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1. CAPÍTULO 1.  INTRODUCCIÓN 

1.1 Marco del proyecto 

En los últimos años, los sistemas de telemetría para aplicaciones médicas han 

crecido significativamente sobre todo en el diagnóstico y en la monitorización de, por 

ejemplo, la glucosa, la presión de la sangre, la temperatura, el ritmo cardíaco... [1]-[3]. 

La incorporación de dispositivos médicos implantados amplía el rango de 

aplicaciones en medicina y proporciona una mejora de calidad de vida para el usuario. 

La figura 1-1  muestra un ejemplo de aplicación con antena implantada para el control 

de la glucosa en sangre de los diabéticos [4]. 

 

 

Figura 1-1: Ejemplo de aplicación de dispositivo con antena implantado para la medida de glucosa en sangre 

[4] 

En estos sistemas la antena implantada es el principal factor para conseguir un buen 

enlace de comunicación entre el dispositivo implantado y la estación base (figura 1-2). 

La antena debe tener unas prestaciones suficientes de adaptación de impedancia y de 

ganancia, de manera que contrarreste las altas pérdidas que presenta el cuerpo humano, 

además de ser compatible. Todo esto hace del diseño de la antena un gran reto, [5] y [6]. 

Por lo tanto, es de gran interés conocer qué comportamiento ofrecen diferentes tipos 

de antenas cuando son sometidas a condiciones similares a las que tendrán en 

dispositivos implantados. 
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Figura 1-2: Esquema básico de comunicación entre antena implantada y antena exterior 

Los diseñadores de antenas para estas aplicaciones tienen muchas dificultades ya 

que se trata de antenas embebidas, las cuales muestran un comportamiento muy sensible 

al entorno en el que depositan energía por ser medios con pérdidas, siendo 

características negativas para la comunicación [5].  

Esta memoria recoge los resultados simulados y medidos para dos de las geometrías 

de antena más utilizadas, dipolo y parche [7], para las que su comportamiento es muy 

conocido cuando se encuentran en espacio libre, pero no resulta tan evidente cuando son 

embebidas en medios con permitividades y/o con conductividades elevadas. 

El dipolo presenta una estructura sencilla permitiendo una simulación cómoda y 

rápida, por lo que fácilmente se puede conocer el efecto del medio y del entorno sobre 

la antena. En cambio, en la medida resulta difícil de medir en banda ancha ya que es 

necesario implementar un balun con gran ancho de banda, por lo que esta estructura se 

ha utilizado solo en simulación. 

El parche ha sido estudiado tanto en simulación como en medida. Éste presenta 

mayor dificultad de simulación que el dipolo debido al dieléctrico que soporta la antena, 

pero es fácilmente medible directamente con cable coaxial. Además resulta ser la antena 

más común para este tipo de aplicaciones. 

Las antenas utilizadas en este proyecto se han diseñado para operar a 2.4 - 2.5 GHz 

(banda frecuencial ISM1 para aplicaciones médicas implantadas de corto alcance) 

debido a que tendrán un tamaño razonable que facilitará la implementación y la 

realización de medidas. Debido a la respuesta que ofrecen estas antenas al introducirlas 

en el medio de alta permitividad, prácticamente todas las simulaciones y medidas se han 

realizado en banda ancha. 

 

 

                                                 
1 ISM: Porción de bandas frecuenciales dedicadas a aplicaciones industriales, científicas y médicas. 

Antena exterior o 
estación base

Antena implantada 
dentro del cuerpo 
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1.2 Objetivos 

El objetivo principal de este trabajo es el estudio de antenas dipolo y parche 

implantadas en el cuerpo humano, para ello será necesario definir los modelos de 

simulación de forma adecuada para que exista una buena correspondencia con los 

resultados obtenidos de la medida empírica en el laboratorio. 

Una vez validados los modelos de simulación y el setup de medida, el tiempo 

dedicado en este proyecto ha permitido el análisis exhaustivo de las antenas a fin de 

entender el comportamiento o respuesta que ofrecen en este tipo de entornos. Para 

conocer el funcionamiento de estas dos antenas en el líquido se han realizando diversos 

estudios paramétricos del sistema de antenas implantadas. 

 

1.3 Metodología 

Para alcanzar dichos objetivos, la metodología seguida en este proyecto se ha basado 

en crear en primer lugar el modelo de simulación de la antena parche a la vez que se ha 

implementado un par de configuraciones de medida, ajustando los parámetros 

necesarios para conseguir una correspondencia aceptable entre ambos entornos de los 

parámetros de adaptación y de ganancia en dirección hacia el exterior del cuerpo 

humano. 

Una vez conseguido esto, y vista la respuesta del parche implantado a diversas 

profundidades, se ha utilizado la geometría de antena dipolo para analizar de forma 

genérica como afecta el entorno donde se encuentra la antena, de manera que sirviese de 

ayuda para justificar la respuesta que presenta el parche. 

Después de analizar el dipolo, se ha estudio con detalle la respuesta del parche, 

justificando en la medida de lo posible los resultados obtenidos. 

Consolidadas y asumidas las diferencias entre simulación y medida, y entendido el 

comportamiento y las diferencias de ambas antenas, finalmente se establecen algunas 

reglas de diseño y ejemplos para estos dos tipos de antenas implantadas. 

 
  



Capítulo 1. Introducción 
 

26 Análisis y diseño de antenas dipolo y parche para aplicaciones implantadas en el cuerpo humano 

1.4 Organización de la memoria 

En los siguientes tres capítulos se documenta todo el trabajo realizado durante el 

proyecto, los cuales son comentados a continuación con mayor detalle: 

 Capítulo 2: Configuración de la medida y de la simulación. 

Una vez presentadas las características del cuerpo humano y los modelos que se 

suelen usar para la simulación de antenas implantadas, este capítulo presenta los 

líquidos utilizados en este proyecto para modelar el medio que rodea la antena. Se 

incluyen también las configuraciones de medida y simulación realizadas para. Además 

se dan consejos y se explican algunas experiencias adquiridas en ambos entornos para 

conseguir un correcto modelo de simulación e implementación. 

 Capítulo 3: Análisis y diseño del dipolo implantado. 

Este capítulo pone a prueba el dipolo implantado analizando exhaustivamente, 

mediante simulación, su respuesta frente a diversas variaciones de las características del 

medio así como de su geometría. Resumida la respuesta del dipolo a dichos cambios, al 

final del capítulo se presentan diversos diseños donde figuras de mérito como la 

ganancia en dirección exterior al cuerpo y la adaptación son valorados, teniendo en 

cuenta la geometría de la antena. 

 Capítulo 4: Análisis y diseño del parche implantado. 

A diferencia del dipolo, y gracias a la facilidad de fabricación y medida, el parche es 

analizado tanto en simulación como en medida, comparando los resultados de ambos. 

Al igual que para el dipolo, conoceremos la respuesta del parche a cambios del entorno 

y de su geometría; y finalmente se presentan y comparan los resultados de algunos 

diseños donde también se da cabida al parche PIFA, Planar Inverter F Antenna. 

Finalmente, el último capítulo, conclusiones y futuras investigaciones, resume los 

puntos más importantes del comportamiento de estas antenas implantadas, 

estableciendo una clasificación en función del efecto que el líquido tiene sobre ellas. 

Además se presenta un listado de posibles tareas que pueden ser realizados en futuros 

trabajos para mejorar y ampliar el conocimiento adquirido en este trabajo sobre antenas 

implantadas en el cuerpo humano. 
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2. CAPÍTULO 2. CONFIGURACIÓN DE LA MEDIDA Y DE 

LA SIMULACIÓN 

2.1 Introducción 

Este capítulo presenta en primer lugar las propiedades del cuerpo humano y los 

modelos que se suelen utilizar para la simulación de antenas implantadas, y se muestran 

los dos líquidos utilizados para emular las características del cuerpo. 

Seguidamente se explican las técnicas de simulación y de medida utilizadas 

mostrando en qué aspectos hay que tener un cuidado especial para conseguir un 

comportamiento razonablemente parecido entre las simulaciones y las medidas. En este 

apartado se pretende responder a preguntas como si el material del contenedor del 

líquido puede afectar a la medida, así como el tamaño de la cubeta del modelo de 

cuerpo humano, o qué diferencias hay entre utilizar un modelo de simulación con 

medios infinitos o finitos. Será de gran utilizad saber si podemos utilizar agua destilada 

en vez de líquido humano para realizar estudios de antenas implantadas y así obtener 

conclusiones parecidas con mucho menor coste. 

2.2 Modelo de simulación del cuerpo humano 

En [8] encontramos los valores típicos de permitividad y conductividad de las 

diferentes partes del cuerpo para 402 MHz. En la figura 2-1 se puede ver la gran 

variedad de permitividades que se dan en el cuerpo humano para dicha frecuencia. Estos 

valores pueden cambiar en función de la frecuencia y ser no homogéneos. 
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Figura 2-1: Permitividades relativas del modelo de cuerpo humano a 402 MHz [8] 

En la tabla 1 se muestran los valores de permitividad y conductividad a la frecuencia 

a la que van a trabajar las antenas estudiadas en este proyecto, 2.45 GHz, de los tres 

materiales más superficiales del cuerpo humano donde se suele implantar la antena.  

 

Fibra biológica Permitividad (εr) Conductividad (σ[S/m])  

Piel 38.01 1.46 

Grasa 5.28 0.10 

Músculo 52.73 1.74 

Tabla 1 : Propiedades eléctricas de algunas de las capas más exteriores del cuerpo a 2.45 GHz [9] 

Tanto en la figura como en la tabla, se puede observar gran variación de 

permitividad y de conductividad entre los componentes del cuerpo. Dada tal variedad, 

en los capítulos 3 y 4 veremos si estos pueden provocar grandes cambios en la respuesta 

de la antena implantada. 

Estudios previos, [8], demuestran la validez de los 3 modelos cuerpo humano 

simplificados que se muestran en la figura 2-2. Las antenas que son analizadas en este 

proyecto utilizan el modelo más simplificado de una sola capa. 
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Figura 2-2 : Modelos para antenas implantadas en el pecho. De izquierda a derecha, modelo 3D, modelo 

simplificado tres capas planas y de una sola capa [8] 

2.3 Líquidos utilizados para modelar cuerpo humano 

En este apartado se presentan las características eléctricas de los dos líquidos 

utilizados en las medidas como medio que simula las propiedades del cuerpo humano: 

 

 Líquido simulador humano: el líquido utilizado es del tipo MSL2450 el cual 

ha sido suministrado por la empresa SPEAG, [10], quien nos asegura las 

siguientes propiedades para 2.45 GHz: 

   r = 52.7 ± 5%   σ = 1.95 ± 5% [S/m] 

     

Figura 2-3 : Fotografía del líquido simulador humano empleado en las medidas 

 Agua destilada: se pueden encontrar en diversas fuentes la permitividad 

relativa y las pérdidas del agua pura. En las simulaciones de este proyecto se 

ha seleccionado la permitividad detallada en la etiqueta de la botella y las 

Cable coaxial 

Antena implantada 
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pérdidas se han obtenido de [11], donde se determinan estos parámetros en 

función de la temperatura y de la frecuencia. 

   İr = 74     tan į = 0.1188 

La conductividad, σ, y el factor de pérdidas dieléctrico o tangente de pérdidas, tan į, 

están relacionados mediante [12] 

 9 12

1,95
tan 0.27

' 2 2,45.10 8,854.10 52,7
e

e

           (1) 

Así pues, las pérdidas del medio líquido humano son casi tres veces mayores que las 

del agua destilada, diferencia que se verá reflejada en las medidas que comparen ambos 

líquidos. 

Gracias a que el agua destilada tiene menos pérdidas que el líquido humano, el 

medio agua destilada permitirá observar mejor algunos efectos que se están dando en 

los resultados tanto de la medida como de la simulación. 

En el capítulo 4 se muestran diversas comparaciones entre los líquidos, y entre la 

medida y la simulación, con lo que al llegar a las conclusiones del proyecto, se 

desvelará la viabilidad de la utilización de agua destilada para los ensayos de este tipo 

de aplicaciones, sobre todo en caso de que no se disponga del líquido simulador del 

cuerpo humano. 

 

2.4 Sistemas de medida 

Como ya se ha comentado, un objetivo principal en el desarrollo de este proyecto es 

realizar una configuración de medida en el laboratorio que permita caracterizar 

empíricamente antenas para aplicaciones implantables que se han diseñado en el 

simulador. 

El sistema de medida para antenas implantadas puede implementarse de manera 

vertical u horizontal [8], [13] y [14]. Para este proyecto se han implementado dos 

configuraciones diferentes en horizontal, las cuales han sido llamadas top y bottom, 

nombres asociados a la dirección en la que la antena está orientada una vez instalada en 

el setup. 

A continuación se describen ambos sistemas presentando los inconvenientes y 

ventajas de cada uno. 
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2.4.1. Configuración de medida top 

Para un mejor entendimiento, en la figura 2-4 se muestra el esquema de medida 

acompañado de una foto de la implementación. 

 

 

Figura 2-4 : Esquema y fotografía de configuración de medida top 

El sistema consiste en utilizar una caja común de plástico de dimensiones parecidas, 

en lo posible, al volumen del cuerpo humano. En el centro de la parte inferior del 

contenedor hay que hacer un agujero para pasar el coaxial que irá conectado a la antena 

parche. La antena está enganchada a la tapa del soporte de plástico (en nuestro caso un 

bote de crema). Gracias a que la tapa tiene rosca, se puede conectar el coaxial de 

medida al conector SMA de la antena y después colocarla en el bote. Es importante que 

dicha conexión quede sellada para evitar que entre el agua en el conector, y que a la vez 

permita quitar y volver a poner repetidas veces para poder reemplazar la antena. El bote 

está agujereado para permitir que haya líquido por debajo de la antena, de manera que el 

líquido rodea completamente la antena, al igual que sucede cuando ésta es implantada 

en el cuerpo. 

El cable coaxial que está entre la antena y el pasa-muros, en la parte inferior, tiene 

un recorrido espiral para permitir enroscar y desenroscar la tapa teniendo cuidado de 

que no se retuerza en exceso o se rompa. 

Se recomienda realizar dicha instalación en un entorno libre de objetos que puedan 

modificar la medida de la antena. En nuestro caso, al trabajar con el parche orientado 

hacia arriba, en la parte inferior del contenedor podemos tener una mesa de madera con 

una caja de porexpan que separe el contenedor de la mesa. 
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Medio líquido 
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Para conseguir precisión en la profundidad a la que se sumerge el parche, se 

recomienda instalar un medidor de nivel en perpendicular a la base del contendor. La 

posición final del parche debe quedar en paralelo a la base y a la superficie del líquido. 

En la figura 2-5 se puede ver el detalle de la instalación en las que podemos 

encontrar relacionados algunos de los comentarios expuestos. 

  

    

Figura 2-5 : Serie de fotografías de la configuración de medida top: a) parche instalado sin líquido, b) 

indicador de nivel y ancho del contenedor, c) sellado del coaxial por debajo del contenedor, y d) coaxial dentro 

del soporte de la antena 

 

Inconvenientes del sistema de medida top: 

 Para extraer el cable por debajo de la antena hay que traspasar el fondo de la 

cubeta y sellar el pasa-muros para evitar pérdidas de líquido. 

 No es fácil asegurar que la PCB de la antena está perfectamente nivelada con 

el agua. 

 Es difícil asegurar la profundidad exacta de la antena si no se dispone de un 

indicador de nivel del agua bien instalado, y que permita medir 

profundidades con precisión de milímetros. 

 No permite cambiar de antena con facilidad ya que el parche está sellado con 

la tapa del soporte de plástico. 

 El cable sufre cierta torsión debajo del parche ya que es necesario roscar la 

tapa, por lo que habrá que tener cuidado para evitar posibles errores de 

medida. 

 Esta configuración no sirve para antenas que radien omnidireccionalmente, 

ya que la distancia hasta el fondo del contenedor pueden afectar en la 

medida. 

 

a) b) c) d) 
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Ventajas del sistema de medida top: 

 Además de poder medir la adaptación, el sistema permite medir la ganancia 

de la antena en dirección perpendicular del parche con facilidad, incluso para 

diferentes profundidades. En la figura 2-6 se puede observar la configuración 

utilizada para dicha medida. 

 Debido al diagrama de radiación de la antena parche, no es necesario que la 

cubeta esté completamente libre de obstáculos por debajo, aunque es 

recomendable que así lo sea. 

 

En la figura 2-6 se presenta la configuración top que permite analizar la antena tanto 

en adaptación como en ganancia a la profundidad deseada. Por este motivo esta 

configuración ha sido las más utilizada en las medidas de los parches. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 2-6 : Setup de medida de impedancia y de ganancia de la antena implantada en la configuración top 

Mediante el método de 2 antenas [15], se puede calcular la ganancia de la antena 

implantada bajo test conociendo la potencia de la señal transmitida, PT, y recibida, PR, y 

utilizando la ecuación de Friis. 

 
2

4
R

T R

T

P
G G

P d




         (2) 

Analizador 
de redes 
vectorial 
Agilent 
N5230A Coaxial de 

medida 

Coaxial de antena 
Tx

Antena 
Tx 

parche 
directiva 

5dBi 
1m de 

distancia 
entre 

antenas 
Tx y Rx 

Antena Rx 
parche 

implantado 

Caja de porexpan 
vacía por dentro 

Mesa de 
madera de 
80cm de 
altura al 

suelo 

Soporte 
de 

madera 
para la 

antena Tx 

    P2  
P1 



Capítulo 2. Configuración de la medida y de la simulación 

34 Análisis y diseño de antenas dipolo y parche para aplicaciones implantadas en el cuerpo humano

Donde λ es la longitud de onda, d es la distancia entre antenas, GT es la ganancia de 

la antena transmisora y GR es la ganancia de la antena receptora. 

 Conocida la ganancia de la antena transmisora, conectada al puerto 2, se puede 

obtener la ganancia de la antena receptora, conectada al puerto 1, con la medida de los 

parámetros complejos S11, S12 y S22 que ofrece el analizador de redes. De manera que 

se puede redefinir (2) con la ecuación (3). 

    2
2 2 2

12 1 11 1 22
4 T RS G G S S

d


            (3) 

 

2.4.2. Configuración de medida bottom 

Además de la configuración anteriormente explicada, también se ha implementado 

otro sistema en el que la antena queda ubicada en el fondo del contenedor y orientada en 

su máximo de radiación en dirección inferior. Los esquemas y fotografías de las figuras 

2-7, 2-8  y 2-9 pretenden explicar en qué consiste dicha configuración. 

 
 

 

 

 

 

 

  

Figura 2-7 : Esquema y foto de la configuración bottom 

En el centro del fondo de la cubeta se coloca la PCB de la antena, orientada con el 

máximo de radiación del parche hacia abajo, a la separación deseada del fondo como 

símil de la profundidad de la antena implantada en el cuerpo. 

Por la parte superior de la PCB se encuentra el conector SMA para conectar el 

coaxial de medida que debe salir de forma perpendicular hasta el exterior de la caja, sin 

tensar en exceso para no flexionar la PCB. 

La cubeta debe situarse sobre un material de permitividad lo más parecida al aire y 

separada de cualquier otro objeto, en especial del suelo, lo suficiente como para evitar 

reflexiones que afecten a la medida de impedancia (figura 2-8). 
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Figura 2-8 : Fotografías de la configuración bottom 

Mediante este sistema, se ha podido comprobar que la impedancia de la antena no 

sufre variación con la altura del líquido, ya que debido al gran plano de masa del parche 

el diagrama del parche es directivo hacia la parte inferior, con lo que resulta 

prácticamente inmune a la profundidad que tenga el cuerpo humano.  

En el fondo de la cubeta, es necesario fijar la PCB con pequeñas torretas de plástico 

alejadas del elemento radiante que se encuentra en el centro de la PCB. Dichas torretas 

están compuestas por tornillos, arandelas y tuercas de plástico. La cabeza del tornillo 

está enganchada con cola en la pared del fondo de la cubeta. Para ajustar la separación 

de la antena al fondo de la cubeta, es decir la profundidad de la antena en el cuerpo, se 

utilizan las arandelas de plástico de grosor conocido. En la figura 2-9 se puede observar 

con mayor detalle en qué consiste la fijación de la PCB a la cubeta y la profundidad de 

implante. 

 

 

 

 

 

 

 

Figura 2-9 : Esquema y la fotografía de la configuración bottom en la zona de la fijación de la PCB en el fondo 

del contenedor 
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Inconvenientes del sistema medida bottom: 

 Solo se puede analizar las profundidades resultantes de las combinaciones 

que permiten las arandelas. 

 Resulta muy difícil poder utilizar este método para la medida de ganancia 

mediante 2 antenas, ya que habría que posicionar la antena transmisora 

debajo de la cubeta,  la cual también tendría que estar mínimamente separada 

del suelo. Aunque podría utilizarse el método del plano reflector [16], éste es 

poco cómodo debido a la configuración del sistema y a que se trabaja con 

líquidos. 

 Es necesario una distancia considerable libre de obstáculos por debajo de la 

cubeta para que ni el suelo ni otros objetos afecten en la medida. 

 Para profundidades de implante muy pequeñas, la antena queda cerca del 

contenedor de manera que éste podría afectar en la medida. 

 

Ventajas del sistema de medida bottom: 

 Este sistema permite mayor exactitud en la profundidad gracias al sistema de 

arandelas. 

 La superficie del liquido y la antena son paralelas. 

 Permite gran facilidad para cambiar de antena ya que solo hay que 

desenroscar las tuercas. 

 El cable no sufre torsión ya que puede salir recto y sin aplicar fuerzas sobre 

la PCB. 

2.4.3. Comparación entre configuraciones. Medida de impedancia 

La figura 2-10 compara la medida de adaptación de la configuración top con la 

medida de la configuración bottom de un parche diseñado a 2.4 GHz implantado a 4 

mm de profundidad. En ella se aprecian diferencias en la frecuencia del mínimo de 

adaptación, pero no en la forma de la traza. La configuración top tiene el mínimo a 2.26 

GHz y la configuración bottom a 2.34 GHz, una diferencia del 3 %. El motivo de esta 

diferencia recae en la dificultad para ajustar la profundidad de implante del parche en la 

configuración top, en cambio para la configuración bottom se tiene mayor precisión 

para conseguir una profundidad determinada. Por lo que la configuración top puede 

resultar poco robusta a no ser que se controle con mayor precisión la profundidad de 

implante, como por ejemplo con un nivel. 
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Figura 2-10 : Comparación de adaptaciones2 entre la configuración de medida top y bottom. Parche 

alimentado en el borde implantado a 4 mm de profundidad en el medio agua destilada 

Al realizar las medidas en la configuración bottom se ha podido comprobar que, 

gracias al gran plano de masa del parche, la altura del agua que sobrepasa al parche 

(grosor del torso)  no afecta en la impedancia de la antena parche. 

2.4.4. Recomendaciones 

Conocidas las diferencias, las ventajas e inconvenientes de cada configuración de 

medida, se recomienda utilizar uno u otro sistema principalmente en función del 

parámetro de interés a analizar. 

La configuración top facilita la medida para analizar la profundidad de implante y la 

configuración bottom nos permite analizar el efecto del grosor del cuerpo humano sobre 

la antena rellenando el contenedor con el líquido. 

Gracias al tipo de antena utilizado en las medidas, se consigue gran independencia 

con el grosor del cuerpo humano. Es por ello, que en las medidas empíricas, 

principalmente se ha utilizado la configuración top, ya que además permite con 

facilidad la medida de la ganancia, como ya se ha comentado. 

 

                                                 
2 Entiéndase adaptación S11 (dB) como |S11| [dB], módulo de S11 en dB. 
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2.5 Modelado del sistema de medida con FEKO 

Uno de los objetivos principales de este proyecto es la implementación de un 

sistema de medida que permitiera validar los resultados de la simulación para la antena 

parche. Es por ello que en los siguientes apartados se muestran los parámetros 

estudiados en relación a ciertas dimensiones o características de la configuración de 

medida a tener en cuenta para la correcta implementación y/o simulación de las antenas 

implantadas. 

2.5.1. Efectos del material de la cubeta contenedora 

En el simulador es posible sumergir la antena en un medio sin necesidad de un 

recipiente que contenga el medio, pero en la medida, como hemos visto, será necesario 

un contenedor del líquido, el cual en función de sus propiedades eléctricas y 

geométricas, puede afectar a la antena si ésta se encuentra suficientemente cerca como 

sucede en la configuración bottom. 

Por este motivo se han estudiado dos tipos de materiales para el contenedor, 

policarbonato y porexpan. La principal diferencia entre ambos es la permitividad 

relativa del material y las pérdidas, como se observa en la tabla 2, además del grosor ya 

que ambos tienen que soportar el líquido que contienen sin deformación. 

 
 Policarbonato Porexpan 
Grosor 5 mm 30 mm 
Permitividad relativa 3 1.6 
Tangente de pérdidas 0.02 0.002 
Masa 1000 Kg/m3 20 Kg/m3 

Tabla 2 : Características aproximadas de los materiales del contenedor analizados 

Para cada material, se ha simulado una antena parche, diseñada a 2.45 GHz, 

orientada hacia el material contenedor a 4 mm de separación, considerando aire y 

líquido humano entre la antena y el contenedor. Ambos casos son comparados también 

con el resultado del parche sin contendor. 

En la figura 2-11 se muestran los resultados en los que se puede observar un 

desplazamiento frecuencial del mínimo de adaptación cuando no hay líquido rodeando 

la antena, sino aire. En la simulación con el líquido humano rodeando la antena, el 

resultado de adaptación es prácticamente el mismo para ambos los materiales del 

contenedor. Sólo en la ganancia se dan diferencias de 1 dB entre la simulación con 
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contenedor y sin contenedor, por lo que se puede considerar prácticamente despreciable 

para la aplicación en cuestión. 

 

 

 

 

 

 

Figura 2-11 : Efecto del material contenedor sobre el parche separado a 4 mm del contenedor, en aire y con 

líquido simulador humano 

Pese a los leves efectos del material contenedor, se recomienda utilizar el mínimo 

grosor de contenedor en la medida siempre y cuando la pared sea lo suficiente rígida y 

no se deforme por el peso del agua, además de que el material tenga una baja 

permitividad y bajas pérdidas. 

2.5.2. Efectos del tamaño de la cubeta contenedora 

Descartados los posibles problemas que pueda ocasionar el material contenedor, 

otro punto que puede ser importante es conocer si el tamaño de la cubeta que utilicemos 

en las medidas afecta al resultado debido a sus dimensiones finitas. 

Para ello, en la figura 2-12 se presentan los resultados obtenidos por simulación para 

3 tamaños de cubeta diferentes: 30x30x10, 27x17x7 y 24x20x7 cm3, de largo, ancho y 

alto, respectivamente. Los dos últimos son los tamaños de los contenedores utilizados 

en el laboratorio. Para todos los casos, el parche está sumergido a 4 mm de profundidad 

en el medio de agua destilada. 
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Figura 2-12 : Efecto del tamaño del contenedor sobre el parche con superestrato a 4 mm de profundidad en 

agua destilada 

El tamaño del contenedor no tiene prácticamente ningún efecto en la impedancia de 

la antena, así como en la adaptación. Sí se observan variaciones en la ganancia de la 

antena en dirección hacia el exterior del cuerpo debido a las reflexiones que se suceden 

dentro del contenedor por el cambio de permitividad entre el líquido y el aire. Por lo 

tanto cabe tener presente que se pueden obtener resultados de ganancias diferentes en 

función del tamaño del contenedor que se utilice en las medidas. Y, extrapolando el 

resultado, también se podrían dar pequeñas diferencias en función del grosor de la parte 

del cuerpo humano donde se implante la antena, así como también del tipo de antena 

que se utilice. 

2.5.3. Modelado con dieléctricos finitos o infinitos 

Este apartado pretende demostrar la validez del uso de dieléctricos infinitos para las 

simulaciones de antenas implantadas. Modelar con dieléctricos infinitos permite obtener 

rápidos resultados de simulación con menor memoria del PC, facilitando el estudio de 

las propiedades de las antenas implantadas.   

Al inicio del proyecto se realizaron diversas simulaciones a fin de conocer si era 

posible modelar los materiales que utilicemos en la implementación de la antena y en el 

medio líquido mediante dieléctricos infinitos (figura 2-13). 
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Figura 2-13 : Parche con superestrato modelado con dieléctricos finitos, a la izquierda, y con dieléctricos 

infinitos, a la derecha 

La figura 2-14 muestra los resultados de la antena parche en espacio libre 

comparando el modelado del sustrato de la antena, dieléctricos finitos e infinitos. 

 

 

 

 

 

 

 

Figura 2-14 : Diferencia entre el modelado del parche con dieléctricos finitos o infinitos 

Como muestra la figura 2-14, la impedancia, la adaptación y la ganancia son muy 

similares, por lo tanto para nuestros propósitos es viable modelar los medios 

dieléctricos que se utilicen en el parche mediante dieléctricos infinitos. 

La figura 2-15 muestra los modelos utilizados para comparar la diferencia entre el 

modelado del medio líquido y del sustrato de la antena mediante dieléctricos finitos e 

infinitos. La antena utilizada es el parche implantado a 4 mm de profundidad, 

considerando una cubeta de 24 x 20 cm2, con 7 cm de grosor y agua destilada como 

medio del líquido. La figura 2-16 muestra los resultados de las simulaciones. 
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Figura 2-15 : Modelo con dieléctricos finitos, a la izquierda, e infinitos, a la derecha, del parche implantado en 

el modelo simplificado de una capa del cuerpo humano 

 

 

 

 

 

 

Figura 2-16 : Diferencia entre modelado del parche y del líquido con dieléctricos finitos o infinitos 

Observando la adaptación de las antenas, se podría considerar válido el modelo de 

dieléctricos infinitos, aunque en la ganancia en acimut se observen mayores diferencias 

a ciertas frecuencias. 

Pese a las variaciones en la ganancia y al efecto del tamaño de la cubeta visto en el 

apartado anterior, es preferible estudiar el comportamiento de una antena despreciando 

los efectos de las dimensiones del contenedor del líquido, ya que como gran ventaja 

conseguimos gran reducción del tiempo de simulación. Eso sí, habrá que tener presente 

que podrán existir algunas diferencias entre medida y simulación. 
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En la primera fase de diseño se recomienda trabajar, si la estructura de antena lo 

permite, mediante capas infinitas ya que el tiempo de cálculo es inferior. En caso de 

necesitar afinar mucho en la simulación habrá que trabajar con dieléctricos finitos, ya 

que es probable que los valores cambien un poco, pero las tendencias se deberían 

mantener. 

Para ello hay que tener en cuenta que el mallado de toda la estructura, tanto la 

antena como el líquido, se debe realizar con un tamaño de triángulo correspondiente a 

una décima parte de Ȝ efectiva del medio, tal como se recomienda en [17]. Tratándose 

de líquidos con alta permitividad, esto supone una gran cantidad de incógnitas de 

mallado resultado gran tiempo de cálculo. 

2.5.4. Modelos de simulación de las antenas 

2.5.4.1. Modelo de simulación del dipolo implantado 

El modelo de simulación del dipolo se compone de un hilo recto de longitud Ȝ/2 a la 

frecuencia de diseño, con cierto radio de conductor de cobre. Para aislar el dipolo del 

líquido (cuerpo humano) se ha utilizado un recubrimiento con las propiedades del 

espacio libre, İr = 1 y tanδ = 0. La antena está sumergida a una profundidad 

determinada en un medio homogéneo e infinito en el plano horizontal con un grosor de 

200 mm, parecido al tronco humano. La figura 2-17 muestra los detalles del modelo del 

dipolo implantado. 

 

                       

 

 

 

 

 

Figura 2-17 : Modelo de simulación del dipolo implantado, a) vista completa, b) sección transversal con zoom 

de la profundidad de implante, y c) sección transversal con zoom del dipolo 
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El modelado de la geometría mediante dieléctricos infinitos permite gran velocidad 

de simulación el cual es muy útil para las primeras aproximaciones de diseños. 

En la figura 2-17 también se muestran las principales variables de análisis que en el 

capítulo 3 son estudiadas en relación al dipolo, como son la profundidad, el grosor de 

recubrimiento y radio del conductor, además de la permitividad del medio que rodea a 

la antena. 

2.5.4.2. Modelo de simulación del parche implantado 

En la figura 2-18 se muestra con detalle el modelo genérico de simulación para el 

parche implantado. 

En el esquema podemos diferenciar las capas de dieléctrico infinito. A parte del aire, 

en color azul, la primera y tercera capa tienen las propiedades del medio líquido. El 

grosor de la primera representa la profundidad de implante y la tercera representa el 

grosor del torso humano. En la capa del medio, en color amarillo, tenemos el dieléctrico 

que sostiene la antena. Éste está compuesto por el superestrato, situado por encima del 

conductor de la antena, y por el sustrato, situado entre el conductor y el plano de masa. 

 
 
  

 

 

 

Figura 2-18 : Modelo de simulación del parche implantado, a) vista completa, y b) zoom de la sección 

transversal en la zona de la antena y de la profundidad de implante 

Para poder validar este modelo de simulación para la antena parche, en el capítulo 4 

se realizan múltiples comparaciones entre los resultados de la simulación y de la 

medida. 
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3. CAPÍTULO 3. ANÁLISIS Y DISEÑO DEL DIPOLO 

IMPLANTADO 

3.1 Introducción 

Como es bien sabido, las antenas dipolo son una de las estructuras más conocidas, 

simples, baratas y utilizadas en diversas aplicaciones. Gracias a su sencillez de diseño y 

simulación, esta estructura es muy útil para analizar lo que puede estar sucediendo en 

sistemas más complejos. En nuestro caso, pese a utilizar dieléctricos infinitos, el coste 

de las simulaciones de la antena parche es significativo. Por ello este capítulo se plantea 

como un estudio previo con la antena dipolo ya que se puede obtener cierto 

entendimiento del comportamiento de las estructuras implantadas con unos 

requerimientos computacionales realmente reducidos. 

Este capítulo está estructurado en tres bloques principales: respuesta del dipolo en 

función del medio, análisis del dipolo implantado y diseño del dipolo implantado. 

Como ya se ha comentado anteriormente, todo el estudio relacionado con el dipolo 

ha sido realizado mediante simulación. En este proyecto se ha decidido no entrar en la 

medida empírica del dipolo ya que para ello es necesario simetrizar las corrientes de la 

línea de transmisión coaxial con las de la antena [7], lo que resulta en una dificultad 

añadida al realizar las medidas. 

 

3.2 Respuesta del dipolo en función del medio 

Este apartado está dividido en tres partes. En primer lugar se muestran las 

características más importantes del dipolo en espacio libre, las cuales son de utilidad ya 

que se les hace referencia en apartados continuos. Posteriormente se muestra la 

respuesta que se obtiene al cambiar el medio infinito que rodea la antena por las 

propiedades del líquido humano y del agua destilada. Seguidamente, veremos la 

respuesta de la antena en una situación más parecida a la aplicación implantada, en el 

modelo de cuerpo humano simplificado, donde se muestra la diferencia del dipolo sin 

recubrimiento y con recubrimiento. 
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3.2.1. Dipolo en espacio libre 

Para poder comparar con el dipolo implantado, en las figuras 3-1 y 3-2 se muestran 

para un amplio rango frecuencial los resultados más característicos en espacio libre de 

un dipolo de 56 cm de longitud con 20 m de radio de conductor. 
 

  

 Figura 3-1 : Resultados del dipolo en espacio libre. Impedancia en carta de Smith, a la izquierda, e 
impedancia en parte real y parte imaginaria, a la derecha 

 

Figura 3-2 : Resultados del dipolo en espacio libre. Adaptación y ganancia en acimut 

En las figuras se puede reconocer el resultado típico de un dipolo diseñado a la 

frecuencia de 2.45 GHz, con una impedancia de referencia de 50 Ω. 

Es posible relacionar el recorrido que la traza describe en la carta de Smith con la 

parte real e imaginaria de la impedancia, así como también con la adaptación |S11|. 

Como se observa en la carta de Smith, en el rango frecuencial de simulación el dipolo 

tiene 4 resonancias, que se dan en el momento en que la traza de la parte imaginaria de 

la impedancia es igual a cero. Esto sucede con el siguiente orden de resonancias: serie – 

paralelo – serie – paralelo, etc. En las resonancias serie la antena se puede modelar 

circuitalmente con un tanque resonador RLC3 serie, mientras que en las resonancias 

paralelo se modelaría con un tanque resonador RLC paralelo. 

                                                 
3 Tanque resonador formado por resistencia, bobina y condensador. 
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Es en la proximidad de las frecuencias de las resonancias series, 2.45 GHz y 7.8 

GHz, donde se generan los dos mínimos de la traza de adaptación, ya que la traza pasa 

cerca del centro de la carta de Smith normalizada a 50 Ω. 

La ganancia en función de la frecuencia en dirección acimut, crece lentamente hasta 

7 GHz, momento en el que empieza a decrecer para ofrecer un nulo de radiación en 

dirección acimut a 9.8 GHz, como muestra la figura 3-3, donde se muestran los 

diagramas de radiación para las frecuencias 2.45, 6 y 9.8 GHz. 

 

 

Figura 3-3 : Resultados del dipolo en espacio libre. Diagramas de radiación de ganancia en 3D para 2.45, 6 y 

9.8 GHz, de izquierda a derecha 

En [7] podemos encontrar la figura 3-4, donde se muestra en función de longitudes 

de Ȝ la directividad, la resistencia de radiación y de entrada para un dipolo; así como 

también la distribución de corrientes fiel a la siguiente aproximación, definida para un 

dipolo de grosor idealmente nulo, posicionado en eje vertical z, con alimentación en el 

medio del dipolo y localizado en el origen de coordenadas. 
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                              (4) 

 

Donde k es 2π/Ȝ, Io es la amplitud de corriente en el origen, y z es la posición a lo 

largo del dipolo en el eje vertical. 

Esta expresión describe una distribución de corriente a lo largo del dipolo con forma 

sinusoidal siendo siempre igual a cero en los extremos. 
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Figura 3-4 : A la izquierda, resistencia de radiación, resistencia de entrada y directividad de un dipolo fino con 

distribución de corrientes sinusoidal. A la derecha, distribución de corrientes a lo largo de dipolo para 

diferentes longitudes de Ȝ 

Se puede asociar la longitud del dipolo l con las longitudes de Ȝ para las que se da 

un máximo de corriente en el centro del dipolo, donde se encuentra la alimentación, con 

los mínimos de adaptación |S11| presentados en la figura 3-2. De la figura 3-4, 

obtenemos máximos de corriente en el centro del dipolo para l = Ȝ/2 y para l = 3Ȝ/2. 

Siendo 56 mm la longitud real del dipolo, es a 2.45 GHz cuando corresponde l = 

Ȝ/2, frecuencia a la se observa el primer mínimo de adaptación en la gráfica |S11|.  

Si buscamos la frecuencia a la que la longitud del dipolo, 56 mm, equivale a 3Ȝ/2, 

obtenemos Ȝ = 38 mm, que pertenece a la frecuencia f = c/Ȝ = 7.8 GHz. Y es a esta 

frecuencia a la que se da el segundo mínimo de adaptación. 

Siguiendo con esta idea, y según la repetitividad de la resistencia de radiación y de 

entrada de la figura 3-4, el tercer mínimo se daría a l = 5Ȝ/2, y así sucesivamente. 

Se suele llamar a cada mínimo de adaptación de una resonancia serie como un 

modo4 de funcionamiento serie, el cual es de interés ya que suele tener buena 

adaptación. De manera que se puede calcular la frecuencia de cada modo de 

funcionamiento serie del dipolo según la ecuación 

 

 

   2 1 2 1 1,2,
2 2
eff

eff

c
l M f M M

l


        (5) 

                                                 
4 Modo de funcionamiento: frecuencia a la que se da una característica de funcionamiento 

determinada debida a la distribución de corrientes en el dipolo. 
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Donde λeff 
es la longitud onda a la frecuencia del modo M [1, 2, 3,…] de 

funcionamiento serie, l es la longitud del dipolo y İeff es la permitividad efectiva del 

medio. 

3.2.2. Características del dipolo embebido en el medio del líquido 

En este apartado se presentan los resultados del dipolo embebido en un medio 

dieléctrico infinito en todas las direcciones. En la simulación se han modificado los 

parámetros de espacio libre por los correspondientes a cada medio. Cuando el medio 

dieléctrico tiene pérdidas y éste es infinito en todas las direcciones, no es posible 

conocer la ganancia, es por esta razón por la que en la gráfica se presenta la directividad 

normalizada en vez de la ganancia. 

Antes de mostrar los resultados de la simulación, la tabla 3 muestra los modos de 

funcionamiento serie calculados según la ecuación (5) para el mismo dipolo del 

apartado anterior pero embebido en agua destilada (İr = 74). Los valores se presentan 

para el agua destilada ya que al tener menos pérdidas que el líquido humano se pueden 

apreciar con mayor facilidad los modos de funcionamiento serie. 

 

Modo 
funcionamiento 
serie del dipolo 

Longitud de onda a 
la frecuencia del 
modo λM [m] 

Frecuencia del modo 
de funcionamiento 

serie [GHz] 

1  0.96  0.3 
2  0.32  0.9 
3  0.19  1.6 
4  0.14  2.2 
5  0.11  2.8 
6  0.09  3.4 

Tabla 3 : Asociación de modos de funcionamiento con la frecuencia del mínimo de adaptación del dipolo 

embebido en el medio agua destilada. Cálculo realizado a partir del resultado de simulación 

En la siguiente figura 3-5 se muestran los resultados del dipolo en el medio líquido 

humano y agua destilada. En la adaptación |S11| se puede apreciar que los modos de 

funcionamiento del dipolo ocurren a frecuencias mucho más bajas que en espacio libre 

debido a la alta permitividad del medio. 

A las frecuencias 0.3, 0.9, 1.5, 2.2, 2.8 y 3.4 GHz se dan los mínimos de adaptación 

los cuales corresponden casi exactamente con las frecuencias de los modos de 

funcionamiento serie calculados en la tabla 3. 
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Figura 3-5 : Resultados del dipolo embebido en el medio líquido humano y agua destilada. A la izquierda: 

impedancia en carta de Smith, a la derecha: adaptación y directividad normalizada en dirección acimut 

Comparando ambos medios, se puede apreciar que a mayor permitividad mayor es 

el descenso frecuencial de los modos. 

En la carta de Smith se ver que cuando las pérdidas del medio son mayores, se 

cierran los círculos de la traza, por lo que se dá un menor rizado en la adaptación. Y a 

mayor permitividad todos los círculos se observa una tendencia hacia impedancias más 

bajas debido a que la impedancia del medio es menor cuando la permitividad es mayor, 

así como refleja  

 
377

r

Z   (6) 

Es importante entender y saber relacionar la respuesta de la adaptación |S11| con la 

respuesta de la ganancia en dirección acimut, o directividad en este caso, en función de 

la frecuencia para el dipolo embebido en el medio. Para ello, en la siguiente figura 3-6 

se alinea frecuencialmente ambas respuestas. En ella, las líneas verdes que únen los 

puntos amarillos de cada traza reflejan que entre cada máximo y mínimo de la 

directividad en dirección acimut se debe dar un mínimo de adaptación. De manera que 

los mínimos de adaptación, marcas rojas, están situados a las frecuencias intermedias de 

las marcas amarillas.  



 Capítulo 3. Análisis y diseño del dipolo implantado 
 

 

 Análisis y diseño de antenas dipolo y parche para aplicaciones implantadas en el cuerpo humano 51 

 

Figura 3-6 : Resultados del dipolo embebido en el agua destilada. Relación entre adaptación y directividad 

normalizada en dirección acimut 

Conocer esta relación será de ayuda más adelante para poder analizar y diseñar con 

mayor facilidad un dipolo implantado con las mejores prestaciones de adaptación y 

ganancia posibles. 

En la siguiente figura 3-7 tenemos los diagramas de radiación 3D del dipolo 

embebido en agua destilada para las tres primeras frecuencias destacadas con las líneas 

verdes de la gráfica anterior, 0.5, 1.2 y 1.8 GHz. 

 

   
Figura 3-7 : Resultados del dipolo embebido en agua destilada. Diagramas de radiación de directividad 

normalizada en 3D para 0.5, 1.2 y 1.8 GHz, de izquierda a derecha 
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Añadir que el cálculo de la tabla 3 y la relación entre la adaptación y la directividad 

del dipolo en dirección acimut de la figura 3-6, es posible cuando la traza de la 

impedancia en la carta de Smith responde a una forma concreta con las siguientes 

características: la impedancia describe resonancias serie y paralelo de manera alternada, 

y cada punto de la curva de impedancia en la carta de Smith tiene como centro de 

circunferencia un punto cercano al eje de parte imaginaria nula y parte real mayor a 50 

Ω. 

3.2.3. Características del dipolo implantado a 4 mm de profundidad 

Conocidos y analizados el dipolo en espacio libre y embebido en los medios de 

líquido humano y agua destilada caracterizados como dieléctricos infinitos en todas las 

direcciones, este apartado se acerca más a la aplicación de antenas implantadas en el 

cuerpo humano, en el que no hay dieléctrico infinito en dirección z, por lo que el 

simulador puede representar la ganancia correctamente. 

Como ya se comentó en el capítulo 2, el modelo utilizado en las simulaciones utiliza 

la definición de los medios mediante capas de dieléctricos infinitos con un grosor 

determinado, definido en función de la profundidad de implante y del ancho del torso. 

En diversos documentos bibliográficos, como por ejemplo en [8], la profundidad de 

la antena implantada más común es de 4 mm. Esta profundidad será en la mayoría de 

simulaciones la utilizada, tanto para el análisis paramétrico de la segunda parte de este 

capítulo, como para los resultados que a continuación se presentan. 

En este apartado se muestra la respuesta del dipolo implantado en el cuerpo humano 

a 4 mm de profundidad en agua destilada, en un cuerpo de 20 cm de grosor de torso. 

Además del dipolo común, o sin recubrimiento, en las gráficas también se añade el 

resultado del dipolo con recubrimiento, ya que es necesario proteger el cuerpo del 

conductor de la antena con materiales compatibles [11] con el cuerpo humano. Pese a 

resultar el caso ideal, para el recubrimiento del dipolo se ha considerado las propiedades 

del espacio libre. 

En la figura 3-8 se muestran los resultados del dipolo con las características de la 

siguiente tabla 4. 

 

Longitud del 
dipolo 

Radio del 
conductor 

Grosor del 
recubrimiento 

Profundidad de 
implante 

Medio 
dieléctrico 

56 mm 20 ȝm 200 ȝm 4 mm Agua destilada 

Tabla 4 : Características del dipolo implantado en la simulación 
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Figura 3-8 : Resultados del dipolo implantado a 4 mm de profundidad en el medio agua destilada. A la 

izquierda: impedancia en carta de Smith, a la derecha: adaptación y ganancia en dirección acimut 

En primer lugar, comparando el dipolo sin recubrimiento implantado, traza roja de 

la figura 3-8, con el dipolo embebido en el medio, traza azul de la figura 3-5, ambos en 

agua destilada, se parecen bastante tanto las impedancias en la carta de Smith como la 

adaptación, ya que los picos mínimos se encuentran a frecuencias muy parecidas y con 

un nivel de adaptación muy parecidos también. 

Comparando la radiación en dirección acimut entre el dipolo embebido, traza azul 

de la figura 3-5, y el dipolo implantado, traza roja de la figura 3-8, ambos tienen la 

misma oscilación y relación con los mínimos de adaptación. 

Pese a la poca profundidad a la que se sitúa el dipolo implantado sin recubrimiento, 

este tiene un comportamiento parecido, tanto en impedancia como en radiación, al 

dipolo embebido en el líquido infinito en todas las direcciones. En el próximo apartado 

se muestra con mayor detalle cómo llega a suceder esto. 

Centrándonos en los resultados de la figura 3-8, se destaca el papel que juega el 

recubrimiento en el dipolo implantado. El recubrimiento evita que el conductor entre en 

contacto con el líquido, de forma que, pese a situarse en un entorno con una 

permitividad relativa muy elevada y con pérdidas, se mantienen en parte las corrientes 

característica en el dipolo de Ȝ/2 a 2.45 GHz, como se muestra en la distribución de 

corrientes de la figura 3-9, conservándose las características del dipolo en espacio libre, 

como se observa en la carta de Smith y en la adaptación de la figura 3-8. 
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Figura 3-9 : Distribución de corrientes del dipolo implantado a 2.45 GHz. Arriba sin recubrimiento y abajo 

con recubrimiento 

En el apartado de análisis paramétrico conoceremos mejor la dependencia del 

primer modo de funcionamiento serie con el grosor del recubrimiento del dipolo, donde 

se justifica el porqué se mantiene el primer mínimo de adaptación a 2 GHz, como se 

observa en la figura 3-8. 

En la ganancia en la dirección de interés, se obtiene una mejora de entre 10 y 20 dB 

a las frecuencias cercanas a 2.5 GHz y no se da el rizado en función de la frecuencia que 

tiene el dipolo sin recubrimiento. Esto es así gracias a que la distribución de corrientes 

se mantiene a lo largo del dipolo como la forma de la corriente que se presenta en la 

figura 3-4 para un dipolo de l = Ȝ/2 en espacio libre, contribuyendo cada parte del 

dipolo a radiar eficientemente en dirección acimut. 

En la figura 3-10 se muestra el diagrama de radiación de ganancia 3D a 2.45 GHz 

para ambos dipolos. Como se puede observar en la forma del diagrama para el caso sin 

recubrimiento, se da un nulo de radiación en dirección acimut, en cambio, con 

recubrimiento, el diagrama es directivo en dicha dirección. 

 

 

Figura 3-10 : Resultados del dipolo implantado en agua destilada. Diagramas de radiación de ganancia en 3D 

para 2.45 GHz para el dipolo sin recubrimiento, a la izquierda y a derecha con recubrimiento 

x 

x 
I(x) 
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Relacionando las corrientes con el diagrama de radiación, pese a que la intensidad 

de las corrientes es mayor para el dipolo sin recubrimiento,  es la distribución a lo largo 

del conductor lo que provoca peor radiación hacia el exterior del cuerpo, en dirección 

del eje z. Con recubrimiento, a lo largo de todo el dipolo sólo se da un máximo de 

corriente en el centro. En cambio, sin recubrimiento, a lo largo del dipolo hay diversos 

máximos y mínimos, lo que significa sentidos opuestos en las corrientes. Observando la 

figura 3-9 con detenimiento se puede identificar los cambios del sentido de la corriente 

a lo largo del dipolo sin recubrimiento.  

En resumen, el efecto del medio sobre el dipolo es muy importante, tanto en la 

impedancia como en la ganancia, empeorando las prestaciones y dificultando el diseño 

de la antena. Aislando el elemento radiante del líquido, se consiguen muchos beneficios 

como se ha presentado en este apartado, por lo que hace del recubrimiento un factor 

muy interesante, y a su vez necesario para que el dispositivo electrónico no sea 

rechazado por el cuerpo humano. 

 

3.3 Análisis paramétrico del dipolo implantado 

Este apartado indaga con mayor profundidad en el entendimiento de la respuesta del 

dipolo en función de las principales características que definen la antena y su entorno.  

En la tabla 5 se listan las variables parametrizadas y los rangos de valores simulados 

del modelo que se mostró en la figura 2-17. La geometría base o de inicio de los 

estudios está definida de la según la tabla 6. 

 

Parámetro de estudio Rango analizado Unidades 

Grosor de conductor. Radio de 0.05 a 1 mm 

Grosor de recubrimiento de 1 a 1500 m 

Profundidad de implante de 0 a 40 mm 

Permitividad del medio de 1 a 100  

Tabla 5: Parámetros analizados del dipolo implantado 

Excepto en el estudio del grosor de recubrimiento, el cual solo se ha realizado como 

es lógico para el dipolo con recubrimiento, el resto de variables se han estudiado para el 

dipolo sin y con recubrimiento. 
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Longitud del 
dipolo 

Grosor del torso
Profundidad de 

implante 
Medio 

dieléctrico 

56 mm 20 cm 4 mm Agua destilada 

Tabla 6 : Características generales del dipolo implantado para el análisis paramétrico 

3.3.1. Estudio del grosor de conductor 

Se ha considerado un amplio rango de grosores de radio del conductor para poder 

observar con mayor claridad las tendencias en la respuesta de la antena. 

3.3.1.1. Dipolo sin recubrimiento 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 3-11 : Estudio del grosor de conductor para el dipolo implantado sin recubrimiento. A la izquierda: 

impedancia en carta de Smith, a la derecha: adaptación y ganancia en dirección acimut 

Prácticamente a todas las frecuencias de simulación, el grosor de conductor tiene su 

principal influencia en la impedancia, que como se observa en la carta de Smith, a 

mayor radio, la traza se desplaza hacia la izquierda, lo que implica que la parte real de la 

impedancia es cada vez menor, mostrando también menor rango de valores de parte 

imaginaria. Este efecto también sucede para el dipolo en espacio libre aunque con 

menor efecto [18]. 

Dicho desplazamiento se traduce en grandes cambios de adaptación. Por ejemplo, a 

2.45 GHz, con 0.1 mm de radio, traza azul, la adaptación es muy buena, pero con 0.5 

mm, traza rosa, ya no es tan buena. Lo que indica que el radio del conductor puede 
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resultar muy interesante para ajustar un diseño en el que el dipolo no tenga 

recubrimiento. 

Observando la ganancia, parece ser que se mantiene bastante constante con el radio, 

a excepción de los dos últimos grosores de la leyenda, en los cuales se obtiene una 

respuesta diferente a la teórica, sobre todo a frecuencias altas. Esto se debe a que el 

grosor del conductor es comparable a lambda a las frecuencias de la simulación, 

considerando la permitividad del medio, ver ecuación (7). Por ejemplo, a 2.5 GHz, Ȝ en 

el dieléctrico es igual a 14 mm, y siendo el máximo diámetro de conductor simulado de 

2 mm, el grosor del conductor es tan solo siete veces menor a Ȝ, por lo que se puede 

considerar como dipolo grueso [18]. 

 

 74r

r r

o c

f


      (7) 

 

3.3.1.2. Dipolo con recubrimiento 

En la simulación de los resultados de la figura 3-12 se ha considerado un grosor de 

recubrimiento de 100 ȝm. Este grosor ha sido seleccionado porque la respuesta del 

dipolo se encuentra entre medio del dipolo en espacio libre y del dipolo implantado sin 

recubrimiento, por lo que podemos observar con facilidad qué efecto provoca, en este 

caso particular, el radio del conductor. 

Observando la carta de impedancias, al igual que sin recubrimiento, la parte real de 

la impedancia y el rango de valores de impedancias imaginarias es menor a mayores 

grosores de conductor. 

Pero a diferencia con el dipolo sin recubrimiento, con recubrimiento existe además 

un claro desplazamiento a frecuencias bajas de los dos primeros modos de 

funcionamiento que se observan en el rango frecuencial de simulación, tendencia que 

también se observa en las trazas de ganancia las cuales sufren gran cambio en función 

del grosor. 
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Figura 3-12 : Estudio del grosor de conductor para el dipolo implantado con recubrimiento. A la izquierda: 

impedancia en carta de Smith, a la derecha: adaptación y ganancia en dirección acimut 

Este efecto se debe a que el recubrimiento permite mayor efecto capacitivo entre 

ambos brazos del dipolo cuanto mayor es el radio del conductor, produciendo un 

alargamiento de la antena [18]. 

Con recubrimiento, vemos que el radio del conductor también resulta una variable 

de diseño interesante ya que podemos actuar sobre la impedancia así como también 

sobre la frecuencia de funcionamiento de la antena, aunque pueda existir un 

compromiso entre adaptación y ganancia a la hora de diseñar la geometría del dipolo. 

3.3.2. Estudio del grosor del recubrimiento 

En la simulación de los resultados de la figura 3-13 se ha considerado un grosor de 

conductor de radio 0.2 mm. Este grosor permite observar qué efecto provoca el 

recubrimiento del conductor. 

Para grosores muy finos, la respuesta se va acercando al dipolo sin recubrimiento, y 

con grosores muy anchos los resultados se parecen cada vez más al dipolo en espacio 

libre, sin olvidarse de las pérdidas del medio. 
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Figura 3-13 : Estudio del grosor de recubrimiento del dipolo implantado. A la izquierda: impedancia en carta 
de Smith, a la derecha: adaptación y ganancia en dirección acimut 

Observando la característica de cada traza, el grosor de recubrimiento está 

cambiando la permitividad relativa efectiva siendo menor cuando el grosor es mayor, 

resultando muy importante en el diseño del dipolo implantado, ya que afecta a todos los 

parámetros del dipolo, en la impedancia real e imaginaria, adaptación y ganancia, 

desplazando en frecuencia los modos de funcionamiento del dipolo 

En la carta de impedancias se puede ver que el efecto del recubrimiento es el de 

cambiar la impedancia del medio, aire más dieléctrico. En esta combinación de medios 

es en la que se encuentra el dipolo. 

Se puede entender que, en función del recubrimiento, la impedancia resultante estará 

entre la impedancia del dieléctrico y la impedancia del aire. Para grosores pequeños, los 

círculos de impedancia tienden a la impedancia del dieléctrico agua destilada, que es de 

44 Ω, impedancia aproximada a la que tienden los círculos de las trazas en la carta de 

Smith. Para grosores grandes la impedancia resultante es mayor, por lo que las trazas se 

acercan a la impedancia del aire, 377 Ω. 

Además del desplazamiento observado sobre la parte real de la impedancia, se dan 

cambios en la parte imaginaria de la impedancia ya que se dan menos bucles en la carta 

de Smith a medida que el grosor del recubrimiento aumenta.  

Se puede apreciar mejor lo comentado de la impedancia imaginaria en la adaptación, 

donde por ejemplo de 1 a 8 m, se puede observar como los mínimos de adaptación 
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suben en frecuencia. O por ejemplo, con la misma longitud de dipolo, pero con dos 

grosores de recubrimiento diferentes, es posible obtener buena adaptación a 0.7 o a 1.3 

GHz como es el caso de 40 y 200 ȝm de recubrimiento respectivamente. 

Referente a la ganancia hacia el exterior del cuerpo, también se puede observar 

como a mayor grosor de recubrimiento, los modos de funcionamiento se van 

desplazando a frecuencias altas, produciendo cada vez menor oscilación en el rango de 

simulación frecuencial. 

Como veremos en el último apartado de este capítulo, podría ser esta idea una línea 

de diseño: hacer coincidir un mínimo de adaptación con un máximo de ganancia en 

función del grosor del recubrimiento.  

Para tener más claro cómo varían estos parámetros en función del recubrimiento 

para este caso de dipolo, se han elaborado las siguientes gráficas de la figura 3-14 en las 

que se resume la adaptación y ganancia en función del grosor del recubrimiento a 2.4 

GHz. 

 

 

 

Figura 3-14 : Adaptación y ganancia en acimut a 2.4 GHz en función del grosor de recubrimiento del dipolo 

implantado. Arriba de 0 a 200 ȝm y debajo de 0 a 1500 ȝm 
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Para grosores de recubrimiento por debajo de 100 ȝm, la adaptación y ganancia  

tienen alta oscilación. Para grosores mayores éstas cambian más lentamente acabando 

por estabilizarse. Cuando no hay recubrimiento, o éste es muy pequeño, la ganancia es 

entre 10 y 20dB peor que cuando el recubrimiento es mayor de 100 ȝm. 

Gracias a estas figuras podemos ver la gran importancia que tiene el recubrimiento 

del dipolo ya que podemos mejorar y controlar la adaptación y la ganancia sin tener que 

considerar un recubrimiento excesivamente grande. Por ejemplo, con un grosor de 60 

ȝm podemos obtener una adaptación de -10 dB y una ganancia de -20 dB. En cambio 

sin recubrimiento, el dipolo está adaptado pero la ganancia es de -35 dB, aunque 

podríamos ajustar su longitud acortándolo un poco y hacer que la respuesta del dipolo 

sin recubrimiento a 2 GHz se dé a 2.5 GHz. 

Observando esta gran variación que se puede dar tanto en la adaptación como en la 

ganancia, para diseñar un dipolo implantado será importante valorar diversos diseños 

teniendo en cuenta la ganancia realizable óptima, que expresa la ganancia ideal y la 

adaptación. 

  2
_ _[ ] 10log 10log 1 11G real dB G S    (8) 

Como muestra la gráfica de la ganancia para altos grosores de recubrimiento, pese a 

aumentar mucho el grosor, y aislar así la antena de su entorno, la ganancia se mantiene 

constante a partir de 300 ȝm, con lo que no tiene mucho sentido aumentar el grosor por 

encima de este valor ya que esto no nos aporta una mejora significativa de la ganancia. 

3.3.3. Estudio de la permitividad relativa del líquido simulador del 

cuerpo humano 

En el inicio del capítulo 2 se presentó gráficamente las permitividades de los medios 

que conforman el cuerpo humano, destacando los tres medios más importantes que hay 

que tener en cuenta para antenas implantadas a poca profundidad. Como muestra la 

figura 2-1, en el cuerpo humano se pueden dar un amplio rango de permitividades. Por 

este motivo, es de interés conocer cómo puede afectar este parámetro a la respuesta de 

una antena implantada. 

Para ello, se ha realizado un barrido de permitividades relativas del medio desde 1 

hasta 100, manteniendo las pérdidas fijas, para el dipolo de 56 mm con radio de 0.2 mm 

implantado a 4 mm de profundidad, comparando los resultados de adaptación y 

ganancia entre el dipolo sin y con recubrimiento de 100 ȝm. 
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A modo de resumen, en la figura 3-15 se muestra la adaptación y la ganancia a 2.4 

GHz de ambos dipolos en función de la permitividad relativa del medio líquido. 

 

 

 

Figura 3-15 : Estudio de la permitividad relativa del dipolo implantado. Adaptación, arriba, y ganancia, abajo, 

en acimut del dipolo implantado a 2.4 GHz en función de la permitividad del líquido 

Comparando las trazas de los dipolos en ambas gráficas, se puede concluir que el 

dipolo sin recubrimiento tiene mayor dependencia de la permitividad del medio que el 

dipolo con recubrimiento, como era de esperar. 

A medida que la permitividad va subiendo, lo que está sucediendo en el dipolo sin 

recubrimiento es que van bajando en frecuencia los modos de funcionamiento, de 

manera que al ir pasando por la frecuencia de análisis, estos van describiendo la 

oscilación que se observa en la traza roja, tanto para la adaptación como para la 
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ganancia. Por este motivo, en función de la permitividad, el dipolo sin recubrimiento 

puede estar trabajando en uno u otro modo de funcionamiento, de forma que en la 

dirección de interés tengamos un máximo o un mínimo de radiación. 

En cambio, para el dipolo con recubrimiento sólo se aprecia una gran variación a 

permitividades de 1 a 20, debido a que el mínimo de adaptación que se encontraba a la 

frecuencia de diseño, ha sufrido un leve desplazamiento a frecuencias bajas, perdiendo 

adaptación en esta frecuencia. Para permitividades por encima de 20, la adaptación se 

mantiene más constante a variaciones de la permitividad. 

Con recubrimiento, la ganancia es función de la permitividad relativa [7] ya que 

tiene en cuenta la atenuación del medio (9), que provoca en la ganancia una caída 

exponencial. Para permitividades superiores a 30 la caída de ganancia es menor, de 

manera que hasta permitividades de 80 llega a caer 5 dB. 

 

 
20

[ / ] tan
ln10

rdB m
  
    (9) 

 

Destacar que para el dipolo sin recubrimiento se puede obtener un buen compromiso 

entre adaptación y ganancia. Para permitividades entre 30 y 50, más típicas del cuerpo 

humano, la adaptación es muy buena y la ganancia aceptable aunque todavía 5 dB por 

debajo del dipolo con recubrimiento. Pero por el contrario, la adaptación del dipolo con 

recubrimiento es peor, con lo que será necesario mejorarla con técnicas de adaptación, 

ajustando la longitud del dipolo o, como se está demostrando en este apartado, 

cambiando variables geométricas como son los grosores de conductor y recubrimiento. 

Este ejercicio permite conocer qué respuesta tendrá un dipolo el cual ha sido 

diseñado en espacio libre y directamente implantado en un medio del cual posiblemente 

no se conozca ciertamente la permitividad relativa de esa parte del cuerpo o que quizás 

puede variar en función de la fisonomía de cada persona. 

3.3.3.1. Dipolo sin recubrimiento 

En la figura 3-16 se muestra con mayor detalle los resultados de impedancia, 

adaptación y ganancia del dipolo sin recubrimiento de algunas de las permitividades 

más significativas. 
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Figura 3-16 : Resultados del dipolo implantado sin recubrimiento en función de la permitividad relativa del 

medio. A la izquierda: impedancia en carta de Smith, a la derecha: adaptación y ganancia en dirección acimut 

A medida que la permitividad aumenta, la frecuencia de trabajo de todos los modos 

de funcionamiento del dipolo va disminuyendo, por lo que se dan antes en frecuencia, 

como se puede ver en la adaptación y en la ganancia, así como también en la carta de 

Smith, donde cada vez hay más círculos. 

En la carta de Smith se observa como a permitividades bajas el dipolo tiene alta 

impedancia, y a medida que aumenta la permitividad se van creando nuevos círculos 

rodeando impedancias reales más bajas. 

3.3.3.2. Dipolo con recubrimiento 

En la figura 3-17 se muestra con mayor detalle los resultados de impedancia, 

adaptación y ganancia del dipolo con recubrimiento de algunas de las permitividades 

más significativas. 
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Figura 3-17 : Resultados del dipolo implantado con recubrimiento en función de la permitividad relativa del 

medio. A la izquierda: impedancia en carta de Smith, a la derecha: adaptación y ganancia en dirección acimut 

Para las primeras permitividades del medio que van desde 1 a 30, el primer mínimo 

de adaptación sufre un gran desplazamiento, el cual pasa de 2.5 a 1 GHz. Pero para 

permitividades mayores de 30, los resultados no varían. El motivo de esta estabilización 

en los resultados para el dipolo con recubrimiento recae en el alto salto de permitividad 

entre el recubrimiento y el líquido, lo que hace que se concentren los campos cercanos 

del dipolo en el recubrimiento, siendo más independiente de la permitividad del líquido. 

En el siguiente apartado se explica con mayor detalle esta justificación. 

En la carta de Smith también se observa una tendencia de la impedancia hacia 

impedancias bajas pero con menor intensidad que para el dipolo sin recubrimiento, 

siendo la parte real de la impedancia casi siempre mayor a 50 Ω.  

3.3.4. Estudio de la profundidad de implante 

Para el análisis de la profundidad de implante, el radio del conductor es de 0.5 mm. 

En las gráficas se representa algunas profundidades, además de los casos espacio libre y 

del dipolo externo, para poder ver de forma más progresiva cómo afecta la profundidad 

de implante en el medio. 

La profundidad se computa a partir de que toda la antena está introducida dentro del 

cuerpo. 
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3.3.4.1. Dipolo sin recubrimiento 

A continuación se muestran los resultados del dipolo sin recubrimiento para ciertos 

casos de profundidad y la representación gráfica de la posición del dipolo relativa al 

medio. La profundidad negativa indica que la antena está fuera del medio. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 3-18 : Resultados del dipolo implantado sin recubrimiento en función de la profundidad de implante. A 

la izquierda: impedancia en carta de Smith, a la derecha: adaptación y ganancia en dirección acimut 

Estando el dipolo fuera del cuerpo, casi en contacto con el medio, este ya tiene una 

respuesta muy diferente al espacio libre acusando el gran efecto que tiene el medio 

sobre la antena. La adaptación se ha desplazado 1 GHz a frecuencias bajas y la ganancia 

se ha reducido 15 dB. Este efecto es conocido ya que se acerca un medio de alta 

permitividad y pérdidas a una antena. 

Una vez el dipolo está totalmente sumergido, rápidamente la característica de 

impedancia y radiación es la que ya conocemos para el dipolo implantado sin 

recubrimiento, como muestra la traza en color verde. La ganancia hacia el exterior del 

cuerpo vuelve a bajar 10 dB, nivel de ganancia que mantiene hasta profundidades de 15 
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a 20 mm, como se puede ver en la figura 3-19, donde muestra los resultados de 

adaptación y ganancia a 2.4 GHz en función de la profundidad de implante. 

 

 

Figura 3-19 : Estudio de la profundidad de implante para el dipolo sin recubrimiento. Adaptación y ganancia 

en acimut del dipolo implantado sin recubrimiento a 2.4 GHz en función de la profundidad de implante 

Comenzando el estudio de la profundidad con el dipolo fuera del agua, podemos 

observar el efecto de ir acercando el dipolo a la superficie, en el que se observa que la 

adaptación y la ganancia van empeorando. 

En el momento que el dipolo entra en contacto con el líquido se produce una gran 

mejora en la adaptación, pero la ganancia cae rápidamente. Una vez todo el dipolo está 

sumergido, a medida que se aumenta la profundidad la adaptación muestra una pequeña 

oscilación hasta los 15 mm de profundidad. La ganancia también sufre esta oscilación 

pero con cada vez peor ganancia. A partir de dicha profundidad, la adaptación se 

mantiene constante y la ganancia tiene una pendiente negativa con la profundidad, 

debido a las pérdidas de propagación del medio. 

3.3.4.2. Dipolo con recubrimiento 

La siguiente figura 3-20 muestra en particular la adaptación para las profundidades 

analizadas en 4 gráficas para el dipolo con 1 mm de recubrimiento. Arriba, en la gráfica 

de la izquierda, el dipolo está en el exterior del dieléctrico y se va introduciendo hasta la 

mitad de la antena. Arriba a la derecha, el dipolo se acaba de sumergir completamente 

llegando hasta profundidad de 4 mm. Y en las dos gráficas inferiores, se muestra en dos 

fases la adaptación hasta 100 mm de profundidad. 
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Figura 3-20 : Adaptación del dipolo con recubrimiento para diferentes profundidades 

Observando la secuencia de adaptaciones en función de la posición del dipolo, cabe 

destacar tres comportamientos diferentes. 

En primer lugar, hasta que la mitad de la antena se encuentra fuera del cuerpo, el 

mínimo de adaptación va bajando en frecuencia desde 2.5 GHz hasta 1.3 GHz. Después, 

a partir de que más de la mitad del dipolo está sumergido, el mínimo de adaptación 

vuelve a frecuencias superiores, hasta 2 GHz, gráfica de arriba a la derecha. Y a partir 

de 6 mm de profundidad, gráfica de abajo a la izquierda, el mínimo de adaptación oscila 

levemente 200 MHz alrededor de 1.8 GHz observándose sobre la traza de adaptación 

una pequeña oscilación la cual acaba disminuyendo a profundidades muy grandes. 

Como hemos visto, se dan dos efectos diferentes desde que la antena esta fuera del 

cuerpo hasta que la antena está completamente sumergida. Parece lógico que a medida 

que la antena se va sumergiendo, el mínimo de adaptación baje en frecuencia, ya que la 

permitividad relativa efectiva va siendo mayor. Pero parece raro, que cuando se acaba 

de sumergir, la frecuencia vuelva a subir, ya que la permitividad relativa efectiva 

debería seguir siendo más alta. 

Para explicar el porqué se da este movimiento peculiar del mínimo de adaptación, 

entra en juego el recubrimiento del dipolo. Este está cambiando los campos cercanos al 

dipolo de manera que se van concentrando dentro del aislante al existir un gran cambio 
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de permitividades entre el recubrimiento y el líquido, efecto que se da en mayor medida 

a partir de que más de la mitad del dipolo está sumergido. 

En la figura 3-21 se muestran las líneas de campo eléctrico en el centro del dipolo, 

donde la zona blanca representa el aire, la zona azul es el líquido y la zona gris es el 

recubrimiento del dipolo. En los campos se puede ver que en espacio libre y con el 

dipolo sumergido hasta la mitad del recubrimiento, las líneas de campo que salen y 

entran desde un brazo del dipolo hasta el otro tienen una dirección mucho más 

perpendicular al conductor del dipolo, que cuando el dipolo está implantado a 4 mm de 

profundidad. En el dipolo implantado las líneas de campo eléctrico dentro del 

recubrimiento ya se van inclinando, de manera que en la zona del líquido cercano al 

recubrimiento, el campo tiene una dirección principalmente horizontal. 

 

    

 

Figura 3-21 : Líneas de campo eléctrico en el plano vertical y longitudinal al dipolo con zoom en el centro del 

dipolo. Arriba a la izquierda, dipolo en espacio libre (2.5 GHz), arriba a la derecha, el líquido recubre la mitad 

del dipolo (1.25 GHz), y abajo, el dipolo está completamente implantad a una profundidad de 4 mm (2 GHz) 

Cuando las líneas de campo eléctrico son más perpendiculares al dipolo en el 

dieléctrico, como a -1.5 mm de profundidad, el resultante de la permitividad relativa 

combinada entre el aire y el líquido es mayor que cuando las líneas de campo son más 

horizontales, como pasa a 4 mm de profundidad. En este caso, las líneas de campo 

quedan concentradas prácticamente en el recubrimiento de aire. De manera que 

podemos decir que el campo cercano a la antena queda más concentrado dentro del 

recubrimiento. Es por este motivo por el que el mínimo de adaptación primero baja y 

después sube en frecuencia. 
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En la figura 3-22 se muestra la adaptación y la ganancia en función de la 

profundidad a 2.4 GHz. En ella se observa también una oscilación, pero en este caso 

reflejada en función de la profundidad. A partir de 6 mm, se puede apreciar cómo tanto 

la adaptación como la ganancia tienen una leve oscilación la cual se va haciendo más 

pequeña con la profundidad hasta prácticamente desaparecer. 

 

 

Figura 3-22 : Adaptación y ganancia en acimut del dipolo implantado con recubrimiento a 2.45 GHz en 

función de la profundidad de implante 

Observando los máximos y mínimos de las trazas, parece que el periodo de 

oscilación es de 6-7 mm con la profundidad, lo que corresponde aproximadamente con 

Ȝ/2 en el medio  
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Lo que sucede es que la onda radiada por la antena se propaga en todas las 

direcciones en el líquido, y parte de la que llega a la superficie del agua y rebota por el 

cambio de medios, volviendo hasta el dipolo, lo que hace cambiar los parámetros de la 

antena, tanto en adaptación como en ganancia. 

Debido a las pérdidas del medio, a grandes profundidades dicha reflexión se ve 

atenuada lo suficiente, en su trayecto de ida y vuelta, como para que la señal que vuelve 

al dipolo no altere los parámetros de éste, por lo que la oscilación acaba desapareciendo 

como se observa en las trazas de profundidades superiores a 40 mm de la figura 3-20. 

Analizando la parte de la señal que llega a la interficie líquido – aire, en la figura 3-

23 se explica dicha reflexión como si se tratase de una línea de transmisión. 
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Figura 3-23 : Esquema representativo de la propagación de la onda en el medio líquido 

Para demostrar dicha reflexión en la superficie se ha simulado la línea de 

transmisión de la figura 3-24. El puerto de medida es el puerto 2, que está conectado a 

la línea de transmisión que simula el medio del agua el cual tiene una distancia de 17 

mm, la misma impedancia característica que la impedancia del agua, calculada mediante 

la ecuación (6) y la misma permitividad relativa que la considerada en la simulación en 

Feko. 

 El resultado de la línea de transmisión lo podemos ver en la traza roja de la gráfica 

|S11| (dB), que representa el puerto 2 del esquema. La traza azul es el resultado por 

simulación Feko de la adaptación del dipolo con recubrimiento sumergido a 17 mm de 

profundidad. Comparando ambas podemos intuir cierto parecido en el período de 

oscilación de ambas trazas de adaptación. 
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Figura 3-24 : Simulación de línea de transmisión con la impedancia del medio cargada con la impedancia del 

aire 

3.3.5. Resumen del análisis paramétrico del dipolo 

Estudiada en detalle la respuesta del dipolo implantado, para concluir con el análisis 

paramétrico y entender de forma global cómo juegan estos parámetros, se muestra en la 

tabla 7 un completo resumen donde se representa cómo afecta cada parámetro a las 

características de impedancia, adaptación y ganancia. 

Dicho resumen puede ser utilizado como referencia para diseños de dipolos 

implantados, el cual se ha seguido para el siguiente y último apartado de este capítulo, 

ejemplos de diseño de dipolos implantados. 
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Tabla 7 : Resumen del análisis paramétrico y guía de diseño para el dipolo implantado 

PARÁMETRO 
DE ANÁLISIS 

RECUBRI-
MIENTO 

CARTA DE SMITH 
ADAPTACIÓN |S11| [dB] 

Zo = 50 Ω 
GANANCIA [dB] 

GROSOR DEL 
CONDUCTOR 

 
 

desplazamiento 
indicando el 

movimiento de la 
traza de menos a 

más grosor 

sin 
recubrimiento 

 
 

radio de 
conductor de 
0.05 a 1 mm 

 

 
baja la parte real y la parte 
imaginaria es más plana 

 
empeora ya que la impedancia se aleja 
del centro, en otro caso podría mejorar 

 
 
 
 
 

poco cambio, solo para grosores 
muy grandes mejora 3 dB 

los modos no se desplazan en frecuencia 

con 
recubrimiento 

de 100 ȝm 
 
 

radio de 
conductor de 

0.05 a 0.5 mm 

 
baja la parte real y la parte 
imaginaria es más plana, 

además se crean más bucles 

 
mejora ya que la impedancia se acerca 

al centro, además los mínimos de 
adaptación bajan en frecuencia 

 
baja considerablemente ya que 

van bajando los modos de 
radiación a frecuencias más bajas 

los modos bajan en frecuencia a mayor grosor de conductor 

GROSOR DEL 
RECUBRIMIENTO 

 
desplazamiento indicando el 

movimiento de la traza de menos a 
más grosor 

 
de 1 a 1500 ȝm 

 
sube la parte real y la parte 
imaginaria es más plana, 

además van desapareciendo 
los bucles 

 
empeora ya que la impedancia se aleja 

del centro, además los mínimos de 
adaptación suben mucho en frecuencia 

 
 
 
 
 
 

mejora considerablemente y los 
modos de funcionamiento suben 

en frecuencia 

mejora mucho la ganancia y los modos van subiendo 

PERMITIVIDAD 
DEL MEDIO 
SIMULADOR 
DEL CUERPO 

HUMANO 
 

desplazamiento 
indicando el 

movimiento de la 
traza de menos a 
más permitividad 

 
de 1 a 100 

sin 
recubrimiento  

baja mucho la parte real y la 
parte imaginaria es más 
oscilante, además van 

apareciendo muchos bucles 

 
mejora mucho la adaptación a todas 

las frecuencias ya que toda la 
impedancia se concentra en el centro 

de la carta, además van bajando 
considerablemente todos los modos 

 
empeora considerablemente 

debido a las pérdidas del medio y 
a que bajan los modos superiores 

bajan los modos de radiación superiores en gran medida y aumentan las pérdidas 

con 
recubrimiento 

 
baja la parte real y la parte 
imaginaria es más plana 

 
se desplaza el mínimo a frecuencias 

bajas en menor medida que sin 
recubrimiento

 
empeora considerablemente 

debido a las pérdidas del medio y 
a que bajan los modos superiores 

los modos bajan en frecuencia pero menos que sin recubrimiento 

PROFUNDIDAD 
DE IMPLANTE 

 
desplazamiento 

indicando el 
movimiento de la 
traza de menos a 
más profundidad 

 
de 0 a 40 mm 

sin 
recubrimiento 

 
baja un poco la parte real, la 
imaginaria no cambia mucho 

 
leve desplazamiento de mínimos a 

frecuencias bajas 

 
empeora considerablemente 

debido a las pérdidas del medio 
los modos bajan levemente en frecuencia 

con 
recubrimiento 

 
aparece un rizado en la 

impedancia 

 
apenas se desplaza el mínimo, pero va 

apareciendo el rizado 

 
empeora considerablemente 

debido a las pérdidas del medio 
casi no hay desplazamiento frecuencial, pero va apareciendo un rizado con la profundidad 
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3.4 Ejemplos de diseño de dipolos implantados 

Habiendo analizado con detalle el comportamiento del dipolo implantado a cambios 

de los parámetros vistos en el apartado anterior, el principal objetivo de este apartado es 

el de dar a conocer algunos de los métodos que se pueden emplear para diseñar un 

dipolo implantado a la frecuencia de 2.45 GHz. 

En esta parte, se proponen distintos diseños de dipolos implantados con propiedades 

geométricas diversas con la finalidad de buscar la mejor figura de mérito posible, la cual 

es función de la adaptación y la ganancia en la dirección de interés, así como también el 

tamaño y geometría de la antena. 

Basándonos en los estudios paramétricos realizados, y sobre todo en la tabla 7 que 

resume los mismos, se ha ajustado la geometría del dipolo en las siguientes propuestas 

de diseño. 

 

o Dipolo de longitud Ȝ/2 en espacio libre sin recubrimiento 
 

o Dipolo de longitud Ȝ/2 en espacio libre con recubrimiento 
 

o Dipolo de longitud Ȝ/2 en el medio sin recubrimiento 
 

o Dipolo de longitud Ȝ en el medio con recubrimiento 
 

o Dipolo meandro implantado 
 

Dichos diseños se han realizado tanto para el dipolo con recubrimiento como sin 

recubrimiento, de manera que se puede comparar el resultado entre ambos viendo en 

definitiva el beneficio del recubrimiento. Además, también se presenta la geometría del 

dipolo meandro en el que se observan unas características peculiares y muy interesantes 

para la aplicación. 

Los diseños se han realizado en un medio con permitividad relativa de 74 y a una 

profundidad de 4 mm. El mayor límite de diseño de los dipolos implantados va a ser el 

grosor total en altura de la antena, definido a 2 mm, entendiendo que a menor grosor la 

antena implantada tendrá menor impacto en el cuerpo humano. 
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3.4.1. Dipolo implantado de longitud Ȝ/2 en espacio libre sin 

recubrimiento 

Una vez ajustado el dipolo en espacio libre, se introduce en el medio directamente, 

resultando la traza roja de la figura 3-25. Podemos ver que a la frecuencia de interés 

(2.45 GHz) la adaptación es buena pero la ganancia puede ser mejor, ya que el dipolo se 

encuentra en un modo de radiación con nulo hacia el exterior del medio. 

Como se ha visto en los estudios paramétricos del dipolo, la frecuencia a la que se 

dan los máximos y mínimos de la adaptación y de la ganancia son función de la 

permitividad del medio. 

Ajustando el radio del conductor, Rc, se controla la parte real de la impedancia, 

mejorando así la adaptación, como se observa en la traza azul de la figura 3-25. 

Finalmente, al reducir hasta 43 mm la longitud del dipolo, se consigue adaptar el 

dipolo en un máximo de ganancia y a su vez en un mínimo de adaptación a la frecuencia 

de trabajo, traza verde de la figura 3-25. 

 

 

 

 

 

 

 

 

 
 

 

 

Figura 3-25 : Diseño del dipolo implantado sin recubrimiento de Ȝ/2 en espacio libre 
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3.4.2. Dipolo implantado de longitud Ȝ/2 en espacio libre con 

recubrimiento 

Para el dipolo con recubrimiento se han realizado tres casos de diseño. En los tres 

casos, la longitud del dipolo es Ȝ/2 en espacio libre a la frecuencia de 2.45 GHz, 56 mm. 

Son el radio de conductor y el grosor de recubrimiento los únicos parámetros con los 

que se juega en el ajuste de los tres tipos de diseño para elegir el modo de resonancia de 

interés a la frecuencia de diseño. 

3.4.2.1. Adaptado en la primera resonancia serie 

El objetivo de este diseño es trabajar con el primer modo de funcionamiento serie, 

es decir que la primera resonancia serie se acerque lo máximo al centro de la carta de 

Smith. 

Como se mostró en el estudio del grosor del recubrimiento, a mayor grosor de 

recubrimiento, las características de impedancia del dipolo se asemejan más al mismo 

en espacio libre. 

En la figura 3-26 se muestra el resultado para dos grosores de radio de conductor, 

Rc, y de recubrimiento, R, diferentes manteniendo el total del grosor de la antena a 2 

mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 3-26 : Diseño del dipolo implantado con recubrimiento de Ȝ/2 en espacio libre adaptado en la primera 

resonancia serie 
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Podemos considerar mucho mejores estos resultados que los del dipolo sin 

recubrimiento, sobretodo observando la ganancia, que llega a ser casi 10 dB mejor que 

el dipolo sin recubrimiento. Respecto a la adaptación, no se consigue mejor de -8 dB. 

La gran pega de este diseño es el grosor total de la antena, que es de 2 mm, 10 veces 

mayor que el dipolo sin recubrimiento. Este motivo podría descartar este diseño en 

ciertas aplicaciones en las que el grosor de la antena sea un hándicap en la implantación 

de la antena en el cuerpo humano. 

3.4.2.2. Adaptado en la primera resonancia paralelo 

El objetivo de esta opción es trabajar con el primer máximo de ganancia a la 

frecuencia de diseño, por lo que es necesario trabajar en la primera resonancia paralelo, 

lo que significa trabajar entre el primer y el segundo mínimo de adaptaciones que 

proporcionan las dos resonancias series, consiguiendo la mejora adaptación posible. 

Ajustando el grosor del radio del recubrimiento se puede conseguir que a la 

frecuencia de trabajo el dipolo trabaje en la resonancia paralelo, que respecto al diseño 

del apartado anterior supone menor grosor de recubrimiento. Y aumentando el grosor 

del radio del conductor se reduce la parte real para la resonancia paralelo, consiguiendo 

mejorar adaptación. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 3-27 : Diseño del dipolo implantado con recubrimiento de Ȝ/2 en espacio libre adaptado a la primera 

resonancia paralelo 
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Comparando con el diseño basado en la primera adaptación, trabajando con la 

primera resonancia paralelo se consigue la misma ganancia pero un poco de peor 

adaptación. A cambio, se consigue un grosor de dipolo menor, 900 ȝm, la mitad que 

para el diseño basado en la primera adaptación. 

3.4.2.3. Adaptado en la tercera resonancia serie 

Aprovechando el comportamiento oscilante de la ganancia en dirección al exterior 

del cuerpo, con la frecuencia, y para conocer si se podrían conseguir buenos resultados, 

este diseño se ajusta para utilizar el segundo máximo de ganancia. El segundo máximo 

de ganancia se obtiene en un dipolo en el tercer modo de funcionamiento serie. 

Se puede hacer trabajar el dipolo implantado en este modo reduciendo 

considerablemente el grosor del recubrimiento, consiguiendo además muy buena 

adaptación ya que podemos ajustar la impedancia con el grosor del conductor. 

La figura 3-28 muestra el resultado de un par de diseños donde se ajusta la 

adaptación a la frecuencia de interés con el grosor del recubrimiento, y se mejora el 

mínimo de adaptación con el radio del conductor. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 3-28 : Diseño del dipolo implantado con recubrimiento de Ȝ/2 en espacio libre adaptado a la tercera 

resonancia serie 

El resultado obtenido es parecido al del dipolo sin recubrimiento, ya que el 

recubrimiento utilizado es muy fino, pero en este caso, se ha realizado un ajuste final a 
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partir de los grosores de recubrimiento y del radio del conductor, sin modificar la 

longitud de la antena. 

Como conclusión de este apartado, considerando el dipolo con recubrimiento de 

longitud Ȝ/2 en espacio libre, se ha comprobado que existen diversas opciones para 

conseguir una alta ganancia con una adaptación aceptable. En función de las 

limitaciones físicas de la antena podremos usar una de las tres opciones propuestas para 

diseñar el dipolo implantado. 

3.4.3. Dipolo implantado de longitud Ȝ/2 en el medio sin 

recubrimiento 

3.4.3.1. Adaptado en la primera resonancia serie 

Para trabajar con el primer modo de funcionamiento serie para el dipolo sin 

recubrimiento, en primer lugar habrá que ajustar la longitud del dipolo, considerando la 

permitividad del medio, para conseguir que la primera resonancia se obtenga a 2.45 

GHz, y seguidamente ajustar el radio del conductor para adaptar lo mejor posible la 

impedancia a 50 Ω. 

Siendo 74 la permitividad relativa del líquido que se está considerando, la longitud 

que debería tener un dipolo sin recubrimiento implantado en el medio para que trabaje 

en el primer mínimo de adaptación sería  

 

 

_ _
_

56
6.5

74
dipolo Espacio Libre

dipolo implantado

r medio

L mm
L mm  

 (11) 

 

En la figura 3-29 se presentan los resultados en adaptación, ganancia e impedancia, 

mostrando también la parte real e imaginaria, del dipolo implantado de 6.5 mm de 

longitud. 

El grosor del conductor debe ser lo más pequeño posible para incrementar la parte 

real de la impedancia. Pese a ser de 10 um, la parte real no es mayor de 12 Ω, lo que no 

permite adaptaciones mejores de -5 dB a la frecuencia de diseño. 
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Figura 3-29 : Diseño del dipolo implantado sin recubrimiento de 6.5 mm de longitud adaptado a la primera 

resonancia serie 

La ganancia de la antena es parecida a la del dipolo implantado con la longitud de 

Ȝ/2 en espacio libre, -24 dB. 

Observando la tendencia de la ganancia y de la parte real de la impedancia, las 

cuales son mejores a mayor frecuencia, se propone la siguiente alternativa de diseño. 

3.4.3.2. Adaptado a la primera resonancia paralelo 

Cuando la longitud del dipolo es de Ȝ a la frecuencia de diseño se da el primer modo 

de funcionamiento paralelo, primera resonancia paralelo, por lo que la longitud del 

dipolo deberá ser aproximadamente el doble que para la resonancia serie. Es para esta 

longitud de dipolo para la que también se da el primer máximo de ganancia. 

Definiendo la longitud, l, a 12.4 mm se determina la primera resonancia paralelo a la 

frecuencia de interés. 

Aumentando el radio del conductor, Rc = 200 ȝm, se consigue reducir la parte real 

de la impedancia de manera que se puede obtener muy buena adaptación. En la figura 3-

30 se muestran los resultados detallados de dicho diseño. 
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Figura 3-30 : Diseño del dipolo implantado sin recubrimiento de 12.4 mm de longitud adaptado a la primera 

resonancia paralelo 

La parte real de la impedancia es mayor y la ganancia mejora hasta 4 dB respecto al 

dipolo de tamaño la mitad. Por lo que en este caso se mejoran las prestaciones a costa 

de hacer la antena el doble de larga. 

3.4.4. Dipolo implantado de longitud Ȝ en el medio con recubrimiento 

3.4.4.1. Adaptado en la primera resonancia serie 

En el estudio paramétrico sobre el grosor del recubrimiento del apartado 3.3 se veía 

como éste controla la frecuencia de resonancia de los modos de funcionamiento. 

Basándose en esta idea, y definiendo una longitud determinada del dipolo, existen 

múltiples posibilidades de diseño del dipolo implantado con recubrimiento, en los que 

sólo hay que encontrar la combinación de longitud, l, y de grosores de conductor, Rc, 

correctos para diseñar la antena a la frecuencia de interés en la primera resonancia serie. 

En la figura 3-31 se presenta una de las posibles configuraciones, con l = 20 mm y 

Rc = 200 ȝm, de manera que se ajusta el primer mínimo de adaptación a la frecuencia 

de interés. Y definiendo R = 45 ȝm se ajusta la parte real de la impedancia, 

consiguiendo adaptar el dipolo. 
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Figura 3-31 : Diseño del dipolo implantado con recubrimiento de 20 mm de longitud adaptado a la primera 

resonancia serie 

La ganancia obtenida para este caso es de -19 dB, 4 dB menos que para el dipolo de 

longitud 56 mm con recubrimiento, pero a cambio el dipolo es un 65% más corto. 

3.4.5. Dipolo meandro implantado 

En este caso se presenta la estructura meandro con y sin recubrimiento, comparando 

los resultados con el dipolo recto con y sin recubrimiento, respectivamente. 

En primer lugar, se compara el dipolo recto y un meandro propuesto en espacio libre 

para conocer las diferencias entre ambos. El dipolo recto es de 56 mm de longitud, Ȝ/2 

en espacio libre, y el meandro hace 28 mm de longitud por 8 mm de ancho, resultando 

una longitud total de conductor de 98 mm. Ambos dipolos tienen 20 ȝm de radio de 

conductor. En la siguiente figura 3-32 se pueden ver ambas geometrías. 

 
Figura 3-32 : Dipolo recto (56 mm) y dipolo meandro (28 x 8 mm2 y longitud total de hilo de 98 mm) 

adaptados en espacio libre 

56 mm 

8 mm 

28 mm 
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Figura 3-33 : Comparación en espacio libre entre dipolo recto, 56 mm, y dipolo meandro, 28 x 8 mm2 y 

longitud total de conductor de 98 mm  

La principal diferencia entre el dipolo recto y el meandro de la figura 3-32, recae en 

la parte real de la impedancia. A la frecuencia de la primera resonancia serie, la 

impedancia real del meandro es 16 Ω, 4 veces menor que la del dipolo recto, 75 Ω; de 

manera que el dipolo recto obtiene mejor adaptación que el meandro. Este 

comportamiento es conocido para estructuras de antenas lineales las cuales se reduce su 

longitud mediante estructuras serpenteadas [19]. 

Aprovechando la tendencia de la impedancia del meandro, en la que la parte real de 

la impedancia es menor cuanto más se serpentea el meandro, se puede mejorar la 

adaptación del dipolo en aquellos casos en los que la impedancia del dipolo recto 

implantado sea superior a 50 Ω. 

La ganancia para este meandro es mínimamente inferior para el meandro que para el 

dipolo recto, pese a que el meandro es la mitad de largo; aunque más ancho. 

En los siguientes sub-apartados se presentan los resultados del meandro implantado, 

con y sin recubrimiento, analizando y comparando los resultados con el dipolo recto. 
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3.4.5.1. Con recubrimiento adaptado en la primera resonancia 

serie 

Como hemos visto en el análisis paramétrico, para que el dipolo implantado trabaje 

en la primera resonancia serie, es necesario un grosor de recubrimiento bastante grande, 

y así conseguir unas propiedades parecidas al dipolo en espacio libre. 

Ya que el grosor en altura de la antena resulta ser un parámetro muy importante para 

antenas implantadas, éste se ha limitado a 2 mm para el diseño, como ya se explicó 

anteriormente. Por lo tanto, se ha dedicado la mayor parte del grosor para aislar el 

conductor del líquido, por lo que en los siguientes resultados de la figura 3-34, el dipolo 

recto y el meandro tienen un grosor de radio de conductor de 10 um, y de recubrimiento 

de 990 um, para hacer un total de 2 mm de grosor de antena. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 3-34 : Comparación entre dipolo recto, 56 mm, y dipolo meandro, 28 x 8 mm2 y longitud total de 

conductor de 98 mm, ambos con recubrimiento implantados en el líquido 

El resultado en la carta de Smith parece el mismo que en espacio libre de la figura 3-

33, pero como desvela la parte imaginaria, y la adaptación, el dipolo meandro tiene la 

primera resonancia serie a 1.7 GHz, en cambio para el dipolo recto se da a 2.4 GHz. 

Inesperadamente, el dipolo meandro, con las mismas características de grosores que 

el dipolo recto, tiene la primera resonancia serie a una frecuencia mucho más baja que 

el dipolo recto, cuando en espacio libre ambos tenían la misma frecuencia de 

resonancia. 
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Para el meandro en espacio libre esto no sucede porque las líneas horizontales están 

próximas entre sí, acoplándose, resultando en una longitud efectiva menor, ver figura 3-

35. Al introducirlo en el líquido, la diferencia entre la baja permitividad del 

recubrimiento y la alta permitividad del líquido está canalizando los campos de manera 

que los campos siguen un camino parecido al de la corriente, a lo largo de toda la forma 

del meandro. Además el dieléctrico del líquido actúa como aislante, o visto de otra 

forma, hay una mayor separación efectiva entre tramos paralelos, provocando que los 

tramos verticales del dipolo se acoplen menos y la longitud efectiva del dipolo sea 

mayor. Por este motivo, el primer modo de funcionamiento serie se da a frecuencias 

más bajas. 

En la siguiente figura 3-35 podemos observar lo comentado. Los campos magnéticos 

del meandro en espacio libre son altos y casi continuos entre los segmentos verticales, 

lo que evidencia el acoplamiento entre éstos. En cambio, para el meandro implantado 

sin recubrimiento, el campo se ve más atenuado entre ramas verticales, por lo que se 

reduce considerablemente el acoplamiento. Y para el meandro con recubrimiento 

implantado, se observa que el campo está prácticamente concentrado en el aislante, de 

manera que entre tramos paralelos casi no existe acoplamiento.  

 

 
Figura 3-35 : Densidad de campos magnéticos y distribución de corrientes en el dipolo meandro a 2.45 GHz: a) 

espacio libre, b) implantado sin recubrimiento, c) implantado con recubrimiento 

Respecto a la ganancia, existe relación con el espacio libre ya que a la frecuencia de 

diseño, el meandro tiene una ganancia parecida al dipolo recto, aunque a frecuencias 

superiores la ganancia del meandro baja rápidamente. La longitud del meandro es 

mayor con lo que bajan los modos de radiación de frecuencias superiores, como se 

puede ver en la parte imaginaria donde la resonancia paralelo ha bajado a 3.3 GHz. 
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Y respecto a la parte real de la impedancia, a la frecuencia de resonancia serie, es 

bastante menor para el meandro que para el dipolo recto, como ya conocíamos en los 

resultados en espacio libre, figura 3-33. 

En resumidas cuentas, al introducir el dipolo meandro con recubrimiento en el 

líquido, éste muestra una frecuencia de resonancia y una parte real de la impedancia 

bastante menor que el dipolo recto. Por lo tanto, en el siguiente diseño, se va a 

modificar únicamente la forma del serpenteo del meandro para resolver ambas 

diferencias. 

En la figura 3-36 se presentan los resultados para dos meandros comparados con el 

dipolo recto, de 56 mm, traza roja. El primero, de 16 x 8 mm2 (longitud total de 

conductor de 56 mm), traza azul, ajusta la frecuencia de resonancia, y el segundo, de 32 

x 4 mm2 (longitud total de conductor de 56 mm), traza verde, aumenta la parte real de la 

impedancia. 

 

 

 

 

 

Figura 3-36 : Comparación entre dipolo recto, 56 mm, y dipolos meandros, de 16 x 8 mm2 y de 32 x 4 mm2, con 

recubrimiento implantado en el líquido 

Reduciendo la longitud del área que forma el meandro, resultando la longitud total 

del dipolo igual a la del dipolo recto, 56 mm, se consigue hacer resonar el dipolo a 2.45 

GHz, con una adaptación parecida al dipolo recto aunque con 3 dB menos de ganancia. 

A cambio pasamos de una longitud del dipolo recto de 56 mm a un área de 16 x 8 mm2. 
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Para aumentar la parte real de la impedancia, vemos que debe existir una geometría 

meandro que se encuentre entre el dipolo recto y el meandro de 16 x 8 mm2, el cual 

obtenga una impedancia real cercana a 50 Ω. Por lo que se propone, con tendencia al 

dipolo recto, un nuevo meandro más estrecho y más largo, pero con la misma longitud 

efectiva. 

Finalmente se encuentra un dipolo meandro de área 32 x 4 mm con muy buena 

adaptación y a tan solo 2 dB de ganancia del dipolo recto. 

3.4.5.2. Dipolo meandro de 28 x 8 mm2 sin recubrimiento 

Visto el comportamiento del dipolo meandro con recubrimiento, en la figura 3-37 se 

presentan los resultados, desde 100 MHz hasta 4 GHz, del dipolo meandro implantado 

sin recubrimiento de 28 x 8 mm2, de longitud total de conductor de 98 mm, comparado 

con el dipolo recto sin recubrimiento de 56 mm de longitud. 

 
 

 

 

 

Figura 3-37 : Comparación entre el dipolo recto, 56 mm, y el dipolo meandro, de 28 x 8 mm2 y longitud total 

de 98 mm, sin recubrimiento implantados en el líquido 

De forma no esperada, el meandro implantado sin recubrimiento tiene muy buena 

ganancia total hacia el exterior del cuerpo, mejor que el dipolo recto. 

Comparado con el mismo dipolo meandro con recubrimiento, ver figura 3-34, la 

ganancia total tiene el mismo valor a la frecuencia de 2.4 GHz, por lo que parece ser 

que para el dipolo meandro no existe tanto beneficio del recubrimiento. 
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En la gráfica de ganancia, en la que se añaden para el meandro la ganancia de 

radiación en las dos polarizaciones lineales, theta (co-polar al dipolo lineal en dirección 

acimut) y phi (cros-polar al dipolo lineal en dirección acimut). En estas trazas se 

observa que en este caso, y a diferencia de todos los dipolos anteriormente estudiados, 

ambas polarizaciones contribuyen en la ganancia total en dirección acimut. Es más, a la 

frecuencia de interés, 2.4 GHz, es la polarización phi la que más ganancia ofrece. 

Es fácil relacionar la radiación del dipolo en dirección del eje z con la dirección de 

las corrientes. Para ello, en la figura 3-38 se muestra la distribución de corrientes en el 

conductor del dipolo meandro sin recubrimiento implantado a diferentes frecuencias, 

para poder justificar posteriormente porqué hay gran ganancia a 2.25 GHz, como 

veíamos en la figura 3-37. 
 
 

 

Figura 3-38 : Distribución de corrientes en el dipolo meandro sin recubrimiento implantado a las frecuencias 
a) 500 MHz, b) 900 MHz, c) 2.2 GHz y d) 3 GHz 

Debido a la alta permitividad relativa del medio, la distribución de corrientes que 

hay en el meandro, provocan que las componentes verticales de las corrientes en la 

geometría del dipolo no se cancelen entre sí a una cierta frecuencia, y que en conjunto 

también radie en la dirección de interés. 

A 500 MHz, tenemos un máximo de ganancia con polarización mayormente theta, 

que se explica con las corrientes horizontales de a), las cuales todas tienen el mismo 

sentido. Y las corrientes verticales, tienen sentidos contrarios en cada tramo, por lo que 

a esta frecuencia no hay radiación en polarización phi. 

A 900 MHz, se da un nulo de la ganancia total, no hay buena radiación en ninguna 

polarización. Esto se puede relacionar con las corrientes de b), donde tanto en vertical 

como en horizontal, las corrientes tienen dos sentidos, de manera que la radiación total 

es nula. 

A 2.2 GHz, asociando el máximo de ganancia en polarización phi con las corrientes 

de c), todas tienen el mismo sentido en todos los tramos verticales. En cambio, en los 

a) b) 

c) d) 
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tramos horizontales, las corrientes se van alternando de sentido, por lo que hay peor 

radiación en theta. 

Y a 3 GHz, d), son las corrientes de los tramos verticales las que tienen ambos 

sentidos, en cambio, en los tramos horizontales la gran mayoría de corrientes tienen el 

mismo sentido, por lo que la radiación en dirección del eje z tiene mayormente 

polarización theta. 

Como vemos con las corrientes, a la frecuencia de diseño, 2.45 GHz, la antena 

resulta eléctricamente larga ya que se dan diversos máximos y mínimos de corriente a lo 

largo del conductor. 

Este efecto también sucede en el dipolo meandro en espacio libre, pero a frecuencias 

muy elevadas, como se puede ver en la figura 3-39, donde hasta 6 GHz prácticamente 

toda la radiación se da en polarización theta, pero de 10 a 20 GHz, la radiación total es 

contribución de la polarización phi, y en adelante ambas polarizaciones contribuyen en 

la radiación total. 

 

   
Figura 3-39 : Ganancia en dirección acimut para el dipolo meandro de 28 x 8 mm2 en espacio libre 

Por lo tanto, en el líquido estamos viendo parte del comportamiento del dipolo en 

espacio libre pero concentrado en frecuencias bajas debido a la alta permitividad del 

medio. 

En definitiva, gracias a la alta permitividad del medio, la geometría meandro puede 

utilizarse en el diseño de antenas implantadas, ya que en áreas pequeñas, en función de 

la geometría se puede conseguir unas corrientes que pueden generar mejor o peor 

ganancia en dirección al exterior del cuerpo, llegando a obtener ganancias similares 

dipolo con recubrimiento. 

La geometría del dipolo meandro de 28 x 8 mm2 ha sido propuesta para reducir el 

tamaño del dipolo recto en espacio libre, por lo que no es una geometría implantada 
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optimizada para el caso sin recubrimiento. Seguramente existen otros tipos de geometría 

que distribuyan de otra forma las corrientes obteniendo mejor ganancia. 

3.4.6. Tabla resumen de los dipolos diseñados 

Para tener una visión más general, se ha resumido en la siguiente tabla 8 todos los 

diseños de los dipolos realizados incluyendo sus características más importantes, tanto 

de geometría y tamaño como de adaptación y ganancia, incluyendo la figura de mérito 

de la ganancia realizable (8). 

 

Identificación del diseño 
Longitud 

o área 
Grosor 

total 

Radio 
recubri-
miento 

Radio 
conductor 

|S11| 
[dB] 

Ganancia 
[dB] 

Ganancia 
realizable 
[dB] (8) 

3.
4.

1 

Ȝ/2 en E.L. 
directamente 
implantado 

56 mm 200 um - 100 um -20 -35 -35 

Ajuste de ganancia 43 mm 200 um - 100 um -25 -24 -24 
         

3.
4.

2 

Ȝ/2 en E.L. 
adaptación primera 

resonancia serie 
56 mm 

2000 
um 

990 um 10 um -8 -15.5 -16.3 

Ȝ/2 en E.L. 
adaptación primera 
resonancia paralelo 

56 mm 900 um 300 um 450 um -5.5 -15 -16.4 

Ȝ/2 en E.L. 
adaptación tercera 
resonancia serie 

56 mm 210 um 5 um 100 um -25 -24 -24 

         

3.
4.

3 

Ȝ/2 en el líquido 
adaptación primera 

resonancia serie 
6.5 mm 20 um - 10 um -5 -25 -26.7 

Ȝ en el líquido 
adaptación primera 
resonancia paralelo 

12.4 mm 400 um - 200 um -20 -21 -21 

         

3.
4.

4 

2Ȝ en el líquido 
adaptado en la 

primera resonancia 
serie 

20 mm 490 um 45 um 200 um -16 -19 -19.1 

         

3.
4.

5 

Meandro con 
recubrimiento 

adaptado primera 
resonancia serie 

32 x 4 
mm2 

(56 mm) 

2000 
um 

990 um 10 um -15 -16.5 -16.6 

Meandro sin 
recubrimiento 

adaptado primera 
resonancia serie 

28 x 8 
mm2 

(98 mm) 
400 um - 200 um -10 -16 -16.5 

         

Tabla 8 : Resumen de los diseños presentados de dipolos implantados a 4 mm de profundidad en el líquido con 

propiedades de agua destilada. Comparación de tamaños, grosores, adaptación, ganancia y ganancia 

realizable 
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3.5 Conclusiones 

Al inicio del capítulo se ha podido comparar la respuesta del dipolo en espacio libre 

y embebido en un medio con las características del líquido humano, así como también al 

implantarlo en un modelo simplificado del cuerpo humano, analizando el efecto que el 

líquido, con alta permitividad y pérdidas, tiene sobre la antena. De ellos, se ha visto que 

el principal efecto es el de la alta permitividad del medio que provoca que todos los 

modos de radiación del dipolo se concentren a frecuencias bajas. 

En el segundo apartado se ha estudiado cómo responde el dipolo en función de 

algunos cambios en la geometría del dipolo, de la profundidad de implante y de la 

permitividad del medio. Analizando dichos parámetros minuciosamente se ha podido 

crear un resúmen de tal forma que sirve de guía con la idea de facilitar el diseño del 

dipolo implantado. Durante el mismo apartado, se ha explicado también el efecto que 

provoca la reflexión en la interficie de medios líquido y aire sobre la adaptación y la 

radiación de la antena, haciendo un símil con una línea de transmisión de impedancia 

igua al líquido. 

Gracias al tercer apartado del capítulo se ha podido mostrar que pueden existir 

infinidad de diseños de dipolos implantados que, a diferencia del espacio libre, además 

de ser función de la longitud, también son importantes el grosor del recubrimiento, o el 

grosor del conductor. 

Además del dipolo recto, también se ha introducido la geometría meandro la cual 

presenta resultados muy interesantes por ofrecer una ganancia realizable competente 

reduciendo el tamaño de la antena, aunque con mayor dificultad de implante que un hilo 

recto. Para el meandro sin recubrimieno obtiene un buen resultado gracias a que la alta 

permitividad del medio crea una distribución de corrientes que benefícia la radiación en 

la dirección de interés. Y en el meandro con recubrimiento se guían los campos 

cercanos por toda la geometría de la antena gracias al recubrimiento [20], resultando en 

una antena de mayor longitud que la obtenida para este tipo de antenas en espacio libre. 

En la tabla 8 se pueden comparar los resultados obtenidos para cada diseño, teniendo 

presente el compromiso entre la ganancia realizable y la dificultad de implante. 

También se ha visto que para el dipolo recto el recubrimiento aporta beneficios a 

cambio de un mayor grosor de antena. Pero para la geometría meandro, es posible 

conseguir muy buenos resultados sin necesidad del aislante. 
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4. CAPÍTULO 4.  ANÁLISIS Y DISEÑO DEL PARCHE 

IMPLANTADO 

4.1 Introducción 

Como se comentó durante la introducción, la funcionalidad principal de las antenas 

implantadas es la de comunicarse con un dispositivo externo, como puede ser una 

estación base que recoge datos físicos medidos por el dispositivo implantado y 

transmitidos por la antena, normalmente hacia el exterior del cuerpo. Por tal motivo, un 

factor importante de la antena implantada es la directividad en dirección exterior al 

cuerpo. Por lo cual es lógico pensar en la utilización de antenas directivas para esta 

aplicación. 

La antena parche, o microstrip, es comúnmente conocida por tener buenas 

cualidades de directividad, siendo además una antena de perfil bajo [7]. Gracias también 

al aislamiento del superestrato, se consigue mejorar la densidad de corriente en la 

antena mediante la reducción del acoplamiento con el cuerpo [5]. 

Otra característica que hace de esta antena idónea para esta aplicación es que el 

plano de masa permite mayor independencia del grosor del cuerpo humano que el 

dipolo. 

En el capítulo anterior, se mostraron diversos análisis y diseños en los cuales se 

pudo ver que la máxima ganancia que se obtenía del dipolo implantado a 4 mm de 

profundidad era de -15 dB en la dirección de interés. Veremos durante este capítulo si la 

estructura de antena parche mejora esta ganancia, manteniendo también especial 

atención en la adaptación, así como también en su tamaño. 

La estructura de este capítulo se divide principalmente tres partes. 

La primer parte pretende comparar el resultado del parche en función del medio en 

el que se encuentra: espacio libre, embebido en el medio líquido simulador del cuerpo 

humano e implantado a 4 mm de profundidad. Parte de la teoría del parche se presenta 

en primer lugar para conocer su funcionamiento como antena, explicando algunos 

parámetros en detalle ya que serán utilizados a lo largo del capítulo. 

Una vez conocida la respuesta que presenta el parche en el entorno de la aplicación, 

en la segunda parte se realiza un estudio paramétrico de algunas partes de la geometría 

de la antena, de la permitividad del medio y, con mayor énfasis, de la profundidad de 

implante. 
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Con idea de reducir el tamaño del parche, ya que así lo requiere la aplicación, en la 

tercera parte se presentan los resultados de dos parches PIFA las cuales también han 

sido analizadas en función de la profundidad de implante. 

 

4.2 Respuesta del parche en función del medio 

4.2.1. Parche en espacio libre 

Referenciando a [7], una antena parche está compuesta de una capa de conductor de 

pequeño grosor (<< Ȝ) con un cierta geometría de tamaño Ȝ de largo, siendo la 

rectangular la más común y la utilizada en este proyecto. El conductor se sitúa sobre un 

sustrato de grosor h, normalmente entre 0.003Ȝ ≤ h ≤ 0.05Ȝ, el cual tiene otra capa de 

conductor en la parte inferior del dieléctrico llamado plano de masa. 

Dicha estructura puede ser alimentada de diversas formas, en nuestro caso, mediante 

un conector coaxial. En la figura 4-1 se puede observar un esquema en el que se grafica 

la geometría explicada. 

 

Figura 4-1 : Geometría típica de antena microstrip. A la izquierda, vista isométrica, y a la derecha, vista 
transversal con alimentación por conector coaxial 

Existen numerosos tipos de dieléctricos que pueden ser empleados en este tipo de 

antenas, con gran variación de permitividades y pérdidas. En este proyecto se ha 

utilizado el dieléctrico de Taconic TFR-45 [21] (İr = 4.5, tan į = 0.0035), ya que resulta 

ser un material común para PCB de bajas pérdidas, y disponible en el laboratorio. 

Para calcular la geometría del conductor del parche, figura 4-2, se presentan a 

continuación las ecuaciones necesarias para determinar las dimensiones L y W, [7], en 

función de la frecuencia de resonancia del modo dominante5, fr, y de la constante 

dieléctrica del sustrato, İr. 

                                                 
5 Modo dominante: resonancia de menor frecuencia 
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Figura 4-2 : Dimensiones planas del parche, posición del punto de alimentación en el centro del parche e 

incremento de longitud por efecto fringing, ΔL 
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Donde c es la velocidad de la luz en el vacío y İreff es la permitividad relativa 

efectiva, ya que el conductor se encuentra entre el aire y el dieléctrico, el cual se calcula 

mediante la ecuación (14) para W/h > 1. Para nuestro caso İreff = 4,16. 

 

1 2
1 1

1 12
2 2

r r
reff

h

W

           (14) 

ΔL es el incremento de longitud debido al efecto fringing, o de desbordamiento, que 

se calcula mediante (15). Esta extensión de la longitud se suma a la longitud real del 

parche para resultar una longitud efectiva total. 

 

 
 

0.3 0.264
0.412

0.258 0.8

reff

reff

W

h
L h

W
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


            (15) 

Utilizando las ecuaciones mostradas y ajustando mediante simulación, para la 

frecuencia de 2.4 GHz, el parche utilizado es de dimensiones L = 28 mm y W = 35 mm, 

con un tamaño de plano de masa cuadrado de 80 mm de lado, como se muestra en la 

figura 4-3. 

Comentar que los parches se han implementado mediante una máquina de fresado 

mecánico para PCB de LPKF [22]. 

Posición del punto de alimentación 
en el centro del parche 



Capítulo 4. Análisis y diseño del parche implantado 

96 Análisis y diseño de antenas dipolo y parche para aplicaciones implantadas en el cuerpo humano

 

Figura 4-3 : Antena parche con alimentación en el extremo 

En [7] también se muestra que la resistencia de radiación varía en función de la 

localización del punto de alimentación a lo largo del centro del parche, indicado con la 

línea punteada de la figura 4-2, siendo máxima en los extremos y mínima en el centro 

de la línea. Éste resulta ser un parámetro de diseño que permite adaptar la impedancia 

del parche a la impedancia de diseño, 50 Ω. 

Así como ya se experimentó con las simulaciones de la antena dipolo en el capítulo 

anterior, la impedancia del dipolo disminuye en gran medida al introducirlo en el medio 

líquido. Este mismo efecto sucede en la antena parche, como veremos más adelante, por 

lo que será necesario posicionar la alimentación del parche en el borde para aumentar la 

impedancia y conseguir mejor adaptación a la impedancia de referencia. 

Por este motivo, en la figura 4-4 se muestran los resultados por simulación de dos 

parches diseñados a la frecuencia de 2.4 GHz, uno con alimentación a 9 mm del borde, 

con mejor adaptación en espacio libre, y otro con la alimentación justo en el borde, para 

obtener mayor parte real de la impedancia al implantarlo en el cuerpo. 

Los resultados muestran la parte real e imaginaria de la impedancia, la adaptación a 

50 Ω y la ganancia en dirección acimut. Estos parámetros son mostrados en un amplio 

margen frecuencial para conocer a qué frecuencia se dan los múltiples modos de 

funcionamiento del parche. 

En dicha figura se puede ver que, a diferencia del dipolo, el parche tiene muchos 

más mínimos de adaptación ya que existen más modos de radiación debido su geometría 

rectangular. Pero pese a las múltiples adaptaciones, prácticamente sólo se dan dos 

máximos de ganancia, el primero a 2.5 GHz, y el segundo a 7 GHz; a diferencia 

también del dipolo que tiene gran ancho de banda frecuencial en ganancia en dirección 

cenit. 

 

8 cm 

 8 cm 

L = 28 mm 

W = 35 mm 

Pin de 
alimentación 
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Figura 4-4 : Resultados en banda ancha de impedancia, adaptación y ganancia total en dirección cenit del 

parche en espacio libre 

Según [7], podemos asociar las frecuencias de los modos de radiación del parche a 

las frecuencias resonantes de una cavidad con perfil rectangular, frpnm, con la ecuación 

genérica (16). 

 

2 2 2
1

2pnmr

p n m
f

h W L

  
 

                   (16) 

Donde p, n y m representan el número de modos resonantes de la cavidad en los ejes 

z, y, x; que para nuestro parche el eje y está asociado a la dimensión W del parche, y el 

eje x a la dimensión L. La dimensión en el eje z, que en nuestro caso es la altura, h, 

normalmente no se aplica para el cálculo de la frecuencia de resonancia del parche. 

Localizando el punto de alimentación a un lado en la línea punteada que indica la 

posición del punto de alimentación de la figura 4-2, siendo ésta perpendicular al lado W, 

la frecuencia del primer modo dominante se determina a partir de la dimensión L. De 

manera que aplicando (16), podemos calcular en (17) la frecuencia del modo dominante 

TM001, fr001. 
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 
   

       (17) 

Obteniendo la primera resonancia a la frecuencia de 2.38 GHz, cercana al primer 

mínimo de adaptación que se observa en la figura 4-4. Y calculando la frecuencia de la 

segunda resonancia, asociada a la dimensión W, fr020, se obtiene la frecuencia de 4.17 

GHz, un 7% por encima del segundo mínimo en la simulación ya que en (16) no se 

tiene en cuenta el efecto fringing. Y sucesivamente podríamos relacionar cada mínimo 

de adaptación a un modo de funcionamiento del parche según los múltiplos de Ȝ/2 de 

ambos lados, L y W. 

Para entender mejor cómo asociar los modos de funcionamiento del parche con las 

frecuencias, en la figura 4-5 se muestra la distribución de corrientes y los diagramas de 

radiación 3D del parche a las frecuencias de 2.4, 3.8 y 6.9 GHz, respectivamente. 

 

  

   

Figura 4-5 : Densidad superficial de corriente del parche en espacio libre (escala de 23 dBA/m en rojo a -48 

dBA/m en azul) y diagramas de radiación de ganancia 3D (escala de 10 dB en rojo a -20 dB en azul) para las 

frecuencias de 2.4, 3.8 y 6.9 GHz, de izquierda a derecha 

En el modo TM001, a 2.4 GHz, todas las corrientes generadas en la superficie 

superior del parche tienen la misma dirección, y en colores se observa un claro máximo 

en el medio de la longitud L. Esta forma de corrientes genera un diagrama de radiación 

directivo en dirección acimut, como se puede observar en el respectivo diagrama 3D. 
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A 3.8 GHz, se da el modo de radiación TM020, produciendo corrientes horizontales 

con dos máximos a ambos lados del centro del parche con sentidos opuestos. Esta 

distribución de corrientes genera un nulo de radiación en dirección cenit. 

Volvemos a tener un máximo de ganancia a la frecuencia de 6.9 GHz, cuando se 

produce el modo de radiación TM003, ya que tenemos 3 máximos de corriente en la 

longitud L del parche, con corrientes en un sentido en dos de los máximos y en sentido 

opuesto en el máximo en el medio. Si calculamos mediante (16) este modo, la 

frecuencia de resonancia resulta 7.15 GHz, un 3.5% a frecuencias superiores del 

resultado de simulación. 

Para validar la fabricación e implementación de los parches, antes de sumergir la 

antena en el líquido, utilizando el la configuración de medida de la figura 4-6 se 

caracterizan los parches implementados en espacio libre y se comparan con la 

simulación. 

 

Figura 4-6 : Configuración de medida del parche en espacio libre 

Para conseguir una buena medida de la impedancia del parche es necesario calibrar 

el cable coaxial de medida en el punto donde se conecta el conector de la antena. 

También es necesario tener la parte superior del parche libre de objetos para que el 

entorno no altere la impedancia que se mide. 

En la figura 4-7 se muestran los resultados de simulación y medida de la impedancia 

en la carta de Smith y de la adaptación de los dos parches diseñados, el adaptado para 

espacio libre y el adaptado para el líquido. 



Capítulo 4. Análisis y diseño del parche implantado 

100 Análisis y diseño de antenas dipolo y parche para aplicaciones implantadas en el cuerpo humano

 

 

Figura 4-7 : Comparación entre simulación y medida del parche en espacio libre con alimentación a 9 mm del 

borde y con alimentación en el extremo 

Los indicadores de la carta de Smith revelan un desplazamiento frecuencial entre la 

simulación y la medida empírica de entorno a un 3%. Este desplazamiento suele ser 

normal ya que, entre otras cosas, en el modelo de simulación no se ha tenido en cuenta 

de manera exacta ciertas cosas, como por ejemplo la forma de alimentar el parche 

mediante el conector de PCB SMA, el cual introduce una pequeña inductancia que 

desplaza el mínimo de adaptación a frecuencias algo inferiores. Otra causa que suele 

producir cierto desplazamiento frecuencial es que en la simulación se considera un 

dieléctrico homogéneo, y en la práctica, el sustrato utilizado suele tener imperfecciones 

además de cierta tolerancia de la permitividad. También se pueden dar diferencias entre 

la medida y la simulación debido a los errores o tolerancias del proceso de fabricación. 

4.2.2. Características del parche embebido en el medio líquido 

Este apartado presenta los resultados de simulación del parche embebido en el 

medio infinito en todas direcciones con las propiedades eléctricas del líquido simulador 

humano. Se aconseja estudiar el comportamiento de una antena en esta situación antes 

de implantarla en el modelo del cuerpo humano para conocer el efecto que tiene el 

medio sobre la antena, e independizar así el resultado de la profundidad de implante. 

El parche diseñado en espacio libre con la alimentación en el borde, se ha simulado 

en tres casos diferentes, cuando no tiene ningún sustrato, el parche sólo está compuesto 

por los conductores, cuando tiene sustrato y cuando además del sustrato se añade otra 

capa de dieléctrico encima del parche, llamada superestrato. 
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De esta manera, y al igual que para el dipolo con el recubrimiento, se consigue aislar 

el conductor y evitar que entre en contacto con el líquido. Así se pueden encontrar 

coincidencias en el resultado del parche con el dipolo, cuando se implanta sin 

recubrimiento como cuando se protege con el aislante. 

Comentar que en la implementación del parche con sustrato y superestrato es 

importante sellar ambas partes para evitar que haya agua entre capas y que llegue a 

tocar el conductor de la antena, además de evitar que exista separación entre planchas 

ya que no debe haber aire entre las dos partes, sino que la antena debe quedar lo más 

embebida posible dentro del dieléctrico. 

En la figura 4-8 se muestran los resultados del parche por simulación embebido en 

el líquido simulador en los tres casos: sin dieléctricos, con sustrato, y con sustrato y 

superestrato. 

 

 

 

 

 
Figura 4-8 : Resultados por simulación del parche sin dieléctricos, con sustrato y también con superestrato, 

con alimentación en el borde, embebido en el medio infinito con propiedades del líquido simulador del cuerpo 

humano 

El resultado de estas simulaciones pone de manifiesto las altas pérdidas que tiene el 

líquido ya que se suavizan las oscilaciones de las trazas en frecuencia. Pese a ello, en el 

caso del parche sin dieléctricos, se aprecia en la directividad cierta ondulación parecida 

a la que mostraba el dipolo sin recubrimiento en el mismo entorno, figura 3-5. Esto 

demuestra que los modos de funcionamiento del parche sin dieléctricos se dan a 

frecuencias más bajas, como ya veíamos con el dipolo. 

El parche con sustrato y superestrato mantiene en cierta medida las características 

del parche en espacio libre, ya que se observa en la carta de impedancias un pequeño 
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bucle, frecuencia donde se produce el máximo de impedancia real, y el máximo y 

mínimo de la impedancia imaginaria, de manera que se da una adaptación de -6 dB y un 

pico de ganancia a la frecuencia de interés, 2.4 GHz. 

En la figura 4-9 se muestran los resultados por simulación cuando las características 

del líquido simulador son las del agua destilada. Como ya se explicó anteriormente, el 

agua destilada tiene mayor permitividad y menos pérdidas que el líquido simulador del 

cuerpo humano, de manera que permite estudiar con mayor facilidad lo que le sucede a 

la antena al implantarla en un medio de las características del cuerpo humano, además 

de ser un líquido más barato y fácil de encontrar, idóneo para hacer pruebas en el 

laboratorio. 

 

 

 

 
Figura 4-9 : Resultados por simulación del parche sin dieléctricos, con sustrato y también con superestrato, 

con alimentación en el borde, embebido en el medio infinito con propiedades del agua destilada 

El líquido simulador del cuerpo humano (tanį = 0.27) tiene casi tres veces más 

pérdidas que el agua destilada (tanį = 0.119), por lo que en la figura 4-9 se puede 

apreciar con mayor facilidad, tanto en la impedancia como en la ganancia en el parche 

sin dieléctricos, que existe un desplazamiento a frecuencias bajas de todos los modos de 

funcionamiento que se veían el espacio libre a frecuencias más altas. Esto es lógico ya 

que la permitividad relativa efectiva en el que se encuentra la antena es de 74, por lo 

que la antena resulta mucho más grande, en concreto el primer mínimo de adaptación y 

el primer máximo de ganancia se dan a 600 MHz. Para los otros dos casos, con sustrato 

y con sustrato y superestrato, el resultado es más parecido entre el líquido simulador del 

cuerpo humano y el agua destilada. 
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4.2.3. Características del parche implantado a 4 mm de profundidad 

Una vez conocida la respuesta del parche embebido en el líquido, en este apartado 

se muestran los resultados para el parche implantado a 4 mm de profundidad, de manera 

que se puede conocer si existe algún efecto debido a la profundidad de implante. 

El modelo de simulación para el parche implantado es el que se mostraba en la 

figura 2-18, en el que para cada caso de simulación del parche, la distancia desde la 

superficie superior del parche y la superficie del líquido es de 4 mm. 

En la figura 4-10 se muestran los resultados de los tres casos de dieléctricos del 

parche cuando se implanta en el medio líquido simulador del cuerpo humano. 

 
 

 

 
Figura 4-10 : Resultados por simulación del parche sin dieléctricos, con sustrato y también con superestrato, 

con alimentación en el borde, implantado a 4 mm de profundidad en el medio con propiedades del líquido 

simulador del cuerpo humano 

Comparando con los resultados del parche embebido, figura 4-8, se aprecian 

pequeños cambios en diversas trazas. Para el parche sin dieléctricos, trazas rojas, la 

impedancia es prácticamente igual, pero en la traza de ganancia la oscilación ha 

cambiado. Para el parche con sustrato, trazas azules, hay mayor oscilación en la 

impedancia y en la ganancia también se da una leve oscilación en el parche implantado, 

cosa que no se daba en el parche embebido. Y para el parche con sustrato y 

superestrato, trazas verdes, también se observan unas ondulaciones algo diferentes en 

todas las trazas, que en el parche embebido no se veían, como por ejemplo en el primer 

mínimo de adaptación, que para el parche embebido se daba a 2.3 GHz, y para el parche 

implantado se da a 2.5 GHz. 
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Realizando las mismas simulaciones con las características del agua destilada, figura 

4-11, se puede apreciar con mayor claridad dichos cambios debidos a la profundidad de 

implante. 

 
 

 

  Figura 4-11 : Resultados por simulación del parche sin dieléctricos, con sustrato y también con superestrato, 

con alimentación en el borde, implantado a 4 mm de profundidad en el medio con las propiedades del agua 

destilada 

Comparando con la simulación del parche embebido en el líquido simulador 

humano, figura 4-10, se puede apreciar mayor efecto de la profundidad de implante 

gracias a las menores pérdidas del agua destilada.  

En especial, es en el parche con sustrato, trazas azules, donde se observa mayor 

cambio. En la carta de impedancias aparecen dos bucles, lo que se traduce en mayor 

oscilación de la parte real e imaginaria de la impedancia, y en los dos mínimos de 

adaptación a las frecuencias de 1.3 y 1.9 GHz. En la ganancia, la profundidad de 

implante parece romper la linealidad de la traza del parche embebido, provocando 

algunos máximos y mínimos. 

Para el parche con sustrato y superestrato, trazas verdes, también se dan algunos 

cambios. La forma de la traza de adaptación del parche implantado ha cambiado 

respecto al parche embebido, sobretodo en el mínimo de adaptación, que se desplaza de 

2.3 a 2.5 GHz y además mejora de -5 dB hasta -9 dB. Y en la ganancia se dan hasta tres 

picos desde 1.3 GHz hasta 2.5 GHz para el parche implantado, cuando para el parche 

embebido se da un único máximo en todo el rango de simulación. 
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4.2.3.1. Diagrama de radiación y distribución de corrientes para 

el parche sin dieléctricos implantado 

Entrando en detalle en el parche sin dieléctricos, como ya se ha comentado antes, se 

da un mayor efecto del líquido en la antena ya que el parche no tiene ningún sustrato 

que lo aísle del líquido, por lo que debido a la alta permitividad del líquido, se obtiene 

mayor longitud eléctrica efectiva del parche, de manera que todos los modos de 

funcionamiento del parche bajan en frecuencia. 

Para comprobar que esto es así, en la figura 4-12 se muestran los diagramas de 

radiación y distribución superficial de corrientes correspondientes a las frecuencias de 

0.6, 1.1 y 1.6 GHz del parche sin dieléctricos implantado a 4 mm de profundidad en 

agua destilada. 

 

   

 

Figura 4-12 : De izquierda a derecha para las frecuencias de 0.6, 1.1 y 1.6 GHz, dirección e intensidad de 

corrientes superficiales (escala normalizada al máximo, en rojo es máximo y en azul es mínimo), arriba, y 

diagrama de radiación 3D, abajo, del parche sin dieléctricos con alimentación en el borde implantado a 4 mm 

de profundidad en el líquido agua destilada  

La forma de los diagramas de radiación y la distribución de corrientes de las 

frecuencias mostradas en la figura 4-12 son parecidas a las formas mostradas en la 

figura 4-5 del parche en espacio libre, de manera que quedan relacionados los modos de 

radiación del parche implantado a las frecuencias 0.6, 1.1 y 1.6 GHz con los modos del 

parche en espacio libre a las frecuencias de 2.4, 3.9 y 6.9 GHz respectivamente. 
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4.2.3.1. Verificación experimental 

Para realizar la medida del parche implantado, se recomienda proceder de la 

siguiente manera. Con el parche instalado en el setup de medida de la configuración top, 

figura 2-4, y antes de añadir el líquido, se recomienda validar el setup de medida para 

comprobar que el entorno donde se instala la antena no afecta en exceso a la impedancia 

de la antena comparando con el parche en espacio libre. Después de esto, se añade el 

líquido hasta cubrir el líquido 4 mm y se compara con la simulación. 

En la figura 4-13 se muestran los resultados en espacio libre, en el setup sin líquido 

y con líquido agua destilada, de los dos parches implantados a 4 mm de profundidad, 

con alimentación a 9 mm del borde y en el borde, ambos con superestrato. Además se 

añade la simulación del parche implantado para comparar con la medida. 

  

 

Figura 4-13 : Adaptación de los parches con superestrato en espacio libre, en la configuración top sin líquido e 

implantado en agua destilada a 4 mm de profundidad 

En las trazas azules se puede observar como el entorno de medida de la 

configuración top desplaza de manera despreciable el mínimo de adaptación a 

frecuencias más bajas. 

Al añadir el líquido hasta situar el parche a 4 mm de profundidad, la adaptación para 

el parche con alimentación a 9 mm del borde empeora considerablemente y mejora para 

el parche con alimentación en el borde, por lo que se justifica utilizar parches con 

alimentación en el borde para aplicaciones implantadas. 

Para validar el sistema de medida tanto para el líquido con propiedades del cuerpo 

humano como para el agua destilada, y para comparar los resultados entre estos, en la 
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figura 4-14 se muestran los resultados de simulación y medida del parche implantado en 

los dos medios líquidos utilizados para emular el medio del cuerpo humano. 

 
 

 
Figura 4-14 : Simulación y medida de adaptación del parche con superestrato con alimentación en el borde 

implantado a 4 mm de profundidad en el líquido simulador humano, a la izquierda, y en agua destilada, a la 

derecha 

Comparando ambos medios se puede ver que hay cierta tendencia parecida entre los 

resultados de adaptación, por lo que en principio podemos validar el utilizar agua 

destilada como líquido para emular el líquido humano, por lo menos en la fase de 

diseño, pero teniendo siempre presente que la permitividad relativa del agua destilada es 

mayor, y que tiene menos pérdidas que el medio líquido humano.  

Comparando simulación y medida, los resultados de adaptación de los parches 

implantados parecen tener gran correlación. En el análisis paramétrico de la 

profundidad del siguiente apartado se comparará también diversas medidas con la 

simulación para el parche, con y sin superestrato, a diferentes profundidades y también 

en ambos medios líquidos. Finalmente podremos corroborar la validez de las 

configuraciones de medida implementadas para la medida de los parches implantados. 

 

4.3 Análisis paramétrico del parche implantado 

En este apartado se estudia a fondo la respuesta de la antena parche implantada en el 

modelo simplificado del cuerpo humano de la figura 2-18, analizando algunos de los 

parámetros más significativos del entorno de aplicación y de la geometría que 

constituye la antena. 
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Los parámetros en cuestión son presentados en el siguiente orden: en primer lugar se 

muestran los resultados del parche sin y con superestrato en función de la permitividad 

del medio, donde conoceremos la dependencia de la respuesta del parche a esta 

característica. 

En segundo lugar se realiza un amplio estudio de la profundidad de implante, 

comparando simulación y medida, donde se observa con mayor claridad qué le está 

sucediendo al parche implantado. En él se muestran los resultados para el parche sin 

superestrato en agua destilada y para el parche con superestrato tanto para el medio 

líquido humano como para el agua destilada. 

Y en tercer lugar se estudia el papel que juega el grosor del sustrato y del 

superestrato del parche implantado. 

4.3.1. Estudio de la permitividad relativa del líquido simulador del 

cuerpo humano 

Para conocer la respuesta de la antena frente a las diversas permitividades del 

cuerpo humano, en la figura 4-15 se presenta el valor de adaptación y ganancia en 

dirección exterior del cuerpo a 2.4 GHz en función de la permitividad relativa del 

medio. 

El estudio se ha realizado mediante simulación, ya que de forma muy sencilla y 

rápida podemos cambiar dicho parámetro. 

El parche está implantado a 4 mm de profundidad y el grosor de sustrato y 

superestrato es de 1.6 mm. Para cada permitividad, la conductividad de medio que 

simula el líquido humano se ha mantenido constante (σ = 1.95 [S/m]). 

 

 
Figura 4-15 : Estudio de la permitividad relativa del medio. Adaptación, a la izquierda, y ganancia en acimut, 

a la derecha, a 2.4 GHz del parche implantado a 4 mm de profundidad  
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Claramente se observa una respuesta oscilatoria con la permitividad del medio, tanto 

para la adaptación como en la ganancia, siendo para el parche con superestrato menos 

oscilante, además de tener 5 dB más de ganancia para todas las permitividades, por lo 

que se destaca el beneficio del superestrato en ambas características. 

En la gráfica de la ganancia se puede observar cierta tendencia negativa con la 

permitividad, la cual se puede relacionar con las pérdidas del medio en función de la 

permitividad relativa, r, como se indicaba en (9). 

En los siguientes dos apartados se muestra con detalle las características de 

impedancia, adaptación y ganancia para el parche sin y con superestrato para algunas de 

las permitividades analizadas. 

4.3.1.1. Parche sin superestrato 

La figura 4-16 muestra la impedancia, adaptación y ganancia en función de la 

frecuencia para el parche sin superestrato implantado a 4 mm de profundidad para 

diferentes valores de permitividades relativas del medio. 
 

 

 
 

 
Figura 4-16 : Estudio de permitividad. Resultados por simulación del parche sin superestrato a 4 mm de 

profundidad con la conductividad del líquido simulador humano 

Observando con detenimiento la frecuencia a la que se dan las oscilaciones de las 

trazas, se puede ver que a medida que aumenta la permitividad van apareciendo nuevas 

oscilaciones las cuales se van desplazando a frecuencias cada vez más bajas. A medida 

que las oscilaciones bajan en frecuencia, estas van perdiendo parte real de la impedancia 

y adaptación. 
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Es lógico pensar en que dicho desplazamiento es debido a que al no haber 

superestrato, el conductor del parche tiene por un lado el sustrato de Taconic, y por el 

otro lado el líquido, de manera que la permitividad relativa efectiva del parche es cada 

vez mayor a medida que aumenta la permitividad relativa del medio. Pero como 

veremos en el siguiente apartado, estudio de la profundidad de implante, también será 

necesario pensar en el papel que juega la profundidad de implante. 

Veamos si sucede lo mismo para el parche con superestrato. 

4.3.1.2. Parche con superestrato 

La figura 4-17 muestra la impedancia, adaptación y ganancia en función de la 

frecuencia para el parche con superestrato implantado a 4 mm de profundidad para 

diferentes valores de permitividades relativas del medio. 

 

 

 

 

Figura 4-17 : Estudio de permitividad. Resultados por simulación del parche con superestrato implantado a 4 

mm de profundidad con la conductividad del líquido simulador humano 

Siguiendo los colores en la secuencia de permitividades, y centrándonos en la 

adaptación alrededor de 2.4 GHz, tenemos una respuesta diferente a la del parche sin 

superestrato. De r = 1 a 20, se observa como el mínimo de adaptación se desplaza de 

2.4 a 2.2 GHz aproximadamente. Pero a r = 40, el pico de adaptación parece 

desaparecer, creándose uno nuevo a 2.5 GHz para r = 60. Éste se vuelve a situar a 2.4 

GHz para r = 80, y a 2.3 GHz para r = 100. 

Si realizamos el mismo ejercicio en la gráfica de ganancia, veremos que el máximo 

de ganancia que se da a 2.4 GHz para r = 1 mejora primero, r = 20, y después baja en 
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frecuencia a la vez que empeora, como se observa para r = 40. En r = 60, se da un 

primer máximo de ganancia a 1.5 GHz y un segundo a 2.4 GHz Ambos máximos se 

desplazan a frecuencias bajas y empeoran un poco para r = 80 y 100.  

El comportamiento de la ganancia parece ser similar al parche sin superestrato. Pero 

en la adaptación, como así también en la parte real de la impedancia, la respuesta en 

función de la permitividad es diferente para ambos parches. 

En el siguiente apartado se analiza con detenimiento el efecto de la profundidad de 

implante, manteniendo constante la permitividad del medio. En este estudio es más fácil 

entender el efecto de la profundidad y, de manera relacionada, el de la permitividad del 

medio. 

4.3.2. Estudio de la profundidad de implante 

Con idea de validar la configuración de medida top para diversas profundidades, el 

análisis paramétrico de la profundidad se ha realizado comparando simulaciones y 

medidas. 

Para ello, los resultados de este análisis se centran en la adaptación en función de la 

frecuencia para ciertas profundidades. Además, la adaptación y la ganancia a la 

frecuencia de diseño son mostradas en función de la profundidad de implante. 

En primer lugar se muestra la respuesta para el parche sin superestrato implantado 

en agua destilada. Seguidamente se muestran los resultados del parche con superestrato 

tanto el agua destilada como en el líquido simulador humano. 

Las bajas pérdidas del agua destilada comparadas con el líquido simulador humano, 

permiten ver con mayor facilidad en los resultados el comportamiento del parche en 

función de la profundidad. 

Es en este apartado donde se amplía este estudio de profundidad de implante para 

explicar con detalle cómo se comporta el parche implantado. 

4.3.2.1. Parche sin superestrato 

En la serie de gráficas de la figura 4-18 se muestra la adaptación |S11| para algunas 

de las profundidades de agua más significativas. Las trazas de simulación han sido 

desplazadas un 5% a frecuencias bajas para corregir las diferencias que existen entre la 

simulación y la medida debido a la falta de exactitud de la profundidad de implante, de 

manera que se puede comparar mejor los resultados. 
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Figura 4-18 : Estudio de profundidad. Serie de resultados de adaptación en función de la frecuencia para 

diversas profundidades, comparando la simulación y la medida, para el parche sin superestrato implantado en 

agua destilada 

En primer lugar, comentar el gran parecido de los resultados entre la simulación y la 

medida, pese a la dificultad de precisión de profundidad en la medida que en algunos 

casos provoca un desplazamiento frecuencial a veces mayor o a veces menor que la 

simulación. 

Analizando la respuesta desde 0 hasta 4 mm de profundidad, se observa claramente 

cómo se desplazan los mínimos de adaptación a frecuencias inferiores, llegando a 

desplazarse el primer mínimo desde 2.4 GHz hasta 1.2 GHz, o el segundo mínimo desde 

casi 4 GHz hasta 1.6 GHz. A 10 mm, los mínimos de adaptación dejan de ser tan 

pronunciados de forma que la traza acaba pareciendo a la que se obtenía para el mismo 

parche embebido en el medio, figura 4-8. 

Podemos comprobar que esto es así observando en la figura 4-19 la distribución 

superficial de corrientes y el diagrama de radiación que se da a 2 mm de profundidad a 

las frecuencias de 1.2 y 2.4 GHz. 

En ella se puede apreciar como a 2 mm de profundidad, el modo fundamental 

TM001 del parche se encuentra a 1.6 GHz, ya que las corrientes en el parche tienen 

dirección vertical con máximo en el medio, mostrando un diagrama directivo hacia el 

exterior del cuerpo. 
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Y el modo TM020 se encuentra a 2.4 GHz donde las corrientes tienen dirección 

horizontal con dos máximos en el centro de cada lado dándose corrientes en sentidos 

opuestos, mostrando un nulo de radiación hacia el exterior del cuerpo. 

 

         

         

Figura 4-19 : Estudio de la profundidad. Dirección y distribución superficial de corriente (escala de 20 dB/A, 

en rojo, a -30 dB/A, en azul), arriba, y diagrama de radiación 3D, abajo, para el parche sin superestrato con 

alimentación en el borde implantado a 4 mm de profundidad en el líquido agua destilada. A la izquierda a 1.6 

GHz y a la derecha a 2.4 GHz 

Con este análisis del estudio de profundidad de implante del parche sin superestrato, 

se observa que la profundidad tiene un papel determinante en la frecuencia a la que se 

encuentran los modos de funcionamiento del parche. 

Para grandes profundidades, las pérdidas del medio son el motivo por el que los 

mínimos de adaptación van desapareciendo de forma que la adaptación tiene una 

característica menos oscilatoria, o más suavizada, como se puede ver a 10 mm de 

profundidad. 

En la figura 4-20 se muestra la adaptación y ganancia a 2.4 GHz (frecuencia del 

mínimo de |S11| indicado con la línea vertical azul de la figura 4-18) en función de la 

profundidad.  
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Figura 4-20 : Estudio de la profundidad. Resultados de adaptación y ganancia en función de la profundidad de 

implante a 2.4 GHz para el parche sin superestrato en medio agua destilada 

Para profundidades menores a 5 mm, existen grandes variaciones tanto en la 

adaptación como en la ganancia, que como se ha explicado, se debe a la bajada 

frecuencial de los modos de funcionamiento del parche. 

A partir de esta profundidad, la adaptación se empieza a estabilizar pero en la 

ganancia se aprecia cierta oscilación con un periodo de 7 mm aproximadamente, con 

menor amplitud a mayor profundidad. 

Como ya se explicó en el mismo estudio de la antena dipolo, dicho periodo tiene 

relación con Ȝ/2 en el medio y se debe a la reflexión debida al cambio de medio líquido-

aire en la superficie.  

4.3.2.2. Parche con superestrato 

Entendido el comportamiento del parche sin superestrato en función de la 

profundidad, en este apartado se realiza el mismo ejercicio para el parche con 

superestrato. 

En la serie de gráficas de la figura 4-21 se muestran los resultados de adaptación 

para el parche en función de la frecuencia a diversas profundidades en medio agua 

destilada. 

Al igual que para el parche sin superestrato, en las profundidades analizadas se 

aprecia gran similitud entre simulación y medida. 
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Figura 4-21 : Estudio de la profundidad. Serie de resultados de adaptación en función de la frecuencia para 

diversas profundidades, comparando la simulación y la medida, para el parche con superestrato implantado 

en agua destilada 

Siguiendo la serie de profundidades, podemos ver que a medida que la profundidad 

es mayor, va bajando en frecuencia el primer mínimo de adaptación situándose a 2 GHz 

a 1 mm de profundidad donde se da mejor adaptación, -20 dB, gracias a que el parche 

tiene la alimentación en el extremo. 

A 4 mm, el primer mínimo se encuentra a 1.5 GHz con tan sólo -2 dB de 

adaptación. A esta misma profundidad, a 2.3 GHz se da un segundo mínimo de -14 dB 

de adaptación. 

A 9 mm de profundidad, se puede observar como el segundo mínimo ya ha bajado 

hasta 2 GHz empeorando la adaptación hasta -8 dB, y a 2.6 GHz se empieza a crear un 

nuevo mínimo con una adaptación de -5 dB. 

A 12 mm de profundidad, el segundo mínimo que se encuentra a 1.7 GHz sigue 

empeorando hasta -4 dB, y el tercer mínimo ya se sitúa a 2.3 GHz, mejorando la 

adaptación hasta -9 dB. 

Para entender qué está sucediendo, en el próximo apartado se ha analizado la 

distribución superficial de corrientes del parche a la frecuencia de los mínimos que van 

apareciendo alrededor de la frecuencia de diseño. 
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En las siguientes dos gráficas de la figura 4-22 podemos ver la adaptación y 

ganancia a la frecuencia de interés de 2.3 GHz con todos los valores de profundidades 

simulados y medidos. 

 

   
Figura 4-22 : Estudio de la profundidad. Resultados de adaptación y ganancia en función de la profundidad de 

implante a 2.3 GHz para el parche con superestrato en agua destilada 

En la gráfica de adaptación se puede ver que existe una periodicidad en la 

adaptación cada 7-8 mm de profundidad.  

Destacar que a 4 y 8 mm de profundidad, la ganancia en acimut es -5dBi, pero solo 

a 4 mm la adaptación es muy buena, por lo que resulta ser una profundidad interesante 

para implantar la antena. 

Comparando los resultados a pocos milímetros de profundidad del parche sin 

superestrato de la figura 4-20 con los del parche con superestrato de la figura 4-22, con 

superestrato las oscilaciones se dan más tarde, mostrando un comportamiento menos 

dependiente de la profundidad de implante. Además, alrededor de los 4 mm, la 

adaptación es de -5dB para el parche sin superestrato y -7 dB para el parche con 

superestrato. Y comparando la ganancia, el superestrato mejora hasta en 10 dB la 

ganancia del parche sin superestrato. Por lo que, como era de esperar, el parche con 

superestrato muestra mejores prestaciones que sin superestrato. 

En la siguiente serie de gráficas de la figura 4-23, se repite el estudio de profundidad 

para el parche con superestrato implantado en el líquido simulador humano, de forma 

que se podrá comparar las diferencias que existen en dicho estudio entre los dos 

líquidos utilizados. 
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Figura 4-23 : Estudio de la profundidad. Serie de resultados de adaptación en función de la frecuencia para 

diversas profundidades comparando la simulación y la medida para el parche con superestrato implantado en 

el líquido simulador humano 

Igual que en el medio agua destilada, para el líquido humano se consiguen también 

grandes similitudes entre simulación y medida, aunque en la medida los mínimos están 

más adaptados que en la simulación. 

Con la serie de profundidades de la figura 4-23, vemos que en el líquido humano 

también se da el efecto de que el primer mínimo se desplaza en frecuencia. De igual 

forma que en agua destilada, van apareciendo nuevos mínimos entorno a 3 GHz, y estos 

van bajando en frecuencia de manera que al pasar por la frecuencia de diseño del parche 

en espacio libre, señalado con la línea vertical azul, estos mejoran la adaptación. Y una 

vez están por debajo de esta frecuencia, empeora la adaptación hasta casi desaparecer. 

Como ya se comentó en apartados anteriores, las altas pérdidas del líquido humano 

suavizan la traza en mayor medida que para el agua destilada, de manera que, resulta 

más difícil encontrar los mínimos que van bajando en frecuencia y más cuanto mayor es 

la profundidad. 

En la figura 4-24 se muestra la adaptación y la ganancia en acimut a 2.3 GHz, en 

función de la profundidad. 
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Figura 4-24 : Estudio de la profundidad. Resultados de adaptación y ganancia en función de la profundidad de 

implante a 2.3 GHz para el parche con superestrato en el líquido simulador humano 

Comparando con las gráficas en agua destilada de la figura 4-22, en el líquido 

humano las oscilaciones parecen tener un periodo mayor, lo que se debe a que la 

permitividad relativa del líquido humano es menor a la del agua destilada. 

Además, se puede apreciar menor amplitud de la oscilación de la traza tanto en 

adaptación como en ganancia en el medio líquido humano debido a que el líquido 

humano tiene mayores pérdidas que el agua destilada, provocando un efecto más suave 

de la profundidad de implante sobre la antena. 

Hasta 4 mm de profundidad, la ganancia experimenta gran caída que después parece 

mantener hasta 14 mm entorno a -9 dBi. A partir de esta profundidad, la ganancia decae 

a mayor profundidad, con peor ganancia que en agua destilada ya que el líquido humano 

tiene más pérdidas. 

4.3.2.2.1. Distribución superficial de corrientes en función de la 

profundidad de implante 

A fin de entender mejor cómo se está comportando el parche con superestrato 

implantado en función de la profundidad, en este apartado se estudia la distribución 

superficial de corrientes del parche para diversas frecuencias a las profundidades en las 

que se obtiene un mínimo de adaptación a la frecuencia de diseño del parche en espacio 

libre, 2.4 GHz. 

Para relacionar la adaptación y la ganancia con la distribución de corrientes del 

parche, en primer lugar se muestra en la figura 2-25 los resultados mediante simulación 

de la adaptación y de la ganancia a profundidades para las cuales se obtiene un mínimo 

de adaptación a la frecuencia de diseño del parche en espacio libre: 0, 4 y 12 mm. 
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Figura 4-25 : Estudio de la profundidad. Adaptación y ganancia en función de la frecuencia a 0, 4 y 12 mm de 

profundidad para el parche con superestrato implantado en agua destilada 

En la tabla 9 se muestra la distribución superficial de corrientes para las tres 

profundidades a las frecuencias de 1.4, 1.8, 2.4 y 3.8 GHz. 
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Tabla 9 : Distribución superficial de corrientes del parche con superestrato implantado en agua destilada a 0, 

4 y 12 mm de profundidad a 1.4, 1.8, 2.4 y 3.8 GHz. Escala de 10 dBA/m, en rojo, a -50 dBA/m en azul 
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En los tres puntos siguientes se describe lo que sucede en cada una de las tres 

profundidades analizadas. 

- 0 mm de profundidad: los resultados cuando solo hay agua por debajo del parche 

son como en espacio libre. Desde 500 MHz hasta 2.3 GHz todas las corrientes tienen la 

misma dirección y sentido. A 2.4 GHz se encuentra el modo fundamental de excitación, 

modo TM001, donde encontramos el primer mínimo de adaptación y el máximo de 

ganancia. En este modo, como se vio en el parche en espacio libre, figura 4-5, las 

corrientes son verticales con máximo en el centro de la dimensión L. A 3.8 GHz, 

frecuencia a la que se da el segundo mínimo de adaptación y el primer mínimo de 

ganancia, se observa una nueva distribución de corrientes, modo TM020 de resonancia 

del parche. 

- 4 mm de profundidad: lo más destacable de los resultados de esta profundidad es 

que a la frecuencia de 1.4 GHz las corrientes superficiales han cambiado con respecto a 

la profundidad de 0 mm. Las corrientes tienen una forma parecida a las del modo 

TM001 a 2.4 GHz a 0 mm de profundidad, aunque con menor intensidad, con dirección 

vertical y máximo también en el centro. Por esta razón, a esta frecuencia mejora 

levemente la adaptación hasta -2 dB, y se da el primer máximo de ganancia de -4dB. A 

1.8 GHz las corrientes se parecen a las del modo TM020 a 3.7 GHz a 0 mm de 

profundidad, con corrientes en dirección de la dimensión W, horizontales, y con 

sentidos opuestos. Es por ello por lo que se da el mínimo de ganancia, como sucedía a 

3.8 GHz a 0 mm de profundidad. A la frecuencia de 2.4 GHz se sigue excitando el 

parche en el modo TM001, con la misma forma de las corrientes que a 0 mm de 

profundidad, por lo que se vuelve a dar un mínimo de adaptación y el segundo máximo 

de ganancia. Y a 3.7 GHz se puede observar como el modo original TM020 se siguen 

dando como a 0 mm de profundidad. En la adaptación ya no se da un mínimo tan 

profundo pero la ganancia es parecida a 0 mm de profundidad. 

- 12 mm de profundidad: a 1.2 GHz se observan la forma de las corrientes del modo 

TM020, causando un mínimo de ganancia. A la frecuencia de 1.8 GHz se da una forma 

de corrientes como las del modo TM001, consecuencia de la segunda mejora en 

adaptación y del segundo máximo de ganancia. A 2.4 GHz se sigue excitando la forma 

de las corrientes del parche del modo TM001, por lo que mejora la adaptación y se da 

un tercer máximo de ganancia. A esta profundidad, se sigue dando el modo TM002 

original a 3.8 GHz, por lo que la ganancia sigue siendo mala. 
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A pesar de que en la tabla 9 parece que a 2.4 GHz se mantenga siempre la misma 

distribución de corrientes, es interesante analizar a esta frecuencia las corrientes a una 

profundidad en la que el parche no muestre un mínimo de adaptación. Como muestra la 

figura 4-21, el primer mínimo se encuentra a 1.9 GHz, y a 2.4 GHz no se aprecia un 

mínimo de adaptación. Por ello, en la figura 4-26 se muestra la distribución superficial 

de corrientes a 2 mm de profundidad a estas dos frecuencias. 

  

         

Figura 4-26 : Distribución superficial de corrientes para el parche con superestrato implantado a 2 mm de 

profundidad en agua destilada. A la izquierda a 1.9 GHz y a la derecha a 2.4 GHz. Escala de 10 dBA/m, en 

rojo, a -20 dBA/m, en azul 

A esta profundidad, el modo TM001 se da de forma más clara a 1.9 GHz, y no a 2.4 

GHz, donde la intensidad es mucho menor. Pese a ello, la forma y dirección de las 

corrientes se mantienen igual a las originales. 

Con los resultados de la adaptación, de la ganancia y de la distribución superficial de 

corrientes del parche con superestrato implantado mostrados hasta ahora, se concluye 

que el líquido que se encuentra sobre el parche está cargando la antena, provocando que 

se obtengan a frecuencias más bajas la misma distribución superficial de corrientes, y en 

consecuencia, la misma característica de adaptación y de ganancia de los modos de 

radiación del parche en espacio libre. 

Esta misma explicación es la que se utilizó para justificar el comportamiento del 

parche sin superestrato. Pero a diferencia del parche sin superestrato, como se ha podido 

comprobar con la distribución de corrientes, cíclicamente cada Ȝ/2 de profundidad se va 

excitando nuevamente los modos fundamentales alrededor de la frecuencia de diseño 

del parche en espacio libre. Esto sucede a partir de 2 mm, cuando se vuelve a excitar el 

modo fundamental alrededor de la frecuencia de interés el cual va bajando también con 

la profundidad mejorando la adaptación cuando se sitúa a la frecuencia de diseño del 

parche en espacio libre, y empeorando después de pasar por esa frecuencia. 
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Todo eso vuelve a suceder a partir de 9 mm de profundidad. Es por ello que de 

manera cíclica, cada 7-8 mm de profundidad, se obtiene una buena adaptación a la 

frecuencia de diseño del parche en espacio libre. 

4.3.2.2.2. Cálculo de las frecuencias de los modos en función de 

la profundidad de implante 

En este apartado se calcula la frecuencia a las que se dan los múltiples mínimos de 

adaptación en función de la profundidad de implante. Antes de mostrar dicho cálculo, 

en la figura 4-27 se muestran los resultados, mediante simulación, de adaptación y 

ganancia, para algunas profundidades del parche con superestrato en agua destilada con 

pérdidas y sin pérdidas (tan į = 0). 

Gracias al caso del medio sin pérdidas, los mínimos de adaptación y máximos de 

ganancia se dan de forma más acentuada, de manera que se observa con mayor claridad 

cómo se van creando nuevos mínimos de adaptación y máximos de ganancia los cuales 

se van desplazando hacia frecuencias bajas. Estas frecuencias serán comparadas con los 

resultados de los cálculos. 

Además, en la figura 4-27 se incluye también los resultados para el mismo parche en 

agua destilada con pérdidas pero con menor grosor de superestrato, 0.5 mm. Este caso 

se ha incluido para ver si existe mayor desplazamiento a frecuencias bajas de los modos 

debido al menor grosor del superestrato a medida que la profundidad es mayor. 

A la profundidad de 2.5 mm se puede ver como el modo fundamental ha bajado 

hasta 1.7 GHz y tiene mejor adaptación y ganancia en el medio sin pérdidas que con 

pérdidas. Y a 2.9 GHz, se observa que está apareciendo un nuevo mínimo de adaptación 

y el segundo máximo de ganancia. 

Este segundo modo va bajando en frecuencia a medida que la profundidad aumenta, 

a la vez que mejora tanto en adaptación como en ganancia cuando se sitúa a la 

frecuencia de diseño de 2.4 GHz. 

A 9 mm tenemos el tercer mínimo creado a la frecuencia de diseño, y a 12 mm ya 

tenemos el cuarto. 
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Figura 4-27 : Estudio de la profundidad. Serie de resultados de adaptación y ganancia por simulación en 

función de la frecuencia para diversas profundidades para el parche con superestrato 

Observando la serie de resultados del parche con superestrato de 0.5 mm, vemos 

que, pese a tener menor aislamiento al líquido, las frecuencias de los mínimos de 

adaptación y de los máximos de ganancia, son las mismas que para el parche con 
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superestrato de 1.6 mm. Por lo tanto, se puede concluir para el parche con superestrato 

que el desplazamiento a frecuencias bajas del mínimo de adaptación del parche no se 

debe a la permitividad relativa efectiva entre el dieléctrico del parche y del líquido, sino 

a la profundidad de implante. 

Seguidamente, la figura 4-28 muestra en función de la profundidad la adaptación y 

la ganancia a la frecuencia de 2.4 GHz (frecuencia indicada en la figura 4-27 mediante 

la línea vertical azul). 

 

 

 

Figura 4-28 : Estudio de la profundidad. Resultados de adaptación y ganancia en función de la profundidad de 

implante a 2.4 GHz para el parche con superestrato en agua destilada con y sin pérdidas 

En esta representación se puede observar como en el medio sin pérdidas la 

adaptación y la ganancia tiene mayor amplitud de oscilación, mostrando mejor 

adaptación y mayor ganancia que en el medio con pérdidas. 

Para calcular la frecuencia aproximada de los mínimos de adaptación en función de 

la profundidad de implante, en primer lugar hay que calcular la longitud de antena 

efectiva según (19). En ella se suman la longitud efectiva del elemento radiante del 

parche, más el grosor del superestrato y la profundidad de implante. 

 

 LAE = LPef + GSef + PIef = L*√İrDieléctrico + G*√İrDieléctrico + P*√İrLíquido (19) 

 

Donde LAE es la longitud de antena efectiva, LPef es la longitud del parche efectiva, 

GSef es el grosor del superestrato efectivo, PIef es la profundidad de implante efectiva, 

L es la longitud del parche, G es el grosor del superestrato y P la profundidad de 

implante. 
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A continuación, se van a realizar los cálculos de las frecuencias de los mínimos de 

adaptación para dos ejemplos de profundidad. Antes, se presentan las longitudes 

efectivas del parche y del grosor del superestrato: 

LPef => 28 mm de longitud del elemento radiante del parche embebido en 

dieléctrico de Taconic, con İr 4.5, corresponden a 59.4 mm en espacio libre. 

GSef => 1.6 mm de grosor de superestrato de Taconic, corresponden a 3.4 mm en 

espacio libre. 
 

Cálculo de la frecuencia de los mínimos de adaptación del parche implantado a 2.5 

mm de profundidad: 

- En primer lugar, se calcula la longitud efectiva de la profundidad: 

 PIef2.5mm => 2.5 mm de profundad en el líquido agua destilada, con İr 74, 

corresponden a 21.5 mm en espacio libre. 

- Después se suman las tres distancias para calcula la longitud de antena efectiva: 

 LAE2.5mm = LPef + GSef + PIef2.5mm = 59.4 + 3.4 + 21.5 = 84.3 mm 

- Y finalmente se calcula la frecuencia del primer y segundo mínimo de adaptación 

para Ȝ/2 y 3Ȝ/4: 

 LAE2.5mm = λ/2; λ = LAE2.5mm*2 = 168.6 mm; freq1er min = c/λ = 1.78 GHz 

 LAE2.5mm = 3λ/4; λ = LAE2.5mm*4/3 =112.4 mm; freq2ndo min = c/λ = 2.7 GHz 

Si observamos el gráfico de adaptación y ganancia a la profundidad de 2.5 mm de la 

figura 4-27, el primer mínimo de adaptación se encuentra a 1.75 GHz, y el segundo se 

está empezando a crear a 2.8 GHz. 

 

Cálculo de la frecuencia de los mínimos de adaptación del parche implantado a 4 

mm de profundidad. 

- En primer lugar, se calcula la longitud efectiva de la profundidad: 

 PIef4mm => 4 mm de profundad en el líquido agua destilada, con İr 74, 

corresponden a 34.4 mm en espacio libre. 

- Después se suman las tres distancias para calcula la longitud de antena efectiva: 

 LAE4mm = LPef + GSef + PIef4mm = 59.4 + 3.4 + 34.4 = 97.2 mm 

- Y finalmente se calcula la frecuencia de los siguientes mínimos de adaptación que 

se dan para Ȝ/2 y 3Ȝ/4: 

 LAE4mm = λ/2; λ = LAE4mm*2 = 194.4 mm; freq1er min = c/λ = 1.54 GHz 

 LAE4mm = 3λ/4; λ = LAE4mm*4/3 = 129.6 mm; freq2ndo min = c/λ = 2.3 GHz 
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Si observamos el gráfico de adaptación y de ganancia a la profundidad de 4 mm de 

la figura 4-27, encontramos el primer mínimo a 1.5 GHz, y el segundo se da a 2.4 GHz.   

Como se ha comprobado, la frecuencia de los mínimos de adaptación depende de la 

longitud de antena efectiva sumando la longitud del parche, el grosor de superestrato y 

la profundidad de implante.  

Para una profundidad dada, se da un mínimo de adaptación para aquellas frecuencias 

a las que la longitud efectiva de antena corresponde a Ȝ/2, 3Ȝ/4, Ȝ, 5Ȝ/4, etc. Es decir, a 

partir de Ȝ/2 cada Ȝ/4. 

Estos mínimos de adaptación y máximos de ganancia tienen menor intensidad a 

frecuencias altas y a frecuencias bajas, y cuando se encuentran alrededor de la 

frecuencia de diseño del parche en espacio libre, ambos parámetros se intensifican. 

De esta forma, se pueden calcular para el parche con superestrato las frecuencias de 

los múltiples mínimos de adaptación que van apareciendo a medida que se va 

aumentando la profundidad de implante. 

4.3.3. Estudio del grosor del sustrato para el parche sin superestrato 

Gracias al simulador, podemos conocer fácilmente la respuesta del parche 

implantado en función del grosor del sustrato. 

En la figura 4-29 se presentan los resultados de diversos grosores de sustrato para el 

parche sin superestrato implantado en agua destilada. 

El modelo de simulación sigue siendo el de la figura 2-18, pero sin superestrato. 

Para todos los grosores de sustrato, la profundidad o distancia desde la superficie 

superior de la antena hasta la superficie del líquido es siempre 4 mm. 

Como se puede observar en la impedancia, en la adaptación y en la ganancia de la 

antena, a mayor grosor de sustrato la frecuencia del mínimo de adaptación y del 

máximo de ganancia baja prácticamente 400 MHz desde 1 hasta 3 mm de grosor. 

Observando la carta de Smith, así como también la parte imaginaria de la 

impedancia, se puede ver que a mayor grosor el parche es cada vez más inductivo. 

Además, en la parte real de la impedancia va aumentando a mayor grosor, por lo que la 

resistencia de radiación también es mayor, mejorando la adaptación, y el máximo de 

ganancia se desplaza a frecuencias cada vez más bajas. 

 



 Capítulo 4. Análisis y diseño del parche implantado 
 

 

 Análisis y diseño de antenas dipolo y parche para aplicaciones implantadas en el cuerpo humano 127 

   

 

 

Figura 4-29 : Estudio del grosor del sustrato. Resultados por simulación del parche sin superestrato 

implantado a 4 mm de profundidad en el medio agua destilada  

Viendo los resultados del parche con 3 mm de grosor, se podría utilizar tal 

geometría de antena para aplicaciones entorno a 1.1 GHz, ya que la ganancia es de casi 

-5 dB, aunque la adaptación sea de tan solo -6 dB. 

Al segundo mínimo de adaptación no le acompaña un segundo máximo de ganancia 

de igual forma que para el parche con superestrato, como se muestra en el estudio de la 

profundidad de implante. 

En resumen, a mayor grosor los modos de radiación del parche bajan en frecuencia, 

mostrando mejores prestaciones de adaptación y ganancia a frecuencias más bajas. 

4.3.4. Estudio del grosor del superestrato 

En la siguiente figura 4-30 se muestran los resultados del parche implantado para 

diversos grosores de superestrato. Además se muestra también el resultado del parche 

sin superestrato. 

De igual forma que para el estudio del grosor del sustrato, para cada grosor de 

superestrato se mantiene la profundidad de 4 mm de la antena desde la superficie 

superior de la antena hasta la superficie del líquido. 
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Figura 4-30 : Estudio del grosor del superestrato. Resultados por simulación del parche con superestrato 

implantado a 4 mm de profundidad en el medio agua destilada 

En los resultados se puede ver como cambios en el grosor del superestrato 

prácticamente no desplazan en frecuencia los mínimos de adaptación, pero sí que 

aumenta el máximo de la impedancia real a la frecuencia de diseño del parche. 

Recordando el efecto del recubrimiento del dipolo, los mínimos de adaptación se 

desplazaban en función del grosor del recubrimiento, a menor grosor, los mínimos de 

adaptación se desplazan a frecuencias bajas. En cambio, en el parche con superestrato, 

la frecuencia del mínimo de adaptación parece no depender del grosor del superestrato. 

Como parece lógico, el grosor de superestrato está controlando en nivel de 

aislamiento con el medio líquido, consiguiendo resultados cada vez más parecidos al 

parche en espacio libre a mayor grosor, como se puede observar en la impedancia y en 

la ganancia en acimut. 

Pese a ello, el efecto de carga del líquido sobre la antena hace que entorno a 1.4 

GHz haya siempre un máximo de ganancia, aparte del que se encuentra a la frecuencia 

de diseño, 2.4 GHz. Este efecto no sucede para el dipolo con recubrimiento, figura 3-13, 

ya que el efecto de carga del líquido sobre la antena es menor porque el diagrama de 

radiación del dipolo se da en todas las direcciones. 
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4.3.5. Resumen del estudio paramétrico del parche implantado 

Gracias a todas las medidas y simulaciones realizadas estudiando la respuesta del 

parche implantado se ha podido conocer cómo se comporta el parche en función de la 

permitividad del medio o de la profundidad de implante, así como también saber qué 

papel juegan los grosores de los dieléctricos del sustrato y del superestrato. 

En el estudio de la permitividad se ha visto que el parche con superestrato es menos 

sensible a la permitividad del medio, característica importante sabiendo que el cuerpo 

humano muestra gran variación de permitividades según la zona del cuerpo o la 

profundidad de implante. 

Con las diversas profundidades analizadas se ha podido ver la diferente respuesta 

que ofrece el parche sin superestrato y con superestrato. Sin superestrato se observa 

claramente que los modos de funcionamiento del parche bajan en frecuencia, ya que el 

líquido entra en contacto directo con el conductor, dependiendo las frecuencias de los 

mínimos de adaptación de la profundidad de implante, a mayor profundidad, mayor 

desplazamiento. 

Gracias al superestrato, que hace de aislante entre el conductor y el líquido, el 

parche consigue mantener unas características más parecidas a la respuesta del mismo 

en espacio libre, mejorando claramente la ganancia en acimut. Pese a ello, la 

profundidad de implante sigue condicionando la frecuencia de los mínimos de 

adaptación. 

Debido la capa del superestrato, alrededor de la frecuencia del primer modo de 

funcionamiento, y para ciertas profundidades de implante, el parche se vuelve a excitar 

a la frecuencia de diseño con la misma distribución de corrientes que tiene el parche en 

espacio libre debido al efecto de carga del medio líquido de alta permitividad que se 

encuentra sobre el parche. 

Los nuevos modos que se van creando, van bajando en frecuencia mejorando las 

prestaciones cuando se encuentran alrededor de la frecuencia de diseño del parche en 

espacio libre. 

El grosor del sustrato tiene gran efecto sobre la parte real de la impedancia, por lo 

que resulta un parámetro interesante de diseño, ya que además afecta en la frecuencia de 

trabajo del parche, desplazando los modos de funcionamiento en frecuencia. 

En cambio, el grosor del superestrato no cambia la frecuencia de adaptación,  

principalmente afecta a la parte real de la impedancia solo a la frecuencia de diseño. 



Capítulo 4. Análisis y diseño del parche implantado 

130 Análisis y diseño de antenas dipolo y parche para aplicaciones implantadas en el cuerpo humano

4.4 Reducción de tamaño del parche implantado 

El parche hasta ahora estudiado está diseñado a 2.4 GHz en espacio libre, resultando 

un tamaño de parche de 32 x 28 mm sobre un plano de masa de 80 x 80 mm. Tal 

tamaño puede resultar demasiado grande para implantarlo en el cuerpo humano, 

aplicación que requiere un tamaño de antena cuanto más pequeño mejor, consiguiendo a 

la vez las mejores prestaciones posibles. 

 Con esta idea, en este apartado se estudian dos posibilidades para reducir la 

dimensión del parche, escalando el parche diseñado en espacio libre y la estructura de 

antena PIFA. 

4.4.1. Escalado del parche 

Como se ha presentado en el estudio paramétrico del parche, al implantarlo a 4 mm 

de profundidad, el modo fundamental se desplaza hasta 1.5 GHz, perdiendo adaptación, 

y se crea uno nuevo con mejor adaptación que se encuentra a 2.4 GHz a esa 

profundidad. 

Podemos pensar que si se reduce el tamaño del parche, el primer modo de 

funcionamiento podría desplazarse a frecuencias altas desde 1.5 a 2.4 GHz. Para ello, en 

la figura 4-31 se muestran los resultados mediante simulación del parche con 

superestrato implantado a 4 mm de profundidad escalando el tamaño de la geometría del 

parche, manteniendo los grosores de sustrato y superestrato, los cuales son de 1.6 mm 

cada uno. 

 

 

 

 
 

Figura 4-31 : Resultados por simulación del parche con superestrato implantado a 4 mm de profundidad en 

agua destilada escalando la geometría del parche 
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Como podemos ver en los resultados del parche original, traza roja, pese a no tener 

buena adaptación, sí se da un máximo de ganancia a 1.4 GHz. Al reducir la geometría 

del elemento radiante, los dos modos parecen desplazarse a frecuencias altas, pero el 

primero no va mejorando en adaptación y además empeora hasta 10 dB en ganancia. 

Observando la tendencia de la adaptación y la ganancia, reducir el tamaño no tiene 

beneficios sobre el primer modo, por lo que se entiende que éste depende más de la 

profundidad de implante que del tamaño del parche. 

En cambio, el segundo modo sí que se desplaza desde 2.4 a 3.6 GHz al reducir un 

40% el tamaño, y lo hace manteniendo además manteniendo la adaptación y la 

ganancia. 

Con los resultados de la reducción del tamaño del parche, vemos que este parámetro 

resulta ser muy importante si se diseña el parche implantado para que trabaje en el 

segundo mínimo de adaptación. 

4.4.2. Parche PIFA 

Como se explica ampliamente en la literatura, la antena PIFA, planar inverted F 

antenna, es popular en dispositivos wireless gracias a su bajo perfil y tamaño pequeño 

[23]. Otras de las mayores ventajas es la fácil fabricación, bajo coste y estructura simple 

[24]. 

La antena PIFA básica se diferencia del parche convencional de tamaño /2 por ser 

una antena parche cortocircuitada de longitud /4. Esta consiste en un plano de masa en 

la cara bottom de una PCB, un elemento conductor en la cara top, una vía de 

alimentación que se conecta con la estructura top, y otra vía que cortocircuita la masa 

con la estructura top en el borde del parche. 

Este tipo de antena también es comúnmente utilizado para aplicaciones implantadas 

ya que permiten mayor control de la parte real de la impedancia que el parche 

convencional, por lo que se consigue muy buena adaptación a la frecuencia deseada 

además de permitir diseños de antena realmente reducidos [5]. 

En la siguiente figura 4-32 se muestran las geometrías con dimensiones de los 

diseños de dos parches basados en estructuras PIFA utilizados para implantarlos en el 

cuerpo humano. 

Las dos geometrías tienen un grosor de superestrato y sustrato de 1.6 mm cada uno. 
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Figura 4-32 : Geometría y dimensiones, en mm, de los parches PIFA implantados a 4 mm de profundidad. A la 

izquierda, geometría rectangular y a la derecha, geometría en espiral de [25] 

En la figura 4-33 se presentan los resultados de las PIFAs además del parche 

original grande y el mismo escalado hasta un 20 % a fin de comparar resultados en 

función del tamaño de las antenas. 

 
 

   

  

 

Figura 4-33 : Resultados de las PIFAs, del parche original y del parche escalado implantado a 4 mm de 

profundidad en el medio agua destilada 

Viendo estos resultados está claro que el mejor parche en ganancia a 2.4 GHz es el 

parche grande, con una adaptación aceptable. Entre los parches pequeños, está claro que 

es necesario el diseño de geometrías PIFA para conseguir una perfecta adaptación a la 

frecuencia de interés, mucho mejor que el parche escalado. Aunque los tres parches 

pequeños prácticamente tienen la misma ganancia en dirección exterior al cuerpo. 

Comparando los resultados de la geometría PIFA con el dipolo recto de tamaño Ȝ/2 

en el medio, figura 3-29, en ambos tenemos prácticamente la misma ganancia, pero la 

adaptación es mucho mejor para la antena PIFA. 
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4.4.3. Verificación experimental 

Diseñados los parches PIFA implantados a 4 mm de profundidad mediante 

simulación, éstos son implementados y medidos en función de la profundidad en agua 

destilada. 

La figura 4-34 se muestra una fotografía con tamaños de las antenas PIFA, sin 

superestrato y con conectores SMA, comparados con una moneda de 1 euro. En la 

medida y la simulación las antenas tienen superestrato.  

 

 

Figura 4-34 : Parches PIFA implementados con tamaños en mm 

Debido al reducido tamaño de las PIFAs, se ha adaptado en la configuración de 

medida top el soporte de las antenas, sustituyendo la tapa del bote de crema por la parte 

superior de una botella de agua pequeña, para reducir el efecto del plástico por debajo 

de la antena. Además, para conseguir mayor precisión de la profundidad de implante se 

ha implementado un nivel con marcas cada 0.5 mm, y con una corona circular de 

plástico que reduce el efecto de tensión superficial entre el agua y la regla. 

En la figura 4-35 se muestran dos fotografías de la instalación de la antena PIFA en 

la configuración de medida top.  

 

 

Figura 4-35 : Parche PIFA instalado en la configuración de medida top, con y sin líquido 
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En los siguientes dos apartados se analizan los resultados de la antena PIFA 

rectangular y espiral en función de la profundidad de implante comparando la medida 

con la simulación. 

4.4.3.1. PIFA rectangular 

En la figura 4-36 se muestra la serie de adaptaciones para el parche PIFA 

rectangular con superestrato en agua destilada para algunas de las profundidades 

estudiadas. 

 

    

    

Figura 4-36 : Estudio de profundidad. Serie de resultados de adaptación en función de la frecuencia para 

diversas profundidades comparando la simulación y la medida para el parche PIFA rectangular con 

superestrato implantado en agua destilada 

Como se puede ver en las gráficas, la PIFA rectangular mantiene muy buena 

adaptación ya desde los 2 mm de profundidad, y se mantiene para profundidades 

superiores sin apenas movimiento frecuencial y valor gracias al diseño de la misma 

cortocircuitando la antena a una distancia determinada del pin de alimentación, de 

manera que se fija la impedancia, por lo que se destaca que la posición del mínimo de 

adaptación es menos sensible a la profundidad de implante. 

En la medida se puede ver que a 4 mm de profundidad, el mínimo de adaptación se 

encuentra a 2.4 GHz. Pero en el estudio paramétrico de la profundidad se observa que 
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para casi todas las profundidades el mínimo se encuentra a 2.5 GHz, frecuencia 

señalada con la línea vertical azul. 

En la figura 4-37 se muestra resumidamente el comportamiento de adaptación y 

ganancia con las profundidades analizadas en función de la profundidad a la frecuencia 

de 2.5 GHz. 

 

 

Figura 4-37 : Estudio de la profundidad. Resultados de adaptación y ganancia en función de la profundidad de 

implante a 2.5 GHz para el parche PIFA rectangular con superestrato en medio agua destilada 

La diferencia en la adaptación entre la medida y la simulación se puede considerar 

muy pequeña ya que se trata de valores de |S11| negativos muy grandes. 

En la ganancia, comentar que en las primeras profundidades no se consigue medir 

bien la medida de ganancia ya que existe gran desadaptación de la antena implantada, 

por lo que hay tanta diferencia entre simulación y medida. 

Además se aprecia también de 1 a 2 dB menos de ganancia en la medida que en la 

simulación, lo que puede ser debido a la mala alineación de polaridades entre la antena 

transmisora y la PIFA, ya que el pequeño tamaño de la PIFA hace difícil conseguir una 

buena alineación y orientación entre antenas. Otro efecto que puede provocar esta 

diferencia entre simulación y medida es la presencia del cable coaxial y del conector 

SMA en la medida, y no en la simulación. Debido al tamaño de la PIFA, Ȝ/4, el plano 

de masa está también actuando como antena, de forma que al conectar el conector SMA 

y el cable coaxial en la parte inferior de la antena, podría cambiar la radiación en 

dirección al exterior del cuerpo. 

Pese a estas diferencias entre simulación y medida, el periodo de oscilación con la 

profundidad es el mismo tanto en la adaptación como en la ganancia, así como también 

la amplitud de la oscilación de la ganancia. 
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Dicha oscilación de la adaptación, junto con la oscilación observada en la ganancia 

a profundidades mayores a 4 mm, revelan el mismo efecto de reflexión en la interficie 

líquido - aire que en el dipolo con recubrimiento, figura 3-22. 

Podemos realizar dicha asociación porque al igual que en el dipolo con 

recubrimiento, el parche PIFA mantiene el modo de funcionamiento fundamental a una 

frecuencia constante, como desvela el mínimo de adaptación, de forma que en los 

resultados de adaptación y ganancia de ambos casos se puede observar el efecto de la 

reflexión de la onda en la superficie del agua. Dicha oscilación es periódica cada 7 mm 

de profundidad, que corresponde a Ȝ/2 en el medio agua destilada, İr 74. 

Dicha reflexión también es observable para la PIFA en función de la frecuencia en 

el gráfico de la ganancia. En la figura 4-38 podemos comprobar cómo a mayor 

profundidad tenemos mayor oscilación en la ganancia en función de la frecuencia. 

 

 

Figura 4-38 : Estudio de la profundidad. Simulación de ganancia en acimut en función de la frecuencia para 

diversas profundidades de implante para el parche PIFA rectangular con superestrato en agua destilada 

Comparando la traza azul, PIFA rectangular sin líquido sobre la antena, con el 

parche grande en las mismas condiciones, figura 4-22, podemos ver que la ganancia es 

10 dB peor a la frecuencia de diseño. Esto se debe a que la dimensión de la antena PIFA 

es muy pequeña a esta frecuencia comparado con Ȝ, por lo que la resistencia de 

radiación es muy pequeña.  
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4.4.3.2. PIFA espiral 

Al ser muy parecida la respuesta de la PIFA espiral a la PIFA rectangular para las 

profundidades analizadas, en la figura 4-39 se muestra de forma resumida los resultados 

de adaptación y ganancia del parche PIFA espiral en función de la profundidad, 

comparando los resultados de simulación y medida. 

 

  

Figura 4-39 : Estudio de la profundidad. Resultados de adaptación y ganancia en función de la profundidad de 

implante a 2.5 GHz para el parche PIFA espiral con superestrato en agua destilada 

En este caso parece haber mayor diferencia en la adaptación entre simulación y 

medida, lo que se puede justificar por la dificultad de implementación de la PIFA 

espiral debido al reducido tamaño de la antena y a la cercanía entre la vía de conexión a 

masa y el pin de alimentación. Además, el grosor del radio de la vía es algo mayor en la 

medida que en la simulación, lo que provoca también un cambio en la adaptación. 

Pese a este inconveniente, la PIFA espiral muestra como la PIFA rectangular buena 

adaptación a partir de 2 mm de profundidad, mejor que -14 dB. 

Respecto a la ganancia, para la PIFA espiral se ha obtenido mayor coincidencia 

entre la medida y la simulación. 
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4.5 Conclusiones 

En primer lugar, comentar que los resultados de impedancia y ganancia medidos 

para las antenas parche analizadas, ponen de manifiesto gran correspondencia entre los 

modelos de simulación y el setup implementado en la medida para cualquier 

profundidad de implante y para los dos medios líquidos estudiados. 

Como resumen principal de lo experimentado durante todo este capítulo, el parche 

implantado presenta algunas características diferentes respecto al dipolo. Al tratarse de 

una antena directiva, y gracias al plano de masa que independiza la antena del ancho del 

torso de un cuerpo, la profundidad de implante tiene gran protagonismo en los 

resultados tanto de adaptación como de ganancia. Por lo que es importante conocer este 

parámetro a la hora de diseñar una antena parche para una aplicación implantada. 

Para el parche sin superestrato, debido a que el líquido está en contacto con el 

conductor del parche por uno de los lados, se da un claro desplazamiento de todos los 

modos de funcionamiento a frecuencias bajas a medida que la profundidad de implante 

es mayor. 

Para el parche con superestrato, sucede algo similar pero en menor medida ya que el 

líquido no está en contacto con el conductor de la antena. Pero además, a ciertas 

frecuencias, como se ha podido comprobar en el estudio paramétrico de la profundidad 

mediante el análisis de la distribución superficial de corrientes en función de la 

frecuencia y de la profundidad, el líquido que se encuentra por encima del parche carga 

la antena de manera que provoca sobre él una periodicidad de comportamiento cada 4-5 

mm de profundidad, es decir cada Ȝef/2 en el medio. Ese efecto repetitivo se manifiesta 

en los resultados del parche como nuevas excitaciones, con las mismas características 

de los modos del parche originales, que son acentuados cuando, al ir bajando en 

frecuencia, éstos se sitúan a la frecuencia de diseño del parche en espacio libre. 

Cabe destacar también, que al igual que pasa con el dipolo, la importancia de la 

utilización de algún material que aísle el parche del líquido. En [5] se demuestra que el 

aislamiento de la antena con el líquido aumenta la densidad de corriente en la antena, ya 

que se reduce el acoplamiento con el cuerpo y se guía a la corriente por toda la longitud 

de la antena. Lo que hace que el parche con superestrato sea más inmune a los cambios 

de permitividad del medio y tiene mejores prestaciones en adaptación y ganancia que el 

parche sin superestrato. 

Como se ha visto en el diseño de los parches implantados, resulta buena alternativa 

trabajar con parches PIFA, ya que la vía que cortocircuita el parche permite un diseño 
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de antena mucho más pequeño manteniendo gran adaptación en el líquido, además de 

ser más independiente de la profundidad que el parche grande. A cambio, debido a las 

reducidas dimensiones, la ganancia es bastante peor. Por ejemplo, a 4 mm, la ganancia 

hacia el exterior del cuerpo del parche grande es -5 dBi, cuando para la PIFA 

rectangular es inferior a -20 dBi. 

Gracias a que la antena PIFA mantiene claramente la misma adaptación a diferentes 

profundidades, se puede apreciar la oscilación en las trazas de adaptación y ganancia 

debidas a la reflexión en la interficie líquido - aire, que como también sucede en el 

dipolo con recubrimiento, tiene un periodo de oscilación de Ȝef/2 del medio. 

Visto el comportamiento de los parches estudiados en este capítulo, para realizar un 

buen diseño de una antena parche implantada se recomienda que la antena tenga tanto 

sustrato como superestrato, siendo estos los más gruesos posibles y de un material de 

baja conductividad, siempre y cuando sea biocompatible. 

En función de cada aplicación implantada concreta, se podrá utilizar una tamaño de 

antena más grande o más pequeño. 

En el caso de poder utilizar un parche grande, o de dimensiones parecidas a las del 

mismo en espacio libre, en primer lugar habrá que ajustar el punto de alimentación de la 

antena para obtener el máximo de parte real de la impedancia, y tener presente en la 

dimensión de la antena la profundidad de implante y la permitividad relativa del medio, 

ya que esto cambia la frecuencia de adaptación de los modos de funcionamiento del 

parche. 

Si la aplicación de implante requiere un tamaño de antena lo más reducido posible, 

la alternativa del parche PIFA es una buena solución ya que asegura muy buena 

adaptación para cualquier profundidad. Pese a ello, la geometría también tiene que ser 

ajustada teniendo en cuenta la permitividad relativa del líquido. 
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5. CAPÍTULO 5.  CONCLUSIONES Y FUTURAS 

INVESTIGACIONES 

 

5.1 Conclusiones 

Una vez estudiadas las diversas características los dos tipos de antenas implantadas 

analizadas en este proyecto, el dipolo y el parche, se puede establecer una clasificación 

de los cuatro tipos de antenas en función del efecto que tiene el medio sobre ella, o 

dicho de otra manera, cómo de independiente es cada antena a un medio de alta 

permitividad y altas pérdidas, y de igual manera a la profundidad de inmersión (figura 

5-1). 

 
 

 

  

 

 

Figura 5-1: Representación gráfica de la independencia de las estructuras de antena analizadas a la 

profundidad de implante y a un medio de alta permitividad y altas pérdidas 

Al introducir el dipolo sin recubrimiento en el líquido, inmediatamente bajan en 

frecuencia todos los modos de radiación del dipolo. En cambio para el dipolo con 

recubrimiento, existe un desplazamiento frecuencial pero mucho menor, el cual se 

mantiene para profundidades más grandes. 

Entre estos dos ‘extremos’ de comportamiento, se encuentra los dos parches. Los 

modos de funcionamiento del parche sin superestrato van bajando sin cesar a 

frecuencias bajas a medida que aumenta la profundidad de implante. Esto también 

sucede para el parche con superestrato pero a su vez se van creando nuevos mínimos 

con la misma característica del modo fundamental TM001. Estos nuevos modos 

aparecen a algunos cientos de megahercios por encima de la frecuencia de diseño del 

parche en espacio libre. A medida que la profundidad aumenta van bajando en 

frecuencia, de manera que al situarse a la frecuencia de diseño mejora la adaptación y la 

ganancia. 
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La diferencia de comportamiento de cada antena implantada hace que el diseño de 

cada una sea diferente. 

Para el dipolo sin recubrimiento el diseño se basa prácticamente en definir la 

longitud en función de la permitividad del medio. En cambio para el dipolo con 

recubrimiento, el diseño juega tanto con la longitud como con el radio de recubrimiento. 

En ambos, el papel principal del grosor del conductor es el de controlar la parte real de 

la impedancia. 

Para el parche sin superestrato habrá que diseñar el tamaño del parche en función de 

la profundidad de implante, con un grosor de sustrato lo mayor posible. Al igual que 

para el parche con superestrato, aunque gracias al superestrato, se puede diseñar la 

antena para que trabaje en uno de los nuevos modos de funcionamiento que aparecen en 

función de la profundidad de implante. 

Cabe no olvidar otras opciones de diseño para el dipolo como es la estructura 

meandro, que en el caso sin recubrimiento se obtiene buena ganancia gracias a que la 

distribución de corrientes en la geometría a altas permitividades beneficia la radiación 

en dirección al exterior del cuerpo humano. Y en el caso del recubrimiento, se pueden 

conseguir tamaños más pequeños con la misma frecuencia de trabajo ya que el 

recubrimiento guía las corrientes a lo largo de toda la geometría y las altas pérdidas del 

líquido reducen el acoplamiento entre segmentos paralelos contiguos. 

Y para el parche, la estructura PIFA permite fijar la impedancia consiguiendo gran 

adaptación y mayor independencia de la profundidad de implante con un tamaño 

realmente reducido. 

Comentar que para cada antena cambia en cierta medida su posición lateral en el eje 

de independencia de la antena al medio de la figura 5-1 en función del radio del 

conductor para el dipolo sin recubrimiento; del grosor del recubrimiento para el dipolo 

con recubrimiento; del grosor del sustrato para el parche sin superestrato; y del grosor 

de tanto el sustrato como superestrato para el parche con recubrimiento. 

Al margen de las antenas analizadas, comentar que a lo largo del capítulo 4 se ha 

demostrado que la configuración de medida top ha resultado ser muy fiel a los 

resultados obtenidos por simulación tanto para la medida de adaptación como para la 

ganancia. Por lo que se puede seguir utilizando para futuras investigaciones. Pese a 

haber utilizado menos la configuración de medida bottom, ésta también es de gran 

utilidad para antenas en las que el grosor del cuerpo pueda afectar a la antena. 
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Referente a los dos medios líquidos utilizados en este proyecto, el líquido simulador 

del cuerpo humano y el agua destilada, éstos han sido caracterizados correctamente en 

el simulador ya que se ha conseguido gran similitud con la medida. El uso del agua 

destilada ha permitido revelar ciertas características del comportamiento de las antenas 

analizadas, gracias a tener menores pérdidas que el líquido simulador humano. Por este 

motivo, además de resultar ser muy accesible y barato, es positiva su utilización en el 

laboratorio, y también en la simulación. 

Para cerrar las conclusiones de este proyecto, decir que a diferencia del 

comportamiento de las antenas en espacio libre, en una aplicación implantada en un 

medio con alta permitividad relativa y altas pérdidas, las antenas se comportan de forma 

no tan esperada, por lo que habrá que analizar con detalle y perseverancia cada tipo de 

antena para saber cómo se comporta en este entorno. 

 

5.2 Futuras investigaciones 

Durante el desarrollo de este proyecto han ido surgiendo diversas posibles 

ampliaciones que no se han llegado a trabajar para no perder el hilo del proyecto y 

centrarse en los objetivos del mismo. 

A continuación se listan las posibles ampliaciones o continuidades de este proyecto 

que se podrían tratar en futuras investigaciones. Para ello, las configuraciones para la 

medida de las antenas implantadas implementadas en el laboratorio y la experiencia 

adquirida en este proyecto pueden ser de gran ayuda. 

 

- Implementación del dipolo: en este proyecto se ha estudiado el comportamiento del 

dipolo implantado mediante simulación, pero no se ha llegado a validar los resultados 

empíricos debido a dificultad que presenta. Pese a esto, si se realizan medidas empíricas 

del dipolo implantado se podría verificar que los resultados obtenidos por simulación 

son correctos. 

 

- Modelo genérico de cálculo de la frecuencia de adaptación para el dipolo 

implantado: así como se ha realizado con el parche con recubrimiento, se podría 

establecer un ecuación que ayude en el cálculo de las frecuencias de adaptación del 

dipolo con y sin recubrimiento en función de los parámetros que en este proyecto han 
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sido analizados, como son la longitud del dipolo, la permitividad del líquido, el grosor 

del radio y el grosor del recubrimiento. 

 

- Estudio del comportamiento del dipolo en tecnología PCB: vista la geometría 

dipolo recto y del dipolo meandro cilíndricos, puede ser interesante conocer la respuesta 

de estos implementados en plano sobre un sustrato con tecnología PCB, analizando 

otras características como el ancho o grosor de la pista o el grosor del sustrato y del 

superestrato, comparando los resultados con el dipolo cilíndrico y con las estructuras 

tipo parche analizadas en este proyecto. 

 

- Estudio paramétrico de la conductividad del medio: tanto para el dipolo como para 

el parche, ha quedado pendiente el análisis paramétrico de la conductividad del medio, 

por lo que se puede completar el estudio de las antenas con este análisis ya que en el 

cuerpo humano se dan diversos medios con conductividades diferentes. 

 

- Optimización de la geometría del dipolo meandro: en este proyecto se ha propuesto 

una geometría de dipolo meandro la cual no ha sido optimizada para la frecuencia de 

trabajo, con lo que se podría encontrar una geometría con una distribución de corrientes 

que ofrezca mejor ganancia en dirección al exterior del cuerpo. 

 

- Mejora de adaptación del parche con superestrato: algunas técnicas de adaptación 

podrían ser utilizadas para aumentar la impedancia del parche, ya que en el entorno 

implantado la impedancia del parche es mucho menor a la impedancia característica, así 

como también reducir la alta inductancia. 

 

- Diseño de antena parche para pequeñas profundidades: en el estudio de 

profundidad del parche se observa una mejoría de adaptación para profundidades 

entorno a 2 mm, a la vez que un desplazamiento a frecuencias bajas del modo 

fundamental. Partiendo de este resultado, se podría estudiar si reduciendo el tamaño del 

parche se pueden obtener buenos resultados de adaptación y ganancia a la frecuencia de 

diseño a esa profundidad. 
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- Antena parche con geometría meandro: vistos los beneficios de la geometría 

meandro en el dipolo sin recubrimiento, podrían aplicarse geometrías parecidas en el 

parche comparando los resultados en función de la adaptación, de la ganancia, del 

tamaño de la geometría con el parche estándar.   

 

- Estudio de las antenas dipolo y parche en un modelo de cuerpo humano basado en 

tres capas: piel, grasa y músculo: este proyecto ha estudiado el comportamiento de estas 

antenas en el modelo más simplificado del cuerpo humano compuesto de un único 

medio con las propiedades del músculo. Puede ser interesante conocer si la respuesta de 

las antenas es la misma al ser analizadas con el modelo de tres capas. 
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Resum:  

En els darrers anys, els sistemes de telemetria per a aplicacions mèdiques han crescut 
significativament en el diagnòstic i en la monitorització de, per exemple, la glucosa, la pressió de la sang, 
la temperatura, el ritme cardíac... Els dispositius implantats amplien les aplicacions en medicina i 
incorpora una millora de qualitat de vida per a l’usuari. 

Per aquest motiu, en aquest projecte s’estudien dues de les antenes més comuns, com son l’antena 
dipol i el patch, aquesta última és especialment utilitzada en aplicacions implantades. En l’anàlisi 
d’aquestes antenes s’han parametritzat característiques relacionades amb l’entorn de l’aplicació, així com 
també de la pròpia antena, explicant el comportament que, a diferencia amb l’espai lliure, les antenes 
presenten a canvis d’aquests paràmetres. 

Al mateix temps, s’ha implementat una configuració per a la mesura d’antenes implantades basat en 
el model del cos humà d’una capa. Comparant amb els resultats de les simulacions realitzades mitjançant 
el software FEKO, s’ha obtingut gran correspondència en la mesura empírica d’adaptació i de guany de 
les antenes microstrip. 

Gràcies a l’anàlisi paramètric, aquest projecte també presenta diversos dissenys de les antenes 
optimitzant el guany realitzable amb l’objectiu d’aconseguir la millor comunicació possible amb el 
dispositiu extern o estació base. 

Resumen:  

En los últimos años, los sistemas de telemetría para aplicaciones médicas han crecido 
significativamente en el diagnóstico y en la monitorización de, por ejemplo, la glucosa, la presión de la 
sangre, la temperatura, el ritmo cardíaco... Los dispositivos implantados amplían las aplicaciones en 
medicina y proporciona una mejora de calidad de vida para el usuario. 

Por este motivo, en este proyecto se estudian dos de las antenas más comunes, como son la antena 
dipolo y parche, esta última especialmente utilizada en aplicaciones implantadas. En el análisis de dichas 
antenas se han parametrizado tanto las características relacionadas con el entorno de la aplicación como 
las de la propia antena, explicando el comportamiento que, a diferencia con el espacio libre, las antenas 
presentan a cambios de esos parámetros. 

A su vez, se ha implementado una configuración para la medida de antenas implantadas basado en el 
modelo de cuerpo humano de una capa. Comparando con los resultados de las simulaciones realizadas 
mediante el software FEKO, se ha obtenido gran correspondencia en la medida empírica de la adaptación 
y de la ganancia de las antenas microstrip. 

Gracias al análisis paramétrico, este proyecto también presenta diversos diseños de las antenas 
optimizando la ganancia realizable con el fin de conseguir la mejor comunicación posible con el 
dispositivo externo o estación base. 

 

Overview:  

In the last years, telemetric systems for medical applications have significantly grown in diagnostic 
and monitorization, for instance, glucose, blood pressure, temperature, cardiac rhythm and so on. 
Implanted devices increase medical applications in medicine and provide an improvement in the quality 
of live for the user. 

For that reason, this project studies two of the most common antennas such as dipole and patch. The 
last one is specially used for implanted applications. During the analysis of these antennas, the 
characteristics related to the environment, where the antenna is located, and the own antenna is 
parameterized explaining the different behaviour with the free space response. 

At the same time, a setup for the measurement of implanted antennas based on a single layer model 
of human body has been implemented. Comparing the results with the simulations made by FEKO 
software, it has obtained good matching in the empiric measurements of impedance and gain of 
microstrip antennas. 

Thanks to the parametric analysis, several antenna designs have been presented optimizing the real 
gain in order to achieve the best possible communication with an external device or base station. 
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