una q0 dada (ver Teorema 5.2.1), ahora en cambio podemos mantener la misma

integrabilidad pero a costa de reducir el orden de derivación. Como antes, la cuestión

de si se pudiera ganar un orden de derivabilidad mayor o igual que α admitiendo una

pérdida en la integrabilidad queda sin respuesta. La demostración del teorema falla

si se intenta tomar un orden de derivación β superior a α.

Problema abierto: ¿Son óptimos estos ı́ndices para estos casos?.

6.4. El caso cŕıtico α · p = 2

A la luz de este último Teorema y de la discrepancia con su homólogo en el caso

Sobolev W 1,p(C) con p < 2 nos hace dudar de si en el caso ĺımite αp = 2 se pudieran

mantener simultáneamente la derivabilidad y la integrabilidad o no. Sabemos que si

µ ∈W 1,2(C), entonces se gana todo un grado de derivabilidad para φ y como mucho

se pierde el extremo de integrabilidad. En el espacio Wα, 2
α (C) tenemos la inclusión a

VMO, lo que nos será suficiente para probar el siguiente teorema.
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Proposición 6.4.1. Sea µ perteneciente a Wα, 2
α (C) con 0 < α < 1, de soporte

compacto contenido en D y que satisfaga la condición de elipticidad ‖µ‖∞ ≤ k < 1.

Y sea φ la solución principal de la ecuación del Beltrami

∂φ = µ∂φ.

Entonces, φ ∈ W
1+β, 2

α
loc (C) para todo β ∈ (0, α). Y además se tiene la siguiente cota

de normas:

‖D1+β (φ− z) ‖
L

2
α (C) ≤ C‖µ‖

β
α

Wα,α2 (C)
con C = C (k, α, β) y β ∈ (0 , α) .

Demostración. Para ser formales en la demostración, habŕıa que volver a hacer uso

de regularizaciones la misma forma que hicimos en el Teorema 6.3.1. En enfecto, si

seguimos la prueba alĺı mostrada, se observa que sigue siendo aplicable a nuestro

caso e incluso en un marco más general. De ah́ı la mejora de este nuevo resulta-

do. Recordemos que el esquema de aquella prueba consist́ıa tomar una ecuación de

Beltrami equivalente

∂φ = µ∂φ⇐⇒ ∂H = µ∂H + µ.

Donde ahora, H ∈ W 1,r(C) para toda r ∈ (1,∞). Luego aplicabamos una a Dβ-

derivada esta nueva ecuación de Beltrami con 0 < β < α para obtener aśı que

∂H = µ∂H + µ⇒ Dβ∂H = Dβµ · ∂H + µDβ∂H +Dβµ+ Eβ

⇒ (I − µB)Dβ∂H = Dβµ+Dβµ · ∂H + Eβ ,

con Eβ un cierto error que sabemos que para totdo 1
p = 1

p1
+ 1

p2
se cumple la desigual-

dad de normas:

‖E‖Lp(C) ≤ C
∥∥∥Dβµ

∥∥∥
Lp1 (C)

· ‖∂H‖Lp2 (C)

Y śın más que tomar p1 = 2
β , p2 = 2

α−β y p = 2
α , gracias a que el operador I − µB

ahora es invertible en todos los Lp(C) se tiene el resultado.

�

Observemos la discrepancia de este caso extremo αp = 2 con el anterior αp < 2.

Antes, pudimos mantener la integrabilidad a costa de una pérdida grande en la deriv-

abilidad, ahora mantendremos la integrabilidad a costa a lo sumo del extremo en la

derivabilidad. La prueba ha sido una copia de la demostración del Teorema 6.3.1 sim-

plemente teniendo en cuenta que ahora podemos dilatar la automejora en las derivadas
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de φ hasta θ < α y no sólo hasta θ < 1− K−1
2K p con K = 1+k

1−k . Resumidamente, para

‖µ‖∞ ≤ k con soporte compacto, αp < 2 y αq > 2 se cumple que:
µ ∈Wα,p(C) ⇒ φ ∈W 1+θα,p

loc (C) para toda θ ∈
(
0, 1− k

k+1 · p
)
.

µ ∈Wα, 2
α (C) ⇒ φ ∈W

1+θα, 2
α

loc (C) para toda θ ∈ (0, 1) .

µ ∈Wα,q(C) ⇒ φ ∈W 1+α,q
loc (C).



Caṕıtulo 7

Resultados para φ−1.

Es sabido que si tenemos un homeomorfismo K-cuasiconforme φ, entonces φ−1

será también un homeomorfismo K-cuasiconforme. Por tanto, φ−1 pertenecerá a

W 1,2
loc (C), lo que nos asegurará la existencia de las primeras derivadas de φ−1 y por

tanto que el coeficiente de Beltrmi ν de φ−1 estará bien definido. A lo largo de esta

sección, nuestro interés estará enfocado a deducir propiedades de ν según el coeficiente

de Beltrami µ de φ esté en un espacio de funciones u otro.

Antes de poder entrar en materia, necesitaremos algunos resultados previos sobre

operadores de composición.

7.1. Operadores de composición con aplicaciones cuasi-

conformes.

Teorema 7.1.1. [13] Sea φ una aplicación cuasiconforme, y definamos el operador

de composición

Tφ :X 7→ X

u 7→ Tφ (u) := u ◦ φ.

Entonces los operadores

Tφ, Tφ−1 :W 1,2 7→ W 1,2

Tφ, Tφ−1 : BMO 7→ BMO

son acotados.

64
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Corolario 7.1.2. Dada φ una aplicación cuasiconforme, entonces los operadores de

composición

Tφ , Tφ−1 :Wα, 2
α 7→Wα, 2

α

son acotados para toda α ∈ (0, 1) .

Demostración. Para demostrar este corolario, sólo hay que observar por un lado que

F p,2
α =Wα,p, F 2,2

1 =W 1,2, y F ∞,2
0 = BMO,

y por otro que por el Teorema 7.1.1 tenemos acotación para F 2,2
1 y F ∞,2

0 . Y ya sin

más que aplicar la interpolación compleja[
F 2,2
1 , F ∞,2

0

]
α
= F

2
α
,2

α =Wα, 2
α ,

se consigue el resultado. �

Teorema 7.1.3. [13] Sea φ una homeomorfismo de clase W 1,1
loc (C), y definimos el

operador de composición

Tφ−1 :X 7→ X

u 7→ Tφ−1 (u) := u ◦ φ−1.

Se cumple que:

Si Tφ−1 es acotado para X =W 1,2 ó X = BMO entonces φ es cuasiconforme.

Si Tφ−1 es acotado para Wα,p para toda α ∈ (0, 1) y para toda p ∈ (1,∞),

entonces φ es Bilipschitsz.

Teorema 7.1.4. Dada φ una aplicación K-cuasiconforme, definamos Tφ−1 como el

operador de composición

Tφ−1 :X 7→ X

u 7→ Tφ−1 (u) := u ◦ φ−1.

Se cumple cumple que

(a) si φ es Lipschitz, entonces Tφ−1 : W β,p 7→ W β,p es un operador acotado para

todo β ∈ [0, 1] y p < 2.
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(b) si φ es Bilipschitz, entonces Tφ−1 : W β,p 7→ W β,p es un operador acotado para

todo β ∈ [0, 1] y p ∈ (1,∞).

Demostración.

(a) Por un lado, si φ es Lipschitz, entonces J (z, φ) ≤ C <∞ para casi todo z ∈ C con

C una constante. Además al ser φ−1 una aplicación K-cuasiconforme, tenemos ase-

gurado que
∣∣Dφ−1

∣∣2 ≤ K · J
(
z, φ−1

)
y por lo tanto, tomando ω = φ−1 (z) tendremos

que

ˆ
C

∣∣(u ◦ φ−1
)
(z)
∣∣p dA (z) =

ˆ
C
up (ω) J (ω, φ) dA (ω) ≤ C

ˆ
C
up (ω) dA (ω) .

Y además D
(
u ◦ φ−1

)
(z) = (Du)

(
φ−1 (z)

)
·
(
Dφ−1

)
(z), por lo que

ˆ
C

∣∣D (u ◦ φ−1
)
(z)
∣∣p dA (z) =

ˆ
C

∣∣(Du) (φ−1 (z)
)∣∣p ∣∣Dφ−1 (z)

∣∣p dA (z)

≤ K
p
2 ·
ˆ
C

∣∣(Du) (φ−1 (z)
)∣∣p J (z, φ−1

) p
2 dA (z)

= K
p
2 ·
ˆ
C
|Du (ω)|p J (ω, φ)1−

p
2 dA (ω)

≤ C ·K
p
2 ·
ˆ
C
|Du (ω)|p dA (ω)

donde en el último paso, hemos usado que p < 2. Y de ambas desigualdades se deduce

que para todo p < 2 los operadores

Tφ−1 :Lp(C) 7→ Lp(C) y

Tφ−1 :W 1,p(C) 7→W 1,p(C).

son acotados, y por interpolación se consigue el resultado.

(b) Como φ es Bilipschitz, entonces existe una constante C que depende de K tal que

1

C
≤ J (z, φ) , J

(
ω, φ−1

)
≤ C

dónde ω = φ−1 (z). Y al igual que antes, tendremos que

ˆ
C

∣∣(u ◦ φ−1
)
(z)
∣∣p dA (z) =

ˆ
C
up (ω) J (ω, φ) dA (ω) ≤ C

ˆ
C
up (ω) dA (ω) ,
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y de la regla de la cadena deducimos que

ˆ
C

∣∣D (u ◦ φ−1
)
(z)
∣∣p dA (z) =

ˆ
C

∣∣(Du) (φ−1 (z)
)∣∣p ∣∣Dφ−1 (z)

∣∣p dA (z)

=

ˆ
C

∣∣(Du) (φ−1 (z)
)∣∣p J (z, φ−1

) p
2 dA (z)

=

ˆ
C
|Du (ω)|p J (ω, φ)1−

p
2 dA (ω)

≈ C

ˆ
C
|Du (ω)|p dA (ω) ,

dónde las equivalencias entre normas son con constantes dependientes sólo de K y

el último paso puede darse independientemente de p. Por tanto, tenemos que los

operadores

Tφ−1 :Lp(C) 7→ Lp(C) y

Tφ−1 :W 1,p(C) 7→W 1,p(C).

son acotados para todo p ∈ (1,∞) y por interpolación se consigue el resultado. �

7.2. Coeficiente de la composición y del inverso.

Teorema 7.2.1. [1]. Supongamos que tenemos f : Ω 7→ Ω′ cuasiconforme y g :

Ω 7→ C cuasiregular con coeficientes de Beltrami µf .µg respectivamente. Entonces, la

composición
(
g ◦ f−1

)
es cuasiregular en Ω′ con coeficiente de Beltrami.

µg◦f−1(ω) =
µg(z)− µf (z)

1− µg(z)µf (z)

∂f(z)

∂f(z)
donde ω := f(z).

Demostración. Calcularemos primero las parciales de f−1 y con ellas, las de h =(
g ◦ f−1

)
, que nos permitirán conocer el coeficiente de Beltrami de la composición, es

decir µg◦f−1 .

Sea ω = f(z). Por la regla de la cadena tenemos que

∂Id(z) = ∂f−1(ω) · ∂f(z) + ∂f−1(ω) · ∂f(z) = 1 y (7.1)

∂Id(z) = ∂f−1(ω) · ∂f(z) + ∂f−1(ω) · ∂f(z) = 0. (7.2)

De donde haciendo

∂f(z) · (7.1) − ∂f(z) · (7.2) y

∂f(z) · (7.1) − ∂f(z) · (7.2)
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obtenemos que

∂f−1 (ω) =
∂f (z)∣∣∂f (z)∣∣2 − |∂f (z)|2

y

∂f−1 (ω) =
−∂f (z)∣∣∂f (z)∣∣2 − |∂f (z)|2

.

Tomemos ahora h(ω) =
(
g ◦ f−1

)
(ω), por la regla de la cadena

∂h (ω) =
∂g (z) · ∂f (z) − ∂g (z) · ∂f (z)∣∣∂f (z)∣∣2 − |∂f (z)|2

∂h (ω) =
∂g (z) · ∂f (z) − ∂g (z) · ∂f (z)∣∣∂f (z)∣∣2 − |∂f (z)|2

.

Y sin más que recordar que por definición

∂g = µg∂g, ∂f = µf∂f, ∂f = µf∂f,

ya puede deducirse que

µ(g◦f−1) (ω) =
∂h (ω)

∂h (ω)
=

µf (z) − µg (z)

µg (z) · µf (z) − 1
· ∂f (z)
∂f (z)

.

�

Observemos, que gracias a este teorema, sin más que tomar

f(z) = φ(z), g(z) = z con lo que obtenemos:

µf (z) = µ(z), µg(z) = 0, ν := µg◦f−1

se consigue una expresión siempre válida para ν coeficiente de Beltrami de φ−1. Conc-

retamente:

ν(z) = −µ
(
φ−1(z)

)
· ∂φ
∂φ

(
φ−1(z)

)
.

Será esta expresión la que usaremos a lo largo de este caṕıtulo y la que nos ayudará a

localizar al coeficiente ν según al espacio al que pertenezca µ. De entrada, la fórmula

nos indica que ν ∈ L∞(C) con soporte compacto. Ahora entraremos a estudiar la

regularidad de ν según la regularidad de µ.

Teorema 7.2.2. Consideremos una aplicación φ que sea µ-cuasiconforme con coe-

ficiente de Beltrami µ ∈ W 1,2(C), ‖µ‖∞ = k < 1 y supp (µ) ⊂ D. Entonces, φ−1

será una apliacación ν-cuasiconforme con ν ∈W 1,2(C).
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Demostración. Por un lado, de las observaciones hechas tras la prueba del Lema 5.1.2,

podemos asegurar que ∃g tal que ∂φ = eg que además cumple g ∈W 1,2(C). Y por el

otro, de las definiciones se sigue que ν y ν ◦ φ tienen soporte compacto y además

ν (φ(z)) = −µ(z)∂φ(z)
∂φ(z)

= −µ(z)e2iImg(g(z)) ∈ L∞(C),

D (ν ◦ φ) = − (Dµ(z)) e2iImg(g(z)) − 2iD (Img (g(z)))µ(z)e2iImg(g(z)) y

|D (ν ◦ φ)| ≤ |Dµ|+ 2 |µ| |D (Img(g))| ,

donde ambos sumandos están en L2(C). Por tanto (ν ◦ φ) ∈ W 1,2(C). Y gracias al

Teroema 7.1.1, se consigue finalmente que ν ∈ W 1,2(C) por composición por cuasi-

conforme. �

Si µ ∈ W 1,p(C) con p > 2, la misma demostración nos sirve para asegurar que

también ν ∈ W 1,p(C). Por contra, si p < 2, la demostración anterior falla. Concre-

tamente, ya no está asegurado que exista una función g ∈ W 1,p(C) tal que ∂φ = eg.

Esto nos despierta el interés por saber qué pasa cuando µ pertenece a otros espacios

Wα,p(C) con 0 < α < 1. Antes daremos un lema que nos permitirá destapar alguna

propiedad de ν para el caso fraccionario.

Lema 7.2.3. Dada 0 < α < 1, una función f ∈Wα,p
loc (C) y una función Lipschitz F ,

entonces la composición F ◦ f ∈Wα,p
loc (C).

Demostración. La pertenencia de F ◦f en Lp
loc(C) es inmediata por la continuidad de

F . Para ver la pertencia a Wα,p
loc (C) haremos uso de la definición de la Dα-derivada

dada por la caracterización del Lema 6.1.3.

Dα (F ◦ f) (z) =

(ˆ
C

|(F ◦ f) (z)− (F ◦ f) (ω)|2

|z − ω|2+2α dA (ω)

) 1
2

≤ C (F )

(ˆ
C

|f (z)− f (ω)|2

|z − ω|2+2α dA (ω)

) 1
2

∈ Lp
loc(C)

donde C (F ) es la constante Lipschitz de F . �

Teorema 7.2.4. Consideremos una aplicación φ que sea µ-cuasiconforme con co-

eficiente de Beltrami µ ∈ Wα,p(C) con αp > 2, ‖µ‖∞ = k < 1 y supp (µ) ⊂ D.

Entonces, φ−1 será una aplicación ν-cuasiconforme con ν ∈Wα,p(C).



70 Antonio L. Baisón Olmo.

Demostración. En primer lugar, la expresión que nos da el Teorema 7.2.1 de ν(z), nos

dice que ν ∈ L∞(C). Por otro lado, µ ∈ Wα,p(C) con αp > 2, por lo que se deduce

del Teorema 6.2.1 que

φ ∈W 1+α,p
loc (C), por tanto Dφ es Localmente Bilipchipsz.

Luego, existen C,M ∈ R \ {0} tales que

1

C
≤ J ( · , φ ) ≤ C en compactos,

1

M
≤ |φ(z)− φ(ω)|

|z − ω|
≤ M. Idem para φ−1.

Si conseguimos ver que

(ν ◦ φ) (z) = −µ (z) · ∂φ
∂φ

está en Wα,p(C), habremos terminado la demostración. Efectivamente, si tal fuese el

caso, como φ es Bilipschitz, el Teorema 7.1.4 nos garantizará que ν ∈Wα,p(C). Para

ello, tengamos primero en cuenta que los espacios Wα,p(C) ∩ L∞ son un álgebra de

Banach. Y segundo, que al ser p > 2 tenemos que ∂φ no se anula en ningún punto,

y como la función F (z) = z
z es Lipschitz lejos del 0, tenemos por el lema anterior

que ∂φ

∂φ
∈ Wα,p

loc (C) ∩ L∞(C). Por tanto ν ◦ φ ∈ Wα,p(C), y por composición por

cuasiconforme tenemos que ν ∈Wα,p(C). �

7.3. Relación con el log (∂φ).

Nuestro interés es poder estudiar la ecuación de Beltrami

∂φ−1 = ν∂φ−1

mediante los conocimientos previos que tengamos sobre la ecuación de Beltrami

∂φ = µ∂φ

dónde φ−1 es el homeomorfismo inverso de φ. Ya sabemos que la función ν cumplirá la

misma condición de elipticidad que µ y además que siempre tendremos las expresiones

puntuales:

ν(z) = −µ
(
φ−1(z)

)
· ∂φ
∂φ

(
φ−1(z)

)
y
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(ν ◦ φ) (z) = −µ (z) · ∂φ (z)
∂φ (z)

= −µ (z) · e
g(z)

eg(z)
= −µ (z) · e2i·Img(g).

donde hemos llamado g = log ∂φ. Esta función g está bien definida en casi todo punto

y es medible. Más aún, los argumentos que hemos visto muestran que

µ ∈W 1,p(C), p > 2 ⇒ g ∈W 1,p(C).

E incluso se tiene para p = 2

µ ∈W 1,2(C) ⇒ g ∈W 1,2(C).

La regularidad de g permite deducir la de ν. En efecto, la representación

ν ◦ φ = −µ · e2i·Img(g)

y las propiedades del álgebra Wα,p(C) ∩ L∞(C) permiten obtener la regularidad de

ν ◦ φ. La de ν se obtiene automáticamente por medio de la acción del operador de

composición

u 7→ u ◦ φ

en el espacio de Sobolev adecuado.

Nada se sab́ıa con anterioridad sobre estas cuestiones en espacios fraccionarios.

Sin embargo, acabamos de demostrar que

µ ∈Wα,p(C), α · p > 2 ⇒ ν ∈Wα,p(C)

y conjeturamos que la misma implicación será cierta si α · p = 2. Para demostrar esta

conjetura, basta responter afirmativamente a la siguiente pregunta.

Pregunta: ¿Es cierto que µ ∈Wα, 2
α
(C) implica g ∈Wα, 2

α (C)?

Efectivamente, supongamos que la respuesta es afirmativa. Entonces, la representación

ν ◦ φ = −µe2i·Img(g),

corresponde a un producto de elementos de Wα, 2
α (C) ∩ L∞(C), que es un álgebra

invariante por composición de cuasiconforme. Ello implicaŕıa, pues, que ν ∈Wα,α
2 (C).

Nótese que:

Este argumento, sirve incluso si α = 1 y tamibén para µ ∈W 1,p(C) con p > 2.
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No importa la regularidad de ∂φ, si no la de su logaritmo g = log ∂φ.

Desconocemos, de momento, si las implicaciónes

µ ∈ VMO(C) ⇒ ν ∈ VMO(C)

µ ∈ VMO(C) ⇒ g ∈ VMO(C)

son ciertas, o no. Y de serlo, tampoco sabemos si nos aportaŕıa alguna informa-

ción al respecto.



Nomenclatura

N conjunto de los números naturales.

Q cuerpo de los números racionales.

R cuerpo de los números reales.

C cuerpo de los números complejos.

Ĉ esfera de Riemman, ie, C ∪ {∞} .

Ω conjunto abierto y conexo del plano complejo. Puede ser C.

∂Ω la frontera del conjunto Ω.

Ω
τ
cierre de Ω en la topoloǵıa τ .

|E| la medida lebesgue del conjunto E (en la dimensión que corresponda).

D disco con radio la unidad en C.

DR disco de centro cero y radio R en C.

BE la bola unidad del espacio E.

f
.
= g igualdad entre f y g dada bien por definición, o bien por un cambio de

notación.

C(a) constante que depende únicamente de otra constante a definida anteri-

ormente. Idem para C(a, b), C(a, b, c), etc. Cuando la constante es absoluta se

usará C.

C f transformada de Cauchy de la función f.

73
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B f transformada de Berling de la función f.

C0(Ω) el espacio de las funciones cont́ınuas en Ω.

Ck(Ω) el subconjunto de Ck(Ω) tal que todas sus derivadas de orden igual o

inferior a k están en C0(Ω).

C∞(Ω) el subconjunto de las funciones de C0(Ω) tales que tienen derivadas de

cualquier orden en C0(ω).

Ck
c (Ω) el subconjunto de Ck(Ω) con k ∈ N ∪ {∞} y soporte compacto.

Ck
0 (Ω) el subconjunto de Ck(Ω) con k ∈ N ∪ {∞} tales que valen cero en ∂Ω, o

que tiendan a cero en el infinito en el caso de Ω no acotado.

S(C) la clase de Schwartz.

L(E,F) el conjunto de las aplicaciones lineales y continuas de E a F.

E∗ el dual topológico del espacio E.

T ∗ el operador adjunto del operador T .
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