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ABSTRACT 

 

Accomplish high quality of final products in the pharmaceutical industry is a constant 

challenge that requires the control and supervision not only of final products but also of 

all the manufacturing. This request created the necessity of developing fast and accurate 

analytical methods that can determine important parameters of final product as of the 

process itself. 

Near infrared spectroscopy together with chemometrics data analysis, being one of the 

most recent methodologies, fulfill this growing demand. The high speed to providing 

relevant information, the versatility of its application to different types of samples and 

the quality of the results are some of the most important characteristics, leading this 

combined techniques as one of the most exact and appropriated in the field. 

This study is focused on the development of a calibration model based on synthetic 

samples (powder laboratory mixtures) able to determine amounts of active 

pharmaceutical ingredient (API) from industrial granulates using NIR and 

chemometrics data analysis. 

Moreover, in this study the process spectra methodology is used, which is a new method 

to calculate process variability (such as granulation, compaction or coating) by 

difference amongst industrial and synthetic samples with the same composition. After 

the addition of process spectra to the powder laboratory samples, this new set 

containing the process variability is used to build up a PLS model. 

The following chapters describe and discuss the relevant information obtained in this 

work. 
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1. INTRODUCTION 

The quality control in pharmaceutical industry is strictly regulated by different national 

and international organizations. These organizations are focused on the monitoring and 

control of raw materials, final products and the industrial process itself. 

Nowadays, the use of different analytical technologies involving labor intensive, time 

consuming and slow protocols for pharmaceutical quality control has create the need to 

replace them for fast, accurate and non-invasive analytical methods. Therefore, the use 

and importance of NIR spectroscopy together with chemometrics data analysis has 

increased in the last years. 

This study shows the advantages of using these combined methodologies for the 

extraction of relevant information from the analytical data and the subsequent 

application to industry.  

Consequently, the aim of this work is the development of a calibration model based on 

synthetic samples (laboratory powder mixtures of active pharmaceutical ingredient (API 

and excipients) able to predict concentration of API in industrial granulates.  

The formulation object in this study contains as active the pharmaceutical ingredient 

dexketoprofen trometamol, which is classified as a non-steroidal anti-inflammatory 

drug (NSAID). This substance blocks the action of cyclo-oxygenase, which is involved 

in the production of prostaglandins. Prostaglandins are produced in response to certain 

diseases or injuries and are the cause of swelling, stiffness, tenderness, increased 

temperature, inflammation and pain. By blocking the cyclo-oxygenase, dexketoprofen 

prevents the production of prostaglandins and reduces the pain. 

 

 

Fig. 1 Dexketoprofen Trometamol molecular structure 
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1.2 NEAR INFRARED SPECTROSCOPY (NIR) 

Although the presence of light in the infrared region was observed in the 19th century 

by Herschel, the application and research of NIR as a useful analytical technique for the 

industry just had happened between the 70`s and 80´s. 

Problems like absence of relevant structure information, lack of sharp peaks, loss in 

sensitivity compared to the mid infrared and the difficulty of making band assignments 

owing to the presence of numerous overtone and combination bands delayed the 

development of this technique.  

 

Nowadays, a NIR spectrum can be well obtained in less than a minute (unusually fast 

spectra record compared with other analytical techniques), and advantages like no 

previous required sample preparation and being a nondestructive method have made of 

NIR very useful for the industry. Furthermore, if samples contain such bonds as C-H, 

N-H or O-H, and if the concentration of the analyte exceeds about 0.1% of the total 

composition, then it is very likely to yield acceptable results even in the hands of 

untrained personal (1, 2).  

 

1.2.1 BASIC PRINCIPLES OF NIR 

The NIR region in the electromagnetic spectrum is located at the wavelength range 

between 780 and 2565 nm corresponding to the wave number range 12820-3959 cm-1, 

and it covers the wavelength range adjacent to the mid infrared, extending up to the 

visible region (3). 

 

Fig. 2 Electromagnetic spectrum (4) 

 

In NIR spectroscopy, the samples are irradiated with NIR light. This light is just 

absorbed by molecules when a change of the dipole moment occurs as a consequence of 

vibrations. R–H groups have a high dipole moment, thus, O–H, N–H, C–H, S–H bonds 
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are therefore strong NIR absorbers. Diatomic molecules (H2, O2, N2) in another case do 

not absorb NIR radiation as no change in dipole moment occurs during its vibrations. 

 

The potential energy of these vibrations is dependent on the bond length, and since the 

energy curve of an oscillating molecule is affected by intermolecular interactions, the 

equilibrium position is non-symmetric and the spacing between energy levels that the 

molecule can attain are not identical and the model of an anharmonic oscillator explain 

the situation for real molecules (3,5). 
!

!
Fig.3 Anharmonic vibration model (5) 

 

The most prominent absorption bands occurring in the NIR region are related to 

overtones and combinations of fundamental vibrations mainly due to –CH, -NH, -OH 

functional groups. 

 

Since quantum mechanical selection rules do not rigorously exclude transitions with 

!"#1 for anharmonic systems, transitions between vibrational states of !"=2 or 3 are 

possible (Fig3). These multi- level energy transitions are the origin of NIR overtone 

bands (3, 5). 

 

The combination bands are originated only in polyatomic molecules and these are the 

result of simultaneous energy changes of two or more vibrational modes. 

Combination bands appearing between 1900-2500 nm are the result of vibrational 

interactions. Vibrations of molecules that absorb near infrared light occur in two modes 

stretching and bending. Stretching is defined as a continuous change in the interatomic 



!

4 

!

distance along the axis of the bond between atoms, while bending is a change in the 

bond angle (5, 6). 

 

1.2.2 INSTRUMENTATION 

The evolution of the instrumentation used in NIR spectroscopy has been based on the 

need of a faster and more flexibility of the analysis for different kind of samples. NIR 

spectrophotometers have the advantage of incorporating a broad variety of devices 

depending on the characteristics of the samples and the analytical conditions. This 

makes NIR spectroscopy a versatile and flexible technique as compared to other 

instrumental methods (7). 

A NIR spectrometer is generally composed of a light source, a wavelength selection 

system, a sample holder or a sample presentation interface and a detector. 

Blanco et al summarize the principal features of a NIR spectrophotometer with different 

devices in the following figure. 

 

Fig 4.Main features of a NIR spectrophotometer (7) 
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The light source generates a beam that can irradiate the samples. The most commonly 

used is a halogen light with tungsten filament and quartz window that is capable to emit 

a continuous spectrum from 320 nm to 2500nm. Other light source that can be used is 

named LEDs (Light Emitting Diodes), which depending on their composition is able to 

emit up to 1600 nm. The halogen lamps require a wavelength selection system, while 

LEDs do not. 

In function of the wavelength selection system, the NIR spectrophotometers can be 

classified in two types, dispersive and non-dispersive instruments. Within the dispersive 

instruments the most commonly used wavelength selection systems are the 

monocromators. The non-dispersive instruments are widely used, and the variety of 

selection systems is broad. Actually the instruments use different selection devices such 

as conventional filters, Fourier transform (FT)-NIR type and AOTFs (acusto-optic 

tunable filters).These chosen wavelengths by using radio-frequency signals to alter the 

refractive index of a birefringent crystal (usually TeO2) so that it transmits light of a 

given wavelength or performs a wavelength scan much more rapidly than with the 

previous designs (7, 8). 

Detection in NIR spectroscopy uses devices comprising semiconductors such as PbS or 

InGaAs, like single channel detectors, in multi-channel detectors, several detection 

elements are arranged in rows (diode arrays) or planes charged coupled devices (CCDs) 

in order to record many wavelengths at once, so as to increase the speed at which 

spectral information can be acquired (7)  

Regarding the sample acquisition, there are three modes to take a NIR spectrum 

(reflectance, transmittance and transflectance), and choosing one of the other rely 

completely in the nature of the sample (3, 7, 8).  

 

1.3  CHEMOMETRICS 

Chemometrics is an interdisciplinary field which uses mathematics and multivariate 

statistics in order to process, extract and understand relevant information from 

analytical data.  
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Analytical chemists are major users of chemometrics, however there are several fields 

which are supported strongly by the use of chemometrics from physical chemistry such 

as kinetics and equilibrium studies, to organic chemistry such as reaction optimization 

etc (9).  

 

1.3.1 SPECTRAL PRETREATMENTS 

Pre-processing of spectral data is often of vital importance to obtain as much 

information is possible from the analytical data. These pretreatments allow the 

corrections to the spectrum by increasing the signals and minimizing undesired 

information such as background noise or baseline shift (9,10). 

The most common spectral pretreatments are described below: 

• Average spectra: it involves the calculation of the absorbance average for each 

wavelength from replicate spectra of the same sample. 

• Standard Normal Variate (SNV): It corrects multiplicative variations between 

spectra. These variations often originate from accidental or uncontrolled 

differences in sample path length, due to variations in sample physical properties 

(particle size, thickness), sample preparation, sample presentation and perhaps 

even variations in spectrometer optics. Sometimes such variations can be 

problematic because they are confused with multiplicative effects from changes 

in component concentrations, which often model the signal in quantitative 

applications. Multiplicative variations cannot be removed by derivatives, 

centering or scaling. The transformation is performed for each spectrum for 

which it will obtain an absorbance spectrum mean 0 and standard deviation 1. 

The equation for calculating the absorbance at Xi,m
SNVcan be calculated: 

 

Where XSNV i,m is the absorbance value from the row i (or spectrum i) and the 

column m (or variable m) once the pretreatment is applied. Xi,m is the original 
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absorbance value from the spectrum i and Si is the standard deviation from the 

row i (spectrum i). 

• Derivates: The spectra derivation is also one of the most widely used 

pretreatment in NIR spectroscopy. It is use to minimize the problems of 

overlapping bands and baseline variations. One of the most used methods is that 

proposed by Savitzky-Golay. The first derivative can correct baseline shifts and 

the second derivative corrects deviations which vary linearly with wavelength. 

 

1.3.2  REDUCTION OF VARIABLES BY ANALYSIS OF PRINCIPAL 

COMPONENTS (PCA) 

Since multivariate NIR spectral data contain a huge number of correlated variables, 

there is a need for reduction of variables, i.e. to describe data variability by a few 

uncorrelated variables including the relevant information for calibration modeling. The 

best known and most widely used variable reduction 

Method is principal component analysis (PCA). It is a mathematical procedure that 

resolves the spectral data into orthogonal components whose linear combinations 

approximate the original data. The new variables, called principal components (PC), 

Eigen-vectors or factors, correspond to the largest eigenvalues of the covariance matrix, 

thus, accounting for the largest possible variance in the data set. The first PC represents 

the maximum variance amongst all linear combinations and each successive variable 

accounts for as much of the remaining variability as possible (3). 

PCA, however, results in an abstract mathematical transformation of the original data 

matrix, which takes the form 

X = T. P + E 

Where T is called the scores, and has as many rows as the original data matrix; P is the 

loadings, and has as many columns as the original data matrix; the number of columns 

in the matrix T equals the number of rows in the matrix P (9). 

A good example of a matrix transformation is graphically illustrate by Reich et al in the 

following graphic 
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Fig.5. Transformation of a spectrum with three variables, i.e. wavelengths (a) to a new 

coordinate system with one axis for each wavelength thereby converting the spectrum to a 

single point in a three-dimensional space (b), cloud formation of several spectra (c), mean 

centering (d), and determination of principal components F1, F2 and F3 (e) (3). 

 

1.3.3 MULTIVARIATE CALIBRATION FOR QUANTITATIVE ANALYSIS BY 

PARTIAL LEAST SQUARES (PLS) 

Before performing any quantitative analysis in a NIR spectrometer, it has to be 

calibrated using multivariate methods. The calibration process basically involves the 

following steps: 

1. Selection of a representative calibration sample set.  

2. Spectra acquisition and determination of reference values.  

3. Multivariate modeling to relate the spectral variations to the reference values of the 

analytical target property.  

4. Validation of the model by cross validation, set validation or external validation. 

One of the multivariate regression method most frequently used in quantitative NIR 

analysis is the partial least-squares (PLS) regression, which will be briefly describe in 

this study (9). 
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PLS is a method that generalizes and combines features from PCA and multiple 

regressions. It is particularly useful when a set of dependent variables from a large set 

of independent variables has to be predicted. The goal of PLS is to predict the 

regression coefficients in a linear model with a large number of x- variables that are 

highly correlated. 

The PLS algorithm uses the information contained in both the spectroscopic data 

matrix, X, and the concentration matrix, Y, during calibration and compresses data in 

such a way that the most variance in both X and Y is explained. In this way, PLS 

reduces the potential impact of large, though irrelevant, variations in X during 

calibration. In PLS, each component is obtained by maximizing the covariance between 

Y and every possible linear function of X. 

This regression controls two blocks of variables: predictors (X) and responses (Y). The 

two data sets can be decomposed separately through PCA. 

This gives the outer relations:  

X = T ! P" + RX 

Y = U ! Q" + RY 

The residuals (RX and RY) are minimized with these calculations and without making 

any effort to correlate the data sets. A correlation between the two data sets can be 

found by forming a linear inner relation between the scores for each PC: 

ûh =bh !th 

Where h is the number of the specific PC and b is the regression coefficient. This model 

shows only a weak relation between the data sets. To improve the model, information 

from the decomposition of one of the two blocks of variables exchanges information to 

the other and vice versa (11, 12). 

 

1.3.4 MODEL VALIDATION 

The best way to evaluate the predictive capacity of the model is running an external 

prediction test which will predict known Y values by the PLS model and will compare 
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them with the known values. Different global statistics values can be evaluated as 

average of residuals or standard deviation. However, the root mean square error 

(RMSE) and the relative standard error (RSE) are the standard values to use for 

evaluating a PLS model. These values evaluate the residuals with the reference values 

(13). 

                           

Where n = number of samples, Yinir and Yiref are magnitudes of the determined property 

by NIR or reference method (Ref). 

 

2. EXPERIMENTAL PART 

This study shows the data extraction from NIR spectra through chemometrics tools that 

substantiate its use for the quality control in the industry, basically developing 

calibration models able to determine the amount of Active Pharmaceutical Ingredient 

(API) in pharmaceutical formulations.  

Therefore, the aim of this study is the development of a calibration model (based on 

synthetic samples) able to predict amount of API in industrial granulates. The variability 

of the process is included through process spectra methodology (13). 

The advantages of these combined techniques facilitate the development of this study 

and it will be mentioned below. 

 

2.1 DESCRIPTION AND SAMPLE PREPARATION 

2.1.1 Synthetic samples (powder laboratory mixtures) 

The pharmaceutical formulation studied in this work is granulated dexketoprofen 

trometamol (DKP-Trom). The composition of API and excipients in the laboratory 
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samples corresponds to the proportions of industrial granulates manufactured by 

Menarini laboratories.  

 

Composition of Formulation  mg/g 

API (DKP.Trom) 14.7                  

Lemon flavor (Exc 1) 16 

Yellow colorant (Exc 2) 0.64  

A.glycirrinate (Exc 3) 0.8 

Neohespiridine Dhchalco (Exc 4) 0.6 

Sucrose (Exc 5) 967.2 

Table1. Pharmaceutical formulation for granulated DKP.Trom  

 

A total of 31 powder samples were prepared using an analytical balance and following 

the strategy API + Placebo. This strategy consists on the preparation of placebos 

(samples not containing API) with the different excipients of the formulation. By the 

subsequent weighting of placebos + API the formulation was considered as a mixture of 

two components. 

 

Fig 6. API + Placebo methodology 

 

Five different placebos were prepared, where the quantities of lemon flavor covered ± 

5% with respect to the nominal value. For other excipients such as Exc 2, Exc 3 and Exc 
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4 the quantities remained within the nominal values due to the small amount in the 

formulation (under 1% w/w).  

In the case of sucrose, as major component also no changes in the quantities were 

performed due to its high composition in the formulation and not being our component 

of interest, it was decided to avoid any source of variability deriving from this 

concentration change.  

For the API (DKP. Trom), the concentration range covered from 8 mg/g to 12 mg/g 

(±20% with respect to the nominal value), and in the final mixture the selection of each 

placebo added to the respective API amount was randomly assigned. 

A key point that must be carefully considered in the sample preparation is the value of 

concentration correlation amongst components in the mixture. The probability of 

finding two highly correlated components increases as the number of components 

present in the mixture also increment. For this reason a conscientiously experimental 

concentration design must be done, mostly if one of the correlated analytes is the one 

that should be quantified. This high correlation can affect the accuracy and robustness 

of the calibration model.  

 

2.1.2 Industrial granulates (Industry samples) 

A total of 54 industrial samples given by Menarini Laboratories were used also in this 

study. 

These granulated samples were taken over a period of 6 months, and each of which 

belonging to a different production batch. HPLC chromatography was the reference 

method mentioned in the analytical industrial reports for determining the concentration 

of Dexketoprofen in mg/g. 

 

2.2 SPECTRA ACQUISITION 

Homogeneity is a paramount factor prior to spectra recording. A lack of this propriety 

can negatively affect the development of a multivariable calibration model. 
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In order to overcome this problem, the samples were shacked in a tubular blender for 10 

minutes, and before introducing the sample in the quartz cell for the spectra recording, 

these were hand-shacked once again during 5 minutes. 

The samples were considered homogeneous whenever two consecutive spectra are 

perfectly overlapped.  

2.2.1 Instrumentation 

The NIR spectra acquisition was carried out using a spectrophotometer FOSS 

NIRSystems (model 5000) between the spectral range 1100-2500nm and 2nm 

resolution. Each spectrum was obtained from 32 scans. The instrument was coupled to a 

Rapid Content Analyzer (RCA), allowing the register of the samples in reflectance 

mode.  

 

Fig7. Near Infrared spectrophotometer coupled to a RCA module 

 

Previously to the sample measurement, an 80% reflectance reference spectrum was 

recorded using a ceramic plate coupled to the instrument. Each sample was placed in a 

quartz cell and recorded three times; between the measurements, the samples were 

mixed with a plastic spoon, making sure that the spectra contained the information from 

different particles of the sample. The used spectrum from each sample corresponded to 

the average of three replicated spectra. The NIR spectra recording for the Industrial 

samples follow the methodology already described. 
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2.3 DATA ANALYSIS 

2.3.1 Acquisition software 

NIR spectrophotometer is controled by the software Vision v2.51 (Foss NIRSystems, 

silver spring USA). This software allows the user to record and visualize the spectra. 

2.3.2 Chemometric spectral treatment 

Unscrambler v7.01-9.1(Camo Process SA, Trondheim, Norway) was useful to analyze 

multivariable data. The program allows the user to work with different chemometrics 

algorithms towards the development of calibration models. Spectral pretreatments as 

Standard Normal Variate (SNV), derivates (Savitzky golay) can be performed. This 

study was mainly focused on the use Principal Components Analysis (PCA) and Partial 

Least Squares Regression (PLS1). Moreover, after the multivariate calibration is created 

by PLS, a prediction can be performed in order to obtain the concentration of unknown 

samples. 

2.4 PROCESS SPECTRA METHOD 

This methodology is used in order to construct representative NIR-calibration sets from 

samples resulting from the production process. It uses a process-variability matrix that 

incorporates the effects of different production operations (granulation, compaction and 

coating) on the NIR spectrum. The new matrix thus obtained is used to construct 

chemometric models that allow all components (API and excipients) to be determined  

The first step involved the calculation of the process spectrum (SP), which incorporates 

process variability into each tablet:  

SP=S ind - S lab  

Where Sind is the spectrum derived from industrial granulated and Slab is the spectrum 

resulted from laboratory powder sample, where both industrial and laboratory samples 

must have a API concentration close to the nominal value (13). The following scheme 

summarizes the calculation of process spectra and the creation of the whole variability 

matrix. 
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Scheme1. Process spectra calculation methodology 

This methodology has been already used, and it shows clearly that the addition of 

variability with SP allows construction of calibration models for industrial samples 

based on synthetic samples (13, 14).  

 

3. RESULTS AND DISCUSSION 

As it was mentioned above this work is focused in the development of an accurate 

calibration model based on synthetic laboratory samples in order to predict amounts of 

API in granulated industrial samples. 

The results and relevant discussion are presented below: 

3.1 Sample preparation 

During the sample preparation step a concentration range of ± 20% was covered, 

spanning DKP content from 8mg/g to 12 mg/g. This range was used to build up a model 

able to recognize samples that did not accomplish the quality requirements during the 

production process. 

Five different placebos were prepared by weighting all the excipients of the mixture in 

an analytical balance. The experimental weight values of each excipient differed from 

the theoretical values due to errors in the weighted step. The concentration of each 

excipient varied with respect to the nominal value, although it was not a desired factor 

taken in account in the experimental design. 
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These weighting errors did not affect the concentration value for sucrose, which is the 

major compound in the mixture (98% w/w). 

After homogenization of the placebos, a second weighted step was performed with API 

and placebos. The placebos used for each mixture were distributed randomly, and a total 

of 10 g of the mixture was prepared.  

The following table shows the detailed weighted amounts of each component (g) and 

the respective proportion of DKP and placebo in the mixture.  

# Sample 
DKP.Trom 

Exp (g) DKP mg/g 
Placebo Exp 

(g) Placebo mg/g #Placebo Total Mix (g) 
1 0.1183 8.015 9.882 988.170 1 10.000 
2 0.1202 8.143 9.880 987.980 2 10.000 
3 0.1222 8.279 9.878 987.780 3 10.000 
4 0.1242 8.414 9.876 987.580 4 10.000 
5 0.1263 8.557 9.874 987.370 5 10.000 
6 0.1284 8.699 9.872 987.160 4 10.000 
7 0.1302 8.821 9.870 986.980 2 10.000 
8 0.1322 8.957 9.868 986.780 1 10.000 
9 0.1343 9.099 9.866 986.570 5 10.000 

10 0.1363 9.235 9.863 986.370 3 10.000 
11 0.1386 9.390 9.862 986.140 5 10.000 
12 0.1405 9.519 9.859 985.950 3 10.000 
13 0.1424 9.648 9.857 985.760 2 10.000 
14 0.1445 9.790 9.855 985.550 4 10.000 
15 0.1465 9.926 9.853 985.350 1 10.000 
16 0.1485 10.061 9.851 985.150 3 10.000 
17 0.1508 10.216 9.849 984.920 2 10.000 
18 0.1529 10.359 9.848 984.711 5 10.001 
19 0.1547 10.481 9.845 984.530 1 10.000 
20 0.1569 10.630 9.843 984.310 4 10.000 
21 0.1588 10.759 9.841 984.120 5 10.000 
22 0.1609 10.901 9.839 983.910 4 10.000 
23 0.1629 11.037 9.837 983.710 3 10.000 
24 0.1649 11.172 9.835 983.510 2 10.000 
25 0.1669 11.307 9.833 983.310 1 10.000 
26 0.1691 11.457 9.831 983.090 2 10.000 
27 0.1712 11.598 9.829 982.881 4 10.000 
28 0.1731 11.728 9.827 982.690 3 10.000 
29 0.1751 11.863 9.825 982.490 5 10.000 
30 0.1772 12.005 9.823 982.280 1 10.000 
31 0.1475 10.022 9.824 985.208 5 9.972 

 
Table 6. Experimental weighted amounts of API and excipients, and the respective proportion 
in the mixture (g) 
 

The analysis with NIR spectroscopy of samples in low API concentration required a 

special attention in the evaluation of paramount parameters such as the coefficient 

correlation and Root mean standard error (RMSE), which evaluated the predictive 
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performance of the model with an independent data set. This both parameters are 

relevant defining the robustness of the calibration model. 

In the case of having high spectral correlation amongst the analytes it is necessary to 

reduce the concentration correlation in order to avoid that any change in the 

concentration of any compound affect the accuracy of the model prediction for API.  

The following table summarizes detailed the spectral and concentration amongst 

formulation components 

Correlation coefficients API Exc1 Exc2 Exc3 Exc4 Exc5 
concentration 1       

API Spectral 1       
concentration 0.040 1      

Exc1 Spectral 0.939 1      
concentration 0.034 0.215 1     

Exc2 Spectral 0.878 0.919 1     
concentration 0.017 0.519 0.304 1    

Exc3 Spectral 0.969 0.979 0.916 1    
concentration 0.001 0.970 0.147 0.422 1   

Exc4 Spectral 0.936 0.990 0.950 0.979 1   
concentration 0.939 0.301 0.103 0.149 -0.342 1 

Exc5 Spectral 0.883 0.941 0.778 0.922 0.922 1 
 

Table 5. Spectral and concentration correlation amongst formulation components  
 
 

It can be clearly seen that there are high values of spectral correlation amongst samples. 

The reduced contribution of each component to the total sample spectrum demanded a 

carefully selection of spectral pretreatments and the evaluation of specific wavelength in 

order to diminish any constraint for the development of the model due to this correlation 

values. 

Also, the table shows that there is a high correlation between the concentration of API 

and sucrose around 0.94; while the concentration of sucrose decreases the concentration 

of API increase, and the other way around as well. This fact was expected from the 

beginnings due to these both components representing the 98% (w/w) of the 

pharmaceutical formulation. 

In the case of high correlation amongst Exc 1 and Exc 4, it was not considered a define 

factor for the development of the model, due to the low concentration of these 

components in the formulation (0.06% w/w). 
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3.2 Spectra Acquisition 

The NIR spectra of 31 powder laboratory samples and 54 granulated industrial samples 

were recorded with NIR spectrophotometer FOSS system. Also the API, lemon flavor 

and sucrose were measured separately. Their NIR spectra are showed in the following 

figure. 

 

Fig8. NIR spectra from majority components from Dexketoprofen Trometamol formulation 

 

It can be clearly seen that these three compounds present different patterns in the NIR 

spectrum. However, the API does not show a strong representative band that give a hint 

of a specific wavelength range that must be used. 

After the spectra record, a previous visualization was performed to check any visual 

outlier in the samples. 

 

 

 

 

 

Figure9a. Absorbance NIR spectra from powder laboratory samples.9.b. SNV NIR spectra 
from powder laboratory samples  

The fig 9b.shows that Standard Normal Variate (SNV) spectral pre-treatment allows the 

correction of the scattering effect by physical properties such as particle size, 

Concentration 
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subsequently facilitating the visual spectra analysis. Even though the concentration of 

API and excipients vary amongst samples, this difference is not visually notable. Also it 

is important to remark that the sucrose spectrum masks the variations from the other 

compounds. 

3.3 Development of calibration model using synthetic samples (powder laboratory 

samples) 

The model was developed with 25 average spectra (from the triplicate of each sample), 

and it was calculated through partial least squares regression 1 (PLS1) relating the 

analytical variable (NIR spectra) with the chemical property (concentration).  

Some relevant parameters are considered such as: correct spectral pre-treatment, and 

wavelength range. The determination of the best parameters to develop an accurate 

calibration model is mainly experimental. 

Different characteristics of the model such as Y-explained variance, predictive capacity 

and residual test are checked in order to determine the best parameters to be used. 

Also, it is important to double check once again the spectral correlation amongst the 

formulation components in order to see any change with chosen spectral pretreatments, 

considering that these changes can improve the conditions to build up the calibration 

model. 

However, for practical purposes the data below only shows the best combination of 

parameters. 2 derivative (2D) combined with Standard normal deviation (SNV) was 

determined as the optimal spectral pretreatment. 

 

  API (DKP.trom) Lemon Flavor Sucrose 

API 
(DKP.trom) 1 ! !

Lemon 
Flavor 0.027 1 !

Sucrose 0.039 0.076 1 

Table 8.Spectral correlation in 2D+SNV of API, lemon flavor and sucrose 
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The table shows clearly that the correlation values have strongly decreased using this 

combination of 2D+SNV spectral pretreatments. This low correlation facilitates the 

development of an accurate calibration model. Likewise, these results show that the use 

of this spectral pretreatment combination is the ideal for these samples. 

To build up the calibration model, the samples were divided in two sets, one for the 

calibration and the other one for external prediction in a proportion of 70/30 c.a. 

The below detailed table shows the characteristics of the model and the respective 

predicted values for both powder laboratory samples and industrial granulates. 

PREDICTION CALIBRATION 
Powder Lab Granulated ind. 

PLS factors 
Y-explained 

variance 
RMSEC 
(mg/g) 

RMSEP 
(mg/g) avg Residuals 

SD 
residuals 

RMSEP 
(mg/g)   

3 96 0.24 0.24 0.01 0.257 4.65  
4 98 0.19 0.25 0.08 0.258 4.72  

Powder 
Laboratory 
 samples 

5 99 0.15 0.23 0.09 0.231 4.86   
 

Table9. Characteristics and statistics values for calibration model in the wavelength range 
1100-2498 nm and 2 derivative + SNV for the quantification of Dexketoprofen in powder 

samples. 

It is below also graphically illustrate the Y-explained variance by the different principal 
components (PCs) 

 

Fig. 10 Y-explained variance graphic through different principal components 

As it was mentioned above the values of API concentration obtained using NIR 

spectroscopy were compared with the theoretical values by partial least square 

regression. The following figure shows the regression line for both calibration and 

prediction sets, corresponding of the model above described using 5 factors (99% Y-

explained variance) and between the wavelength range 1100-2498nm. 

PCs 
Y Exp 
Varian. 

1 72 
2 90 
3 96 
4 98 
5 99 
6 99 
7 100 
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Fig 11.regression line of DKP concentration values obtained with NIR spectroscopy and the 

theoretical values 

As it was mentioned above, just 25 samples were used to build up the model. 6 samples 

could not be considered since they did not fit into it, either the preparation errors alter 

their composition or they were not homogeneous and the obtained spectra were 

different to the others samples, behaving these as outliers.  

This detection step is transcendental, because if these samples are not detected and harm 

the model in the calibration or in the prediction, and even to the point to impede the 

development of the model. The software Unscrambler 9.8 offers different tools to 

recognize these kinds of samples. 

The predictions for granulated industrial samples were performed to check the 

predictive capacity of the calibration powder sample set with the industrial granulates. 

The high RMSEP values show that the powder laboratory samples do not include the 

process variability leading in low accuracy capacity of this model for this type of 

samples. For this reason, the process spectra methodology must be used in order to 

include all this variability and make the model useful for predict API in industrial 

granulates. 
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3.4 Calculation of process spectra and development of calibration model for 

granulated industrial samples through the process spectra methodology 

With the purpose of build up a model able to predict industrial granulates, the process 

variability was included to the powder laboratory samples adding process spectra (SP).  

The leading factor to calculate the SP is the selection of the laboratory and industrial 

samples with the aim of choose those ones that represent and include the most 

variability. The searched variability in this step of the study regards all the variability 

included by manufacturing process (In this case, granulation of the powder formulation 

mixture). 

For the first calculation of SP samples with nearest API concentration to the nominal 

value (10mg/g) were choose.  

One synthetic and three industrial samples were selected, with API concentrations of 

10.02, 9.98, 9.93 and 9.90 mg/g respectively. The powder laboratory sample was 

subtracted to the three granulated industrial samples to obtain three resultant spectra that 

mainly include the information of the process (SP). This SP was subsequently added to 

the powder laboratory samples in order to obtain a new calibration matrix with the 

whole variability.  

 

Fig 12. Absorbande spectra for a powder laboratory sample, a granulated industrial sample 

and a process spectrum 

An Analysis of Principal Components (PCA) with this new calibration matrix was 

performed to project the industrial granulates in order to see if the powder samples + SP 
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embrace the industrial granulates. In this way it can be check if the selected samples for 

the SP calculation include the whole process variability. 

 

Fig13. Projection Industrial samples in scatter plot of powder samples added process spectra 
(first calculation). 

The scatter plot shows clearly the difference of the powder laboratory samples before 

and after addition of SP, grouping in different clusters. Also, it is important to note that 

the samples used to calculate the SP do not contain all the variability of the process and 

for that reason do not embrace the industrial granulates constraining the development of 

an accurate calibration model and requiring another SP calculation. 

To check this fact a calibration model was develop and a prediction of the industrial 

granulates performed. The prediction values of the industrial samples corroborate the 

assumption above describe (RMSEP 1.10 mg/g). Even though the RSEP value was high 

an improvement of the prediction values is visible compared with the powder laboratory 

samples model prediction values for the industrial granulates (RMSEP 4.86 mg/g). 

A second calculation of SP was performed. For this calculation first a PCA from the 

industrial granulates was plotted to choose the industrial samples located outmost of this 

PCA for the subsequent SP calculation. 
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Fig15. Scatter plot of industrial granulates and samples selected for process spectra 
calculation. 

The powder laboratory sample for the calculation was the same used before. After 

subtraction of the laboratory sample to the industrial granulates the respective five SP 

were added and a new calibration matrix was obtained. The following projection of the 

industrial samples in a PCA of the powder laboratory samples + SP shows that with this 

new calibration matrix most of the industrial samples are encompass. !

!

Fig15. Projection Industrial samples in scatter plot of powder samples added process spectra 
(second calculation). 

 

A calibration model was developed in order to check the predictive ability with this 

sample set for industrial granulates. 
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The following table summarizes the characteristics of the developed models in this 

second SP calculation. 

 

PREDICTION 
CALIBRATION Powder Lab Granulated ind. 

RMSEC RMSEP Residuals RMSEP Residuals 
PLS 

factors 

Y-
explained 
variance (mg/g) (mg/g) Avg SD (mg/g) Avg SD 

4 93 0.31 0.30 0.06 0.302 0.67 0.23 0.62 
5 97 0.21 0.18 0.04 0.183 0.76 0.30 0.71 
6 98 0.14 0.19 0.08 0.177 0.80 0.34 0.73 

Powder 

laboratory 

samples + SP 
7 99 0.12 0.22 0.07 0.207 0.81 0.33 0.75 

 

Table 10. Characteristics and statistics values for calibration model in the wavelength range 
(1100-1440)(1630-2498) nm and 2 derivative + SNV for the quantification of Dexketoprofen 

in granulated industrial samples. 

The table shows that with the second SP calculation most variability has included into 

the new calibration matrix and in this order of ideas, the prediction ability of the 

developed model for industrial granulates has improved (RMSEP 0.76 mg/g). 

The API concentration values obtained using NIR were compared with the theoretical 

values by partial least square 1. The following figure detailed shows the regression line 

for both calibration and prediction sets using 5 factors (97% Y- explained variance) and 

between the wavelength range. 

 

Fig 11.regression line of DKP concentration values obtained with NIR spectroscopy and the 

theoretical values 
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Although the RMSEP values for granulated industrial samples still being high, it should 

take into account that the concentration of API in the formulation is very low, and it 

hinders the development of the calibration model. Also, as it can be seen that the PCA is 

useful tool for the selection of the samples involved in the SP calculation.  

This study is not complete and the best methodology to obtain the correct process 

spectra and different parameters to improve this model still under research, with the aim 

to apply this model into the industry process control.At the moment different spectral 

pretratments has been studied in order to check any improvement in the prediction 

ability of the calibration model, but 2D + SNV still being the better combination to treat 

the data. For the detailed prediction statistics with different pretreatments refer to 

appendix. 
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4. CONCLUSIONS 

• The use of chemometric tools is essential to obtain relevant information from 

NIR spectra, and the combination of both methodologies is necessary for the 

development of calibration models. 

• A calibration model for the determination of DKP in powder laboratory samples 

was successfully developed. 

• Process spectra calculation is a useful methodology to add process variability to 

powder laboratory mixtures and it can be applies to the manufacture of several 

pharmaceutical products. 

• The Analysis of Principal Components (PCA) is useful for the selection of 

samples involved in the process spectra calculation. 

• A calibration model for granulated industrial samples is proposed and different 

factors must be study for the improvement of its prediction ability. 
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6. APPENDIX 

.LABORATORY POWDER + PROCESS SPECTRA 
    Spectral 
Pretratment # Factors % Exp y-variance RSEC % RMSEC 

mg/g 

8 95     
9 99     SNV 

10 100     
7 95 2.4 0.24 
8 97 1.92 0.19 1D 

9 98 1.38 0.14 
7 95 2.47 0.25 
8 98 1.56 0.16 1D + SNV 

9 99 1.1 0.11 
5 95 2.55 0.26 
6 97 1.81 0.18 2D 

7 98 1.46 0.14 
4 93 3.03 0.31 
5 97 2.07 0.21 2D + SNV 

6 98 1.43 0.14 
Appendix a. Characteristics of the calibration model in different spectral pretreatments 

 



 

 

 

 

 

 

 

 

 

 

                   Appendix B. Statistics for prediction values of the model based on synthetic samples + SP for industrial granulates. 

!

Laboratory powder + process spectra Granulates Industrial 

residual t-test    residual t-test 
Spectral  

Pretratment 
# 

Fact. RSEP 
% 

RMSEP 
(mg/g) 

avg res 
st 
DEV t Crit t exp 

RSEP
% 

RMSEP 
(mg/g) avg res 

St 
DEV t Crit t exp 

7 3.03 0.31 0.07 0.31 2.12 0.27 11.52 1.52 0.58 0.98 2.01 0.72 1D 
8 2.98 0.3 0.05 0.31 2.12 0.19 13.55 1.33 0.93 0.96 2.01 1.18 

7 3.27 0.33 0.1 0.32 2.12 0.36 13.77 1.38 0.9 1.02 2.01 1.38 1D+ SNV 
8 3.34 0.34 0.05 0.34 2.12 0.18 14.9 1.46 1.1 0.97 2.01 1.38 

5 2.39 0.24 0.06 0.24 2.12 0.3 6.81 0.68 4x10-5 0.67 2.01 7x10-5 

6 2.09 0.21 -0.05 0.21 2.12 0.28 8.54 0.84 0.38 0.75 2.01 0.61 2D 

7 2.13 0.21 0.07 0.21 2.12 0.41 8.65 0.85 0.38 0.76 2.01 0.61 

4 2.94 0.3 0.06 0.3 2.12 0.23 6.63 0.67 0.23 0.62 2.01 0.4 

5 1.81 0.18 0.04 0.18 2.12 0.28 7.8 0.76 0.3 0.71 2.01 0.52 2D + SNV 

6 1.9 0.19 0.07 0.18 2.12 0.47 8.2 0.8 0.34 0.73 2.01 0.56 


