

 Sistema de comunicación para

mensajería de ficheros (HL7)

 Memoria del proyecto

de Ingeniería Técnica en Informática de Gestión

realizado por

Lorenzo Gama Ramos

y dirigido por

Jordi Pons Aróztegui

Escola d’Enginyeria

Sabadell, Junio de 2012

El abajo firmante, Jordi Pons Aróztegui, profesor de la

Escuela de Ingeniería de la UAB,

CERTIFICA:

Que el trabajo al cual corresponde la presente memoria

ha sido realizada bajo su dirección

por Lorenzo Gama Ramos,

Y para que conste firma la presente.

Sabadell, Junio de 2012

Firmado: Jordi Pons Aróztegui

El abajo firmante, Daniel Fuster Escriba,

de Unit4,

CERTIFICA:

Que el trabajo al cual corresponde la presente memoria

ha sido realizada bajo su dirección

por Lorenzo Gama Ramos,

Y para que conste firma la presente.

Sabadell, Junio de 2012

Firmado: Daniel Fuster Escriba

HOJA DE RESUMEN – PROYECTO FIN DE CARRERA DE LA ESCUELA DE INGENIERIA

Título del proyecto: Sistema de comunicación para mensajería de ficheros (HL7)

Autor: Lorenzo Gama Ramos Fecha: Junio 2012

Tutores: Jordi Pons Aróztegui / Daniel Fuster Escriba

Titulación: Ingeniería Técnica en Informática de Gestión

Palabras clave:

 Català: Missatgeria, Java, HL7

 Castellano: Mensajería, Java, HL7

 English: Messaging, Java, HL7

Resumen del proyecto

 Català: El projecte consisteix en la creació d'un sistema de missatgeria que permeti

l'enviament i recepció de fitxers generats pel programari de gestió sanitària UNIT4

Ekon Salus. Les tasques a realitzar són, d'una banda, la portabilitat del sistema actual

basat en Visual Basic a Java i, de l'altra, la implementació d'un sistema de control i

notificació d'errors, ja siguin generats pel contingut dels fitxers o per la comunicació

entre els programes d'enviament i recepció que constitueixen el sistema de

missatgeria.

 Castellano: El proyecto consiste en la creación de un sistema de mensajería que

permita el envío y recepción de ficheros generados por el software de gestión sanitaria

UNIT4 Ekon Salus. Las tareas a realizar son, por un lado, la portabilidad del sistema

actual basado en Visual Basic a Java y, por el otro, la implementación de un sistema

de control y notificación de errores, ya sean generados por el contenido de los ficheros

o por la comunicación entre los programas de envío y recepción que constituyen el

sistema de mensajería.

 English: The project involves the creation of a messaging system that allows sending

and receiving files generated by health management software UNIT4 Ekon Salus. The

tasks are on the one hand, the portability of the current system based on VisualBasic

to Java and, on the other hand, the implementation of amonitoring and reporting of

errors, whether generated by thecontent of the files or communication between

sending and receiving programs that make up the messaging system.

i

ÍNDICE DE CONTENIDOS

1 INTRODUCCIÓN .. 1

1.1 OBJETIVOS ... 1
1.2 CONVENIO DE COLABORACIÓN UNIT4-UAB .. 2
1.3 MOTIVACIONES... 3
1.4 ORGANIZACION DE LA MEMORIA ... 3

2 DEFINICIÓN DE REQUISITOS ... 5

2.1 SISTEMA ACTUAL .. 5
2.1.1 Descripción ... 5
2.1.2 Diagnóstico ... 7
2.1.3 Alternativas ... 7

2.2 SISTEMA PROPUESTO ... 8
2.2.1 Objetivos .. 9
2.2.2 Objetos ... 9
2.2.3 Acontecimientos y acciones .. 10
2.2.4 Funcionalidades ... 11
2.2.5 Otros requisitos no funcionales ... 11
2.2.6 Restricciones de software ... 11
2.2.7 Condicionantes de implantación y funcionamiento ... 12
2.2.8 Plan de validación .. 12

2.3 PLAN DE ACCIÓN .. 13
2.3.1 Actividades .. 13
2.3.2 Diagrama de Gantt .. 14
2.3.3 Recursos ... 16
2.3.4 Costes, beneficios y riesgos .. 17
2.3.5 Conclusión .. 17

3 FASE DE ANÁLISIS .. 19

3.1 INTRODUCCIÓN .. 19
3.2 VISIÓN GENERAL... 19

3.2.1 Diagrama de contexto .. 19
3.2.2 Descripción de los componentes ... 20

3.3 MODELO DE OBJETOS .. 20
3.3.1 Diagrama .. 20
3.3.2 Descripción de componentes .. 21

3.4 MODELO FUNCIONAL ... 22
3.4.1 Diagrama de flujo de datos (DFD) .. 22
3.4.2 Descripción de componentes .. 22

4 FASE DE DISEÑO ... 25

4.1 INTRODUCCIÓN .. 25
4.2 DISEÑO DE LA INTERFAZ GRÁFICA DE USUARIO ... 25

4.2.1 Interfaz de RecibeHL7 .. 25
4.2.2 Interfaz de EnviaHL7 ... 26

4.3 DIAGRAMAS UML .. 27
4.3.1 Recibe HL7 .. 27
4.3.2 Envía HL7.. 28

ii

4.4 PATRONES DE DISEÑO .. 30
4.4.1 Introducción .. 30
4.4.2 Singleton ... 30

5 FASE DE IMPLEMENTACIÓN ... 33

5.1 INTRODUCCIÓN .. 33
5.2 ENTORNO DE DESARROLLO ... 33

5.2.1 Desarrollo en Java ... 33
5.3 INTERFAZ: WINDOWBUILDER .. 34

5.3.1 Swing ... 34
5.3.2 Window Builder ... 34

5.4 HL7 .. 37
5.4.1 Estructura de un mensaje HL7 .. 37
5.4.2 HAPI ... 38

5.5 CONTROL DE SUCESOS Y ERRORES .. 38
5.5.1 Visualización de sucesos... 38
5.5.2 Control de Errores ... 40

6 FASE DE PRUEBAS .. 43

6.1 INTRODUCCIÓN. ... 43
6.2 PRUEBAS UNITARIAS. .. 43

6.2.1 Pruebas en la Interfaz gráfica de usuario .. 43
6.3 PRUEBAS DE INTEGRACIÓN. .. 49

6.3.1 Visor de sucesos .. 49
6.3.2 Conexión mediante sockets .. 50
6.3.3 Envío y recepción de mensajes. .. 50
6.3.4 Análisis del contenido de los ficheros HL7.. 51

7 CONCLUSIONES .. 53

7.1 ALCANCE DE OBJETIVOS. .. 53
7.2 AMPLIACIONES Y MEJORAS. .. 53
7.3 DESVIACIONES RESPECTO LA PLANIFICACIÓN INICIAL. ... 54
7.4 VALORACIÓN PERSONAL. .. 56

BIBLIOGRAFÍA ... 57

ANEXO A - CONTENIDO DEL CD. .. 59

iii

ÍNDICE DE TABLAS

Tabla 1 - Objetivos ... 9

Tabla 2 - Acontecimientos y acciones .. 10

Tabla 3 - Tareas y duración ... 13

Tabla 4 - Software utilizado ... 16

Tabla 5 - Objetos del sistema ... 20

Tabla 6 - Usuarios del sistema ... 21

Tabla 7 - Procesos del sistema ... 22

Tabla 8 - Clases de la aplicación RecibeHL7 ... 28

Tabla 9 - Clases de la aplicación EnviaHL7 ... 29

ÍNDICE DE FIGURAS

Figura 1 - Aplicación de envío en Visual Basic .. 5

Figura 2 - Aplicación de recepción en Visual Basic .. 6

Figura 3 - Lógica del sistema actual .. 6

Figura 4 - Lógica del sistema propuesto .. 8

Figura 5 - Diagrama de Gantt ... 15

Figura 6 - Diagrama de contexto .. 19

Figura 7 - Diagrama de objetos .. 20

Figura 8 - Diagrama de Flujo de Datos .. 22

Figura 9 - Interfaz de RecibeHL7 en Java .. 25

Figura 10 - Interfaz de EnviaHL7 en Java .. 26

Figura 11 - Diagrama UML de RecibeHL7 .. 27

iv

Figura 12 - Diagrama UML de EnviaHL7 .. 29

Figura 13 - Interfaz de Window Builder I ... 35

Figura 14 - Interfaz de Window Builder II .. 36

Figura 15 - Prueba 1 ... 44

Figura 16 - Prueba 2 ... 44

Figura 17 - Prueba 3 ... 45

Figura 18 - Prueba 5 ... 45

Figura 19 - Pruebas 6, 9 y 12 ... 46

Figura 20 – Pruebas 7, 10 y 13 .. 47

Figura 21 – Prueba 15 ... 47

Figura 22 – Pruebas 16 y 18 .. 48

Figura 23 – Pruebas 17 y 19 .. 49

Figura 24 – Diagrama de Gantt real con desviamiento .. 55

1

1 INTRODUCCIÓN

1.1 OBJETIVOS

UNIT4 Ekon Salus es el ERP o software para sanidad que se ofrece a las empresas y

organismos del sector sanitario asistencial por parte de UNIT4, constituyéndose como una

avanzada solución informática de gestión integrada para facilitar al máximo el tratamiento

de su información.

El ERP o software de gestión sanitaria UNIT4 Ekon Salus se puede personalizar hasta el

más mínimo detalle sin tener que programar, y las evoluciones de las personalizaciones

son instantáneas. Además, está basado en estándares de mercado tanto tecnológicos

(HL7, XML, DICOM...) como asistenciales (IDC9, BOT,....).

Dentro del software UNIT4 Ekon Salus, una de las funciones basadas en el estándar HL7

es la creación y envío de peticiones entre departamentos y/o centros sanitarios. Estas

peticiones contienen, en la mayoría de los casos, información médica sensible acerca de

los pacientes.

HL7 (Health Level Seven) es un conjunto de estándares para el intercambio electrónico de

información clínica, desarrollados por la organización HL7 International. Dicha

organización desarrolla especificaciones que, posteriormente, son usadas por los

implementadores de software para solucionar problemas de integración entre sistemas de

información heterogéneos. HL7 proporciona estándares que mejoran la atención en salud,

optimizan el flujo de trabajo, reducen la ambigüedad y mejoran la transferencia de

conocimientos entre todos los interesados, incluidos los prestadores de servicios de salud,

organismos gubernamentales, la comunidad de proveedores y los pacientes.

Para poder enviar esa información, UNIT4 Ekon Salus crea un fichero codificado

cumpliendo el formato definido en el estándar HL7. El contenido del fichero está formado

por los campos obligatorios más los campos complementarios que variaran dependiendo

de la petición.

Dentro del proceso de envío y recepción del fichero generado a través de una petición, se

utilizan dos aplicaciones que cumplen la función de emisor y receptor. El proceso de envío

y recepción se realiza de manera transparente para el usuario final, no teniendo éste más

que realizar o atender una petición.

El objetivo del proyecto es, en este caso, el proceso de estudio, revisión y modificación del

sistema que permite el envío y recepción de ficheros, adaptándolo a las necesidades de

los clientes en particular y, en general, a las actuales soluciones de software residentes en

el mercado.

2

1.2 CONVENIO DE COLABORACIÓN UNIT4-UAB

El convenio existente entre la Universidad Autónoma de Barcelona y UNIT4 Ibérica

permite a los alumnos la realización de proyectos en los diferentes departamentos de la

empresa, siendo el departamento de I+D donde se ha realizado el actual proyecto.

UNIT4 Ibérica es la filial española de la multinacional de origen holandés UNIT4. Es una

compañía de software de gestión de empresas que crea, ofrece y soporta software y

servicios adaptables con el fin de ayudar a las organizaciones dinámicas a abrazar el

cambio de manera simple, rápida y rentable.

En la actualidad, la compañía cuenta con filiales y oficinas en 24 países distribuidos en

Europa, Norteamérica, Asia-Pacífico y África, y con actividad comercial en otros países.

El producto principal que la empresa ofrece a sus clientes es UNIT4 ekon, un avanzado

software especialmente diseñado para adaptarse a las necesidades específicas de cada

una de las empresas, sin renunciar a las ventajas del software estándar y con una visión

de total integración de procesos.

Concebido como una solución ágil, orientada a resultados, transparente para los usuarios

y sumamente flexible, UNIT4 ekon cuenta con internet como parte natural; es por ese

motivo que la garantía de conexión global facilita que los actores de sus procesos de

negocio (empleados, clientes y proveedores) participen en los circuitos de información que

el cliente determine, desde cualquier lugar y con cualquier dispositivo.

UNIT4 concede una especial atención al sector sanitario con su software para Sanidad

(HIS). En estrecha colaboración con instituciones y profesionales tanto del ámbito público

como privado, UNIT4 ekon salus ofrece avanzadas soluciones de software de gestión

integrada para esta actividad que:

 Se adapta con facilidad a la mayoría de centros asistenciales del país.

 Se centra en el paciente, que es el eje del sistema.

 Ofrece una visión continua y coherente de la actividad asistencial.

 Facilita la rápida configuración de la historia de salud.

 Integra toda la información generada desde el centro, lo que facilita el desempeño

tanto de los procesos asistenciales como de la realización de las funciones

directivas y administrativas.

3

1.3 MOTIVACIONES

Los estudios universitarios y, sobretodo, las ingenierías deberían tener de forma

obligatoria una vertiente práctica en un entorno real, en la que el alumno pueda aplicar los

conocimientos teóricos adquiridos a lo largo de la carrera universitaria. Basándome en esa

creencia, expongo a continuación los motivos personales que me han llevado a realizar el

proyecto de fin de carrera en UNIT4 Ibérica:

 Al tratarse de una multinacional reconocida en el mundo de las tecnologías de la

información, me ha permitido ver de primera mano las metodologías de trabajo y

la organización y estructura de empresas con un capital humano y un volumen de

negocios similar a UNIT4.

 El hecho de tratarse de un proyecto real me ha ayudado a adquirir ciertos hábitos

y experiencia que sólo son asequibles adentrándose en el mundo laboral.

 Resulta ser la forma más eficiente y práctica para realizar el proyecto de fin de

carrera.

1.4 ORGANIZACION DE LA MEMORIA

La memoria está organizada en siete capítulos que se detallan brevemente a continuación:

 Capítulo 1 (Introducción): En el primer capítulo se define el proyecto a grandes

rasgos. Se exponen tanto los objetivos como el producto al que van asociados,

para luego presentar la empresa a la cual pertenece dicho producto y las

motivaciones que han llevado la realización del proyecto.

 Capítulo 2 (Definición de requerimientos): Capítulo en el que se detalla el

sistema actual así como el sistema propuesto, realizando un plan de acción con sus

beneficios, costes y riesgos.

4

 Capítulo 3 (Análisis): En este capítulo estudiaremos el funcionamiento general

del sistema propuesto, identificando a sus usuarios, los componentes que lo

constituyen y los procesos principales.

 Capítulo 4 (Diseño): Con el objetivo de mejorar la experiencia del usuario, en la

fase de diseño se define la interfaz gráfica y la interacción del software con los

usuarios del sistema.

 Capítulo 5 (Implementación): En la fase de implementación se profundiza en el

entorno de desarrollo empleado en la codificación, así como en las herramientas

utilizadas para la creación de la interfaz y el tratamiento de ficheros HL7.

 Capítulo 6 (Pruebas): En este capítulo se resumen las pruebas unitarias y de

integración que se han planteado y su ejecución y resultado.

 Capítulo 7 (Conclusiones): En el último capítulo, se detallan los objetivos

conseguidos y los no conseguidos, explicando después las posibles mejoras y

ampliaciones que pueden implementarse en el futuro y finalizando con las

valoraciones personales del proyectista.

5

2 DEFINICIÓN DE REQUISITOS

2.1 SISTEMA ACTUAL

2.1.1 Descripción

El sistema actual está compuesto por dos aplicaciones programadas en Visual Basic 6 que

hacen las funciones de cliente y servidor para el envío de ficheros y recepción. A

continuación, se detalla el funcionamiento de cada una de las aplicaciones y la lógica

actual del sistema:

 EnviaHL7: La aplicación de envío de ficheros utiliza la información de red del terminal

receptor para realizar una llamada a éste para saber si está disponible y mandar el

archivo seleccionado.

La entrada de datos no se valida y tampoco se comprueba si el fichero seleccionado es

un archivo HL7:

Figura 1-Aplicación de envío en Visual Basic

6

 RecibeHL7: El programa de recepción de ficheros sirve para aceptar las peticiones de

envío de otros terminales y seleccionar la ruta de destino de tales archivos.

Figura 2 - Aplicación de recepción en Visual Basic

La lógica del sistema actual es muy sencilla. La aplicación “cliente” se ejecuta de forma

manual y se pone en modo de escucha para poder recibir una petición de conexión desde

la aplicación “servidor” y así, recibir los ficheros que se envíen desde el otro lado.

Por otro lado, la aplicación “servidor” solamente se ejecuta bajo petición del ERP ekon

salus, mediante un script que se ejecuta automáticamente cuando se realiza una petición

de información médica por parte de un usuario del sistema.

Figura 3 - Lógica del sistema actual

7

2.1.2 Diagnóstico

El sistema actual es sencillo y eficaz. En condiciones óptimas envía el fichero, cumpliendo

así con su objetivo crítico. Paralelamente, el sistema falla cuando se trata de detectar y

registrar fallos, inconsistencias en el formato y forma del fichero o problemas de conexión.

Asimismo, carece de herramientas adecuadas a las necesidades de los administradores de

sistemas, tales como un visualizador de eventos y/o un sistema de alertas.

La conclusión obvia es que el sistema actual se diseñó bajo unos requisitos que, en su

momento, eran suficientes pero que ahora se han quedado obsoletos respecto a las

características del software de UNIT4.

2.1.3 Alternativas

 Desarrollar los cambios necesarios en el sistema para que además de enviar y recibir

los archivos, éste permita que la aplicación “servidor”, que se encarga del envío,

también genere el fichero codificado directamente desde el proceso de solicitud de

peticiones.

 Alternativa rechazada por solapamiento de procesos, ya que UNIT4 Ekon Salus

implementa la generación de dichas peticiones y no se estima necesario un

proceso complementario que no aporta por si solo valor añadido al producto.

 Desarrollar los cambios necesarios en el sistema de mensajería para que se adapte a

los nuevos requisitos exigidos por la empresa. A su vez, se portará el sistema actual

desarrollado en Visual Basic 6 a Java, introduciendo cambios en el diseño y la

implementación de las aplicaciones de manera que el producto resultante sea más

robusto y adaptable a los futuros cambios de requisitos.

 Alternativa aceptada al no solaparse con ninguno de los procesos ya

implementados por el software ekon salus y suponer una mejora considerable

del sistema actual.

8

2.2 SISTEMA PROPUESTO

Figura 4 - Lógica del sistema propuesto

La lógica del sistema propuesto supone un cambio bastante considerable respecto al

esquema actual. Para empezar, durante el ciclo de vida del fichero HL7, la aplicación

EnviaHL7 se encargará de comprobar que no haya problemas de conexión y analizará el

contenido de los archivos codificados en busca de errores de codificación.

Por su parte, la aplicación RecibeHL7 también analizará dichos ficheros para comprobar

que no se ha sufrido ningún tipo de pérdida de información durante el proceso de envío.

Para terminar, todos los procesos realizados por las partes implicadas, así como las

incidencias encontradas tanto en el proceso de envío como en el análisis de los archivos

serán registrados en una serie de logs que podrán ser luego tratados por los

administradores de sistemas.

9

2.2.1 Objetivos

En la siguiente tabla se describen todos los objetivos que se han propuesto para la

realización del proyecto. Los objetivos han sido divididos en tres clases dependiendo de la

prioridad de los mismos, resultando ser los objetivos críticos los de obligada consecución

para realizar con éxito el proyecto:

Objetivo Crítico Prioritario Secundario

Rediseñar y portar el producto de VB6 a Java. 

Añadir proceso de verificación del contenido del

mensaje.


Implementar log de sucesos para los

administradores de sistemas.


Creación de un proceso de detección y

catalogación de problemas durante el proceso

de comunicación.

 

Inclusión de un sistema de alertas mediante

widget en Ekon Salus y/o dispositivos móviles.
 

Tabla 1 - Objetivos

2.2.2 Objetos

A continuación, se puede observar un esquema de los objetos que forman parte del

sistema de mensajería, así como los elementos de entrada necesarios para su correcto

funcionamiento y los elementos que forman parte de la salida de los objetos.

 Aplicación de envío

 Entrada:

 Ubicación del fichero *.HL7.

 IP y puerto de destino.

10

 Salida:

 Fichero *.HL7.

 Información de envío.

 Información acerca del contenido del fichero.

 Aplicación de recepción

 Entrada:

 Puerto de escucha.

 Ubicación destino del fichero *.HL7.

 Salida:

 Fichero *.HL7.

2.2.3 Acontecimientos y acciones

En la tabla que nos encontramos a continuación, hay una serie de sucesos, previstos

durante la interacción de las aplicaciones, que forman parte del sistema de comunicación

junto a las acciones que se espera realice el sistema.

Acontecimiento: Un usuario envía un fichero HL7 sin errores de codificación y hay

problemas de conexión.

Acción: Guardar el archivo en la ruta especificada por la aplicación RecibeHL7 y registrar

acontecimiento.

Acontecimiento: Un usuario envía un fichero HL7 con errores de codificación y no hay

problemas de conexión.

Acción: Enviar/No enviar fichero, reportar fichero con errores detectados y registrar

acontecimiento

Acontecimiento: Un usuario envía un fichero HL7 sin errores de codificación y se

detectan problemas de conexión.

Acción: Identificar problemas de conexión, intentar el reenvío, reportar error y registrar

acontecimiento

Tabla 2 - Acontecimientos y acciones

11

2.2.4 Funcionalidades

La siguiente lista contiene las funcionalidades que el sistema de comunicación tendrá

implementadas una vez haya finalizado el desarrollo del proyecto y sin las cuales no se

habrán conseguido alcanzar los objetivos antes expuestos.

 Envío y recepción de ficheros.

 Recepción de ficheros desde distintos servidores (multicliente).

 Registro de sucesos.

 Reenvío de ficheros.

 Extracción de información para documentar al usuario.

2.2.5 Otros requisitos no funcionales

Otros requisitos no asociados a los objetivos del proyecto pero que afectan al desarrollo y

duración del mismo se listan a continuación.

 La duración máxima del proyecto es de 560 horas.

 La fecha límite de entrega del proyecto es el 30 de junio del 2012.

2.2.6 Restricciones de software

Para el desarrollo de las nuevas aplicaciones de envío y recepción se utilizará el lenguaje

de programación JAVA a través del entorno de desarrollo integrado Eclipse.

Para la implementación de la interfaz gráfica de usuario y el análisis de ficheros

codificados en formato HL7 sólo se podrán utilizar plugins o librerías con licencia GNU de

libre uso y distribución.

Opcionalmente, para el desarrollo del widget de alertas en Ekon Salus se utilizaría el

entorno de desarrollo Karat.

12

2.2.7 Condicionantes de implantación y funcionamiento

Para la correcta implantación y funcionamiento se deben tener en cuenta los siguientes

condicionantes:

 El producto resultante del desarrollo del proyecto no puede substituir ni solaparse con

ningún proceso de Ekon Salus.

 Los datos de entrada de las aplicaciones de envío y recepción deben ser introducidos

automáticamente por norma general.

 No se puede modificar el fichero en ningún caso, sólo se puede ver para comprobar la

validez del mismo.

2.2.8 Plan de validación

A lo largo del proyecto, éste se ha desarrollado de manera secuencial y, en cada fase que

se ha realizado, se han ejecutado pruebas objetivas que evidenciaran que los procesos

producen un resultado y que el producto resultante cumple con los requisitos.

13

2.3 PLAN DE ACCIÓN

2.3.1 Actividades

En la siguiente tabla, se detallan todas las tareas que se realizarán durante el desarrollo

del proyecto. Estas tareas están divididas en cinco fases diferenciadas que se realizan de

forma lineal en el siguiente orden: Introducción y planificación, Análisis, Diseño,

Codificación y pruebas y, en último lugar, Documentación:

TAREA DURACIÓN

SISTEMA DE COMUNICACIÓN PARA MENSAJERÍA DE FICHEROS 472 horas

 INTRODUCCIÓN Y PLANIFICACIÓN 20 HORAS

 Objetivos 4 horas

 Análisis del producto existente 4 horas

 Planificación temporal 8 horas

 Evaluación de costes 4 horas

 ANÁLISIS 20 HORAS

 Definición de requisitos 10 horas

 Análisis de requisitos 10 horas

 DISEÑO 40 HORAS

 Diseño de la IGU 20 horas

 Patrones de diseño 12 horas

 Diseño de la interacción 8 horas

 CODIFICACIÓN Y PRUEBAS 300 HORAS

 CODIFICACIÓN 260 HORAS

 Interfaz gráfica de usuario 40 horas

14

 Sistema de mensajería de ficheros 80 horas

 Sistema de validación de ficheros HL7 140 horas

 PRUEBAS 40 HORAS

 Definición de pruebas 12 horas

 Realización de pruebas 28 horas

 DOCUMENTACIÓN 92 HORAS

 Memoria del proyecto 80 horas

 Manuales de usuario 12 horas

 ENTREGA DE LA MEMORIA

 DEFENSA DEL PROYECTO

Tabla 3 - Tareas y duración

2.3.2 Diagrama de Gantt

En la siguiente página, podemos visualizar el diagrama de Gantt del proyecto. En él se

puede observar la distribución y orden de las tareas a realizar durante el proyecto así

como la distribución temporal de cada una de ellas y la fecha de inicio y fin previstos.

Al realizarse una planificación temporal lineal, todas ellas están asociadas de principio a fin

con la tarea inmediatamente anterior, exceptuando la entrega y defensa del proyecto, que

tiene fechas prefijadas.

El inicio oficial del proyecto está fijado en el día 14 del mes de noviembre de 2011 y la

fecha prevista para la finalización del mismo es el día 25 del mes de abril de 2012.

15

Figura 5 - Diagrama de Gantt inicial

16

2.3.3 Recursos

A continuación, se exponen los recursos disponibles para realizar el proyecto, partiendo de

las actividades, mencionadas anteriormente, que se han tenido que llevar a cabo.

 Recursos humanos

 Jefe de proyecto: participa en la planificación del proyecto, en la validación de las

distintas fases y en la defensa del proyecto.

 Analista: forma parte activa del análisis, diseño e implementación del proyecto.

 Programador: participa en todo el proceso de implementación y codificación del

proyecto.

 Técnico de pruebas: durante las últimas fases del proyecto, se encarga de la fase

de pruebas.

 Recursos materiales

 PC HP Compaq 6000 Pro MT, con las siguientes características:

 Procesador: Intel Core 2 Quad Q8400 @ 2,66 GHz.

 Memoria RAM: 6,00 GB.

 Sistema operativo: Windows 7 Professional 64 bits.

 Software

SOFTWARE LICENCIA DESCRIPCIÓN

Eclipse IDE for

Java Developers

EPL – Licencia

Publica Eclipse

Entorno de desarrollo integrado que acepta,

entre otros lenguajes, Java-

JDK Java 6 GNU GPL – Licencia

Publica General

Paquete para desarrolladores Java

WindowBuilder EPL – Licencia

Publica Eclipse

Generador de interfaces gráfica de usuario

en Java con la librería Swing

Hapi GNU GPL – Licencia

Publica General

Librería Java para el análisis de archivos

HL7

Tabla 4 - Software utilizado

17

2.3.4 Costes, beneficios y riesgos

 Costes

El capital humano para la realización del proyecto está formado por un analista-

programador que además hace las funciones de jefe de proyecto; y por un Product

Owner de la empresa que se encargara de tutorizar, en cada una de sus fases, el

trabajo del analista programador.

No se estima que se requieran licencias de software de pago complementarias para la

realización del proyecto.

 Beneficios

Los potenciales beneficios del proyecto son:

 Mayor control del estado de las peticiones.

 Mejor gestión de las incidencias.

 Reducción del tiempo de comunicación.

 Riesgos

Los riesgos relevantes adscritos al proyecto son:

 Planificación optimista sobre la duración de las tareas.

 Cambio en los requerimientos funcionales/no funcionales.

 Adición de tareas no previstas.

2.3.5 Conclusión

Después de planificar las tareas necesarias para realizar el proyecto en base a los

objetivos del mismo y tras estudiar los recursos disponibles, los costes que suponen y los

beneficios que aporta el proyecto al producto actual que tiene UNIT4, aun teniendo en

cuenta los riesgos adyacentes al desarrollo, se concluye que el proyecto es viable y

beneficioso, tanto para la empresa como para el alumno.

18

19

3 FASE DE ANÁLISIS

3.1 INTRODUCCIÓN

Un usuario autentificado puede realizar una petición de información determinada respecto

a un paciente. Para que se envíe la petición es necesario que la información esté bien

codificada y se pueda establecer conexión, tanto por la parte que envía como por la que

recibe. Cada vez que se intente enviar información, se almacenará la información en un

registro.

3.2 VISIÓN GENERAL

3.2.1 Diagrama de contexto

Figura 6 - Diagrama de contexto

En el diagrama de contexto, podemos observar la interacción de los usuarios con el

sistema de mensajería, incluyendo los flujos de entrada y salida de información contrario.

20

3.2.2 Descripción de los componentes

USUARIOS DESCRIPCIÓN

Personal médico Toda aquella persona que trabaja en un hospital realizando

trabajo de índole médica. No tienen conocimientos informáticos

e interactúan con el sistema de mensajería realizando

peticiones y recibiendo información con contenido sensible de

pacientes. El sistema de mensajería es transparente para este

tipo de usuarios.

Administrador de

sistemas

Realiza las labores de instalación y mantenimiento de sistemas

y redes. Interactúa con el sistema de mensajería modificando

los valores de entrada del mismo si se estima necesario y

recibe información de sucesos e incidencias asociadas al envío

y recepción de mensajes.

Tabla 5 - Usuarios del sistema

3.3 MODELO DE OBJETOS

3.3.1 Diagrama

Figura 7 - Diagrama de objetos

21

En el diagrama de objetos podemos observar cómo, una vez identificados en el diagrama

de contexto los usuarios del sistema y su relación con el mismo, hay una serie de

relaciones entre los objetos que forman parte del sistema a desarrollar.

La interacción que hay entre estos objetos es en algunos casos unilateral y, en otros,

multidireccional, también se puede apreciar que componentes son receptores y/o cuales

envían información.

3.3.2 Descripción de componentes

La siguiente tabla contiene una breve descripción de los objetos que forman parte del

sistema, explicando la información que poseen y su relación con otros objetos.

OBJETOS DESCRIPCIÓN

Fichero Objeto que contiene un fichero. Sus atributos principales son

fecha y hora del proceso de envío/recepción

Servidor Objeto que envía uno o más objetos del tipo Fichero a un

objeto Cliente.

Cliente Objeto que recibe uno o más objetos del tipo Fichero de un

objeto Cliente.

Administrador

sistemas

Objeto que observa las acciones de los objetos Servidor,

Cliente y Fichero a través de un objeto Registro

Registro Objeto que almacena las operaciones realizadas por objetos

Servidor, Cliente y Fichero

Tabla 6 - Objetos del sistema

22

3.4 MODELO FUNCIONAL

3.4.1 Diagrama de flujo de datos (DFD)

Figura 8 - Diagrama de Flujo de Datos

El diagrama de flujo de datos nos muestra de forma visual cual es el flujo de datos entre

los distintos procesos, entidades externas y almacenes que conforman el sistema.

3.4.2 Descripción de componentes

La tabla que podemos observar a continuación, contiene los procesos identificados como

emisores y receptores de los flujos de datos del sistema. En la descripción de los procesos

se detalla el origen y el destino de la información a través de los usuarios que interactúan

con el sistema.

23

PROCESOS DESCRIPCIÓN

Gestionar peticiones Un usuario, previa identificación en Ekon Salus, puede realizar

una o varias peticiones de información de pacientes. Las

peticiones generan ficheros HL7 que podrán ser enviados o no

dependiendo del contenido del mismo y de la red.

Gestionar recepción Un usuario, previa identificación en Ekon Salus, puede acceder

a los ficheros recibidos

Actualizar registro Un usuario administrador de sistemas puede supervisar la

gestión de peticiones y recepción, así como mantener un

control sobre el registro de operaciones.

Tabla 7 - Procesos del sistema

24

25

4 FASE DE DISEÑO

4.1 INTRODUCCIÓN

En la fase de diseño se explicará el diseño escogido en base a los requerimientos del

proyecto. También, se hablará del diagrama UML (Lenguaje Unificado de Modelado)

realizado a partir de los resultados obtenidos en la fase de análisis y de la necesidad de

utilizar los patrones de diseño para solucionar problemas surgidos en el diseño de las

aplicaciones.

4.2 DISEÑO DE LA INTERFAZ GRÁFICA DE USUARIO

4.2.1 Interfaz de RecibeHL7

Figura 9 - Interfaz de RecibeHL7 en Java

Los principales cambios previstos en el diseño de la interfaz gráfica de usuario de la

aplicación RecibeHL7, para adaptarse a los requerimientos del proyecto son:

 Redimensionado de la ventana principal para que los datos introducidos en los campos

26

de entrada y los que se muestran en el visor de sucesos se vean completos.

 Se ha insertado un visor de sucesos (estado actual) que nos informa en cada momento

de:

 El estado de la conexión.

 La recepción de los ficheros.

 El resultado del análisis de los archivos con los filtros HL7.

 Se ha añadido el botón “Detener” para que el administrador del sistema pueda

interactuar con la aplicación de forma manual.

4.2.2 Interfaz de EnviaHL7

Figura 10 - Interfaz de EnviaHL7 en Java

Los principales cambios previstos en el diseño de la interfaz gráfica de usuario de la

aplicación EnviaHL7, para adaptarse a los requerimientos del proyecto, son los siguientes:

 Se ha desactivado la entrada manual de texto en el campo de entrada archivo para

que el usuario obligatoriamente pase por el selector de ficheros que contiene la

máscara para que sólo se puedan seleccionar archivos con extensión HL7.

 Redimensionado de la ventana principal para que los datos introducidos en los campos

de entrada se vean completos.

 Se ha insertado un visor de sucesos que nos informa en cada momento de:

 El estado de la conexión.

27

 El envío y recepción de los ficheros.

 El resultado del análisis de los archivos con los filtros HL7.

 Se ha añadido el botón “Desconectar” para que el administrador del sistema pueda

interactuar con la aplicación de forma manual.

4.3 Diagramas UML

La estructura principal de las aplicaciones EnviaHL7 y RecibeHL7 se ha diseñado a través

de la realización de diagramas UML, especificando las clases y métodos que se necesitan

según los requerimientos.

4.3.1 Recibe HL7

Figura 11 - Diagrama UML de Recibe HL7

En la siguiente tabla se describen las principales clases que forman parte de la aplicación

RecibeHL7 y los métodos por los cuales se producen los flujos de datos.

Para poder implementar la recepción de ficheros desde distintos servidores a la vez, se ha

creado una clase llamada ClienteHilo que genera hilos de ejecución simultáneos,

asignando un puerto distinto a cada una de las aplicaciones EnviaHL7 que intenta

28

conectarse a RecibeHL7.

CLASE DESCRIPCIÓN

Ventana Principal Esta clase contiene toda la interfaz, de manera que la

implementación principal del cliente en el sistema de

mensajería sea independiente de la implementación de la

interfaz.

Cliente Es la clase principal de la aplicación RecibeHL7, en ella se

creará el servidor de conexiones entrantes y creará tantos

objetos de la clase ClienteHilo como sean necesarios.

ClienteHilo La clase ClienteHilo se encarga de aceptar la conexión con la

aplicación EnviaHL7 y almacenar los archivos recibidos en la

ruta indicada desde la clase VentanaPrincipal.

Registro Esta clase se encarga de guardar toda la información de los

sucesos producidos en un fichero de texto plano. Se realiza la

misma acción con los ficheros HL7 que contienen errores.

ValidacionMensajes ValidacionMensajes recoge el archivo que ha sido recibido por

parte de la aplicación EnviaHL7 y lo pasa por varios filtros para

comprobar si contiene errores. Devuelve el resultado del

análisis.

VerFechaHora Se trata de una clase global que envía la fecha y la hora actual

a todas aquellas clases que lo demandan.

Tabla 8 - Clases de la aplicación RecibeHL7

4.3.2 Envía HL7

A continuación, podemos ver el diagrama UML de la Aplicación EnviaHL7. El diagrama es

similar al que hemos visto anteriormente de RecibeHL7, con la diferencia de que la clase

principal en este caso es Servidor.

29

Figura 12 - Diagrama UML de Envía HL7

En la siguiente tabla, se describen las principales clases que forman parte de la aplicación

EnviaHL7 y los métodos por los cuales se producen los flujos de datos.

CLASE DESCRIPCIÓN

VentanaPrincipal Esta clase contiene toda la interfaz, de manera que la

implementación principal del servidor en el sistema de

mensajería sea independiente de la implementación de la

interfaz.

Servidor Es la clase principal de la aplicación EnviaHL7, en ella se creará

y se comprobará si el puerto de destino de la dirección IP

introducida en VentanaPrincipal está escuchando y, en caso

afirmativo, manda el archivo a su destino y cierra la conexión.

Registro Esta clase se encarga de guardar toda la información de los

sucesos producidos en un fichero de texto plano. Se realiza la

30

misma acción con los ficheros HL7 que contienen errores.

ValidacionMensajes ValidacionMensajes recibe el archivo que se ha seleccionado

para ser enviado en VentanaPrincipal y lo pasa por varios filtros

para comprobar si contiene errores. Devuelve el resultado del

análisis.

VerFechaHora Se trata de una clase global que envía la fecha y la hora actual

a todas aquellas clases que lo demandan.

Tabla 9 - Clases de la aplicación EnviaHL7

4.4 PATRONES DE DISEÑO

4.4.1 Introducción

Los patrones de diseño son, básicamente, soluciones a los problemas comunes en el

desarrollo de software y otros ámbitos referentes al diseño de interacción o interfaces.

Una solución a un problema de diseño sólo se considera un patrón si ha demostrado ser

efectivo en casos anteriores y si se puede reutilizar en diferentes problemas de diseño en

circunstancias diferentes.

El uso de patrones de diseño en el desarrollo de software no es obligatorio pero es

aconsejable su uso cuando nos encontramos con problemas de diseño para los cuales

existe algún patrón que los soluciona.

4.4.2 Singleton

El patrón de diseño singleton (instancia única) está diseñado para garantizar que una

clase sólo tenga una instancia y proporcionar un punto de acceso global a ella.

En el proyecto, se ha detectado que la clase VerFechaHora se instancia múltiples veces

para la visualización de datos en el visor de sucesos de las aplicaciones EnviaHL7 y

APPRecibe, a la vez que estas aplicaciones también instancian la clase para guardar la

información en los logs de sucesos. Para evitar un posible conflicto de peticiones derivadas

del multi-hilo en APPRecibe, se ha usado el patrón singleton como solución al problema.

31

El patrón se implementa definiendo en nuestra clase un método que crea una instancia del

objeto sólo si todavía no existe ninguna. Para asegurar que la clase no puede ser

instanciada nuevamente se regula el alcance del constructor (con atributos como

protegido o privado).

La llamada a los métodos pertenecientes a la clase VerFechaHora se realiza de diferentes

formas dependiendo de las veces que es llamado por un método:

 VentanaPrincipal.java: en la clase que se implementa la IGU (Interfaz gráfica de

usuario) se llama múltiples veces al método obtenerFecha de la clase VerFechaHora.

En este caso la mejor opción es crear un objeto del tipo VerfechaHora llamando al

método que comprueba si ya existe una instancia o no de la clase, para después

llamar al método que nos devuelve la fecha y la hora desde el objeto que hemos

creado en VentanaPrincipal.

El ejemplo siguiente es una posible implementación del diseño explicado:

Creamos el objeto en la clase VentanaPrincipal

>> VerFechaHora fechaHora = VerFechaHora.getInstancia();

Utilizamos el objeto creado para llamar al método de la clase

>> fechaHora.obtenerFecha();

 Registro.java: en la clase que se implementan los métodos que guardan la información

de los sucesos en ficheros de texto plano, sólo se invoca una vez el método

obtenerFecha, con lo cual no es necesario crear un objeto, lo que se hará será invocar

el método directamente.

El ejemplo siguiente es una posible implementación del diseño explicado:

Llamamos a obtenerFecha() a través del método estático getInstancia()

>> fechaHora.getInstancia().obtenerFecha();

32

33

5 FASE DE IMPLEMENTACIÓN

5.1 INTRODUCCIÓN

En la fase de implementación, explicaremos el entorno de desarrollo sobre el cual se ha

realizado el proyecto, así como también las soluciones open source de libre distribución

que se han utilizado para la implementación de la interfaz gráfica de usuario y el análisis

de ficheros HL7.

5.2 ENTORNO DE DESARROLLO

Para la implementación del software que forma parte del sistema de comunicación, se ha

utilizado Eclipse por ser éste un entorno de desarrollo integrado de código abierto y

multiplataforma y que tiene una compatibilidad total con el kit de desarrollo de Java (JDK).

5.2.1 Desarrollo en Java

Java es un lenguaje de programación orientado a objetos, desarrollado por Sun

Microsystems a principios de los años 90. El lenguaje en sí mismo toma mucha de su

sintaxis de C y C++, pero tiene un modelo de objetos más simple y elimina herramientas

de bajo nivel, que suelen inducir a muchos errores, como la manipulación directa de

punteros o memoria.

Java es multiplataforma, el código compilado se puede ejecutar en cualquier sistema

operativo que tenga instalada la máquina virtual de Java.

El proyecto de mensajería de ficheros está dividido en tres partes claramente

diferenciadas:

 El código del cliente y del servidor basado en sockets.

 La interfaz gráfica de usuario con las librerías swing de Java.

 El código que permite analizar ficheros en formato HL7.

34

5.3 INTERFAZ: WINDOWBUILDER

5.3.1 Swing

Para desarrollar interfaces gráficas en Java existen dos bibliotecas llamadas AWT y Swing.

En el presente proyecto se ha creído oportuno utilizar la biblioteca de gráficos Swing ya

que aporta varias ventajas importantes respecto a AWT:

 Al ser más dinámico que AWT, el diseño en Java puro posee menos limitaciones de

plataforma.

 El desarrollo de componentes Swing es más activo dado que su uso está más

extendido.

 Los componentes de Swing soportan más características de personalización.

 Es independiente de la plataforma sobre la que estemos trabajando.

 Es una arquitectura altamente particionada: los usuarios pueden proveer sus propias

implementaciones modificadas para sobrescribir las implementaciones por defecto. Se

pueden extender clases existentes proveyendo alternativas de implementación para

elementos esenciales.

 Dado el modelo de representación programático del framework de swing, el control

permite representar diferentes estilos de apariencia "look and feel" copiando el estilo

de los botones, tipos de letras y diseño de la plataforma sobre la que se ejecuta

(Windows, MacOS, etc).

 El usuario puede proveer su propia implementación de apariencia, que permitirá

cambios uniformes en la apariencia existente en las aplicaciones Swing sin efectuar

ningún cambio al código de la aplicación.

5.3.2 Window Builder

Window Builder es una herramienta muy avanzada que simplifica enormemente el

desarrollo de una interfaz al permitir la adición de componentes a través de arrastrar y

soltar, además de generar código bidireccional, es decir que puede ser modificado tanto

en la vista de diseño como en la de código.

Window Builder era una herramienta de pago que se distribuía como un plugin para

35

Eclipse, pero hace unos años fue adquirida por Google, que pasó a distribuirla como

código open source, y actualmente sigue estando en continua evolución bajo la

supervisión de Google.

En las figuras 13 y 14 podremos observar la interfaz de la herramienta Windows Builder

ejecutándose sobre el entorno de desarrollo eclipse:

Figura 13 - Interfaz de Window Builder I

36

Figura 14 - Interfaz de Window Builder II

1. Structure (Estructura): En este cajón de la herramienta tenemos un esquema en

forma de árbol en el que aparecen todos los componentes que se han insertado en

la ventana y las dependencias de unos con otros.

2. Propierties (Propiedades): Cuando seleccionamos un componente en la ventana

Estructura o Edición, aquí dispondremos de la mayoría de atributos principales del

componente, pudiendo cambiar su color, texto y muchas cosas más sin tener que

modificar código manualmente.

3. Palette (Paleta): En este panel encontramos todos los contenedores, capas y

componentes disponibles en la librería Swing preparados para arrastrarlos a la

ventana de edición.

4. Ventana de Edición: esta ventana es el eje principal de la herramienta Window

Builder. Aquí podremos crear, editar y modificar todo el contenido de la pantalla,

de forma que lo que vemos en ese momento será lo que se vea en el momento de

37

la ejecución. Además si hacemos doble clic en cualquier elemento, podremos ir al

método que permite codificar acciones para ese elemento como podría ser por

ejemplo la acción de un botón al ser pulsado.

5. Estas dos pestañas permiten generar código bidireccional, ya sea cambiando el

código y pasando a la vista de diseño o modificando el diseño y pasando a

visualizar el código.

5.4 HL7

La organización que se encarga de crear los estándares HL7 tiene varias especificaciones

que indican como debe ser la estructura de los mensajes, el contenido, el tipo de datos y

los caracteres de codificación que se deben usar, entre otras cosas.

5.4.1 Estructura de un mensaje HL7

Un mensaje HL7 está formado a su vez por uno o varios mensajes que se llaman

segmentos. Cada uno de los segmentos tiene un número determinado de campos de

datos, que deben estar debidamente codificados y delimitados por los separadores de

campo.

A continuación se muestra como ejemplo un segmento perteneciente a un mensaje

codificado según las especificaciones HL7:

MSH|^~\&|SALUS|ATIZA||2 /ONONELL|20100701123914||ORM^O01|20100701123914|P|2.5|||AL|ER

 Separador de campo “|”: carácter utilizado para separar los campos de un segmento,

ya sean estos obligatorios o no.

 Caracteres de codificación “^~\&”: se utilizan para codificar el contenido de los

campos pertenecientes a un segmento.

 Segmento: Cada mensaje está formado por un número de segmentos que varían

dependiendo del origen de la petición. Los tres primeros caracteres son la cabecera del

segmento que indican el tipo de segmento.

38

5.4.2 HAPI

El proyecto HAPI (HL7 Application Programming Interface) es una analizador de código

abierto y orientado a objetos que acepta los mensajes codificados para las versiones de

HL7 2.x. El proyecto HAPI no está afiliado a la organización HL7, simplemente desarrollan

software y librerías que se ajustan a la especificación dada por la organización de

estándares sanitarios.

Las librerías que se han utilizado en el proyecto permiten realizar las siguientes

operaciones en los códigos que las implementen:

 Crear mensajes.

 Enviar y recibir mensajes.

 Analizar mensajes.

 Modificar segmentos y estructuras.

 Leer mensajes desde ficheros.

En cualquier caso, para el desarrollo del proyecto sólo se han necesitado las librerías que

permiten leer mensajes desde ficheros y las que permiten analizar mensajes codificados.

5.5 CONTROL DE SUCESOS Y ERRORES

5.5.1 Visualización de sucesos

Uno de los objetivos del proyecto es que todo lo que suceda en las aplicaciones que

forman parte del sistema de mensajería se visualice en la pantalla, de forma que el

administrador del sistema posea más información y pueda reaccionar de manera más

rápida frente a los problemas.

La solución que se ha implementado consiste en crear un método en la clase

VentaPrincipal.java, que muestre en el contenedor que ésta posee los sucesos producidos

en tiempo de ejecución.

El método se llama mostrarInformacionPantalla y, a continuación, mostramos y explicamos

el funcionamiento de este método:

39

public static void mostrarInformaciónPantalla(String mensajeAMostrar){

 final VerFechaHora fechaHora = VerFechaHora.getInstancia();

if (mensajeAMostrar == "Conexión establecida" && btnConectar.isEnabled()){

textAreaEstadoActual.setText(textAreaEstadoActual.getText()+fechaHora.obtener

Fecha()+mensajeAMostrar+ "\n");

Registro.registarInformacion(fechaHora.obtenerFecha()+mensajeAMostrar);

btnConectar.setEnabled(false);

btnDesconectar.setEnabled(true);

btnEnviar.setEnabled(true);

 } else if (mensajeAMostrar == "Se ha cerrado la conexión con el cliente"

|| mensajeAMostrar == "Se ha perdido la conexión"){

textAreaEstadoActual.setText(textAreaEstadoActual.getText()+fechaHora.obtener

Fecha()+mensajeAMostrar+ "\n");

Registro.registarInformacion(fechaHora.obtenerFecha()+mensajeAMostrar);

btnConectar.setEnabled(true);

btnDesconectar.setEnabled(false);

btnEnviar.setEnabled(false);

} else if(mensajeAMostrar == ("Enviado correctamente el archivo "

+servidor.getNombreArchivo())){

textAreaEstadoActual.setText(textAreaEstadoActual.getText()+fechaHora.obtener

Fecha()+mensajeAMostrar+ "\n");

Registro.registarInformacion(fechaHora.obtenerFecha()+mensajeAMostrar);

 }else if(mensajeAMostrar == "Enviado correctamente el archivo "){

servidor.conectar(txtIpDestino.getText(), txtPuerto.getText());

}else if(mensajeAMostrar == "No se ha podido establecer conexion"

|| mensajeAMostrar == "Se han introducido caracteres erroneos en el Puerto"

|| mensajeAMostrar == "La dirección IP es incorrecta"){

textAreaEstadoActual.setText(textAreaEstadoActual.getText()+fechaHora.obtener

Fecha()+mensajeAMostrar+ "\n");

Registro.registarInformacion(fechaHora.obtenerFecha()+mensajeAMostrar);

btnConectar.setEnabled(true);

btnDesconectar.setEnabled(false);

btnEnviar.setEnabled(false);

}else {

textAreaEstadoActual.setText(textAreaEstadoActual.getText()+fechaHora.obtenerFecha()

+mensajeAMostrar+ "\n");

Registro.registarInformacion(fechaHora.obtenerFecha()+mensajeAMostrar);

}

}

El funcionamiento consiste en que el método mostrarInformaciónPantalla, que está

declarado como público y estático, puede ser llamado desde cualquier objeto

40

perteneciente a las clases Cliente, ClienteHilo, Servidor y Registro, pasándole éstas como

valor de entrada al método una cadena de caracteres como vemos a continuación en la

invocación del método desde la clase servidor:

>> VentanaPrincipal.mostrarInformaciónPantalla("Conexión establecida");

Con el argumento de entrada, el método ejecuta una serie de secuencias “if/else if” para

realizar unas acciones específicas en la interfaz dependiendo del suceso que se haya

ejecutado, de manera que desde el método mostrarInformaciónPantalla además de

visualizar en pantalla el suceso, también puede cambiar el estado del resto de elementos

de la interfaz gráfica o hacer llamadas a los métodos de la clase Registro para guardar la

información en los logs de sucesos.

5.5.2 Control de Errores

El control de errores en las aplicaciones del sistema de mensajería se manejan mezclando

las sentencias try/catch que se utilizan en Java para la captura de errores con llamadas al

método mostrarInformaciónPantalla que hemos explicado en el apartado anterior. La

solución resulta ser simple y efectiva y permite controlar todos los errores relacionados

con la comunicación entre sockets y la lectura y escritura de ficheros.

try {

conexion = new Socket(InetAddress.getByName(ip),Integer.parseInt(puerto));

VentanaPrincipal.mostrarInformaciónPantalla("Conexión establecida");

}catch (NumberFormatException e){

VentanaPrincipal.mostrarInformaciónPantalla("Se han introducido caracteres

erroneos en el Puerto");

}catch (UnknownHostException e) {

VentanaPrincipal.mostrarInformaciónPantalla("La dirección IP es

incorrecta");

}catch (IOException e) {

VentanaPrincipal.mostrarInformaciónPantalla("No se ha podido establecer

conexion");

}

41

En el ejemplo que acabamos de ver se puede observar el funcionamiento de las

sentencias “try/catch” para capturar errores. Esto permite controlar y visualizar en la

aplicación, en todo momento, el estado de la conexión y los errores generados en la

introducción de datos por pantalla.

En la sentencia try se escribe el código que es susceptible de lanzar una excepción por

producirse un error, que en el ejemplo son tres casos:

 new Socket(ip, puerto): la clase socket necesita la dirección ip y un puerto del cliente

al que se va a conectar para crear el socket de comunicación. Si no se consigue crear

el socket por el motivo que sea, la aplicación lanza una excepción del tipo IOException.

El código la captura y ejecuta el método mostrarInformaciónPantalla de la clase

VentanaPrincipal, indicando con una cadena de caracteres el problema que se ha

encontrado

 InetAddress.getByName(ip): este método necesita como argumento una dirección ip.

Si en VentanaPrincipal insertamos una ip incorrecta o caracteres no válidos, la

aplicación lanza una excepción del tipo UnknownHostException. El código la captura y

ejecuta el método mostrarInformaciónPantalla de la clase VentanaPrincipal, indicando

con una cadena de caracteres el problema que se ha encontrado

 Integer.parseInt(puerto): este caso es exactamente igual al anterior, con la única

diferencia de que la excepción que se lanza es del tipo NumberFormatException

42

43

6 FASE DE PRUEBAS

6.1 INTRODUCCIÓN.

En este capítulo se explicaran las pruebas que se han hecho para comprobar el correcto

funcionamiento del sistema desarrollado. Para aumentar la calidad del producto final, las

pruebas se han dividido en unitarias y de integración.

6.2 PRUEBAS UNITARIAS.

Las pruebas unitarias se utilizan para comprobar el correcto funcionamiento de distintos

módulos de código. Con estas pruebas se asegurará que cada uno de los módulos

funcione correctamente por separado para después poder realizar las pruebas de

integración.

6.2.1 Pruebas en la Interfaz gráfica de usuario

Se han realizado pruebas en cada uno de los campos de entrada de texto y en los

botones que hay en las aplicaciones EnviaHL7 y RecibeHL7 para asegurarnos que el

código no permite la introducción de valores erróneos dependiendo del tipo de dato que

necesitamos:

 Campo de texto Puerto y Puerto de destino: Se han realizado, de forma satisfactoria,

las siguientes pruebas para comprobar la correcta validación de los campos de

entrada:

 Prueba 1: el código debe controlar la inserción de cadenas de texto, avisando

sobre el error y dejando la interfaz en el mismo estado anterior

44

Figura 15 - Prueba 1

 Prueba 2: el código debe controlar la inserción de valores fuera del rango 0-65535,

avisando sobre el error y dejando la interfaz en el mismo estado anterior

Figura 16 - Prueba 2

 Prueba 3: el código debe comprobar si el puerto seleccionado está ocupado o no,

avisando en caso afirmativo y dejando la interfaz en el mismo estado anterior

45

Figura 17 - Prueba 3

 Campo de texto IP de destino: Se han realizado, de forma satisfactoria, las siguientes

pruebas para comprobar la correcta validación de los campos de entrada:

 Prueba 4: el código debe controlar la inserción de cadenas de texto, avisando

sobre el error y dejando la interfaz en el mismo estado anterior

 Prueba 5: el código debe controlar la inserción de direcciones IP incorrectas,

avisando sobre el error y dejando la interfaz en el mismo estado anterior

Figura 18 - Prueba 5

46

 Botón Conectar en EnviaHL7: Se han realizado, de forma satisfactoria, las siguientes

pruebas para comprobar el correcto funcionamiento del botón.

 Prueba 6: El código debe controlar que el botón se deshabilita cuando se realiza la

conexión con éxito

 Prueba 7: el código debe controlar que el botón se habilita si pulsamos el botón

Desconectar

 Prueba 8: el código debe controlar que el botón se habilita si se pierde la conexión

con la aplicación RecibeHL7

Figura 19 - Pruebas 6, 9 y 12

 Botón Desconectar en EnviaHL7: Se han realizado, de forma satisfactoria, las

siguientes pruebas para comprobar el correcto funcionamiento del botón.

 Prueba 9: El código debe controlar que el botón se habilita cuando se realiza la

conexión con éxito

 Prueba 10: el código debe controlar que el botón se deshabilita cuando se corta la

conexión de forma voluntaria

 Prueba 11: el código debe controlar que el botón se deshabilita si se pierde la

conexión con la aplicación RecibeHL7

47

Figura 20 - Pruebas 7, 10 y 13

 Botón Enviar en EnviaHL7: Se han realizado, de forma satisfactoria, las siguientes

pruebas para comprobar el correcto funcionamiento del botón:

 Prueba 12: El código debe controlar que el botón se habilita cuando se realiza la

conexión con éxito

 Prueba 13: el código debe controlar que el botón se deshabilita si pulsamos el

botón Desconectar

 Prueba 14: el código debe controlar que el botón se deshabilita si se pierde la

conexión con la aplicación RecibeHL7

 Prueba 15: el código debe controlar que hayamos seleccionado un fichero cuando

pulsamos Enviar y, en caso negativo, informar a través de la interfaz

Figura 21 - Prueba 15

48

 Botón Conectar en RecibeHL7: Se han realizado, de forma satisfactoria, las siguientes

pruebas para comprobar el correcto funcionamiento del botón:

 Prueba 16: El código debe controlar que el botón se deshabilita cuando el socket

se pone en modo escucha

 Prueba 17: el código debe controlar que el botón se habilita si pulsamos el botón

Detener

Figura 22 - Pruebas 16 y 18

 Botón Detener en RecibeHL7: Se han realizado, de forma satisfactoria, las siguientes

pruebas para comprobar el correcto funcionamiento del botón.

 Prueba 18: El código debe controlar que el botón se habilita cuando el socket se

pone en modo escucha

 Prueba 19: el código debe controlar que el botón se deshabilita si pulsamos el

botón Detener

49

Figura 23 - Pruebas 17 y 19

 Botón Salir en RecibeHL7: Se han realizado, de forma satisfactoria, la siguiente prueba

para comprobar el correcto funcionamiento del botón.

 Prueba 20: El código debe controlar que se cierra el socket de escucha y se cierra

la aplicación cuando se pulsa el botón

6.3 PRUEBAS DE INTEGRACIÓN.

Las pruebas de integración se han realizado una vez finalizadas las pruebas unitarias, ya

que así se ha podido comprobar el correcto funcionamiento de los diferentes módulos de

código cuando estos interactúan juntos. Con estas pruebas se asegura que los procesos y

clases que forman parte del sistema funcionan correctamente de forma conjunta.

6.3.1 Visor de sucesos

Los paneles Estado Actual de las aplicaciones EnviaHL7 y RecibeHL7, son los centros de

información de nuestro sistema de mensajería.

Están diseñados para mostrar toda la información acerca de los sucesos, errores o

problemas que puedan surgir. Cada módulo de código independiente, cuando se ejecuta,

50

envía un mensaje que se mostrará en el visor de sucesos.

Se han necesitado muchas horas de pruebas para que los paneles Estado Actual

mostrarán la información en pantalla de forma correcta, centrándose las pruebas sobre

todo en tres aspectos:

 Ordenado: los mensajes siempre tienen que mostrarse en el mismo orden en el que se

está ejecutando el código

 Obligatorio: No puede haber ningún suceso que no sea reflejado en el Visor de

sucesos

 Fecha y hora: Todos los mensajes que se muestran tienen que contener la fecha y la

hora en la que se ha generado el flujo de información

6.3.2 Conexión mediante sockets

Las pruebas realizadas en lo que respecta a la conexión mediante sockets entre las

aplicaciones EnviaHL7 y RecibeHL7 se han centrado, en su mayoría, en cubrir los

siguientes aspectos:

 La respuesta de los programas debe ser la correcta cuando se corta o pierde la

conexión o cuando no se puede establecer

 Que el hilos de ejecución funcionen correctamente para que RecibeHL7 pueda recibir

de forma sincronizada archivos de múltiples aplicaciones EnviaHL7

6.3.3 Envío y recepción de mensajes.

El envío y recepción de ficheros se ha implementado con las clases y métodos de la

biblioteca java.io utilizada para el manejo de los flujos de entrada y salida de información.

Así pues, las pruebas realizadas en este aspecto se han centrado en los siguientes

aspectos:

 Comprobación de la creación de los canales que permitan la entrada y salida de datos.

 Comprobación de la existencia del fichero a enviar desde EnviaHL7 y la creación del

fichero en RecibeHL7.

51

6.3.4 Análisis del contenido de los ficheros HL7

El análisis del contenido de los ficheros HL7 desde el sistema de mensajería ha sido una

de las fases de la implementación que más tiempo de dedicación ha necesitado, con lo

cual la fase de pruebas dedicadas a este apartado también ha sido mayor en debido, en

gran parte, al desconocimiento previo de la librería HAPI usada para el análisis de

mensajería HL7.

Los puntos más importantes sobre los cuales se han realizado las pruebas son:

 Comprobar que el sistema reconoce que ficheros son incorrectos y cuáles no,

evitando que el sistema reconozca ficheros incorrectos como válidos y al revés.

 Identificar y mostrar en pantalla los errores que contienen los archivos incorrectos.

 Guardar en un fichero log un lista de ficheros enviados y recibidos con errores,

junto a la fecha y hora en la que se ha analizado el fichero y el error por el cual el

fichero ha sido detectado como incorrecto.

52

53

7 CONCLUSIONES

7.1 ALCANCE DE OBJETIVOS.

Una vez finalizado el proyecto, es el momento de hacer balance de los objetivos iniciales

conseguidos y las modificaciones y ampliaciones de objetivos que se han dado a lo largo

del proyecto.

Los objetivos críticos y prioritarios del proyecto se han alcanzado de forma satisfactoria en

el total de sus requisitos, dando como resultado un sistema de mensajería de ficheros HL7

robusto y portable gracias a su implementación en Java. Por otro lado, gracias al diseño

realizado y a las pruebas a las que se ha sometido el software, el sistema está listo para

utilizarse junto a ekon salus, el ERP sanitario que ofrece UNIT4 a sus clientes.

Pese a todo, de los objetivos iniciales del proyecto se descartó la inclusión de un sistema

de alertas mediante widget en ekon salus y/o dispositivos móviles ya que, aunque a la

empresa le pareció buena idea la creación de un sistema de alertas, no se llegó a un

acuerdo sobre la forma y funcionamiento del mismo, con lo cual se creyó oportuno

descartarlo como un objetivo del proyecto y dejar una vía abierta para un posible

implementación en el futuro.

7.2 AMPLIACIONES Y MEJORAS.

Tras la finalización del proyecto se ha concluido que con los resultados obtenidos se podría

estudiar la posibilidad de ampliar el sistema resultante con varias ampliaciones y mejoras.

Como se explicado en el punto anterior, a corto o medio plazo sería recomendable la

implementación de un widget en ekon salus que informara a las partes interesadas sobre

las peticiones que, al estar codificadas según el estándar HL7, contienen errores en el

contenido de los mensajes. Se descarta, en un principio, que los usuarios del sistema que

no sean administrador del mismo tengan acceso a todas las alertas

54

También se ha contemplado el volcar toda la información capturada por el sistema de

mensajería y guardada en los logs de sucesos en la base de datos de ekon salus, para su

posterior tratamiento y consulta desde el ERP sanitario.

7.3 DESVIACIONES RESPECTO LA PLANIFICACIÓN INICIAL.

En la planificación inicial se estimó una duración aproximada de 472 horas, estableciendo

la fecha de fin del proyecto el día 25 del mes de abril del 2012. Respecto a esos plazos se

una relación de riesgos identificados y gestionados a lo largo del proyecto, que se

nombran a continuación:

 Realizar una planificación temporal del proyecto optimista

 Cambios en los objetivos iniciales del proyecto

 Modificación y ampliación de los requerimientos.

Estos riesgos han acabado sucediendo ya que las horas dedicadas en las distintas fases

del proyecto han sido superiores a las planificadas en gran parte debido al estudio de las

posibilidades de implementación de los estándares HL7, que, a su vez, ha repercutido en

la necesidad de una mayor dedicación en la fase de codificación y pruebas.

Un riesgo que no se había identificado previamente, y que también ha afectado

negativamente a la duración del proyecto, ha sido el desconocimiento por parte del

alumno de los estándares HL7 y todo lo relacionado con la mensajería codificada y el

análisis de la misma. La consecuencia principal ha sido la dedicación de horas extras por

parte del alumno en el entendimiento de toda esa materia.

Como resultado de todo lo explicado, la duración del proyecto ha aumentado hasta un

total de 544 horas y la fecha de fin se ha retrasado hasta el día 21 del mes de mayo del

2012.

En la figura 15 podemos apreciar en el diagrama de gannt como han afectado los cambios

a la duración y finalización del proyecto:

55

Figura 24 - Diagrama de Gantt real con desviamiento

56

7.4 VALORACIÓN PERSONAL.

La valoración que me merece la realización del proyecto en colaboración con la empresa

UNIT4 es realmente muy positiva ya que me ha servido tanto para el ámbito educacional

como profesional

A nivel educativo he tenido la oportunidad de desarrollar un proyecto que me gustara,

poniendo en práctica la metodología y gestión de proyectos y pudiendo utilizar gran parte

de los conocimientos adquiridos en la carrera, y de paso finalizar la carrera de forma

satisfactoria.

En lo que respecta al ámbito profesional y laboral, he tenido la oportunidad de trabajar en

UNIT4, una multinacional muy importante dentro del ámbito del desarrollo de software

empresarial, con unas metodologías de trabajo actuales y un uso importante de las

tecnologías de la información. Todo ello me ha reportado una gran adquisición de

conocimientos y experiencia que seguramente me ayudarán en el futuro.

Lo más importante que he aprendido en este trabajo ha sido el desarrollar un proyecto de

principio a fin, con una metodología de trabajo típica de las empresas que desarrollan

software.

Al tratarse mi proyecto de un desarrollo sobre Java en el que no he tenido que interactuar

con el producto al que va destinado no he podido ampliar mis bastante mis conocimientos

en el desarrollo sobre la plataforma Java y la creación de interfaces graficas útiles para el

usuario.

57

BIBLIOGRAFÍA

La bibliografía utilizada a lo largo del proyecto está dividida en documentos físicos y

documentos online, siendo estos últimos los más utilizados.

 Contenido físico:

 Eckel, Bruce. Piensa Java. 3ra Edición. Lugar de edición:Prentice Hall, 2002.

1100 paginas. ISBN: 01-310-0287-2

 Moldes,F. Javier. Java SE 6 – Guía práctica. 2a edición. Lugar de edición:

Anaya Multimedia, 2007. 304 paginas. I.S.B.N: 978-84-415-2288-6

 Contenido Online:

 http://www.unit4.es/

Página web de UNIT4, consultada para buscar información acerca de la empresa.

Última fecha de consulta: 13/04/2012

 http://hl7api.sourceforge.net/devbyexample.html

Sitio con ayuda y ejemplos para implementar la librería HAPI en proyectos Java.

Última fecha de consulta: 08/06/2012

 https://developers.google.com/java-dev-tools/wbpro/tutorials/

Sitio web con ayuda y tutorial de uso sobre el plugin WindowBuilder.

Última fecha de consulta: 25/05/2012

 http://www.hl7spain.org/

Filial española de la empresa que crea estándares HL7. Consultada para obtener

información sobre mensajería HL7.

Última fecha de consulta: 27/04/2012

 http://es.wikipedia.org

Enciclopedia online, visitada para buscar información variada (HL7, patrones de

diseño, Java, etc).

Última fecha de consulta: 11/06/2012

 http://intrabus.uab.cat/

Intranet de la UAB usada para consultar memorias de cursos anteriores de las

Ingenierías Técnicas Informáticas de Gestión y Sistemas

Última fecha de consulta: 09/01/2012

http://www.unit4.es/
http://hl7api.sourceforge.net/devbyexample.html
https://developers.google.com/java-dev-tools/wbpro/tutorials/
http://www.hl7spain.org/
http://es.wikipedia.org/
http://intrabus.uab.cat/

58

59

ANEXO A - CONTENIDO DEL CD.

El CD que se adjunta con la memoria contiene los siguientes recursos:

 Memoria del proyecto en formato PDF

 Repositorio con todo el código del proyecto

 Aplicaciones del proyecto empaquetadas en formato JAR

 Exposiciones y documentos realizados en UNIT4

 Ejemplos de fichero en formato HL7 para realizar las pruebas con los ejecutables del

proyecto.

Firmado: Lorenzo Gama Ramos

Sabadell, Junio del 2012

