

5025 - Launchageddon: Tecnologia

Memòria del Projecte Fi de Carrera

d'Enginyeria en Informàtica

Realitzat per Enric Martínez Ibarra

i dirigit per Enric Martí Gòdia

Bellaterra, 17 de Setembre de 2012

II

III

El sotasignat, Enric Martí Gòdia

Professor/a de l'Escola d'Enginyeria de la UAB,

CERTIFICA:

Que el treball a què correspon aquesta memòria ha estat realitzat sota la seva direcció per
en Enric Martínez Ibarra

I per tal que consti firma la present.

Signat: Enric Martí Gòdia

Bellaterra, 17 de Setembre de 2012

IV

V

Agraïments

El temps és un factor vital, per aquest motiu vull començar agraint a les 11 i la 1 per acompanyar-

me i fer-me costat tota la vida, ells m’han fet convertir-me en el que sóc avui. Agraeixo a les 2

tots els bons moments que m’ha fet passar. Què he de dir de les 3? Gràcies per formar part de la

meva vida. Una vida sense les 4, les 5 i les 6 seria monòtona, gràcies per donar-li corda a la meva

creativitat i compartir-ne la vostra. Quantes tardes he passat amb les 7 i les 8... moltíssimes

gràcies per aguantar-me durant aquest projecte i fer-me somriure quan les coses es compliquen.

Les 9 i les 10 han estat imprescindibles durant tot aquest temps, la combinació d’afecte, saviesa i

diversió que els caracteritza m’han donat forces per seguir endavant. I finalment vull donar les

gràcies a les 12, qui comença i acaba els dies al meu costat, per estimar-me tal i com sóc.

Vull agrair al meu tutor Enric Martí per la confiança i la llibertat que ens ha proporcionat al

realitzar un projecte d’aquesta magnitud, creient sempre en el nostre potencial.

 A tots vosaltres, gràcies.

VI

VII

Resum

El següent document correspon a la memòria del projecte fi de carrera d’Enginyeria

Informàtica, i conté el disseny i la implementació del videojoc Launchageddon. Aquest correspon

a un projecte desenvolupat entre tres persones.

En aquesta memòria es troba la part corresponent al disseny i la implementació dels

controls del videojoc a través del reconeixement corporal que proporciona la tecnologia Kinect.

També s’han dissenyat i implementat aplicacions test en les que es controlaran diferents tipus de

joc amb la mateixa tecnologia.

El correcte funcionament d’aquests controladors ha estat validat per un grup d’usuaris amb

la finalitat de realitzar el feedback necessari per a l’obtenció d’una versió definitiva.

Resumen

El siguiente documento corresponde a la memoria del proyecto de final de carrera de

Ingeniería Informática, y contiene el diseño y la implementación del videojuego Launchageddon.

Éste corresponde a un proyecto desarrollado entre tres personas.

En esta memoria se encuentra la parte correspondiente al diseño y la implementación de

los controles del videojuego a través del reconocimiento corporal que proporciona la tecnología

Kinect. También se han diseñado e implementado aplicaciones test en las que se controlarán

diferentes tipos de juego con la misma tecnología.

El correcto funcionamiento de estos controladores ha sido validado por un grupo de

usuarios con la finalidad de realizar el feedback necesario para la obtención de una versión

definitiva.

Abstract

The following document deals with the report of the final Information Technologies degree

which contains the design and implementation of Launchageddon game. This belongs to a

project developed by three people.

In this report you will find the relevant design and implementation of game controllers

based on the body recognition provided by Kinect technology. Have also been designed and

implemented test applications in order to control different types of game with the same

technology.

The proper functioning of these controllers has been validated by a user group in order to

perform the necessary feedback to obtain a final version.

VIII

IX

ÍNDEX

INTRODUCCIÓ ... 1

 LAUNCHAGEDDON: GAMECONCEPT .. 3

 Perquè i amb quina finalitat? .. 3

 Mecànica de joc .. 5

 Elecció de l’entorn de desenvolupament ... 7

 Diagrama de mòduls .. 12

 Integració del treball realitzat ... 14

 OBJECTIUS DEL PROJECTE .. 16

 KINECT ... 17

 Components .. 18

 Com funciona Kinect? .. 19

 OpenNI (Descripció i funcionament) ... 20

 Heurístiques de l’esquelet ... 23

DESENVOLUPAMENT ... 25

 Tractament de les dades .. 26

 Obtenció dels vectors per al control .. 27

 Tractament de les dades de les mans .. 30

 Tractament de les dades del tors ... 33

 Reconeixement d’esdeveniments ... 33

 Interacció amb la interfície d’usuari .. 37

 Moviment del punter ... 39

 Interacció amb els elements del videojoc .. 39

 Càmera en primera persona .. 43

 Control amb teclat i ratolí .. 44

 Control amb Kinect .. 45

 Selector circular ... 47

 Captura i reproducció d’animacions .. 49

 Disseny dels models ... 51

 Selector de personatges .. 57

X

Aplicació de Kinect en altres tipus de videojoc ... 58

 Joc infantil: Kinect Castle Logix® .. 59

 Joc de conducció .. 62

 Joc d’acció .. 64

RESULTATS ... 67

 Validació del codi ... 67

 Proves d’il·luminació .. 68

Validació amb usuaris .. 69

 Kinect Castle Logix® ... 71

 Joc de conducció .. 72

 Joc d’acció .. 73

 Aspecte final .. 74

 Integració ... 75

 Futur de projecte ... 78

CONCLUSIONS I MILLORES .. 79

BIBLIOGRAFÍA I REFERÈNCIES .. 81

ANNEX ... 83

1

1- INTRODUCCIÓ

Un videojoc és un software creat generalment per a l’entreteniment i basat en la

interacció entre una o varies persones mitjançant un controlador i un dispositiu electrònic on

s’executa aquest. El dispositiu pot ser un ordinador, una màquina “Arcade”, una videoconsola o

un dispositiu portàtil, els quals són coneguts com plataformes de desenvolupament.

Els videojocs varen ser originats a la dècada dels anys 40, on després del final de la segona

guerra mundial, les potències vencedores van construir els primers supercomputadors

programables. Aquests, com a medi de comunicació, són un producte cultural que corresponen a

un context, a una societat i a unes finalitats. També canvien des de la seva capacitat com a

tecnologia fins a la capacitat de contingut, en un procés que generalment està constituït per

persones de diferents disciplines (programadors, dissenyadors gràfics, escriptors, etc.) i per això

han estat revaloritzats durant l’ultima dècada

Hi ha diferents tipus de videojocs. Aquests es poden classificar en gèneres depenent de la

seva representació gràfica, el tipus d’interacció entre el jugador i la màquina, l’ambientació i el

sistema de joc, sent aquest l’últim criteri més habitual a tenir en compte. A continuació

s’esmenten els diferents gèneres:

 Acció: Aquest gènere es caracteritza per l’objectiu d’evitar la mort del nostre personatge.

Inclou jocs de trets, jocs de lluita i jocs de plataformes.

 Simulació: Marca un aspecte real de la vida, portat a un videojoc. Inclou simulació de

combat, construcció, simulació de vida, simulació musical, esports i carreres.

 Agilitat mental: La finalitat d’aquests jocs és que l’usuari pensi i agilitzi la ment resolent

exercissis amb una dificultat progressiva.

 Aventura: El jugador s’encarna en el protagonista amb la finalitat de resoldre incògnites i

trencaclosques amb diferents objectius. Inclou aventura gràfica i rol.

 Arcade: Característics per la simplicitat d’acció ràpida en la jugabilitat, van tenir el seu

moment de glòria als anys 80 (Màquines recreatives).

Donat el meu interès pel tema i el dels meus companys i tenint en compte les eines que

se’ns proporcionen avui en dia, tres alumnes d’enginyeria informàtica hem proposat realitzar un

2

projecte conjunt amb l’objectiu de crear un videojoc que combini entreteniment, creació i

destrucció, controlat amb el propi cos, sense necessitat d’estar en contacte amb un dispositiu

extern com per exemple un teclat. El joc serà anomenat “Lauchaggedon”.

Per tal d’aconseguir aquest control es farà ús de la tecnologia que ens proporciona Kinect,

un dispositiu que ens permetrà reconèixer els moviments del nostre cos per tal d’interactuar

d’una manera més natural amb el videojoc.

Personalment, el fet de controlar un videojoc a través dels moviments sempre m’ha

fascinat. La ciència ficció, fa anys que ens il·lusiona amb el control de les tecnologies mitjançant

gestos corporals, citant per exemple la pel·lícula futurista “Minority Report” on es mostrava un

futur proper on la gent interactuava amb ordinadors d’aquestes característiques.

Les aplicacions de Kinect no es limiten al món dels videojocs, és a dir, en el moment en què

es demostri que aquest és una eina suficientment estable i fiable, es podrà començar a ampliar el

seu ús, tant el camp de la medicina, realitzant una operació a distància controlant un robot amb

els moviments de les mans, com a l’ensenyament al permetre reproduir presentacions sense

tenir cap mena de contacte físic amb un dispositiu extern.

Els components d’aquest projecte compartim l’afició per el món dels videojocs, vàrem

coincidir a una assignatura enfocada als gràfics per computador, on conjuntament vam realitzar

un videojoc, creant nosaltres mateixos un motor gràfic que ens permetés dur a terme el projecte

en base a les nostres necessitats. A arrel d’aquella experiència, uns quants components ens vam

adonar que formàvem un equip interessant.

Hem definit uns objectius comuns per tal de desenvolupar el videojoc:

 Realitzar un Gameconcept en comú.

 Desenvolupar un joc en 3D, tot i basant-nos en el concepte de joc proposat.

 Dividir la feina equitativament en tres mòduls, que en el seu conjunt formin el videojoc

proposat.

 Dur a terme la integració dels tres mòduls i posteriorment verificar el seu correcte

funcionament.

 Solucionar els problemes que sorgeixen durant la integració.

3

En el següent punt es procedeix a la descripció del Gameconcept, un document realitzat en comú

a l’inici del projecte on es defineixen tots els aspectes del joc. Aquest ens ha servit a tots els

components com a guia per a la implementació del videojoc.

1.1 LAUNCHAGEDDON: GAMECONCEPT

Aquest apartat explica a grans trets en què consisteix el projecte de crear un videojoc i com

neix la idea, així com sobre quins objectius hem treballat per elaborar el concepte de joc i en què

ens hem inspirat.

També detalla sobre quins objectius hem treballat per elaborar el concepte de joc i en què

ens hem inspirat. S’inclou l’estat de l’art realitzat per posar sobre la taula els requeriments

necessaris en la tecnologia per al desenvolupament i la metodologia de treball definida per dur a

terme totes i cadascuna de les tasques. Al final veurem un diagrama de mòduls del projecte

conjunt. Aquest ens servirà per identificar cadascuna de les parts que composen el projecte i les

interaccions, tant internes entre ells com externes amb la tecnologia, interfícies, usuari, etc.

Abans de començar a treballar en el projecte en si, s'ha realitzat una valoració sobre les

diferents opcions, tenint en compte les possibilitats de l'equip, factors que depenen bàsicament

del temps i recursos disponibles.

Una forma de definir el concepte d'un joc és buscar els trets característics que millor el

descriguin. Durant la valoració es va fer un llistat de paraules clau, les quals defineixin els

objectius generals que ens hem marcat per al joc. Aquestes paraules són: divertit, modern, ràpid,

senzill, competitiu , estratègic i portable.

1.1.1 Perquè i amb quina finalitat?

 Divertit: Com la pròpia paraula indica un videojoc no deixa de ser una experiència que ha

de divertir, en concret una experiència interactiva, la seva raó de ser és fer passar una

bona estona a la persona que està jugant.

 Modern: És molt difícil crear un concepte que sigui completament original avui dia. No

obstant això, sempre pot haver-hi algun element fora del comú, que faci l'aplicació més

interessant per als usuaris. Aquest és un dels motius principals pels quals s'inclou Kinect

en el joc, ja que és una tecnologia relativament moderna.

4

 Portable: El fet de voler una aplicació que sigui descrita amb totes les paraules anteriors

té molts “perquès” i un d'ells és que com més senzilla i actual sigui l'aplicació més fàcil

serà de portar-la a plataformes mòbils (Android, iOS) i tenir un valor de mercat. Avui en

dia aquesta característica és molt valorada, degut a que la gran majoria de companyies

realitzen videojocs multi plataforma amb la finalitat de poder abastir una major quantitat

i diversitat de públic.

 Ràpid. Per assegurar la característica anterior, hauria de ser un joc ràpid de jugar, una

aplicació que es pugui usar en un àmbit casual que no requereixi massa concentració.

D'aquesta manera resulta més senzill que l'usuari decideixi usar l'aplicació.

 Senzill: Considerem que un joc enfocat a plataformes mòbils a part de ser ràpid ha de ser

senzill. D'aquesta manera a l'usuari li costarà menys comprendre la dinàmica de joc i la

possibilitat que un major nombre de persones ho provin augmentarà. A part d'aquests

motius el fet de les limitacions de recursos també influeixen, ja que no podem optar a un

projecte excessivament complex, preferim reduir aquest factor a un nivell factible per a

nosaltres i fer un producte de la màxima qualitat possible.

 Competitiu: No solament interessa en un joc que un usuari ho provi, sinó que a més torni

a usar-ho. Fer un joc competitiu és una bona manera de mantenir actius als usuaris, a part

de que resulta més divertit i motivador per a aquests.

 Estratègic: Per a la nostra pròpia motivació i la del propi usuari un dels objectius principals

és crear un “repte” amb uns objectius clars. És un dels principis dels jocs i una dels nostres

propis desafiaments. No hem de limitar-nos a crear una aplicació gràfica visual. L'objectiu

és que l'aplicació tingui una funcionalitat ben definida.

 En 3D: Considerem que un joc en tres dimensions és més complex que un de dues. Les

físiques actuen en tres eixos de coordenades i es pot enfocar un mateix nivell de moltes

perspectives diferents, per tant, creiem que aquesta característica és un valor afegit.

En les següents línies es descriu la mecànica del joc, inclou objectius, jugabilitat i les fonts

d'inspiració.

5

1.1.2 Mecànica de Joc

La nostra principal font d’inspiració ha estat el joc anomenat Angry Birds de Rovio Mobile

[AngBir], un joc realitzat en dues dimensions que bàsicament tracta de llençar uns ocells per

destruir una sèrie d’estructures i enemics.

Launchageddon és un joc que consisteix a enderrocar objectes situats dins d'unes

determinades estructures mitjançant una variada però limitada gamma de llançaments en un

entorn 3D.

Les estructures consisteixen en diferents tipus de peces o blocs amuntegats entre si

formant una estructura global, com si es tractés de derrocar castells composts per les clàssiques

peces de joguina fetes amb fusta. La figura 1 mostra el disseny d’un possible escenari on podem

trobar la construcció principal a enderrocar i objectes decoratius com per exemple palmeres o

roques.

Figura 1. Disseny inicial d’un escenari

Dins d'aquestes estructures es troben una sèrie d’objectes especials que el jugador ha de

picar per aconseguir el major nombre possible de punts.

Els trets s'efectuen amb un personatge que es llança des d'una posició determinada cap a

lla direcció que el jugador triï, amb la finalitat d’enderrocar l’estructura (figura 4).

La jugabilitat es complementa amb dues variables diferents: la primera d’elles és el tipus de

roba o vestit que porta el jugador, la qual modificarà el tipus de llançament que s’efectuarà

6

Figura 2. Disseny dels diferents tipus de llançament

Es podrà tirar entre diferents vestimentes, tal i com es mostra a la figura 2:

 Vestimenta Normal: Llançament més basic, un tir parabòlic.

 Vestimenta Paracaigudista: Mentre vola, permet modificar la trajectòria.

 Vestimenta Propulsada: Permet llançar-se a major velocitat contra l’escenari.

 Vestimenta Antigravetat: Ignora les lleis de la gravetat i provoca un rebot a xocar.

 Figura 3. Disseny inicial dels cascs

D’altre banda podem triar entre una gamma de quatre cascs diferents per al personatge

(figura 3), que atorguen diferents poders un cop el nostre personatge impacta contra l’escenari,

aquests són:

 Casc Normal: Casc bàsic. No ofereix cap avantatge.

 Casc Destral: Destrueix tots els elements que toca gràcies a la seva destral.

 Casc Explosiu: Permet detonar una explosió per destruir parts de l’escenari.

 Casc Científic: Ofereix la visió a través dels elements per localitzar objectius ocults.

Una de les qualitats de la jugabilitat i que a més atorga un punt d'estratègia és que els tipus de

llançament poden combinar-se amb els tipus de cascos, de manera que el jugador pot provar

diferents combinacions per aconseguir els seus objectius.

7

Aquesta estratègia també consisteix que el jugador pensi bé quins trets utilitzarà, ja que

aquests estaran limitats d'una forma diferent per a cada fase. Cada fase també tindrà un nombre

de punts a batre per superar-ho, que s’hauran d'aconseguir amb un nombre de rondes diferents

per a cada fase.

Figura 4. Llançament i destrucció de l’escenari

1.1.3 ELECCIÓ DE L’ENTORN DE DESENVOLUPAMENT

Prèviament al desenvolupament del projecte hem realitzat un estudi amb l’idea d’arribar a

un consens sobre quin entorn i eines utilitzarem, tenint en compte les característiques definides

al concepte de joc.

L’estudi s’ha basat en la cerca d’un motor gràfic que pogués servir-nos per dur a terme el

projecte. També s’ha valorat la implementació d’un propi.

Per a realitzar l’estudi hem valorat tres possibilitats, dos són motors gràfics existents

(Unity3 i Unreal Engine), mentre que l’ultima d’elles és la de realitzar un motor gràfic propi.

Opció : Ús d’un motor gràfic extern

Entre les coses bones que aporta l'ús d'un motor gràfic extern, podem trobar un notable

estalvi en temps en la codificació del projecte, ja que disposarem d'una sèrie d'eines ja

realitzades. Un altre factor important serà la integració amb les altres parts del projecte,

depenent de l'heterogeneïtat de tecnologies que s'hagin d'implementar.

El fet d'utilitzar un motor gràfic extern ens facilitaría molt la tasca de codificació del

projecte i reduiria el temps de desenvolupament, a més d'una facilitat major a l'hora d'integrar

8

totes les parts. Aleshores, la tasca serà de saber quines coses es poden fer, aprendre a fer-les i

quines coses no es poden fer a causa de les limitacions del motor escollit.

Ens hem centrat en l'estudi de dos motors gràfics, un és Unity i un altre és Unreal Engine. El

motiu d’aquesta decisió és que són molt utilitzats avui dia i estan bastant ben documentats en

llibres i per la xarxa.

a) Unity

Figura 5. Logotip pertanyent a Unity

Unity [Uty3] és una eina per al desenvolupament de videojocs. Consta d’un motor gràfic

potent, capaç de simular físiques i il·luminació amb una qualitat visual força acceptable. Durant

els últims mesos ha tret a la llum títols per a Android i iOS com “Shadowgun” o “Blood & Glory”

on es mostra una molt bona qualitat gràfica en dispositius mòbils.

Unity proporciona una eina per a la programació anomenada MonoDevelop, que permet

realitzar Scripts en 3 llenguatges diferents: JavaScript, C# i Boo (dialecte de Python) i posseeix un

editor gràfic que permet crear escenaris, llums, SkyBox [SkyBx] i d’altres funcions facilitant el

procés de desenvolupament.

La potència gràfica de Unity no és tant elevada com la de Unreal Engine i el seu editor

tampoc és tan complert. No obstant, és més intuïtiu i hem trobat una gran quantitat de manuals

per a principiants i també per a usuaris més experimentats.

La portabilitat no és un problema, ja que Unity està preparat per a la multi plataforma i per

tant, realitzar el joc per a altres plataformes com Android o iOS, seria un procés possible si es

realitza una bona estructuració del projecte.

Els llenguatges de Scripting que utilitza també són similars als que ja hem vist fins ara

(JavaScript) o directament ja els hem tocat (C#). Per tant, si parlem del llenguatge a l’hora de

programar, Unity ofereix un ventall de possibilitats major que la resta.

9

Un altre característica, és que existeixen moltes aplicacions que actualment treballen amb

Kinect a través Unity. Per tant tenim a la mà un gran nombre d’exemples i demostracions lliures

que podem fer servir per aprendre i enriquir els nostres coneixements.

Potser un dels punts més febles de Unity per a la nostra elecció és que la versió gratuïta no

permet carregar llibreries externes. Això suposaria una complicació a l’hora d’utilitzar Kinect o al

utilitzar altres llibreries externes (físiques per exemple) que volguéssim afegir al projecte.

Per solucionar aquest problema, hem buscat controladors alternatius per Kinect

compatibles amb Unity. Si utilitzem el SDK oficial de Kinect, necessitaríem la versió Pro de Unity,

ja que hauria d’accedir a les llibreries externes, així doncs, la millor eina per utilitzar Kinect amb la

versió gratuïta de Unity que hem trobat és OpenNI , la qual serà explicada més endavant.

b) UDK

Figura 6. Logotip pertanyent a Unreal Development Kit

UDK (Unreal Developement Kit) [UnrDev] és una altre alternativa a l’hora de parlar de

motors gràfics potents. El motor de “Epic Games“ aposta més per la potència gràfica i no tant per

la multi plataforma. Mostres d’aquesta potència són títols de l’envergadura de “Gears of War” o

“Unreal Tournament”. Aquesta eina ens permet desenvolupar jocs per dues plataformes:

Windows i iOS.

UDK també utilitza un llenguatge propi (UnrealScript). Aquest però, en comparació als

llenguatges de Unity, és molt més lent a l’hora d’executar-se. No obstant, l’editor integrat de

proporciona UDK proporciona moltes més eines per a l’edició.

D’altra banda la integració amb programes externs, el joc Online i altres característiques

com la portabilitat són un tant més complicats amb aquest motor. Són aspectes que podrien

suposar un gran endarreriment en el desenvolupament del videojoc si triéssim aquesta opció.

10

Ús d’un Motor Gràfic Propi

L'altra alternativa és la creació d'un motor gràfic propi. Creiem que aquesta opció requereix

una càrrega de treball excessiva per complir els objectius del projecte a causa de l'heterogeneïtat

de les tasques que realitzarem.

Un aspecte positiu de crear una tecnologia és que pots tenir el control total sobre ella,

sense dependre de tercers i saber en tot moment que estàs implementant i en què estàs

focalitzant els teus esforços.

És una opció que ens obligaria a invertir massa temps de desenvolupament i difícilment ens

podríem centrar en el desenvolupament del joc fins que el motor fos funcional.

Després de veure tots els punts positius i negatius de l'ús d'un motor gràfic extern o propi,

ens decantem per l'ús d'un extern, estalviant bastant temps en desenvolupament de tecnologia,

cosa que ens permetrà centrar-nos en el desenvolupament del joc en si, amb el cost d'haver

d'invertir bastant temps en l'aprenentatge i l'assimilació del motor gràfic extern que utilitzem.

Després d'unes quantes tardes d'estudi i proves, i gràcies als manuals que hem utilitzat per

aprendre més sobre Unity i Unreal Engine, hem arribat a tot un seguit de consideracions per

seleccionar la tecnologia que utilitzarem.

Per a això hem elaborat la taula 1 on marquem amb ”+” els punts on un motor és millor a

l'altre. Els punts que hem valorat són els següents:

• Potència gràfica: Una vegada vistes les demostracions i projectes que circulen per internet

podem fer-nos una idea de quina és la potència gràfica capaç de suportar cadascun. Això

implica el nombre de models que és capaç de gestionar en pantalla de forma fluïda, el seu

nivell de detall, el nombre de partícules i la qualitat de la il·luminació que genera.

• Editor: Un cop instal·lats tots dos motors gràfics i realitzant una sèrie de tutorials hem pogut

valorar el nivell d'edició de joc que suporta cadascun dels motors, temes com l’edició de

nivells, l’edició d'animacions de personatges, l’edició de vídeos, so, etc.

• Integració amb programes externs: S'ha valorat quan el motor gràfic és capaç de permetre

integració amb llibreries externes i realitzar importacions d'arxius generats d’altres programes.

11

• Documentació: Realitzant cerca per internet hem valorat el suport que té cadascun dels

motors gràfics, les comunitats que generen continguts i les webs dedicades a oferir ajuda i

tutorials.

• Llenguatge Scripting: Consultant la informació de cada motor gràfic hem trobat el llenguatge

mitjançant el qual es programa en ells. Es valora la diversitat i la velocitat d’execució.

• Preu llicencia professional i preu llicencia de publicació: En la informació oficial de cadascun

dels motors gràfics es pot trobar el preu d'us del motor, i del preu per poder publicar les

aplicacions que realitzis.

Característiques: UNITY UDK

Qualitat Gràfica (Potència) +

Editor +

Integració amb programes externs +

Joc en xarxa +

Varietat de plataformes +

Programació i Documentació +

Llenguatge Scripting +

Preu Llicència Pro 1500 $ 2500 $

Preu Llicència de Publicació Llicència Pro
99$ + 25% Beneficis
(Superiors a 5000$)

Taula 1. Comparativa entre motors gràfics

L'opció que més s’adequa als nostres requeriments és clarament Unity. Els factors de major

pes han estat la documentació existent (per Unity hem trobat molta més informació, exemples i

comunitat que desenvolupa); un altre motiu és que els llenguatges de scripting que utilitza Unity

són més estàndard que UnrealScript (l'utilitzat per Unreal Engine) per tant serà un valor afegit

que podrem aprofitar en un futur. I per finalitzar el tema de les llicències: si algun dia pensem

portar el nostre producte a la venda té un preu molt més accessible que Unreal Engine.

12

Un cop decidit el motor gràfic, per començar a treballar en el projecte, s’han establert una

sèrie de manuals [UtyMan] a seguir i la API de Unity [UtyApi] on es proporciona tota la

informació necessària sobre les eines que proporciona el motor.

Aquest motor gràfic ens permet crear paquets amb objectes, scripts i escenaris. Aquests,

faciliten molt la feina a l’hora d’integrar totes les parts que composen el projecte.

1.1.4 Diagrama de mòduls

Una vegada posat en comú el document de concepte de joc s'ha procedit a elaborar el

diagrama de mòduls del joc Launchageddon. La divisió del treball s'ha realitzat de manera que

queden tres mòduls ben diferenciats, amb una càrrega de treball que creiem ben balancejada, on

cadascun d’ells serà desenvolupat per un integrant de l'equip.

Com podem veure a la figura 7 els mòduls són:

 a) Gameplay [MarSue].
 b) Editor [JorCar].
 c) Tecnologia.

Figura 7. Diagrama de mòduls del projecte comú

.

13

a) El Gameplay és el mòdul encarregat de gestionar tota la lògica de joc, les físiques, la interfície

d'usuari en joc i la interfície de menú principal i els nivells. A més serà l'encarregat de detallar i

implementar el disseny de joc, sistemes necessaris per gestionar les puntuacions del joc, accés a

arxius de configuració, d'informació sobre nivells i de localització del joc a altres idiomes.

b) El mòdul Editor s'encarrega de proporcionar les eines necessàries al jugador per dissenyar els

seus propis escenaris personalitzats i exportar-los al mòdul de Gameplay per poder disposar

d'aquests en el joc.

c) La Tecnologia estableix comunicació amb els altres dos mòduls i els proporciona les eines

necessàries per poder treballar amb Kinect. Aquest mòdul requereix una comunicació externa

amb el dispositiu Kinect per analitzar les dades físiques del jugador necessaris per als controls.

 Per tal de fer la integració entre mòduls haurem de definir com es comunicaran entre ells,

per quins motius i quines dades s’intercanviaran.

Comunicacions entre mòduls

Seguidament trobem un resum de les integracions més importants que es duran a terme:

GAMEPLAY: El mòdul encarregat del joc haurà de ser adaptat per a rebre el comandament del

joc. Des del mòdul de tecnologia, es rebran les dades en un format estipulat per les dues parts

que aquest utilitzarà per realitzar les accions pertinents al joc. També es comunicarà amb l’editor

per detallar la forma en que els nivells hauran de ser carregats al joc per que funcionin, entre

GAMEPLAY i EDITOR s’arribarà a un acord per l’estructura d’aquests tipus de dades i el seu

funcionament.

EDITOR: Aquest mòdul estableix comunicació amb els altres dos. Per un cantó rep suport del

mòdul TECNOLOGIA per poder implementar el control amb Kinect. Altrament, es comunica amb

el mòdul de Gameplay a la vegada que comparteixen un conjunt de dades per poder accedir tots

dos als escenaris personalitzats. En el cas de EDITOR per modificar-los i en el de GAMEPLAY per

fer-los servir en el joc.

14

TECNOLOGIA: Per tal de que la resta de mòduls puguin emprar els controls que s’ofereixen en

aquest, s’han dut a terme reunions per realitzar un anàlisi dels requeriments, on s’han estipulat

els formats de les dades a enviar (explicats al capítol 2).

1.1.5 Integració del treball realitzat

Cadascun dels projectes és un treball individual. No obstant això, considerem interessant

posar factors en comú de manera que els treballs interaccionin entre si com si formessin part

d'un projecte global. Ho considerem un valor afegit, ja que comporta la dificultat de coordinar 3

treballs individuals de manera que cadascun no s'allunyi de la seva línia, però alhora comprengui

les necessitats dels altres dos. Per poder integrar el treball realitzat entre mòduls hem definit una

metodologia de treball. Aquesta s'ha complert mitjançant reunions de caràcter setmanal o

quinzenal.

A la figura 8 es mostren les tasques que s'han realitzat durant el temps que han durat les

reunions. Normalment el grup s'ha reunit una tarda per setmana.

Figura 8. Percentatge de temps orientatiu de les reunions

Com es pot observar les reunions ens ha servit tant per comunicar-nos entre els membres

de grup tant per sincronitzar treball, prendre decisions sobre el desenvolupament, valorar la

modificació e inclús de característiques noves a l'aplicació, etc.

15

Durant el Brainstorm tots els components proposen les noves idees per al projecte,

aquestes s’apunten per un anàlisi. Un cop s’han analitzat totes les propostes, cada un dels

components mostra la feina realitzada fins el moment. En aquest moment es realitza un

feedback de l’estat del projecte basant-nos en la feina feta fins el moment, i finalment es du a

terme la sincronització, on s’estableixen les necessitats per a la següent reunió.

Per a la realització del projecte es van prendre algunes decisions sobre la tecnologia que

usaríem, entre elles podem destacar: el projecte serà programat en un llenguatge d'alt nivell

orientat a objecte, C#. La seva estructura bàsica estarà formada per classes que interactuaran

entre elles utilitzant patrons i missatges. Per a la programació s'utilitzarà l'entorn MonoDevelop

amb el compilador Mico, que és un editor que està perfectament integrat amb Unity. Aquest ens

permetrà compilar, depurar i executar ràpidament sense trigar massa a sincronitzar els canvis

amb Unity.

El plantejament inicial és fer un joc de gran envergadura i parts ben diferenciades per a que

es puguin realitzar en tres blocs. Cada un d’aquests blocs serà realitzat per un component de

l’equip. Posteriorment el treball realitzat es sincronitzarà i s’integrarà per tal de que funcioni

conjuntament.

Seguidament proposarem els objectius que volem assolir amb el joc, i a continuació els

objectius individuals de cada membre.

16

1.2 OBJECTIUS DEL PROJECTE

L’objectiu principal d’aquest projecte és proporcionar les eines bàsiques per tal d’utilitzar la

tecnologia que ens ofereix Kinect per a interactuar amb el videojoc Launchageddon. Per tal

d’assolir aquest objectiu principal, he de plantejar els següents objectius:

 Dissenyar els mòduls que composaran aquest projecte.

 Aconseguir un bon reconeixement de la figura del jugador, un seguiment estable que

proporcioni dades fiables de la posició del cos.

 Seguir els moviments de les articulacions desitjades per tal de obtenir les dades per els

controls de moviment.

 Reconèixer esdeveniments per part del jugador, com fer lliscar la mà, polsar un botó o

simplement ajuntar les mans amb la finalitat de realitzar accions al videojoc.

 Gravar els moviments de les articulacions d’un jugador, per després reproduir la animació

en el model virtual. Aquesta part serà aplicada per les animacions dels personatges en els

moments en que el jugador no interactua amb el joc.

 Substituir el punter del ratolí per un altre controlat amb Kinect. En aquest cas s’haurà

d’interactuar amb la interfície d’usuari per polsar botons, lliscar a través dels menús i

seleccionar objectes entre d’altres.

 Provar aquesta tecnologia en altres jocs. Dissenyar controls específics per a altres tipus de

jocs com per exemple jocs infantils o jocs de tirs.

 Controlar els moviments del jugador en el videojoc, amb una càmera en primera persona

que permeti moure’s lliurement per l’escenari.

Un cop definits els objectius del projecte s’esmentaran els requeriments previs per dur-lo a

terme. El principal requeriment és el dispositiu extern Kinect i a continuació es detalla el seu

funcionament.

17

1.3 KINECT

Després de vint anys de desenvolupament, Microsoft Research (MSR) treu a la llum la

tecnologia de Kinect. Aquest va ser anunciat per primer cop el dia 1 de juny de 2009 en la

“Electronic Entertainment Expo” amb el nom de Project Natal.

El nom en clau “Project Natal” fa referència a la tradició de Microsoft en emprar ciutats

com a noms dels seus projectes. Aquest aquet cas, es refereixen a la ciutat brasilina Natal, com a

homenatge al país d’origen del director de Microsoft, qui va incubar aquest projecte, Alex

Kipman. Un dels altres motius, és que Natal té un significat que fa referència al naixement, i

reflexa l’opinió de Microsoft en el projecte com: “El naixement de la propera generació

d’entreteniment a la llar”.

No cal buscar molt per la xarxa per descobrir que l’empresa responsable del disseny de

Kinect és PrimeSense [PrmSns], qui curiosament, proporciona els controladors del dispositiu

“Open Source” adients per a treballar paral·lelament al Kinect SDK (“Software Developement

Kit” oficial, proporcionat per Microsoft).

PrimeSense és una empresa d’Israel, la qual ja s’ha expandit a tot el món. Creada l’any 2005

per Aviad Maizels, Alexander Shpunt, Ophir Sharon, Tamir Berliner i Dima Rais. L’any 2011,

aquesta va ser seleccionada per el MIT Technological Review [TecRev] com a una de les 50

companyies més innovadores del mon.

Actualment, el desenvolupament de videojocs utilitzant la tecnologia de Kinect s’està

explotant a la videoconsola de Microsoft, però no trigarà gaire a utilitzar-se en ordinadors de

forma oficial, ja que avui en dia no es desenvolupen videojocs per a l’ordinador compatibles amb

Kinect de forma oficial.

18

El sensor Kinect té un disseny de barra horitzontal, amb una amplada de 28 centímetres,

connectat a una base circular articulada per tal de poder abastir verticalment el seu camp de

visió. Ha estat dissenyat per a ser col·locat a 1 o 1,6 metres d’alçada. A continuació s’analitzaran

els elements que composen aquest dispositiu.

1.3.1 Components

Figura 9. Components bàsics de Kinect

Kinect (figura 9), està principalment composat per:

 Chip de processament d’imatge (PS1080-A2).

 512 Mb de RAM SDDR2

 Una càmera (COLOR CMOS) amb una resolució de 640x480 RGB 30fps VGA

 Una càmera d’infrarojos (IR CMOS) amb una resolució de 320x240.

 Un projector d’infrarojos.

 Un motor per calibrar verticalment la seva posició.

 Un ventilador per la refrigeració.

 4 Micròfons (Sampling Rate: 16Hz)

 Un acceleròmetre per calibrar la imatge.

Un cop esmentats els components, en el següent punt s’explicarà quina funció realitza cadascun

d’ells i de quina forma Kinect utilitza les dades obtingudes.

19

1.3.2 Com funciona Kinect?

Abans de l’arribada de la tecnologia de PrimeSense, la majoria de controladors de sistemes

per gestos es basaven en els mètodes denominats com “time-of-light” que es van caracteritzar

per la detecció de la variació de posició d’un objecte físic respecte a un sistema fixe.

Kinect no només es centra en la posició de l’objecte, sinó que també es dedica a detectar i

codificar els diferents paràmetres dependents de la llum reflectida per els objectes.

Per tal de conèixer a la distància a la que es troba l’usuari, l’emissor d’infrarojos emet una

gran quantitat de punts, formant uns patrons com els que observem a la figura 10 (b i c). Aquests

no poden ser captats per l’ull humà, però si per una càmera d’infrarojos. Aquesta detecta tots els

punts emesos i Kinect comença a calcular la disparitat per a cada píxel , la diferència entre on es

troba el punt al ser projectat i on es deuria trobar en la projecció. Aquesta tecnologia és

anomenada Structured-light Scanner (Escàner de llum estructurada).

Figura 10. Visió nocturna de l’emissor d’infrarojos

Combinant les dades de la càmera de llum infraroja amb el sensor monocromàtic CMOS es

genera una malla de punts, mitjançant els quals es pot generar una imatge en tres dimensions.

Acte seguit, el chip de processament d’imatge descompon la imatge en els paràmetres necessaris

per al seu tractament. Es centra en cerca de formes semblants a la humana (cap, braços, cames i

pit) i el càlcul de com es podrien moure dins de l’entorn, fixant-se en les zones amb les que pot

col·lisionar i els moviments que pot realitzar, a més de tractar d’esbrinar on estaran situades en

un instant de temps posterior gràcies a una base de dades d’aproximadament 200 postures

comuns de persones. La major part d’aquests càlculs són realitzats pel software dissenyat per

Microsoft.

20

Les càmeres tenen un sistema de detecció que les permet identificar a 6 persones que es

trobin en el seu camp de visió, però a l’hora de calcular els paràmetres necessaris per a la

interacció està limitat a dues persones.

S’obtenen imatges de la càmera a una resolució de 640x480 píxels i ho realitza a 30fps.

Degut a la baixa resolució que ens proporciona, els models no posseeixen una gran definició.

Els 4 micròfons s’encarreguen de localitzar la font acústica i suprimir el soroll d’ambient,

permetent així un reconeixement de veu precís sense fer ús d’un micròfon quotidià. La

videoconsola Xbox 360 ja implementa controls bàsics per veu tant en la seva interfície com en els

jocs, intensificant l’experiència de joc.

El chip de processament d’imatge és el cervell de Kinect, ja que totes les dades dels sensors

passen a través d’ell abans de transmetre el mapa de profunditat refinat i la imatge a color a la

videoconsola o en aquest cas a l’ordinador.

Tot aquest hardware, necessita uns controladors per aprofitar les seves funcionalitats. El

principal problema amb el que ens vàrem trobar, és que Unity no ens permet fer ús de llibreries

externes amb la seva versió gratuïta. No obstant, vam descobrir OpenNI.

1.3.3 OpenNI (Descripció i funcionament)

OpenNI és una organització que promou la compatibilitat i interoperabilitat de dispositius,

aplicacions i middleware de interacció natural, d’aquí el nom OpenNI “Open Natural Interaction”.

Aquesta organització ha creat una llibreria per realitzar el seguiment de l’esquelet (Skeleton

Tracking), que és inclosa al paquet anomenat NITE (PrimeSense’s Natural Interaction Technology

for End-user), i amb ell no cal utilitzar llibreries externes. NITE és un “middleware” que percep el

món en tres dimensions basant-se en les imatges de profunditat proporcionades per Kinect, i

trasllada aquestes percepcions en dades significatives de la mateixa manera que ho fem els

éssers humans. Aquesta llibreria ens permet realitzar el seguiment del cos de l’usuari aportant les

coordenades a l’espai de cadascun dels punts d’interès, així com extremitats i articulacions.

21

Figura 11. Visió per capes de l’adquisició i processament de la profunditat

Per tant, OpenNI permet comunicar-se amb el sensors d’àudio, vídeo i el sensor de

profunditat, mentre que proporciona una API que serveix de pont entre el hardware de l’equip,

NITE Middleware i les aplicacions i interfícies del sistema operatiu. L’idea principal és facilitar el

desenvolupament d’aplicacions que funcionin amb interacció natural, com els gestos i

moviments corporals.

La figura 11 ens mostra una visió per capes de la producció, adquisició i processament de

les dades de profunditat, fins la capa d’aplicació que ho utilitza per formar un mòdul basat en la

interacció natural.

 La capa més baixa és el dispositiu Kinect, el qual s’encarrega de l’adquisició física on

s’obtenen les dades sensorials i el conjunt d’imatges en profunditat.

 La següent capa en forma de “C” representa OpenNI. Proporciona interfícies de comunicació

que interaccionen tant amb els controladors del dispositiu com amb els components

middleware els quals analitzen les dades del sensor.

22

 La capa d’adquisició de dades del sensor (Sensor Data Adquisition) és una simple API que

permet al host utilitzar el sensor. Aquest mòdul és compatible amb OpenNI.

 La capa NITE Algorithms és l’intermediari de la visió per computador i també està connectada

a OpenNI. Es processen les imatges de profunditat generades pel dispositiu.

 La capa NITE Controls és una capa aplicativa que estableix el marc d’aplicació per a la

identificació dels gestos i els controls basats en gestos de la interfície d’usuari. Aquesta es

comunica amb la capa anteriorment explicada a través de les interfícies estàndards i tipus de

dades definits per OpenNI.

 La capa superior és la Natural Interaction Based Application. Aquesta aplicació pot utilitzar els

controls NITE i també pot apropar-se directament a OpenNI per tal d’accedir a les dades

generades per els algoritmes NITE o fins i tot, les dades generades per el sensor.

Tal i com s’indica a l’apartat anterior, les llibreries del paquet NITE ens proporcionen la

capacitat de realitzar el “Skeleton Tracking”. Aquest algoritme es capaç de detectar la figura

humana i les seves articulacions tal i com es mostra a la figura 12.

Figura 12. Punts de l’esquelet que reconeix OpenNI

La figura 13 representa el sistema de coordenades i la representació de l’esquelet quan el

jugador està de cara a la càmera. Un cop obtingudes les posicions inicials dels components,

comença el càlcul de les rotacions i desplaçaments corresponents als moviments del jugador. És

important posicionar-se a una distància adequada per obtenir un funcionament correcte. Segons

les especificacions, la distància idònia per al reconeixement es troba al voltant dels 2,5 metres.

23

Al reconèixer l’esquelet, ens retorna la posició i orientació de les articulacions. Les

posicions de les articulacions són molt més precises que els angles.

Figura 13. Imatge en profunditat i reconeixement de l’esquelet

Les orientacions de les articulacions es donen com a una matriu de rotació 3x3. Aquesta

matriu, representa la rotació entre les coordenades locals de la articulació i les coordenades del

món. La primera columna és la direcció de les articulacions del eix X, donades com vector de tres

dimensions en el sistema de coordenades del món. La segona columna, és la direcció de les

articulacions a l’eix Y, i la tercera la direcció a Z [MRot].

La posició neutral és la posició T, mostrada a la figura 12. En aquesta posició, cada una de

les orientacions de les articulacions està alineada amb el sistema de coordenades del món. Així

doncs, la seva orientació és la matriu d’identitat.

Un problema comú es troba quan alguna de les articulacions no és captada per la càmera o

té una mala il·luminació. En aquests moments, entren en acció les heurístiques.

1.3.4 Heurístiques de l’esquelet

Les heurístiques de l’esquelet fan referència a un conjunt d’heurístiques que proporcionen

el comportament més plausible a l’esquelet quan les articulacions no tenen fiabilitat. Això

succeeix en el moment en que aquestes es perden o s’oculten. Quan una articulació té una

posició o orientació indefinida, les heurístiques s’encarreguen d’omplir aquestes dades amb

valors raonables.

D’aquesta manera, podem obtenir dades de totes les articulacions a cada moment, sense

haver de parar l’execució quan no reconeix bé una extremitat o articulació.

24

25

2 DESENVOLUPAMENT

En aquest capítol s’exposarà detalladament el treball realitzat al llarg del projecte. Aquest

treball s’ha dividit en mòduls, on cadascun d’ells s’encarrega d’una sèrie de funcionalitats. A

continuació es detallarà el procés seguit per al desenvolupament de totes les parts del projecte.

Aquest procés consta de quatre fases principals a través de les quals verificarem el correcte

funcionament i agilitzarem el procés d’integració entre els mòduls. Aquestes fases són: anàlisi,

disseny, implementació i validació.

La figura 14 mostra una visió global dels mòduls en que es divideix el projecte.

Figura 14. Diagrama de mòduls del projecte

26

Tal i com podem observar al diagrama, el projecte està dividit en tres grups principals. El

primer grup, situat a l’extrem superior, està format per tots els mòduls relacionats amb Kinect

que s’utilitzen al videojoc. Aquest utilitza les dades que ens proporciona el dispositiu extern per

oferir les funcionalitats que permetin controlar i interactuar amb tots els elements.

Al segon grup, situat a l’esquerra, es troben els mòduls que estan vinculats únicament a

“Launchageddon” i que formen part del procés d’integració.

El tercer i últim grup són els mòduls que s’han implementat fora de l’abast del videojoc.

Aquests han estat dissenyats amb la finalitat de crear controls per a diferents tipus de jocs, per

tal d’investigar el potencial d’aquesta nova tecnologia en diferents gèneres i obtenir conclusions

que ens permetin veure si la tecnologia Kinect és un control més o podria arribar a substituir a la

resta.

A continuació es realitzarà una breu descripció del funcionament dels mòduls:

Tractament de les dades: A partir de les dades que ens proporciona Kinect s’apliquen les

rotacions i translacions corresponents a un model per tal que realitzi els mateixos moviments que

nosaltres.

Obtenció dels vectors de les mans: Un cop podem controlar el model, tenim les posicions de les

articulacions de l’esquelet i tractem les dades provinents de les mans per establir uns controls

bàsics.

Obtenció del vector del tors: De la mateixa manera que es tracten les mans, tractem la posició

del tors per obtenir un controlador de moviments en base a la nostra posició.

Reconeixement d’esdeveniments: S’aïllen les dades de les mans, per posteriorment ser capaços

de reconèixer moviments del jugador que seran interpretats com a accions durant el joc.

Interacció amb la interfície d’usuari: Es substitueix el punter del sistema per un propi amb la

finalitat que l’usuari pugui interactuar amb els elements del videojoc mitjançant els controls

creats en el mòdul d’obtenció dels vectors de les mans.

Captura d’animacions: A través del primer mòdul, es defineix una estructura de dades on

s’emmagatzema la informació dels moviments realitzats per l’usuari amb la finalitat que el model

els reprodueixi en certs moments durant el joc.

27

Selector Circular: Consistent en una interfície governada pels esdeveniments del jugador, que

faciliten l’experiència del joc amb aquest tipus de control.

Càmera en primera persona: Permetrà a l’usuari desplaçar-se arreu de l’escenari podent triar

un control clàssic (teclat i ratolí) o un control mitjançant Kinect.

Disseny de models: A partir d’un model amb esquelet descarregat d’internet, s’han generat els

personatges principals del videojoc realitzant modificacions, tant a l’estructura com en les

textures, a través de 3D Studio Max.

Selector de personatges: Mòdul encarregat de representar per escena el moment en el que

l’usuari tria l’equipatge abans de jugar el nivell.

Les següent agrupació de mòduls anomenada “APLICACIONS TEST”, té com a finalitat

provar la comoditat dels controls amb Kinect en altres tipus de jocs, en aquest cas tres:

KINECT Castle Logix: S’ha desenvolupat una petita demostració d’un joc existent anomenat

“Castle Logix” . Un Joc infantil on els nens han d’apilar peces de fusta, formant les construccions

indicades a l’inici.

Controls per a un joc de conducció: Controls per simular l’acció del volant amb les dues mans en

un videojoc de conducció, com per exemple de cotxes o avions.

Controls per a un joc de guerra: S’han dissenyat controls alternatius per comprovar la seva

aplicació en un joc de guerra. Aquest tipus de joc ha estat triat al poder utilitzar les dues mans

per apuntar amb una arma.

Un cop presentats tots els mòduls, en els següents punts s’explicarà tot el procés de disseny i

desenvolupament que s’ha dut a terme.

2.1 Tractament de les dades

Les dades que ens proporciona Kinect, es basen en les articulacions que es generen a partir

de la captura del nostre cos. Aquest mòdul té com a objectiu aplicar tots els nostres moviments a

un model 3D. A continuació s’exposen els conceptes necessaris per a la implementació.

28

El fet de que l’usuari pugui controlar els moviments corporals del model, permetrà que

durant el joc, al realitzar el llançament del personatge i quan aquest es trobi a l’aire, adopti les

mateixes postures que el jugador intentant assolir l’objectiu prioritari del joc, obtenir la màxima

destrucció possible.

Les dades proporcionades per OpenNI s’han d’aplicar a un model 3D per tal que executi els

mateixos moviments que els que es capturen a temps real. En el cas d’aquest projecte hem

obtingut un model gratuït a través d’internet, amb un esquelet que conté les articulacions

necessàries equivalents a les que reconeix Kinect. El format del model és FBX i Unity és capaç

d’importar aquests i altres formats al projecte com a GameObject (classe base per a tots els

components d’una escena de Unity).

Els elements amb aquesta classe poden contenir altres GameObject, com en aquest cas, on

cadascuna de les articulacions es troba vinculada al model principal de forma jeràrquica. El nostre

model posseeix moltes més articulacions de les que necessitem, però això no suposa cap

problema degut a que no és necessari utilitzar-les totes. Un cop definits els conceptes d’aquest

mòdul podem procedir al seu desenvolupament.

2.1.1 Implementació

El primer pas a dur a terme és vincular cadascuna de les articulacions de l’esquelet del

model 3D a les que ens proporciona Kinect. Les articulacions del model 3D que no estan

vinculades no cal tractar-les, ja que al realitzar els moviments, aquestes prendran noves posicions

respecte a les articulacions actives.

A l’inici, el model es troba en la seva posició inicial per defecte “T” ja que encara no s’ha

calibrat a l’usuari. En aquest instant es guarden les rotacions relatives de cada articulació

respecte la rotació del model. Necessitem guardar aquests valors ja que s’establiran les noves

rotacións de cada articulació, i necessitem mantenir les rotacions relatives per al nostre model.

OpenNI posseeix una classe anomenada “UserTracker” encarregada de comprovar en tot

moment el nombre d’usuaris que es troben davant del dispositiu. Comprovarem la informació

que aquesta ens proporciona fins que ens informi de que ja s’ha reconegut a l’usuari, aleshores

comença el procés principal d’aquest mòdul.

29

A cada cicle d’execució s’actualitza l’esquelet del model en base a l’usuari que ha reconegut

Kinect. L’articulació que es pren com a principal és el tors. Aquesta es pren com a referència ja

que és el punt més proper al nostre centre de massa. Així doncs, aquesta serà la primera

articulació a comprovar a cada iteració. Un cop s’actualitza la posició de l’articulació principal, es

comproven una a una, la resta d’articulacions a través d’un mètode on es rep com a primer

paràmetre l’articulació a actualitzar i com a segon una estructura de dades anomenada

“SkeletonJointTransformation” que conté la informació respecte a la posició i orientació de

l’articulació.

L’orientació de les articulacions s’actualitza en base a la confiança, una variable

proporcionada per OpenNI que ens indica fins a quin punt hi ha una certesa de la nova posició.

Els rangs utilitzats per aquesta variable van de 0 a 1. Si el valor d’aquesta és major a 0.5,

procedim a la actualització de l’articulació. L’estructura de dades anteriorment esmentada ens

proporciona la matriu de rotació 3x3 de l’articulació, la qual hem de convertir en el tipus

quaternió [Quat] ja que és el tipus de dades amb la que treballa Unity internament al realitzar

les rotacions.

Per modificar la rotació de l’articulació utilitzarem la funció Quaternion.Slerp() que rep com

a paràmetre la rotació inicial i la rotació final i s’encarrega de realitzar aquesta rotació en base al

temps i no al nombre d’execucions per segon. A l’actualitzar la posició treballarem amb la

estructura Vector3, i totes les posicions seran calculades en base a la posició de l’articulació

principal, el tors. D’aquesta manera, al modificar la posició de les articulacions de l’esquelet

treballarem sempre amb la posició local.

Arribat aquest punt, podem aplicar els nostres moviments sobre un model 3D. No obstant,

aquest mòdul només s’aplicarà en certs moments del joc i necessitem obtenir uns controls per

poder interactuar amb ell de la mateixa manera que ho fem amb el teclat i el ratolí.

2.2 Obtenció dels vectors per al control

En aquest apartat es desenvoluparan els mòduls d’obtenció dels vectors de les mans i del

tors, que tracten les dades que ens proporciona Kinect corresponent a les mans, obtenint

finalment un vector normalitzat al que podran accedir la resta de mòduls.

30

Aquest format intenta ser semblant al que proporciona la resta de dispositius de control

com per exemple els “Joysticks Analògics”, per facilitar la feina en el moment d’utilitzar-lo.

Un cop som capaços de reconèixer les parts principals de l’esquelet humà, podem centrar-

nos en l’ús de les mans per als controls bàsics en el joc.

Un dels punts forts d’utilitzar Kinect en la interacció és que podem controlar elements d’un

món virtual tridimensional a partir de les tres dimensions del nostre. Fins ara, utilitzàvem el

teclat, el ratolí o altres dispositius, on cada botó o sensor com a màxim pot d’encarregar-se de

dues dimensions.

Per aquest motiu, a l’hora de representar el control de les nostres mans sobre el videojoc

necessitarem un Vector3D per poder registrar el desplaçament en cada una de les dimensions.

Unity ens proporciona una classe anomenada Vector3, que té tres components. Cadascun

d’aquests és un número en punt flotant encarregat de definir un punt de l’espai en el seu eix

coordenades. El primer valor fa referència a l’eix X, el segon al Y i el tercer al Z (figura 15).

Figura 15. Exemple de la posició de la mà representat amb un Vector3

Inicialment, l’idea principal era poder utilitzar les mans sense la necessitat d’estar

capturant a cada instant la resta d’elements del cos. Per fer això no cal reconèixer tot l’esquelet, i

per tant, teòricament l’usuari pot interactuar a una menor distància del dispositiu.

La detecció per a una mà és molt ràpida i consumeix molts menys recursos, ja que només

tracta el punt de la mà. El focus de la mà, és a dir, el punt inicial en que la mà se suposa que es

troba en el seu punt d’origen, es detecta a traves d’un moviment “swipe”, que bàsicament es

basa en desplaçar la mà d’un costat a l’altre fins que el dispositiu reconeix el punt a seguir.

31

Un cop tota la feina estava realitzada per a una sola mà, van començar a sorgir els

inconvenients. El primer inconvenient va ser reconèixer les dues mans alhora. Al no tenir un

esquelet per tal d’ubicar les dues mans, si aquestes s’encreuaven, el reconeixement es tornava

imprecís i inestable. El control de la mà dreta passava a pertànyer a la mà esquerre i a l’inrevés

depenent de com interpretés l’encreuament de mans.

La solució més coherent que es va trobar, va ser obtenir la posició de les mans a través del

reconeixement de l’esquelet. D’aquesta manera, a través de les llibreries proporcionades per

OpenNI, tenim accés a la posició de cada una de les parts del cos en temps real.

Les dades que ens proporciona l’esquelet han de ser tractades, ja que ens mostren la

posició dels elements desitjats en el món.

El primer pas per a utilitzar les mans com a controlador és trobar la millor representació

d’aquestes. Per a que les distàncies fossin equitatives, el primer plantejament va ser agafar la

posició de les mans en base a un punt de referència: el cap. Utilitzant aquest mètode,

teòricament es facilitava el procés de calibratge, ja que la distància entre les mans i el cap no es

veia alterada en base a la distància entre la càmera i el jugador, permetent així trobar una escala

suficientment bona per a treballar.

Al realitzar les proves, ens vàrem adonar de que al poc temps de mesurar la posició de les

mans, aquestes començaven a variar, disminuint cada cop més la precisió inicial. A partir

d’aquest error, es van dur a terme un seguit d’alternatives on finalment es va escollir la

definitiva, treballar amb l’esquelet sencer.

2.2.1 Implementació

Un cop definides les funcionalitats d’aquest mòdul es procedeix a la implementació del

mòdul anomenat obtenció dels vectors de les mans (figura 16). Aquest, s’executarà en mode

recursiu mentre el videojoc estigui funcionant i calcularà les dades calculades als mòduls que les

necessitin.

Ubiquem l’esquelet generat a partir de la captura de Kinect en el món, i recollim les

posicions absolutes dels elements que ens interessen. D’aquesta manera obtenim una posició

més fiable. Un cop obtinguda la posició del món, es necessari establir un focus, que serà la

32

posició a la qual considerem inicial. Per a obtenir la posició relativa al focus, caldrà de restar la

posició en aquell instant al punt de focus.

Figura 16. Diagrama de flux per a la obtenció de les dades de les mans

Arribat aquest punt, ja posseïm un vector3D amb la informació de la posició relativa de la

mà. Fins ara només podem assegurar que la posició inicial serà un vector amb els seus

components a zero, ja que no hi ha una escala establerta per a la resta de posicions. Degut a

això, el següent i últim pas és normalitzar aquest vector a uns valors que siguin coneguts i

semblants als que ofereixen la resta de dispositius externs. S’ha decidit utilitzar un rang de -1 a 1

ja que per a treballar amb ell és molt més còmode que tingui com a màxim i mínim un valor

33

unitari. Aquest últim pas, ofereix una major estabilitat en el control, ja que el vector mai superarà

els valors definits com a màxim i mínim. El vector resultant, s’utilitzarà en el videojoc per moure

o desplaçar un objecte a través d’un escenari en el editor de nivells, o intentar controlar el vol

mitjançant la teva posició.

2.2.2 Tractament de les dades del tors

Seguint el mateix procés que ens proporciona els vectors de les mans, s’ha creat un mòdul

anomenat obtenció del vector del tors, on obtenim un vector normalitzat amb la posició del tors.

Aquest, ha estat dissenyat explícitament per controlar els desplaçaments durant el joc i pren un

paper molt important en la càmera en primera persona i el llançament amb el vestit volador.

2.3 Reconeixement d’esdeveniments

En aquest apartat es desenvoluparà el mòdul de reconeixement d’esdeveniments, que serà

l’encarregat de reconèixer els desplaçaments que realitza l’usuari amb les mans amb la finalitat

de comunicar-ho als mòduls que l’observin.

El problema que es presenta en el moment en que no utilitzem un dispositiu extern com un

teclat és que no disposem de cap botó. Situacions tant simples com una pausa en un joc, un canvi

de càmera o d’altres, requereixen una prèvia dedicació per tal de definir esdeveniments el més

còmodes possibles i intuïtius per a l’usuari final. Sembla un concepte bastant senzill, però no es

pot abastar tota la seva complexitat fins que no s’implementa i s’observa la reacció d’una una

persona aliena al projecte. Per tal de reemplaçar els botons, hem definit un conjunt

d’esdeveniments que permetran la interacció amb el videojoc.

El primer dels esdeveniments a definir va ser la detecció de les mans juntes, ja que el vam

trobar fàcil de realitzar per l’usuari, útil i intuïtiu. Aquest és l’únic esdeveniment on hi interactuen

les dues mans. Més tard es van definir els cinc esdeveniments bàsics per a cadascuna de les

mans:

34

 Desplaçament a la dreta

 Desplaçament a l’esquerra

 Desplaçament cap amunt

 Desplaçament cap avall

 Polsar (Desplaçament cap endavant)

Cada mà disposarà d’aquests cinc esdeveniments, així doncs, finalment obtenim un total

d’onze esdeveniments per poder interactuar amb el videojoc. Els desplaçaments es basen en fer

lliscar la mà d’una manera constant en el sentit desitjat. El mòdul implementat s’encarrega de

detectar aquest desplaçament, identificar de quin esdeveniment es tracta i finalment comunicar-

ho durant un període de temps. L’esdeveniment de polsar, tal i com el seu nom indica, consisteix

en realitzar un desplaçament en l’eix Z, és a dir, moure la mà en la direcció a la càmera d’una

manera constant com si la nostre intenció fos prémer un botó.

Aquests esdeveniments seran usats per desplaçar-se entre els diferents botons d’una barra

d’eines a l’editor de nivells, seleccionar diferents opcions en un menú del joc o simplement

afegiran noves funcionalitats de joc com l’activació d’atacs especials.

La posició de cadascuna de les mans s’obtindrà directament de l’esquelet. Treballarem

amb les coordenades no normalitzades, ja que per ser capaços de detectar el moment en el que

ajuntem les dues mans, necessitem conèixer les seves posicions respecte el mon. D’aquesta

manera, quan la posició de les dues mans és la mateixa (amb un cert marge d’error), el mòdul

ens avisa del que ha succeït. Una altre raó per no emprar les coordenades normalitzades, és que

al sobrepassar els límits establerts, la posició s’estanca en el seu valor màxim, i per tant, no

queden enregistrades totes les coordenades per les que ha passat la mà durant el desplaçament.

Les coordenades on es troba la mà al llarg de l’execució s’emmagatzemen en llistes de 10

posicions. Cada mà necessita tres llistes, una per a cada eix de les coordenades. Així doncs, per

tractar ambdues mans declarem sis llistes.

Després de moltes proves per comprovar el correcte funcionament del reconeixement,

diverses persones van aportar les seves sensacions amb la finalitat d’afinar la sensibilitat

d’aquest. A partir d’aquestes aportacions externes, es va decidir que aquests desplaçaments no

haurien de tenir una durada superior al mig segon. D’aquesta manera, el cicle d’execució del

mòdul, que es l’encarregat d’executar el codi cada “frame”, va ser limitat a executar-se cada 50

ms. Si tenim en compte que es recollirà una mostra en aquests intervals de temps i que al llarg

35

del desplaçament es recolliran 10 mostres, estem tractant un esdeveniment amb durada de mig

segon.

Una màquina d’estats serà l’encarregada d’indicar quin esdeveniment s’ha produït.

Definirem els cinc esdeveniments anteriorment esmentats i hi afegirem l’estat “IDLE”, que és el

estat en el que en trobem per defecte quan no es produeixen esdeveniments i que està associat

al concepte de inactivitat. Es crearà una màquina d’estats per a cada mà, així doncs es defineixen

“leftHandState” i “rightHandState”.

2.3.1 Implementació

S’implementa el mòdul anomenat reconeixement d’esdeveniments. Aquest, igual que el

mòdul anterior, s’executarà durant tot el joc.

Amb les llistes declarades i la màquina d’estats llesta, el primer pas a l’iniciar aquest mòdul

és inicialitzar les posicions de les mans a zero i definir que l’estat inicial per ambdues mans

sempre serà “IDLE”. Quan un esdeveniment sigui detectat, canviarà el seu estat segons el

desplaçament que es reconegui i pocs segons després, l’estat tornarà a ser l’inicial.

Segons s’ha esmentat en el punt anterior, hem limitat el nombre de cicles d’execució degut

a que depenent de la computadora que executa el joc o dels elements que es mostren a l’escena,

el nombre de execucions és variable. D’aquesta manera evitem que executi masses vegades el

mètode principal, amb la conseqüència d’haver de realitzar el moviment molt més ràpid per tal

de que sigui detectat , o que no l’executi les suficients, amb la conseqüència d’haver de realitzar

els moviments amb molta lentitud. El nombre d’execucions s’ha establert en 20 per segon,

equivalent a la velocitat a la que es realitzaria el reconeixement si s’executés sense estar limitat

en un ordinador a 20 fps (Frames Per Second). Aquesta seria una execució massa lenta com per

jugar-hi còmodament.

El nombre d’execucions, va acord tant amb la duració del moviment com amb la quantitat

d’informació útil que es recull. Quantes més mostres prenguem, més carregarem l’execució del

videojoc, afectant així a la velocitat final del videojoc.

36

Figura 17. Diagrama de flux del reconeixement d’un desplaçament genèric

37

Tal i com s’indica al diagrama de flux de la figura 17, el primer pas en la comprovació dels

esdeveniments és actualitzar la posició de les mans. Seguidament, es comprova si les mans estan

juntes a través d’un mètode on es calcula un radi d’acció de cadascuna de les mans i es verifica si

aquests dos radis col·lisionen.

Si és així, es llença l’esdeveniment de les mans juntes i es torna a l’inici. En el cas de que les

mans no es trobin juntes, comencem a omplir llistes amb les coordenades pertanyents a la

posició de les mans. Si la llista encara no conté deu mostres no procedim a l’anàlisi del contingut,

sinó que afegim la nova posició i tornem a l’inici. Quan la llista ja és plena, s’elimina la mostra

més antiga de la llista pertanyent a la posició zero i s’afegeix la nova mostra obtinguda al final.

D’aquesta manera, sempre sabem que els elements que es troben a la llista estan ordenats

segons l’instant de la captura.

Arribat aquest punt, entrem en un bucle on s’analitzarà el contingut de cadascuna de les

llistes per tal de detectar els desplaçaments realitats per l’usuari. Es recorren les llistes

comprovant que cada element compleixi una condició respecte el seu element anterior.

En el cas d’un desplaçament a la dreta, la llista conté l’eix de coordenades X de les

posicions, i es comprova que cada element és major a l’anterior i a la inversa si es tracta d’un

desplaçament a l’esquerra. Si no es compleix alguna condició, la llista deixa de ser analitzada per

tal de no ocupar els recursos disponibles.

Cada cop que es compleix una condició s’acumula el valor absolut de la diferencia entre la

posició anterior i la actual, obtenint al final un desplaçament total. Si es compleixen totes les

condicions, finalment es comprova que el desplaçament total hagi estat igual o superior a la

distància entre el canell i el colze de l’usuari. Si la condició es compleix es llença l’esdeveniment.

2.4 Interacció amb la interfície d’usuari

En aquest apartat es desenvoluparà el mòdul d’interacció amb la interfície d’usuari,

encarregat de substituir el punter del sistema per un de propi amb la finalitat de controlar el

videojoc.

El punter de sistema és l’encarregat d’interactuar amb tots els elements del joc. Els

esdeveniments interns del motor gràfic que es generen quan aquest es situa sobre d’un element

38

de la interfície gràfica d’usuari estan programats en base a la posició del ratolí. Per tant, si volem

que el nostre punter pugui interactuar de la mateixa manera que ho fa el ratolí necessitarem

saber si aquest es troba situat sobre elements de la GUI i fer ús dels esdeveniments per simular

l’acció dels botons del ratolí.

Per representar el nostre punter s’utilitza un Label, que no és més que una textura pintada

sobre l’interfície d’usuari. Els Labels al igual que els botons se’ls indica una posició i una

grandària. Per indicar tots aquests valors s’utilitzen els següents quatre paràmetres:

1- Posició X: Aquesta posició pren com a zero el costat superior esquerra de la pantalla (Top-Left).

2- Posició Y: També pren com a zero la posició de l’anterior.

3- Grandària X: Especifica l’ample de la imatge en píxels.

4- Grandària Y: Especifica l’alt de la imatge en píxels.

Un cop especificades les variables, finalment s’indica la textura que volem utilitzar. En

aquest cas, s’emprarà un punter semblant al que es proporciona per defecte a Windows,

caracteritzat per concordar amb l’aspecte del videojoc. Unity proporciona les eines necessàries

per ocultar el punter del sistema, d’aquesta manera el nostre nou punter serà l’únic que es

representi a la pantalla (figura 18).

Figura 18. Substitució del punter del sistema per un propi.

39

Moviment del punter

Ara que disposem del nostre punter, cal implementar el moviment d’aquest amb suavitat i

comoditat per l’usuari. La posició inicial d’aquest, serà per defecte el centre de la pantalla per

una major comoditat per a l’usuari. A diferència d’un ratolí, la posició de la mà es troba fixe en un

punt, és a dir, la posició inicial de la mà serà interpretada com la posició d’origen del punter. Per

tant, al ser desplaçada a un altre punt i tornar al centre, el punter també haurà de tornar al

centre de la pantalla. El ratolí pot ser aixecat de la superfície on llisca per abastir una superfície

més extensa de pantalla, ja que al variar la sensibilitat és necessari molt més espai per abastir la

pantalla complerta.

Per implementar aquest moviment, partirem sempre de la posició inicial, i li sumarem la

meitat de la grandària de la pantalla multiplicada per la posició de la nostra mà, que té un rang

d’entre 1 i -1. D’aquesta manera, si la mà segueix a la seva posició inicial, el punter no es

desplaçarà. La formula utilitzada per aquest càlcul és la següent:

Posició_X = (Ample_Pantalla/2)+((Ample_Pantalla/2)*Desplaçament_Ma_X)

Posició_Y = (Alçada_Pantalla/2)+((Alçada_Pantalla/2)*Desplaçament_Ma_Y)

La velocitat del desplaçament ha de ser la mateixa per a tots els ordinadors, i per tal de que no

variï depenent de la potència l’hem de realitzar en base al temps.

Interacció amb els elements del videojoc

La interacció amb elements com el botons és un punt complex ja que Unity no proporciona

cap mètode per modificar la posició del punter. Això és degut a que el punter que s’utilitza per

defecte, és el punter del sistema operatiu, com a la gran majoria d’aplicacions.

Una opció per a resoldre aquest problema és importar funcions de llibreries externes del

sistema operatiu, com pot ser “User32.dll” que posseeix una funció que ens permet modificar la

posició del punter del sistema, o “System.Windows.Forms.dll” que també proporciona una funció

amb aquestes característiques. No obstant, la versió de Unity amb la que treballem no ens

permet importar llibreries externes, ja que la nostre llicència és gratuïta.

40

D’aquest mode, un cop descartada la importació de llibreries externes, s’ha buscat una

solució alternativa que solucioni el problema i ens proporcioni una experiència semblant a l’ús

del punter del sistema operatiu.

2.4.1 Implementació

S’implementa el nou punter del videojoc a través del mòdul d’interacció amb la interfície

d’usuari. Aquest mòdul només s’executarà a l’hora d’interactuar amb elements pertanyents a la

interfície de l’usuari (GUI). La GUI està formada per tots els elements que es mostren per pantalla

i serveixen por donar suport a l’usuari, com els botons, les etiquetes o els menús. Per aquest

motiu posseeix mètodes per activar-la i desactivar-la.

El desplaçament del punter es realitzarà a partir del vector pertanyent a la mà dreta que

ens proporciona el mòdul obtenció dels vectors de les mans. Aquest vector s’haurà de reduir de

tres dimensions fins a les dues de la pantalla, i aplicar els valors obtinguts a les formules del

càlcul de posició. Amb aquestes formules ja som capaços de controlar el nou punter arreu de la

pantalla. És important controlar la posició del nou punter en tot moment, ja que el del sistema

està controlat per no sortir fora de la pantalla. Per aquest motiu es comprova en tot moment que

el apuntador es trobi dins dels marges de la pantalla, i si se’n surt, establir una posició màxima i

mínima tant en l’eix X com en el Y.

Si volem ser capaços de saber quan ens estem situats sobre d’un element de la GUI, l’única

alternativa plausible de la que disposem és utilitzar un “raycast” que ens proporciona Unity. La

finalitat d’aquest és llençar un raig des d’un punt de les coordenades de pantalla cap al món, que

col·lisionarà amb els objectes de l’escenari proporcionant accés a les seves característiques, i per

tant, permetent-nos interaccionar amb ells.

El raig serà llençat prenent com a punt d’origen les coordenades del nostre punter i la seva

direcció serà un vector que apunta endavant (figura 19). En el nostre cas ens interessen només

els elements que pertanyen a la GUI. Per aquest motiu i per tal d’optimitzar els recursos,

treballarem amb “Layers” amb la finalitat de separar tots els elements que es mostren per

pantalla en diferents capes. Així doncs ubicarem tots els botons i elements amb els que

interaccionar en una única capa, d’aquesta manera sabrem que només col·lisionarem amb els

objectes que ens interessen.

41

A l’hora d’indicar la posició de partida del raig és necessària fer una conversió de

coordenades pantalla (ScreenSpace) a coordenades món (WorldSpace). El seu paràmetre

d’entrada és la posició del nostre punter i ell genera el raig a les coordenades món, començant

en el pla de la càmera i passant a través de les coordenades X i Y de la pantalla. Les coordenades

de pantalla es defineixen en píxels. A la part inferior esquerra es troba el punt (0,0) i a la part

superior dreta es troba els valors màxims de les coordenades (Amplada de Pantalla, Alçada de

pantalla).

Figura 19. Representació d’un Raycast col·lisionant amb un objecte

Un cop tenim el raig enfocat a direcció desitjada, es llança el Raycast, indicant-li el tipus de

dades on rebrem la informació dels objectes amb els quals hem col·lisionat. Finalment li

indicarem quines capes són les que ens interessen per descartar la resta. Quan el raig detecta

l’objecte desitjat, ens proporciona la informació d’aquest, com la seva grandària, la posició, el

nom i d’altres. Un cop obtenim la informació, necessitarem fer ús dels esdeveniments per poder

interactuar amb els elements, com per exemple els botons.

Unity comprova sempre la posició del punter del sistema respecte els botons amb la

finalitat de fer-los destacar quan s’hi passa per sobre. Per simular aquesta acció amb el nostre

punter utilitzarem els esdeveniments del motor gràfic per emular que el punter està posicionat

sobre d’ell indicant la informació que ha retornat el “Raycast”. Això farà que el boto sobre el qual

estem posicionats destaqui sobre la resta (figura 20).

42

Figura 20. Diagrama de flux del punter controlat amb Kinect

43

El mòdul de reconeixement d’esdeveniments serà l’encarregat d’indicar-nos quins

desplaçaments realitza l’usuari al llarg de l’execució. Segons les proves realitzades per usuaris

aliens al projecte s’ha decidit definir dos esdeveniments per realitzar l’acció de polsar un botó. El

definit per defecte és l’esdeveniment polsar, que consisteix en fer avançar la mà cap endavant

d’una manera constant.

Molts usuaris no el trobaven suficientment còmode i se’ls va plantejar una alternativa. El

segon esdeveniment és ajuntar les mans. La mà dreta s’encarrega de desplaçar el punter i quan

l’usuari vol polsar un botó, apropa la mà esquerra fins la posició de la dreta.

Degut a la diversitat d’opinions respecte aquest tema, s’ha afegit la possibilitat de canviar el

mode de polsar a través de les opcions del videojoc.

Per tal de realitzar l’activació dels botons, s’ha d’implementar una estructura de control del

tipus “Switch” on diferenciarem els objectes sobre els que ens posicionem mitjançant el seu nom

o etiqueta. Finalment, hem d’afegir una nova condició a la declaració del botó, indicant-hi que

aquest podrà ser activat mitjançant el ratolí o una conjunció composta per el nom del botó sobre

el qual està situat el punter i un booleà que indica si l’usuari vol realitzar l’acció de polsar-lo.

2.5 Càmera en primera persona

En aquest apartat es desenvoluparà el mòdul encarregat del control de la càmera en

primera persona, amb la finalitat de que l’usuari pugui desplaçar-se lliurement arreu d’un

escenari.

Una càmera en primera persona emula la visió dels essers humans en el món real. Aquesta

permet un desplaçament arreu d’un món virtual sobre els eixos (X,Z) al igual que fem nosaltres al

caminar. A més dels desplaçaments, aquest tipus de càmera ens permet ser capaços d’observar

tot allò que ens envolta de la mateixa manera que nosaltres girem e inclinem el coll.

La finalitat d’aquesta classe serà oferir a l’usuari final la possibilitat de recórrer l’escenari a

jugar (tant si és un nivell predeterminat com un creat per ell mateix) abans de que comenci

l’acció. Això permetrà a l’usuari realitzar l’anàlisi dels punts febles, preparar millor l’estratègia a

seguir o simplement admirar un escenari concret.

44

Aquest mòdul ha estat dissenyada per ser compatible tant amb la tecnologia Kinect com

amb el teclat i el ratolí. Així doncs, si l’usuari no està convençut dels controls amb el cos, pot

optar a realitzar aquesta part del joc amb els dispositius externs clàssics. El control per defecte

serà Kinect, i si l’usuari ho desitja podrà canviar-ho al menú de les opcions.

Control amb teclat i ratolí

Començarem explicant la funcionalitat amb el teclat i el ratolí. El teclat, a partir de les

quatre tecles preestablertes “W”, ”S”, ”A” i ”D” podrà controlar els desplaçaments corresponents

endavant, enrere, esquerra i dreta tal i com es mostra a la Figura 21. El ratolí ens permetrà

observar el nostre entorn i girar 360 graus sobre el nosaltres mateixos. L’eix X del ratolí estarà

vinculat a la rotació sobre l’eix Y del món, descrivint així una rotació equivalent a mirar en

ambdós sentits abans de creuar un carrer. L’eix Y del ratolí estarà vinculat a la rotació sobre l’eix

X del món, realitzant una rotació equivalent al moviment del coll per mirar amunt i avall.

Figura 21. Comparació entre l’ús d’un Joystick Analògic, Kinect i teclat

Control amb Kinect

Aquest control es divideix en dos grans blocs. El primer és l’equivalent al control amb teclat

i s’encarrega de realitzar els desplaçaments. En comptes de quatre tecles, emprarem la posició

del tors normalitzada a través de mòdul d’obtenció del vector del tors. Així doncs, segons la

45

posició del nostre cos, ens desplaçarem arreu del món virtual utilitzant els eixos (X,Z) del vector

obtingut. El comportament serà exactament el mateix que al utilitzar un “Joystick analògic”. Si

ens trobem a la posició inicial i ens movem un pas endavant la càmera realitzarà un avenç

continu fins el moment en que ens tornem a situar en el punt d’inici (0,0). Aquest tipus de control

proporciona una major precisió en els moviments. Això és degut a que els valors obtinguts es

troben dins d’un rang predeterminat i no prenen un sol valor binari com en el cas del teclat

(Figura 21).

El segon bloc s’encarregarà de les rotacions de la càmera. De la mateixa manera que ratolí

ens proporciona dues coordenades pertanyents la seva posició, amb Kinect obtindrem un vector

amb les coordenades corresponents a la posició de la mà dreta. En aquest cas, s’aprofiten les

dades que ens proporciona el mòdul d’obtenció dels vectors de les mans. Al desplaçar la nostre

mà es realitzaran les rotacions pertinents sobre la càmera.

Quan parlem de les rotacions, utilitzarem com a mesura els angles d’Euler en graus.

Aquests constitueixen un conjunt de tres coordenades angulars que serveixen per a especificar

l'orientació d'un sistema de referència d'eixos ortogonals, normalment mòbil, respecte a un altre

sistema de referència d'eixos ortogonals normalment fixos. Van ser introduïts per Leonhard Euler

[AngEul] en mecànica del sòlid rígid per a descriure l'orientació d'un sistema de referència

solidari amb un sòlid rígid en moviment.

2.5.1 Implementació

S’implementa el mòdul anomenat càmera en primera persona. Aquest mòdul conté una

càmera pròpia i aquesta només s’utilitzarà en certs moments del joc, així doncs és necessari

proporcionar a la resta de mòduls que l’utilitzaran el control d’aquest per tal d’activar-lo i

desactivar-lo.

El control per defecte serà Kinect, però l’usuari tindrà l’oportunitat d’emprar el controlador

estàndard en el menú de les opcions.

Al iniciar-se l’execució, el primer pas a realitzar és el de bloquejar i ocultar el punter del

ratolí. S’inicialitzen els vectors a utilitzar a zero i s’estableixen la màxima i mínima rotació vertical

que s’aplicarà a la càmera. Horitzontalment no hi ha cap mena de limitació, l’usuari podrà donar

http://www.wikilingua.net/ca/articles/s/i/s/Sistema_de_referencia.html
http://www.wikilingua.net/ca/articles/l/e/o/Leonhard_Euler_b776.html
http://www.wikilingua.net/ca/articles/m/e/c/Mec%C3%A1nica_del_s%C3%B3lido_r%C3%ADgido.html

46

voltes sobre si mateix tantes vegades com el desplaçament ho permeti. Verticalment s’ha

establert un rang de rotació total de 120 graus, on 60 ens permetran observar la part superior de

l’escenari i -60 la part inferior. La sensibilitat també és un punt important que ens permet calibrar

les rotacions fins a trobar un valor còmode per a treballar.

El càlcul de la rotació horitzontal es realitza a partir de la rotació actual de la càmera. A

aquest valor li sumarem el desplaçament sobre l’eix X obtingut tant amb el ratolí com amb Kinect

(depenent del controlador triat), multiplicat per la sensibilitat. En la rotació vertical, obtenim el

desplaçament sobre l’eix Y obtingut i el multipliquem per la sensibilitat, i utilitzant la funció

Clamp utilitzada a la al mòdul d'obtenció dels vectors de les mans, el limitem amb les variables

definides a l’inici com a mínim i màxim.

Un cop tenim el valor de les rotacions en els dos eixos, reescrivim el valor de la rotació local

com a un nou vector composat per les rotacions en l’eix vertical i horitzontal corresponents als

eixos (X,Y) i afegint un zero corresponent la rotació sobre l’eix Z.

Al realitzar el càlcul dels desplaçaments, a diferència de les rotacions, s’utilitzen mètodes

diferents segons el controlador. Si utilitzem el vector proporcionat per el mòdul d’obtenció del

vector del tors, necessitem saber quina és la rotació actual de la càmera per conèixer el vector

direcció. En aquest cas, utilitzarem la funció proporcionada per Unity, la qual rep com a

paràmetre un vector amb la direcció relativa a la que volem anar, com per exemple endavant (0,

0, 1). La funció ens retornarà un vector direcció aplicat a la càmera en coordenades món, així

doncs, un cop obtenim la direcció desitjada, cal modificar la posició local de la nostre càmera a la

nova posició, realitzant el desplaçament en base al temps a través de la funció Lerp().

Si utilitzem el teclat per els desplaçaments, no disposem de cap vector i per tant, cal

controlar els esdeveniments de les tecles per saber en quina direcció es vol anar. Un cop

establertes les condicions per a cadascuna de les tecles realitzarem els càlculs del vector direcció

en cada cas. Unity ens proporciona vectors direcció estàndards com per exemple forward

(endavant), back (enrere), left (esquerra) i right (dreta). D’aquesta manera, segons la tecla

utilitzarem el vector corresponent a la direcció indicada. El càlcul de la nova posició es realitza del

mateix mode que amb Kinect.

47

2.6 Selector circular

Un selector és una eina que ens permet triar entre diferents opcions, en el cas d’aquest

projecte, per exemple, s’utilitza per seleccionar les peces que volem moure a l’editor de nivells.

Kinect és una eina molt còmode per controlar accions al jugar a un videojoc. No obstant, si

no es disposa d’una interfície gràfica senzilla, treballar amb botons pot fer-se complicat. Per

aquest motiu s’ha dissenyat un selector que ens facilitarà la feina a l’hora de realitzar les

seleccions mentre juguem. Molts dels usuaris que han realitzat proves amb el videojoc, han

coincidit en la complexitat que suposa utilitzar un punter controlat amb la mà en un cas comú,

com per exemple seleccionar les peces que es volen introduir a l’escenari a l’editor de nivells.

Es tracta d’un selector composat per botons adoptant una forma circular. Aquest es trobarà

situat a un lateral de la pantalla, mostrant només mitja circumferència (figura 22). Tal i com

indica el seu nom, és un selector, per tant sempre hi haurà seleccionada una opció i no caldrà

polsar sobre cap boto, només lliscar la circumferència fins arribar a la selecció desitjada.

La idea principal a l’hora de dissenyar un selector que proporcioni comoditat al jugador és

eliminar o substituir els elements que afegeixen complexitat. En aquest cas aquests elements són

el punter i les pulsacions per activar els botons. Aquests són útils a l’hora de desplaçar-se per els

menús, s’utilitzen com un ratolí i quasi tothom està familiaritzat amb l’ús del ratolí.

Aquest selector ha estat dissenyat per situacions on no es vol perdre temps. Sempre hi ha

una opció seleccionada, i per triar la resta d’opcions l’usuari utilitzarà els esdeveniments. Lliscant

la mà cap amunt o cap avall farem girar aquest selector accedint a la següent opció. Això

simplifica molt l’ús del videojoc, posant com a exemple un selector d’armes en un joc d’acció.

El següent apartat es centra en la realització d’aquest selector circular.

2.6.1 Implementació

Els elements que es visualitzaran en el selector, seran botons. Aquests es mostraran per

pantalla com una agrupació circular, que girarà en ambdós sentits al canviar les seleccions,

depenent de l’esdeveniment utilitzat per fer-ho. La posició del centre d’aquest selector circular

es trobarà just al límit d’un lateral de la pantalla, és a dir, la posició sobre l’eix X serà zero, i sobre

l’eix Y la meitat de l’alçada de la pantalla (Figura 22).

48

La base d’aquest selector sobre la qual es situaran els botons serà una textura de forma

circular que rotarà amb la mateixa velocitat angular a la que es moguin aquests. Els botons es

situaran a sobre, i al realitzar les rotacions tots els elements ho faran prenent com a centre la

base del selector.

Figura 22. Selector circular a l’esquerra

El càlcul de les posicions dels botons es realitza a cada frame. La textura s’implementarà

mitjançant un pla posicionat davant de la càmera i assignant-li la textura corresponent al cercle

amb el fons transparent. Les rotacions es realitzaran indicant els graus desitjats.

Els botons hauran de rotar el mateix nombre de graus respecte el fons. Així doncs, per

calcular les noves posicions ho farem a partir del centre d’aquest utilitzant equacions

trigonomètriques per descriure una circumferència. La posició X la calcularem multiplicant el radi

per el cosinus del nombre de graus en radiants a la que rotarem. Com que la posició del centre de

rotació es troba a la coordenada 0 de l’eix X no caldrà sumar cap valor.

La posició Y la calcularem multiplicant el radi de la rotació per el sinus del nombre de graus

en radiants a rotar. A aquest valor li sumarem la coordenada Y del centre de rotació, perquè

aquesta prengui com a punt de referència la meitat de la pantalla. Les fórmules són les següents:

Posició_X = (Radi_Circumferència * Cos (angle)) – (Ample_botó/2)

Posició_Y = (Radi_Circumferència * Sin (angle)) + Radi_Circumferència

49

Al crear els botons, s’especifica la posició (X,Y) calculada anteriorment, aconseguint que els

botons realitzin una trajectòria circular.

Els controls que s’utilitzen per realitzar les rotacions són els esdeveniments. Els

desplaçaments cap amunt i cap avall s’encarregaran de fer rotar el selector, accedint al següent

botó o a l’anterior. La mà encarregada de realitzar aquests desplaçaments serà la mà esquerra, i

la mà dreta s’ocuparà d’interactuar amb el joc.

La correcta visualització de l’escenari és un factor molt important a l’hora de jugar, i per

aquest motiu, per tal d’evitar que el selector no ens permeti veure per complert l’escenari s’han

implementat dos nous esdeveniments encarregats d’ocultar-lo. Amb la mateixa mà que

controlem la rotació utilitzarem els següents esdeveniments:

1. Ocultar: Realitzant un desplaçament cap a l’esquerra

2. Mostrar: Realitzant un desplaçament cap a la dreta.

2.7 Captura i reproducció d’animacions

En aquest apartat es desenvoluparà el mòdul encarregat de la captura d’animacions.

Durant un període de temps s’emmagatzemaran les posicions que adopta l’usuari per després ser

reproduïdes pel personatge del videojoc en certs moments.

Les animacions proporcionen un aspecte més humà als personatges d’un videojoc. Es

produeixen quan el personatge realitza accions com caminar, saltar, etc. En el cas del nostre

videojoc, degut a que els nostres models posseeixen esquelet i que aquest es controla mitjançant

les dades que proporciona Kinect sobre els moviments de l’usuari, es poden emmagatzemar les

posicions i rotacions de les articulacions en base al temps d’un mode mes senzill que no pas

articulant-los manualment.

La finalitat de capturar animacions en aquest projecte serà proveir a l’usuari d’uns

moviments de transició o celebració personalitzats. Que l’usuari pugui triar els moviments que

realitza el seu personatge al finalitzar pot millorar la seva experiència de joc ja que s’afegeix el

concepte d’implicació.

50

2.7.1 Implementació

El mòdul de tractament de dades és l’encarregat de modificar les posicions i les rotacions

de les articulacions dels personatges en base als moviments realitzats per l’usuari. D’aquest

mode, disposem de dues opcions a l’hora de emmagatzemar les dades del model. La primera

opció és accedir a les dades de les articulacions que genera el mòdul anteriorment esmentat i

emmagatzemar-les emprant l’estructura de dades que utilitza. La segona opció és accedir

directament a les dades del model, permetent així una major llibertat i comoditat alhora

d’obtenir les dades.

L’opció triada ha estat la segona, degut a que és més còmode accedir a les dades del

personatge, degut a que les dades emmagatzemades s’hauran d’aplicar després sobre el mateix

personatge.

Figura 23. Articulacions de l’esquelet del model

Les posicions i rotacions a emmagatzemar seran les locals respecte al model, ja que es

desconeix la seva posició en el moment de la reproducció. Segons s’ha establert, aquestes

animacions tindran una duració aproximada d’uns cinc segons, per donar temps a l’usuari a

realitzar el seu moviment. Un factor important són les captures que es prenen per segon, ja que

si són poques el moviment no serà fluid, i si són masses desaprofitarem espai al emmagatzemar

posicions que no donarà temps a utilitzar. Al realitzar un previ estudi, s’ha trobat factible realitzar

51

trenta captures per segon, ja que aquest és el “frame rate” que utilitzen les videoconsoles d’avui

en dia (30fps). D’aquesta manera, al realitzar la captura necessitarem dos vectors per la rotació i

la posició locals de les 15 articulacions (figura 23), 30 vegades cada segon durant 5 segons,

obtenint un total de 2250 articulacions a emmagatzemar.

Els intervals entre les capturés seran de 33 ms, i així ho indicarem basant-nos en temps

d’execució que ens proporciona Unity. Finalitzada la captura obtenim totes les dades de

l’animació de l’usuari.

Finalment, en el moment de la reproducció, per tal de que no es realitzin salts entre la

posició inicial del model i la primera posició de l’animació cal realitzar una transició fent que

aquest desplaçament es realitzi amb continuïtat. Per fer-ho utilitzarem una interpolació lineal

que realitzarà aquest desplaçament al llarg d’un nombre determinat de frames i no de cop. La

posició inicial s’emmagatzemarà en memòria per tornar a ella al finalitzar la reproducció. Durant

l’animació es modificarà directament la posició i rotació de les articulacions, i al finalitzar

tornarem a utilitzar Lerp per la transició entre l’ultima posició de la animació i la que era la

posició inicial del model.

2.8 Disseny dels models

El disseny és un apartat molt important alhora de realitzar un videojoc, ja que la feina del

dissenyador és la que més podrà apreciar a simple vista per l’usuari. Un aspecte atractiu millora

molt l’experiència de joc. Degut a que en aquest projecte no comptem amb cap dissenyador s’ha

realitzat aquest procés dins de les nostres possibilitats.

S’han dissenyat els personatges principals del videojoc Launchageddon, algunes de les

peces que s’utilitzen a l’editor de nivells, i les peces utilitzades en l’aplicació de Kinect Castle

Logix®.

Això ha suposat un elevat cost de temps, ja que els editors d’objectes 3D són programes

complexes on cal tenir una certa base de coneixements per tal d’obtenir uns resultats

relativament acceptables. En aquest cas l’editor emprat és 3D Studio Max [3DMax], i per

aprendre el seu funcionament és necessària una prèvia formació a través d’un manual [3DMn].

52

Començarem parlant del disseny dels personatges de Launchageddon. Tots els

equipaments dels que disposa el jugador s’han extret d’un model base descarregat d’Internet. El

model no s’ha realitzat des de zero degut a la complexitat d’implementar un esquelet amb les

característiques que necessitem.

El format original del model és FBX (Abreviació de “Filmbox”). Aquest ens permet guardar

informació d’animacions 2D, 3D, audio i video, però en aquest cas només utilitzarem el model 3D

sense animar. 3D Studio Max permet importar aquest format i ens mostra informació del model

com els seus vèrtex, les cares, l’esquelet, les textures i molts més.

Al realitzar les modificacions sobre model base, només modificarem les posicions dels

vèrtex i cares desitjats amb l’objectiu de no modificar cap dels elements pertanyents a l’esquelet

de la figura. Per tenir accés a l’edició dels vèrtex, cal seleccionar el model sencer i aplicar-li la

utilitat “editable poly” que farà aparèixer els vèrtex del model.

Un dels problemes a l’hora d’editar figures en tres dimensions és que no es pot apreciar

amb claredat la profunditat de l’objecte i quan des d’una certa perspectiva modifiquem la posició

d’un o diversos vèrtex sembla que es troben en el punt desitjat com succeeix a la figura 24, però

al rotar la figura sovint pot observar-se que aquest no es troba situat correctament. Degut a

aquest engany provocat per la perspectiva, després de cada nova modificació realitzada sobre la

figura cal observar-la des d’altres perspectives per poder certificar la modificació.

Figura 24. Vista de diferents perspectives un vèrtex mal posicionat

En el cas d’aquest model, els vèrtex superposats no es troben units. En un mateix punt de

l’espai on hi ha una unió entre dos o més polígons es troben com a mínim dos vèrtex. Quan se

selecciona un d’aquests punts d’unió realitzant-hi un clic amb el ratolí només un dels vèrtex és

53

seleccionat, aleshores al desplaçar-lo, la resta de vèrtex que es trobaven a les mateixes

coordenades que aquest mantenen la seva posició inicial ocasionant una esquerda que permet la

visualització de l’interior de la figura.

Una solució possible a aquest problema és seleccionar les unions dels polígons i unir tots

els vèrtex que coincideixin a la mateixa posició a través del menú avançat dels vèrtex. Aquesta

pot arribar a ser una tasca que requereixi massa temps ja que no es pot seleccionar tots els

vèrtex de cop, per aquest motiu, una alternativa és deixar-los tal i com estan i en el moment de

realitzar la selecció marcar una zona que contingui aquesta unió pitjant el botó del ratolí i

arrossegant-lo fins que l’àrea de selecció contingui la unió desitjada. Així doncs, tots els vèrtex

situats en aquesta àrea quedaran seleccionats.

Els polígons també són editables. Al seleccionar-ne un i modificar la seva posició, els

vèrtexs pertanyents als extrems dels polígons que es troben en contacte amb aquest, de la

mateixa manera que succeeix amb l’edició dels vèrtex es separen i permeten observar l’interior

de la figura. Una altre modificació possible és la rotació, ja que al disposar de diversos vèrtex es

genera un pla. Un cop les modificacions són satisfactòries, el model ha de ser guardat en un

format propi de 3D Studio Max per ser finalment exportat al seu format original FBX.

L’últim pas abans de introduir el model a Unity és necessari aplicar-li textures per tal de

simular la vestimenta, els detalls facials i la resta d’elements per obtenir un aspecte humà. El

model base posseeix una única textura, la qual s’aplica en forma de embolcall recobrint per

complert totes les cares de l’objecte. El format d’aquesta textura és PSD (Photoshop Document)

que com el seu nom indica és un format d’un editor de imatges anomenat Photoshop [PhoShp].

Figura 25. Textura original (esquerra), Textura modificada (dreta)

54

El model conté la informació corresponent a la textura, d’aquest mode cada polígon que el

composa està associat a una zona de la imatge. Aquest tipus de texturització facilita la feina i són

molt còmodes per a treballar ja que només cal editar una sola imatge. La figura 25 mostra la

textura original del model i una modificada pertanyent a un dels personatges del videojoc.

Els cascs dels personatges s’han realitzat apart a partir de models gratuïts d’internet (Figura

26). De la mateixa manera que amb el disseny dels personatges, s’han utilitzat dos models de

casc que estableixen la base i s’han afegit elements nous com dinamita o una destral per

aconseguir els models dels dissenys inicials (Punt 1.2).

Figura 26. Cascs (Normal – Explosiu – Científic - Destral)

Els models dels cascs han estat dissenyats apart degut a que el jugador podrà combinar els

quatre tipus de llançaments amb els quatre cascs. Així doncs, les 16 possibles combinacions s’han

realitzat amb Unity, creant GameObjects vinculant els cascs al model del jugador i prenent com a

referència la posició del cap dels models

Figura 27. Llançaments (Normal – Propulsat – Paracaigudista - Antigravetat)

55

 A tots els models se’ls hi ha aplicat una renderització “Toon Shading” que dibuixa les

figures amb un estil de còmic remarcant les línies exteriors.

Durant el joc, l’usuari podrà crear nous escenaris mitjançant l’editor de nivells. Els objectes

disponibles per a la construcció tenen una mida unitària i s’han realitzat a partir de models bàsics

com el cub, aplicant després les seves corresponents textures.

Per la realització de les rampes s’ha creat un cub amb els models basics de 3D Studio Max,

prenent com a origen una de les arestes inferiors paral·leles a l’eix X, des d’aquesta aresta es

realitza un tall diagonal que travessa el cub fins arribar a la seva aresta oposada de la part

superior. Un cop realitzat el tall, la part superior restant és eliminada i el forat resultant es

cobreix amb un nou polígon que s’uneix als vèrtex resultants del tall. Les rampes amb diferents

pendents han estat realitzades seguint el mateix procés però partint d’un paral·lelepípede

rectangular.

Kinect Castle Logix®

Com a exemple de l’aplicació de Kinect en altres tipus de jocs s’ha desenvolupat una

demostració d’un joc anomenat “Castle Logix®” (explicat al punt 2.10.1). Es composa de tres

torres i quatre peces de fusta amb diferents perforacions horitzontals i transversals, on l’objectiu

és agrupar-les totes i construir un castell de la mateixa manera que se’ns mostra en una imatge.

Aquest joc és un físic, i per tant, el disseny de les peces s’ha realitzat des de zero.

El disseny de les torres és basic. Es parteix d’un cilindre d’alçada unitària, a la part superior

d’aquest s’hi fixa un con amb un radi superior al del cilindre, i a la punta del con s’hi fixa una

petita esfera. Aquest disseny és realitzat basant-se en les peces físiques.

Hi ha tres torres, i la diferència entre elles és l’alçada dels cilindres. El cilindre més petit és

d’una unitat, el mitjà és de dues i el gran de tres. Les textures d’aquestes peces són llises i en tres

colors: la base és color fusta, el con color blau cel i l’esfera de color groc.

La part complicada és el disseny dels paral·lelepípedes. Aquestes quatre peces s’inicien

amb un cub i tres paral·lelepípedes. L’alçada i la profunditat són unitàries per a totes les peces, i

la amplada canvia segons el color. La peça vermella té una amplada d’una unitat, la verda i la

groga de dues unitats i per últim la blava de tres.

56

Tal i com s’observa a la figura 28 on es veu la implementació final de les peces, aquestes

tenen perforacions cilíndriques verticals i horitzontals. El radi d’aquestes perforacions ha de ser

inferior al dels cilindres ja que aquests les han de travessar.

El primer pas a seguir per a realitzar les perforacions consisteix en marcar una

circumferència que ens servirà de guia al realitzar el tall. Per fer-ho, és precís marcar el centre

d’aquesta basant-nos en els vèrtex que composen els extrems del polígon. Seguidament

s’estableix el radi de la circumferència i marquem totes les arestes que la composen.

El següent pas és eliminar la part central de l’agrupació d’arestes. Un cop realitzada la

perforació de la cara desitjada apliquem la simetria per realitzar la mateixa acció a la cara

oposada, obtenint així un forat que travessa la peça. L’interior de la figura és negre, degut a que

l’interior de les cares no té cap vector normal que reflecteixi la llum. Per obtenir un efecte visual

igual a la peça s’ha de crear un nou cilindre amb el mateix radi que la perforació i invertir les

seves normals per tal de que la par interior sigui visible. L’alçada d’aquest cilindre serà la mateixa

que la profunditat de la perforació.

Aquest procés es repeteix per a totes les peces. La peça vermella té una sola perforació

vertical, la verda en té dues, la groga té les mateixes que la verda més una perforació horitzontal

que es comunica amb les altres dues i la blava en té tres de verticals i una horitzontal.

Les peces vermella i verda ja s’han finalitzat, però a la resta, les perforacions es

comuniquen i els polígons que formen els cilindres es superposen, per tant, cal eliminar aquests

polígons restants.

Figura 28. CASLTE LOGIX – Disseny final de les peces i les textures

El darrer pas consisteix en eliminar les parts dels cilindres que es comuniquen, i per fer-ho

necessitarem utilitzar el selector de cares. D’una en una se seleccionen les cares que obstrueixen

57

els forats i s’eliminen. Aquest és un pas molt important ja que si alguna cara no s’elimina

correctament, a l’introduir una torre dins del forat col·lisionaria amb ella i no es podria travessar

la figura.

Un cop l’estructura de les figures, s’apliquen les textures del joc sobre les cares desitjades.

La cara frontal conté la textura d’una torre horitzontal (figura 28) i la cara oposada a aquesta la

d’una torre vertical.

2.9 Selector de personatges

En aquest apartat es desenvoluparà el mòdul de selecció de personatge. La finalitat

d’aquest és oferir una pantalla de selecció on l’usuari pugui triar el casc i el vestit desitjat per

superar el nivell.

Aquest mòdul s’executarà abans de jugar un nivell. L’aspecte visual és un factor important

ja que és el que veurà l’usuari abans de jugar. Perquè l’usuari pugui observar els dissenys dels

personatges, aquests es visualitzaran amb una rotació constant sobre el seu eix Y. Amb la finalitat

de limitar el camp visual de la càmera al jugador, s’afegeixen dos plans a l’escena que ocultin els

laterals de la càmera.

2.9.1 Implementació

Per a la selecció es necessitaran 8 botons, 4 corresponents als cascs i 4 als vestits. Tal i com

s’ha esmentat en el punt anterior, es posicionaran dos plans perpendiculars a la càmera amb la

finalitat de reduir el seu camp de visió (figura 29). Aquests plans s’aprofiten per situar-hi a sobre

els botons de la selecció. Els botons de selecció dels cascs es situaran al costat esquerra i els dels

vestits a la dreta. Al posicionar el punter sobre del botó de selecció, aquest mostrarà unes

imatges explicant la funcionalitat d’aquest. Això s’aconsegueix gràcies al mètode OnFocus que en

tot moment comprova la posició del punter respecte els botons de l’escena.

Degut a que hi ha 16 combinacions possibles, s’ha dissenyat una estructura de control per

realitzar la selecció. El mètode més ràpid per fer-ho és assignar un valor a cada botó i sumar els

dos valors obtinguts. La selecció inicial del selector sempre serà el casc normal i la vestimenta

normal. Així doncs, els valors de les vestimentes seran múltiples de 4 començant per zero

(0,4,8,12), i els valors corresponents als cascs aniran des de 1 fins a 4. Un cop definits els valors,

58

per saber la selecció que ha realitzat l’usuari només caldrà sumar els dos valors seleccionats

obtenint finalment un valor amb un rang entre 1 i 16.

Figura 29. Menú de selecció del personatge

Com ja sabem que la configuració per defecte serà el model 1, aquest ja es troba situat

davant la càmera a l’inici de l’execució. A aquest li aplicarem una rotació constant sobre si mateix

en l’eix Y a través del mètode Rotate que ens proporciona Unity, i per que la velocitat de rotació

sigui sempre constant independentment de l’ordinador on s’executi, es multiplica el nombre de

graus a girar per Time.deltatime, que farà que l’objecte roti els graus especificats al llarg d’un

segon. En el moment que l’usuari realitza una selecció diferent a la que hi ha per defecte,

s’emmagatzema la posició i rotació actual del model. S’elimina el model que s’estava mostrant

per pantalla i es carrega el model a través de la selecció de l’usuari. A aquest model se li aplicarà

la posició i la rotació de l’anterior per tal de no realitzar una transició brusca.

2.10 Aplicació de Kinect en altres tipus de videojoc

Al llarg d’aquest projecte s’ha pogut observar com el control de Launchageddon mitjançant

Kinect millora l’experiència de joc per a l’usuari, trobant-se una mica més immers als escenaris

gràcies a que les accions físiques que cal dur a terme aporten una mica més de realitat. En el cas

d’aquest tipus de videojoc, el control corporal proporciona les mateixes funcionalitats que la

resta de dispositius que hi ha al mercat, però si volem realitzar un anàlisi de major abast amb la

finalitat de descobrir si aquest dispositiu podria ser el substitut de la resta, cal implementar

controls per altres tipus de joc i avaluar els resultats obtinguts. Així doncs, s’implementaran tres

demostracions on es pugui observar la reacció dels controls.

59

S’han triat tres gèneres a desenvolupar on es posaran a prova les funcionalitats de Kinect: un joc

infantil, un joc de conducció i un joc d’acció.

2.10.1 Joc Infantil: “Kinect Castle Logix®”

Castle Logix® [CstLog] és un joc d’enginy infantil dissenyat amb la finalitat d’augmentar la

capacitat lògica i desenvolupar les habilitats espacials. L’objectiu principal és encaixar els blocs i

les torres de fusta per construir el castell que mostra una fitxa triada (figura 30).

Els controls que utilitzarem en aquest joc seran únicament les mans. La mà esquerra serà

l’encarregada de seleccionar la peça que volem triar, indicar quan volem agafar-la per modificar

la seva posició i quan volem desar-la, i la mà dreta s’encarregarà del desplaçament sobre els tres

eixos de les peces.

Figura 30. CASLTE LOGIX (Joc Original) – Fitxa de reptes

Aquesta petita demostració constarà d’un sol nivell on se’ns proposarà una agrupació

concreta i nosaltres l’haurem de dur a terme. Els procediments per al disseny de les peces es

troben a l’apartat de disseny.

Implementació

L’escenari es composa per un terreny que realitzarà la funció de base on es durà a terme la

construcció i tres plans posicionats perpendicularment, dos al extrems laterals i un altre a

l’extrem més llunyà obtenint una estructura en forma d’escenari.

60

La càmera es posiciona sobre el terreny, visualitzant així un pla frontalment i els altres dos

als laterals. Al pla frontal se li aplica una textura de pedra, i als laterals una que simula el cel,

d’aquesta manera, el camp de visió de la càmera només capta els tres plans i el terreny.

S’importen a Unity les figures dissenyades, aquestes es situaran en tot moment al fons de

l’escenari fins que no siguin seleccionats. El selector de les peces serà el que s’ha dissenyat

anteriorment (Selector Circular) i ens permetrà seleccionar amb la mà esquerra la peça que

vulguem moure. Els esdeveniments que modificaran aquesta selecció seran el desplaçament cap

amunt per la peça següent i el desplaçament cap avall per la peça anterior.

La peça seleccionada s’il·luminarà i no es començarà a moure fins que l’usuari no ho indiqui

amb l’esdeveniment polsar. Aquest canviarà l’estat de la peça a mòbil, permetent modificar la

seva posició. Els dos estats de la peça emulen l’acció d’agafar una peça o deixar-la. En aquest

moment la mà dreta controlarà la posició de la peça i ens proporciona un vector a través de la

posició de la nostra mà. La sensibilitat d’aquests desplaçaments es veurà disminuïda, obtenint

així uns desplaçaments més lents, ja que per aquesta demostració és necessària una major

precisió que no pas amb el control d’un punter.

L’esdeveniment polsar tornarà a ser el detonant per canviar l’estat de la peça a immòbil,

quedant aquesta fixa a la seva posició. La única condició per deixar anar una peça és que aquesta

estigui col·lisionant o bé amb el terra o amb una altre peça.

Per aquesta demostració s’ha desenvolupat un mòdul que proporciona a les figures un

efecte magnètic entre elles. La decisió d’implementar aquest mòdul recau en que les torres han

de travessar les perforacions circulars, i a causa de la perspectiva, és molt difícil alinear

perfectament dues figures i encaixar els dos orificis cilíndrics per passar-hi una torre a través

d’ells. Gràcies a aquest mòdul, quan es detecta una col·lisió entre dues figures les alinea

exactament en la posició més propera. A continuació es descriu la implementació d’aquesta

ajuda al jugador.

El magnetisme s’executa sempre des de la figura unitària, la figura seleccionada se situa

correctament modificant les dues coordenades restants. Els paral·lelepípedes realitzen el

magnetisme quan la peça es posiciona a la part superior o als laterals d’una altra, en canvi, les

torres, només a la part superior per tal d’encaixar amb l’orifici.

61

Al detectar una col·lisió amb una altre figura, s’accedeix al seu nom per identificar-la. A

través de la direcció del vector normal que ens retorna la col·lisió podem saber amb quin costat

de l’altre figura estem en contacte. Si la figura no és una torre, coneixent la seva grandària i

tenint en compte que les figures són unitàries podem conèixer la zona d’encaix.

Si posicionem la nostra figura sobre una altra (figura 31), en el moment en el que es

produeix el contacte, la posició de la nostre figura sobre l’eix Y és la correcta, aleshores es

modifiquen les coordenades X i Z en el moment de la col·lisió per tal que les peces encaixin

perfectament. Si desplacem la figura després del magnetisme, aquesta tornarà a quedar lliure

fins el moment en que es produeixi la següent col·lisió.

En una col·lisió com la de la figura 31, els valors que prenen els eixos X i Z de la peça són els

de la zona d’encaix més propera. Si la peça vermella col·lisionés a la zona central de la peça blava,

l’efecte magnètic la posicionaria sobre el següent orifici, i si ho fes a l’extrem dret encaixaria amb

l’últim.

Figura 31. Fases de l’efecte magnètic

62

Un cop posicionades totes les peces es comprova que la solució sigui correcta a través d’un

vector de sis posicions on s’emmagatzema la posició de les peces respecte a la peça blava. Si les

posicions dels objectes es corresponen amb les dades emmagatzemades finalitza el nivell.

2.10.2 Joc de conducció

En aquest apartat s’esmenta el procés seguit alhora de dissenyar una demostració sobre els

controls de Kinect en un joc de conducció. Òbviament els controls per al desplaçament seran les

mans, però a diferència de la resta d’implementacions, en aquest cas l’usuari adoptarà una

postura que emularà l’acció d’agafar un volant amb elles.

Aquest control és el més proper a la realitat de tots, ja que les accions a realitzar per

controlar el vehicle són exactament les mateixes que les que s’utilitzen per controlar un vehicle.

No ens hem volgut limitar a la conducció d’un automòbil. Per aquest motiu, la demostració

consisteix a controlar un avió. Les raons d’aquesta decisió es basen en que l’avió afegeix dues

funcionalitats més : l’ascensió i el descens.

No s’han aplicat físiques reals a la demostració, degut a que aquesta té com a objectiu

demostrar la funcionalitat dels controls i no la simulació en si.

A continuació passarem a explicar el funcionament dels controls. La posició inicial per a

l’usuari és la mateixa que s’adopta al conduir un cotxe. Les dues mans s’han de trobar

posicionades a l’alçada del pit, amb una separació entre elles d’uns 20 o 30 centímetres. Els

moviments bàsics per realitzar els girs són els mateixos que fer girar un volant, rotant les nostres

mans prenent el centre del volant com a l’eix de rotació. Quan apropem les dues mans a la

càmera els controls interpretaran aquesta acció com a un descens, amb la corresponent

sensibilitat vinculada a la distancia desplaçada per les mans. Al allunyar les mans realitzarem un

ascens amb la mateixa sensibilitat que l’acció anterior.

Les coordenades de les mans que necessitarem per aquesta implementació seran

coordenades món, ja que necessitem conèixer la posició de cadascuna d’elles en referència a un

mateix espai amb la finalitat de calcular la rotació realitzada quan l’usuari realitza un gir.

Per obtenir aquesta rotació tractarem els dos vectors corresponents a la posició de les

mans, restant-los per així obtenir un vector direcció. Quan coneixem aquest vector, a través de

63

les formules trigonomètriques podrem calcular els graus corresponents al gir realitzat per

l’usuari.

Figura 32. Càlcul de l’angle generat entre les dues mans

Aquest vector contindrà les dues coordenades (X,Y). Seguidament especificarem el valor

absolut de les coordenades com la dimensió d’un rectangle. Aquest fet ens permetrà calcular

l’angle que hi ha entre les dues mans (la mà esquerra seria el vèrtex inferior esquerra i la mà

dreta el vèrtex superior dret), si tallem el rectangle obtingut a través d’una recta que passi per els

dos vèrtexs corresponents a les mans obtindrem un triangle rectangle (figura 32). A partir d’aquí

necessitem calcular l’angle corresponent a la zona inferior esquerra i per fer-ho utilitzarem una

fórmula trigonomètrica. Primer de tot necessitem conèixer el valor de la hipotenusa, sumant els

valors elevats al quadrat dels components (X,Y) i seguidament realitzant l’arrel quadrada del

resultat.

Calcularem el valor de l’angle α a través del cosinus, però per fer-ho hem de dividir el valor

del component X entre el valor de la hipotenusa. Finalment obtindrem el valor de l’angle calculat

l’arccosinus del resultat. En el cas en que el component Y del vector direcció sigui negatiu, per

calcular l’angle real, li restarem l’obtingut a 90 i finalment el multiplicarem per -1. Un cop

conegut l’angle que realitza l’usuari al girar, podem aplicar aquesta rotació entorn a l’eix Y de la

càmera. La fórmula és la següent:

 α =ArcCos(Component_X / Hipotenusa)

Per poder realitzar l’ascens i el descens s’utilitzarà la informació que ens proporciona el

mòdul d’obtenció dels vectors de les mans. Degut a que aquests valors ja estan normalitzats els

utilitzarem directament per realitzar les rotacions a la càmera sobre l’eix X. D’aquesta manera,

64

quan l’usuari apropi les mans cap al seu cos, la càmera realitzarà un ascens en proporció a la

distància del desplaçament i quan les allunyi realitzarà un descens.

L’ultima de les funcionalitats és la que ofereix a l’usuari la possibilitat de incrementar o

reduir la velocitat de la càmera. Per fer-ho emprarem les dades que ens proporciona el mòdul de

reconeixement d’esdeveniments. Quan l’usuari realitzi un desplaçament cap a l’esquerra amb la

mà esquerra, els controls de l’avió (càmera) passaran a valdre zero, mantenint així la direcció

establerta, i a través de la dreta podrà incrementar la velocitat allunyant la mà del seu cos o

reduir-la apropant-la com si es tractes del control de velocitat d’un avió. En el moment en que la

velocitat sigui la desitjada, per tornar al mode normal, amb la ma esquerra haurà de realitzar un

desplaçament a la dreta i tornar a col·locar les mans en la posició inicial. En aquest moment els

vectors de les mans prenen com a punt focus la posició de les mans i es continua amb el

pilotatge.

Aquest control demostra una correcta sensibilitat als moviments, i és còmode per als

usuaris ja que l’ús d’un volant és el principal mètode de control en un vehicle i resulta familiar.

2.10.3 Joc d’acció

En aquest apartat s’implementen els controls per a un joc d’acció. En aquesta demostració

el personatge principal portarà una pistola, i per tal d’apuntar, l’usuari haurà d’adoptar la

mateixa postura com si també en portés una. Amb aquest control s’intenta que els moviments

que ha de realitzar l’usuari siguin semblants als que hauria de dur a terme en una situació real.

A l’hora de desplaçar-se per l’escenari, es realitzarà el càlcul de la seva posició mitjançant

les dades proporcionades per el mòdul d’obtenció del vector del tors. L’usuari haurà d’avançar

respecte a la seva posició inicial per que la càmera es mogui, de la mateixa manera que s’ha

implementat en el mòdul de la càmera en primera persona.

A l’hora d’apuntar, es prendran com a referència dos posicions, la de la mà i la del cap.

Restant aquestes dues posicions s’obtindrà el vector direcció que ens indicarà cap a on apunta

l’usuari.

Començarem bloquejant la posició del punter del sistema per tal de que aquest quedi fixe

al centre de la pantalla, i l’ocultarem mitjançant els mètodes que ens proporciona el motor gràfic.

65

Per tal de simular que el jugador és una persona, s’ha descarregat un model gratuït

d’internet i s’ha posicionat en front de la càmera. Aquest s’ha de vincular a la posició de la

càmera per tal de que no desaparegui al realitzar els desplaçaments o les rotacions (figura 33).

Figura 33. Captura de pantalla del joc d’acció. Pistola a la mà.

Per calcular el vector direcció necessitem utilitzar les coordenades món. Per tant accedirem

al mòdul de tractament de dades per obtenir-les. Per tal de calcular els graus horitzontals i

verticals realitzarem el mateix càlcul trigonomètric que en el punt anterior, però en aquest cas

per duplicat. El càlcul dels graus a rotar sobre l’eix Y es calcularan a través del components (X,Z)

del vector direcció, i els graus a rotar sobre l’eix X es calcularan a través dels components (Y,Z).

Així doncs, un cop obtinguts els graus corresponents a les dues rotacions, les aplicarem

sobre la càmera per que l’usuari pugui observar tot l’escenari realitzant modificacions a la seva

postura.

En el cas dels desplaçaments, els controls utilitzats són els mateixos que els de la càmera en

primera persona (Punt 2.5). La posició del tors de l’usuari en el moment en que comença la

demostració es pren com a zero, per tant, si l’usuari fa un pas enrere, la càmera retrocedirà fins

que aquest es torni a col·locar en la posició inicial.

Un dels inconvenients a l’hora d’utilitzar aquest control mitjançant Kinect és que OpenNI

només proporciona les dades de les articulacions bàsiques de l’esquelet (Punt 1.3.3, figura 12) i

només és capaç de reconèixer la mà; per poder realitzar accions com ara disparar l’arma d’una

manera semblant a com ho faríem a la realitat, seria necessari un reconeixement més complert,

66

que ens permetés obtenir la posició dels dits, podent així controlar les accions realitzades per

aquests.

67

3 RESULTATS

A continuació s’explicaran els processos realitzats amb la finalitat de validar el correcte

funcionament de cadascun dels mòduls implementats i els resultats obtinguts en base als usuaris

que els han provat. Més tard es mostrarà l’aspecte final de les aplicacions test realitzades, els

problemes trobats a l’hora de realitzar la integració i finalment parlarem del futur del projecte.

El concepte de validació és molt important per a qualsevol aplicació, ja que permet trobar

la gran majoria d’errors i corregir-los per obtenir una versió definitiva del producte, eficient i de

qualitat.

Validació del codi

Per a la validació dels mòduls a nivell intern s’han dut a terme diferents proves. Per

assegurar que el codi dels mòduls s’executa correctament s’han utilitzat les eines que

proporciona Unity per recórrer el codi pas a pas durant l’execució, comprovant els valors que

prenen les variables i el correcte funcionament dels mètodes i funcions implementats.

Un cop comprovada l’execució del codi, la primera de les proves és mostrar per pantalla les

dades que calcula cadascun dels mòduls. En el cas de la obtenció dels vectors de les mans, durant

un cert temps es modifica la posició de les mans i es verifica que els vectors obtinguts es

corresponen amb les posicions d’aquestes.

En el cas del reconeixement dels esdeveniments, es mostra per pantalla els resultats

obtinguts, realitzant durant un període de temps els moviments desitjats i comprovant que la

precisió dels reconeixements no es vegi afectada en base al temps d’execució. Per regular la

sensibilitat d’aquests és necessari modificar els paràmetres i tornar a provar el mòdul fins que el

reconeixement sigui fiable i estable.

Després de validar el codi, és molt important realitzar una sèrie de proves sobre el

dispositiu Kinect, per descartar possibles errors de reconeixement. Per fer-ho, s’han realitzat

proves amb tres diferents il·luminacions per veure si la llum afecta al correcte funcionament del

dispositiu. La figura 34 ens mostra les tres il·luminacions amb les que s’ha realitzat la prova. La

primera és la il·luminació màxima, portada a terme durant el dia i afegint les llums de l’habitació.

68

La segona il·luminació només utilitza la llum solar, i la tercera és la mínima, on la visibilitat és

reduïda. A l’esquerra de cada imatge s’hi troba la seva corresponent imatge en profunditat, que

és en la que es basa Kinect per a realitzar els càlculs.

Figura 34. Diferents proves del reconeixement en base a la il·luminació.

Tal i com s’observa a les imatges en profunditat, la il·luminació no afecta al reconeixement,

degut a que la càmera només s’utilitza per capturar textures en el cas de voler-les aplicar sobre

algun objecte. Un cop testejat el dispositiu, sabem que entre aquestes tres configuracions

d’il·luminació Kinect treballa correctament.

Quan tots els mòduls s’executen correctament i proporcionen les dades desitjades,

s’utilitzen les dades que calculen per a controlar diferents elements del joc, i finalment un grup

69

d’usuaris externs proven aquests controls per a proporcionar les seves opinions al respecte i

millorar així el procés de validació.

Validació amb els usuaris

Amb la finalitat de millorar les funcionalitats que ofereixen els controls per Kinect, un grup

d’usuaris els han provat al llarg del procés de desenvolupament i se’ls ha realitzat enquestes on

es recullen les seves sensacions i opinions. Aquestes es troben adjuntades a l’annex I.

Les opinions dels usuaris no solament s’han tingut en compte en el moment de la validació

sinó que també han permès refinar i redefinir el comportament dels diferents mòduls. La figura

35 mostra el diagrama de flux que descriu el procés de validació i la interacció d’usuaris externs

en aquest. En el procés de desenvolupament de la figura, un cop implementat el disseny de

cadascun dels mòduls, s’ha validat la seva funcionalitat, que en aquest cas correspon a la manera

en que l’usuari ha de dur a terme les accions (desplaçaments, pulsacions, etc.). Un cop aquesta

funcionalitat és comprovada per l’equip, es posa a prova per diferents usuaris amb l’objectiu de

refinar-la en base als seus criteris.

Figura 35. Diagrama de flux del procés de validació.

Cada cop que és necessari modificar característiques com la sensibilitat en el cas del punter

o la velocitat dels desplaçaments en el cas del reconeixement d’esdeveniments, es torna a la

implementació del mòdul, fins obtenir els resultats desitjats.

70

Un cop s’ha finalitzat la implementació del mòdul comença el procés de validació. A

diferència de la validació de la funcionalitat on s’han analitzat les sensacions de l’usuari, en

aquest cas, és necessari centrar-se en l’anàlisi del comportament del mòdul durant l’execució.

Per fer-ho s’han realitzat totes les possibles accions, posant a prova els mòduls unitàriament i

posteriorment en conjunt. Les proves que realitzen els usuaris també ens permeten detectar

errors d’execució. Si es detecta qualsevol anomalia, es torna al procés de desenvolupament amb

la finalitat de trobar la causa de l’error i corregir-la. Aquest procés es du a terme fins que no

siguem capaços de detectar cap més error. Tot i així, encara que nosaltres no en detectem cap,

mai podrem assegurar al 100% que la nostra aplicació estigui lliure d’errors, però se’n detectaran

una gran part.

En les enquestes, primer es puntuen diferents aspectes dels mòduls desenvolupats, aquests

aspectes son: intuïció, comoditat, estabilitat, sensibilitat, utilitat i fiabilitat. L’usuari els valorarà

ràpidament a través del quadre de d’avaluació.

La gran majoria d’usuaris han coincidit al puntuar la primera part, indiquen que els controls

són intuïtius i fàcils. No obstant, molts usuaris han penalitzat l’ús del punter controlat per les

mans. Segons moltes opinions, els menús on s’utilitza aquest control serien molt més còmodes si

aquests utilitzessin els desplaçaments. Sempre hi hauria una selecció activa que destacaria sobre

la resta i a través dels desplaçaments modificarien la selecció (figura 36 B), en comptes de

desplaçar el punter fins posicionar-se sobre el botó desitjat (figura 36 A).

Figura 36. Tipus de controls en el menú.

71

Finalment es demana una enumeració dels avantatges i inconvenients d’utilitzar la

tecnologia Kinect per a controlar les aplicacions test. En aquesta part hi trobem més diversitat

d’opinions. Així doncs, s’exposen els principals avantatges i inconvenients que resumeixen les

sensacions dels usuaris, indicant també el percentatge d’aquests que comparteixen opinió:

KINECT CASTLE LOGIX

Figura 37. Usuari provant el funcionament de Kinect Castle Logix®.

Avantatges:

 El control de les peces és molt intuïtiu (80%).

 L’efecte magnètic ajuda molt a col·locar correctament les peces (60%).

 El selector circular facilita la selecció de les peces (30%).

Inconvenients:

 Les peces no es poden agafar tancant el puny (20%).

 No es poden agafar dues peces alhora (10%).

La gran majoria dels usuaris han quedat satisfets amb aquesta aplicació, ja que és un

videojoc senzill i el control amb les mans ofereix sensibilitat.

72

JOC DE CONDUCCIÓ

Figura 38. Usuari provant el funcionament del joc de conducció.

Avantatges:

 La conducció és molt semblant a la realitat (90%).

 La sensibilitat està molt aconseguida (60%).

Inconvenients:

 No es pot modificar la velocitat sense deixar de controlar el volant(80%).

 Al no tenir un volant físicament, no hi ha tant de control al realitzar els girs (10%).

En aquesta aplicació test, els controls són iguals a tenir un volant entre les mans, per

aquest motiu a la gran majoria dels usuaris els ha resultat fàcil. El principal inconvenient en el

que tothom coincideix, és el problema de modificar la velocitat, ja que per fer-ho s’ha de deixar

de controlar el volant.

73

JOC D’ACCIÓ

Figura 39. Usuari provant el funcionament del joc d’acció.

Avantatges:

 La postura adoptada per apuntar és molt real (45%).

Inconvenients:

 No es pot disparar l’arma d’una marera còmode (95%).

 Al apuntar desorienta molt quan realitzes girs laterals (85%).

Molts dels usuaris han coincidit en que els dos primers jocs són còmodes per jugar-hi amb

aquest control, però aquest tercer no hi estan d’acord. El major inconvenient del joc d’acció és

que al tenir una visió en primera persona és molt complicat desplaçar-se i realitzar les accions

pertinents alhora com disparar. Al no poder reconèixer articulacions com els dits, amb OpenNI

aquest tipus de joc està molt limitat. Un altre dels comentaris dels usuaris com a millora ha estat

utilitzar comandes de veu durant el joc amb la finalitat de proporcionar més funcionalitats al

jugador.

74

Les edats dels usuaris enquestats es troben entre els 20 i els 60 anys. D’aquesta manera

aconseguim unes opinions més variades, tenint en compte que els joves estan més acostumats a

jugar de manera més habitual, i a mesura que augmenta l’edat és menor el contacte amb el món

dels videojocs. D’aquesta manera s’ha obtingut un rang d’edats més variat tal i com es mostra a

la gràfica A de la figura 40. A tots aquests usuaris se’ls ha realitzat l’enquesta durant el procés de

desenvolupament (per comprovar la comoditat de les accions) i el de validació (per comprovar el

correcte funcionament del mòdul a testejar).

A la primera part de l’enquesta, l’usuari ha de marcar amb un signe “+” els punts que

compleixen aquests aspectes esmentats i amb el signe “-“ els que no ho fan. D’aquesta manera,

s’ha realitzat una mitjana de la satisfacció dels usuaris amb el joc en base a la seva edat, tal i com

es veu a la gràfica B de la figura 40.

Figura 40. Resultats de les proves als usuaris.

El fet que l’ultima agrupació d’edats entre 50 i 60 anys hagi puntuat el joc positivament,

indica que els controls són intuïtius i còmodes. Així doncs, gràcies a la participació d’aquests 10

usuaris hem validat els mòduls d’una manera fiable i hem obtingut idees per possibles millores

en els controls de Launchageddon.

Aspecte final

L’aspecte visual de les aplicacions test s’han basat en els dissenys inicials. La figura 41

mostra els dissenys de les tres aplicacions a l’esquerra i a la dreta el seu aspecte final un cop

implementats. El punt 1 correspon al disseny inicial i l’aspecte final de l’aplicació test Kinect

75

Castle Logix®, el punt 2 fa referència al joc de conducció i per últim el punt 3 pertany al joc

d’acció.

Figura 41. Resultats visuals de les aplicacions: 1 – Castle Logix, 2 – Conducció, 3 - Acció.

Integració

En aquest apartat es mostren tots els passos que s’han realitzat en el moment de la

integració entre mòduls. Començarem parlant de la integració dels controls amb Kinect, que s’ha

realitzat en comú amb el mòdul de Gameplay i amb l’Editor, i seguidament s’explicarà la

integració realitzada per als mòduls realitzats que utilitzarà el Gameplay.

76

Integració dels controls (Gameplay i Editor)

A les reunions realitzades durant aquest projecte, es van definir tots els accessos als

controls del mòdul de tecnologia. D’aquesta manera la resta de mòduls podien conèixer com

accedir i utilitzar les dades proporcionades.

Quan es va implementar el mòdul d’Obtenció dels vectors (Capítol 2.2), es va decidir

realitzar un mòdul que simulés el comportament d’aquest mòdul però utilitzant el teclat. Aquest

mòdul va ser especialment implementat perquè tant el Gameplay com l’Editor poguessin

familiaritzar-se amb el tipus de dades amb les que treballaria el mòdul final sense la necessitat

d’utilitzar Kinect.

En el cas del mòdul de reconeixement d’esdeveniments (Capítol 2.3), també es van pactar

els estats corresponents a cada esdeveniment realitzat per l’usuari, facilitant així la posterior

integració.

La resta de mòduls com en el cas de la interacció amb la interfície d’usuari (Capítol 2.4) no

necessiten integració, ja que no proporcionen dades a altres mòduls, sinó que directament

interactuen amb els elements del videojoc. Així doncs, només ha estat necessari modificar la

manera en que el Gameplay i l’Editor els encenen i apaguen

Problema amb els models 3D (Gameplay)

A l’importar els models 3D dissenyats en el mòdul de tecnologia, ens vam adonar que les

escales dels models no eren les mateixes que la del model original. Aquest canvi es produeix a

l’editar el model original en format (FBX). Alhora d’obrir aquest format amb 3D Studio Max, no es

guarda l’escala original del model, així doncs a l’exportar el model modificat, aquest no

comparteix la mateixa escala que el model original (vestimenta normal).

La solució al problema proposada va ser utilitzar el model original i modificar la seva

textura en temps d’execució per canviar de vestimenta. Això ha provocat que tots els models

tinguin el mateix volum i grandària. A l’aspecte final del videojoc ja no es mostren les

deformacions que s’han mostrat al capítol 2.8 com per exemple el JetPack de la vestimenta

propulsada, o les ales de la vestimenta paracaigudista. Així doncs, a la figura 42 es mostra el

disseny dels models anteriors i el disseny final un cop solucionat el problema.

77

Figura 42. Disseny dels models – Superior: Disseny inicial, Inferior: Disseny final

D’altra banda, a l’integrar els cascs del jugador no vam trobar el mateix problema. Al ser

models que tridimensionals que anaven separats dels models de les vestimentes es van poder

integrar fàcilment sense masses problemes. Només modificant l’escala i les rotacions per a que

fossin iguals i substituint els cascs per a cadascun dels models vam obtenir els models finals. Els

cascs al igual que les vestimentes es modifiquen en temps d’execució al selector de personatge.

El problema amb les escales dels models en va obligar a modificar el mòdul de selecció de

personatges (Capítol 2.9), ja que ara només hi ha un model base a través del qual es modifiquen

les textures al realitzar la selecció. El resultat final del selector de personatges es mostra a la

figura 43, on es mostren els botons pertinents a la selecció de la vestimenta al costat esquerre, i

al costat dret els botons de la selecció del casc.

78

Figura 43. Selector de personatges final

Integració de la càmera en primera persona (Gameplay)

La integració de la càmera en primera persona realitzada al mòdul de tecnologia (Capítol

2.5) va ser bastant senzilla. Inicialment van ser analitzades les dependències de codi necessàries, i

més tard, es va dur a terme la importació del codi i els GameObjects associats.

Per canviar de càmera només va ser necessari implementar un mètode capaç d’activar i

desactivar el funcionament del mòdul en el moment que ens interesses en temps d’execució.

Futur del projecte

Encara no s’ha parlat de les intencions en un futur, però veient la capacitat de treball en

equip dels membres del projecte no hi ha dubte que es podria arribar a comercialitzar aquest

producte o treballar en un de nou amb la mateixa intenció.

Ha estat una feina molt dura partir d’una idea inicial i repartir-la entre els components per

finalment obtenir com a resultat aquests tres projectes. La constància i la compenetració han

estat aspectes fonamentals per concloure amb èxit el projecte comú.

79

4 CONCLUSIONS I MILLORES

Pel que fa al projecte global:

 S’ha desenvolupat un videojoc 3D anomenat Launchageddon.

 S’ha dissenyat un Gameconcept inicial per aquest joc. Document que ha servit per

dissenyar la implementació i dividir les tasques entre els membres de l’equip i establir els

mòduls i les seves comunicacions.

 S’ha dut a terme la integració dels tres mòduls que composen el projecte de forma

satisfactòria i s’han solucionat els problemes provinents de la integració.

Pel que fa al projecte concret:

 S’ha investigat el funcionament de Unity i l’ús de les llibreries proporcionades per OpenNI.

 S’han dissenyat i implementat els mòduls corresponents a la part de tecnologia per

proporcionar les dades calculades a la resta de mòduls.

 S’han dissenyat i implementat el mòdul per a tractar les dades proporcionades per Kinect

en base al nostre esquelet.

 S’han dissenyat i implementat els mòduls que proporcionen els vectors corresponents a

les mans i el tors.

 S’ha dissenyat i implementat un reconeixedor d’esdeveniments en base als moviments

que realitza l’usuari durant el joc.

 S’ha dissenyat i implementat un mòdul que permet gravar els moviments realitzats per

l’usuari i després reproduir aquests moviments sobre un model 3D.

 S’ha implementat un mòdul que substitueix el ratolí, proporcionant les mateixes funcions

que aquest, sense necessitat d’estar en contacte amb cap dispositiu.

 Les aplicacions test desenvolupades han permès demostrar que Kinect és una eina molt

potent i que en el cas del nostre videojoc permet a l’usuari jugar-hi sense perdre

funcionalitats. No obstant, també ens han fet veure que certs tipus de joc com els d’acció

necessitarien un reconeixement més detallat del jugador per ser capaços de realitzar

totes les accions del videojoc d’una manera real.

80

 Les principals incidències han estat associades a la planificació inicial. En base als objectius

proposats i a la inexactitud dels càlculs del temps necessari per desenvolupar cadascun

d’ells, s’han dedicat moltes més hores de les planejades per a la realització d’aquest.

 Els divers proporcionats per OpenNI són molt complicats d’instal·lar i han sorgit

incidències a arrel d’aquesta complicada instal·lació, ja que en certs moments l’ordinador

no reconeixia al dispositiu.

 Recomanaria l’ús de Unity per a futurs usuaris, ja que és un motor potent i estable que ha

permès desenvolupar aquest projecte.

 A nivell personal ha estat un plaer tenir l’oportunitat de realitzar un projecte on s’ha

partit d’una idea pròpia i s’ha disposat d’una plena llibertat en el desenvolupament.

Com a millores caldria destacar:

 Utilitzar altres llibreries per Kinect que permetin un reconeixement més exhaustiu de

l’usuari, afegint el reconeixement dels dits i les rotacions del cap i de les mans.

 A través de la càmera de Kinect realitzar un escaneig facial a l’usuari per tal de que el seu

personatge pugui tenir la seva cara.

 Permetre a l’usuari escanejar objectes personals amb la finalitat d’incloure’ls als seus

escenaris.

81

5 BIBLIOGRAFIA I REFERÈNCIES

[JorCar] : Jordi Cartes Rosell, “Launchageddon: Editor de nivells”, Projecte de Final de Carrera

d’Enginyeria Informàtica, Escola d’Enginyeria UAB, 2012.

[MarSue] : Marcos Sueiro Eglicerio, “Launchageddon: Gameplay”, Projecte de Final de Carrera

d’Enginyeria Informàtica, Escola d’Enginyeria UAB, 2012.

[3DMax] : www.autodesk.es/3dsmax, últim accés: 25/08/2012, web principal del producte.

[3DMn] : www.foro3d.com/f112/manual-3d-studio-max-8-instituto-tecnologico-durango-

60725.html, últim accés: 12/09/2012, manual d’usuari per a 3D Studio Max.

[AngBir] : www.rovio.com/en/our-work/games/view/1/angry-birds, últim accés: 05/06/2012,

pàgina principal del videojoc Angry Birds.

[AngEul] : www.euclideanspace.com/maths/geometry/rotations/euler/index.htm, últim accés:

10/03/2012, definició i càlcul dels angles d’Euler.

[CstLgx] : www.smartgames.eu/en/smartgames/castle-logix, últim accés: 15/04/2012, pàgina

web del fabricant on s’explica la metodologia del joc.

 [MRot] : mathworld.wolfram.com/RotationMatrix.html, últim accés: 10/01/2012, definició i

funcionament de les matrius de rotació.

[PhShp]: www.adobe.com/es/products/photoshop.html, últim accés: 15/03/2012, pàgina web de

l’editor d’imatges Adobe Photoshop.

[PrmSns] : www.primesense.com, últim accés: 08/05/2012, pàgina web de PrimeSense, empresa

propietària de les llibreries OpenNI.

[Quat] : mathworld.wolfram.com/Quaternion.html, últim accés: 21/06/2012, definició i càlcul

dels quaternions per a les rotacions.

[SkyBx] : docs.unity3d.com/Documentation/Components/class-Skybox.html, últim accés:

19/05/2012, aplicació de Skybox a Unity.

[TecRev] : www.technologyreview.com, últim accés: 15/03/2012, pàgina web publicada per

l’Institut Tecnològic de Massachusetts (MIT) on es mostren les noves tecnologies emergents.

http://www.autodesk.es/3dsmax
http://www.foro3d.com/f112/manual-3d-studio-max-8-instituto-tecnologico-durango-60725.html
http://www.foro3d.com/f112/manual-3d-studio-max-8-instituto-tecnologico-durango-60725.html
http://www.rovio.com/en/our-work/games/view/1/angry-birds
http://www.euclideanspace.com/maths/geometry/rotations/euler/index.htm
http://www.smartgames.eu/en/smartgames/castle-logix
http://mathworld.wolfram.com/RotationMatrix.html
http://www.adobe.com/es/products/photoshop.html
http://www.primesense.com/
http://mathworld.wolfram.com/Quaternion.html
http://docs.unity3d.com/Documentation/Components/class-Skybox.html
http://www.technologyreview.com/

82

[UnrDev] : www.unrealengine.com/udk, últim accés: 02/03/2012, pàgina web del motor gràfic

Unreal Development Kit (UDK).

[Uty3D] : www.unity3d.com, últim accés: 05/07/2012, pàgina web del motor gràfic Unity.

[UtyApi] : docs.unity3d.com/Documentation/ScriptReference, últim accés: 12/09/2012, API on

s’explica el funcionament de les classes del motor gràfic de Unity.

[UtyMan] : docs.unity3d.com/Documentation/Manual/index.html, últim accés: 10/05/2012,

manual d’usuari per a principiants de Unity.

http://www.unrealengine.com/udk
http://www.unity3d.com/
http://docs.unity3d.com/Documentation/ScriptReference
http://docs.unity3d.com/Documentation/Manual/index.html

83

6 ANNEX

84

85

86

87

88

89

90

91

92

