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0. ABSTRACT. 

 

 

 La ruta sintètica del bis(2-((difenilfosfino)metil)fenil)sulfà, Ph2PCH2-

(C6H4)S(C6H4)-CH2PPh2 , DPTMephos, involucra 5 reaccions en 4 etapes ben 

diferenciades. Es per aquest motiu que es fa necessària una optimització de la ruta 

sintètica per assolir rendiments més elevats. La primera reacció parteix del sulfur de 

difenil i involucra la formació d’un complex litiat per acabar realitzant una carbonilació 

amb N,N-DMF per obtindre un dialdehid. El següent pas de la ruta passa per la reducció 

del producte al diol corresponent. Tot seguit ja es por preparar el substrat mitjanjant una 

bromació per a que en l’última etapa, s’acobli a l’estructura el grup difenilfosfino. Tant 

mateix s’han sintetitzat els isòmers de la DPTMephos amb [W(CO)6] i [Mo(CO)6], 

observant-se la formació tant dels complexos meridionals com facials i la seva 

interconversió. Tot seguit s’ha desenvolupat la sulfuració de la DPTMephos per 

obtindre els lligands tant mono com di sulfurats. També s’ha realitzat un estudi de 

l’espectre de RMN 
31
P{

1
H} del complex fac-[Mo(CO)3(DPTMephos)] a temperatura 

variable per determinar el senyal de cada fòsfor no equivalent a 200K. S’ha realitzat un 

estudi de forma qualitativa de les conformacions que adopta l’anell quelat de 6 baules 

en les conformacions tant meridional com facial d’un complex. 
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1. I�TRODUCCIÓ. 

 En les ultimes dècades, ha crescut l’interès per el món dels lligands fosfina, fet 

que es denota pel gran nombre d’estudis que es troben a la bibliografia de síntesi de 

noves fosfines i les seves aplicacions
1,2,3,4 

. S’han preparat molts lligands-P i s’han 

assajat en varies reaccions catalítiques selectives
5,6,7

. Un altre punt fort d’aquest tipus de 

lligands és la gran facilitat amb que s’hi poden introduir alteracions tant a nivell 

electrònic com estèric. Es pot esperar canviar les propietats d’un lligand senzillament 

canviant els substituents enllaçats als fòsfors. Tant mateix resulta fàcil caracteritzar 

aquests compostos per RMN de 
31
P. Dins del mon de les fosfines hi ha un grup, les 

anomenades fosfines hemil·làbils, les quals tenen la característica de que coordinen 

fàcilment, però a la vegades son capaces de dissociar fàcilment. La primera fosfina 

hemil·làbil es va sintetitzar a la dècada dels setanta
8
. 

 

 El primer gran increment en l’interès de les fosfines com a lligand comença amb 

el catalitzador de Wilkinson
18
. A principis dels anys 70, Tolman

19
 desenvolupa el 

concepte del paràmetre electrònic X  i de l’angle cònic θ, que mesura l’impediment 

estèric  per a fosfines i fosfits monodentats. Ambdós paràmetres estan acceptats en 

l’actualitat i s’apliquen en la caracterització de les fosfines. Certs estudis
20,21,22

 

demostren que augmentant l’impediment estèric, es a dir, augmentant l’angle cònic, es 

pot alterar l’activitat i la selectivitat dels catalitzadors derivats d’aquests lligands. 

 

 

  Fig.1.1 Angle cònic de Tolman (θ) i angle quelatant (βn). 

 

 En aquest treball  s’ha sintetitzat, estudiat i optimitzat el procés d’obtenció la 

DPTMephos, una fosfina bidentada i hemil·labil, tantmateix s’ha estudiat la seva 

capacitat coordinant amb tungstè i molibdè. 
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S

PPh2

PPh2

 

  Fig. 1.1 bis(2-((difenilfosfino)metil)fenil)sulfà, DPTMephos. 

 La DPTMephos  està caracteritzada per posseir dos grup funcionals fosfina i un 

grup funcional tioèter (Fig. 1.1). Degut a aquestes característiques pot coordinar de 

formes diferents. L’àtom de sofre tioèter (SAr2) és un donador més feble que els fòsfors, 

així podem observar modes de coordinació on no intervé l’àtom central de sofre, on els 

fòsfors enllacen el  metall tant en forma cis com en trans, produint anells de 10 baules 

(Fig 1.2).  

 

  Fig. 1.2 Coordinació cis/trans de la DPTMephos en complexos plano  

  quadrats. 

 Aquesta coordinació s’ha observat en complexos plano quadrats de pal·ladi i 

platí. També s’ha observat que el lligand pot coordinar a més a més per el grup tioèter 

en entorns plano quadrats, atribuint una estructura meridional, formant 2 anells de 6 

baules (Fig. 1.3). 

 

  Fig 1.3 Coordinació P,P,S  en complexos plano quadrats. 
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 Però les característiques que fan interessant a aquest lligand també es faran valer 

en entorns octaèdrics. En el moment que el sofre entra com a àtom de suport en l’entorn 

de coordinació, passem a tenir entorns de coordinació facials o meridionals.  

 

  Fig 1.3 Coordinació fac i mer de la DPTMephos. 

  

Hi ha una bibliografia extensa
9
 on es troben una gran quantitat de complexos facials, 

sent la forma preferida dels lligands difosfines amb un àtom de suport a la coordinació. 

Però per al que fa la coordinació meridional, no se’n troba gran quantitat i és per això 

que resulta d’interès l’estudi de la DPTMephos en entorns de coordinació octaèdrics.  

 Igualment resulta interessant per poder comparar els resultats obtinguts amb 

dues fosfines de característiques electrònica i estèricament relacionades, la 

DPEMephos
7
 i la DPTphos

9,10
. 

 

  Fig 1.4 Diferents fosfines sintetitzades al grup. 

 

 Aquest treball intentarà explicar com es va sintetitzar i millorar la ruta sintètica 

de la DPTMephos a partir del Ph2S, simplificant alguns processos i passar d’un 

rendiment del 30% al 36%.   
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2. OBJECTIUS. 

 

 L’objectiu d’aquest treball és la optimització de la síntesi de la fosfina 

DPTMephos desenvolupada al nostre grup de recerca. 

 

   Fig. 2.1. Esquema de síntesi de la DPTMephos. 

 La síntesis de la DPTMephos ha estat descrita pel nostre grup amb un rendiment 

global del 30%. La millora del mètode de síntesi haurà de permetre l’augment 

quantitatiu del rendiment i la simplificació del procés, que consta de 4 etapes i 5 

reaccions (Fig. 2.1). L’obtenció optimitzada de la DPTMephos permetrà el seu estudi i 

la seva avaluació en catàlisi. 

 El segon objectiu d’aquest treball és la síntesi i caracterització química de 

complexos de la DPTMephos amb metalls del grup 6. En particular s’estudiaran els 

complexos de DPTMephos amb Mo (0) i W (0) amb lligands carbonil.  

 El tercer objectiu d’aquest treball serà  l’estudi de les conformacions dels anells 

de sis baules que forma la DPTMephos en coordinar el metall, mitjançant RMN 

31
P{

1
H} a temperatura variable.  
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3. RESULTATS I DISCUSIÓ. 

3.1 Síntesi i optimització de la obtenció de la DPTMephos. Generalitats. 

 La síntesis de la DPTMephos s’ha descrit en 4 passos i 5 reaccions a partir del 

Ph2S
10 (Fig. 2.1.). Aquesta ruta té l’avantatge  de que els reactius són simples i 

relativament econòmics. El fet de que tingui 4 passos requereix però, d’una optimització 

perquè sigui rendible i eficient. 

 

3.1.1 Síntesi del 2,2’- tiodibenzaldehid (S1) 

 En termes generals, la litiació ens permet convertir un substrat  en un altre que 

posseeixi la capacitat de ser nucleòfil. Dins la reactivitat de la litiació, té especial 

importància la capacitat de reaccionar en posició orto de substrats arílics 

monosubstituits11 

 

   

  Fig. 3.1.1.1  Ortolitiació de substrats arílics.  

 Aquesta característica és important, ja que per la ruta sintètica es fa necessari 

transformar l’esquelet diarílic, en un substrat nucleòfil, facilitant així la introducció de 

un grup -CHO  (Fig. 3.1.1.2).  

 

 

  

 

  Fig. 3.1.1.2 Formació del derivat dilitiat. 

 

 En la reacció de litiació es fa servir un excés de n-BuLi (2,1 eq.) per assegurar la 

completa dilitiació de l’esquelet diarílic. El complex diliat s’estabilitzat amb N,N,N,N- 
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tetrametilendietilamina. Amb el procediment descrit per l’obtenció de S1, s’obtingué un 

rendiment del 59%, degut a aquest baix rendiment,  es fa palesa la necessitat de trobar 

una manera per fer augmentar el rendiment de la reacció, fet que desemboca en un 

estudi tant del temps de litiació com el de formilació. Gracies a l’estudi realitzat, a 

l’augmentar tant el temps de litiació de 36 a 48h com el de formilació de 24 a 48h 

s’observa que el rendiment de la reacció augmenta un 8% fins a arribar a un rendiment 

global del 67% de S1. 

 El següent pas és la reacció del complex dilitat amb la N,N-dimetilformamida, 

que ens dóna el grup aldehid per allargar una baula més el quelat de la fosfina respecte 

la DPTphos. La reacció amb N,N-dimetilformamida està  afavorida per la presencia del 

grup –N(CH3)2, un bon grup sortint en aquestes condicions. 

 La reacció es duu a terme a  −78ºC i addicionant la N,N-dimetilformamida gota 

a gota durant 1 hora per evitar una reacció descontrolada del complex dilitat (Fig. 

3.1.1.3). Es va treballar amb un gran excés de N,N-DMF per tal d’assegurar la reacció 

completa del derivat litiat. El temps de reacció es va augmentar per obtenir un 

rendiment final del 67% de S1.  

 

   

  Fig. 3.1.1.3. Reacció de formilació del complex dilitiat. 

 

 El següent pas de la reacció és neutralitzar mitjançant aigua àcida (HCl) tot 

l’excés de n-BuLi, de dimetilamidur de liti format i protonar les amines en el medi 

(N,N-dimetilformamida i N,N,N,N- tetrametilendietilamina) per extreure’n una gran 

part en el procés de neutralització. 
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 Durant el procés d’aïllament, els rentats de la fase orgànica es realitzen amb 

aigua àcida (HCl) per continuar protonant les amines que no haguessin pogut ser 

extretes en el pas de la neutralització.  

 El procés de purificació va ser modificat completament. S’observa que les 

impureses amíniques són molt solubles en èter fred fet que permet obtindre S1 amb una 

puresa elevada, tal com denota la netedat de la zona aromàtica de l’espectre de RMN 1H 

(Fig. 3.1.1.4), on la relació –CHO a –HAr és de 2 : 8,5. Gracies a la elevada solubilitat 

de les impureses en èter fred es va evitar fer una purificació cromatogràfica, estalviant 

tant els costos econòmics com de temps.  

 Analitzant el producte mitjançant RMN 1H, es determina que el senyal més 

significant és el singlet dels dos grups aldehid equivalents a δH 10,37.  

   

 

  Fig.  3.1.1.4  RMN 1H de S1, 250MHz, CDCl3, t.a. 

 

 

 

 

 

 

δH 10,37 

δH 7,26 
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3.1.2 Síntesi del  (tiobis(2,1-fenilen))dimetanol (S2). 

  El següent pas  de la ruta sintètica és la transformació del grup aldehid 

mitjançant la reducció per obtindre un alcohol primari (Fig. 3.1.2.1).  

 

 

  Fig. 3.1.2.1 Reducció de S1 amb NaBH4. 

 

 La reducció es duu a terme utilitzant NaBH4 en una relació molar de 

1(S1):4(NaBH4)
12. Es van dur a terme varies síntesis segons la preparativa descrita, però 

no es va assolir el rendiment descrit. Es va determinar que només treballant en una 

relació estequiomètrica de 1:4 s’arribava a rendiments del 96%. S’ha emprat etanol13 

com a solvent ja que el NaBH4 hi té una bona solubilitat.  En el procés de neutralització 

de l’excés de NaBH4 en el medi, la mescla es va haver de tractar amb NaOH 3,75M 

(100 ml) durant 24h ja que no es va aconseguir purificar seguint els mètodes de la 

bibliografia,  només així s’aconsegueix evitar la formació de B(OH)3 insoluble en aigua 

formant borats de sodi, els quals sí que són solubles en aigua i no interfereixen en el 

procés d’aïllament de S2. 

 L’evolució de la reacció es segueix per RMN 1H, ja que el singlet del grup 

aldehid a δH 10,37 desapareix i  apareix un nou singlet pertanyent al grup –CH2−OH a 

δH 4,77.             
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3.1.3   Síntesis del  bis(2-(bromometil)fenil)sulfà (S3). 

 

 El següent pas de la ruta sintètica és la preparació del compost bromoderivat. El 

bromur14 és un bon grup sortint, pel posterior atac amb KPPh2. Es fa servir  PBr3 ja que 

s’obtenen molts bon rendiments tant amb alcohols primaris com secundaris, és una 

reacció senzilla i és de fàcil manipulació (Fig. 3.1.3.1). 

 

   Fig. 3.1.3.1 Reacció de bromació de S2.  

 

 La reacció es duu a terme amb una relació molar de 1(S2) : 3(PBr3) durant 24h. 

Tot seguit es va neutralitzar amb una solució de NaOH 1M (65 ml) i es va deixar tota la 

nit en agitació. Es va obtindre una millora del rendiment, es va passar del 75% al 85%. 

  La reacció en aquest cas s’ha de seguir mitjançant RMN 13C{1H}, ja que 

mitjançant RMN 1H els singlets dels grups R-CH2-OH (δH 4,77) i R-CH2-Br (δH 4,71) 

presenten uns desplaçaments químics molt semblants i és difícil seguir la evolució de la 

reacció ja que queden solapats. En canvi si es segueix la reacció mitjançant RMN 
13C{1H}, el carboni del grup R-CH2-OH presenta una senyal de singlet a δC 63,69  

mentre que el carboni del grup R-CH2-Br presenta una senyal de singlet a δC 31,76 (Fig. 

3.1.3.2), fàcilment distingibles, permetent monitoritzar la reacció. 

 Cadria esperat que dos grups de naturalesa tant diferent com –OH i –Br fessin 

que el δH per Ar-CH2-X, X= (-OH i -Br), fossin clarament diferenciat, però no és així, 

segons la bibliografia consultada7, les parelles d’estructures semblants, Ar-CH2-X, X= 

(-OH i -Br), disten com a molt 0,1 ppm.  
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  Fig. 3.1.3.2 RMN 13C{1H} de S2 i S3, CDCl3, t.a. 
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3.1.4  Síntesis de la bis(2-((difenilfosfino)metil)fenil)sulfà (L1). 

 En l’últim pas, la disfosfina L1 es prepara per reacció de S3 amb KPPh2 

mitjançant una reacció de tipus SN2, aprofitant el caràcter de bon grup sortint del anió 

bromur.  L’anió -PPh2 realitza un atac nucleofílic sobre el carboni que suporta el grup 

bromur i aquest és desplaçat per la entrada del fòsfor (Fig. 3.1.4.1). 

 

  Fig. Fig. 3.1.4.1 SN2 Síntesi de L1. 

 

 En la síntesi es fa servir un excés de KPPh2 en una relació molar de  1(S3) : 

3(KPPh2) per assegurar la reacció completa. Tant mateix,  l’addició de S3 es fa sobre la 

solució de KPPh2 per facilitar la reacció. Com a solvent es fa servir THF sèc per evitar 

canviar la polaritat del solvent on està estabilitzat el KPPh2. La reacció es duu a terme 

durant 3 hores a −78ºC, ja que es desitja tenir un sistema molt controlat per facilitar la 

lenta formació de L1. Passades les 3 hores es treballar a temperatura ambient, havent ja 

passat el punt crític d’inici de reacció.  

 La reacció es pot seguir visualment: la solució passa d’un vermell intens fruit del 

KPPh2 a un taronja pàl·lid. Per RMN 31P{1H} L1 presenta un δP −13,69, mentre que el 

HPPh2 , que és el producte de hidròlisis del KPPh2 no reaccionat, presenta un δP −42,42. 

Mitjançant aquesta diferencia de desplaçaments químics es pot seguir l’evolució dels 

singlets tant de L1 (δP  −13,69) com el de la HPPh2 (δP −42,42). A mesura que el KPPh2 

reacciona amb S3, la intensitat del singlet de HPPh2 (δP −42,42) disminueix mentre que 

la intensitat del singlet de L1 (δP −13,69) augmenta. Un cop tant la relació d’àrees 

d’integració i l’intensitat de L1 com de HPPh2 romanen constant en  el que 

correspondria una relació pròxima a 2(L1):1(HPPh2), significa que tot el S3  ha 

reaccionat. S’observa que la reacció es pot donar per finalitzada al transcurs 

d’aproximadament 24-28 hores.  
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 El mètode d’aïllament descrit 10 no va funcionar bé i no va ser reproduïble, per 

tant tot el procés d’aïllament ha estat modificat. 

 A continuació s’explicarà com es va realitzar tot el procés d’aïllament. Un cop 

es va donar per finalitzada la reacció, es va hidrolitzar la solució amb un major volum 

d’aigua àcida per solubilitzar les sals de KBr i KCl formades i evitar que quedessin en 

suspensió al medi. Tot seguir es la va tractar la mostra a baixa pressió mitjançant una 

línia de buit per eliminar tot el THF i així facilitar la manipulació de L1. Seguidament el 

residu oliós es va tractar amb una solució de NH4Cl saturada i freda primer per eliminar 

les sals inorgàniques i després perquè L1 es trobés en un medi àcid i així evitar la seva 

oxidació. Tot seguit s’hi va addicionar el CH2Cl2 per arrossegar L1 a la fase orgànica. 

Mitjançant una agulla i una cànula, es va decidir eliminar la fase aquosa i deixar la fase 

orgànica dins del schlenk per així evitar el contacte entre  la fase orgànica i l’aire. 

Seguidament la fase orgànica es va rentar amb varies porcions d’aigua àcida (HCl) per 

arrossegar les restes aquoses amb sals d’amoni que poguessin quedar al medi. En cas de 

quedar petites fraccions d’aigua que no es poguessin haver eliminat, seria viable 

eliminar al buit l’HCl mentre que el NH4Cl restaria en el medi de forma solida. Tot 

seguit la fase orgànica es va tractar al buit per eliminar la fase orgànica i obtindré un oli 

blanc. Aquest es va rentar varies vegades en refluxos de MeOH sec per primer extreure 

tots els òxids solubles que hi poguessin haver i segon per assecar la mostra arrossegant 

les restes d’aigua que poguessin quedar en el si del residu. Després d’aquest procés es 

va acabar obtenint un sòlid de color blanc.  

 

 Caracteritzant la DPTMephos, s’ha determinat que té una gran solubilitat en 

CH2Cl2, però per contra és insoluble en MeOH i dissolvent polars. És sensible a 

l’oxidació a l’aire quan està en solució, però en contra, en estat sòlid no s’oxida tan 

ràpidament. Tant mateix l’òxid de la DPTMephos és molt soluble en MeOH, fet que 

afavoreix que en un moment donat es pugui purificar ràpidament una fracció de lligand 

tot arrossegant l’òxid amb MeOH. Cal esmentar el diferent desplaçament químic 

obtingut en aquest treball per el grup –CH2PPh2 en RMN 1H. En aquest treball s’ha 

observat una senyal a δ 3,71 mentres que al treball de referencia17, és de δ 3,58. 
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  Fig. 3.1.4.2.  RMN 31P{1H} de L1, 101 MHz, CDCl3, t.a. 

 

  Fig. 3.1.4.3  RMN 1H de L1, 250 MHz, CDCl3, t.a. 

 

  Fig. 3.1.4.4  RMN 13C{1H} de L1, 63 MHz, CDCl3, t.a. 

δP −13,69 

δH 3,71  

δC 77,16 

δC 33,97 
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3.2.1 Estudi dels complexos de tungstè-carbonil amb la DPTMephos. 

 

 La reacció del [W(CO)6] amb la DPTMephos té interès ja que aquest lligand pot 

coordinar de quatre maneres diferents. Es prepararan, purificaran i caracteritzaran els 

complexos tot suposant una geometria octaèdrica amb els metalls del grup 6. 

S
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  Fig. 3.2.1.1 Reacció de [W(CO)6] amb la DPTMephos i productes  

   obtinguts amb estequiometria [W(CO)3(DPTMephos)]. 

 Es fan reaccionar [W(CO)6] i DPTMephos en n-decà a reflux (174ºC) durant 6 

hores. Cal fer servir un solvent d’alt punt d’ebullició ja que el [W(CO)6]  és poc reactiu i 

és necessari arribar a temperatures elevades per facilitar la sortida dels carbonils i la 

coordinació de L1. S’obté un sòlid de color marró de composició 

[W(CO)3(DPTMephos)] amb un rendiment del 64%. Es caracteritza mitjançant 

tècniques espectroscòpiques de IR i RMN 31P{1H}. Mitjançant aquestes tècniques es 

determinà que tenim dos isòmers (Fig. 3.2.1.2), un singlet a δP 39,04 i un altre a δP 

24,62 (Fig. 3.2.1.3.). Pel que fa al IR, s’observen 4 senyals a la zona de carbonils 1930, 

1891, 1845 i 1819 cm-1 (Fig. 3.2.1.4), s’haurien d’esperar 5 senyals15 en el cas que es 

tingui una mescla d’isòmers, però només s’observen 4 ja que al tenir una mescla, alguna 

es pot veure solapada, en el cas d’haver pogut observar les 5 senyals, tres es podrien 

haver atribuït al isòmer facial i dues al isòmer meridional.  
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  Fig. 3.2.1.2 Isòmers amb composició estequiomètrica    

   [W(CO)3(DPTMephos)]. 

  

 Al analitzar l’espectre de RMN 31P{1H} (Fig. 3.2.1.3), es poden veure els dos 

singlets corresponents a cada isòmer amb els seus satèl·lits de 183W ( I = ½ , abundància 

14%). Pel singlet a δP 39,04 la 
1JP-W = 307 Hz i pel que fa al singlet a δP 24,62 la 

1JP-W = 

245 Hz. La constant JP-W permet una proposta d’assignació estructural raonable dels 

isòmers. El singlet a δP 39,04 amb 
1JP-W = 307 Hz correspon a l’isòmer mer-

[W(CO)3(DPTMephos)], per el que fa al singlet a δP 24,62 amb 
1JP-W = 245 Hz pertany  

a l’isòmer fac-[W(CO)3(DPTMephos)]. Segons la bibliografia15,16,17 , sempre s’obté 

experimentalment que δP (P, P - trans)  > δP (P, P - cis) i 
1JP-W (P, P - trans)  >  

1JP-W (P, P 

- cis), tant per sistemes no quelats amb diferents lligands fosfina com per a lligands 

difosfina quelatants16 d’una naturalesa molt diferent del lligand L1 estudiat. 

 

 Es determina una relació d’àrees aproximada a l’espectre de RMN 31P{1H} per a 

cada isòmer: (mer-1) : 2,7 (fac-1), per tant es pot suposar que es té un 27% de mer- 

[W(CO)3(DPTMephos)] i un 73% de fac-[W(CO)3(DPTMephos)].   
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  Fig. 3.2.1.3 RMN 31P{1H} de la mescla d’isòmers de tungstè, CDCl3, t.a.   
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  Fig. 3.2.1.4 IR de la mescla de isòmers de tungstè. 



Resultats i discusió 

 
18 

 

  Fig. 3.2.1.5. ESI+ HRMS  calculat per la mescla d’isòmers del  

compost 1. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2.1.6. ESI+ HRMS  experimental per la mescla d’isòmers del 

compost 1. 
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3.2.2. Experiment   d’  isomerització   del     fac-[W(CO)3(DPTMephos)]    al    mer-

[W(CO)3(DPTMephos)] en CH2Cl2 . 

 

 

 

 

 

 

 

 

  Fig. 3.2.2.1 Isomerització del fac-[W(CO)3(DPTMephos)] a temperatura  

  ambient 

 

 Es va dissoldre la mescla d’isòmers mer-1 i fac-1 en una relació (27/73) en 

CH2Cl2 a temperatura ambient (Fig. 3.2.2.1). Posteriorment es va enregistrar un espectre 

de RMN 31P{1H}. Es va veure que la relació d’àrees havia variat, el complex fac-

[W(CO)3(DPTMephos)] havia isomeritzat cap a mer-[W(CO)3(DPTMephos)]. Al cap 

de 48 h es va poder determinar que la nova relació d’àrees era de 1 (mer-1) : 1,5 (fac-

1), és a dir, la nova proporció mer-1 : fac-1 és de 40:60.  

 

Fig. 3.2.2.2 RMN 31P{1H} de la mescla de isòmers mer-1 : fac-1 en 

CDCl3 
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3.3.1 Estudi dels complexos de molibdè-carbonil amb la DPTMephos. 

 

 

  Fig. 3.3.1.1 Reacció de [Mo(CO)6] amb DPTMephos i productes 

 

 Es fa reaccionar [Mo(CO)6] i DPTMephos en CH3CN a reflux (82ºC) durant 4 

hores. Cal veure que no fa falta tant temps de reacció ni una temperatura tant alta com el 

cas del tungstè, ja que el [Mo(CO)6] és molt més reactiu i perd més fàcilment els 

carbonils.  S’obté un producte groc amb un rendiment del 60%. Mitjançant les tècniques 

espectroscòpiques de IR i de RMN 31P{1H} es determina que tenim només un isòmer. A 

l’espectre de fòsfor hi ha un singlet a δP 34,87 (Fig. 3.3.1.3). A l’espectre IR  hi ha tres 

senyals a la zona de carbonils, 1934, 1843 i 1815 cm-1 (Fig. 3.3.1.4). Aquestes dades 

suggereixen una estequiometria [Mo(CO)3(DPTMephos)]. 

 

 Després d’haver realitzat l’estudi dels complexos de tungstè (fac-

[W(CO)3(DPTMephos)] (δP 24,62)) i sabent que al ascendir en un grup, el desplaçament 

químic del fòsfor per a un mateix lligand té que augmentar, caldrà esperar valors més 

alts de δP per als complexos de molibdè
23. Mitjançant les tres senyals de carbonil a l’IR, 

es pot determinar que els carbonils es troben en una disposició facial, ja que segons la 

bibliografia14 els espectres IR dels complexos que posseeixen els carbonils distribuïts de 

forma facial, hauran de presentar 3 senyals al IR, mentre que els complexos que 

presenten els carbonils de forma meridional hauran de presentar 2 senyals al IR. Per 

aquest dos fets, es pot suposar que el complex obtingut ha de tindre els substituents 

carbonil distribuïts en forma facial i llavores aquest forcen a que L1 estigui també de 
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forma facial. El producte obtingut es proposa que sigui el fac-[Mo(CO)3(DPTMephos)] 

(Fig. 3.3.1.2). 

 

  Fig. 3.3.1.2  Estructura del fac-[Mo(CO)3(DPTMephos)] 

 

 

 

  Fig. 3.3.1.3 RMN 31P{1H} de fac-2, CDCl3, t.a. 

   

 

δP 34,87 
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  Fig. 3.3.1.5. ESI+ HRMS  calculat per fac-2. 
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  Fig. 3.3.1.4 IR de del complex fac-[Mo(CO)3(DPTMephos)] 

  Fig. 3.3.1.4 IR de fac-[Mo(CO)3(DPTMephos)]. 
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  Fig. 3.3.1.6. ESI+ HRMS  experimental per fac-2. 
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3.3.2 Estudi     d’    isomerització     del     fac-[Mo(CO)3(DPTMephos)]     al     mer-

[Mo(CO)3(DPTMephos)] en CH2Cl2. 

 

 Un cop estudiat els complexos de tungstè, veient que aquest donava dos isòmers, 

fac-1 i mer-1, produint-se una isomerització entre ells es va plantejar si es podien 

observar fenòmens semblants en el complex fac-[Mo(CO)3(DPTMephos)]. Tenint en 

compte les condicions de reacció, es podia haver format primer el producte cinèticament 

més estable i posteriorment evolucionar al producte termodinàmicament més estable. 

Per aquesta raó es va decidir fer un estudi i determinar si l’isòmer facial era el producte 

termodinàmicament estable o per contra evolucionaria al complex meridional.  

 

   

 

 

 

  Fig. 3.3.2.2  Equilibri d’isomerització mer-2 i fac-2 a temperatura  

   ambient. 

 

 Es dissol el fac-[Mo(CO)3DPTMephos] en CH2Cl2. Es va deixar la dissolució 

amb agitació i sota nitrogen perque evolucionés per si sola al llarg del temps. La solució 

passà de color groc a verd al llarg de 48h.  

 Un cop passades les 48h, s’enregistra un espectre de RMN 31P{1H} on es 

determina que tenim una mescla d’isòmers, ja que s‘observa un nou singlet a δP  56,99.  

Es determina una relació d’àrees  1 (mer-2) : 2,5 (fac-2), és a dir, s’ha format 

aproximadament un 29% de l’isòmer meridional (Fig. 3.3.2.3).  

 El valor obtingut de δP 56,99 per al complex mer-[Mo(CO)3DPTMephos], 

encaixà amb els que diu la bibliografia23, esperant valors més elevats de δP per als 

complexos de molibdè.  
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  Fig. 3.3.2.3 Mescla d’isòmers mer-2 i fac-2, CDCl3, t.a. 
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3.4. Estudi a temperatura variable de l’espectre de RMA  31P{1H} del complex  fac-

[Mo(CO)3(DPTMephos)]. 

 

 L’espectre de RMN 31P{1H} del complex fac-[Mo(CO)3(DPTMephos)] mostra 

un singlet a δP 34,87 en CDCl3 a 273K. L’observació d’un sòl senyal a 273K es pot 

interpretar de dues maneres: existeixen dos fòsfors equivalents a l’estructura, o bé, hi ha 

un bescanvi dinàmic, és a dir, l’estructura té dos fòsfors diferents que esdevenen 

equivalents per l’efecte de la temperatura. La segona situació es pot donar degut a 

l’existència de dos anells quelats de 6 baules fusionats i a causa de la coordinació del 

sofre que adopta una geometria piramidal (Fig. 3.4.1). 

 

  Fig. 3.4.1 Les conformacions dels anells quelats poden donar entorns  

  diferents als fòsfors. 

 La figura 3.4.2  mostra l’espectre de RMN 31P{1H} a partir de 273K  fins a 

200K. A 273K l’espectre es un singlet estret corresponent  al fac-

[Mo(CO)3(DPTMephos)], es poden apreciar alguns pics petits que corresponen a petites 

quantitats d’òxid de fosfina. A l’inici de l’experiment de RMN no s’aprecia la presencia 

de l’isòmer mer-[Mo(CO)3(DPTMephos)]. En baixar la temperatura (263, 253 i 243K) 

s’observa un eixamplament progressiu de les bandes, que indica que el procés dinàmic 

es fa més i més lent. S’arriba al punt de coalescència entre 233 i 223K. A temperatures 

per sota de 223K, s’observa l’emergència de dues senyals a δP 38,11 i 31,00, centrades 

al valor inicial δP 34,87, que corresponien al límit de baixa temperatura de l’espectre. A 

200K els senyals dels fòsfors diferents químicament però que integren igual, mostren 

senyals encara prou amples, es previsible que a temperatures més baixes els senyals es 

facin més estrets i que mostrin acoblament P-P. Això no ha estat observat a causa de la 

dificultat experimental per accedir a temperatures més baixes.  
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 A l’espectre de baixa temperatura es pot observar també, una sèrie de pics poc 

intensos que corresponen a impureses d’òxid de fosfina (formades dins el tub de RMN) 

o els seus complexos de molibdè. Es interessant observar a δP aproximat a 57 el senyal 

corresponent  a l’isòmer mer-[Mo(CO)3(DPTMephos)], una ressonància molt ample, la 

qual cosa implica que el procés dinàmic que afecta el lligand en posició meridional és 

encara ràpid a aquesta temperatura tan baixa.  

 

 

 

 

 

 

 

 

   

 

 

 

Fig. 3.4.2 Sèrie d’espectres enregistrats de RMN 31P{1H}, CDCl3 / Et2O 

del fac-[Mo(CO)3(DPTMephos)] a temperatura variable. 
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3.5. Comparativa de les conformacions dels isòmers mer/fac de molibdè. 

 

 L’estudi de l’espectre de RMN  31P{1H} a temperatura variable indica que els 

complexos [Mo(CO)3(DPTMephos)] estan sotmesos a un equilibri  conformacional,  

que a baixa temperatura es pot congelar i fa que els fòsfors equivalents al lligand lliure 

esdevinguin diferents al complex, la qual cosa ha quedat molt clara per l’isòmer facial. 

En aquesta secció es fa una proposta  per explicar aquest equilibri conformacional. 
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  Fig. 3.5.1 Equilibris conformacionals del fac-2.  

 

 Per determinar les conformacions més estables es va fer servir el programa 

ChemBioDraw 3D24  fent servir el procés de minimització d’energies per trobar les 

conformacions de menor energia. Es varen eliminar els dos grups fenils de cada fosfina 

per poder observar millor les conformacions dels 2 anells de 6 baules del complex.  

 Al analitzar les dues conformacions (Fig. 3.5.1), podem veure com l’anell aril A 

en la imatge 1 canvia la seva orientació espacial en la imatge 2. Tant mateix es pot 

veure que per el grup aril B passa el mateix en anar de 1 a 2. Degut a aquests canvis es 

pot veure que els cicles de sis àtoms prenen dos conformacions diferents i això torna els 

dos fòsfors químicament no equivalents. En 1 es determina que els àtoms 4,5,10 i 9 es 

troben continguts en un pla, mentre que 4,5,6,1 no. En canvi, en 2, passa el cas contrari, 

4,5,10 i 9 no es trobaven continguts en un pla, però 4,5,6,1 si. A temperatura ambient, la 

conversió entre 1 i 2 és massa ràpida per l’escala de temps, aleshores s’enregistra un 
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valor promig de les dues conformacions. Al baixar la temperatura fins a 200K la 

cinètica conformacional es veu aturada i es poden diferenciar els fòsfors. 

  

 

  Fig. 3.5.2 Equilibris conformacionals del mer-2. 

 

 Al analitzar les dues conformacions (Fig. 3.5.2), podem veure com el grup aril A 

en la imatge 1 canvia la seva distribució espacial en la imatge 2. Tant mateix es pot 

veure que per el grup aril B passa el mateix en anar de 1 a 2. Degut a aquests canvis es 

pot determinar que els cicles de sis àtoms prenen dos conformacions diferents i això 

torna els dos fòsfors químicament diferents.  En 1 es determina que els àtoms 4,5,6,1 es 

troben continguts en un pla, mentre que 4,5,10 i 9 no. En canvi, en 2, passa el cas 

contrari, 4,5,10 i 9 si es troben continguts en un pla, però 4,5,6,1 no. Al baixar la 

temperatura fins a 200K la cinètica conformacional es va veure ralentitzada i es va 

poder arribar a la temperatura de coalescència.  Al no poder treballar a temperatures 

més baixes, no es va poder aturar l’equilibri conformacional i tornar els fòsfors 

químicament diferents. Si s’hagués pogut treballar a temperatures mes baixes s’hagués 

esperat l’aparició de dos singlets a δP diferents equidistants al singlet de mer-2 i poder 

apreciar els acoblaments P-P.  

 Amb les dades obtingudes es va poder fer una comparativa entre els isòmers 

facials i meridionals. Com es va poder observar en les representacions de les diferents 

conformacions (Fig. 3.5.1 i Fig. 3.5.2), en l’isòmer facial, L1 es troba d’una forma més 

plegada sobre el metall (P - Mo - P de 93,1º), degut a aquest fet es pot proposar que la 

conversió dels anells requereixi d’una major energia, fet que s’explica per la 
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temperatura de coalescència de 223K,  mentre que per l’isòmer mer-2, al trobar-se L1 

d’una forma més oberta (P - Mo - P de 173,4º) sense tants impediments estèrics, 

l’energia de conversió dels anells ha de ser menor, fet que s’explica per el descens de la 

temperatura de coalescència a 200K. 
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3.6. Estudi de la sulfuració de la DPTMephos per obtindre la DPTMephos-S i la 

DPTMephos-S2. 

 

 La reacció de les fosfines amb sofre és una reacció típica  que permet obtenir 

nous lligands hemil·làbils i caracteritzar espectroscòpicament les difosfines, segons el 

perfil de reacció del lligand amb defecte de sofre (Fig. 3.6.1).  

 

  Fig. 3.6.1  Reacció de la DPTMephos amb S8. 

 

 Es fa  reaccionar (Fig. 3.6.1) la DPTMephos amb S8  en una relació  

estequiomètrica de 1(DPTMephos) :1/8(S8) per obtenir una mescla. Es va enregistrar un 

espectre de RMN 31P{1H}. 

 

  Fig. 3.6.2 RMN 31P{1H} de la mescla de fosfines, CDCl3, t.a. 

A  δP  −14,97 

C  δP  −13,69  

B   δP  39,53 

   A δP  39,86 
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 Tot seguit es realitza la reacció de la DPTMephos amb S8 en una relació 

estequiomètrica de 1:1/4 per assegurar una completa sulfuració de la fosfina i obtenir un 

sol producte, facilitant així la posterior assignació dels senyals característics. 

 

  Fig. 3.6.3  Reacció de la DPTMephos amb S8. 

 Finalitzada la reacció s’aïlla un sol producte i s’enregistra el seu espectre de 

RMN 31P{1H}. 

 

  Fig. 3.6.4 RMN 31P{1H}de la DPTMephos-S2, CDCl3, t.a. 

 Un cop realitzats tots els espectres ja es pot assignar els senyals a cada compost.  

Lligand δP δP=S 

DPTMephos (L1) −13,69 - 

DPTMephos-S(L1S) −14,96 39,86 

DPTMephos-S2 (L1S2) - 39,53 

  Fig. 3.6.5.  Taula de senyals de les fosfines L1, L1S i L1S2 

 

 

δP 39,53 
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4. CO�CLUSIO�S. 

Un cop realitzat el treball es va poder arribar a les següents conclusions: 

- S’ha incremental el rendiment global en la síntesi de la disfosfina del 30% al 

36%. 

- En la síntesi de S1 s’ha aconseguit per un costat augmentar el rendiment un 8% 

gracies a l’augment tant del temps de litiació com de formilació a 48h. 

Tanmateix s’ha aconseguit evitar el procés de purificació cromatogràfica 

mitjançant una recristal·lització en èter fred.  

- En el procés de síntesi de S2 s’ha determinat que la relació optima de S1:NaBH4  

és de 1:4 per obtenir rendiments del 96%. Tanmateix s’ha determinat que la 

mescla s’havia de tractar amb una major quantitat de NaOH durant 24h per 

poder obtenir S2 sense impureses de B(OH)3. 

- En el procés de síntesi de L1  es va haver de desenvolupar de nou tot el procés 

d’aïllament ja que al seguir el procés descrit es descartava la fracció que 

contenia L1. 

- Mitjançant la sulfuració de L1 s’han sintetitzat i caracteritzat per RMN 
31
P{
1
H} 

els lligands DPTMEphos-S i DPTMEphos-S2. 

- S’han sintetitzat i caracteritzat per RMN 
31
P{
1
H}, IR i HRMS els complexos de 

la DPTMephos amb [W(CO)6] i [Mo(CO)6], mer-1, fac-1, mer-2 i fac-2, 

obtenint per un costat mescles per els isòmers de tungstè i per l’altre costat 

obtenint primer el facial per el molibdè i després isomeritzant-lo al complex 

meridional. 

-  S’han realitzat les isomeritzacions dels complexos DPTMephos amb tungstè i 

molibdè i s’han determinat aproximadament les proporcions de cada isòmer en 

equilibri. 

- S’ha realitzat  un estudi de RMN 
31
P{
1
H} a temperatura variable de la fac-2, 

determinant la temperatura de coalescència a 223K i determinant que  a 200K la 

fac-2 presenta dos singlets a δP 38,11 i δP 31,00. Tanmateix deguts al procés 

d’isomerització de fac-2 a mer-2, es va poder determinar que la temperatura de 

coalescència per a mer-2 era de 200K aproximadament. 

- Mitjançant l’estudi conformacional i l’estudi a temperatura variable, s’ha pogut 

arribar a la conclusió  que la energia d’intercanvi conformacional per fac-X ha 

de ser més gran que per mer-X. 
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5. EXPERIME	TAL. 

5.1 Procediments generals i caracterització de productes. 

 Tots els processos rutinaris incloent les reaccions com la purificació dels 

solvents es va dur a terme sota una atmosfera inert (N2/buit). Els solvents destinats als 

processos sensitius a l’ aire van ser assecats, destil·lats sobre els reactius necessaris i 

desgasats en el moment de fer-se servir. Toluè, THF, hexà i èter dietílic van ser 

destil·lats sobre sodi i benzofenona, CH2Cl2 i MeOH van ser destil·lat sobre CaH2. Tots 

els reactius varen ser adquirits a  proveïdors comercials o preparats segons els mètodes 

establerts. Tots els reactius van ser verificats sempre que fos necessari. 

 

5.2 Espectroscòpia de RM	, IR i High Resolution Mass Spectroscopy – 

Electrospray Ionization (HRMS-ESI
+
). 

 El progrés de les reaccions va ser seguit per RMN de 
1
H, 

13
C{

1
H} i 

31
P{

1
H}. Els 

productes finals es van caracteritzar mitjançant les tècniques espectroscòpiques que es 

cregueren necessàries: RMN de 
1
H, 

13
C{

1
H} i 

31
P{

1
H}. Els desplaçaments químics 

estan representats en l’ escala  δ. Els RMN de 
1
H i 

13
C{

1
H} estan referenciats respecte 

el TMS, els RMN de 
31
P{

1
H} estan referenciats a un estàndard extern de H3PO4 al 85%. 

Els espectres van ser enregistrats a 250 Hz i 400 MHz fent servir una Bruker DPX-250-

Auto i una Bruker AV400 respectivament al Servei de Ressonància Magnètica Nuclear 

(SeRMN), UAB. La caracterització dels complexos a través d’espectroscòpia de IR es 

va dur a terme en un Bruker TENSOR27 fent servir el mètode ATR al Servei d’Anàlisi 

Químic (SAQ), UAB. 

Els HRMS es van realitzar al SAQ, UAB fent servir un espectròmetre micrOTOF-Q 

equipat amb un sistema ESI
+
 en sistema positiu de ió. La determinació va ser a càrreg 

de la Dra. Mª Jesús Ibarz Esteva.  
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5.2.1 Synthesis of 2,2’- thiodibenzaldehyde (S1). 

A solution of n-BuLi 48ml (2.5 M in hexane, 120 mmol, 

Aldrich) was added drop wise over a solution of phenyl 

sulfide 8 ml(8.8g, 47.2 mmol, Acros), �,�,�’,�’-

tetramethylethylenediamine 18 ml (120 mmol, distilled over 

KOH) and dry hexane (120ml)  in a side arm flask under N2 

at 0 ºC. The orange mixture was allowed to warm up and 

stirred at rt. for 48 h. The beige suspension formed was 

cooled down to −78 ºC (acetone / liq. N2 slush bath) and �,�-dimethylformamide (18.6 

ml, 240 mmol, distilled over CaH2, Aldrich) was added drop wise. The mixture was 

allowed to warm up and stirred at rt. for 48 h. The solvent was evaporated at reduced 

pressure. The resulting residue was treated with a degassed aqueous solution of HCl(aq) 

50 ml (5%, pH≈11) and extracted with CH2Cl2 (2 x 20 ml). The organic layer was 

washed with degassed solution of HCl(aq) 1M ( 3 x  50 ml), separated, dried with 

Na2SO4 and filtered. The solvent was evaporated under reduced pressure to give an 

orange oil that was treated with 20ml of dry Et2O with stirring for 15 min. The 

suspension was cooled down to 0ºC without stirring for 15 min and then was filtered. 

The formed solid was treated under vacuum to remove Et2O.  A yellow solid was 

obtained;Yield: 7.67g (67%). 

 

1
H 	MR (250 MHz, CDCl3, 298K): δ 7.16 (1H, d), 7.19 (1H, d), 7.48 (4H, q), 7.95 

(1H, d), δ 7.98 (1H, d),  10.37 (s, 2H). 

13
C{

1
H} 	MR (63 MHz, CDCl3 298K): δ 128.06, 131.96, 132.73, 134.82, 191.69. 

 

 

 

 

 

 

 

S

O

O

H

H
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5.2.2 Synthesis of 2,2'-thiobis(2,1-phenylene)dimethanol. 

A side arm flask was charged with 2,2'-thiodibenzaldehyde 

(3.6 g, 14.62 mmol), NaBH4 (2.32 g, 61.6 mmol) and EtOH 

(100 ml) at 0ºC. The solution was allowed to warm up and 

stirred at r.t. for 36 h. The mixture was cooled down to 0ºC, 

treated with a degassed solution of NaOH(aq) 3.75M (100ml, 

degassed) and extracted with dry Et2O (100 ml). The 

organic layer was washed with degassed water (2 x 50 ml), separated, dried with 

Na2SO4 and filtered. The solvent was evaporated under reduced pressure to give a white 

solid. Yield 3.52 g (96%). 

1
H 	MR (250 MHz, CDCl3, 298K): δ 4.77 (4H, s), 7.14-7.33 (6H, m), 7.53 (2H, m). 

13
C{

1
H} 	MR (63 MHz, CDCl3 298K): δ 63.69, 128.04, 128.79, 128.89, 132.36, 

133.41,141.34. 

 

5.2.3 Synthesis of bis(2-(bromomethyl)phenyl)sulfane(S3). 

Phosphorous (III) bromide (4.3 ml, 45.8 mmol) was added 

drop wise (1 drop per second) over a solution of 2,2'-

thiobis(2,1-phenylene)dimethanol (3.52 g, 14.29mmol) and 

dry toluene (130 ml) in a side arm flask under N2 at 0ºC. The 

white suspension was allowed to warm up and stirred 24 h at 

r.t. The mixture was cooled down to 0º C, treated with a 

degassed solution of NaOH(aq) 1M (65ml) for 24h and extracted with dry ether (30 ml). 

The organic layer was washed with degassed water (2 x 20 ml), separated, dried with 

Na2SO4 and filtered. The solvent was evaporated to afford a yellow solid, which was 

washed with 10 ml dry Et2O at 0ºC. The solid was dried under vacuum to  obtain a 

yellow solid, yield: 4.5g (85%). 

 

1
H 	MR (250 MHz, CDCl3, 298K): δ 4.72 (4H, s), 7.18 (2H, d), 7.21 (2H, q), 7.24 

(2H,q), 7.46 (2H, d). 

13
C{

1
H} 	MR (63 MHz, CDCl3 298K): δ 31.8, 128.2, 129.7, 131.2, 133.1, 135.2, 

138.5. 

S

OH

OH

S

Br

Br
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5.2.4 Synthesis of bis(2-((diphenylphospino)methyl)phenyl)sulfane (L1). 

Bis(2-(bromomethyl)phenyl)sulfide (1.2 g, 3.23 mmol) 

was dissolved in dry THF (20ml). This solution was 

added drop wise (1 drop per second) over a potassium 

diphenylphosphide (0.5 M in THF, 20 ml, 10 mmol, 

Aldrich) solution with vigorous stirring at −78 ºC 

(acetone / liq. N2 slush bath). The mixture was stirred at 

−78 ºC for 3 h. The orange mixture was allowed to warm up to r.t. and stirred for 24 h. 

The solution was cooled down to 0ºC, and HCl(aq) 2M (10ml) was subsequently added 

to observe the formation and redisolution of a white suspension and losing its orange 

color. Solvent was removed at low pressure using a line. The white oil was treated with  

dry CH2Cl2 (20ml) and then a degassed satured solution of NH4Cl at 0ºC (20ml) was 

added. A syringe was used to remove the aqueous phase. The organic phase was treated 

with HCl 2M (2 x 10 ml). A syringe was used to remove the acidic phase each time. 

The solvent was removed using a line with vacuum to afford a white oil. White oil was 

treated with a solution of degassed and dried MeOH (2 x 20ml, distilled over CaH2) at 

reflux temperature (65 ºC), removing the solvent with a canula each time. A white solid 

was obtained. The solid was treated at low pressure using a line to obtain a white solid. 

Yield: 1.25g (66%). 

 

31
P{

1
H} 	MR (101 MHz, CDCl3, 298K): δ -13.69 (s). 

1
H 	MR (250 MHz, CDCl3, 298K): δ 3.71 (4H, s), 6.93-7.43 (28H Ar, m). 

13
C{

1
H} 	MR (63 MHz, CDCl3, 298K): δ 33.97 (d), 127.15, 127.24, 128.45 128.56, 

129.07, 130.59, 130.73, 132.35, 133.14, 133.43. 

 

 

 

 

 

 

 

S

PPh2

PPh2
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5.2.5 Reaction of DPTMephos with sulfur. 

 

 A side arm flask was charged with (2-((diphenylphospino)methyl)phenyl) 

sulfane, DPTMephos,  (100 mg, 0,172 mmol), S8 (6 mg, 0,187 mmol) and  dry and 

degassed CH2Cl2 (20ml) under N2. The solution was stirred for 24h at r.t. The solvent 

was removed at low pressure to obtain a white solid with a mass of 105 mg (99%), a 

mixture of DPTMephos, DPTMephos-S and DPTMephos-S2. Mixture was analyzed 

using 
31
P{

1
H} NMR to verify the mixture of three compunds. 

31
P{

1
H} 	MR (101 MHz, CDCl3, 298K): δP=S 39,52 (s, DPTMephos-S2), δP=S 39,86 (s, 

DPTMephos-S), δP −13,69 (s, DPTMephos), δP −14,96 (s, DPTMephos-S). 

 

5.2.6. Synthesis of DPTMephos-S2. 

A side arm flask was charged with DPTMephos (100 mg, 0,172 

mmol), S8( 12 mg, 0,374 mmol) and  dry and degassed CH2Cl2 

(20ml) under N2. The solution was stirred for 24h at r.t. The 

solvent was removed at low pressure to obtain a white solid. 

Yield: 110 mg (99%). 

 

31
P{

1
H} 	MR (101 MHz, CDCl3, 298K): δP=S 39,52 (s). 

 

 

 

 



Experimental 

 
39 

5.3 Synthesis of complexes. 

5.3.1 Synthesis of fac-[Mo(CO)3(DPTMephos)]. 

 

A 50 ml side arm flask was charged with [Mo(CO)6] 

(49,37mg, 0,187 mmol), bis(2-(diphenylphospino) 

methyl)phenyl)sulfane (120mg, 0,206mmol) and dry 

and degassed CH3CN (15 ml). The solution was brought 

to reflux for 3h. The solution becomes yellow. The 

solution was brought to r.t. and solvent was removed at 

low pressure. A yellow solid was obtained. The solid 

was washed with dry and degassed Et2O/CH2Cl2 (6:1) (7 

ml). The solvent was removed using a cannula. The 

solid was dried under vacuum. Yield: 85,5 mg (60%). 

31
P{

1
H} 	MR (101 MHz, CDCl3, 298K): δ 34.87  (s) 

 

5.3.2 Isomerization of  fac-[Mo(CO)3(DPTMephos)]. 

  A 50 ml side arm flask was charged with 25 mg of fac-

[Mo(CO)3(DPTMephos)] and 5 ml of CH2Cl2. The yellow solution was stirred for 48h 

losing its yellow colour and becoming green. The solvent was removed under vacuum. 

A green solid product was obtained. Yield: 24 mg (99%) of a mixture of  mer-

[Mo(CO)3(DPTMephos)] (29%)(mer-2) and fac-[Mo(CO)3(DPTMephos)] (71%)(fac-

2). 

31
P{

1
H} 	MR (101 MHz, CDCl3, 298K: δ 56,99 (s, mer-2, area 29%), δ 34,87 (s, fac-

2, area 71%). 
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5.3.3 Synthesis of mer/fac-[W(CO)3(DPTMephos)] mixture. 

 

 A 50 ml side arm flask was charged with [W(CO)6] (65,81 mg, 0,187 mmol), 

bis(2-(diphenylphospino)methyl)phenyl)sulfane (120 mg, 0,206 mmol) and dry and 

degassed n-decane (15 ml). The solution was brought to reflux for 6h. The solution 

became brown. The solution was brought to r.t. and solvent was removed at low 

pressure. A brown solid was obtained. The solid was washed with dry and degassed 

Et2O/CH2Cl2 (6:1) (7 ml). The solvent was removed using a cannula. The solid was 

dried under vacuum. A mixture of mer-1 and fac-1 was obtained. Yield: 85,5 mg 

(59%). 

31
P{

1
H} 	MR (101 MHz, CDCl3, 298K): δ 39,04  (s,  

1
JP-W = 307 Hz, mer-1, area 

29%), δ 24,62  (s, 
1
JP-W = 245 Hz, fac-1, area 71%). 

 

5.3.4 Isomerization of  mer/fac-[W(CO)3(DPTMephos)] mixture. 

 A 50 ml side arm flask was charged with 25 mg of a mixture of fac-1 and mer-1 

and 5 ml of CH2Cl2. The brown solution was stirred for 48h. Solvent was removed 

under vacuum. A brown product was obtained. Yield: 24 mg (99%) of a mixture of  

mer-[W(CO)3(DPTMephos)] (29%)(mer-1) and fac-[W(CO)3(DPTMephos)] 

(71%)(fac-1). 

31
P{

1
H} 	MR (101 MHz, CDCl3, 298K: δ 39,04  (s,  

1
JP-W = 307 Hz, mer-1, area 40%), 

δ 24,62  (s, 
1
JP-W = 245 Hz, fac-1, area 60%). 
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  A15. IR de la mescla mer-1 i fac-1 

   A16. IR de fac-2. 
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