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Caṕıtol 1

Introduccio

1.1 Qué és el Go?

El Go és un joc d’ estratègia per a dos jugadors, que es va originar a Xina fa
més de 2500 anys. La majoria de joc competitiu es du a terme a Xina, Korea
i Japò, però en les últimes dècades ha guanyat certa popularitat a occident.
Avui en dia hi ha més de 40 milions de jugadors per tot el món.

Normalment es juga en un taulell de 19x19 interseccions i es caracteritza
per tindre només dues senzilles regles (veure annex 1: regles del Go). No
obstant, conté un component tàctic i estratègic extremadament alt. Alguns
estudis matemàtics, han demostrat que el nombre de partides diferents que es
poden jugar, és d’ aproximadament 10800, superant (i per molt) el nombre d’
àtoms en l’ univers observable actualment, que es calcula que està al voltant
de de 1080.

Tota aquesta complexitat ha despertat l’ interès del Go en algunes bran-
ques de ciències de la computació. Una d’ elles, i la més important, es l’
intel·ligència artificial. I no és per menys, perquè a diferència de l’ escacs 1,
a dia d’ avui encara no s’ ha pogut crear cap programa que sigui capaç de
guanyar a un jugador professional, en una partida justa. Tan es aix́ı, que s’
organitzen competicions anuals fent lluitar als programes entre śı, per veure
quin és el més fort.

Recentment, alguns programes, utilitzant supercomputadors, han aconse-
guit guanyar a alguns professionals de categoria 9é dan 2, en circumstàncies
avantatjoses (posant handicaps al jugador), o en taulells de menor tamany.
L’ any 2008, el programa MonGo va aconseguir guanyar a un 5é dan en un
taulell de 9x9.

1Al 1997, el Deep Blue es va convertir en la primera IA en guanyar al campió mundial
Kasparov en el joc de l’ escacs

2La categoria ”dan”és otorgada a jugadors professionals, i només aquells amb unes
capacitats excepcionals són escollits per el t́ıtol de 9é
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A la data de creació d’ aquest document, la fita més important aconse-
guida, va ser al juny de 2013, quan el programa Zen va guanyar a un 9é dan,
en un taulell de 19x19, i amb un handicap de només 3 pedres.

1.2 Tsumegos

Tan en l’aprenentatge del Go, com en l’ entrenament per millorar les capaci-
tats d’ un jugador, entren en joc els Tsumegos. Similars als t́ıpics problemes
d’ escacs que solen venir en qualsevol diari, els Tsumegos són problemes
adaptats al Go. Donada una distribució de peces inicials, el jugador ha d’
intentar, o sobreviure en un espai potencialment capturat per l’ enemic, o
capturar a les peces enemigues causant la mort del grup sencer. Una carac-
teŕıstica dels Tsumegos és que sempre juguen les negres en primer lloc.

Aquests objectius normalment són assolits mitjançant una seqüència cŕıtica
de moviments. És a dir, si el punt cŕıtic no és ocupat en el moment adequat,
el problema acabarà en derrota. I notis la subtilesa de “acabarà”, perquè un
jugador pot haver perdut ja un territori, i no obstant seguir jugant en ell.
Però totes les pedres que col·loqui a partir del moment que l’ha perdut, són
peces virtualment mortes que acabaran sent capturades per l’ enemic.

Vegem un exemple:

(a) Estat inicial amb el
punt cŕıtic marcat

(b) Moviment de les
blanques al punt cŕıtic

(c) Moviment de les ne-
gres al punt cŕıtic

Figura 1.1: Exemple d’ un Tsumego

A la figura (a) tenim la distribució inicial de peces i el punt cŕıtic marcat
en vermell. La figura(b) representa una seqüència de jugades en la qual les
negres no han jugat aquest punt cŕıtic, i ho han fet les blanques. La figura
(c) és el cas contrari. Les negres han sabut veure el punt cŕıtic.
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Les conseqüències de la jugada de la figura B són les següents:

Figura 1.2: Conseqüències de la jugada a B17

Aquesta podria ser la continuació de la seqüència iniciada a la figura 1.B.
Podem veure com s’ ha arribat a un punt en que les negres no han pogut
capturar a les blanques, i a més han sacrificat tres pedres innecessàriament.
A partir d’ ara, les negres no poden jugar ni a A19 ni a D19. Trencaria
la regla de les llibertats. Per tant, les blanques estan permanentment vives
en aquesta zona fins a final de partida. No se les pot capturar de cap manera.

Que hagués passat si les negres haguessin jugat al punt cŕıtic B19 des d’
un inici tal com hem vist a la figura C?

Figura 1.3: Conseqüències de la jugada a B19

En aquest cas, les negres han pogut capturar un grup de blanques im-
pedint que, en un futur s’ esdevingui la situació final anterior, en la que les
blanques estaven permanent vives.

Per fer un anàlisis complert d’aquest senzill problema, podem deduir
fàcilment el perquè el punt B19 és el punt cŕıtic. Si ens fixem a la distribució
inicial, el punt cŕıtic és el que permet a les blanques fer una formació de dos
ulls (veure annex 3: ulls en el joc del Go). Els dos ulls és un dels patrons
més utilitzats en el Go degut a la seva potencialitat de viure permanentment.

9



En la seqüència de moviments de la figura 1.B el problema sencer ha
quedat sentenciat en el moment en que la blanca ha jugat a B19, formant
els dos ulls. A partir d’aquest moment totes les pedres negres, jugades en
el territori format per els dos ulls, han estat sacrificis. En canvi, a la figura
1.C, les negres han tallat la possibilitat de que les blanques fessin dos ulls a
la zona, permetent capturar-les. I si a més ens fixem en l’ estat del taulell a
l’ última imatge, podem veure com el conjunt de blanques que encara està
sobre el taulell, està rodejat completament per les negres, i sentenciat a mort.

En qualsevol dels dos casos es pot comprovar que les primeres jugades
són determinants per la resolució del problema. Aquesta premissa és molt
comú en els Tsumegos. En aquest senzill exemple és relativament fàcil veure
el punt cŕıtic i l’ estratègia a seguir. Però en exemples més complicats, els
punts cŕıtics poden ser més d’ un, es poden jugar en diversos ordres, i inclús
és necessari el sacrifici de peces pròpies per tal d’ aconseguir que l’ enemic
no sobrevisqui a la zona.

1.3 Estat de l’ art: Tsumegos i software en

l’actualitat

És clar que els Tsumegos ajuden a potenciar les habilitats dels jugadors.
A més, en una de les 3 grans fases d’ una partida complerta de Go (veure
Annex A: regles del Go), el taulell està ple de batalles locals semblants als
Tsumegos. És per això que avui en dia, qualsevol aplicació virtual de Go té
un mòdul de Tsumegos.

Una de les caracteŕıstiques d’ aquestes aplicacions és que té dos tipus
d’ usuaris. Els que creen els Tsumegos, i els que els intenten resoldre. A
partir d’ara anomenats “creadors” i “jugadors” respectivament. Els creadors
defineixen tots els possibles camins de jugades del problema, incloent les que
són incorrectes. Això es porta a terme mitjançant la definició d’arbres de
jugades com els que es mostren a continuació.

10



Figura 1.4: Simulacio d’ IA mitjançant arbres de jugades

El jugador va fent les seves jugades (amb les negres) i va avançant per l’
arbre definit per el creador, juntament amb les respostes de les blanques. Si
segueix un dels camins verds, arribarà a una solució correcte. Si segueix un
dels camins vermells, arribarà a un estat en el que ha perdut el problema.
És un sistema fàcil d’ implementar en el que no hi ha cap component d’
intel·ligència artificial pròpiament dit, que dificulti el procés.

Ara bé, qué passa si el jugador no segueix cap dels camins definits per el
creador? L’ aplicació arribarà a un punt en que no serà capaç de respondre
i s’ aturarà tot el sistema de resposta per part de la màquina, informant al
jugador que el sistema no coneix la jugada escollida, i per tant no sap com
continuar.

Aquesta filosofia té els seus pros i contres. Els seus avantatges són que és
de fàcil implementació, i la possibilitat de posar comentaris a cadascuna de
les jugades, per informar al jugador del perquè no hauria de jugar en aquell
punt. Però el fet de que siguin els propis jugadors els que defineixen els pro-
blemes té dues fortes implicacions.

En primer lloc, la impossibilitat de tindre en compte absolutament totes
les jugades. Recordem l’ explosió combinatòria del Go. En una zona de joc
de 5x5, per exemple, les possibilitats són extremadament elevades ja. Això
implica que el creador ha d’ acotar la definició del problema a les jugades
més rellevants.

I d’aquest últim fet deriva el segon problema. Normalment els creadors
són persones amb una experiència en el joc bastant elevada. Això implica
que moltes vegades no tenen en compte les jugades més nefastes. A més, la
majoria de creadors acaben la definició del problema en la jugada cŕıtica.
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Quines repercussions té això? Posem d’ exemple a un jugador novell. Per
a un jugador novell, totes les jugades són possibles jugades. No té perquè
saber que hi ha un punt que ni es contempla jugar de lo dolent que és. Això,
sumat al fet que el problema acaba quan posa la peça cŕıtica, i no quan re-
alment es veuen les conseqüències directes d’ haver-ho fet, dificulta molt l’
aprenentatge sobre el joc.

1.4 Objectius del projecte

L’ objectiu del projecte és aprofundir en el camp de l’ intel·ligència artifi-
cial simbòlica i subsimbòlica, per tal d’ agafar confiança amb aquests tipus
de problemes, i poder treballar-hi a un nivell més professional.Amb aquest
propòsit, s’ implementarà una IA que sigui capaç de jugar a Tsumegos en el
Go, contra una persona d’ un nivell principiant-mitjà. S’ estudiaran a fons
diverses metodologies i algorismes per tal d’ aconseguir aquest objectiu.

Aquesta intel·ligència serà capaç de jugar contra el jugador sense cap co-
neixement previ, fent que el jugador pugui veure les repercussions de les seves
jugades fins al final, i facilitant el procés d’ aprenentatge. Com que l’ aplica-
ció està destinada a jugadors novells, no serà necessari que l’ IA sigui capaç
de resoldre problemes extremadament complexos. Es limitarà a Tsumegos
de nivell principiant-mitjà.

És evident, però, que aquest sistema també tindrà les seves limitacions.
En primer lloc, els Tsumegos que pugui resoldre l’ IA, tindran unes carac-
teŕıstiques determinades, que es veuran en pàgines posteriors. En segon lloc,
un dels avantatges que tenia el sistema d’ arbres de jugades, es perdrà. I es
que per a informar al jugador de perquè esta jugant bé o malament, podria
suposar un mòdul d’ IA a part, igual de complexe que el del propi joc.

Finalment, i per dotar de mes funcionalitat a l’ aplicació, també permetrà
jugar a dos jugadors en una partida complerta de Go, seguint les normes
pròpies del joc.
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1.5 Viabilitat del projecte

1.5.1 Viabilitat tècnica

Aqúı és on podŕıem tindre més problemes. L’ implementació d’ una IA, com
ja s’ ha comentat, es una tasca molt complexa i laboriosa. I més en el cas d’
aquest projecte, que té la dificultad afegida de que es tracta d’ un problema
no resolt completament. No obstant, degut a la limitació auto imposada de
fer-la per a principiants, és factible com a projecte de final de carrera.

1.5.2 Viabilitat legal

El projecte en principi no suposa cap problemàtica en el marc legal, més enllà
de la disposició de llibreries i bases de dades de tercers. Però com que preten
ser un projecte sense ànim de lucre i de lliure distribució, no s’ haurien de
tindre majors problemes. En qualsevol cas, tot el software de tercers que s’
utilitzi serà completament lliure.

1.5.3 Viabilitat econòmica

El cost de desenvolupament estarà associat bàsicament a les hores dedicades.
No obstant, es podrien tindre costos derivats de la compra de documents o
llibres tècnics dels que no es poden disposar de forma gratuita. S’ intentarà
en la mida del possible que siguin molt baixos o inclús nuls.

D’ altre banda també hi haurà petits costos derivats de l’ impressió de
documents, memòria, previ, etc.

1.6 Fases del projecte

El projecte es dividirà en les següents fases:

• Implementació d’una interf́ıcie gràfica.

• Creació de la llibreria Gorgon. Incorporarà els següents subsistemes:

– Control i suport de jugadors: controlar el torn, pedres capturades,
punts d’ influència sobre el taulell..

– Control sobre el taulell. Col·locació de pedres, enmagatzament de
dades, etc etc.
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– Suport per a arxius SGF.

– Sistema d’ intel·ligència artificial.

El desenvolupament de la interf́ıcie gràfica està en fases relativament
avançades. No obstant, degut a la seva interacció amb la llibreria Gorgon,
no es podrà acabar fins que la llibreria estigui completament acabada.

La llibreria Gorgon és la part del projecte en la que més temps es dedi-
carà. I molt especialment al subsistema d’ intel·ligència artificial. El enmgat-
zament de les dades del taulell també suposarà un punt cŕıtic en el projecte i
possiblement també implicarà un percentatge relativament elevat del temps
de projecte.

1.7 Planificació temporal

Interf́ıcie gràfica: no estarà completament acabada fins que estigui com-
plerta la llibreria Gorgon. No obstant, a mida que es vagi desenvolupant la
llibreria, s’ aniran fent probes d’ integració a l’ interf́ıcie. Aix́ı que un cop
acabada, es trigarà unes 2 setmanes més per a acabar d’ implementar les
caracteŕıstiques alienes a la llibreria. Com per exemple els menús d’ opcions
o preferències.

Control de jugadors: serà relativament fàcil. L’ única funció d’ aquest
mòdul serà mantindre informació dels jugadors i algunes funcions bàsiques
sobre ells. Es calcula que amb unes 2 setmanes estarà acabat.

Arxius SGF: aquest mòdul també hauria de ser relativament fàcil d’ im-
plementar. Tenint en compte que ja hi ha un estàndard per a aquests tipus
d’arxius (Smart Game Format), l’ implementació no portarà molts proble-
mes. S’ estima una duració d’ unes 2 setmanes també.

Control del taulell: en aquest cas la cosa és una mica més complicada.
S’ han de tindre en compte alguns problemes de rendiment, quines estruc-
tures de dades guardar, i a més fer-ho de manera incremental per distribuir
la càrrega de còmput a l’ hora de calcular un moviment de l’ IA. També
s’ implementarà un submódul de debugging per tal de poder visualitzar les
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diferents representacions de l’estat del taulell. Sent relativament optimistes,
unes 6 setmanes seran suficients.

Mòdul d’ IA: és el punt més cŕıtic del projecte, en quan a duració. En
aquest mòdul s’ utilitzarà tota l’ informació guardada en el mòdul de control
de jugadors i d’ informació del taulell per tal de poder programar una IA
que pugui jugar a Tsumegos contra el jugador. A part s’ hauran de tindre
en compte diferents tècniques i mètodes per tal de portar a terme aquesta
tasca. S’ estima una duració total d’ unes 14 setmanes.

Redacció de la memòria: la memòria, al igual que l’ interf́ıcie gràfica, s’
anirà desenvolupant a mida que avanci el projecte. Es començarà a redactar
un cop acabat el mòdul de control del taulell. Un cop acabada l’ implemen-
tació del projecte, es deixaran uns dies més de marge, per acabar de posar
conclusions, revisar-la, etc etc.

1.8 Diagrama de Gantt

Tenint en compte les anteriors estimacions, la càrrega de temps del projecte
quedarà distribüısda de la següent manera:
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Cadascuna de les fases anteriorment mencionades té incoporporat un petit
peŕıode de testeig. No obstant, al finalitzar el projecte (junt amb la memòria)
es reservaran uns dies més per completar el testeig general de l’ aplicació.
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Caṕıtol 2

Implementació

2.1 Introducció

L’ implementació del projecte es va dividir en dues parts. El desenvolupament
de l’ interf́ıcie d’ usuari GoGUI, i el de la llibreria Gorgon, que al mateix
temps tenia diversos mòduls a atacar. Aquest document es centrarà sobretot
en el desenvolupament de Gorgon, que és el que va suposar la major part del
repte del projecte.

2.2 Tsumegos en Gorgon

Abans de començar amb el desenvolupament pròpiament dit, va ser necessari
definir un concepte clau per tal de poder desenvolupar l’ aplicació: Què és
un Tsumego?

En el cas de Gorgon, i per simplificar les coses, es va decidir que un
Tsumego havia de ser un problema localitzat, l’ objectiu del qual havia de
ser viure o impedir viure, i que no permetia al jugador defensor, fugir cap
a àrees buides del taulell. Aquest últim punt es la gran diferència entre un
Tsumego i una partida real. En una partida real un grup de pedres podria
intentar fugir cap a l’ exterior per tal de minimitzar els danys o aconseguir
un benefici major en un futur amb conjunció amb la resta del taulell. En
un Tsumego hi ha una solució que permet al grup sencer viure. I per tant,
com que no hi ha més pedres implicades que les del propi Tsumego, la so-
lució correcte i única per al defensor, és que el grup sencer visqui a l’ interior.

2.3 Llenguatges i eines desenvolupament

La primera gran decisió que es va haver de prendre va ser quin llenguatge
de programació utilitzar per implementar Gorgon i l’ interf́ıcie GoGUI. Es
tenien coneixements avançats i experiència laboral en Java, i coneixements
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mitjans-avançats de C++. El sentit comú deia que el millor era utilitzar
Java. Però es va optar per C++ per dos motius:

• En primer lloc, era una oportunitat perfecte per aprendre aquest llen-
guatge força demandat en el món real.

• En segon lloc, es va haver de pensar desde un punt de vista de mes
tècnic. Java s’ executa sobre màquina virtual. C++ compila el codi
directament a llenguatge màquina. Tenint en compte el tipus de pro-
jecte que era, on destacaria la necessitat de velocitat de còmput, C++
era la opció més lògica.

Un cop, escollit el llenguatge, es va decidir fer us de l’ eina de desenvolu-
pament Qt. El motiu d’ això era que Qt disposa de bastantes llibreries que
facilitarien l’ implementació de l’ interf́ıcie gràfica GoGUI. Per comoditat a l’
hora d’ integrar la llibreria, es va decidir fer us de Qt també per desenvolupar
Gorgon.

2.4 GoGUI

2.4.1 Introducció

GoGUI és la interf́ıcie gràfica que es va implementar. Es va desenvolupar
abans de Gorgon simplement per tindre una manera visualment atractiva
de fer les proves necessàries per Gorgon. Es va implementar de la següent
manera:

18



Figura 2.1: Arquitectura de GoGUI

L’ avantatge de separar GoGUI de Gorgon és que GoGUI no havia de fer
cap càlcul referent al joc en si. L’ única cosa que feia GoGUI és actualitzar
el taulell gràfic i l’ informació necessària per al jugador. Però aquesta in-
formació era Gorgon qui la calculava. Comprovar que es complien les regles
del joc, calcular un moviment de la IA, mantindré la representació lògica del
taulell... Tot això són tasques que feia Gorgon.

D’ aquesta manera, si es volia fer una interf́ıcie gràfica completament
diferent, visualment més atractiva, i amb un bon disseny gràfic, no hav́ıem
de fer cap càlcul referent al joc en si. En resum, des d’ un principi es va
tindre clar la necessitat de l’ abstracció entre visualització del joc i dades del
joc.
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2.4.2 El taulell desde un punt de vista gràfic

La construcció del taulell es va implementar de manera que si en algun mo-
ment es volia canviar el tamany del taulell o fer un zoom, fos relativament
fàcil. Aix́ı que es va pensar com la unió de les imatges del que eren les pròpies
interseccions. Si voĺıem un taulell de 19x19, simplement teńıem que unir 361
imatges representant les interseccions. A més, aquest plantejament facilitava
molt el fet de posar una pedra a una intersecció. Simplement teńıem una
imatge de pedra blanca i de pedra negre, i al fer clic en una intersecció es su-
perposava aquesta imatge. Qt, amb les seves llibreries gràfiques, va facilitar
enormement aquesta fase del projecte.

Les imatges utilitzades van ser les següents:

Figura 2.2: Interseccions del taulell

El taulell de 19x19, amb totes les interseccions ja ajuntades, tenia el
següent aspecte:

Figura 2.3: Taulell complert
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Una caracteŕıstica important, és el fet de ressaltar l’ intersecció on és el
punter del ratoĺı. Es pot veure a la intersecció E13, com es veu una pedra
blanca transparent (en la captura de pantalla, el punter està en aquella posi-
ció). Això es va fer per a que el jugador tingués una visualització immediata
d’ on estava a punt de jugar.

Una altre caracteŕıstica important d’ un joc de taulell és la numeració de
les posicions. Per convenció, en un taulell de Go s’ etiqueta l’ eix de les Y
amb un número, començant des de la part inferior, i l’ eix de les X amb una
lletra d’ esquerra a dreta. Es pot notar com la lletra I llatina no hi és. Això
és un estàndard, i deriva del fet de que en els alfabets orientals aquesta lletra
no existeix.

2.4.3 Ampliant el taulell de joc

GoGUI es va pensar com una aplicació destinada a resoldre Tsumegos. Ja
fos contra un jugador, o contra la IA de Gorgon. Un Tsumego és un proble-
ma localitzat en una zona relativament petita del taulell. Aix́ı que no tenia
sentit que el jugador veies tot el taulell quan la zona de joc real estava a una
cantonada, per exemple.

Per aquest motiu, es va dotar a GoGUI de la funcionalitat de definir la
zona de joc on es volia jugar el Tsumego, i només presentar aquesta zona,
amb un tamany més adequat. Es van definir 3 tamanys de zones: taulell
complert, zona de joc mitjana, i zona de joc petita. Com més petita era la
zona de joc, més gran era la visualització d’ aquesta. A l’ hora, per al tamany
de zona mitjana es van definir 4 àrees de joc, i 6 per al tamany de zona petita.

A continuació es poden veure algunes de les combinacions possibles de
zona mitjana, i zona petita.:
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Figura 2.4: Taulell mitjà i taulell petit

Aquesta funcionalitat va fer necessari el fet de mantindre tres resolucions
per a les imatges mostrades anteriorment. Una resolució baixa per a les
interseccions a taulell complert, i una resolució més alta per a les que es
jugaven a zona petita.

2.4.4 Interf́ıcie gràfica

Finalment, es mostra la interf́ıcie que es va dissenyar per a GoGUI.

Figura 2.5: Interf́ıcie complerta

Com es pot veure, és una interf́ıcie molt senzilla, però ampliable a noves
funcionalitats. A la secció esquerre estan localitzats tots els botons que
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poden ser necessaris en una partida o Tsumego. A la secció dreta està tota l’
informació a nivell de jugadors. A la secció central està el taulell de joc, amb
una secció a la part inferior per posar comentaris a cada jugada (funcionalitat
no implementada). A la part inferior es mostra informació de cada torn. Aqúı
es mostra desde el torn del jugador, fins a informació relativa al trencament de
les regles. A més, aquests tipus de missatges es mostren en vermell per a que
es vegin de forma ràpida. Finalment, a la part superior es pot veure el menú
amb les funcionalitats bàsiques. El menú de creació de partides i Tsumegos,
el menú per configurar les opcions, el de gravar partida (funcionalitat sense
implementar), i el menú d’ ajuda on es té previst posar ajut per a l’ ús de l’
aplicació, configuració de la IA, i regles del Go.

2.5 Gorgon

2.5.1 Introducció a Gorgon

L’ arquitectura de Gorgon presenta el següent aspecte.

Figura 2.6: Arquitectura de Gorgon
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Gorgon es va dissenyar en vistes de ser una llibreria ampliable. És per
això, i com es pot veure al diagrama, que permet mantindre la representació
de diversos taulells de joc. Encara que GoGUI no va ser dissenyada amb
aquesta funcionalitat, Gorgon permetria fer una interf́ıcie gràfica en la que
es portessin a terme diferents partides simultàniament, i contra diferents ju-
gadors.

A més, el mòdul de IA es va dissenyar de manera que fos possible im-
plementar diferents algorismes. En aquest projecte s’ ha implementat només
un, que es veurà en caṕıtols posteriors. Però si es volgués, es podrien im-
plementar més algorismes, simplement heretant de la classe AIAlgorithm, i
implementant el mètode abstracte playMove.

Aquesta secció s’ ha dividit en dos grans parts. La que defineix l’ imple-
mentació de una partida de Gorgon, i la que defineix l’ implementació de l’
intel·ligència artificial.

2.5.2 Primeres versions de Gorgon

Les primeres versions de la llibreria Gorgon, es basaven en el recorregut de
tot el taulell per a cada pedra que es jugava. En aquest punt, el coll d’
ampolla l’ ocasionava el càlcul de la regla de les llibertats, que era el procés
que més trigava. Per calcular si una pedra complia o no, la regla de les lli-
bertats, Gorgon comprovava el vëınatge de cada intersecció. Si tenia vëıns,
comprovava els vëıns d’ aquests vëıns. Aix́ı successivament, fins a arribar a
una intersecció sense vëıns explorats, i llavors tornar enrere per extendre tots
els vëınatges corresponents . En el pitjor dels casos podia arribar a recórrer
tot el taulell moltes vegades. És a dir, en casos molt extrems (gairebé impos-
sibles de donar-se en una partida real), es podien arribar a fer fins a (19*19)2

iteracions.

Amb l’ ordinador amb els que es van fer les proves, això es tradüıa a
una mitjana d’uns 0.2 segons, en fases avançades d’ una partida real, on hi
han moltes connexions entre les pedres. A ulls d’ un usuari, 0.2 segons pot
semblar un temps raonable, però com es veurà més endavant, el temps de
còmput d’ una pedra és un punt vital en el càlcul d’una jugada per part de
l’ inte·ligència artificial.

S’entrarà més en detall en caṕıtols posteriors, però la IA es basa en el
fet de fer simulacions aleatòries de jugades, i agafar la que millor resultats
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doni. Això implica que com més simulacions fem, millor resultats obtindrem.

Suposem necessàries 500 simulacions amb una mitjana de 2 jugades per
simulació, per calcular un moviment. És una situació hipotètica, ja que real-
ment necessitarem moltes més simulacions. Però per el que es vol demostrar
en aquest punt, 500 seran suficients. 500 simulacions a 2 jugades per simu-
lació impliquen la necessitat de fer 1000 jugades per a calcular un moviment
de la IA. A 0.2 segons per jugada, es necessitarien 200 segons per calcular
una nova jugada. I això sense tindre en compte els càlculs propis de l’algo-
risme. A la pràctica serien més de 3 minuts per calcular cada moviment de
la màquina. És clar que per a la majoria de jugadors seria desesperant.

Aix́ı doncs, 0.2 segons per jugada era un temps de còmput impensable
per el que es pretenia fer en aquesta aplicació. S’ havia de trobar alguna
manera alternativa de fer el càlcul d’ afegir una nova pedra al taulell, que fos
més barata computacionalment.

Per tal d’ aconseguir això va ser necessària la definició d’ una estructura
motl concreta. En el següent caṕıtol s’ entrarà més en detall sobre aquesta
estructura, què representa, i com es va utilitzar en l’ implementació de les
regles del Go.

2.5.3 Serps

L’ estructura a tractar es va anomenar serp. Les serps representaven la con-
nexió entre un conjunt de pedres del mateix color. Es poden veure alguns
exemples a la figura 3.A.

Figura 2.7: Exemple de serps al taulell

A la figura 3.A hi ha 7 Serps. Notis que les pedres marcades amb rec-
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tangles vermells no estan connectades a cap altre pedra del seu color, però
formen una Serp per śı mateixes. Aix́ı doncs, qualsevol pedra del taulell
sempre està associada a una Serp.

Aquestes estructures guardaven diferents dades, però les més importants
eren el nombre de llibertats de les que disposa el conjunt de pedres, i el con-
junt de pedres associades a la serp. Aquesta informació s’ anava actualitzant
incrementalment a cada jugada. És a dir, per a cada jugada es mirava a
quines serps afectarien el moviment, i s’ actualitzaven en cas que sigues una
jugada legal.

2.5.4 Regla de les llibertats

Un cop definides les serps, vegem com es van utilitzar per a l’ implementació
de la regla de les llibertats. Es veuran tres punts clau: confirmar que una
jugada no trenca la regla de les llibertats i que per tant és una jugada legal,
capturar pedres enemigues, i finalment com actualitzar les serps donada una
jugada legal.

En primer lloc, vegem l’ algorisme que es va idear per tal de comprovar el
compliment de la regla de les llibertats. Donada una jugada a una intersecció
del taulell:

Si no hi ha cap serp aliada adjacent, i l’ intersecció no té cap llibertat
local:

Jugada il·legal. Sense llibertats. És süıcidi.
Sino, si l’ intersecció té llibertats locals:

Jugada legal. La intersecció té com a mı́nim una llibertat.
Sino, s’ han de mirar les llibertats de les serps adjacents aliades:

Per a cada serp aliada adjacent:
Si té alguna llibertat:

Jugada legal. La nova pedra tindrà llibertats.
Si s’arriba aqúı, la nova pedra no tindrà cap llibertat. Jugada il·legal.

L’ algorisme per determinar quines pedres s’ han capturat es va idear de la
següent manera. Donada una jugada legal en una determinada posició:

Per cada serp enemiga adjacent:
Si el nombre de llibertats és igual a 1:
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Aquesta serp ha estat capturada. S’ ha tancat la única llibertat
que tenia.

És fàcil notar que el fet de que una serp hagi estat capturada implica
que han estat capturades totes les interseccions d’ aquella serp. En aquest
cas es comença a veure més clar el potencial de les serps. Com que és una
estructura incremental, podem comprovar si un conjunt de pedres ha estat
capturat des d’ un nivell d’ abstracció més elevat, fent una única comparació
per cada grup de pedres.

Seguidament es mostra el pseudocodi de l’ algorisme que es va pensar per
tal d’ actualitzar les serps afectades, degut a una nou moviment.

Donada una jugada legal en una determinada posició:

Mirem quin és el nombre de serps adjacents aliades, i actuem de la
següent manera segons convingui:

0 serps:

Aquesta jugada crea una nova serp que no existia encara. Creem
una nova serp, la qual tindrà només una pedra (la pròpia jugada),
i el conjunt de llibertats locals pròpies d’aquesta pedra.

1 serp:

Aquesta jugada ha fet créixer una serp que ja existia.
Afegim la nova pedra al conjunt de pedres de la serp, i afegim al
conjunt de llibertats les llibertats locals de la nova pedra.
Seguidament, hem de treure la llibertat que acabem de tancar per
la col·locació de la nova pedra

2/3/4 serps:

Aquesta nova pedra causarà l’ unió de serps que abans eren inde-
pendents.
Escollim la serp més gran com la serp que acollirà a les altres.
Afegim la nova pedra a la serp escollida, afegim les llibertats locals,
i treiem la llibertat que acabem de tancar.
Per cada serp adjacent:

Afegim totes les seves interseccions a la serp escollida.
Eliminem la llibertat tancada per la nova pedra col·locada
Afegim totes les llibertats restants a la serp escollida.
Eliminem totes les dades de la serp antiga.

Si hi ha serps adjacents enemigues, els hi borrem la llibertat tancada
per la nova pedra.
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Si hem capturat algun grup de pedres enemigues, afegim les intersec-
cions d’aquestes pedres enemigues com a llibertats de les serps aliades
adjacents.
Finalment, eliminem les serps sense dades, ja que ara formen part d’
una altre serp més gran.

A continuacio es mostren alguns exemples per als 3 casos d’ actualització,
per tal d’ entendre l’ algorisme en la seva totalitat.

Figura 2.8: Exemples d’ actualització amb cap serp aliada adjacent

Figura 2.9: Exemples d’ actualització amb 1 serp aliada adjacent

Figura 2.10: Exemples d’ actualització amb més d’ una serp aliada adjacent

Encara que aquest algorisme sembli més complicat que el més bàsic que es
va fer en primera instància, es pot comprovar com la complexitat de còmput
ha millorat molt́ıssim. En els pitjor dels casos, per actualitzar una serp
hauŕıem de recórrer com a molt una vegada, totes les serps adjacents. Aix́ı
que en un cas molt extrem en que tinguem dues serps ocupant tot el taulell, i
posem una pedra per unificar-les, el màxim nombre d’ iteracions seria de 361.

La mitjana del temps necessari per a col·locar una pedra va baixar a
0.00008 segons. Si prenem el mateix exemple mencionat anteriorment, es
trigaria al voltant d’uns 0.08 segons teòrics per fer 1000 moviments. Això
no es del tot cert perquè com veurem més endavant i s’ ha dit anteriorment,
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haurem d’afegir temps de còmput derivat del propi algorisme de còmput de
moviments, i d’ una estructura que necessitarem, i encara no s’ha explicat.

No obstant, es pot veure com, en igualtat de condicions, l’ algorisme
proposat va millorar enormement el temps de còmput. Això sens dubte va
ajudar a construir una IA molt més eficient i ràpida.

2.6 Intel·ligència artificial

2.6.1 Introducció

En primer lloc, i abans d ‘entrar en detall a la solució que es va implementar,
és adequat entendre el perquè de la dificultat d’ implementar una IA en el
joc del Go.

Simplificant, per trobar una resposta automàtica en un joc d’ estratègia,
tenim dues opcions: o bé explorar totes les partides possibles, o bé trobar
algun model que sàpiga actuar en conseqüència. La primera opció, com ja s’
ha dit anteriorment, és totalment inviable amb la capacitat computacional
d’ avui en dia. La segona opció ens porta a una situació gairebé igual de
complicada de resoldre.

Per a que una IA pugui donar una resposta tàctica o estratègica a un joc
d’ aquestes caracteŕıstiques, necessita tindre coneixement de la “qualitat” d’
una jugada. És a dir, necessita associar una puntuació a una determinada
jugada, per saber si realment és una bona jugada. Dit d’ una altre manera,
necessita una funció d’ avaluació. Aquest possiblement és el repte més gran
al que s’ enfronta el Computer Go.

En el Go, la qualitat d’ una jugada depèn de molt́ıssims factors, i cada
jugada necessitaria un anàlisis complex per determinar el seu valor. Inclús
una jugada pot tindre un valor molt pobre en un moment actual, però ser de
vital importància en el futur de la partida. Per a fer-se una idea, una bona
jugada podria ser sacrificar un grup de pedres aliades per tal d’ aconseguir
un benefici major en moments posteriors a la partida.

Tot això fa que construir una funció d’ avaluació generalitzada sigui una
tasca impossible. Per a això, la breu història del Computer Go ha anat tro-
bant alternatives per a resoldre aquest problema. Desde tècniques de Visió
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per computador, fins a bases de dades plenes de patrons de jugades t́ıpiques.

Un Tsumego es pot pensar com una versió molt redüıda i simplifica-
da d’ una partida de Go. No obstant, encara que la construcció d’ una
funció d’ avaluació segueixi sent extremadament complicada, sota aquestes
circumstàncies, hi ha mètodes que han demostrat ser molt eficients.

Seguidament s’ explicarà la solució implementada en aquest projecte. Cal
destacar que el coneixement del que es disposava, des d’ un punt de vista
estratègic i tàctic, era bastant bàsic. Es limitava a figures molt bàsiques i l’
intüıció que pugui tindre un jugador de nivell principiant. Això és un aspec-
te molt important a tindre en compte a l’ hora de construir la IA, ja que al
tindre un coneixement tan bàsic del joc, es va decidir que el més sensat era
no fer ús de coneixement expert. Això vol dir que s’ havia d’ intentar en la
mida del possible, no utilitzar regles heuŕıstiques pròpies del joc.

I aix́ı es va fer. Es va decidir utilitzar un algorisme anomenat Monte
Carlo Tree Search.

2.6.2 Monte Carlo Tree Search (MCTS)

L’ MCTS forma part d’ una famı́lia de mètodes anomenats Mètodes de Monte
Carlo, en els que l’idea bàsica consisteix en trobar la descripció del compor-
tament d’ un sistema probabiĺıstic, mitjançant molt́ıssimes simulacions en
l’ espai de solucions . Quan el nombre de simulacions tendeixi a infinit, s’
obtindrà el comportament del sistema de manera acurada.

L’MCTS es una extensió d’ aquests mètodes, aplicat a la cerca en arbre.
A continuació s’ entrarà més en detall, però l’ idea bàsica consisteix en fer
molt́ıssimes simulacions fins al final del joc, i anar guardant els seus resultats
en forma d’ arbre. Quan es decideix acabar el procés (és un mètode itera-
tiu), s’ agafa la fulla del node arrel que millors resultats hagi obtingut. L’
avantatge principal d’aquest mètode, i raó per la qual es va escollir, és que
no es necessita cap tipus de coneixement expert. A més, en els últims anys
ha anat guanyant molta popularitat en el camp del Computer Go. I de fet,
algunes de les millors IA’s actuals, utilitzen aquest mètode.

Els resultats d’ aquest algorisme tenen una extraordinària dependència
amb el temps que podem passar fent simulacions. Com més simulacions fem,
millors resultats obtindrem. Si es fan 10 simulacions, a no ser que el sistema
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sigui extremadament senzill, els resultats que s’ obtinguin seran totalment
aleatoris. Si per el contrari fem milions de simulacions, obtindrem uns resul-
tats extremadament acurats, i podrem dir amb total seguretat que la solució
trobada es la correcta. Amb això es pot entendre el perquè va ser necessari
reduir el temps de còmput al col·locar una nova pedra al taulell.

Aproximant-nos al cas que ens ocupa, en un joc de taula, els nodes de l’
arbre són les jugades que es van simulant, i per cada node tenim el nombre
de partides jugades i guanyades, a partir d’ aquella jugada.

Cada simulació del MCTS consta de 4 fases:

• Selecció: en aquesta fase, es baixa a través del arbre, seleccionant els
moviments que millors resultats hagin donat fins a aquell moment, sent
per tant, les jugades més prometedores. Un cop es trobi un node fulla
amb moviments no explorats, passarem a la següent fase.

• Expansió: en aquesta fase es crea un node fill al node seleccionat a la
fase de selecció. Si es donés el cas de que el node seleccionat estigués
en un estat de final de joc, aquesta fase s’ ignora i es passa directament
a la fase de simulació a partir del propi node seleccionat.

• Simulació: a partir del node creat, es fan moviments aleatoris fins a
arribar al final del joc.

• Propagació: finalment, els resultats de la simulació s’ expandeixen a
través de tots els nodes que s’ han recorregut per arribar fins al node
actual. És a dir, es suma una partida jugada i una partida guanyada
(en el cas que escaigui), a tots els nodes desde el node actual (inclòs),
fins al node arrel.

La següent figura mostra l’ exemple de les 4 fases d’ una simulació:
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Figura 2.11: Simulació complerta en l’ MTCS

Com es pot veure, l’ algorisme expandeix els nodes amb els resultats més
prometedors, fent que l’ arbre creixi en profunditat. Això implica que els
moviments que no tenen, o tenen molt poques probabilitats de portar la par-
tida a la victòria, no són gairebé explorats.

2.6.3 Upper Confidence Bounds

El MCTS sembla un algorisme molt prometedor sobre el paper. Però a la
pràctica té dos grans problemes associats a la fase de selecció, que dificulta-
ven la seva implementació més bàsica per a problemes reals.

El primer és que la relació de partides jugades/guanyades en un node que
encara no ha estat provat, és 0/0. La solució a aquest problema és trivial:
sempre es seleccionaran els nodes que no han estat provats, abans de seguir la
cerca en profunditat. Això implica que abans de explorar un nivell inferior,
sempre s’ hauran provat com a mı́nim una vegada, tots els moviments del
nivell superior.

El segon problema és una mica més complicat de solucionar. Suposem
un node, el qual la successió de jugades porta 99 vegades a la victòria, i 1
vegada a la derrota. Es podria donar el cas que a la primera simulació que
es fes a través d’ aquell node es tingués la mala sort d’ arribar a la situ-
ació de derrota (recordem que la fase de simulació és totalment aleatòria).
Això deixaria al node amb un rati de 0/1, impedint que aquest node torni a
ser explorat, i en conseqüència que no sigui escollit com a jugada guanyadora.
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És evident que es feia necessari trobar un equilibri entre exploració i ex-
plotació, per tal de que aquestes situacions no es passessin. La solució que es
va trobar la va proposar un grup d’ experts fa uns anys. La fórmula UCB-1
(Upper Confidence Bounds).

Wi

ni

+ C

√
ln(t)

ni

On,
Wi és el nombre de partides guanyades a través del node.
ni és el nombre de partides jugades a través del node.
C és una constant escollida emṕıricament.
t és el nombre total de partides jugades fins al node.

La primera part del sumand té un valor elevat per a nodes amb un bon
rati de partides (explotació), mentre que la segona part, té un valor elevat
per a nodes amb poques simulacions (exploració). Si el paràmetre C és 0, s’
ignorarà la segona part del sumand, deixant-ho tot a l’explotació dels nodes.

Llavors la fase de selecció es va modificar, fent que si hi havia nodes sense
simulacions, donar prioritat a aquests, i que els casos es seleccionessin apli-
cant l’ UCB. D’ aquesta manera aconsegúıem un equilibri entre exploració i
explotació.

2.6.4 Fase de simulació i final de partida

Com s’ ha comentat, la fase de simulació fa jugades aleatòries fins al final
de partida. Però, quin és el final de partida en un Tsumego? I com podem
detectar aquesta situació de manera automàtica? Gorgon es va implementar
de manera que detectés dos tipus de final de partida:

• Un dels jugadors ha conseguit formar dos ulls (guanya el jugador de-
fensor).

• Un dels jugadors ha capturat un nombre de pedres suficientment alts
com per a que a l’ altre jugador no li surti a compte seguir jugant
(guanya el jugador atacant).

El primer cas és trivial. Si el jugador defensor fa dos ulls, aconsegueix
l’ objectiu del Tsumego. La manera de detectar els dos ulls (cosa que no es
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tan trivial), es veurà en els següents caṕıtols. El segon cas es va plantejar d’
aquesta manera degut a la dificultat de detectar automàticament una situació
en la que el jugador defensor no pogués fer dos ulls de cap de les maneres. Per
tal d’ aconseguir això s’ haguessin tingut que implementar regles heuŕıstiques,
cosa que com ja s’ ha dit, haguessin dificultat molt l’ implementació, degut
al poc coneixement que es té del joc des d’ un punt de vista tàctic i estratègic.

Per tant, per tal de simplificar la detecció d’ aquesta situació, es va definir
aquesta regla, derivada del fet de que gairebé tots els Tsumegos d’ avui en
dia, es poden guanyar sense la necessitat de sacrificar un gran nombre de
pedres. Si s’ arriba al cas de aconseguir formar dos ulls, el més probable
és que no hagi sortit a compte, degut a que el nombre de territori guanyat
no compensa el nombre de pedres perdudes. El nombre de pedres necessari
per a guanyar el problema en cas de ser el jugador atacant, es va deixar
com un paràmetre de l’ IA. Per defecte es va posar a 4. És a dir, si un dels
dos jugadors aconseguia capturar 4 pedres del equip jugador contrincant, es
considerava que havia capturat un nombre de pedres suficient com per a que
a l’ altre jugador no li surti a compte seguir jugant.

Ara bé, com detectàvem la formació de dos ulls per part del jugador de-
fensor? Abans de donar resposta a això, es veurà una altre estructura que es
va fer necessària: els Tàrtars.

2.6.5 Tàrtars

Els Tàrtars es van idear com una estructura que guardava les regions del
taulell, d’ un mateix color. És a dir, totes les interseccions que tanquen un
conjunt de serps del mateix color. A continuació es mostra un exemple gràfic.

(a) Tartar 1 (b) Tartar 2

Figura 2.12: Exemple de dos Tàrtars

A la figura A hi ha 3 serps. La serp negra de la dreta té dos Tàrtars:
la regió marcada amb les interseccions vermelles, i la regió formada per les
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interseccions liles, verdes, i grogues. La pedra negra de l’ esquerra (marcada
en blanc), és una pedra aliada i no forma part de cap dels dos tàrtars. En
definitiva, tenim la regió interior, i la regió exterior a la serp.

De manera similar, la serp blanca té dos Tàrtars. Les dues interseccions
interiors (incloent la pedra negra enemiga marcada amb blanc), i totes les
demés interseccions que no formen part de la serp. És a dir, les interseccions
marcades en groc, vermell, i les blanques de la serp de la dreta.

És important destacar que les interseccions del color enemic formen part
d’ una regió tant com ho fan les interseccions buides. És a dir, un Tàrtar
tracta de igual manera una intersecció enemiga que una de buida. També
es pot veure que una caracteŕıstica dels Tàrtars és que les pedres aliades no
formen part de cap Tàrtar del mateix color. Només compten interseccions
buides i enemigues.

La figura B és un exemple més senzill on es mostra que les regions alia-
des són les fronteres que limiten les pròpies regions de la serp a tractar. Aix́ı
doncs, la serp gran té tres Tàrtars. La regió exterior i les dues interiors. Però
la pedra petita a C1 només en té 2, ja que la serp gran fa de frontera a la
regió exterior. Per tant, C1 només té els Tàrtars formats per les interseccions
A1 i B1, i C2, D2, D1, E1.

Al igual que les serps, aquestes estructures, s’ havien d’ actualitzant a
mida que els jugadors anaven col·locant pedres sobre el taulell. La solució
a aquest problema va ser un algorisme per a etiquetar regions, utilitzat en
imatges binàries. Encara que en un joc de Go hi ha 3 colors (blanc, negre
i buit), gràcies al fet de que els Tàrtars no tenen en compte el color dels
enemics, va ser possible considerar el taulell com una imatge binària.

L’ algorisme s’ anomena algorisme de dos passos, i com el seu nom indica,
recorre l’ imatge (el taulell en el nostre cas) dues vegades. Treballa a nivell
de ṕıxel o intersecció en el nostre cas, i es basa en assignar una etiqueta a
totes les interseccions. Totes les interseccions dins de la mateixa regió tin-
dran la mateixa etiqueta al finalitzar l’ algorisme. Una de l’ informació més
important que contenen els Tàrtars, és l’ etiqueta corresponent a cadascun
d’ells. Per exemple, un Tàrtar podia tindre l’ etiqueta “1”. Això volia dir
que totes les interseccions corresponents a aquell Tàrtar havien de tindre la
mateixa etiqueta “1”.

En el primer pas de l’ algorisme, s’ etiqueta cada intersecció depenent
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de les etiquetes del seus vëıns. Hi ha dues variants d’ aquesta fase: la que
treballa amb connectivitat a 4, i la que treballa amb connectivitat a 8. En
el cas dels Tàrtars vam necessitar la versió de 4, ja que una unió en diago-
nal de dues interseccions, ja forma una cantonada del Tàrtar. Les regles d’
etiquetatge de l’ algorisme amb connectivitat a 4 són les següents:

• L’ intersecció de l’ esquerra té el mateix color que l’ actual?

Si: forma part del mateix Tàrtar. Assignar a l’ intersecció actual l’
etiqueta de la de l’ esquerre.

No: passem a la següent condició

• Les interseccions superior i esquerre tenen el mateix color però no la mateixa
etiqueta?

Si: formen part del mateix Tàrtar, però han de juntar-se. Assignem a
l’ intersecció actual l’ etiqueta més baixa de les dues interseccions i
guardem la l’ equivalència a la taula d’ equivalències.

No: passem a la següent condició

• L’ interseccio de l’ esquerra té un color diferent que l’ actual, però l’ actual
té el mateix color que la superior?

Si. Assignem a l’ interseccio actual l’ etiqueta de la superior.

No: passem a la següent condició

• Si hem arriba fins aqúı es perquè les interseccions superior i esquerre tenen
un color diferent de l’ actual.

Creem una nova etiqueta i l’ assignem a l’ intersecció actual.

En el segon pas, es re-assignen les interseccions que pertoquin segons la
taula d’ equivalències. A més, a Gorgon, en aquest pas s’ assignava a cada
intersecció el Tàrtar corresponent. Si l’ intersecció és buida, o enemiga del
color que estem calculant, es comprovava si hi havia algun Tàrtar assignat
a aquella etiqueta. Si no era aix́ı, volia dir que encara no s’havia creat cap
Tàrtar corresponent a aquella regió, i creàvem un nou Tàrtar assignant-li
aquella etiqueta. Si per el contrari, ja existia un Tàrtar amb aquella etique-
ta, volia dir que el Tàrtar corresponent a aquella regió ja existia, i per tant
hav́ıem d’ assignar aquesta intersecció a aquell Tàrtar.

Una optimització immediata que es va pensar, és que aquestes estructures
només tenien sentit en el cas de que un dels jugadors fos la IA. Aix́ı doncs,
en els Tsumegos sense IA, o partides completes entre dos jugadors, aquestes
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estructures ni tan sols es calculaven. D’ aquesta manera el temps per col·locar
una pedra en aquests casos, millorava una mica.

2.6.6 Vida incondicional segons Benson

Un cop presentats els Tàrtars, es pot parlar de quina va ser la solució per a
detectar automàticament la formació de dos ulls.

David B. Benson va definir fa anys el significat de que una serp estigués
incondicionalment viva. Una serp incondicionalment viva vol dir que donada
la situació en la que està, si el jugador atacant tingués jugades infinites i el
jugador defensor passes el torn a cada una d’ elles, seria impossible per al
jugador atacant capturar la serp. A la pràctica això es tradueix en si el grup
de pedres té una formació de dos dulls reals, com a mı́nim.

Vegem uns quants exemples.

(a) Exemple A (b) Exemple B (c) Exemple C

(d) Exemple D

Figura 2.13: Exemples de vida incondicional segons Benson

En la figura A, es pot veure com la serp negre no pot ser capturada de
cap manera per moltes jugades seguides que puguin fer les blanques. Llavors
es diu que la serp negre està incondicionalment viva. És clar que això es aix́ı
perquè té una formació de dos ulls.
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A la figura B en canvi, les serps negres no estan incondicionalment vi-
ves. Si les blanques tinguessin jugades infinites i seguides, podrien arribar
a capturar la serp negre de la dreta. Ho podrien fer amb dos moviments:
el primer a l’ intersecció del quadrat vermell, i el segon a l’ intersecció del
quadrat blau. Havent capturat la serp de la dreta, la de l’ esquerra quedaria
totalment indefensa i tot el territori passaria a ser de les blanques.
A la figura C es té una situació semblant. Les blanques podrien arribar a
capturar la serp formada per l’ intersecció C1 si tinguessin jugades seguides
infinites. Una seqüència possible seria: D1-¿C2-¿B1. Havent capturat aques-
ta pedra, es podria capturar fàcilment A1, i impedir que les negres fessin dos
ulls al territori.
Finalment a la figura D tenim una barreja dels anteriors casos. La serp for-
mada per l’ intersecció A19, i la que conté la C19 estan incondicionalment
vives. No hi ha cap manera que les blanques puguin capturar aquestes serps
per moltes vegades seguides que juguin. No obstant, les demès serps no com-
pleixen aquesta condició. Les serps S19 i C2 es poden capturar amb poques
jugades seguides. Un cop capturades aquestes, la serp gran que conté l’ inter-
secció D1, també es podria capturar amb bastantes jugades (les que rodegen
a la serp).

Benson també va formalitzar un algorisme per detectar automàticament
la vida incondicional d’un grup de serps. Aquest algorisme utilitza dos con-
ceptes: regions i regions vitals a una serp. Una regió és exactament el mateix
que un Tàrtar. I de fet, aquest és el motiu per el que es va haver d’ implemen-
tar aquest tipus d’ estructures. Eren necessàries per al càlcul de l’ algorisme
de Benson. Es podrien haver anomenat Regions en lloc de Tàrtars perfec-
tament. Però es va decidir seguir amb la nomenclatura relacionada amb la
mitologia grega que caracteritza al projecte. A efectes pràctics, una regió és
un Tàrtar, i per tant, podem parlar de Tàrtar vital a una serp.

2.6.7 Tàrtars vitals

Una regió (o Tàrtar) es diu que és vital a una serp, si i només si, totes les
seves interseccions buides (les enemigues no compten) són llibertats de la
serp. Vegem alguns exemples.
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(a) Exemple A (b) Exemple B

Figura 2.14: Exemples de Tàrtars vitals

A la figura A tenim dues serps. La serp gran té 3 Tàrtars i la serp petita
només 2. El Tàrtar format per les interseccions A1 i B1, és vital per a la serp
gran. Totes les interseccions del Tàrtar són llibertats de la serp. Concreta-
ment, A1 és llibertat de A2, i B1 llibertat de B2. Ara bé, el mateix Tàrtar,
no és vital per la serp formada per la pedra C1. B1 es llibertat de la serp,
però A1 no ho és. Per tant, com que hi ha una intersecció al Tàrtar que no
és llibertat de la serp, no és un Tàrtar vital per a la serp.

De manera similar, el Tàrtar format per les interseccions C2, D2, D1 i E1,
no és vital a la serp gran. La intersecció D1 no és llibertat. Per descomptat,
i seguint la mateixa lògica, el Tàrtar exterior no és vital per cap de les dues
serps.

La figura B es gairebé igual però amb dues pedres blanques enemigues.
Recordem que les pedres enemigues no compten per a calcular si un Tàrtar
es vital. Per tant, el Tàrtar format per A1, i B1 si que és vital per a la
serp de C1. Ara totes les interseccions buides del Tàrtar (B1), són llibertats
de C1. El Tàrtar format per C2, D2, D1 i E1 segueix sense ser vital a C1,
perquè ni D2 ni E1 són llibertats de C1.

Seguint el mateix raonament, el Tàrtar format per C2, D2, D1 i E1 si és
vital per a la serp gran ara. La intersecció D1 ha estat ocupada i per tant
no compta per al càlcul. I tenint en compte que C2, D2, i E1 són llibertats
de la serp, el Tàrtar és vital a la serp.

2.6.8 Algorisme de Benson

Coneixent els Tàrtars, la vida incondicional, i els tàrtars vitals a una serp, es
pot presentar finalment l’ algorisme de Benson per a la detecció automàtica
de dos ulls.

39



S = conjunt de serps.
R= conjunt de Tàrtars que encerclen aquestes serps.
Repetir:

Borrar de S totes les serps que tinguin menys de dos Tàrtars vitals
a R.

Borrar de R tots els Tàrtars rodejats per alguna pedra que pertanyi
a una serp que no està a S.
Mentre s’ hagi esborrat algun element de R o S
S = conjunt de serps incondicionalment vives.
R = conjunt de regions que formen part d’ alguna serp incondicional-
ment viva.

Recordem que aquest algorisme és el que ens permetia detectar el final
de partida en una simulació del Monte-Carlo Tree Search. Com es pot veure,
es un algorisme iteratiu, que acaba quan de cap dels dos conjunts no s’ ha
esborrat cap element.

A continuació es mostren dos exemples de l’ aplicació de l’ algorisme.

(a) (b)

Figura 2.15: Exemples per l’ algorisme de Benson

Els dos exemples s’han comentat amb anterioritat. S’ ha vist que a la
figura A no hi ha cap serp incondicionalment viva, ja que la seqüència D1
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- C2 - B1 - A2 deixa el territori a favor de les blanques. A la figura B en
canvi, estan incondicionalment vives les serps A19 i la serp gran formada per
C19. Vegem com arribar de manera automàtica a aquestes conclusions amb
l’ algorisme de Benson.

Figura A

Suposem la seguent nomenclatura:
SA1 = Serp formada per l’ intersecció A1.
SC1 = Serp formada per l’ intersecció C1.
SA3 = Serp gran formada per l’ intersecció A3 i la resta de pedres.
TA2 = Tàrtar format per l’ intersecció A2.
TB1 = Tàrtar format per l’ intersecció B1.
TC2 = Tàrtar format per l’ intersecció C2 i la resta de les interseccions.
TEX = Tàrtar exterior. El que està format per A4, B4, C4...

1a iteració

Comencem l’ algorisme amb el conjunt S={SA1, SC1, SA3}, i el conjunt
R={TA2, TB1, TC2, TEX}. SA3 té 2 Tàrtars vitals (TA2, i TB1). La serp
A1 té els mateixos Tàrtars vitals, TA2 i TB1. Finalment, la serp C1 només
en té un: TB1, ja que D2 no és llibertat seva, i per tant TC2 no és vital
a SC1. Aix́ı doncs, com que només te un Tàrtar vital, esborrem SC1 del
conjunt S.

TC2 i TB1 estan rodejats per SC1, que ja no forma part de S. Per tant,
esborrem del conjunt R TC2 i TB1.

Final de la primera iteració: S={SA1, SA3} R={TA2, TEX}

2a iteració

A la segona iteració, la serp SA3, només té un Tàrtar vital: TA2, ja que
TB1 ha estat esborrat de R en l’ anterior iteració. El mateix passa amb SA1,
ja no té TB1 com a Tàrtar vital. Aix́ı que les dues serps són esborrades de
S, al no tindre dos Tàrtars vitals com a mı́nim. Com que TA2 està rodejat
per SA1 i SA3 que ja no estan a S, esborrem el Tàrtar de R. El mateix passa
amb TEX que està rodejat per SA3.

Final de la segona iteració: S={} R={}

41



Com podem veure, S ha quedat buida. Això vol dir que cap serp està
incondicionalment viva, i per tant poden ser capturades amb un nombre
determinat de jugades seguides.

Figura B

En aquest exemple usarem la següent nomenclatura:
SA19 = serp formada per la pedra A19.
SC19 = serp formada per la pedra C19 i la resta de pedres.
SC2 = serp formada per la pedra C2.
SS1 = serp formada per la pedra S1 i la resta de pedres.
SS19 = serp formada per la pedra S19.
TB19 = Tàrtar format per l’ intersecció B19
TA18 = Tàrtar format per l’ intersecció A18
TC1 = Tàrtar format per C1.
TT1 = Tàrtar format per T1.
TT19 = Tàrtar format per T19
TEX = Tàrtar format per totes les interseccions interiors del tauell.

1a iteració

SA19 té dos Tàrtars vitals: TA18 i TB19. SC19 en té tres: TA18, TB19
i TC1. SS19 per la seva banda té com a vitals els Tàrtars TC1, TT19, i
TT1. En canvi, SC2 i SS19 només tenen un Tàrtar vital cadascun. Aix́ı que
aquestes dues serps s’ esborren de S.

En conseqüència, els Tàrtars TEX, TT19, i TC1, són esborrats de R, ja
que els tres estan rodejats de serps que no estan a S ja.

Final de la primera iteració: S = {SS1, SC19, SA19} R = {TB19, TA18,
TT1}

2a iteració

Com que hem esborrat TT19 i TC1, la serp SS1 només té TT1 com a
Tàrtar vital. Això vol dir que l’ hem d’ esborrar de S.

El resultat d’ això és l’ eliminació del Tàrtar TT1.

Final de la segona iteració: S={SC19, SA19} R={TB19, TA18}

3a iteració
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Les dues serps SC19 i SA19 tenen dos Tàrtars vitals: TB19 i TA18.

Com que cap dels dos Tàrtars té cap pedra d’ una serp que no està a S,
no n’ eliminem cap.

Final de la tercera iteració: S={SC19, SA19} R={TB19, TA18}

Com es pot comprovar, en aquesta iteració no hem esborrat cap element
de cap dels dos conjunts. Per tant, l’ algorisme ha arribat a la seva fi, deixant
com a serps incondicionalment vives, SC19 i SA19. R per la seva banda dona
els Tàrtars que formen els ulls d’ aquestes serps.

Aquest algorisme va ser ideal per a decidir el final de partida en una si-
mulació del MCTS. D’ una manera metòdica, pod́ıem determinar quan un
dels dos jugadors havia complert l’ objectiu que li pertocava. Cal destacar
però, que hi han mètodes basats en heuŕıstiques, per a determinar si un grup
és mort. Aquests mètodes tenen l’ avantatge que poden determinar la super-
vivència d’ un grup en fases anteriors. És a dir, no ha d’ haver-hi formació de
dos ulls estricta. El problema d’ aquests mètodes és que per casos complexes
no sempre acerten. L’ avantatge és que per a casos no tan complexes, poden
determinar molt abans el final de partida, en la fase de simulació del MTCS.

Arribats a aquest punt, fins ara s’ ha presentat l’ implementació més
bàsica de l’ IA. A partir d’ ara es presentaran algunes optimitzacions que es
van plantejar per a millorar l’ IA tant en els resultats de l’ algorisme com en
el rendiment computacional del mateix.

2.6.9 Escollint els punts vitals del Tsumego

Els resultats fins a aquest punt del projecte no van ser molt esperançadors.
D’ un conjunt de test de 20 problemes, Gorgon en sabia resoldre correctament
només 3, i segurament per casualitat. Qué estava passant? El problema era
que les simulacions es feien sobre interseccions completament irrellevants per
el problema. Suposem el següent exemple:
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Figura 2.16: Exemple de Tsumego

Aquest Tsumego ja s’ ha comentat anteriorment. Qualsevol de les inter-
seccions marcades en vermell porten a la victòria per a les negres. Ara bé,
que passa si en una de les simulacions les negres col·loquen sobre una de les
interseccions marcades en blau? Es fàcil veure que són jugades completament
inútils i sense cap tipus de valor per al problema.

Això suposava un problema greu, ja que aquestes simulacions feien que
les blanques arribessin a moltes més jugades guanyadores. Mentre les negres
jugaven a interseccions sense cap mena de sentit, les blanques anaven fent
jugades amb més sentit, i creant fulles de l’ arbre en les que sortien victori-
oses sense cap tipus de problema. Això suposava que la jugada guanyadora
podia inclús estar fora del Tsumego en śı.

Per donar solució a això, es va haver de buscar una manera de que el
MCTS només fes simulacions sobre les interseccions més rellevants del Tsu-
mego. És a dir, els punts vitals del problema. Hi ha molts estudis per a
determinar aquests punts: heuŕıstiques, tècniques de visió per computador,
funcions d’ avaluació...

Desgraciadament, no es comptava amb massa temps per fer un estudi
sobre aquests mètodes, aix́ı que es va optar per una solució més fàcil: aga-
far com a punts vitals, les interseccions buides dels Tàrtars que no fossin
el Tàrtar exterior (el que ocupa la major part del taulell, i per tant, no és
rellevant per al problema). A continuació es veuen alguns exemples de punts
vitals (marcats en vermell):
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Figura 2.17: Alguns Tsumegos i els seus punts vitals segons Gorgon

Com es pot intuir, aquest punt és el que va suposar la limitació més forta
per al projecte. Per a aplicar aquesta lògica, es necessita que el problema
tingui com a mı́nim 2 Tàrtars, i que la serp que els contingui, encercli el Tsu-
mego en śı. Això va limitar molt els Tsumegos que podia resoldre Gorgon.
Els següents problemes Gorgon no era capaç de resoldre’ls correctament, ja
que només hi ha un Tàrtar en tot el taulell, per a qualsevol dels dos jugadors:

Figura 2.18: Exemples que Gorgon no es capaç de resoldre

No obstant, es va deixar com a treball futur la cerca i estudi d’ un mètode
més eficient per trobar aquests punts vitals.

2.6.10 MCTS paral·lelitzable

La següent optimització que es va portar a terme, va ser la paral·lelització d’
una part del MCTS. L’ MTCS és un algorisme altament paral·lalitzable, i de
fet, hi ha tres tipus de paral·lelització. En aquest projecte es va implementar
el tipus més senzill.

El mètode s’ anomena Paral·lelització per fulla. Consisteix en que per
cada iteració de l’ algorisme, es facin múltiples fases de simulació a la vegada.
La fase de selecció es fa de manera normal, i quan s’ arriba a una fulla no
explorada, es fan múltiples simulacions amb múltiples fils d’ execució. La
següent figura mostra aquest mètode d’ una forma gràfica.
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Figura 2.19: MCTS Paral·lelitzable

Com es pot intuir, la fase de propagació també inclou aquesta paral·lelització.
Per cada simulació feta en els N fils d’ execució, es genera una fase de pro-
pagació fins al node arrel, guardant els resultats d’ aquella simulació per tot
l’ arbre. D’ aquesta manera, amb una iteració del MCTS, es generen N si-
mulacions.

Com s’ ha comentat aquest és el mètode més fàcil d’ implementar, ja que
els fils d’ execució no necessiten gairebé comunicació entre ells. El principal
problema d’ aquest mètode és que fins que l’ última simulació no ha acabat,
no es pot començar una altre iteració de l’ algorisme. Però degut a que un
Tsumego arriba a una situació de final de partida relativament ràpid, l’ im-
pacte d’ aquest problemàtica va ser petit.

Es va utilitzar OpenMP per a dur a terme aquesta optimització. Es va
plantejar d’ utilitzar CUDA, i fer una paral·lelització massiva per a GPU.
Però CUDA té unes certes limitacions respecte a les estructures que es poden
utilitzar dins dels Kernels. Com que aquesta optimització no es va planejar
fins a fases avançades del projecte, molt del codi implementat no complia
aquestes regles. Per tant, i degut a la falta de planificació, es va decidir que
no era viable fer una paral·lelització a nivell de GPU amb el temps del que
es disposava.

Els resultats d’ aquesta optimització no obstant, van ser molt bons. Es
va passar de que l’ IA trigués uns 20 segons de mitja, a que trigués 2 segons
de mitja.
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Existeixen dos mètodes més de paral·lelització per l’ MCTS. Són bastant
més complicats, però teòricament donen millors resultats. No es van plantejar
la seva implementació a Gorgon degut a la falta de temps, però es deixa com
a treball futur intentar explorar aquestes dues alternatives, i reorganitzar el
codi per a poder utilitzar la GPU d’ una manera relativament senzilla.

2.6.11 Simulacions completament aleatòries?

Finalment, l’ última optimització que es va fer, deriva del fet que l’ MCTS
bàsic utilitzi simulacions completament aleatòries. Suposem el cas estudiat
anteriorment:

Figura 2.20: Un Tsumego recurrent

Com es pot veure, les negres obtenen dos ulls simplement jugant al qua-
drat vermell. Però qué passa si en la fase de simulació es col·loca una pedra
negra al quadrat blau? Recordem que les jugades són completament ale-
atòries. El resultat d’ això seria que les negres es quedarien sense la pos-
sibilitat de fer els dos ulls, i les blanques acabarien guanyant la simulació.
Degut a això, és possible que la jugada arrel de la simulació, anés guanyant
cada vegada més força, i acabés sent el sub-arbre de la jugada guanyadora, i
retornada per el MCTS. Però realment, no té molt de sentit que una de les
jugades de les negres sigui tancar-se un dels ulls potencials. Si realment el
jugador acaba jugant aix́ı, el propi algorisme ja trobaria la resposta adequa-
da, però aquesta jugada no es tindria que donar mai en la fase de simulació,
per cap dels dos jugadors.

Es per això que es va implementar la regla de que en la fase de simula-
ció, no es dongúes una jugada en la que el propi jugador bloqueja un dels
propis ulls potencials. Entenem per ulls potencials les interseccions sense
llibertats (és a dir, una intersecció äıllada), que són punts clau per formar
dos ulls. Aix́ı, per exemple, el Tàrtar del quadrat vermell de la figura ante-
rior no seria un ull potencial a considerar fins que tingués una sola intersecció.
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Per a determinar si una intersecció és ull potencial el que es va fer és com-
probar que l’ intersecció estigués completament rodejada de pedres aliades,
que NO estiguessin en atari. Això es tradueix a les interseccions que formen
part d’un territori aliat, el qual tingui alguna llibertat, i no sigui l’intersecció
que estem mirant.

És un algorisme relativament poc prećıs. Hi ha bastants casos que aquest
algorisme no contempla i serien ulls potencials. Però tenint en compte que
per a cada pedra en la fase de simulació s’ ha de comprovar si és ull poten-
cial o no, es va pensar que era millor un algorisme no molt pesat per tal
de permetre a l’ MCTS fer més simulacions amb menys temps. Una de les
millores potencials del projecte és buscar un algorisme alternatiu més prećıs,
però igual de ràpid.
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Caṕıtol 3

Resultats

Per a validar la qualitat de l’ IA implementada, es va utilitzar un conjunt de
test de 20 Tsumegos. Aquests Tsumegos complien la condició de tindre un
Tàrtar rodejant al problema en śı, per a poder trobar els punts vitals. Es van
categoritzar en 3 categories. Entre els 20 Tsumegos hi havia 15 de dificultat
fàcil, 4 de dificultat mitjana, i 1 de dificultat molt elevada.

El bon funcionament d’ un problema es va determinar seguint dos criteris
diferents:

• IAN: Jugant l’ IA amb el color negre, sabia trobar el camı́ cŕıtic per a
que aquestes guanyin. És a dir, sabia resoldre el problema.

• IAB: Jugant amb el color blanc, jugava de manera lògica, ajudant al
jugador a comprendre millor el problema.

Seguin aquests dos criteris, es van fer diverses proves amb diferents mides de
simulació i de valors del paràmetre emṕıric per al UCB.

Amb un tamany de simulació fixe a 500 partides aleatòries per moviment

UCB IAN IAB
0 50% 55%

0.25 65% 70%
0.50 80% 80%
0.75 55% 60%

1 10% 40%

Amb la constant UCB fixe a un valor de 0.50

No partides IAN IAB Càlcul seqüencial Càlcul OPENMP
50 10% 20% 3 segons menys d’un segon
500 75% 80% 8 segons menys d’un segon
1000 65% 70% 18 segons 1 segon
2000 60% 70% 39 segons 2 segons
5000 55% 65% 1.5 minuts 4 segons
10000 55% 60% 3 minuts 7 segons
20000 45% 55% més de 5 minuts 10 segons

49



Com es pot comprovar, l’ augment de simulacions no va provocar la millora
esperada. Això es aix́ı degut a la falta de de precisió a l’ hora de detectar
ulls durant les simulacions. Això provoca que com més simulacions es facin,
hi hagi més possibilitats de que un dels jugadors es tanqui un dels seus ulls
potencials, i l’ altre jugador comenci a trobar victòries on no hi haurien d’
haver-hi.

Una millora potencial és trobar una manera alternativa de trobar aquests
ulls potencials, però sense que suposi un overhead massa gran en temps de
còmput.

Els millors resultats es van trobar amb una constant de UCB a 0.50, i
500 simulacions per moviment.
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Caṕıtol 4

Conclusions i treball futur

S’ ha implementat una intel·ligència artificial per resoldre Tsumegos, amb
una tassa d’ èxit relativament bona. No obstant, hi ha moltes vies futures
per intentar millorar l’ aplicació. Tant des de el punt de vista de Gorgon i la
seva IA, com per a l’ interf́ıcie GoGUI.

4.1 Conclusions

Gorgon es va pensar com un projecte de final de carrera bastant ambiciós.
El resultat obtingut va ser satisfactori, i es van poder extreure les següents
conclusions:

• L’ implementació d’ una IA, com ja es suposava és una tasca complexa.
Però el que s’ ha aprés amb aquest projecte, és que no es tan sols
des de el punt de vista tècnic, sinó que també des d’un punt de vista
de planificació de projecte. El fet de no planificar algunes fases del
projecte, va fer que no es pogués implementar tot el que s’ hagués
volgut. Un clar exemple d’ això és el fet de no poder paral·lelitzar amb
CUDA degut a les seves limitacions amb les estructures a tractar.

• L’ MCTS bàsic és un algorisme prometedor sobre paper, però a la reali-
tat fan falta bastantes ampliacions per a poder funcionar correctament
sobre un projecte real.

• L’ ús d’ heuŕıstiques hagués millorat molt el rati de victòries per part
de la màquina. En aquest projecte l’ única heuŕıstica implementada
ha estat el fet de que l’ MCTS no simulés sobre un ull potencial. Però
existeixen moltes heuŕıstiques associades a un coneixement més profund
del joc, que no s’ han pogut portar a terme, tant com per falta de temps,
com per falta de coneixements sobre el joc del Go.

• La paral·lelització de l’ MCTS ha estat un punt vital per a aconseguir
un bon rendiment. Es va passar de més de 20 segons per moviment, a
1 segon. Tot això amb 500 simulacions per jugada.
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• A l’ hora de planificar un projecte de tamany mitjà, és molt important
ser relativament pessimista a l’ hora de calcular la duració de les tas-
ques. En aquest projecte es va dur a terme un càlcul massa optimista i
han hagut moltes coses que no es van poder dur a terme. A continuació
es posa el diagrama de Gantt planificat inicialment, i la comparativa
amb el que van durar realment les tasques. Les ĺınees vermelles simbo-
litzen les tasques planificades que no es van poder dur a terme per falta
de temps. Les verdes, el temps real que es va necessitar per completar
aquella tasca.
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Figura 4.1: Tasques planificades vs tasques realitzades
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No obstant, a pesar de totes les dificultats trobades, es creu que el pro-
jecte va ser un èxit, i va aconseguir el seu propòsit, que era comprovar de
primera mà el repte que suposa fer una aplicació d’ aquest tipus.

4.2 Treball futur

Les possibles millores s’ han dividit en les que es poden dur a terme a GoGUI
i en les que es poden dur a terme a Gorgon.

4.2.1 GoGUI

GoGUI es va idear com l’ aplicació final amb la que l’ usuari interactuaria.
Però per falta de temps es va quedar en un estat relativament pobre. Per
començar, els primers punts a atacar són els que es van planificar i no es van
poder dur a terme. Aquests són:

• Poder modificar els paràmetres de l’ IA.

• Grabar partides i reproduir-les.

A part, a mida que s’ anava treballant amb l’ aplicació es van anar veient
millores potencials que en un principi i s’ havien plantejat, i al final del
projecte semblen coses indispensables per a la bona interacció de l’ usuari
amb l’ aplicació. Algunes d’ aquestes són:

• Un mode d’ edició de Tsumegos. Per crear un nou problema a GoGUI,
s’ havia d’ anar alternant jugades i passant el torn si feia falta, fins
a arribar al estat del taulell desitjat. La primera millora potencial i
no planificada, és que per crear un Tsumego es pugui posar totes les
pedres seguides d’ un color, després de l’ altre, i guardar. És un mètode
molt més còmode, ràpid i pràctic.

• Poder desfer la jugada. A mida que s’ anaven fent proves, hi havia
vegades que per error es posava una pedra a un lloc on no es pretenia.
Una funcionalitat casi obligatòria que es va pensar després, és el fet de
poder desfer l’ última jugada feta i tornar a l’ estat anterior del taulell.
Això sembla una tasca trivial, però rés més allunyat. Tal com funciona
Gorgon, s’ hauria de pensar un algorisme per desfer l’ actualització de
serps.
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4.2.2 Gorgon

Gorgon per la seva banda, té moltes millores potencials i ampliacions. La
majoria d’ elles orientades al fet de millorar els resultats de l’ MCTS.

• La primera millora seria trobar un mètode alternatiu per poder trobar
els punts vitals d’ un Tsumego. Això permetria a Gorgon resoldre
Tsumegos de més complexitat i varietat.

• Trobar un mètode alternatiu per a la detecció d’ ulls en la fase de
selecció de l’ MCTS. Això provocaria segurament un augment elevat
dels Tsumegos resolts correctament.

• Millorar el codi implementat fins ara, per optimitzar el seu rendiment,
i permetre a l’ MCTS fer més simulacions. A part, organitzar el codi
en estructures que permetin paral·lelitzar amb CUDA.

• Estudiar més en profunditat el joc del Go, per a poder aplicar heuŕıstiques
al propi MCTS.

• Estudiar ampliacions diverses del mètode de Monte Carlo. Existeixen
diverses variants. Una d’ elles és RAVE (Rapid Action Value Estima-
tion). El RAVE té com a objectiu que l’ arbre comenci a trobar els
moviments més prometedors abans.

• Ampliar la resolució de Tsumegos a la resolució d’ una partida com-
plerta. Això és un repte encara molt llunyà, però hi ha tècniques en
estudis avançats. Un exemple d’ ells és fer us de Xarxes neurals con-
volucionades. La més prometedora no obstant, segueix sent aplicar el
mètode de Monte-Carlo a taulells de 19x19. El problema és que es
necessita una capacitat de còmput en entorns distribüıts per tal de po-
der fer simulacions massives en poc temps. I a part, per poder jugar
una partida complerta entren en joc heuŕıstiques i bases de dades amb
coneixement expert sobre el joc.
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Apèndix A

Regles del Go

A.1 Introducció al Go

El Go es juga en un taulell de 19x19 interseccions. A cada torn, els jugadors
van col·locant pedres del seu color en una intersecció buida qualsevol del
taulell.

Figura A.1: Taulell de Go

Les normes que defineixen el joc són dues: la regla de les llibertats, i la
regla del KO.
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A.2 Regla de les llibertats

Cada intersecció està formada per un conjunt de ĺınies que surten del pro-
pi encreuament. Aquestes ĺınies s’anomenen llibertats. Les cantonades del
taulell només en tenen 2, i els extrems superior, inferior, esquerre i dreta, en
tenen 3. La resta d’ interseccions en tenen 4. Si una pedra es queda sen-
se llibertats, es diu que és capturada. Es retira immediatament del taulell i
passa a formar part de les pedres capturades de l’ adversari. Aquestes pedres
suposaran un avantatge per a l’ adversari, al final del joc. La següent figura
mostra el cas més basic possible de captura.

Figura A.2: El cas més bàsic possible capturant una pedra

Aquesta norma s’ aplica també a conjunts de pedres. Si un conjunt de
pedres es queda sense cap llibertat (no hi ha cap llibertat en cap pedra que
forma el conjunt), tot el conjunt és capturat.

Quan es col·loca una pedra que amenaça a una pedra o grup de pedres
de l’equip contrari, deixant-les només amb una sola llibertat, és diu que s’
ha fet “Atari”. No obstant, es una pura qüestió de terminologia. El jugador
no està obligat a informar a l’ adversari d’ aquesta situació. I de fet, no
es recomana, per raons obvies. A continuació es veuen alguns exemples de
grups de pedres blanques en Atari, i la seva captura per part de les negres.

Figura A.3: Exemple 1 de captura múltiple
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Figura A.4: Exemple 2 de captura múltiple

Figura A.5: Exemple 3 de captura múltiple

Figura A.6: Exemple 4 de captura múltiple

A.3 Regla del KO

La norma del KO estableix que l’ estat del taulell no es pot repetir en 2
jugades consecutives.

Figura A.7: KO

En les imatges anteriors, l’ adversari captura una pedra. Al capturar-la,
deixa exposada la pròpia pedra que acaba de col·locar (Atari). Però si el
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jugador defensor, la tornés a capturar, el taulell tornaria a l’ estat del torn
anterior. Això podria inicialitzar un bucle infinit per part dels dos jugadors.
La regla del KO impedeix aquesta situació, no permetent al segon jugador
col·locar una pedra en la posició en qüestió, fins al seu següent torn.

A.4 Objectiu del joc

L’ objectiu del joc consisteix en ser el jugador que controli més territori al
final de la partida. Els territoris són interseccions buides rodejades per un
dels dos jugadors. Cal tindre en compte que la captura de pedres és només un
medi, no una meta. La captura de pedres ens donaran una puntuació extra
al final de partida, però ni molt menys suficient per guanyar, si l’ enemic
controla més territori que nosaltres.

A.5 Final de partida

La partida acaba quan els dos jugadors es posen d’ acord. Això pot semblar
molt desconcertant per a un nou jugador. Però si es pensa bé, té sentit.
Arribarà un moment de la partida, en el que les úniques opcions que tindrà
un jugador seran dues:

• Col·locar una pedra en un territori propi. Això suposa la pèrdua del
propi territori, obtenint menys puntuació al final de partida

• Col·locar una pedra en territori enemic per intentar reduir-lo. Això és
completament contraproduent a vegades. Si l’ adversari té un mı́nim
de nivell, pot impedir molt fàcilment que el jugador disminueixi el
seu territori. Això comporta el sacrifici de moltes pedres, i un gran
avantatge per a l’ adversari.

Per tant, per a que s’ acabi la partida, els dos jugadors han de passar el seu
torn. Llavors es diu que s’ han posat d’ acord, i la partida acaba. En aquest
moment es comptabilitzen els territoris dels dos jugadors. Cada intersecció
d’ un territori es compta com un punt per al jugador en qüestió, i a més,
qualsevol pedra o conjunt de pedres enemigues, äıllades dins d’ aquest ter-
ritori, queden capturades automàticament. Aquesta fase del joc és potser
la que més confusió genera per als nous jugadors, aix́ı que seguidament es
mostren alguns exemples de territoris controlats i territoris no controlats.

59



A.6 Handicaps

Els handicaps són una manera de donar avantatge als jugadors menys ex-
perimentats. Consisteix en col·locar un nombre de pedres al principi de la
partida per tal de començar amb un mı́nim d’ influència sobre el taulell (veu-
re annex 3, glossari en el Go). Els handicaps es col·loquen en les interseccions
de tipus “Hoshi” o en la de “Tenggen”.

A.7 Fluxe d’ una partida de Go

En una partida de Go hi ha tres fases ben diferenciades entre śı, cadascuna
amb un objectiu diferent, però totes apuntant a la victòria de la partida.

• Apertura: és la fase inicial de la partida, on cada jugador intenta
definir el seu territori inicial i guanyar influència sobre el taulell. Exis-
teixen diverses estratègies d’ apertura anomenades “Fuseki”, cadascuna
orientada a un joc més agressiu o defensiu.

• Middle-game: és la fase més llarga del joc i està formada per invasions
i atacs per parts dels dos jugadors, per tal de restar territori a l’ enemic,
i sumar el propi.

• End-game: en aquesta fase els jugadors intenten consolidar els terri-
toris conquistats en les dues fases anteriors.

És important destacar que una partida de Go pot quedar sentenciada en
la primera fase del joc. Si un jugador no ha sigut capaç d’ expandir-se lo
suficient a lo llarg del taulell, en la primera fase, és pràcticament impossible
fer-ho en les següents. En una partida de Go no es pot ser ni massa conser-
vador, ni massa ambiciós. Si es juga massa defensiu, l’ adversari conquistarà
la major part del taulell. Si s’ és massa ambiciós, l’ adversari no tindrà
problemes en frenar el nostre atac.
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Apèndix B

Dos ulls en el Go

La formació de dos ulls és un dels pilars centrals del projecte, i el concepte
més important en el que es basa l’ estratègia de qualsevol partida de Go. Ara
bé, qué vol dir exactament la formació de dos ulls, i perquè és tan impor-
tant? El que un grup de pedres tingui una formació de dos ulls, vol dir que
té assegurades les llibertats internes, i per tant, les pedres que les rodegen
no podran ser capturades de cap de les maneres.

A continuació es mostren exemples de formacions de dos ulls per part de
les negres.

Figura B.1: Exemples de dos ulls.

Com es pot comprovar, la força d’ aquestes figures està directament re-
lacionada amb la regla de les llibertats. Com que a un jugador no li està
permès el süıcidi, no podrà jugar mai en una zona en la que no pugui captu-
rar cap pedra enemiga, i a més tingui 0 llibertats.

És important destacar que un ull no té perquè estar format de una inter-
secció només. Pot ser composat per dues o més. Aix́ı doncs, encara que el
jugador enemic pugui col·locar pedres, si el grup realment té aquesta forma-
ció seran pedres virtualment mortes. Això es aix́ı perquè arribarà un moment
en que el jugador defensor podrà capturar-les sense posar en risc cap de les
seves pedres. El següent exemple mostra aquesta situació.
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Figura B.2: Dos ulls múltiples

Un error molt comú en els jugadors principiants és confondre una formació
de dos ulls, amb una formació que realment està potencialment amenaçada.
Aquest tipus de formacions s’ anomenen falsos ulls, i són interseccions on l’
oponent pot jugar a les llibertats internes, capturant les pedres que formen
els falsos ulls.

Figura B.3: Exemple d’ ull fals

En aquest exemple, un jugador principiant podria pensar que C1 forma
dos ulls juntament amb A1. Però les blanques tenen rodejada D1, amb la
qual cosa és fàcil veure que poden capturar el grup sencer jugant a C1 per
capturar D1, i seguidament a A1 (les negres no poden tornar a jugar a D1
ja que trencaria la regla del KO).

En resum, i com es pot veure, si un jugador domina la formació de dos
ulls, domina gran part del joc. La principal dificultat d’ això, és que hi ha
centenars de patrons i formes que tenen com a objectiu final aquesta formació
de dos ulls, i cadascuna d’ elles té les seves debilitats i els seus punts forts.
Una de les habilitats de un bon jugador de Go, és saber quina d’ aquestes
formes jugar a cada moment, i amb quin objectiu.
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Resum 

 

S’ha implementat una intel·ligència artificial relativament senzilla per a resoldre Tsumegos en el joc del Go. 

Per a això, s’ha fet un estudi per a saber quins eren els algorismes més interessants , tenint en compte sempre 

un equilibri entre complexitat i resultats, degut al temps del que es dispossa.  

 

Com a conseqüència, també s’ha implementat una interfície gràfica per a poder jugar partides complertes 

entre dos jugadors, i poder veure els resultats de l’intel·ligència artificial. 

 

 

 

 

 

 

 

Resumen 

 

Se ha implementado una inteligencia artificial relativamente sencilla para resolver Tsumegos en el juego del 

Go. Para ello, se ha llevado a cabo un estudio para saber cuales eran los algoritmos más interesantes, teniendo 

en cuenta siempre un equilibrio entre complejidad y resultados, debido al tiempo del que se dispone.  

 

Como consecuencia, se ha implementado también una interfície gráfica  para poder jugar partidas completas 

entre dos jugadores, y poder ver los resultados de la inteligencia artificial. 

 

 

 

 

 

 

 

Abstract 

 

We have implemented a relatively simple artificial intelligence to solve Tsumegos in Go Game. To this end, 

it has been conducted a study to find out what was the most interesting algorithms, always considering a 

balance between complexity and performance due to the available time.  

 

As a result, it has also implemented a graphical interface to play complete games between two players, and 

see the results of the artificial intelligence. 


