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Resum 

En el present treball de recerca s’ha dut a terme la síntesi esteroselectiva de tensioactius 

quirals ciclobutànics per tal que més endavant, es puguin estudiar les seves propietats. 

Aquests tensioactius s’han preparat a partir dels 1,3-aminoalcohols, 8 i 16, i d’un 1,3-hidroxiàcid 

24. Tots aquests productes són enantiopurs i se sintetitzen, en última instància, a partir d’etilè i 

d’anhídrid maleic.   

 

A partir d’aquests intermedis claus, i per reaccions successives, s’han sintetitzat dos 

tensioactius i el precursor d’un tercer, l’àcid 29.  

 

 
  Tensioactiu B 

 

 

    
  Tensioactiu C R = H, Àcid 29 

   R = Na, Tensioactiu D 
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1. Introducció 

1.1 Característiques generals dels tensioactius 

 Els tensioactius són molècules hidrocarbonades lineals, substituïdes per un grup polar, de 

tal manera que presenten una part hidrofòbica i una d'hidrofílica (Figura 1).1 Aquestes 

molècules tenen la capacitat de disminuir la tensió superficial d'una interfase (normalment aire-

aigua o greix-aigua), quan es concentren en la superfície de la mateixa, tot modificant les seves 

propietats.2 

 

 

Figura 1. Parts d’un tensioactiu convencional  

Els tensioactius tenen un gran interès degut a la seva gran aplicació tant a nivell domèstic 

com a nivell industrial, ja sigui per a la fabricació de sabons i detergents per a la neteja; per la 

seva utilitat  en preparacions de cosmètics, fàrmacs i productes alimentaris; en processos 

industrials com la petroquímica; en tècniques analítiques com la cromatografia o l’analítica de 

sòls; per la seva aplicació en catàlisi; etc... Aquesta àmplia gamma d’aplicacions és deguda a la 

gran varietat de tensioactius i a les diverses propietats de superfície i interfase3 que presenten. 

En l'actualitat s'estudien diferents classes de tensioactius per tal que es puguin aplicar en àrees 

d'alta tecnologia com  ara la microelectrònica, la biotecnologia, entre d'altres. 

En l'interior d'un líquid (Figura 2), una molècula interacciona amb les molècules veïnes més 

properes per tal de disminuir la seva energia lliure, però en la superfície les molècules no 

poden  minimitzar la seva energia lliure degut a la falta de molècules veïnes. A causa d'aquest 

fet els líquids tendeixen sempre a presentar la menor superfície lliure possible, per tal de 

minimitzar el nombre de molècules en la mateixa. D'aquí que un líquid, en absència de 

gravetat, adopti la forma esfèrica, ja que és la que té menor relació àrea/volum.4  

 

Figura 2. Forces intramoleculars que es produeixen en l’aigua líquida. 

Part Hidrofòbica 

Part Hidrofílica 
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A l’incrementar la superfície, és necessari realitzar un treball per tal d’augmentar l’energia 

lliure degut a que les molècules es desplacen de l’interior del dissolvent cap a la superfície.  

Aquest treball (W) és proporcional al augment de la superfície (Δσ) i es calcula a través de la 

formula W = γ.Δσ, on la constant de proporcionalitat (γ)  ve donada en N.m-1 i és anomenada 

tensió superficial.5 En resum, la tensió superficial és la força que s’oposa a l’increment de 

superfície d’un líquid.      

Quan un tensioactiu es dissol en una solució aquosa, provoca una disminució de la tensió 

superficial, ja que se situa en la superfície del dissolvent, orientant el seu grup hidrofòbic cap a 

la superfície i exposa el seu grup hidrofílic per tal que aquest pugui interaccionar amb les 

molècules d’aigua de la superfície. Aquesta interacció provoca un disminució de l’energia lliure 

d'aquestes molècules, i en conseqüència, la tensió superficial entre la superfície i l'aigua es 

redueix.6 

A mesura que s’augmenta la seva concentració, augmenta del nombre de molècules de 

tensioactiu en la superfície, provocant una  disminució de la tensió superficial fins a arribar a un 

valor crític, anomenat concentració micel·lar crítica (CMC), a partir de la qual, la tensió 

superficial es manté constant i es comencen a formar agregats moleculars de tensioactiu o 

micel·les en solució,7 en equilibri amb els monòmers. (Figura 3). 

 

Figura 3. Representació esquemàtica de la organització de les molècules de tensioactiu al voltant de la 

concentració micel·lar crítica (CMC). I) Molècula de tensioactiu; II) Per sota de la CMC, monòmers; III) 

Per sobre de la CMC, el tensioactiu forma micel·les; IV) A concentracions molt més altes a la CMC es 

formen superestructures  com organitzacions cilíndriques de micel·les.8 

La determinació de la CMC, es pot realitzar utilitzant qualsevol propietat que presenti un canvi 

més o menys brusc enfront de la concentració de tensioactiu. Algunes de les propietats més 

Estructura 
Hidròfoba 

Estructura 
Hidròfila 
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utilitzades són: la tensió superficial, la conductivitat i les propietats òptiques i espectroscòpiques 

com ara mesures de dispersió de la llum i índex de refracció o absorció.9 

 
1.2  Classificació dels tensioactius: 

 

Existeixen diverses classificacions, però la classificació més comuna i més general es basa 

en la forma amb que el seu cap polar es dissocia en aigua.10 Segons aquesta característica es 

classifiquen en:  
 

 Tensioactius aniònics: Es dissocien en un anió amfifílic i un contraió catiònic, que  

normalment sol ser un metall alcalí (sodi, potassi, etc.) o un grup amoni quaternari. Un 

exemple seria el dodecil sulfat sòdic (SDS).   

 
Dodecil sulfat de sodi (SDS) 

 

 Tensioactius catiònics: Es dissocien donant lloc a un catió amfifílic i un contraió aniònic, 

que sol ser un halogenur. La majoria de tensioactius catiònics són compostos nitrogenats 

com ara sals d'amoni i sals d'amoni quaternari. Entre els més comuns es troba el bromur 

de hexadecil-trimetilamoni. 

 

 
Bromur d’hexadecil-trimetilamoni 

 

 Tensioactius no iònics: Aquests tensioactius no s'ionitzen en solució aquosa ja que el seu 

grup hidrofílic (alcohol, fenol, èter, èster o amida) no es pot dissociar, i en conseqüència, 

no es veuen afectats pel pH de la solució. Són àmpliament utilitzats en preparacions 

farmacèutiques, així com en la indústria alimentària i cosmètica donada la seva baixa 

toxicitat. Per exemple, l’octil glucòsid. 

 

 
Octil glucòsid 

 

N+
Br-

O
HO

HO

OH

OH

O
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 Tensioactius zwitteriònics: Aquests tensioactius incorporen en el seu cap hidrofílic les 

dues càrregues, és a dir, un càrrega positiva i una altre de negativa. Un exemple serien les 

betaïnes entre les quals trobem la N-dodeciltrimetilaminobetaïna. Aquests compostos 

s'utilitzen àmpliament en sectors on es vol aconseguir una elevada biocompatibilitat i una 

baixa toxicitat. 

 
N-dodeciltrimetilaminobetaïna 

 

 Tensioactius amfòters: Aquests tensioactius donen lloc tant a dissociacions aniòniques 

com catiòniques en funció del pH de la solució i poden posseir les propietats solubilitzants 

dels aniònics i les desinfectants dels catiònics. Un exemple seria l’àcid N-dodecil-β-

aminopropiònic. 

 
Àcid N-dodecil-β-aminopropiònic 

 

 

1.3  Tensioactius derivats d'aminoàcids 

Malgrat la gran utilitat que tenen els tensioactius, la gran majoria d’ells tenen l’inconvenient 

de no ser biodegradables. Això provoca que s’acumulin en concentracions elevades en el medi 

natural, posant en perill la vida dels éssers vius.  Per tant, actualment s’està portant a terme la 

recerca de nous tensioactius que siguin biodegradables i compatibles amb els éssers vius.11  

Uns dels tensioactius que compleixen aquests requisits són els tensioactius derivats 

d’aminoàcids, ja que : 

 Són biodegradables i respectuosos amb el medi ambient. 

 La indústria farmacèutica mostra un gran interès en per la seva biocompatibilitat amb 

éssers vius. 

 Existeixen diferents mètodes químics i enzimàtics per a la seva síntesi.12 

 Es poden usar dissolvents “verds” per a la seva síntesi. Un exemple seria la síntesi dels  

lipoaminoàcids (Figura 4), ja que s'obtenen en les condicions de Schotten-Baumann 

mitjançant acilació d'un o diversos residus de α-aminoàcids amb un clorur d'àcid en 

presència d'una base. Aquestes reaccions es duen a terme en un medi aquós o 

hidroorgànic (aigua - alcohol, aigua - acetona) segons sigui la solubilitat inicial del derivat 

proteic de partida.12 

N+

O-

O

N
H

OH

O
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Figura 4. Lipoaminoàcid 

 

Aquests tensioactius provenen de la combinació de pèptids o aminoàcids polars amb 

cadenes hidrocarbonades de longitud variable (de 8 a 16 àtoms de carboni) per donar  lloc a 

productes amb una elevada capacitat tensioactiva.13 L'àmplia diversitat d'estructures amb 

aminoàcids o pèptids i la varietat de residus grassos presents en la seva estructura expliquen la 

seva multiplicitat estructural i les seves diferents propietats fisicoquímiques i biològiques.14 

Els principals tipus de tensioactius derivats d'aminoàcids són: (Figura 5)15 

 

 

 

 

 

Figura 5. Estructures dels tensioactius derivats de aminoàcids: (1) Lineals, (2) De doble cadena, (3) Dimèrics o 

Gemini, (4) Glicerolípids. 

 

1.4 Tensioactius quirals  

La majoria de les molècules biològicament actives, com els aminoàcids naturals i sintètics, 

contenen un o més centres quirals. Aquests donen lloc a estereoisòmers que poden tenir 

diferent activitat biològica segons el seu entorn quiral. A vegades un dels enantiòmers presenta 

l'activitat desitjada, mentre que l'altre enantiòmer pot ser considerablement menys actiu o 

presentar efectes no desitjats. 

En síntesi química, els tensioactius quirals són de gran utilitat, ja que s’empren en el 

desenvolupament de fàrmacs quirals enantiomèricament purs16 o pel desenvolupament de 

sistemes d’alliberament de fàrmacs.  

Els tensioactius quirals també poden tenir altres aplicacions, com ara en la realització de 

transformacions enantioselectives, en l'ús d'eines analítiques com la cromatografia 

electrocinètica micel·lar (MECK) on s'utilitzen tensioactius naturals o sintètics,17 en la teràpia 

gènica, en models per a la investigació de la transferència de quiralitat, com a building blocks 

per nanoestructures supramoleculars, entre d’altres. 

R2 CO2
- X+

HN R

O

Aminoàcid Aminoàcid

Aminoàcid Aminoàcid

AminoàcidOO

O

O

O

1. 2. 
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1.5  Precedents del grup de recerca. 

En el nostre grup de recerca s’ha utilitzat el ciclobutà com a element de restricció 

conformacional en nombrosos treballs, ja que l’anell ciclobutànic aporta rigidesa i dos centres 

estereogènics de configuració absoluta coneguda en la molècula.  

L’ús del compost proquiral 1,2-ciclobutandicarboxilat de dimetil ha permès l’obtenció de 

ciclobutan-1,2-aminoàcids,18 1,2-diamines protegides ortogonalment,19 1,3-aminoalcohols20 i 

1,3-diamines.20 Aquestes molècules han permès sintetitzar β-pèptids,18c, 21b pèptids híbrids21a i 

urees.22 Aquestes molècules han donat lloc a estudis estructurals i algunes d’elles han mostrat 

propietats interesants com a organogeladors,23 conductors orgànics,24 foldàmers,21 inhibidors 

enzimàtics,25 etc.  

Actualment s’està duent a terme la síntesi de diferents tensioactius quirals (alguns dels quals 

es mostren a la Figura 6), a partir  de 1,2 i 1,3-aminoàcids, de 1,2 diamines i de 1,3-

aminoalcohols ciclobutànics  amb la finalitat de realitzar estudis estructurals i buscar possibles 

aplicacions.  

 

  

 

 

 

Figura 6. Tensioactius que s’estan investigant en el nostre grup de recerca.  

El nostre grup també treballa amb derivats ciclobutànics funcionalitzats a les posicions 1 i 3. 

A partir de la (-)-verbenona i el (-)-α-pinè també s'han preparat α, β, γ, i δ-aminoàcids 

ciclobutànics enantiomèricament purs26 per tal de sintetitzar α-deshidroaminoàcids,27 α-

pèptids,28 isoxazolidines, β-pèptids,29 γ-lactames,30 γ-peptids31 i dendrimers.32 Recentment, en 

el treball de Màster en Experimentació Química de Jimena Ospina,33 s’han sintetitzat 

tensioactius amfòters a partir γ-aminoàcids, els quals es mostren a la Figura 7 i s’ha determinat 

la seva CMC per diferents tècniques.  

  

Figura 7. Tensioactius amfòters derivats de γ-aminoàcids. 
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2. Objectius 

 

L’objectiu principal d’aquest Màster és el disseny de la ruta sintètica i posterior síntesi dels 

quatre tensioactius, que es mostren a la Figura 8 amb la finalitat de que, posteriorment, es 

puguin realitzar estudis estructurals i buscar possibles aplicacions. 

 

  

  Tensioactiu A Tensioactiu B 

 

 

  

  Tensioactiu C Tensioactiu D 

Figura 8. Tensioactius objectiu en aquest Màster. 

Com es pot observar tres dels tensioactius són catiònics i, en un futur, ens permetran 

estudiar les diferències que genera el tipus d’unió (èter, èster o amida) de la cadena lineal al 

nucli ciclobutànic. El tensioactiu D és aniònic i permetrà estudiar les diferències respecte C. 

 

Paral·lelament, s’intentarà optimitzar els rendiments de les reaccions que permeten 

l’obtenció d’aquests tensioactius, principalment en l’obtenció dels intermedis clau 1,3 - 

aminoalcohols i 1,3-hidroxiàcids (Figura 9).  

 

 

    

Figura 9. Intermedis clau per a la síntesi dels 4 tensioactius.  
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3. Resultats i discussió 
 

3.1 Disseny de la ruta sintètica 

 Per tal d’aconseguir l’objectiu principal d’aquest treball Fi de Màster, es va començar 

plantejant una anàlisi retrosintètica (Esquema 1), que va permetre determinar quina podria ser 

la millor ruta sintètica per a l’obtenció dels quatre tensioactius objectiu. En aquest estudi es va 

tenir en compte l’experiència adquirida pel grup d’investigació durant els darrers anys en la 

síntesi d’aminoàcids ciclobutànics18 d’estereoquímica ben definida, així com dels seus derivats, 

com ara els 1,3-aminoalcohols.20  

Els tensioactius A, B i C provindrien dels intermedis clau 8 i 16, i el tensioactiu D del 24, tal i 

com mostra l’Esquema 1. A més, els tres intermedis clau provindrien de l’àcid 5, el qual se 

sintetitza de manera enantioselectiva i a través de diverses etapes a partir de l’etilè, 1, i de 

l’anhídrid maleic, 2.  

 

Esquema 1. Esquema retrosintètic dels 4 tensioactius objectiu.  

O

O

O
1 2

+

CO2Me

CO2H

5

N
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OH

NH3
+ Cl-

O

Tensioactiu A

14

NH3
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O

Tensioactiu B

10

O

NH3
+ Cl-

N
H

Tensioactiu C

10

O

CO2
- Na+

N
H

Tensioactiu D

10

O

CO2
tBu

OH

24

COOR

R = CH2Ph (8)

R = tBu (16)
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3.2 Síntesi de l’àcid 2-metoxicarbonil-(1S,2R)-ciclobutan-1-carboxílic (5) 

La ruta sintètica per arribar a 5 està ben establerta al grup de recerca. Per tal d’obtenir l’àcid 

5, el primer pas és la creació de l’anell ciclobutànic  a través d’una reacció de cicloaddició [2+2] 

fotoquímica entre l’etilè i l’anhídrid maleic (Esquema 2).  

 

Esquema 2 Reacció fotoquímica entre l’etilè i l’anhídrid maleic. 

Posteriorment, es procedeix a l’obertura de l’anhídrid cíclic 3, a la vegada que s’esterifica a 

través d’una reacció de Fischer, en presència d’àcid sulfúric i metanol, per a obtenir el dièster 4 

(Esquema 3), que es purifica per destil·lació de pas curt a una pressió de 30 mmHg i una 

temperatura de 150 ºC obtenint un líquid incolor amb un rendiment del 82%.  

 

Esquema 3 Reacció d’obertura de l’anhídrid cíclic. 

A continuació, s’hidrolitza quimio i enantioselectivament el dièster mitjançant la utilització de 

l’enzim Pig Liver Esterase. Aquest enzim actua sobre el dièster meso produint la hidròlisi de 

l’èster del centre proquiral S, de manera que s’obté l’hemièster 5 amb un rendiment quantitatiu i 

amb un 97% d’excés enantiomèric (Esquema 4).34 

 

Esquema 4 Saponificació quimio i esteroselectiva del producte 4.  

Aplicant la metodologia anterior, s’obté l’hemièster 5 amb un 79% de rendiment global a 

partir de l’etilè i l’anhídrid maleic.  

 

21

O

O

O

h!
O

O

O3
quantitatiu

acetona

O

O

O

CO2Me

CO2Me

3 4

MeOH

H2SO4
82%

CO2Me

CO2Me

PLE
CO2Me

CO2H

4 5
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3.3 Síntesi del intermedi clau (8)  

L’obtenció de l’intermedi clau 8 es duu a terme a partir de l’hemiester 5. Primerament s’activa 

l’àcid fent-lo reaccionar amb cloroformiat d’etil i trietilamina per donar lloc a un anhídrid mixt. 

Seguidament es realitza una reacció amb l’azida sòdica per tal d’obtenir l’acilazida 6. A partir 

d’aquesta, es realitza una transposició de Curtius per tal de transformar l’acilazida en isocianat, 

que en presència d’alcohol benzílic dóna lloc a l’aminoèster protegit com a carbamat de benzil 

8, amb un 65% de rendiment global (Esquema 5).18b  

 

Esquema 5 Obtenció del carbamat de benzil 7 a partir de l’hemiester 5. 

A continuació es passa a la següent reacció, que permet l’obtenció del 1,3-aminoalcohol cis-

ciclobutànic, el qual ja havia estat sintetitzat i es troba descrit en el Màster en Experimentació 

Química d’Enric Mayans,20b on la reacció es duia a terme (Esquema 6) amb LiBH4 i MeOH en 

quantitats estequiomètriques en THF anhidre a 0 oC.  

 

Esquema 6 Reducció de l’èster metílic. 

Aplicant aquesta metodologia (mètode 1), es va obtenir el producte 8 amb un rendiment del 

65%. Tot i això, per intentar millorar el rendiment es va assajar un canvi de dissolvent 

(metodologia 2). Emprant èter dietílic enlloc de THF i sense MeOH es va aconseguir 8 amb un 

85% de rendiment.  

 

3.4 Síntesi del tensioactiu A 

En la ruta del tensioactiu A (producte 11) (Esquema 7), l’alcohol 8 es va fer reaccionar amb 

el clorur de p-toluensulfonil per tal d’obtenir el tosilat 9, amb un 65% de rendiment.  

CO2H

CO2Me CO2Me

O

N3

BnOH

NHCbz

CO2Me
1) ClCO2Et, Et3N

2) NaN3 !

5 76

65% (2 passos)

LiBH4, MeOH

THF,  0oCNHCbz

CO2Me

NHCbz

OH

7 8

65%

LiBH4

Et2O,  0oC
NHCbz

CO2Me

7

85%

Mètode 1 Mètode 2
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Esquema 7 Esquema sintètic del tensioactiu A a partir de l’alcohol 8. 

Per tal de sintetitzar l’èter 10 es va decidir dur a terme una substitució nucleòfila bimolecular 

entre el tosilat 9 i l’alcòxid derivat de l’hexadecanol per facilitar l’atac nucleòfil. Per la seva 

generació es va usar NaH en THF. 

Un cop l’alcòxid va estar preparat, s’hi va afegir el tosilat 9 dissolt en THF anhidre i es va 

deixar reaccionant. Al cap de cinc hores es va parar la reacció degut a l’absència de tosilat 9 i 

seguidament es va procedir a la purificació del cru. Utilitzant aquestes condicions, la reacció 

desitjada pràcticament no va tenir lloc ja que 10 es va obtenir tant sols amb un 0.5% de 

rendiment.  

Amb aquests resultats es va concloure que la reacció era inviable i que s’havien de buscar 

camins alternatius per a la síntesi. Es va realitzar una cerca bibliogràfica i es va trobar un 

article35 on a partir d’èsters, es feien reaccionar amb Et3SiH en presència de InBr3 per obtenir 

èters. Malgrat trobar aquest camí alternatiu, la ruta es va descartar perquè no va donar bons 

resultats en provar-la en un substrat model. Finalment, es va decidir abandonar la síntesi del 

tensioactiu A, ja que no es podia sintetitzar el producte 10 i no es disposava de temps per 

buscar rutes alternatives.     

 

3.5 Síntesi dels intermedi clau (16)  

En l’obtenció del precursor de l’intermedi clau 16, cal sintetitzar inicialment 15. Aquest 

producte es pot obtenir a través de dues maneres diferents (Esquema 8). La primera és a 

través d’una transposició de Curtius  a partir de l’acilazida 6 on s’ha canviat alcohol benzílic per 

tert-butanol. En la segona ruta es realitza un canvi de grup protector del producte 7, a través 

d’una hidrogenació en presència de dicarbonat de ditert-butil. 

TsCl

NHCbz

OTs

NHCbz

O 1) H2, Pd/C

NH3
+ Cl-

O

11

NHCbz

OH

8

Et3N

10

9

Tensoactiu A

2) HCl

HO
14

NaH, THF

14

NHCbz

O

10

14

65% 0.5%
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Esquema 8 Esquema sintètic on es mostren les dues rutes per l’obtenció del producte 15. 

Malgrat que la primera ruta és més directa, té l’inconvenient de necessitar el tert-butanol 

anhidre, que no sempre s’aconsegueix fàcilment. Per evitar rendiments baixos i variables degut 

a la presència d’aigua, que condueix a la formació d’una urea, una alternativa era sintetitzar el 

carbamat de benzil, 7, i seguidament fer un canvi de grup mitjançant hidrogenació per tenir el 

carbamat de tert-butil 15. La reacció es va dur a terme usant (Boc)2O a 8 atmosferes de pressió 

d’hidrogen i catàlisi de Pd(OH)2/C. Així el rendiment global de la ruta 2 fou del 50%. 

 De manera similar a la reducció de l’èster 7, la  primera reducció de l’ester 15 a l’alcohol 16, 

es va dur a terme amb LiBH4 i MeOH en quantitats estequiomètriques en THF anhidre a 0 oC 

durant 8 hores, i es va obtenir un rendiment del 5%. Es va deduir que la metodologia d’aquesta 

reacció no era la correcta ja que es va recuperar un 85% d’èster 15. Per tal de solucionar 

aquest problema, es va buscar una metodologia diferent que permetés l’obtenció de l’alcohol 

16 amb bons rendiments. Aquesta (metodologia 2), consistia en dur a terme la reducció en 

dietilèter sota atmosfera inert, a 0 oC i s’utilitzaven 1.5 equivalents de LiBH4. Aplicant aquestes 

condicions, es va observar que al cap de tres hores ja no quedava gens de producte 15 i es va 

obtenir 16 amb un 75% de rendiment (Esquema 9) .  

 

Esquema 9 Reducció de l’ester metílic. 

CO2H

CO2Me CO2Me

O

N3

tBuOH

NHBoc

CO2Me
1) ClCO2Et, Et3N

2) NaN3 !

5 156
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(2 passos)
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NHCbz

CO2Me
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H2 (8 atm)
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CO2H

CO2Me CO2Me

O
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1) ClCO2Et, Et3N

2) NaN3

5 6

!
65%
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LiBH4

Et2O, 0 oC

75%
NHBoc

16

OH

LiBH4, MeOH

THF,  0oCNHBoc

CO2Me

NHBoc

OH

15 16

5%

LiBH4

Et2O,  0oC
NHBoc

CO2Me

15

75%

Mètode 1 Mètode 2

Ruta 1 
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3.6 Síntesi del tensioactiu B (14)  

En la ruta sintètica del tensioactiu B es van plantejar dues possibilitats (Esquema 10). La 

primera partia del alcohol 8 i arribava fins al producte 13 i la segona partia de l’alcohol 16 i 

arribava al mateix producte en un sol pas. Per últim, el producte 13 es faria reaccionar amb HCl 

per obtenir el tensioactiu B.  

 

Esquema 10 Esquema sintètic de les dues rutes que permeten obtenir el tensioactiu B. 

 En la ruta 1, es va realitzar una cerca bibliogràfica per tal de trobar les condicions idònies 

que permetessin obtenir el producte 12 a partir de l’alcohol 8.36 Utilitzant les condicions 

descrites de CH2Cl2 anhidre a temperatura ambient amb clorur d’àcid i piridina, es va obtenir 12 

amb un 30% de rendiment i  el producte s’aïllava amb una puresa baixa. Per tal de millorar 

aquest rendiment es va tornar a repetir la reacció fent-la a reflux durant tota una nit i canviant la 

piridina per trietilamina. Amb aquest mètode es va millorar el rendiment fins a un 60%.  

No es va realitzar la reacció que permetia obtenir el tensioactiu B a partir del producte 12 

degut als inconvenients i la dificultat que presentava. Principalment es temia que l’amina lliure 

fos inestable i difícilment manipulable. En conseqüència, es va pensar que realitzant un canvi 

de carbamat de benzil a carbamat de tert-butil seguit d’una desprotecció en medi àcid permetria 

obtenir el tensioactiu B més fàcilment. D’aquesta manera s’evita que l’amina lliure pugui 

reaccionar ja que es forma la sal in situ i queda protegida.   

Per tant, es va realitzar el canvi de grup protector de carbamat de benzil a carbamat de tert-

butil, obtenint 13 amb un 80% de rendiment i amb una purificació més senzilla. Al final es va 

obtenir un 48% de rendiment total en la ruta 1 i es va proposar la ruta 2 per tal de millorar 

NHCbz

O

O
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NHCbz

OH
O

8

CH2Cl2 reflux

Cl 10 ,   Et3N
10

NHBoc

O

O

13

NHBoc

OH
O

16

CH2Cl2 reflux

Cl 10 ,   Et3N
10

NH3
+ Cl-

O

O

Tensioactiu B

10

CH2Cl2 anhidre

HCl

(Boc)2O, Pd(OH)2/C

H2 8 atm

1) H2 8 atm, Pd(OH)2/C

2) HCl
60%
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68% 84%

14
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aquest rendiment. Es va fer reaccionar l’alcohol 16 amb el clorur de dodecanoil utilitzant el 

procediment descrit anteriorment i es va obtenir un 68% de rendiment. Amb aquests resultats 

es va concloure que la ruta 2 era millor que la ruta 1 ja que permet obtenir el producte 13 de 

manera més senzilla i amb un rendiment major. 

Per últim, es va dur a terme la desprotecció del producte 13 amb 6 equivalents d’àcid 

clorhídric 2 N en èter dietílic durant 1 dia a temperatura ambient, obtenint-se el tensioactiu B 

(14) amb un rendiment del 84%.  

 

3.7 Síntesi del tensioactiu C (21)  

En la ruta del tensioactiu C, es va decidir utilitzar la metodologia descrita en el Màster 

d’Enric Mayans20b per tal d’obtenir la amina lliure 19 (Esquema 11). Aquesta consistia en 

activar l’alcohol primari de 16 en forma de tosilat, 17, i substituir-lo per un grup azido que 

permetria la posterior reducció a amina lliure.  

 

Esquema 11 Esquema sintètic de l’obtenció del tensioactiu C. 

L’alcohol 16 es va fer reaccionar amb clorur de p-toluensulfonil i catàlisi de DMAP per formar 

el tosilat 17 amb un rendiment del 62%. Una vegada obtingut 17, es va substituir el tosilat per un 

grup azido emprant azida sòdica en DMF. Seguidament es va reduir l’azida 18 utilitzant 

hidrogen i catàlisi de pal·ladi sobre carboni. L’amina lliure es va fer reaccionar immediatament 

amb el clorur de dodecanoil a temperatura ambient per obtenir 20 amb un 66% de rendiment 

global a  partir del producte 17.    

Per últim, es va dur a terme la desprotecció del producte 20 amb 6 equivalents d’àcid 

clorhídric 2 N en èter dietílic durant 24 hores a temperatura ambient. Finalment es va obtenir el 

tensioactiu C amb un rendiment del 64%.  
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3.8 Síntesi de l’intermedi clau (24)  

En l’obtenció de l’intermedi clau, l’1,3-hidroxiàcid (24), es parteix de l’hemièster 5 (Esquema 

12). Primer de tot es porta a terme la protecció de l’àcid carboxílic en forma d’èster tert-butílic 

amb un rendiment del 73%, per després realitzar la saponificació de l’èster metílic de manera 

quantitativa.37  

 

Esquema 12 Esquema sintètic per a l’obtenció del producte 23 a partir de l’hemièster 5. 

La reducció de l’àcid 23 a l’alcohol 24 (Esquema 13), es va dur a terme amb B2H6 1 M en 

THF anhidre a 0 oC amb un rendiment del 63%.  

 

Esquema 13 Reducció de l’àcid 23. 
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3.9 Síntesi del precursor del tensioactiu D, l’àcid (29)  

En la ruta del tensioactiu D a partir de l’alcohol 24 (Esquema 14), es va utilitzar la 

mateixa estratègia sintètica que en l’obtenció del tensioactiu C.  

 

Esquema 14 Esquema sintètic de l’obtenció del tensioactiu D. 

 Per tant, es va fer reaccionar l’alcohol 24 amb clorur de p-toluensulfonil per formar el tosilat 

25 amb un rendiment del 77%. Seguidament, es va substituir el tosilat per un grup azido 

emprant azida sòdica en DMF, per després reduir-la utilitzant hidrogen i catàlisi de pal·ladi sobre 

carboni. L’amina lliure es va fer reaccionar immediatament amb el clorur de dodecanoil a 

temperatura ambient per obtenir un 51% de rendiment global a partir del producte 25. Cal fer 

èmfasi en que la reducció de l’azida es porti a 2 atm de pressió d’hidrogen i amb el mínim de 

temps possible degut a la inestabilitat de l’amina lliure 27.  

Per últim, es va dur a terme la desprotecció de l’èster tert-butílic 28 amb 13 equivalents 

d’àcid trifluoroacètic i 2.5 equivalents de trietilsilà durant 12 hores a temperatura ambient, amb 

un rendiment quantitatiu. Es va aturar la ruta sintètica en aquest producte ja que no es 

disposava del temps necessari per obtenir el producte 30. Per a l’obtenció del tensioactiu D 

només caldrà realitzar la reacció de l’àcid 29 amb 1 equivalent de NaOH. 

 

Un cop es disposi del tensioactiu D, es procedirà a caracteritzar físicoquímicament tots 3 

tensioactius i estudiar les seves aplicacions. 
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4. Conclusions 
 

En aquest treball Fi de Màster, s’han aconseguit sintetitzar els tensioactius B i C, i el 

precursor del tensioactiu D (àcid 29) de forma enantioselectiva a partir dels seus respectius 

intermedis clau, amb bons rendiments. 

 
  Tensioactiu B 

 

 

    
  Tensioactiu C R = H, Àcid 29 

   R = Na, Tensioactiu D 
 

A més, s’han optimitzat els rendiments i les metodologies que permeten l’obtenció dels 

intermedis 8 i 16. També, s’ha optimitzat la reacció d’esterificació d’aquests 1,3 - aminoalcohols 

que permeten la síntesi dels productes 12 i 13. A partir d’aquests productes s’ha pogut 

determinar la ruta més adient per a la preparació del tensioactiu B.  

També s’ha realitzat per primera vegada, la síntesi d’un 1,3-hidroxiàcid clau en la ruta del 

tensioactiu D de forma enantioselectiva, amb un rendiment global del 36%. Aquest  producte, 

24, es podrà utilitzar en altres rutes sintètiques per a la síntesi de nous productes d’interès. 

 

Finalment, la caracterització fisicoquímica com a tensioactius de B, C i D es portarà a terme 

en el grup de recerca properament. 
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5. Part experimental 

5.1  Observacions generals 

5.1.1 Espectroscòpia i espectrometria 

Els espectres de Ressonància Magnètica Nuclear han estat enregistrats al Servei de RMN 

de la Universitat Autònoma de Barcelona (SERMN). S’han utilitzat aparells Bruker, model 

Avance 250 i 360 per enregistrar els espectres rutinaris de 1H a 250 / 360 i 13C a 62.5 / 90 MHz. 

Els desplaçaments químics es donen en ppm utilitzant el propi dissolvent com a referència 

interna, considerant els següents valors: 

MeOD-d4 :   δ = 3.31 i 49.0 per a 1H i 13C, respectivament. 

CDCl3 :  δ = 7.26 i 77.1 per a 1H i 13C, respectivament. 

Les abreviatures utilitzades per designar la multiplicitat dels senyals han estat: 

Ø s (singlet), d (doblet), dd (doble doblet), t (triplet), q (quartet), m (multiplet), a.c. (absorció 

complexa), s. a. (singlet ample). 

Els espectres d’infraroig (IR) s’han enregistrat utilitzant un espectrofotòmetre model Bruker 

Tensor 27, amb accessori d’ATR tipus Golden Gate amb un cristall de diamant d’una sola 

reflexió, del Servei d’Anàlisi Química. Cadascun dels valors donats són en cm-1.  

Els espectres de masses d’alta resolució, (HRMS), han estat enregistrats al Servei 

d’Anàlisi Química (SAQ) de la Universitat Autònoma de Barcelona. S’han realitzat en un aparell 

Bruker model SQUIRE 3000; les anàlisis s’han efectuat per la tècnica d’electrospray. 

5.1.2 Cromatografia 

Les cromatografies en capa fina, CCF, s’han realitzat sobre cromatofolis, Alugram Sil 

G/UV254 de 0.25 mm de gruix. Els reveladors que s’han utilitzat han estat: 

Ø Irradiació amb làmpada d’UV d’una longitud d’ona de 254 nm.  

Ø Submergint en una solució àcida de vainillina. 

Les cromatografies en columna s’han realitzat emprant gel de sílice Baker® de 240-400 

mesh com a fase estacionària,  nitrogen com a gas impel·lent i l’eluent indicat en cada cas, com 

a fase mòbil. 
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5.1.3 Reaccions fotoquímiques  

Les reaccions fotoquímiques s’han dut a terme en un reactor fotoquímic de pyrex  amb 

camisa de refrigeració, dissenyada per Trallero&Schlee. La irradiació ha estat realitzada en tots 

els casos amb una làmpada de mercuri de 400 W de la marca Photochemical Reactors LTD. La 

refrigeració del reactor s’ha dut a terme posant el reactor en un bany de metanol a - 50 ºC i fent 

circular metanol a - 25 ºC a través de la camisa de refrigeració. 

5.1.4 Utillatges generals de laboratori 

Les rotacions òptiques específiques [α]D, s’han mesurat a temperatura ambient en un 

polarímetre JASCO J-715, utilitzant una cubeta de 1.0 cm de longitud per a cada mesura. 

Els punts de fusió han estat determinats en un bloc Kofler de la marca Reicher. Els valors es 

donen en graus centígrads (oC).   

La liofilització de les mostres s’ha realitzat en al nostre laboratori, utilitzant un liofilitzador o 

serpentí refrigerant, model Telstar. 

Les destil·lacions de pas curt han estat realitzades amb un destil·lador Buchi, model 

KRV65/30. 

En la purificació dels dissolvents van ser utilitzats els procediments estàndard descrits a 

“Vogel’s, Textbook of practical Organic Chemistry”, Ed. Logman Scientific and Technical, UK, 

1989 i a Purification of Laboratory Chemicals, Ed. Butterworth Heinemann, UK, 1999. 

Les hidrogenacions a pressió han estat realitzades amb un hidrogenador model Chemipress 

80, dissenyat per Trallero & Schlee. 

 

 5.2 Descripció dels processos experimentals i dels productes 

NOTA: Degut a la repetició dels processos sintètics durant el treball experimental, s’han 

resumit en un únic procediment comú tots els productes que s’obtenen de la mateixa manera. 

En aquest apartat s’explicaran els procediments nous i els optimitzats que s’han realitzat per tal 

obtenir els tensioactius A, B, C i D. Els passos previs i mètodes alternatius estan descrits a 

l’annex. 
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 5.2.1  Ruta del tensioactiu A fins al producte 9 a partir del producte 7  

2-Hidroximetil-(1S,2R)-ciclobutan-1-carbamat de benzil (8) 

 

Es dissol 1 g (3.8 mmol) de  l’aminoèster 7 amb 100 ml de dietil èter en un baló de 250 ml de 

capacitat i proveït d’agitació magnètica. S’hi addicionen 2.3 ml (1.2 eq., 4.5 mmol) de LiBH4 2 M 

en THF i es deixa agitant a 0 oC durant 1 hora sota atmosfera inerta. Al cap d’una hora, s’atura 

la reacció afegint amb molta cura uns 50 ml d’una dissolució saturada de clorur d’amoni,  i es 

deixa reaccionant mitja hora per tal que no quedi gens d’hidrur. A continuació, s’afegeixen 50 ml 

d’aigua i es realitzen tres extraccions de 80 ml d’acetat d’etil. La fase orgànica s’asseca amb 

MgSO4 anhidre i s’evapora al dissolvent fins a sequedat. Per últim, el cru es purifica per 

cromatografia en columna utilitzant una barreja d’ hexà -  acetat d’etil en proporcions 2 a 1 com 

a eluent (Rf =0.27), i s’obtenen 0.76 g  (3.2 mmol) d’alcohol 8 amb un 85% de rendiment. 

Dades espectroscòpiques: 
 RMN 1H (250 MHz, CDCl3): δ 1.75 (m, 1H, H4), 1.97 (m, 2H, H4, H3), 2.31 (m, 1H, H3), 2.71 (m, 1H, 

H2), 3.75 (m, 2H,CH2OH), 4.35 (m, 1H, H1), 5.06 (s, 2H, CH2Ph), 5.65 (s. a., 1H, NH), 7.32 (m, 5H, 

HAr). 

Les dades espectroscòpiques concorden amb les prèviament descrites en: 

A. Gargallo Garriga, Màster en Experimentació Química, UAB, 2010. 

 

4-Metilbenzensulfonat de 2-benziloxicarbonilamino-(1R,2S)-ciclobutan-1-metil (9) 

 

En un baló de 50 ml de capacitat i proveït d’agitació magnètica s’hi addicionen 600 mg (2.6 

mmol) d’alcohol 8, 652 mg (1.3 eq., 3.3 mmol) de clorur de p-toluensulfonil i 100 mg (0.3 eq., 0.8 

mmol) de dimetilaminopiridina. A continuació es posa el baló sota atmosfera de nitrogen i s’hi 

addicionen 0.54 ml (1.5 eq., 3.8 mmol) de trietilamina i 20 ml de CH2Cl2 anhidre. La reacció es 

deixa agitant a temperatura ambient durant tota la nit. L’endemà, s’atura la reacció i s’afegeixen 

100 ml  d’aigua. Seguidament, es realitzen tres extraccions de 60 ml de diclorometà, la fase 

orgànica s’asseca amb MgSO4 anhidre i s’evapora al dissolvent fins a sequedat. Per últim, el 
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cru es purifica per cromatografia en columna utilitzant una barreja d’hexà - acetat d’etil en 

proporcions 3 a 1 com a eluent (Rf = 0.30), i s’obtenen 645 mg  (1.7 mmol) de producte 9 amb 

un rendiment del 65%. 

Dades físiques i espectroscòpiques: 
 P. f.: 62 ± 2 (Hexà : AcOEt)  

 [α]D: - 53.4 (c 1.01, CH2Cl2) 

 IR: 3318.3, 2921.3, 1684.8, 1536.7, 1352.6, 1257.8, 1170.8, 945.6  

 RMN 1H (250 MHz, CDCl3): 1.62 (m, 1H, H4), 1.96 (a.c., 2H, H3, H4), 2.34 (m, 1H, H3), 2.44 (s, 3H, 

H7’), 2.81 (m, 1H, H1), 4.20 (m, 2H, H5), 4.44 (m, 1H, H2), 5.09 (a.c., 3H, 2H7 i NHCbz), 7.37 (m, 5H, 

H9, H10, H11, H12, H13), 7.75 (d, J=11.7, 2H, H3’, H5’), 7.80 (d, J=11.7 Hz, 2H, H2’, H6’). 

 RMN 13C (62.5 MHz, CDCl3): δ 18.2 (C4), 23.0 (C7’), 29.1 (C3), 39.4 (C1), 46.9 (C2), 67.2 (C7) , 70.3 

(C5), 128.3 (C3’, C5’), 128.4 (C11), 128.5 (C2’, C6’), 128.9 (C9, C13), 130.4 (C10, C12), 133.2 (C8), 136.8 

(C4’), 145.3 (C1’) 156.0 (C6) 

 EMAR: [C25 H39 N O4 ] Teòric: 412.1189, Experimental: 412.1187 

 

 
 5.2.2  Ruta del tensioactiu B a partir del 2-(tert-butiloxicarbonilamino)-(1S,2R)-

ciclobutan-1-carboxilat de metil, 15.  

2-Hidroximetil-(1S,2R)-ciclobutan-1-carbamat de tert-butil (16) 

 

Es dissol 1 g (4.4 mmol) de  l’aminoèster 15 en 100 ml de dietil èter en un baló de 250 ml de 

capacitat i proveït d’agitació magnètica. S’hi addicionen 2.6 ml (1.2 eq., 5.2 mmol) de LiBH4 2 M 

en THF i es deixa agitant a 0 ºC durant 3 hores sota atmosfera inerta. Transcorregut aquest 

temps, s’atura la reacció afegint amb molta cura uns 60 ml d’una dissolució saturada de clorur 

d’amoni, i es deixa reaccionant mitja hora per tal que no quedi gens d’hidrur. A continuació, 

s’afegeixen 50 ml d’aigua i es realitzen tres extraccions de 80 ml d’acetat d’etil. La fase orgànica 

s’asseca amb MgSO4 anhidre i s’evapora al dissolvent fins a sequedat. Per últim, el cru es 

purifica per cromatografia en columna utilitzant una barreja d’hexà - acetat d’etil en proporcions 

3 a 1 com a eluent (Rf = 0.24), i s’obtenen 0.67 g (3.3 mmol) d’alcohol 16 amb un 75% de 

rendiment. 
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Dades físiques i espectroscòpiques: 
 P. f.: 80 ± 2 (Hexà : AcOEt) 

 [α]D: - 77.8 (c 1.02, CH2Cl2).  

 IR: 3363.3, 2932.3, 1675.0, 1514.6, 1277.9, 1159.5, 1016.6, 871.1, 783.0  

 RMN 1H (250 MHz, CDCl3): δ 1.46 (s, 9H, tBu), 1.63 (m, 1H, H3), 1.88 (a. c., 2H, H4, H3), 2.36 (m, 

1H, H4), 2.71 (m, 1H, H2), 3.63 (dd, 1H, H5, J=11.3 Hz, J’=4.3 Hz), 3.78 (dd, 1H, H5, J=11.3 Hz, 

J’=4.3 Hz), 3.75 (m, 1H), 4,21 (m, 1H, H1), 5.12 (s. a., 1H, NHBoc). 

 RMN 13C (62.5 MHz, CDCl3): δ 19.1 (C3), 28.0 (C4), 28.7 (CBoc), 41.8 (C2), 48.0 (C1), 62.8 (C5), 80.1 

(C7), 156.9 (C6) 

 EMAR: [C10 H19 N O3 ] Teòric: 224.1257, Experimental: 224.1260 

 

Dodecanoat de 2-tert-butiloxicarbonilamino-(1R,2S)-ciclobutan-1-metil (13) 

 

En un baló de 50 ml de capacitat i proveït d’agitació magnètica s’hi addicionen 300 mg (1.3 

mmol) d’alcohol 16. A continuació es posa el baló sota atmosfera de nitrogen i s’hi addicionen 

15 ml de CH2Cl2 anhidre, 0.27 ml (1.5 eq., 1.9 mmol) de trietilamina i 0.36 ml (1.2 eq., 1.5 mmol) 

de clorur de dodecanoil. Seguidament es munta el reflux, el qual es torna a deixar sota 

atmosfera de nitrogen, s’escalfa la dissolució fins a temperatura de reflux i es deixa refluint tota 

la nit. L’endemà, s’atura el reflux i es deixa refredar fins a temperatura ambient. Seguidament, 

es realitzen tres rentats de 10 ml d’una solució saturada de NaHCO3, i dos rentats més d’una 

solució saturada de NaCl. La fase orgànica s’asseca amb MgSO4 anhidre i s’evapora al 

dissolvent fins a sequedat. El cru de reacció es cromatografia amb CH2Cl2 com a eluent (Rf = 

0.15), i s’obtenen 389 mg  (1 mmol) de 13 amb un rendiment del 68%. 

Dades físiques i espectroscòpiques: 
 P. f.: 45 ± 2 (CH2Cl2). 

 [α]D: - 63.9 (c 0.97, CH2Cl2). 

 IR: 3364.2, 2920.9, 2849.9, 1733.2, 1683.8, 1515.2, 1275.8, 1164.0, 1009.8   

 RMN 1H (360 MHz, CDCl3): δ 0.87 (t, 3H, H12’, J=8.4 Hz), 1.25 (a.c., 16H, H4’, H5’, H6’, H7’, H8’, H9’, 

H10’, H11’), 1.43 (s, 9H, tBu), 1.63 (m, 3H, H4, H3’), 1.92 (m, 2H, H3, H4), 2.33 (a. c., 3H, H2’, H3), 2.81 

(m, 1H, H1), 4.16 (dd, 1H, H5, J=13.8 Hz, J’=7.2 Hz), 4.31 (dd, 1H, H5, J=13.8 Hz, J’=7.2 Hz), 4.30 

(m, 1H, H2), 4.99 (s. a., 1H, NHBoc). 
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 RMN 13C (90 MHz, CDCl3): δ 13.8 (C12’), 17.7 (C4), 22.2 – 31.6 (C3’, C4’, C5’, C6’, C7’, C8’, C9’, C10’, 

C11’), 26.6 (C4),  28.1 (CBoc), 34.1 (C2’),  38,6 (C1), 45.8 (C2), 63.4 (C5), 79.1 (C7), 154.8 (C6), 173.7 

(C1’). 

 EMAR: [C22 H41 N O4 ] Teòric: 406.2928, Experimental: 406.2930 

Clorur de 2-dodecanoiloximetil-(1S,2R)-ciclobutan-1-amoni (14): Tensioactiu B 

 

 

 

En un baló de 25 ml de capacitat i proveït d’agitació magnètica s’hi addicionen 200 mg (0.5 

mmol) de 13. A continuació es posa el baló sota atmosfera de nitrogen i s’hi addicionen 15 ml 

de CH2Cl2 anhidre i 1.56 ml (6 eq., 3.1 mmol) d’àcid clorhídric 2 N en èter. Posteriorment es 

canvia el sèptum per un tap de vidre (evitem que l’àcid clorhídric s’evapori) i es deixa 

reaccionat un dia. Transcorregut aquest temps, es liofilitza la mostra  i es cristal·litza  per 

difusió dissolent-lo en el mínim volum de THF calent i pentà. Finalment es filtra el precipitat i es 

renta amb pentà fred per tal d’obtenir 140 mg (0.43 mmol) d’un sòlid blanc, el qual correspon 

tensioactiu B (producte 14), amb un 84% de rendiment. 

Dades físiques i espectroscòpiques: 
 P. f.: 86 ± 2 (Pentà) 

 [α]D: + 9.6 (c 1.01, MeOH). 

 IR: 3370.8, 2917.7, 2850.0, 1740.7, 1599.5, 1517.1, 1468.4, 1149.3, 1112.4, 722.4 

 RMN 1H (360 MHz, MeOD-d4): δ 0.91 (m, 3H, H12’), 1.30 (a.c., 16H, H4’, H5’, H6’, H7’, H8’, H9’, H10’, 

H11’), 1.63 (m, 2H, H3’), 1.81 (m, 1H, H3), 2.17 (a.c., 2H, H4, H3), 2.39 (a.c., 3H, H2’, H4), 2.95 (m, 1H, 

H2), 3.95 (m, 1H, H1), 4.32 (m, 2H, H5). 

 RMN 13C (90 MHz, MeOD-d4): δ 13.01 (C12’), 17.93 (C3), 22.31 – 29.31 ( C3’, C4’, C5’, C6’, C7’, C8’, 

C9’, C10’, C11’), 31.65 (C4), 33.36 (C2’), 36.40 (C2), 46.61 (C5), 62.27 (C1), 173.77 (C1’). 

 EMAR: [C17 H34 Cl N O2 ] Teòric: 319.2348, Experimental: 319.2346 
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 5.2.3  Ruta del tensioactiu C a partir del 2-hidroximetil-(1S,2R)-ciclobutan-1-

carbamat de tert-butil, 16. 

4-Metilbenzensulfonat de 2-tert-butiloxicarbonilamino-(1R,2S)-ciclobutan-1-metil (17) 

 

En un baló de 50 ml de capacitat i proveït d’agitació magnètica s’hi addicionen 600 mg (3 

mmol) d’alcohol 16, 0.56 g (1.3 eq., 3.9 mmol) de clorur de p-toluensulfonil i 100 mg (0.3 eq., 0.8 

mmol) de dimetilaminopiridina. A continuació es posa el baló sota atmosfera de nitrogen, s’hi 

addicionen 6.3 ml (1.5 eq., 4.5 mmol) de trietilamina i 30 ml de CH2Cl2 anhidre i es deixa la 

reacció agitant a temperatura ambient durant tota la nit. L’endemà, s’atura la reacció i 

s’afegeixen 100 ml d’aigua. Seguidament, es realitzen tres extraccions de 60 ml de diclorometà, 

la fase orgànica s’asseca amb MgSO4 anhidre i s’evapora al dissolvent fins a sequedat. Per 

últim, el cru es purifica per cromatografia en columna utilitzant una barreja d’hexà - acetat d’etil 

en proporcions 6 a 1 com a eluent (Rf = 0.28), i s’obtenen  0.57 g (1.8 mmol) de tosil 17 amb un 

rendiment del 62%. 

Dades físiques i espectroscòpiques: 
 P. f.: 87 ± 2 (Hexà : AcOEt) 

 [α]D: - 102.9 (c 1.05, CH2Cl2).  

 IR: 3311.2, 2976.5, 1691.5, 1512.6, 1361.6, 1174.0, 959.6 

 RMN 1H (360 MHz, CDCl3): δ 1.41 (s, 9H, tBu), 1.58 (m, 1H, H3), 1.88 (a. c., 2H, H4, H3), 2.27 (m, 

1H, H3), 2.45 (s, 3H, H7’), 2.75 (m, 1H, H1), 4.17 (m, 2H, H5), 4.33 (m, 1H, H2),  4.77 (s. a., 1H, 

NHBoc), 7.34 (d, J=11.7 Hz, 2H, H3’, H5’), 7.75 (d, J=11.7 Hz, 2H, H2’, H6’) 

 RMN 13C (90 MHz, CDCl3): δ 17.6 (C4), 21.4 (C7’), 28.0 (CBoc), 28.1 (C3), 38.7 (C1), 45.8 (C2), 69.8 

(C5), 79.1 (C7), 127.6 (C2’, C6’), 129.6 (C3’, C5’), 132.6 (C4’), 144.6 (C1’), 154.8 (C6) 

 EMAR: [C17 H25 N O5 S] Teòric: 378.1346, Experimental: 378.1344 

2-Dodecanamidometil-(1S,2S)-ciclobutan-1-carbamat de tert-butil (20) 

1er pas: Síntesi de l’intermedi azida (18) 
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En un baló de 50 ml de capacitat i proveït d’agitació magnètica s’hi addicionen 0.9 g (2.5 mmol) 

de 17, 0.5 g (3 eq., 7.6 mmol) d’azida sòdica en 30 ml de DMF anhidra i es deixen reaccionar 

durant 3 hores en atmosfera inerta i a 75 oC. S’afegeixen 60 ml d’acetat d’etil i es fan 5 rentats 

de 50 ml d’aigua (5 x 50 ml). Les aigües dels rentats es reextreuen afegint 100 ml d’acetat d’etil 

que es tornen a rentar amb aigua (5 x 50 ml). Tota la fase orgànica s’ajunta, s’asseca amb 

MgSO4 anhidre, es filtra i s’evapora al dissolvent fins a sequedat. Per últim, el cru es purifica per 

cromatografia en columna utilitzant una barreja d’hexà - acetat d’etil en proporcions 6 a 1 com a 

eluent (Rf =0.28), i s’obté un oli groguenc que correspon al producte 18. 

Nota: Mai assecar fins a sequedat l’azida, ja que és potencialment explosiva. Per aquest 

motiu s’ha descrit com intermedi.  

2on pas: Síntesi de l’intermedi amina lliure (19) 

 

En un vas d’hidrogenació proveït d’agitació magnètica es dissol l’azida 18 obtinguda 

anteriorment en la mínima quantitat de THF destil·lat i s’hi afegeixen 200 mg de Pd(OH)2/C. El 

vas d’hidrogenació es carrega amb 7 Kg/cm2 d’hidrogen (6.7 atm) i es deixa agitant durant 5 

hores. Al cap de 5 hores, es filtra el cru de reacció a través de de celite® i es renta amb 20 ml 

de THF. Tot seguit s’evapora el solvent fins a sequedat i s’obté un sòlid blanc, el qual 

s’identifica com l’intermedi 19.  

Nota: Donada la inestabilitat intrínseca del producte, es continua la seqüència sintètica amb 

el cru de la reacció sense purificar-lo.   

3er pas: Síntesi del 2-dodecanamidometil-(1S,2S)-ciclobutan-1-carbamat de tert-butil (20) 

 

En un baló de 100 ml de capacitat i proveït d’agitació magnètica s’hi addicionen  0.44 g (1.3 

mmol) d’amina lliure 19. A continuació es posa el baló sota atmosfera de nitrogen i s’hi 

addicionen 15 ml de CH2Cl2 anhidre, 0.27 ml (1.5 eq., 1.9 mmol) de trietilamina i 0.36 ml (1.2 
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eq., 1.5 mmol) de clorur de dodecanoil. Es tapa el baló amb paper de plata per tal d’evitar que 

l’amina lliure es malmeti i es deixa la dissolució agitant a temperatura ambient durant tota la nit. 

L’endemà, s’atura el reflux i es deixa refredar fins a temperatura ambient. Seguidament, es 

realitzen tres rentats de 10 ml d’una dissolució saturada de NaHCO3, i dos rentats més amb 

d’una dissolució saturada de NaCl. La fase orgànica s’asseca amb MgSO4 anhidre i s’evapora 

al dissolvent fins a sequedat. El cru de reacció es renta amb pentà per tal d’obtenir 645 mg  (1.7 

mmol) de 12 amb un rendiment del 66%. 

Dades físiques i espectroscòpiques: 
 P. f.: 102 ± 2 (Pentà). 

 [α]D: - 40.2 (c 1.01, CH2Cl2). 

 IR: 3342.7, 2918.7, 2850.4, 1679.1, 1639.6, 1516.6, 1277.3, 1166.3 

 RMN 1H (360 MHz, CDCl3): δ 0.89 (t, 3H, H12’, J=5.7 Hz), 1.25 (a.c., 16H, H4’, H5’, H6’, H7’, H8’, H9’, 

H10’, H11’), 1.44 (s, 9H, tBu), 1.61 (a.c., 3H, H3, H3’), 1.80 (m, 1H, H4), 1.92 (m, 1H, H3), 2.13 (t., 2H, 

H2’, J=6.3 Hz), 2.36 (m, 1H, H4), 2.59 (m, 1H, H2), 3.15 (m, 1H, H5), 3.52 (m, 1H, H5) 4.17 (m, 1H, 

H1)  4.99 (s. a., 1H, NHBoc), 6.12 (s. a., 1H, NH-C=O). 

 RMN 13C (90 MHz, CDCl3): δ 14.1 (C12’), 20.1 (C3), 26.6 (C4), 22.7 – 29.6 (C2’, C3’, C4’, C5’, C6’, C7’, 

C8’, C9’, C11’), 28.4 (CBoc), 36.9 (C10’), 39.1 – 40.0 (C2, C5), 47.2 (C1), 79.7 (C7), 156.2 (C6), 172.3 

(C1’). 

 EMAR: [C22 H42 N2 O3] Teòric: 405.3088, Experimental: 405.3088 

Clorur de 2-dodecanamidometil-(1S,2R)-ciclobutan-1-amoni (21): Tensioactiu C 

 

En un baló de 25 ml de capacitat i proveït d’agitació magnètica s’hi addicionen 200 mg (0.5 

mmol) de 20. A continuació es posa el baló sota atmosfera de nitrogen i s’hi addicionen 15 ml 

de CH2Cl2 anhidre i 1.56 ml (6 eq., 3.1 mmol) d’àcid clorhídric 2 N en èter. Posteriorment es 

canvia el sèptum per un tap de vidre (evitem que l’àcid clorhídric s’evapori) i es deixa 

reaccionant un dia. Transcorregut aquest temps, s’evapora el dissolvent fins a sequedat, es 

liofilitza la mostra i es cristal·litza dissolent el sòlid en la mínima quantitat de THF calent i 

deixant-lo refredar dins d’un bany de pentà. Finalment es filtra el precipitat i es renta amb pentà 

fred per tal d’obtenir 103 mg (0.3 mmol) d’un sòlid blanc, el qual correspon tensioactiu C 

(producte 21), amb un 64% de rendiment. 
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 Dades físiques i espectroscòpiques: 
 P. f.: 99 ± 2 (Pentà) 

 [α]D:  + 8.7 (c 1.05, MeOH). 

 IR: 3342.74, 2918.68, 2850.35, 1679.09, 1639.62, 1516.62, 1277.33, 1166.33 

 RMN 1H (360 MHz, MeOD-d4): δ 0.91 (m, 3H, H12’), 1.30 (a.c., 16H, H4’, H5’, H6’, H7’, H8’, H9’, H10’ 

H11’), 1.61 (m, 2H, H3’), 1.98 (a. c., 2H, H3, H4), 2.09 (m, 1H, H3), 2.23 (t, 2H, H2’, J=6.3 Hz), 2.39 (m, 

1H, H4), 2.79 (m, 1H, H1), 3.16 (m, 1H, H5), 3.44 (m, 1H, H5) 3.75 (m, 1H, H1). 

 RMN 13C (90 MHz, MeOD-d4): δ 13.0 (C12’), 20.2 (C3), 22.3 (C4), 22.7 – 29.6 (C3’, C4’, C5’, C6’, C7’, 

C8’, C9’, C10’, C11’), 35.5 (C2’), 37.8 – 38.6 (C2, C5), 47.2 (C1), 176.2 (C1’). 

 EMAR: [C17 H35 Cl N2 O] Teòric: 283.2744, Experimental: 283.2745 

 

 
5.2.4 Ruta del tensioactiu D a partir de l’àcid 2-tert-butoxicarbonil-(1R,2S)-

ciclobutan-1-carboxílic, 23. 
 

2-Hidroximetil-(1S,2R)-ciclobutan-1-carboxilat de tert-butil  (24) 

 

En un baló de 250 ml de capacitat i proveït d’agitació magnètica s’hi addicionen 1.4 g (6.9 

mmol) d’àcid 23. A continuació es posa el baló sota atmosfera de nitrogen, s’hi addicionen 70 ml 

de THF anhidre i 10.48 ml (1.5 eq., 10.5 mmol) de B2H6 1 M en THF i es deixa reaccionant 

durant dues hores a 0 oC. Posteriorment es treu el bany de gel i es controla la reacció per capa 

prima fins que tot l’àcid s’hagi reduït. S’atura la reacció afegint amb molta cura uns 50 ml d’una 

dissolució saturada de clorur d’amoni, i es deixa reaccionant mitja hora per tal que no quedi 

gens d’hidrur. A continuació, s’afegeixen 50 ml d’aigua i es realitzen quatre extraccions de 80 ml 

d’acetat d’etil. La fase orgànica s’asseca amb MgSO4 anhidre i s’evapora al dissolvent fins a 

sequedat. Per últim, el cru es purifica per cromatografia en columna utilitzant una barreja d’ 

hexà - acetat d’etil en proporcions 2 a 1 com a eluent (Rf =0.27), i s’obtenen 0.85 g  (3.3 mmol) 

d’un oli groguenc (alcohol 24) amb un rendiment del 63%. 

Dades físiques i espectroscòpiques: 
 [α]D: -21.7 (c 1.01, CH2Cl2). 

 IR: 3410.7, 2938.2, 2868.7, 1719.9, 1699.6, 1456.4, 1366.4, 1152.1, 631,6 

 RMN 1H (250 MHz, CDCl3 ): δ  1.42 (s, 9H, OtBu), 1.68 (m, 1H, H3), 1.99 (a. c., 2H, H3, H4), 2.23 (m, 

1H, H3), 2.73 (m, 1H, H2), 3.02 (a. c., 1H, OH), 3.16 (m, 1H, H1,), 3.58 (m, 1H, H5), 3.71 (m, 1H, H5). 
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 RMN 13C (62.5 MHz, CDCl3): δ 21.3 (C3), 22.1 (C4), 28.7 (CBoc), 40.1 (C2), 41.2 (C1), 64.1 (C5), 80.3 

(C7), 174.6 (C6). 

 EMAR: [C10 H18 O3 ] Teòric: 209.1148, Experimental: 209.1152 

 

2-Tosiloximetil-(1R,2S)-ciclobutan-1-carboxilat de tert-butil  (25) 

 

En un baló de 50 ml de capacitat i proveït d’agitació magnètica s’hi addicionen 620 mg (3.3 

mmol) d’alcohol 24, 0.85 g (1.3 eq., 4.3 mmol) de clorur de p-toluensulfonil i 100 mg ( 0.2 eq, 0.8 

mmol) de dimetilaminopiridina. A continuació es posa el baló sota atmosfera de nitrogen i s’hi 

addicionen 0.7 ml (1.5 eq., 5 mmol) de trietilamina i 30 ml de CH2Cl2 anhidre. La reacció es 

deixa agitant a temperatura ambient durant tota la nit. L’endemà, s’atura la reacció, s’afegeixen 

100 ml d’aigua, es realitzen tres extraccions de 60 ml de diclorometà, la fase orgànica s’asseca 

amb MgSO4 anhidre i s’evapora al dissolvent fins a sequedat. Per últim, el cru es purifica per 

cromatografia en columna utilitzant una barreja d’hexà - acetat d’etil en proporcions 3 a 1 com a 

eluent (Rf = 0.30), i s’obtenen  0.87 g  (2.6 mmol) d’un oli (producte 25) amb un rendiment del 

77%. 

Dades físiques i espectroscòpiques: 
 [α]D: + 223.6 (c 1.03, CH2Cl2). 

 IR: 2979.3, 1721.17, 1600.6, 1367.0, 1178.5, 960.4, 634.2 

 RMN 1H (360 MHz, CDCl3): δ 1.41 (s, 9H, tBu), 1.72 (m, 1H, H3), 2.02 (a. c., 2H, H4, H3), 2.23 (m, 1H, 

H3), 2.44 (s, 3H, H7’), 2.88 (m, 1H, H1), 3.16 (m, 1H, H2),  4.13 (dd, 1H, H5, J=10.5 Hz, J’=7.2 Hz), 4.21 

(dd, 1H, H5, J=10.5 Hz, J’=7.2 Hz), 7.34 (d, J=11.7 Hz, 2H, H3’, H5’), 7.75 (d, J=11.7 Hz, 2H, H2’, H6’) 

 RMN 13C (90 MHz, CDCl3): δ 21.3 – 23.8 (C4, C7’, C3), 28.01 (CBoc), 35.6 (C1), 39.8 (C2), 70.5 (C5), 

80.7 (C7), 127.6 (C2’, C6’), 129.5 (C3’, C5’), 132.6 (C4’), 144.4 (C1’), 172.2 (C6) 

 EMAR: [C17 H25 N O5 S] Teòric: 363.1237, Experimental: 363.1239 
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2-Dodecanamidometil-(1S,2R)-ciclobutan-1-carboxilat de tert-butil (28) 

1er pas: Síntesi de l’intermedi azida (26) 

 

En un baló de 50 ml de capacitat i proveït d’agitació magnètica s’hi addicionen 0.84 g (2.4 

mmol) de 17, 0.48 g (3 eq., 7.4 mmol) d’azida sòdica en 30 ml de DMF anhidra i es deixen 

reaccionar durant 3 hores sota atmosfera inerta i a 75 oC. Transcorregut el temps de reacció, 

s’atura la reacció, s’afegeixen 60 ml d’acetat d’etil i es fan 5 rentats de 50 ml d’aigua (5 x 50 ml). 

Les aigües dels rentats es reextreuen afegint 100 ml d’acetat d’etil que es tornen a rentar amb 

aigua (5 x 50ml). Tota la fase orgànica s’ajunta, s’asseca amb MgSO4 anhidre, es filtra i 

s’evapora al dissolvent fins a sequedat. Per últim, el cru es purifica per cromatografia en 

columna utilitzant una barreja d’ hexà - acetat d’etil en proporcions 6 a 1 com a eluent (Rf = 

0.44), i s’obté un oli grogrenc que correspon al producte 26. 

Nota: Mai assecar fins a sequedat l’azida, ja que és  potencialment explosiva. Per aquest 

motiu s’ha descrit com intermedi.  

2on pas: Síntesi de l’intermedi amina lliure (27) 

 

En un vas d’hidrogenació proveït d’agitació magnètica es dissolt l’azida 26 obtinguda 

anteriorment en la mínima quantitat de THF destil·lat i s’hi afegeix un 20% en pes de Pd(OH)2/C 

(104 mg). El vas d’hidrogenació es carrega amb 2 Kg/cm2 d’hidrogen (1.9 atm) i es deixa 

agitant durant 3 hores. Al cap de 5 hores, es filtra el cru de reacció a través de de celite® i es 

renta amb 30 ml de metanol. Tot seguit s’evapora el solvent fins a sequedat i s’obté un sòlid 

blanc, el qual s’identifica com l’intermedi 27.  

Nota: Donada la inestabilitat intrínseca del producte, es continua la seqüència sintètica amb 

el cru de la reacció sense purificar-lo.   
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3er pas: Síntesi del 2-dodecanamidometil-(1S,2R)-ciclobutan-1-carboxilat de tert-butil (28) 

 

En un baló de 100 ml de capacitat i proveït d’agitació magnètica s’hi addicionen  0.1 g 

d’amina lliure 27. A continuació es posa el baló sota atmosfera de nitrogen i s’hi addicionen 10 

ml de CH2Cl2 anhidre, 0.16 ml (1.5 eq., 1.9 mmol) de trietilamina i 0.12 ml (1.2 eq., 1.5 mmol) de 

clorur de dodecanoil. Es tapa el baló amb paper de plata per tal d’evitar que l’amina lliure es 

malmeti i es deixa la dissolució agitant a temperatura ambient durant tota la nit. L’endemà, 

s’atura el reflux, s’adiccionen 15 ml de CH2Cl2 i es deixa refredar fins a temperatura ambient. 

Seguidament, es realitzen tres rentats de 10 ml d’una dissolució saturada de NaHCO3, i dos 

rentats més amb d’una dissolució saturada de NaCl. La fase orgànica s’asseca amb MgSO4 

anhidre i s’evapora al dissolvent fins a sequedat. El cru es purifica per cromatografia en 

columna utilitzant una barreja de CH2Cl2 - MeOH en proporcions 200 a 1 com a eluent (Rf = 

0.21). Per últim es dissol l’oli obtingut en la mínima quantitat de pentà calent i deixant-lo refredar 

dins del congelador. S’obtenen 100 mg d’un sòlid blanc (producte 28) amb un rendiment del 

51%.   

Dades físiques i espectroscòpiques: 
 P. f.:  55 ± 2 (Pentà). 

 [α]D: + 10.7 (c 1.06, CH2Cl2). 

 IR: 3327.7, 2916.0, 2848.6, 1715.0, 1644.2, 1543.8, 1365.6, 1152.6 

 RMN 1H (250 MHz, CDCl3): δ 0.90 (t, 3H, H12’), 1.28 (a.c., 16H, H4’, H5’, H6’, H7’, H8’, H9’, H10’, H11’), 

1.51 (s, 9H, tBu), 1.64 (m, 2H, H3’), 1.75 (a.c., 1H, H3), 2.07 (a.c., 2H, H3, H4), 2.18 (a.c., 3H, H2’, H4), 

2.80 (m, 1H, H2), 3.19 (a.c., 2H, H1, H5), 3.56 (m, 1H, H5), 6.10 (s. a., 1H, NH-C=O). 

 RMN 13C (62.5 MHz, CDCl3): δ 14.6 (C12’), 21.7 – 32.9 (C3, C4, C2’, C3’, C4’, C5’, C6’, C7’, C8’, C9’, 

C11’), 28.7 (CBoc), 37.6 – 38.2 (C2’, C2), 41.5 – 41.8 (C1, C5), 81.5 (C7), 173.4 (C1’). 174.4 (C6), 

 EMAR: [C22 H41 N O3] Teòric: 390.2979, Experimental: 390.2981 
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Àcid 2-dodecanamidometil-(1S,2R)-ciclobutan-1-carboxílic (29) 

 

En un baló de 25 ml de capacitat i proveït d’agitació magnètica s’hi addicionen 90 mg (0.2 

mmol) de 28. A continuació es posa el baló sota atmosfera de nitrogen i s’hi addicionen 5 ml de 

CH2Cl2 anhidre, 0.25 ml (13 eq., 3.8 mmol) d’àcid trifluoroacètic i 0.10 ml (2.5 eq., 0.6 mmol) de 

trietilsilà. Posteriorment es canvia el sèptum per un tap de vidre i es deixa reaccionat  durant 

una nit. Transcorregut aquest temps,  es rotavapora fins a sequedat i es liofilitza la mostra per 

tal d’obtenir 74 mg (0.2 mmol) d’un sòlid blanc, el qual correspon a l’àcid 29, amb un rendiment 

quantitatiu. 

Dades físiques i espectroscòpiques: 
 P. f.: 48 ± 2 (CH2Cl2). 

 [α]D: + 19.0 (c 1.10, CH2Cl2). 

 IR: 3309.7, 2919.8, 2850.5, 1739.6, 1702.9, 1652.8, 1543.4, 1174.3, 703.3 

 RMN 1H (250 MHz, CDCl3): δ 0.90 (t, 3H, H12’, J=6.8 Hz), 1.27 (a.c., 16H, H4’, H5’, H6’, H7’, H8’, H9’, 

H10’, H3’), 1.61 (m, 2H, H3’), 1.81 (m, 1H, H3), 2.12 (a.c., 2H, H3, H4), 2.21 (t., 2H, H2’, J=6.7 Hz), 2.35 

(m, 1H, H4), 2.90 (m, 1H, H2), 3.29 (m, 1H, H5), 3.46 (a.c., 2H, H5, H1), 6.36 (s. a., 1H, NH-C=O), 

7.61 (s. a., 1H, HO-C=O). 

 RMN 13C (62.5 MHz, CDCl3): δ 14.5 (C12’), 20.3 (C3), 23.1 (C4), 26.2 – 32.3 (C3’, C4’, C5’, C6’, C7’, 

C8’, C9’, C10’, C11’), 37.0 (C2’), 38.0 (C2), 40.68 (C5), 41.7 (C1), 176.0 (C1’), 176.6 (C6). 

 EMAR: [C18 H33 N O3] Pendent de determinar. 
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6. Annex 

6.1. Rutes prèviament descrites al grup de recerca  

6.1.1 Ruta per a l’obtenció de l’àcid 2-metoxicarbonil-(1S, 2R)-ciclobutan-1-

carboxílic (5) a partir de l’etilè (1) i de l’anhídrid maleic (2). 

Anhídrid ciclobutan-1,2-dicarboxilic (3) 

 

En un reactor de vidre pyrex de 1000 ml de capacitat proveït d’agitació magnètica es 

dissolen 1.5 g (15.3 mmol) d’anhídrid maleic en 500 ml d’acetona. Es refreda el reactor posant-

lo en un bany de metanol a - 50 oC i fent circular metanol a - 25 oC a través de la camisa de 

refrigeració. Quan el metanol que circula per la camisa del reactor arriba a la temperatura 

esmentada anteriorment, es satura el sistema bombollejant etilè durant 10 minuts. 

Seguidament s’irradia el sistema durant 20 minuts procurant que la temperatura del metanol no 

superi els -15 oC.  

Quan han transcorregut els 20 minuts, s’apaga la làmpada de mercuri i es deixa refredar el 

reactor fins a la temperatura inicial. Seguidament es torna a repetir el procediment de 

bombolleig i s’irradia durant 45 minuts. Transcorregut aquest temps, es deixa refredar el 

sistema i s’addiciona 1.5 g (15.3 mmol) més d’anhídrid maleic. Es torna a repetir el mateixos 

procediments de bombolleig i radiació, els quals s’han explicat anteriorment. Quan s’ha realitzat 

la segona radiació de 45 minuts, es deixa que el reactor agafi temperatura ambient, es 

transvasa la dissolució en un baló i s’evapora el dissolvent fins a sequedat.  

Finalment s’obtenen  3.85 g (30.5 mmol) de producte 3 (rendiment quantitatiu), com a  sòlid 

blanc. 

Dades espectroscòpiques: 

 RMN 1H (250 MHz, CDCl3): δ 2.35 (m, 2H, H3, H4), 2.74 (m, 2H, H3, H4), 3.52 (m, 2H, H1, H2). 

Les dades espectroscòpiques concorden amb les prèviament descrites en: 

S. Izquierdo, F. Rúa, A. Sbai, T. Parella, A. Álvarez-Larena, V. Branchadell, R. M. Ortuño, J. Org. Chem. 2005, 70, 

7963. 
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Ciclobutan-1,2-dicarboxilat de dimetil (4) 

 

En un baló de 250 ml de capacitat es dissolen 3.85 g (30.5 mmol) de 3 en 100 ml de 

metanol. Seguidament s’afegeixen 2 ml de H2SO4 i es deixa la solució agitant a temperatura 

ambient durant tota la nit. Transcorregut el temps de reacció, s’evaporen 80 ml de MeOH i 

s’addicionen 150 ml de CH2Cl2. Seguidament es fan tres rentats amb una solució aquosa 

saturada de NaHCO3 (3 x 50 ml) i dos rentats amb una solució aquosa saturada de NaCl (2 x 50 

ml). La fase orgànica s’asseca amb MgSO4, es filtra i s’evapora el dissolvent fins a sequedat. El 

cru de reacció es purifica per destil·lació de pas curt a 150 oC i a 30 mmHg  per tal d’obtenir 

4.52 g (26.3 mmol) d’un oli incolor (producte 4) amb un rendiment del 82%. 

Dades espectroscòpiques: 

 RMN 1H (250 MHz, CDCl3): δ 2.19 (m, 2H, H3, H4), 2.10 (m, 2H, H3, H4), 3.31 (m, 2H, H1, H2), 3.58 

(s, 6H, Me). 

Les dades espectroscòpiques concorden amb les prèviament descrites en: 

S. Izquierdo, F. Rúa, A. Sbai, T. Parella, A. Álvarez-Larena, V. Branchadell, R. M. Ortuño, J. Org. Chem. 2005, 70, 

7963. 

 

Àcid 2-metoxicarbonil-(1S, 2R)-ciclobutan-1-carboxílic (5) 

 

En un erlenmeyer de 250 ml de capacitat proveït d’agitació magnètica es dissolen 3.6 g (21 

mmol) de 4, en 250 ml d’una solució tampó preparada a partir de KH2PO4 0.1 M a pH = 7 i 

s’addicionen 98 mg de Pig Liver Esterase. Es deixa la solució agitant a temperatura ambient 

durant 7 hores i es van controlant el pH de la solució amb un pH-metre mantenint-ho neutre 

mitjançant l’addició d’una solució aquosa bàsica de NaOH 1 M. Un cop transcorregut el temps 

de reacció s’acidifica la fase aquosa amb HCl 2 M fins a pH=2 i es fan extraccions amb acetat 

d’etil (4 x 100 ml). Finalment s’asseca la fase orgànica amb MgSO4, es filtra i s’evapora el 
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dissolvent fins sequedat per tal d’obtenir 3.2 g de l’hemièster 5 amb rendiment quantitatiu i un 

excés enantiomèric del 97%. 

Dades espectroscòpiques: 

 RMN 1H (250 MHz, CDCl3): δ 2.23 (m, 2H, H3, H4), 2.41 (m, 2H, H3, H4), 3.43 (m, 2H, H1, H2), 3.69 

(s, 3H, Me). 

Les dades espectroscòpiques concorden amb les prèviament descrites en: 

S. Izquierdo, F. Rúa, A. Sbai, T. Parella, A. Álvarez-Larena, V. Branchadell, R. M. Ortuño, J. Org. Chem. 2005, 70, 

7963. 

 

6.1.2 Ruta per a l’obtenció del 2-benziloxicarbonilamino-(1R,2S)-ciclobutan-1-

carboxilat de metil (7) i del 2-tert-butiloxicarbonilamino-(1R,2S)-ciclobutan-1-carboxilat 

de metil (15) a partir del producte (5). 

2-Benziloxicarbonilamino-(1R,2S)-ciclobutan-1-carboxilat de metil (7) 

1er pas: Formació de l’acil azida 

 

En un baló de 250 ml de capacitat i proveït d’agitació magnètica s’hi addicionen 1.5 g (9.5 

mmol) de 5 i es posen sota atmosfera de nitrogen. A continuació, es dissolen en 90 ml 

d’acetona anhidra, s’hi addicionen 1.20 ml (1.3 eq., 12.3 mmol) de cloroformiat d’etil i 1.73 ml 

(1.3 eq., 12.3 mmol) de trietilamina i es deixa agitant a uns 0 ºC durant 30 minuts. 

Posteriorment, s’hi addicionen 1.46 g (2.5 eq., 23.7 mmol) de NaN3, dissolts prèviament en 45 

ml d’aigua, i es deixa agitant a temperatura ambient durant dues hores més. Transcorregut el 

temps de reacció, s’afegeixen 55 ml d’aigua i es realitzen tres extraccions de 50 ml de CH2Cl2. 

La fase orgànica s’asseca amb MgSO4 anhidre i s’evapora al dissolvent procurant no fer-ho a 

sequedat, ja que les acilazides són productes potencialment explosius, per tal d’obtenir 

l’acilazida 6. 
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2on pas: Formació del 2-benziloxicarbonilamino-(1R,2S)-ciclobutan-1-carboxilat de metil 

(7) 

 

En un baló de 250 ml de capacitat, proveït d’agitació magnètica i refrigerant de reflux, es 

dissol l’acilazida 6 obtinguda en al pas anterior en 90 ml de toluè anhidre, s’hi addicionen 2.58 

ml (2.6 eq., 24.6 mmol) d’alcohol benzílic, s’escalfa fins a 150 oC  i es deixa en reflux durant tota 

la nit. Passat aquest temps, s’evapora el dissolvent fins a sequedat i el líquid marronós  es 

destil·la a 120 oC i 30 mmHg per tal de treure l’excés d’alcohol benzílic. Una altra manera 

d’eliminar l’excés d’alcohol benzílic és liofilitzar la mostra. Finalment, el cru es purifica per 

cromatografia en columna utilitzant una barreja d’hexà - acetat d’etil en proporcions 6 a 1 com a 

eluent (RF=0.21), obtenint 1.62 g (6.2 mmol) de 8 amb un 65% de rendiment.  

Dades espectroscòpiques: 

 RMN 1H (250 MHz, CDCl3): δ 1.97 (m, 2H, H4, H3), 2.18 - 2.43 (m, 2H, H4, H3), 3.39 (m, 1H, H2), 

3.66 (s, 3H, Me), 4.46 (m, 1H, H1), 5.08 (s, 2H, CH2Ph), 5.64 (s. a., 1H, NHCbz), 7.34 (m, 5H, HAr). 

Les dades espectroscòpiques concorden amb les prèviament descrites en: 

M.Martín-Vilà, E. Muray, G. P. Aguado, A. Alvarez-Larena, V. Branchadell, C. Minguillón, E. Giralt, R. M. Ortuño, 

Tetrahedron: Asymmetry 2000, 11, 3569. 

 

2-tert-Butiloxicarbonilamino-(1R,2S)-ciclobutan-1-carboxilat de metil (15) 

Mètode A 

 

En un recipient hidrogenador proveït d’agitació magnètica es dissolen 1.5 g ( 5.7 mmol) de 7 

en la mínima quantitat d’acetat d’etil. Seguidament s’afegeixen  2.7 ml (2 eq., 11.4 mmol) de 

dicarbonat de ditert-butil i 300 mg de Pd(OH)2/C (20 % en pes). Es deixa la solució agitant a 

temperatura ambient durant 12 hores a 8 atm de pressió d’hidrogen.  
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Passat aquest temps, es filtra el cru de reacció a través de celite® i es renta amb força 

quantitat d’acetat d’etil. Tot seguit s’evapora el solvent fins a sequedat i s’obté un sòlid blanc. El 

cru es purifica per cromatografia en columna utilitzant una barreja d’hexà - acetat d’etil en 

proporcions 6 a 1 com a eluent (RF=0.23). S’obtenen 0.93 g d’un sòlid blanc que s’identifica com 

a 15, amb un 76% de rendiment. 

Mètode B 

 

En un baló de 250 ml de capacitat, proveït d’agitació magnètica i refrigerant de reflux, es 

dissol sota una atmosfera inerta l’acilazida obtinguda a partir de 1.5 g (9.5 mmol) de 5, en  55 ml 

de tert-butanol. El sistema s’escalfa fins a 100 oC  i es deixa en reflux durant tota la nit. Passat 

aquest temps, s’evapora el dissolvent fins a sequedat i el cru es purifica per cromatografia en 

columna utilitzant una barreja d’hexà - acetat d’etil en proporcions 4 a 1 com a eluent (RF=0.32), 

obtenint 1.3 g (5.7 mmol) de 15 amb un 60% de rendiment.  

Dades espectroscòpiques: 

 RMN 1H (250 MHz, CDCl3): δ 1.38 (s, 9H, tBu), 1.87-1.97 (a.c., 2H, H3, H4), 2.25 (a.c., 2H, H3, H4), 

3.35 (m, 1H, H2), 3.67 (s, 3H, Me), 4.41 (m, 1H, H2), 5.33 (s.a., 1H, NHBoc).  

Les dades espectroscòpiques concorden amb les prèviament descrites en: 

S. Izquierdo, F. Rúa, A. Sbai, T. Parella, A. Álvarez-Larena, V. Branchadell, R. M. Ortuño J. Org. Chem. 2005, 70, 

7693.   

 

6.1.3 Ruta per a l’obtenció de l’àcid 2-tert-butoxicarbonil-(1R,2S)-ciclobutan-1-

carboxílic (23) a partir del producte (5). 

1-tert-Butil-2-metil-(1S,2R)-ciclobutan-1,2-carboxílic (22) 
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En un baló de 100 ml de capacitat i proveït d’agitació magnètica s’hi addicionen 1.60 g (10.1 

mmol) d’hemiester 5. A continuació es posa el baló sota atmosfera de nitrogen, s’hi addicionen 

50 ml de CH2Cl2 anhidre i 3.6 ml (2 eq., 20.2 mmol) de 2,2,2-tricloroacetimidat de tert-butil, i es 

deixa reaccionant tota la nit. L’endemà s’atura la reacció, s’evapora el dissolvent fins a sequedat 

i el cru es purifica per cromatografia en columna utilitzant una barreja d’hexà - acetat d’etil en 

proporcions 3 a 1 com a eluent (Rf =0.29). S’obtenen  3.12 g  (14.6 mmol) de producte 22 amb 

un rendiment del 73%. 

Dades espectroscòpiques: 

 RMN 1H (250 MHz, CDCl3): δ 1.43 (s, 9H, OtBu), 2.16 (c.a., 2H, H3, H4), 2.35 (c.a., 2H, H3, H4), 3.32 

(c.a, 2H, H1, H2), 3.68 (s, 3H, OMe). 

Les dades espectroscòpiques concorden amb les prèviament descrites en: 

Izquierdo, S; Martín-Vilà M.; Moglioni, A. G.; Branchadell, V.; Ortuño, R. M., Tetrahedron: Asymmetry 2002, 13, 2403-

2405. 

Àcid 2-tert-butoxicarbonil-(1R,2S)-ciclobutan-1-carboxílic (23) 

 

En un baló de 250 ml de capacitat i proveït d’agitació magnètica es dissolen 1.5 g (7 mmol) 

de 22 en 40 ml de THF/H2O amb una relació de 1 a 10.  A continuació es posa el baló en un 

bany de gel i es deixa agitant durant 3 hores. Transcorregut aquest temps, s’acidifica la 

dissolució amb HCl 1 M fins a pH 2, i es realitza quatre extraccions amb 80 ml d’acetat d’etil 

cadascuna. S’asseca la fase orgànica amb MgSO4 i s’evapora el dissolvent fins a sequedat per 

obtenir 1.33 g (6.7 mmol)  d’un oli de color groc, el qual s’identifica com l’àcid 23, amb un 

rendiment quantitatiu.  

Dades espectroscòpiques: 

 RMN 1H (250 MHz, CDCl3): δ 1.46 (s, 9H, OtBu), 2.22 (c.a., 2H, H3, H4), 2.38 (c.a., 2H, H3, H4), 3.38 

(c.a, 2H, H1, H2). 

Les dades espectroscòpiques concorden amb les prèviament descrites en: 

Izquierdo, S; Martín-Vilà M.; Moglioni, A. G.; Branchadell, V.; Ortuño, R. M., Tetrahedron: Asymmetry 2002, 13, 2403-

2405. 
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6.1.5 Ruta alternativa per a la síntesi del producte (13) a partir del producte (8). 

Dodecanoat de 2-benziloxicarbonilamino-(1R,2S)-ciclobutan-1-metil (12) 

 

En un baló de 50 ml de capacitat i proveït d’agitació magnètica s’hi addicionen 300 mg (1.3 

mmol) d’alcohol 8. A continuació es posa el baló sota atmosfera de nitrogen i s’hi addicionen 15 

ml de CH2Cl2 anhidre, 0.27 ml (1.5 eq., 1.9 mmol) de trietilamina i 0.36 ml (1.2 eq., 1.5 mmol) de 

clorur de dodecanoil. S’escalfa la solució fins a temperatura de reflux i es deixa refluint tota la 

nit. L’endemà, s’atura el reflux i es deixa refredar fins a temperatura ambient. Seguidament, es 

realitzen tres rentats de 10 ml d’una solució saturada de NaHCO3, i dos rentats més amb d’una 

solució saturada de NaCl. La fase orgànica s’asseca amb MgSO4 anhidre i s’evapora al 

dissolvent fins a sequedat. El cru de reacció es cromatografia amb CH2Cl2 com a eluent, i 

s’obtenen 645 mg  (1.7 mmol) de 12 amb un rendiment del 60%. 

Dades físiques i espectroscòpiques: 

 P. f.: 10 ± 2 (CH2Cl2) 

 [α]D: -53.6 (c 1.07, CH2Cl2)  

 IR:  3329.1, 2922.7, 2852.8, 1729.0, 1530.8, 1465.8, 1256.2, 632.8 

 RMN 1H (250 MHz, CDCl3): δ 0.90 (t, 3H, H12’, J=6.8 Hz), 1.27 (a.c., 16H, H4’, H5’, H6’, H7’, H8’, H9’, 

H10’, H11’), 1.61 (a.c., 3H, H4, H3’), 1.96 (a.c., 2H, H4, H3), 2.28 (a.c., 3H, H2’, H3), 2.83 (m, 1H, H1), 

4.15 (m, 1H, H5), 4.39 (a.c., 2H, H5, H1)  5.10 (a.c., 3H, NHCbz, H7), 7.34 (m, 5H, H9, H10, H11, H12, 

H13). 

 RMN 13C (62.5 MHz, CDCl3): δ 13.8 (C12’), 17.6 (C4), 22.4 – 29.4 (C3’, C4’, C5’, C6’, C7’, C8’, C9’, C11’), 

31.6 (C3), 34.1 (C2’), 38.6 (C1), 46.2 (C2), 63.3 (C5), 66.4 (C6), 113.8 (C9, C13), 127.8 (C11), 127,8 

(C10, C12), 136.2 (C8), 155.2 (C6), 173.6 (C1’). 

 EMAR: [C25 H39 N O4 ] Teòric: 440.2771, Experimental: 440.2771. 

NHCbz

O

O

12

NHCbz

OH
O

8

CH2Cl2 anhidre

Cl 10 ,   Et3N



Annex 
 

39 

Dodecanoat	
  de	
  2-­‐tert-­‐butiloxicarbonilamino-­‐(1R,2S)-­‐ciclobutan-­‐1-­‐metil	
  (13).	
  

	
  

En un recipient hidrogenador proveït d’agitació magnètica es dissolen 250 mg (0.6 mmol) de 

12 en la mínima quantitat d’acetat d’etil. Seguidament s’afegeixen 0.28 ml (2 eq., 1.2 mmol) de 

dicarbonat de ditert-butil i 50 mg de Pd(OH)2/C (20 % en pes). Es deixa la solució agitant a 

temperatura ambient durant 12 hores a 8 atmosferes de pressió d’hidrogen.  

Passat aquest temps, es filtra el cru de reacció a través de celite® i es renta amb força 

quantitat d’acetat d’etil. Tot seguit s’evapora el solvent fins a sequedat i s’obté un oli groguenc. 

El cru es purifica per cromatografia en columna utilitzant una barreja d’hexà - acetat d’etil en 

proporcions 4 a 1 com a eluent. S’obtenen 195 mg (0.5 mmol) d’un sòlid blanc, el qual 

s’identifica com a producte 13, amb un 80% de rendiment.  

Dades físiques i espectroscòpiques: 
 P. f.: 45 ± 2 (CH2Cl2). 

 [α]D: - 63.9 (c 0.97, CH2Cl2). 

 IR: 3364.2, 2920.9, 2849.9, 1733.2, 1683.8, 1515.2, 1275.8, 1164.0, 1009.8   

 RMN 1H (360 MHz, CDCl3): δ 0.87 (t, 3H, H12’, J=8.4 Hz), 1.25 (a.c., 16H, H4’, H5’, H6’, H7’, H8’, H9’, 

H10’, H11’), 1.43 (s, 9H, tBu), 1.63 (a.c., 3H, H4, H3’), 1.92 (a.c., 2H, H3, H4), 2.33 (a. c., 3H, H2’, H3), 

2.81 (m, 1H, H1), 4.16 (dd, 1H, H5, J=13.8 Hz, J’=7.2 Hz), 4.31 (dd, 1H, H5, J=13.8 Hz, J’=7.2 Hz), 

4.30 (m, 1H, H2), 4.99 (s. a., 1H, NHBoc). 

 RMN 13C (90 MHz, CDCl3): δ 13.8 (C12’), 17.7 (C4), 22.2 – 31.6 (C3’, C4’, C5’, C6’, C7’, C8’, C9’, C10’, 

C11’), 26.6 (C4),  28.1 (CBoc), 34.1 (C2’),  38,6 (C1), 45.8 (C2), 63.4 (C5), 79.1 (C7), 154.8 (C6), 173.7 

(C1’). 

 EMAR: [C22 H41 N O4 ] Teòric: 406.2928, Experimental: 406.2930 
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6.2 Espectres de RMN dels productes caracteritzats	
   

 

Figura 10: Espectre de RMN 1H a 250 MHz de 9 en CDCl3. 

 
Figura 11: Espectre de RMN 13C a 62.5 MHz de 9 en CDCl3. 
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Figura 12: Espectre de RMN 1H a 250 MHz de 12 en CDCl3. 

	
  

 
Figura 13: Espectre de RMN 13C a 62.5 MHz de 12 en CDCl3. 
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Figura 14: Espectre de RMN 1H a 360 MHz de 13 en CDCl3. 

	
  

 
Figura 15: Espectre de RMN 13C a 90 MHz de 13 en CDCl3. 
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Figura 16: Espectre de RMN 1H a 360 MHz de 14 en MeOD-d4. 

	
  

 
Figura 17: Espectre de RMN 13C a 90 MHz de 14 en MeOD-d4. 
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Figura 18: Espectre de RMN 1H a 250 MHz de 16 en CDCl3. 

 

 
Figura 19: Espectre de RMN 13C a 62.5 MHz de 16 en CDCl3. 
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Figura 20: Espectre de RMN 1H a 360 MHz de 17 en CDCl3. 

 

 
Figura 21: Espectre de RMN 13C a 90 MHz de 17 en CDCl3. 
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Figura 22: Espectre de RMN 1H a 360 MHz de 20 en CDCl3. 

	
  

Figura 23: Espectre de RMN 13C a 90 MHz de 20 en CDCl3. 
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Figura 24: Espectre de RMN 1H a 360 MHz de 21 en MeOD-d4. 

	
  

Figura 25: Espectre de RMN 13C a 90 MHz de 21 en MeOD-d4. 
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Figura 26: Espectre de RMN 1H a 250 MHz de 24 en CDCl3. 

 

 
Figura 27: Espectre de RMN 13C a 62.5 MHz de 24 en CDCl3. 
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Figura 28: Espectre de RMN 1H a 300 MHz de 25 en CDCl3. 

 

 
Figura 29: Espectre de RMN 13C a 90 MHz de 25 en CDCl3. 
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Figura 30: Espectre de RMN 1H a 250 MHz de 28 en CDCl3. 

	
  

Figura 31: Espectre de RMN 13C a 62.5 MHz de 28 en CDCl3. 
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Figura 32: Espectre de RMN 1H a 250 MHz de 29 en CDCl3. 

	
  

Figura 33: Espectre de RMN 13C a 62.5 MHz de 29 en CDCl3. 
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