UNB e):
d’enginyeria

Universitat Autonoma de Barcelona

5663: GORGON: UNA IA PER A TSUMEGOS EN EL JOC DEL GO

Memoria del Projecte Fi de Carrera
d'Enginyeria en Informatica
realitzat per

Josep Floriach Ventosinos

I dirigit per

Ramon Grau Sala

Bellaterra, 1 de setembre de 2014

Agraiments

En primer lloc voldria agrair al meu tutor, Ramon Grau, per depositar la confianca en el meu projecte. Sense
ell no hagués estat possible.

D’igual manera, tampoc hagués estat possible sense I’ajut que hem va oferir Roger Llopart Pla a I’ inici del

curs. Sija sabia que era una gran persona, en aquell moment ho va acabar de confirmar.

Finalment voldria agrair a totes les persones que durant un moment o altre, han demostrar interés en el meu
projecte. Gracies a elles he pogut sortir dels mal moments en els que no sabia com tirar endavant. Gracies a
Albert Oriol, a Aythami Santana, Gabriel Diaz, Abi, Elena Garcia i totes les demés persones que segur que

hem deixo.

Index

1 Introduccio 6
1.1 Quéésel Go? 6
1.2 Tsumegos 7
1.3 Estat de I’ art: Tsumegos i software en l'actualitat 9
1.4 Objectius del projecte 11
1.5 Viabilitat del projecte 12

1.5.1 Viabilitat tecnicao 12
1.5.2 Viabilitat legal 12
1.5.3 Viabilitat economica 12
1.6 Fases del projecte L. 12
1.7 Planificacié temporal 13
1.8 Diagrama de Gantt oo 14

2 Implementacié 16
2.1 Introduccié 16
2.2 Tsumegos en Gorgon 16
2.3 Llenguatges i eines desenvolupament 16
24 GoGUI. 17

2.4.1 Introduccido 17
2.4.2 El taulell desde un punt de vista grafic 19
2.4.3 Ampliant el taulell de joc 20
2.4.4 Interficie grafica 21
25 GOrgOon 22
2.5.1 Introduccié a Gorgon 22
2.5.2 Primeres versions de Gorgon 23
253 Serps 24
2.5.4 Regla de les llibertats 25
2.6 Intelligencia artificialo 28
2.6.1 Introducci6 28
2.6.2 Monte Carlo Tree Search (MCTS) 29
2.6.3 Upper Confidence Bounds 31

2.6.4 Fase de simulacié i final de partida 32

2.6.5 Tartars 33

2.6.6 Vida incondicional segons Benson 36

2.6.7 Tartarsvitals 37

2.6.8 Algorisme de Benson 38

2.6.9 Escollint els punts vitals del Tsumego 42

2.6.10 MCTS paral-lelitzable 44

2.6.11 Simulacions completament aleatories? 46

3 Resultats 48
4 Conclusions i treball futur 50
4.1 Conclusions 50
4.2 Treball futur. 53
421 GoGUI. 53

422 GOrgon. 54

A Regles del Go 55
A1 Imtroducci6al Go, 55
A.2 Regladelesllibertats 56
A3 Regladel KO Y
A4 Objectiudel joc 58
A5 Finaldepartida 58
A6 Handicaps 59
A.7 Fluxe d’ una partidade Go 59

B Dos ulls en el Go 60

Index de figures

1.1
1.2
1.3
1.4

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20

4.1

Al
A2
A3
A4

Exemple d” un Tsumego 7
Conseqiiencies de la jugadaa B17 8
Conseqiiencies de la jugadaaB19 8
Simulacio d” TA mitjangant arbres de jugades 10
Arquitectura de GoGUI 18
Interseccions del taulell 19
Taulell complert 19
Taulell mitja i taulell petit 21
Interficie complerta 21
Arquitectura de Gorgon 22
Exemple de serps al taulell 24
Exemples d’ actualitzacié amb cap serp aliada adjacent 27
Exemples d’ actualitzacié amb 1 serp aliada adjacent 27
Exemples d’ actualitzacié amb més d’ una serp aliada adjacent 27
Simulacié complerta en I’ MTCS 31
Exemple de dos Tartars 33
Exemples de vida incondicional segons Benson 36
Exemples de Tartars vitals 38
Exemples per 1’ algorisme de Benson 39
Exemple de Tsumego 43
Alguns Tsumegos i els seus punts vitals segons Gorgon 44
Exemples que Gorgon no es capag de resoldre 44
MCTS Paral-lelitzable 45
Un Tsumego recurrent 46
Tasques planificades vs tasques realitzades 52
Taulellde Go 55
El cas més basic possible capturant una pedra 56
Exemple 1 de captura multiple. 56
Exemple 2 de captura multiple. Y

A5
A6
AT

B.1
B.2
B.3

Exemple 3 de captura multiple. 57

Exemple 4 de captura multiple. o7
KO . . . 57
Exemplesdedosulls. 60
Dos ulls maltiples L 61
Exemple d’ull fals 61

Capitol 1

Introduccio

1.1 Qué és el Go?

El Go és un joc d’ estrategia per a dos jugadors, que es va originar a Xina fa
més de 2500 anys. La majoria de joc competitiu es du a terme a Xina, Korea
i Japo, pero en les tltimes decades ha guanyat certa popularitat a occident.
Avui en dia hi ha més de 40 milions de jugadors per tot el mén.

Normalment es juga en un taulell de 19x19 interseccions i es caracteritza
per tindre només dues senzilles regles (veure annex 1: regles del Go). No
obstant, conté un component tactic i estrategic extremadament alt. Alguns
estudis matematics, han demostrat que el nombre de partides diferents que es
poden jugar, és d’ aproximadament 10%%, superant (i per molt) el nombre d’

atoms en 1’ univers observable actualment, que es calcula que esta al voltant
de de 10%°,

Tota aquesta complexitat ha despertat 1’ interes del Go en algunes bran-
ques de ciencies de la computacié. Una d’ elles, i la més important, es I’
intel-ligéncia artificial. I no és per menys, perque a diferéncia de 1’ escacs 1,
a dia d” avui encara no s’ ha pogut crear cap programa que sigui capag de
guanyar a un jugador professional, en una partida justa. Tan es aixi, que s’
organitzen competicions anuals fent lluitar als programes entre si, per veure
quin és el més fort.

Recentment, alguns programes, utilitzant supercomputadors, han aconse-
guit guanyar a alguns professionals de categoria 9¢ dan 2, en circumstancies
avantatjoses (posant handicaps al jugador), o en taulells de menor tamany.
L’ any 2008, el programa MonGo va aconseguir guanyar a un 5¢ dan en un
taulell de 9x9.

LAl 1997, el Deep Blue es va convertir en la primera IA en guanyar al campié mundial
Kasparov en el joc de I’ escacs

2La categoria "dan”és otorgada a jugadors professionals, i només aquells amb unes
capacitats excepcionals sén escollits per el titol de 9é

A la data de creacié d’ aquest document, la fita més important aconse-
guida, va ser al juny de 2013, quan el programa Zen va guanyar a un 9¢ dan,
en un taulell de 19x19, i amb un handicap de només 3 pedres.

1.2 Tsumegos

Tan en 'aprenentatge del Go, com en 1’ entrenament per millorar les capaci-
tats d’ un jugador, entren en joc els Tsumegos. Similars als tipics problemes
d’ escacs que solen venir en qualsevol diari, els Tsumegos sén problemes
adaptats al Go. Donada una distribucié de peces inicials, el jugador ha d’
intentar, o sobreviure en un espai potencialment capturat per I’ enemic, o
capturar a les peces enemigues causant la mort del grup sencer. Una carac-
teristica dels Tsumegos és que sempre juguen les negres en primer lloc.

Aquests objectius normalment sén assolits mitjancant una seqiiéncia critica
de moviments. Es a dir, si el punt critic no és ocupat en el moment adequat,
el problema acabara en derrota. I notis la subtilesa de “acabara”, perque un
jugador pot haver perdut ja un territori, i no obstant seguir jugant en ell.
Pero totes les pedres que col-loqui a partir del moment que I'ha perdut, sén
peces virtualment mortes que acabaran sent capturades per I’ enemic.

Vegem un exemple:

A B CDETFGH A B CDETFGH A BCDETFGH

™

! 19 l—(z '
v :./.- e /.- a'\‘,..

™

e
O+

(a) Estat inicial amb el (b) Moviment de les (c¢) Moviment de les ne-
punt critic marcat blanques al punt critic gres al punt critic

Figura 1.1: Exemple d’ un Tsumego

A la figura (a) tenim la distribucié inicial de peces i el punt critic marcat
en vermell. La figura(b) representa una seqiiencia de jugades en la qual les
negres no han jugat aquest punt critic, i ho han fet les blanques. La figura
(c) és el cas contrari. Les negres han sabut veure el punt critic.

Les conseqiiencies de la jugada de la figura B son les segiients:

A B CDETFGH A B CDETF GH A B CDETFGH
P = P = P

19 19 8

8L LK O L LANL K L

Figura 1.2: Conseqiiencies de la jugada a B17

Aquesta podria ser la continuacié de la seqiiencia iniciada a la figura 1.B.
Podem veure com s’ ha arribat a un punt en que les negres no han pogut
capturar a les blanques, i a més han sacrificat tres pedres innecessariament.
A partir d’ ara, les negres no poden jugar ni a A19 ni a D19. Trencaria
la regla de les llibertats. Per tant, les blanques estan permanentment vives
en aquesta zona fins a final de partida. No se les pot capturar de cap manera.

Que hagués passat si les negres haguessin jugat al punt critic B19 des d’
un inici tal com hem vist a la figura C?

A B CDETFGH A B CDETFGH
19 4)
18 Vs O) e

LR L
17

Figura 1.3: Conseqiiencies de la jugada a B19

En aquest cas, les negres han pogut capturar un grup de blanques im-
pedint que, en un futur s’ esdevingui la situacié final anterior, en la que les
blanques estaven permanent vives.

Per fer un analisis complert d’aquest senzill problema, podem deduir
facilment el perque el punt B19 és el punt critic. Si ens fixem a la distribucié
inicial, el punt critic és el que permet a les blanques fer una formacié de dos
ulls (veure annex 3: ulls en el joc del Go). Els dos ulls és un dels patrons
més utilitzats en el Go degut a la seva potencialitat de viure permanentment.

En la seqiiencia de moviments de la figura 1.B el problema sencer ha
quedat sentenciat en el moment en que la blanca ha jugat a B19, formant
els dos ulls. A partir d’aquest moment totes les pedres negres, jugades en
el territori format per els dos ulls, han estat sacrificis. En canvi, a la figura
1.C, les negres han tallat la possibilitat de que les blanques fessin dos ulls a
la zona, permetent capturar-les. I si a més ens fixem en 1’ estat del taulell a
I’ altima imatge, podem veure com el conjunt de blanques que encara esta
sobre el taulell, esta rodejat completament per les negres, i sentenciat a mort.

En qualsevol dels dos casos es pot comprovar que les primeres jugades
son determinants per la resolucié del problema. Aquesta premissa és molt
comu en els Tsumegos. En aquest senzill exemple és relativament facil veure
el punt critic i I’ estrategia a seguir. Pero en exemples més complicats, els
punts critics poden ser més d” un, es poden jugar en diversos ordres, i inclis
és necessari el sacrifici de peces propies per tal d’ aconseguir que I’ enemic
no sobrevisqui a la zona.

1.3 Estat de I’ art: Tsumegos i software en
I’actualitat

Es clar que els Tsumegos ajuden a potenciar les habilitats dels jugadors.
A més, en una de les 3 grans fases d’ una partida complerta de Go (veure
Annex A: regles del Go), el taulell esta ple de batalles locals semblants als
Tsumegos. Es per aixo que avui en dia, qualsevol aplicacié virtual de Go té
un modul de Tsumegos.

Una de les caracteristiques d’ aquestes aplicacions és que té dos tipus
d’ usuaris. Els que creen els Tsumegos, i els que els intenten resoldre. A
partir d’ara anomenats “creadors” i “jugadors” respectivament. Els creadors
defineixen tots els possibles camins de jugades del problema, incloent les que
son incorrectes. Aix0 es porta a terme mitjancant la definicié d’arbres de
jugades com els que es mostren a continuaci6.

10

9

Figura 1.4: Simulacio d’ IA mitjancant arbres de jugades

El jugador va fent les seves jugades (amb les negres) i va avangant per I’
arbre definit per el creador, juntament amb les respostes de les blanques. Si
segueix un dels camins verds, arribara a una solucié correcte. Si segueix un
dels camins vermells, arribara a un estat en el que ha perdut el problema.
Es un sistema facil d’ implementar en el que no hi ha cap component d’
intel-ligencia artificial propiament dit, que dificulti el procés.

Ara bé, qué passa si el jugador no segueix cap dels camins definits per el
creador? L’ aplicacié arribara a un punt en que no sera capag¢ de respondre
i 8’ aturara tot el sistema de resposta per part de la maquina, informant al
jugador que el sistema no coneix la jugada escollida, i per tant no sap com
continuar.

Aquesta filosofia té els seus pros i contres. Els seus avantatges sén que és
de facil implementacio, i la possibilitat de posar comentaris a cadascuna de
les jugades, per informar al jugador del perque no hauria de jugar en aquell
punt. Pero el fet de que siguin els propis jugadors els que defineixen els pro-
blemes té dues fortes implicacions.

En primer lloc, la impossibilitat de tindre en compte absolutament totes
les jugades. Recordem 1" explosié combinatoria del Go. En una zona de joc
de 5x5, per exemple, les possibilitats sén extremadament elevades ja. Aixo
implica que el creador ha d’ acotar la definicié del problema a les jugades
més rellevants.

I d’aquest tultim fet deriva el segon problema. Normalment els creadors
son persones amb una experiéncia en el joc bastant elevada. Aixo implica
que moltes vegades no tenen en compte les jugades més nefastes. A més, la
majoria de creadors acaben la definicié del problema en la jugada critica.

11

Quines repercussions té aixo? Posem d’ exemple a un jugador novell. Per
a un jugador novell, totes les jugades sén possibles jugades. No té perque
saber que hi ha un punt que ni es contempla jugar de lo dolent que és. Aixo,
sumat al fet que el problema acaba quan posa la peca critica, i no quan re-
alment es veuen les conseqiiencies directes d’ haver-ho fet, dificulta molt I’
aprenentatge sobre el joc.

1.4 Objectius del projecte

L’ objectiu del projecte és aprofundir en el camp de 1’ intel-ligencia artifi-
cial simbolica i subsimbolica, per tal d’ agafar confianca amb aquests tipus
de problemes, i poder treballar-hi a un nivell més professional. Amb aquest
proposit, s’ implementara una IA que sigui capag¢ de jugar a Tsumegos en el
Go, contra una persona d’ un nivell principiant-mitja. S’ estudiaran a fons
diverses metodologies i algorismes per tal d’ aconseguir aquest objectiu.

Aquesta intel-ligencia sera capag de jugar contra el jugador sense cap co-
neixement previ, fent que el jugador pugui veure les repercussions de les seves
jugades fins al final, i facilitant el procés d’ aprenentatge. Com que 1’ aplica-
cié esta destinada a jugadors novells, no sera necessari que 1’ TA sigui capag
de resoldre problemes extremadament complexos. Es limitara a Tsumegos
de nivell principiant-mitja.

Es evident, pero, que aquest sistema també tindra les seves limitacions.
En primer lloc, els Tsumegos que pugui resoldre I’ TA, tindran unes carac-
teristiques determinades, que es veuran en pagines posteriors. En segon lloc,
un dels avantatges que tenia el sistema d’ arbres de jugades, es perdra. I es
que per a informar al jugador de perque esta jugant bé o malament, podria
suposar un modul d’ [A a part, igual de complexe que el del propi joc.

Finalment, i per dotar de mes funcionalitat a 1” aplicacié, també permetra

jugar a dos jugadors en una partida complerta de Go, seguint les normes
propies del joc.

12

1.5 Viabilitat del projecte

1.5.1 Viabilitat técnica

Aqui és on podriem tindre més problemes. L’ implementacié d” una IA, com
ja s’ ha comentat, es una tasca molt complexa i laboriosa. I més en el cas d’
aquest projecte, que té la dificultad afegida de que es tracta d’ un problema
no resolt completament. No obstant, degut a la limitacié auto imposada de
fer-la per a principiants, és factible com a projecte de final de carrera.

1.5.2 Viabilitat legal

El projecte en principi no suposa cap problematica en el marc legal, més enlla
de la disposicié de llibreries i bases de dades de tercers. Pero com que preten
ser un projecte sense anim de lucre i de lliure distribucié, no s’ haurien de
tindre majors problemes. En qualsevol cas, tot el software de tercers que s’
utilitzi sera completament lliure.

1.5.3 Viabilitat economica

El cost de desenvolupament estara associat basicament a les hores dedicades.
No obstant, es podrien tindre costos derivats de la compra de documents o
llibres tecnics dels que no es poden disposar de forma gratuita. S’ intentara
en la mida del possible que siguin molt baixos o inclis nuls.

D’ altre banda també hi haura petits costos derivats de I’ impressio de
documents, memoria, previ, etc.

1.6 Fases del projecte

El projecte es dividira en les segiients fases:
e Implementacié d’una interficie grafica.
e (Creaci6 de la llibreria Gorgon. Incorporara els seglients subsistemes:

— Control i suport de jugadors: controlar el torn, pedres capturades,
punts d’ influéncia sobre el taulell..

— Control sobre el taulell. Col-locacié de pedres, enmagatzament de
dades, etc etc.

13

— Suport per a arxius SGF.

— Sistema d’ intel-ligeéncia artificial.

El desenvolupament de la interficie grafica esta en fases relativament
avancades. No obstant, degut a la seva interaccié amb la llibreria Gorgon,
no es podra acabar fins que la llibreria estigui completament acabada.

La llibreria Gorgon és la part del projecte en la que més temps es dedi-
cara. [molt especialment al subsistema d’ intel-ligencia artificial. El enmgat-
zament de les dades del taulell també suposara un punt critic en el projecte i
possiblement també implicara un percentatge relativament elevat del temps
de projecte.

1.7 Planificacié temporal

Interficie grafica: no estara completament acabada fins que estigui com-
plerta la llibreria Gorgon. No obstant, a mida que es vagi desenvolupant la
llibreria, s’ aniran fent probes d’ integracié a 1" interficie. Aixi que un cop
acabada, es trigara unes 2 setmanes més per a acabar d’ implementar les
caracteristiques alienes a la llibreria. Com per exemple els ments d’ opcions
o preferencies.

Control de jugadors: sera relativament facil. L’ tinica funcié d’ aquest
modul sera mantindre informacié dels jugadors i algunes funcions basiques
sobre ells. Es calcula que amb unes 2 setmanes estara acabat.

Arxius SGF': aquest modul també hauria de ser relativament facil d” im-
plementar. Tenint en compte que ja hi ha un estandard per a aquests tipus
d’arxius (Smart Game Format), " implementacié no portara molts proble-
mes. S’ estima una duracié d’ unes 2 setmanes també.

Control del taulell: en aquest cas la cosa és una mica més complicada.
S’ han de tindre en compte alguns problemes de rendiment, quines estruc-
tures de dades guardar, i a més fer-ho de manera incremental per distribuir
la carrega de comput a I’ hora de calcular un moviment de I’ IA. També
s’ implementara un submdédul de debugging per tal de poder visualitzar les

14

diferents representacions de l'estat del taulell. Sent relativament optimistes,
unes 6 setmanes seran suficients.

Modul d’ TA: és el punt més critic del projecte, en quan a duracié. En
aquest modul s’ utilitzara tota I” informacié guardada en el modul de control
de jugadors i d’ informacié del taulell per tal de poder programar una IA
que pugui jugar a Tsumegos contra el jugador. A part s’ hauran de tindre
en compte diferents tecniques i metodes per tal de portar a terme aquesta
tasca. S’ estima una duracié total d’ unes 14 setmanes.

Redaccié de la memoria: la memoria, al igual que I’ interficie grafica, s’
anira desenvolupant a mida que avanci el projecte. Es comencara a redactar
un cop acabat el modul de control del taulell. Un cop acabada " implemen-
tacié del projecte, es deixaran uns dies més de marge, per acabar de posar
conclusions, revisar-la, etc etc.

1.8 Diagrama de Gantt

Tenint en compte les anteriors estimacions, la carrega de temps del projecte
quedara distribuisda de la segiient manera:

Nombre | Fecha. | Fechad.. FeIsmere enere
9 © PFCJosep Floriach 251113 2910514 |:| P
¢ @ Implementacid 25M1M3 25/05/14 r
@ Interficie grafica 2511113 25005114 |3
9 @ Llibreria Gorgon 25M1M3 11/05/14 r
© Control del jugador 25(1113 81213 | E—
2 © SuportSGF 912113 221213 |} p——
© |mporar SGF 91213 151213 |: [—
& Exportar SGF 1612113 221213 | [—
¢ @ Control del taulell 231213 210214 F
© Guardar dades basiques 23112013 20/1213 [—
© Guardar dades avangades 30M12/13 120114 | | —
@ Cumpliment de les regles 13/01/14 26/01/14 | —
@ Debugging sobre el taulell 27/071/14 2/02114 |
¢ @ Mbddul dIA 30214 110514

e Estudi d'implementacid 3/0214 16102114
@ Algorisme de resolucid 1700214 300314 |

@ Wetodes avancats 3100314 11/05114

¢ @ Memaria 30214 290514 | :
o Introduccié 302114 902114 | ¢

@ |mplementacid 10/03M14 11/05/14

@ Resultats 12/05/14 15/05/14

@ (Conclusions i millores 16/05M14 21/05/14

@ Annexe: regles del Go 10/0214 16102114

@ Annexe: estratégies basiques 17002114 2103114 |

@ Annexe:terminologia basica del Go 3/03M14 9/03M4 | ¢

@ Revisid de la memaria 22/05/14 29/05/14

15

Mombre

|Fecha .|Fechaa.]

¢ @ PFC Josep Floriach
¢ @ Implementacid
@ |nterficie grafica
¢ @ Llibreria Gorgon
@ Control del jugador
¢ @ Suport SGF
@ |mportar SGF
@ Exportar SGF
¢ @ Control del taulell
@ Guardar dades basigues
@ Guardar dades avancades
@ Cumpliment de les regles
@ Debugging sobre el taulell
¢ © Madul dlA
@ Estudi & implementacid
@ Algorisme de resolucid
@ Métodes avancats
¢ @ Memébria
@ Infroduccid
@ Implementacid
@ Resultats
@ Conclusions i millores
@ Annexe: regles del Go
@ Annexe estratégies basiques

© Annexe: terminologia basica del Go

@ Revisid de la memaria

25M113 29/05114
25M113 25/0514
251113 2510514
25M113 11/05/14
25M113 81213

91213 221213
91213 151213
16M1213 221213
231213 210214

23M2M3 291213
301213 1210114
13/01/14 26/01114
2710114 210214

30214 11/0514
30214 16/0214
17102114 30103114
31/0314 11/05114
30214 29/0514
30214 9/0214

10/03/14 11/05/14
12/05/14 15/05/14
16/05/14 21/0514
10002114 16/0214
17102114 210314

30314 9/0314

22/05M14 29/0514

febrera

marzo

Nombre

| Fecha | Fechad...

9 @ PFC Josep Floriach
¢ @ Implementacid
@ Interficie grafica
¢ @ Llibreria Gorgon
@ Control del jugador
¢ © Suport SGF
@ |mportar SGF
@ Exportar 5GF
¢ @ Control del taulell
@ Guardar dades basiques
@ Guardar dades avancades
@ Cumpliment de les regles
@ Debugging sobre el taulell
¢ © Modul d'IA
@ Estudi & implementacid
@ Algorisme de resolucid
@ Metodes avancats
¢ © Membria
@ Introduccid
@ |mplementacid
@ Resultats
@ Conclusions i millores
@ Annexe:regles del Go
@ Annexe: estratégies basigues

25111113 29/05(14
25111113 25/05/14
25111113 25/0514
25111113 11/0514
25111113 812113

9/12113 2212113
91213 151213
16112113 22112113
23112113 2/02/14

23112113 201213
30/12/13 12101114
1310114 26/01/14
27/01/14 2/02/14

302114 11/05/14
300214 16102114
17102114 30103114
31/03/14 11/05/14
3102114 29/05/14
310214 9/02114

10103114 11/05114
12/05/14 15/05/14
16/05/14 21/05/14
10102114 16102114
17102114 2/03114

@ Annexe:terminologia basica del Go 3/03/14 9/03/14

@ Revisid de la memaria

22/05/14 29/05M14

=
i 4
| E—
[]
|
[
—
/
| —
| E—
| —
abril mayo i
]
A
]
)
b
]
]
]
/=
| m—
| —

Cadascuna de les fases anteriorment mencionades té incoporporat un petit
periode de testeig. No obstant, al finalitzar el projecte (junt amb la memoria)
es reservaran uns dies més per completar el testeig general de 1’ aplicacié.

16

Capitol 2

Implementacio

2.1 Introduccio

L’ implementacié del projecte es va dividir en dues parts. El desenvolupament
de 1" interficie d’ usuari GoGUI, i el de la llibreria Gorgon, que al mateix
temps tenia diversos moduls a atacar. Aquest document es centrara sobretot
en el desenvolupament de Gorgon, que és el que va suposar la major part del
repte del projecte.

2.2 Tsumegos en Gorgon

Abans de comencar amb el desenvolupament propiament dit, va ser necessari
definir un concepte clau per tal de poder desenvolupar I’ aplicacié: Que és
un Tsumego?

En el cas de Gorgon, i per simplificar les coses, es va decidir que un
Tsumego havia de ser un problema localitzat, 1’ objectiu del qual havia de
ser viure o impedir viure, i que no permetia al jugador defensor, fugir cap
a arees buides del taulell. Aquest ultim punt es la gran diferencia entre un
Tsumego i una partida real. En una partida real un grup de pedres podria
intentar fugir cap a 1’ exterior per tal de minimitzar els danys o aconseguir
un benefici major en un futur amb conjuncié amb la resta del taulell. En
un Tsumego hi ha una solucié que permet al grup sencer viure. I per tant,
com que no hi ha més pedres implicades que les del propi Tsumego, la so-
lucioé correcte i inica per al defensor, és que el grup sencer visqui a 1’ interior.

2.3 Llenguatges i eines desenvolupament
La primera gran decisié que es va haver de prendre va ser quin llenguatge

de programacié utilitzar per implementar Gorgon i I’ interficie GoGUI. Es
tenien coneixements avancats i experiencia laboral en Java, i coneixements

17

mitjans-avancats de C++. El sentit comu deia que el millor era utilitzar
Java. Pero es va optar per C++ per dos motius:

e En primer lloc, era una oportunitat perfecte per aprendre aquest llen-
guatge forca demandat en el mon real.

e En segon lloc, es va haver de pensar desde un punt de vista de mes
tecnic. Java s’ executa sobre maquina virtual. C++ compila el codi
directament a llenguatge maquina. Tenint en compte el tipus de pro-
jecte que era, on destacaria la necessitat de velocitat de comput, C++
era la opcié més logica.

Un cop, escollit el llenguatge, es va decidir fer us de I’ eina de desenvolu-
pament Qt. El motiu d’ aixo era que Qt disposa de bastantes llibreries que
facilitarien I” implementaci6 de 1" interficie grafica GoGUI. Per comoditat a I’
hora d’ integrar la llibreria, es va decidir fer us de Qt també per desenvolupar
Gorgon.

2.4 GoGUI

2.4.1 Introduccio

GoGUI és la interficie grafica que es va implementar. Es va desenvolupar
abans de Gorgon simplement per tindre una manera visualment atractiva
de fer les proves necessaries per Gorgon. Es va implementar de la segiient
manera;

18

Intersection

1.n
1

Board

L5

BoardManager

Gorgon

PlayerManager

1
1.2

Player

GorgBoardManager

GorgPlayerManager

GorgFileManager

GorgAlManager

Figura 2.1: Arquitectura de GoGUI

L’ avantatge de separar GoGUI de Gorgon és que GoGUI no havia de fer
cap calcul referent al joc en si. L’ Uinica cosa que feia GoGUI és actualitzar
el taulell grafic i I’ informacié necessaria per al jugador. Pero aquesta in-
formaci6 era Gorgon qui la calculava. Comprovar que es complien les regles
del joc, calcular un moviment de la TA, mantindré la representacio logica del

taulell... Tot aixo son tasques que feia Gorgon.

D’ aquesta manera, si es volia fer una interficie grafica completament
diferent, visualment més atractiva, i amb un bon disseny grafic, no haviem
de fer cap calcul referent al joc en si. En resum, des d’ un principi es va
tindre clar la necessitat de 1’ abstraccié entre visualitzacio del joc i dades del

joc.

19

2.4.2 El taulell desde un punt de vista grafic

La construccid del taulell es va implementar de manera que si en algun mo-
ment es volia canviar el tamany del taulell o fer un zoom, fos relativament
facil. Aixi que es va pensar com la unié de les imatges del que eren les propies
interseccions. Si voliem un taulell de 19x19, simplement teniem que unir 361
imatges representant les interseccions. A més, aquest plantejament facilitava
molt el fet de posar una pedra a una interseccid. Simplement teniem una
imatge de pedra blanca i de pedra negre, i al fer clic en una interseccio es su-
perposava aquesta imatge. Qt, amb les seves llibreries grafiques, va facilitar
enormement aquesta fase del projecte.

Les imatges utilitzades van ser les segiients:

EEEEER

Figura 2.2: Interseccions del taulell

El taulell de 19x19, amb totes les interseccions ja ajuntades, tenia el
segiient aspecte:

ABCDETFGHU JKLMNOPAQRST

19 19
18 18
17 17
16 16
15 15
14 14
a
13 00 13
12 ») » 12
1" " 1
10 10
9 9
7 7
[[
5 5
4 4
3 3
2 2
1 1

ABCDETFGHUJKLMNOPAQRST

Figura 2.3: Taulell complert

20

Una caracteristica important, és el fet de ressaltar 1’ interseccié on és el
punter del ratoli. Es pot veure a la interseccié E13, com es veu una pedra
blanca transparent (en la captura de pantalla, el punter esta en aquella posi-
cid). Aixo es va fer per a que el jugador tingués una visualitzacié immediata
d’ on estava a punt de jugar.

Una altre caracteristica important d’ un joc de taulell és la numeracié de
les posicions. Per convencid, en un taulell de Go s’ etiqueta 1’ eix de les Y
amb un nimero, comencant des de la part inferior, i I’ eix de les X amb una
lletra d’ esquerra a dreta. Es pot notar com la lletra I llatina no hi és. Aixo
és un estandard, i deriva del fet de que en els alfabets orientals aquesta lletra
no existeix.

2.4.3 Ampliant el taulell de joc

GoGUI es va pensar com una aplicacié destinada a resoldre Tsumegos. Ja
fos contra un jugador, o contra la IA de Gorgon. Un Tsumego és un proble-
ma localitzat en una zona relativament petita del taulell. Aixi que no tenia
sentit que el jugador veies tot el taulell quan la zona de joc real estava a una
cantonada, per exemple.

Per aquest motiu, es va dotar a GoGUI de la funcionalitat de definir la
zona de joc on es volia jugar el Tsumego, i només presentar aquesta zona,
amb un tamany més adequat. Es van definir 3 tamanys de zones: taulell
complert, zona de joc mitjana, i zona de joc petita. Com més petita era la
zona de joc, més gran era la visualitzacié d” aquesta. A 1’ hora, per al tamany
de zona mitjana es van definir 4 arees de joc, i 6 per al tamany de zona petita.

A continuacié es poden veure algunes de les combinacions possibles de
zona mitjana, i zona petita.:

21

Figura 2.4: Taulell mitja i taulell petit

Aquesta funcionalitat va fer necessari el fet de mantindre tres resolucions
per a les imatges mostrades anteriorment. Una resolucié baixa per a les
interseccions a taulell complert, i una resolucié més alta per a les que es
jugaven a zona petita.

2.4.4 Interficie grafica

Finalment, es mostra la interficie que es va dissenyar per a GoGUI.

File Options Record Help

S R
+

Tarn of black player

Figura 2.5: Interficie complerta

Com es pot veure, és una interficie molt senzilla, perd ampliable a noves
funcionalitats. A la seccié esquerre estan localitzats tots els botons que

22

poden ser necessaris en una partida o Tsumego. A la secci6 dreta esta tota I’
informacio a nivell de jugadors. A la secci6 central esta el taulell de joc, amb
una secci6 a la part inferior per posar comentaris a cada jugada (funcionalitat
no implementada). A la part inferior es mostra informacié de cada torn. Aqui
es mostra desde el torn del jugador, fins a informacio relativa al trencament de
les regles. A més, aquests tipus de missatges es mostren en vermell per a que
es vegin de forma rapida. Finalment, a la part superior es pot veure el menu
amb les funcionalitats basiques. El menu de creacié de partides i T'sumegos,
el menu per configurar les opcions, el de gravar partida (funcionalitat sense
implementar), i el menu d” ajuda on es té previst posar ajut per a I’ is de I’
aplicacio, configuracié de la IA, i regles del Go.

2.5 Gorgon

2.5.1 Introduccié a Gorgon

L’ arquitectura de Gorgon presenta el segiient aspecte.

1 1.n

GorgMCTree — GorgMCNode

Tl ‘|‘ 1.n
1.2 1 1.n
GorgPlayer GorgPlayerPair] 1.n 1 1 |
GorgMonteCarlo
Tn o.n |
1 T
GorgPlayerManager GorgAlAlgorithm
1
] 1y 1
GorgFileManager GorgBoardManager GorgAlManager T
1
1.n
1
GorgBoard
GorgEyeShapeAnalyzer
1 il
0.n 0.n
GorgSnake GorgTartaros

1 il

l.n ln

Gorglntersection

Figura 2.6: Arquitectura de Gorgon

23

Gorgon es va dissenyar en vistes de ser una llibreria ampliable. Es per
aixo, i com es pot veure al diagrama, que permet mantindre la representacié
de diversos taulells de joc. Encara que GoGUI no va ser dissenyada amb
aquesta funcionalitat, Gorgon permetria fer una interficie grafica en la que
es portessin a terme diferents partides simultaniament, i contra diferents ju-
gadors.

A més, el modul de TA es va dissenyar de manera que fos possible im-
plementar diferents algorismes. En aquest projecte s’ ha implementat només
un, que es veura en capitols posteriors. Pero si es volgués, es podrien im-
plementar més algorismes, simplement heretant de la classe ATAlgorithm, i
implementant el metode abstracte playMove.

Aquesta seccié s’ ha dividit en dos grans parts. La que defineix I’ imple-
mentacié de una partida de Gorgon, i la que defineix I’ implementaci6 de I’
intel-ligencia artificial.

2.5.2 Primeres versions de Gorgon

Les primeres versions de la llibreria Gorgon, es basaven en el recorregut de
tot el taulell per a cada pedra que es jugava. En aquest punt, el coll d’
ampolla 1’ ocasionava el calcul de la regla de les llibertats, que era el procés
que més trigava. Per calcular si una pedra complia o no, la regla de les lli-
bertats, Gorgon comprovava el veinatge de cada interseccié. Si tenia veins,
comprovava els veins d’ aquests veins. Aixi successivament, fins a arribar a
una intersecci sense veins explorats, i llavors tornar enrere per extendre tots
els veinatges corresponents . En el pitjor dels casos podia arribar a recorrer
tot el taulell moltes vegades. Es a dir, en casos molt extrems (gairebé impos-
sibles de donar-se en una partida real), es podien arribar a fer fins a (19%¥19)?
iteracions.

Amb I’ ordinador amb els que es van fer les proves, aixo es traduia a
una mitjana d’uns 0.2 segons, en fases avancades d’ una partida real, on hi
han moltes connexions entre les pedres. A ulls d” un usuari, 0.2 segons pot
semblar un temps raonable, pero com es veura més endavant, el temps de
comput d’ una pedra és un punt vital en el calcul d’'una jugada per part de
I inte-ligencia artificial.

S’entrara més en detall en capitols posteriors, pero la TA es basa en el
fet de fer simulacions aleatories de jugades, i agafar la que millor resultats

24

doni. Aixo implica que com més simulacions fem, millor resultats obtindrem.

Suposem necessaries 500 simulacions amb una mitjana de 2 jugades per
simulacio, per calcular un moviment. Es una situacié hipotetica, ja que real-
ment necessitarem moltes més simulacions. Pero per el que es vol demostrar
en aquest punt, 500 seran suficients. 500 simulacions a 2 jugades per simu-
laci6é impliquen la necessitat de fer 1000 jugades per a calcular un moviment
de la TA. A 0.2 segons per jugada, es necessitarien 200 segons per calcular
una nova jugada. I aix0 sense tindre en compte els calculs propis de 1’algo-
risme. A la practica serien més de 3 minuts per calcular cada moviment de
la maquina. Es clar que per a la majoria de jugadors seria desesperant.

Aixi doncs, 0.2 segons per jugada era un temps de comput impensable
per el que es pretenia fer en aquesta aplicaci6. S’ havia de trobar alguna
manera alternativa de fer el calcul d’ afegir una nova pedra al taulell, que fos
més barata computacionalment.

Per tal d” aconseguir aix0 va ser necessaria la definicié d’ una estructura
motl concreta. En el segiient capitol s’ entrara més en detall sobre aquesta
estructura, que representa, i com es va utilitzar en I’ implementacié de les
regles del Go.

2.5.3 Serps

L’ estructura a tractar es va anomenar serp. Les serps representaven la con-
nexié entre un conjunt de pedres del mateix color. Es poden veure alguns
exemples a la figura 3.A.

-
——
-

Figura 2.7: Exemple de serps al taulell

A la figura 3.A hi ha 7 Serps. Notis que les pedres marcades amb rec-

25

tangles vermells no estan connectades a cap altre pedra del seu color, pero
formen una Serp per si mateixes. Aixi doncs, qualsevol pedra del taulell
sempre esta associada a una Serp.

Aquestes estructures guardaven diferents dades, pero les més importants
eren el nombre de llibertats de les que disposa el conjunt de pedres, i el con-
junt de pedres associades a la serp. Aquesta informacié s’ anava actualitzant
incrementalment a cada jugada. Es a dir, per a cada jugada es mirava a
quines serps afectarien el moviment, i s’ actualitzaven en cas que sigues una
jugada legal.

2.5.4 Regla de les llibertats

Un cop definides les serps, vegem com es van utilitzar per a I’ implementacio
de la regla de les llibertats. Es veuran tres punts clau: confirmar que una
jugada no trenca la regla de les llibertats i que per tant és una jugada legal,
capturar pedres enemigues, i finalment com actualitzar les serps donada una
jugada legal.

En primer lloc, vegem 1’ algorisme que es va idear per tal de comprovar el
compliment de la regla de les llibertats. Donada una jugada a una interseccio
del taulell:

Si no hi ha cap serp aliada adjacent, i I’ interseccio no té cap llibertat
local:

Jugada il-legal. Sense llibertats. Es suicidi.
Sino, si 1 interseccio té llibertats locals:

Jugada legal. La interseccio té com a minim una llibertat.
Sino, s’ han de mirar les llibertats de les serps adjacents aliades:

Per a cada serp aliada adjacent:

St té alguna llibertat:
Jugada legal. La nova pedra tindra llibertats.

Si s arriba aqui, la nova pedra no tindra cap llibertat. Jugada il-legal.

L’ algorisme per determinar quines pedres s’ han capturat es va idear de la
segiient manera. Donada una jugada legal en una determinada posicié:

Per cada serp enemiga adjacent:
Si el nombre de llibertats és iqual a 1:

26

Aquesta serp ha estat capturada. S’ ha tancat la unica llibertat
que tenia.

Es facil notar que el fet de que una serp hagi estat capturada implica
que han estat capturades totes les interseccions d’ aquella serp. En aquest
cas es comenga a veure més clar el potencial de les serps. Com que és una
estructura incremental, podem comprovar si un conjunt de pedres ha estat
capturat des d” un nivell d” abstraccié més elevat, fent una tinica comparacio
per cada grup de pedres.

Seguidament es mostra el pseudocodi de I” algorisme que es va pensar per
tal d’” actualitzar les serps afectades, degut a una nou moviment.

Donada una jugada legal en una determinada posicio:

Mirem quin és el nombre de serps adjacents aliades, i actuem de la
sequent manera Segons conVINGui:
0 serps:

Aquesta jugada crea una nova serp que no existia encara. Creem
una nova serp, la qual tindra només una pedra (la propia jugada),
1 el conjunt de llibertats locals propies d’aquesta pedra.

1 serp:

Aquesta jugada ha fet créizer una serp que ja existia.

Afegim la nova pedra al conjunt de pedres de la serp, i afegim al
congunt de llibertats les llibertats locals de la nova pedra.
Sequidament, hem de treure la llibertat que acabem de tancar per
la col-locacio de la nova pedra

2/8/4 serps:
Aquesta nova pedra causara I’ unio de serps que abans eren inde-
pendents.
Escollim la serp més gran com la serp que acollira a les altres.
Afegim la nova pedra a la serp escollida, afegim les llibertats locals,
1 treiem la llibertat que acabem de tancar.
Per cada serp adjacent:
Afegim totes les seves interseccions a la serp escollida.
Eliminem la llibertat tancada per la nova pedra col-locada
Afegim totes les llibertats restants a la serp escollida.
Eliminem totes les dades de la serp antiga.

St hi ha serps adjacents enemigues, els hi borrem la llibertat tancada
per la nova pedra.

27

St hem capturat algun grup de pedres enemigues, afegim les intersec-
cions d’aquestes pedres enemigues com a llibertats de les serps aliades
adjacents.

Finalment, eliminem les serps sense dades, ja que ara formen part d’
una altre serp més gran.

A continuacio es mostren alguns exemples per als 3 casos d’ actualitzacio,
per tal d’ entendre 1’ algorisme en la seva totalitat.

478

Figura 2.8: Exemples d’ actualitzacié amb cap serp aliada adjacent

s 4 s
Al
..

y
N
Fo
| Y

Figura 2.9: Exemples d’ actualitzaciéo amb 1 serp aliada adjacent

| AL
' A AVE
LA AT A

Figura 2.10: Exemples d’ actualitzaci6 amb més d’ una serp aliada adjacent

Encara que aquest algorisme sembli més complicat que el més basic que es
va fer en primera instancia, es pot comprovar com la complexitat de comput
ha millorat moltissim. En els pitjor dels casos, per actualitzar una serp
hauriem de recérrer com a molt una vegada, totes les serps adjacents. Aixi
que en un cas molt extrem en que tinguem dues serps ocupant tot el taulell, i
posem una pedra per unificar-les, el maxim nombre d’ iteracions seria de 361.

La mitjana del temps necessari per a col-locar una pedra va baixar a
0.00008 segons. Si prenem el mateix exemple mencionat anteriorment, es
trigaria al voltant d’uns 0.08 segons teorics per fer 1000 moviments. Aixo
no es del tot cert perque com veurem més endavant i 8’ ha dit anteriorment,

28

haurem d’afegir temps de comput derivat del propi algorisme de comput de
moviments, i d’ una estructura que necessitarem, i encara no s’ha explicat.

No obstant, es pot veure com, en igualtat de condicions, 1’ algorisme
proposat va millorar enormement el temps de comput. Aixo sens dubte va
ajudar a construir una IA molt més eficient i rapida.

2.6 Intel-ligencia artificial

2.6.1 Introduccio

En primer lloc, i abans d ‘entrar en detall a la solucié que es va implementar,
és adequat entendre el perque de la dificultat d’ implementar una IA en el
joc del Go.

Simplificant, per trobar una resposta automatica en un joc d’ estrategia,
tenim dues opcions: o bé explorar totes les partides possibles, o bé trobar
algun model que sapiga actuar en conseqiiencia. La primera opcid, com ja s’
ha dit anteriorment, és totalment inviable amb la capacitat computacional
d’ avui en dia. La segona opcié ens porta a una situacié gairebé igual de
complicada de resoldre.

Per a que una IA pugui donar una resposta tactica o estrategica a un joc
d’ aquestes caracteristiques, necessita tindre coneixement de la “qualitat” d’
una jugada. Es a dir, necessita associar una puntuacié a una determinada
jugada, per saber si realment és una bona jugada. Dit d’ una altre manera,
necessita una funcié d’ avaluacié. Aquest possiblement és el repte més gran
al que s’ enfronta el Computer Go.

En el Go, la qualitat d’ una jugada depen de moltissims factors, i cada
jugada necessitaria un analisis complex per determinar el seu valor. Inclis
una jugada pot tindre un valor molt pobre en un moment actual, pero ser de
vital importancia en el futur de la partida. Per a fer-se una idea, una bona
jugada podria ser sacrificar un grup de pedres aliades per tal d’ aconseguir
un benefici major en moments posteriors a la partida.

Tot aix0 fa que construir una funcié d” avaluacié generalitzada sigui una

tasca impossible. Per a aixo, la breu historia del Computer Go ha anat tro-
bant alternatives per a resoldre aquest problema. Desde tecniques de Visio

29

per computador, fins a bases de dades plenes de patrons de jugades tipiques.

Un Tsumego es pot pensar com una versié molt reduida i simplifica-
da d’ una partida de Go. No obstant, encara que la construccié d’ una
funcié d’ avaluacié segueixi sent extremadament complicada, sota aquestes
circumstancies, hi ha metodes que han demostrat ser molt eficients.

Seguidament s’ explicara la solucié implementada en aquest projecte. Cal
destacar que el coneixement del que es disposava, des d’ un punt de vista
estrategic i tactic, era bastant basic. Es limitava a figures molt basiques i I’
intuicié que pugui tindre un jugador de nivell principiant. Aixo és un aspec-
te molt important a tindre en compte a I’ hora de construir la IA, ja que al
tindre un coneixement tan basic del joc, es va decidir que el més sensat era
no fer us de coneixement expert. Aixo vol dir que s’ havia d’ intentar en la
mida del possible, no utilitzar regles heuristiques propies del joc.

I aixi es va fer. Es va decidir utilitzar un algorisme anomenat Monte
Carlo Tree Search.

2.6.2 Monte Carlo Tree Search (MCTS)

L” MCTS forma part d’ una familia de metodes anomenats Metodes de Monte
Carlo, en els que 'idea basica consisteix en trobar la descripcié del compor-
tament d’ un sistema probabilistic, mitjancant moltissimes simulacions en
I’ espai de solucions . Quan el nombre de simulacions tendeixi a infinit, s’
obtindra el comportament del sistema de manera acurada.

L’MCTS es una extensié d’ aquests metodes, aplicat a la cerca en arbre.
A continuacié s’ entrara més en detall, pero 1’ idea basica consisteix en fer
moltissimes simulacions fins al final del joc, i anar guardant els seus resultats
en forma d’ arbre. Quan es decideix acabar el procés (és un metode itera-
tiu), s’ agafa la fulla del node arrel que millors resultats hagi obtingut. L’
avantatge principal d’aquest metode, i raé per la qual es va escollir, és que
no es necessita cap tipus de coneixement expert. A més, en els tltims anys
ha anat guanyant molta popularitat en el camp del Computer Go. I de fet,
algunes de les millors [A’s actuals, utilitzen aquest metode.

Els resultats d’ aquest algorisme tenen una extraordinaria dependencia

amb el temps que podem passar fent simulacions. Com més simulacions fem,
millors resultats obtindrem. Si es fan 10 simulacions, a no ser que el sistema

30

sigui extremadament senzill, els resultats que s’ obtinguin seran totalment
aleatoris. Si per el contrari fem milions de simulacions, obtindrem uns resul-
tats extremadament acurats, i podrem dir amb total seguretat que la solucié
trobada es la correcta. Amb aixo es pot entendre el perque va ser necessari
reduir el temps de comput al col-locar una nova pedra al taulell.

Aproximant-nos al cas que ens ocupa, en un joc de taula, els nodes de I’
arbre son les jugades que es van simulant, i per cada node tenim el nombre
de partides jugades i guanyades, a partir d” aquella jugada.

Cada simulacié del MCTS consta de 4 fases:

e Seleccio: en aquesta fase, es baixa a través del arbre, seleccionant els
moviments que millors resultats hagin donat fins a aquell moment, sent
per tant, les jugades més prometedores. Un cop es trobi un node fulla
amb moviments no explorats, passarem a la segiient fase.

e Expansid: en aquesta fase es crea un node fill al node seleccionat a la
fase de selecci6. Si es donés el cas de que el node seleccionat estigués
en un estat de final de joc, aquesta fase s’ ignora i es passa directament
a la fase de simulacié a partir del propi node seleccionat.

e Simulacié: a partir del node creat, es fan moviments aleatoris fins a
arribar al final del joc.

e Propagacié: finalment, els resultats de la simulacié s’ expandeixen a
través de tots els nodes que s’ han recorregut per arribar fins al node
actual. Es a dir, es suma una partida jugada i una partida guanyada
(en el cas que escaigui), a tots els nodes desde el node actual (inclos),
fins al node arrel.

La segiient figura mostra 1’ exemple de les 4 fases d’ una simulacié:

31

Seleccio Expansio Simulacio Propagacio

\ P P
@ @ \ / /\
@

h Iy

ORTOD 0RF0e 086
© ®9 2
& D

Guanya

Figura 2.11: Simulaci6é complerta en I’ MTCS

Com es pot veure, 1’ algorisme expandeix els nodes amb els resultats més
prometedors, fent que I’ arbre creixi en profunditat. Aixo implica que els
moviments que no tenen, o tenen molt poques probabilitats de portar la par-
tida a la victoria, no sén gairebé explorats.

2.6.3 Upper Confidence Bounds

El MCTS sembla un algorisme molt prometedor sobre el paper. Pero a la
practica té dos grans problemes associats a la fase de seleccid, que dificulta-
ven la seva implementacié més basica per a problemes reals.

El primer és que la relaci6 de partides jugades/guanyades en un node que
encara no ha estat provat, és 0/0. La solucié a aquest problema és trivial:
sempre es seleccionaran els nodes que no han estat provats, abans de seguir la
cerca en profunditat. Aixo implica que abans de explorar un nivell inferior,
sempre s’ hauran provat com a minim una vegada, tots els moviments del
nivell superior.

El segon problema és una mica més complicat de solucionar. Suposem
un node, el qual la successio de jugades porta 99 vegades a la victoria, i 1
vegada a la derrota. Es podria donar el cas que a la primera simulacié que
es fes a través d’ aquell node es tingués la mala sort d’ arribar a la situ-
acié de derrota (recordem que la fase de simulacid és totalment aleatoria).
Aix0 deixaria al node amb un rati de 0/1, impedint que aquest node torni a
ser explorat, i en conseqiiencia que no sigui escollit com a jugada guanyadora.

32

Es evident que es feia necessari trobar un equilibri entre exploracio i ex-
plotacio, per tal de que aquestes situacions no es passessin. La solucié que es
va trobar la va proposar un grup d’ experts fa uns anys. La férmula UCB-1
(Upper Confidence Bounds).

%—1—0 In(t)

n; n;

On,
W; és el nombre de partides guanyades a través del node.
n; €s el nombre de partides jugades a través del node.
C és una constant escollida empiricament.
t és el nombre total de partides jugades fins al node.

La primera part del sumand té un valor elevat per a nodes amb un bon
rati de partides (explotacid), mentre que la segona part, té un valor elevat
per a nodes amb poques simulacions (exploraci6). Si el parametre C és 0, s’
ignorara la segona part del sumand, deixant-ho tot a I'explotacié dels nodes.

Llavors la fase de seleccio es va modificar, fent que si hi havia nodes sense
simulacions, donar prioritat a aquests, i que els casos es seleccionessin apli-
cant I" UCB. D’ aquesta manera aconseguiem un equilibri entre exploracio i
explotacio.

2.6.4 Fase de simulacié i final de partida

Com s’ ha comentat, la fase de simulacié fa jugades aleatories fins al final
de partida. Pero, quin és el final de partida en un Tsumego? I com podem
detectar aquesta situacié de manera automatica? Gorgon es va implementar
de manera que detectés dos tipus de final de partida:

e Un dels jugadors ha conseguit formar dos ulls (guanya el jugador de-
fensor).

e Un dels jugadors ha capturat un nombre de pedres suficientment alts
com per a que a 1’ altre jugador no li surti a compte seguir jugant
(guanya el jugador atacant).

El primer cas és trivial. Si el jugador defensor fa dos ulls, aconsegueix
I’ objectiu del Tsumego. La manera de detectar els dos ulls (cosa que no es

33

tan trivial), es veura en els segiients capitols. El segon cas es va plantejar d’
aquesta manera degut a la dificultat de detectar automaticament una situacio
en la que el jugador defensor no pogués fer dos ulls de cap de les maneres. Per
tal d” aconseguir aixo s” haguessin tingut que implementar regles heuristiques,
cosa que com ja s’ ha dit, haguessin dificultat molt 1’ implementacié, degut
al poc coneixement que es té del joc des d” un punt de vista tactic i estrategic.

Per tant, per tal de simplificar la deteccié d’ aquesta situacio, es va definir
aquesta regla, derivada del fet de que gairebé tots els Tsumegos d” avui en
dia, es poden guanyar sense la necessitat de sacrificar un gran nombre de
pedres. Si s’ arriba al cas de aconseguir formar dos ulls, el més probable
és que no hagi sortit a compte, degut a que el nombre de territori guanyat
no compensa el nombre de pedres perdudes. El nombre de pedres necessari
per a guanyar el problema en cas de ser el jugador atacant, es va deixar
com un parametre de I’ TA. Per defecte es va posar a 4. Es a dir, si un dels
dos jugadors aconseguia capturar 4 pedres del equip jugador contrincant, es
considerava que havia capturat un nombre de pedres suficient com per a que
a |” altre jugador no li surti a compte seguir jugant.

Ara bé, com detectavem la formacié de dos ulls per part del jugador de-
fensor? Abans de donar resposta a aixo, es veura una altre estructura que es
va fer necessaria: els Tartars.

2.6.5 Tartars

Els Tartars es van idear com una estructura que guardava les regions del
taulell, d’” un mateix color. Es a dir, totes les interseccions que tanquen un
conjunt de serps del mateix color. A continuacié es mostra un exemple grafic.

2 —

1 T

A B CDETFGTE

(b) Tartar 2

Figura 2.12: Exemple de dos Tartars

A la figura A hi ha 3 serps. La serp negra de la dreta té dos Tartars:
la regié marcada amb les interseccions vermelles, i la regié formada per les

34

interseccions liles, verdes, i grogues. La pedra negra de 1’ esquerra (marcada
en blanc), és una pedra aliada i no forma part de cap dels dos tartars. En
definitiva, tenim la regié interior, i la regié exterior a la serp.

De manera similar, la serp blanca té dos Tartars. Les dues interseccions
interiors (incloent la pedra negra enemiga marcada amb blanc), i totes les
demés interseccions que no formen part de la serp. Es a dir, les interseccions
marcades en groc, vermell, i les blanques de la serp de la dreta.

Es important destacar que les interseccions del color enemic formen part
d’ una regié tant com ho fan les interseccions buides. Es a dir, un Tartar
tracta de igual manera una interseccié enemiga que una de buida. També
es pot veure que una caracteristica dels Tartars és que les pedres aliades no
formen part de cap Tartar del mateix color. Només compten interseccions
buides i enemigues.

La figura B és un exemple més senzill on es mostra que les regions alia-
des sén les fronteres que limiten les propies regions de la serp a tractar. Aixi
doncs, la serp gran té tres Tartars. La regié exterior i les dues interiors. Pero
la pedra petita a C1 només en té 2, ja que la serp gran fa de frontera a la
regio exterior. Per tant, C1 només té els Tartars formats per les interseccions
Al1iB1,1iC2, D2, D1, E1.

Al igual que les serps, aquestes estructures, s’ havien d’ actualitzant a
mida que els jugadors anaven col-locant pedres sobre el taulell. La solucié
a aquest problema va ser un algorisme per a etiquetar regions, utilitzat en
imatges binaries. Encara que en un joc de Go hi ha 3 colors (blanc, negre
i buit), gracies al fet de que els Tartars no tenen en compte el color dels
enemics, va ser possible considerar el taulell com una imatge binaria.

L’ algorisme s’ anomena algorisme de dos passos, i com el seu nom indica,
recorre 1’ imatge (el taulell en el nostre cas) dues vegades. Treballa a nivell
de pixel o intersecci6 en el nostre cas, i es basa en assignar una etiqueta a
totes les interseccions. Totes les interseccions dins de la mateixa regié tin-
dran la mateixa etiqueta al finalitzar 1’ algorisme. Una de 1’ informacié més
important que contenen els Tartars, és I’ etiqueta corresponent a cadascun
d’ells. Per exemple, un Tartar podia tindre 1’ etiqueta “1”. Aix0 volia dir
que totes les interseccions corresponents a aquell Tartar havien de tindre la
mateixa etiqueta “1”.

En el primer pas de I’ algorisme, s’ etiqueta cada interseccié depenent

35

de les etiquetes del seus veins. Hi ha dues variants d’ aquesta fase: la que
treballa amb connectivitat a 4, i la que treballa amb connectivitat a 8. En
el cas dels Tartars vam necessitar la versié de 4, ja que una unio en diago-
nal de dues interseccions, ja forma una cantonada del Tartar. Les regles d’
etiquetatge de I’ algorisme amb connectivitat a 4 sén les segiients:

e [’ interseccio de I’ esquerra té el mateix color que I’ actual?

Si: forma part del mateix Tartar. Assignar a 1’ interseccio actual I’
etiqueta de la de I’ esquerre.

No: passem a la segient condicio

e Les interseccions superior i esquerre tenen el mateix color pero no la mateixa
etiqueta?
Si: formen part del mateix Tartar, pero han de juntar-se. Assignem a

I” interseccio actual I’ etiqueta més baixa de les dues interseccions i
guardem la I’ equivaléencia a la taula d’ equivaléncies.

No: passem a la segiient condicid

e L’ interseccio de 1’ esquerra té un color diferent que 1’ actual, pero I’ actual
té el mateir color que la superior?

Si. Assignem a I’ interseccio actual I’ etiqueta de la superior.

No: passem a la segiient condicio

o Si hem arriba fins aqui es perqué les interseccions superior i esquerre tenen
un color diferent de I’ actual.

Creem una nova etiqueta i I’ assignem a 1’ interseccié actual.

En el segon pas, es re-assignen les interseccions que pertoquin segons la
taula d’ equivalencies. A més, a Gorgon, en aquest pas s’ assignava a cada
interseccié el Tartar corresponent. Si I’ interseccid és buida, o enemiga del
color que estem calculant, es comprovava si hi havia algun Tartar assignat
a aquella etiqueta. Si no era aixi, volia dir que encara no s’havia creat cap
Tartar corresponent a aquella regio, i creavem un nou Tartar assignant-li
aquella etiqueta. Si per el contrari, ja existia un Tartar amb aquella etique-
ta, volia dir que el Tartar corresponent a aquella regié ja existia, i per tant
haviem d’ assignar aquesta interseccio a aquell Tartar.

Una optimitzacié immediata que es va pensar, és que aquestes estructures

només tenien sentit en el cas de que un dels jugadors fos la TA. Aixi doncs,
en els Tsumegos sense A, o partides completes entre dos jugadors, aquestes

36

estructures ni tan sols es calculaven. D’ aquesta manera el temps per col-locar
una pedra en aquests casos, millorava una mica.

2.6.6 Vida incondicional segons Benson

Un cop presentats els Tartars, es pot parlar de quina va ser la solucié per a
detectar automaticament la formacié de dos ulls.

David B. Benson va definir fa anys el significat de que una serp estigués
incondicionalment viva. Una serp incondicionalment viva vol dir que donada
la situacio en la que esta, si el jugador atacant tingués jugades infinites i el
jugador defensor passes el torn a cada una d’ elles, seria impossible per al
jugador atacant capturar la serp. A la practica aix0 es tradueix en si el grup
de pedres té una formacié de dos dulls reals, com a minim.

Vegem uns quants exemples.

/..lv.l'v.l'\/_.l\}_
ABCDE FF .
19 » 3
18 » 2
7YY XY ¥ 1
UCANAA -4
(a) Exemple A (b) Exemple B (c) Exemple C

ABCDEFGHJKLMNOPQRS T

s

17 O
18

13
2

D

“
ABGCDEFGHIJKLMUNOPQRS T

(d) Exemple D

Figura 2.13: Exemples de vida incondicional segons Benson
En la figura A, es pot veure com la serp negre no pot ser capturada de
cap manera per moltes jugades seguides que puguin fer les blanques. Llavors

es diu que la serp negre esta incondicionalment viva. Es clar que aixo es aixi
perque té una formacié de dos ulls.

37

A la figura B en canvi, les serps negres no estan incondicionalment vi-
ves. Si les blanques tinguessin jugades infinites i seguides, podrien arribar
a capturar la serp negre de la dreta. Ho podrien fer amb dos moviments:
el primer a 1" interseccié del quadrat vermell, i el segon a |’ intersecci6 del
quadrat blau. Havent capturat la serp de la dreta, la de I’ esquerra quedaria
totalment indefensa i tot el territori passaria a ser de les blanques.

A la figura C es té una situacié semblant. Les blanques podrien arribar a
capturar la serp formada per 1’ interseccié C1 si tinguessin jugades seguides
infinites. Una seqiiencia possible seria: D1-;C2-; B1. Havent capturat aques-
ta pedra, es podria capturar facilment Al, i impedir que les negres fessin dos
ulls al territori.

Finalment a la figura D tenim una barreja dels anteriors casos. La serp for-
mada per 1" interseccié A19, i la que conté la C19 estan incondicionalment
vives. No hi ha cap manera que les blanques puguin capturar aquestes serps
per moltes vegades seguides que juguin. No obstant, les demes serps no com-
pleixen aquesta condicié. Les serps S19 i C2 es poden capturar amb poques
jugades seguides. Un cop capturades aquestes, la serp gran que conté 1’ inter-
secci6 D1, també es podria capturar amb bastantes jugades (les que rodegen
a la serp).

Benson també va formalitzar un algorisme per detectar automaticament
la vida incondicional d'un grup de serps. Aquest algorisme utilitza dos con-
ceptes: regions i regions vitals a una serp. Una regio és exactament el mateix
que un Tartar. I de fet, aquest és el motiu per el que es va haver d” implemen-
tar aquest tipus d’ estructures. Eren necessaries per al calcul de 1" algorisme
de Benson. Es podrien haver anomenat Regions en lloc de Tartars perfec-
tament. Pero es va decidir seguir amb la nomenclatura relacionada amb la
mitologia grega que caracteritza al projecte. A efectes practics, una regié és
un Tartar, i per tant, podem parlar de Tartar vital a una serp.

2.6.7 Tartars vitals

Una regié (o Tartar) es diu que és vital a una serp, si i només si, totes les
seves interseccions buides (les enemigues no compten) sén llibertats de la
serp. Vegem alguns exemples.

38

= N oW
= N oW A

61981 %%
- -

A B CDETFGF ABCbEFGI-

(a) Exemple A (b) Exemple B

Figura 2.14: Exemples de Tartars vitals

A la figura A tenim dues serps. La serp gran té 3 Tartars i la serp petita
només 2. El Tartar format per les interseccions Al i B1, és vital per a la serp
gran. Totes les interseccions del Tartar son llibertats de la serp. Concreta-
ment, Al és llibertat de A2, i Bl llibertat de B2. Ara bé, el mateix Tartar,
no és vital per la serp formada per la pedra C1. Bl es llibertat de la serp,
pero Al no ho és. Per tant, com que hi ha una interseccié al Tartar que no
és llibertat de la serp, no és un Tartar vital per a la serp.

De manera similar, el Tartar format per les interseccions C2, D2, D11 E1,
no ¢és vital a la serp gran. La interseccié D1 no és llibertat. Per descomptat,
i seguint la mateixa logica, el Tartar exterior no és vital per cap de les dues
serps.

La figura B es gairebé igual pero amb dues pedres blanques enemigues.
Recordem que les pedres enemigues no compten per a calcular si un Tartar
es vital. Per tant, el Tartar format per Al, i Bl si que és vital per a la
serp de C1. Ara totes les interseccions buides del Tartar (B1), sén llibertats
de C1. El Tartar format per C2, D2, D1 i E1 segueix sense ser vital a C1,
perque ni D2 ni E1 sén llibertats de C1.

Seguint el mateix raonament, el Tartar format per C2, D2, D1 i E1 si és
vital per a la serp gran ara. La interseccié D1 ha estat ocupada i per tant
no compta per al calcul. I tenint en compte que C2, D2, i E1 sén llibertats
de la serp, el Tartar és vital a la serp.

2.6.8 Algorisme de Benson

Coneixent els Tartars, la vida incondicional, i els tartars vitals a una serp, es
Y) 7
pot presentar finalment 1’ algorisme de Benson per a la deteccié automatica

de dos ulls.

39

S = conjunt de serps.
R= conjunt de Tartars que encerclen aquestes serps.
Repetir:

Borrar de S totes les serps que tinguin menys de dos Tartars vitals
a R.

Borrar de R tots els Tartars rodejats per alguna pedra que pertanyi
a una serp que no esta a S.
Mentre s’ hagi esborrat algun element de R o S
S = congunt de serps incondicionalment vives.
R = conjgunt de regions que formen part d’ alguna serp incondicional-
ment viva.

Recordem que aquest algorisme és el que ens permetia detectar el final
de partida en una simulacié del Monte-Carlo Tree Search. Com es pot veure,
es un algorisme iteratiu, que acaba quan de cap dels dos conjunts no s’ ha
esborrat cap element.

A continuacié es mostren dos exemples de I aplicacié de I’ algorisme.

ABCDEFOGHJKLMNOPQRST

- MW F

ABCDEFC BCDEFGHJKLMNOPQRST

(a) (b)

Figura 2.15: Exemples per 1" algorisme de Benson

Els dos exemples s’han comentat amb anterioritat. S’ ha vist que a la
figura A no hi ha cap serp incondicionalment viva, ja que la seqiiencia D1

40

- C2 - B1 - A2 deixa el territori a favor de les blanques. A la figura B en
canvi, estan incondicionalment vives les serps A19 i la serp gran formada per
C19. Vegem com arribar de manera automatica a aquestes conclusions amb
I’ algorisme de Benson.

Figura A

Suposem la seguent nomenclatura:
SA1 = Serp formada per I’ interseccié Al.
SC1 = Serp formada per I’ interseccié C1.
SA3 = Serp gran formada per 1’ intersecciéo A3 i la resta de pedres.
TA2 = Tartar format per 1’ intersecciéo A2.
TB1 = Tartar format per 1’ interseccié B1.
TC2 = Tartar format per I’ intersecciéo C2 i la resta de les interseccions.
TEX = Tartar exterior. El que esta format per A4, B4, CA4...

la iteracid

Comencem 1’ algorisme amb el conjunt S={SA1, SC1, SA3}, i el conjunt
R={TA2, TB1, TC2, TEX}. SA3 té 2 Tartars vitals (TA2, i TB1). La serp
A1l té els mateixos Tartars vitals, TA2 i TB1. Finalment, la serp C1 només
en té un: TBI1, ja que D2 no és llibertat seva, i per tant TC2 no és vital
a SC1. Aixi doncs, com que només te un Tartar vital, esborrem SC1 del
conjunt S.

TC2 i TB1 estan rodejats per SC1, que ja no forma part de S. Per tant,
esborrem del conjunt R TC2 i TB1.

Final de la primera iteracié: S={SA1, SA3} R={TA2, TEX}

2a iteracio

A la segona iteracid, la serp SA3, només té un Tartar vital: TA2, ja que
TB1 ha estat esborrat de R en I’ anterior iteracié. El mateix passa amb SAT,
ja no té TB1 com a Tartar vital. Aixi que les dues serps sén esborrades de
S, al no tindre dos Tartars vitals com a minim. Com que TA2 esta rodejat
per SA1 i SA3 que ja no estan a S, esborrem el Tartar de R. El mateix passa

amb TEX que esta rodejat per SA3.

Final de la segona iteracié: S={} R={}

41

Com podem veure, S ha quedat buida. Aixo vol dir que cap serp esta
incondicionalment viva, i per tant poden ser capturades amb un nombre
determinat de jugades seguides.

Figura B

En aquest exemple usarem la seglient nomenclatura:
SA19 = serp formada per la pedra A19.
SC19 = serp formada per la pedra C19 i la resta de pedres.
SC2 = serp formada per la pedra C2.
SS1 = serp formada per la pedra S1 i la resta de pedres.
SS19 = serp formada per la pedra S19.
TB19 = Tartar format per I’ interseccié B19
TA18 = Tartar format per I’ interseccié A18
TC1 = Tartar format per Cl1.
TT1 = Tartar format per T1.
TT19 = Tartar format per T19
TEX = Tartar format per totes les interseccions interiors del tauell.

la iteracio

SA19 té dos Tartars vitals: TA18 i TB19. SC19 en té tres: TA18, TB19
i TC1. SS19 per la seva banda té com a vitals els Tartars TC1, TT19, i
TT1. En canvi, SC2 i SS19 només tenen un Tartar vital cadascun. Aixi que
aquestes dues serps s’ esborren de S.

En conseqiiencia, els Tartars TEX, TT19, i TC1, sén esborrats de R, ja
que els tres estan rodejats de serps que no estan a S ja.

Final de la primera iteracié: S = {SS1, SC19, SA19} R = {TB19, TA18,
TT1}

2a iteracio

Com que hem esborrat TT19 i TC1, la serp SS1 només té TT1 com a
Tartar vital. Aixo vol dir que I’ hem d’ esborrar de S.

El resultat d’ aixo és 1’ eliminacié del Tartar TT1.
Final de la segona iteracié: S={SC19, SA19} R={TB19, TA18}
3a iteracio6

42

Les dues serps SC19 i SA19 tenen dos Tartars vitals: TB19 i TA18.

Com que cap dels dos Tartars té cap pedra d’ una serp que no esta a S,
no n’ eliminem cap.

Final de la tercera iteracié: S={SC19, SA19} R={TB19, TA18}

Com es pot comprovar, en aquesta iteracié no hem esborrat cap element
de cap dels dos conjunts. Per tant, I’ algorisme ha arribat a la seva fi, deixant
com a serps incondicionalment vives, SC191i SA19. R per la seva banda dona
els Tartars que formen els ulls d’ aquestes serps.

Aquest algorisme va ser ideal per a decidir el final de partida en una si-
mulacié del MCTS. D’ una manera metodica, podiem determinar quan un
dels dos jugadors havia complert 1’ objectiu que li pertocava. Cal destacar
pero, que hi han metodes basats en heuristiques, per a determinar si un grup
és mort. Aquests metodes tenen I’ avantatge que poden determinar la super-
vivencia d” un grup en fases anteriors. Es a dir, no ha d’ haver-hi formacié de
dos ulls estricta. El problema d’ aquests metodes és que per casos complexes
no sempre acerten. L.’ avantatge és que per a casos no tan complexes, poden
determinar molt abans el final de partida, en la fase de simulacié del MTCS.

Arribats a aquest punt, fins ara s’ ha presentat 1’ implementacié més
basica de I’ TA. A partir d’ ara es presentaran algunes optimitzacions que es
van plantejar per a millorar I’ TA tant en els resultats de I’ algorisme com en
el rendiment computacional del mateix.

2.6.9 Escollint els punts vitals del Tsumego

Els resultats fins a aquest punt del projecte no van ser molt esperancadors.
D’ un conjunt de test de 20 problemes, Gorgon en sabia resoldre correctament
només 3, i segurament per casualitat. Qué estava passant? El problema era
que les simulacions es feien sobre interseccions completament irrellevants per
el problema. Suposem el segiient exemple:

43

YN

Figura 2.16: Exemple de T'sumego

Aquest Tsumego ja s’ ha comentat anteriorment. Qualsevol de les inter-
seccions marcades en vermell porten a la victoria per a les negres. Ara bé,
que passa si en una de les simulacions les negres col-loquen sobre una de les
interseccions marcades en blau? Es facil veure que sén jugades completament
inutils i sense cap tipus de valor per al problema.

Aix0 suposava un problema greu, ja que aquestes simulacions feien que
les blanques arribessin a moltes més jugades guanyadores. Mentre les negres
jugaven a interseccions sense cap mena de sentit, les blanques anaven fent
jugades amb més sentit, i creant fulles de I’ arbre en les que sortien victori-
oses sense cap tipus de problema. Aix0 suposava que la jugada guanyadora
podia inclus estar fora del Tsumego en si.

Per donar solucié a aixo, es va haver de buscar una manera de que el
MCTS només fes simulacions sobre les interseccions més rellevants del Tsu-
mego. Es a dir, els punts vitals del problema. Hi ha molts estudis per a
determinar aquests punts: heuristiques, tecniques de visié per computador,
funcions d’ avaluacié...

Desgraciadament, no es comptava amb massa temps per fer un estudi
sobre aquests metodes, aixi que es va optar per una solucié més facil: aga-
far com a punts vitals, les interseccions buides dels Tartars que no fossin
el Tartar exterior (el que ocupa la major part del taulell, i per tant, no és
rellevant per al problema). A continuaci6 es veuen alguns exemples de punts
vitals (marcats en vermell):

44

I A B CDEF

a‘r N

y— 19

- 18

4

.,<_ 17 .
A A A 1 6'/ T g, g, g,
e www
ae L1 I 1

Figura 2.17: Alguns Tsumegos i els seus punts vitals segons Gorgon

Com es pot intuir, aquest punt és el que va suposar la limitacié més forta
per al projecte. Per a aplicar aquesta logica, es necessita que el problema
tingui com a minim 2 Tartars, i que la serp que els contingui, encercli el Tsu-
mego en si. Aixo va limitar molt els Tsumegos que podia resoldre Gorgon.
Els segiients problemes Gorgon no era capag¢ de resoldre’ls correctament, ja
que només hi ha un Tartar en tot el taulell, per a qualsevol dels dos jugadors:

ABCDETFGH. ABCDTETFGFE
19

A ")‘./\"'\f' g g,
16 |‘\I_,»'\ AN

AC I

Figura 2.18: Exemples que Gorgon no es capag de resoldre

No obstant, es va deixar com a treball futur la cerca i estudi d’ un metode
més eficient per trobar aquests punts vitals.

2.6.10 MCTS paral-lelitzable

La segiient optimitzacié que es va portar a terme, va ser la paral-lelitzacio d’
una part del MCTS. L’ MTCS és un algorisme altament paral-lalitzable, i de
fet, hi ha tres tipus de paral-lelitzacié. En aquest projecte es va implementar
el tipus més senzill.

El metode s’ anomena Paral-lelitzacié per fulla. Consisteix en que per
cada iteracio de I’ algorisme, es facin multiples fases de simulacié a la vegada.
La fase de seleccio es fa de manera normal, i quan s’ arriba a una fulla no
explorada, es fan multiples simulacions amb multiples fils d’ execucié. La
segiient figura mostra aquest metode d’ una forma grafica.

45

Simulacid

,,/\\\
BOE0
®

D
558

PEPRE PP

g=guanya
p=perd

Figura 2.19: MCTS Paral-lelitzable

Com es pot intuir, la fase de propagacié també inclou aquesta paral-lelitzacié.

Per cada simulacié feta en els N fils d’ execucio, es genera una fase de pro-
pagacié fins al node arrel, guardant els resultats d’ aquella simulacié per tot
I” arbre. D’ aquesta manera, amb una iteracié6 del MCTS, es generen N si-
mulacions.

Com s’ ha comentat aquest és el metode més facil d” implementar, ja que
els fils d” execucié no necessiten gairebé comunicacié entre ells. El principal
problema d’ aquest metode és que fins que 1’ dltima simulacié no ha acabat,
no es pot comencar una altre iteracié de 1’ algorisme. Pero degut a que un
Tsumego arriba a una situacié de final de partida relativament rapid, I’ im-
pacte d’ aquest problematica va ser petit.

Es va utilitzar OpenMP per a dur a terme aquesta optimitzacio. Es va
plantejar d” utilitzar CUDA, i fer una paral-lelitzacié massiva per a GPU.
Pero CUDA té unes certes limitacions respecte a les estructures que es poden
utilitzar dins dels Kernels. Com que aquesta optimitzacié no es va planejar
fins a fases avancades del projecte, molt del codi implementat no complia
aquestes regles. Per tant, i degut a la falta de planificacid, es va decidir que
no era viable fer una paral-lelitzacié a nivell de GPU amb el temps del que
es disposava.

Els resultats d’ aquesta optimitzacié no obstant, van ser molt bons. Es

va passar de que I’ TA trigués uns 20 segons de mitja, a que trigués 2 segons
de mitja.

46

Existeixen dos metodes més de paral-lelitzacié per I’ MCTS. Sén bastant
més complicats, pero teoricament donen millors resultats. No es van plantejar
la seva implementacié a Gorgon degut a la falta de temps, pero es deixa com
a treball futur intentar explorar aquestes dues alternatives, i reorganitzar el
codi per a poder utilitzar la GPU d’ una manera relativament senzilla.

2.6.11 Simulacions completament aleatories?

Finalment, I’ ultima optimitzacié que es va fer, deriva del fet que I’ MCTS
basic utilitzi simulacions completament aleatories. Suposem el cas estudiat
anteriorment:

Figura 2.20: Un Tsumego recurrent

Com es pot veure, les negres obtenen dos ulls simplement jugant al qua-
drat vermell. Pero qué passa si en la fase de simulacio es col-loca una pedra
negra al quadrat blau? Recordem que les jugades sén completament ale-
atories. El resultat d’ aixo seria que les negres es quedarien sense la pos-
sibilitat de fer els dos ulls, i les blanques acabarien guanyant la simulacié.
Degut a aixo, és possible que la jugada arrel de la simulacid, anés guanyant
cada vegada més forca, i acabés sent el sub-arbre de la jugada guanyadora, i
retornada per el MCTS. Pero realment, no té molt de sentit que una de les
jugades de les negres sigui tancar-se un dels ulls potencials. Si realment el
jugador acaba jugant aixi, el propi algorisme ja trobaria la resposta adequa-
da, pero aquesta jugada no es tindria que donar mai en la fase de simulacio,
per cap dels dos jugadors.

Es per aix0 que es va implementar la regla de que en la fase de simula-
cio, no es dongtes una jugada en la que el propi jugador bloqueja un dels
propis ulls potencials. Entenem per ulls potencials les interseccions sense
llibertats (és a dir, una intersecci6 aillada), que sén punts clau per formar
dos ulls. Aixi, per exemple, el Tartar del quadrat vermell de la figura ante-
rior no seria un ull potencial a considerar fins que tingués una sola interseccio.

47

Per a determinar si una interseccio és ull potencial el que es va fer és com-
probar que I’ interseccié estigués completament rodejada de pedres aliades,
que NO estiguessin en atari. Aixo es tradueix a les interseccions que formen
part d’un territori aliat, el qual tingui alguna llibertat, i no sigui l'interseccié
que estem mirant.

Es un algorisme relativament poc precis. Hi ha bastants casos que aquest
algorisme no contempla i serien ulls potencials. Pero tenint en compte que
per a cada pedra en la fase de simulacié s’ ha de comprovar si és ull poten-
cial o no, es va pensar que era millor un algorisme no molt pesat per tal
de permetre a I’ MCTS fer més simulacions amb menys temps. Una de les
millores potencials del projecte és buscar un algorisme alternatiu més precis,
pero igual de rapid.

48

Capitol 3

Resultats

Per a validar la qualitat de I’ IA implementada, es va utilitzar un conjunt de
test de 20 Tsumegos. Aquests Tsumegos complien la condicié de tindre un
Tartar rodejant al problema en si, per a poder trobar els punts vitals. Es van
categoritzar en 3 categories. Entre els 20 Tsumegos hi havia 15 de dificultat
facil, 4 de dificultat mitjana, i 1 de dificultat molt elevada.

El bon funcionament d’ un problema es va determinar seguint dos criteris
diferents:

e TAN: Jugant I’ TA amb el color negre, sabia trobar el cami critic per a
que aquestes guanyin. Es a dir, sabia resoldre el problema.

e [AB: Jugant amb el color blanc, jugava de manera logica, ajudant al
jugador a comprendre millor el problema.

Seguin aquests dos criteris, es van fer diverses proves amb diferents mides de
simulaci6 i de valors del parametre empiric per al UCB.

Amb un tamany de simulacié fixe a 500 partides aleatories per moviment

UCB || IAN | IAB
0 50% | 55%
0.25 | 65% | 70%
0.50 | 80% | 80%
0.75 | 55% | 60%
1 10% | 40%

Amb la constant UCB fixe a un valor de 0.50

N° partides | IAN | IAB | Calcul seqiiencial | Calcul OPENMP
50 10% | 20% 3 segons menys d'un segon
500 75% | 80% 8 segons menys d’'un segon
1000 65% | 70% 18 segons 1 segon
2000 60% | 70% 39 segons 2 segons
5000 55% | 65% 1.5 minuts 4 segons
10000 55% | 60% 3 minuts 7 segons
20000 45% | 55% | més de 5 minuts 10 segons

49

Com es pot comprovar, I’ augment de simulacions no va provocar la millora
esperada. Aixo es aixi degut a la falta de de precisié a 1’ hora de detectar
ulls durant les simulacions. Aixo provoca que com més simulacions es facin,
hi hagi més possibilitats de que un dels jugadors es tanqui un dels seus ulls
potencials, i I’ altre jugador comenci a trobar victories on no hi haurien d’
haver-hi.

Una millora potencial és trobar una manera alternativa de trobar aquests
ulls potencials, pero sense que suposi un overhead massa gran en temps de
comput.

Els millors resultats es van trobar amb una constant de UCB a 0.50, i
500 simulacions per moviment.

30

Capitol 4

Conclusions 1 treball futur

S’ ha implementat una intel-ligencia artificial per resoldre Tsumegos, amb
una tassa d’ exit relativament bona. No obstant, hi ha moltes vies futures
per intentar millorar 1’ aplicacié. Tant des de el punt de vista de Gorgon i la
seva IA, com per a 1’ interficie GoGUIL.

4.1 Conclusions

Gorgon es va pensar com un projecte de final de carrera bastant ambicids.
El resultat obtingut va ser satisfactori, i es van poder extreure les segiients
conclusions:

e L’ implementacié d’ una IA, com ja es suposava és una tasca complexa.
Pero el que s’ ha aprés amb aquest projecte, és que no es tan sols
des de el punt de vista tecnic, siné que també des d’un punt de vista
de planificacié de projecte. El fet de no planificar algunes fases del
projecte, va fer que no es pogués implementar tot el que s’ hagués
volgut. Un clar exemple d’ aixo és el fet de no poder paral-lelitzar amb
CUDA degut a les seves limitacions amb les estructures a tractar.

e [MCTS basic és un algorisme prometedor sobre paper, pero a la reali-
tat fan falta bastantes ampliacions per a poder funcionar correctament
sobre un projecte real.

e [’ Gs d’ heuristiques hagués millorat molt el rati de victories per part
de la maquina. En aquest projecte I’ inica heuristica implementada
ha estat el fet de que I’ MCTS no simulés sobre un ull potencial. Pero
existeixen moltes heuristiques associades a un coneixement més profund
del joc, que no s’ han pogut portar a terme, tant com per falta de temps,
com per falta de coneixements sobre el joc del Go.

e La paral-lelitzacié de I’ MCTS ha estat un punt vital per a aconseguir
un bon rendiment. Es va passar de més de 20 segons per moviment, a
1 segon. Tot aixo amb 500 simulacions per jugada.

o1

e A I’ hora de planificar un projecte de tamany mitja, és molt important
ser relativament pessimista a 1’ hora de calcular la duracié de les tas-
ques. En aquest projecte es va dur a terme un calcul massa optimista i
han hagut moltes coses que no es van poder dur a terme. A continuacio
es posa el diagrama de Gantt planificat inicialment, i la comparativa
amb el que van durar realment les tasques. Les linees vermelles simbo-
litzen les tasques planificades que no es van poder dur a terme per falta
de temps. Les verdes, el temps real que es va necessitar per completar
aquella tasca.

92

Nombre |Fecha |Fschad aeiEmere enere
¢ @ PFC Josep Floriach 25M1i13 29/05M14
¢ @ Implementacié 25M1i13 25105114
© Interficie grafica 25M1/13 25/05114 —
¢ © Llibreria Gorgon 251113 1110514 r
@ Control del jugador 251113 81213 | —
¢ © Suport SGF 91213 2211213 | e
@ Importar SGF 9M2M13 151213 | ==
© Exportar SGF 161213 2211213 | =
9 @ Control del taulell 23M2i13 2002114 o
@ Guardar dades basiques 23/M2/13 29/12/13 =
© Guardar dades avancades 30M12/13 12/0114 e
o Cumpliment de les regles 13/01/14 26/0114]
@ Debugging sobre el taulell 27/01/14 2/0214
9 @ Modul dIA 30214 1110514
@ Estudi d implementacié 302114 16/02M14
@ Algorisme de resolucid 17/02i14 30/03114
@ Métodes avancats 31/03/14 1110514
§ © Memoria 3/0214 29/05M4
© Introduccié 3/02114 902114
@ Implementacid 10/03/14 11/05M14
@ Resultats 12/05114 1510514
@ Conclusions i millores 16/05/14 21/05114
@ Annexe: regles del Go 10/02i14 16/0214
@ Annexe: estratégies basiques 1710214 2103114
©® Annexe terminologia basica del Go 3/03/14 9/03/14
© Revisié de la membria 2210514 29105114
Nombre |Fecha |Fscnad fetrer merEe
¢ @ PFC Josep Floriach 25M1i13 29/05M14
¢ @ Implementacid 25M1i13 2510514 | :
© Interficie grafica 2511113 25/0514 | s
¢ © Llibreria Gorgon 25M1/13 11/05H4 |
@ Control del jugador 251113 81213
¥ @ Suport SGF 9M213 221213
@ Importar SGF 9n213 151213
@ Exportar SGF 16M2/13 221213 |3
¢ @ Control del taulell 2312013 2102114 | :[—
© Guardar dades basiques 23M2/13 2912113 |
© Guardar dades avangades 30M12/13 12/01/14
@ Cumpliment de les regles 13/01/14 26/0114
® Debugging sobre el taulell 27/01/14 2/0214
¢ @ Modul dIA 30214 1110514
@ Estudi d implementacié 302114 16/0214
@ Algorisme de resolucid 17102i14 30/0314
e Métodes avancats 31/03/14 1110514
§ © Memoria 3/0214 29/05M4
© Introduccié 3/02114 902114
@ Implementacié 10/03/14 11/05M14
@ Resultats 12/05/14 15/0514
@ Conclusions i millores 16/05/14 21/0514 |
@ Annexe: regles del Go 10/02/14 16/0214 |)
@ Annexe: estratégies basiques 17102114 200314 | ———] —
@ Annexe terminologia basica del Go 3/03(14 /0314 | =
© Revisié de la membria 22/05/14 29/05M14 |
Nombre |Fecha |Fe:nad : abl L .
¢ @ PFCJosep Floriach 2511012 29/05114 | : a
9 @ Implementacid 25M1i13 25105114 | al
@ Interficie grafica 251113 26/05114 | —
¢ @ Llibreria Gorgon 25111113 110514 | ¢ |
@ Control del jugador 251113 811213 :
9 © Suport SGF 12113 22112113
@ Importar SGF 9M213 151213
@ Exportar SGF 1612113 221213
¢ @ Control del taulell 23112113 200214
© Guardar dades basiques 23M2/13 20112113
© Guardar dades avancades 30/12/13 12/01/114
@ Cumpliment de les regles 13/01/14 26/01/14
© Debugging sobre eltaulell 270014 202m4 |
g © Modul dIA 3102114 11/05(14 | .
@ Estudi d implementacid 3/02/14 16/0214 |
o Algorisme de resolucid 17/02/14 30/03/14
o Métodes avangats 31/03/14 1105114
¢ © Memébria 3/02/14 20/05/14
@ Introduccid 3102114 90214
@ Implementacid 10/03i14 1110514
@ Resultats 12/05/14 1510614
@ Conclusions i millores 16/05/14 21/05114
@ Annexe: regles del Go 10/02/14 16/02/14
@ Annexe estratégies basiques 17/02i14 2/03/114
© Annexe: terminologia basica del Go 3/03(14 9/03114 2
@ Revisié de la memaoria 2210514 29/0514 | = -

33

Figura 4.1: Tasques planificades vs tasques realitzades

No obstant, a pesar de totes les dificultats trobades, es creu que el pro-
jecte va ser un exit, i va aconseguir el seu proposit, que era comprovar de
primera ma el repte que suposa fer una aplicacié d’ aquest tipus.

4.2 Treball futur

Les possibles millores s’ han dividit en les que es poden dur a terme a GoGUI
i en les que es poden dur a terme a Gorgon.

4.2.1 GoGUI

GoGUTI es va idear com 1" aplicacié final amb la que I’ usuari interactuaria.
Pero per falta de temps es va quedar en un estat relativament pobre. Per
comencar, els primers punts a atacar soén els que es van planificar i no es van
poder dur a terme. Aquests son:

e Poder modificar els parametres de I’ TA.
e Grabar partides i reproduir-les.

A part, a mida que s’ anava treballant amb 1’ aplicacié es van anar veient
millores potencials que en un principi i s’ havien plantejat, i al final del
projecte semblen coses indispensables per a la bona interaccié de ' usuari
amb 1" aplicacié. Algunes d’ aquestes son:

e Un mode d’ edicié de Tsumegos. Per crear un nou problema a GoGUI,
s’ havia d’ anar alternant jugades i passant el torn si feia falta, fins
a arribar al estat del taulell desitjat. La primera millora potencial i
no planificada, és que per crear un Tsumego es pugui posar totes les
pedres seguides d’” un color, després de |’ altre, i guardar. Es un métode
molt més comode, rapid i practic.

e Poder desfer la jugada. A mida que s’ anaven fent proves, hi havia
vegades que per error es posava una pedra a un lloc on no es pretenia.
Una funcionalitat casi obligatoria que es va pensar després, és el fet de
poder desfer I’ ultima jugada feta i tornar a I’ estat anterior del taulell.
Aix0 sembla una tasca trivial, pero rés més allunyat. Tal com funciona
Gorgon, s’ hauria de pensar un algorisme per desfer 1’ actualitzacié de
serps.

o4

4.2.2 Gorgon

Gorgon per la seva banda, té moltes millores potencials i ampliacions. La
majoria d’ elles orientades al fet de millorar els resultats de I’ MCTS.

e La primera millora seria trobar un metode alternatiu per poder trobar
els punts vitals d’ un Tsumego. Aix0 permetria a Gorgon resoldre
Tsumegos de més complexitat i varietat.

e Trobar un metode alternatiu per a la deteccié d’ ulls en la fase de
seleccié de I’ MCTS. Aixo provocaria segurament un augment elevat
dels Tsumegos resolts correctament.

e Millorar el codi implementat fins ara, per optimitzar el seu rendiment,
i permetre a I’ MCTS fer més simulacions. A part, organitzar el codi
en estructures que permetin paral-lelitzar amb CUDA.

e Estudiar més en profunditat el joc del Go, per a poder aplicar heuristiques
al propi MCTS.

e Estudiar ampliacions diverses del metode de Monte Carlo. Existeixen
diverses variants. Una d’ elles és RAVE (Rapid Action Value Estima-
tion). El RAVE té com a objectiu que I’ arbre comenci a trobar els
moviments més prometedors abans.

e Ampliar la resolucié de Tsumegos a la resolucié d’ una partida com-
plerta. Aix0 és un repte encara molt llunya, pero hi ha técniques en
estudis avancats. Un exemple d’ ells és fer us de Xarxes neurals con-
volucionades. La més prometedora no obstant, segueix sent aplicar el
metode de Monte-Carlo a taulells de 19x19. El problema és que es
necessita una capacitat de comput en entorns distribuits per tal de po-
der fer simulacions massives en poc temps. I a part, per poder jugar
una partida complerta entren en joc heuristiques i bases de dades amb
coneixement expert sobre el joc.

95

Apendix A

Regles del Go

A.1 Introduccid al Go

El Go es juga en un taulell de 19x19 interseccions. A cada torn, els jugadors
van col-locant pedres del seu color en una interseccié buida qualsevol del
taulell.

Figura A.1: Taulell de Go

Les normes que defineixen el joc sén dues: la regla de les llibertats, i la
regla del KO.

56

A.2 Regla de les llibertats

Cada interseccié esta formada per un conjunt de linies que surten del pro-
pi encreuament. Aquestes linies s’anomenen llibertats. Les cantonades del
taulell només en tenen 2, i els extrems superior, inferior, esquerre i dreta, en
tenen 3. La resta d’ interseccions en tenen 4. Si una pedra es queda sen-
se llibertats, es diu que és capturada. Es retira immediatament del taulell i
passa a formar part de les pedres capturades de I’ adversari. Aquestes pedres
suposaran un avantatge per a 1’ adversari, al final del joc. La segiient figura
mostra el cas més basic possible de captura.

oo lefel

Figura A.2: El cas més basic possible capturant una pedra

Aquesta norma s’ aplica també a conjunts de pedres. Si un conjunt de
pedres es queda sense cap llibertat (no hi ha cap llibertat en cap pedra que
forma el conjunt), tot el conjunt és capturat.

Quan es col-loca una pedra que amenacga a una pedra o grup de pedres
de T'equip contrari, deixant-les només amb una sola llibertat, és diu que s’
ha fet “Atari”. No obstant, es una pura questié de terminologia. El jugador
no esta obligat a informar a 1’ adversari d’ aquesta situacié. I de fet, no
es recomana, per raons obvies. A continuacié es veuen alguns exemples de
grups de pedres blanques en Atari, i la seva captura per part de les negres.

Figura A.3: Exemple 1 de captura multiple

57

g

I |
“ilg

Figura A.4: Exemple 2 de captura multiple

A B C A B C
190 19 —
18‘ 18
17 17 |

Figura A.5: Exemple 3 de captura multiple

BCI;]EFGH B C DEF G H
Figura A.6: Exemple 4 de captura multiple

A.3 Regla del KO

La norma del KO estableix que I’ estat del taulell no es pot repetir en 2
jugades consecutives.

L
L t]

ot e HeH
Bort 760 et

Figura A.7: KO

¥

En les imatges anteriors, I’ adversari captura una pedra. Al capturar-la,
deixa exposada la propia pedra que acaba de col-locar (Atari). Pero si el

28

jugador defensor, la tornés a capturar, el taulell tornaria a 1’ estat del torn
anterior. Aix0 podria inicialitzar un bucle infinit per part dels dos jugadors.
La regla del KO impedeix aquesta situacio, no permetent al segon jugador
col-locar una pedra en la posicié en qiiestio, fins al seu segiient torn.

A.4 Objectiu del joc

L’ objectiu del joc consisteix en ser el jugador que controli més territori al
final de la partida. Els territoris sén interseccions buides rodejades per un
dels dos jugadors. Cal tindre en compte que la captura de pedres és només un
medi, no una meta. La captura de pedres ens donaran una puntuacié extra
al final de partida, pero ni molt menys suficient per guanyar, si I’ enemic
controla més territori que nosaltres.

A.5 Final de partida

La partida acaba quan els dos jugadors es posen d’ acord. Aixo pot semblar
molt desconcertant per a un nou jugador. Pero si es pensa bé, té sentit.
Arribara un moment de la partida, en el que les tiniques opcions que tindra
un jugador seran dues:

e Col-locar una pedra en un territori propi. Aix0 suposa la perdua del
propi territori, obtenint menys puntuacié al final de partida

e Col-locar una pedra en territori enemic per intentar reduir-lo. Aixo és
completament contraproduent a vegades. Si |’ adversari té un minim
de nivell, pot impedir molt facilment que el jugador disminueixi el
seu territori. Aix0 comporta el sacrifici de moltes pedres, i un gran
avantatge per a I’ adversari.

Per tant, per a que s’ acabi la partida, els dos jugadors han de passar el seu
torn. Llavors es diu que s’ han posat d’ acord, i la partida acaba. En aquest
moment es comptabilitzen els territoris dels dos jugadors. Cada interseccid
d’ un territori es compta com un punt per al jugador en qiiestio, i a més,
qualsevol pedra o conjunt de pedres enemigues, aillades dins d’ aquest ter-
ritori, queden capturades automaticament. Aquesta fase del joc és potser
la que més confusio genera per als nous jugadors, aixi que seguidament es
mostren alguns exemples de territoris controlats i territoris no controlats.

29

A.6 Handicaps

Els handicaps son una manera de donar avantatge als jugadors menys ex-
perimentats. Consisteix en col-locar un nombre de pedres al principi de la
partida per tal de comengar amb un minim d’ influéncia sobre el taulell (veu-
re annex 3, glossari en el Go). Els handicaps es col-loquen en les interseccions
de tipus “Hoshi” o en la de “Tenggen”.

A.7 Fluxe d’ una partida de Go

En una partida de Go hi ha tres fases ben diferenciades entre si, cadascuna
amb un objectiu diferent, pero totes apuntant a la victoria de la partida.

e Apertura: és la fase inicial de la partida, on cada jugador intenta
definir el seu territori inicial i guanyar influencia sobre el taulell. Exis-
teixen diverses estrategies d” apertura anomenades “Fuseki”, cadascuna
orientada a un joc més agressiu o defensiu.

e Middle-game: és la fase més llarga del joc i esta formada per invasions
i atacs per parts dels dos jugadors, per tal de restar territori a1’ enemic,
i sumar el propi.

e End-game: en aquesta fase els jugadors intenten consolidar els terri-
toris conquistats en les dues fases anteriors.

Es important destacar que una partida de Go pot quedar sentenciada en
la primera fase del joc. Si un jugador no ha sigut capa¢ d’ expandir-se lo
suficient a lo llarg del taulell, en la primera fase, és practicament impossible
fer-ho en les segiients. En una partida de Go no es pot ser ni massa conser-
vador, ni massa ambicids. Si es juga massa defensiu, 1” adversari conquistara
la major part del taulell. Si s’ és massa ambiciés, I’ adversari no tindra
problemes en frenar el nostre atac.

60

Apendix B

Dos ulls en el Go

La formacio de dos ulls és un dels pilars centrals del projecte, i el concepte
més important en el que es basa 1’ estrategia de qualsevol partida de Go. Ara
bé, qué vol dir exactament la formacié de dos ulls, i perque és tan impor-
tant? El que un grup de pedres tingui una formacié de dos ulls, vol dir que
té assegurades les llibertats internes, i per tant, les pedres que les rodegen
no podran ser capturades de cap de les maneres.

A continuacié es mostren exemples de formacions de dos ulls per part de
les negres.

Figura B.1: Exemples de dos ulls.

Com es pot comprovar, la forca d’ aquestes figures esta directament re-
lacionada amb la regla de les llibertats. Com que a un jugador no li esta
permes el suicidi, no podra jugar mai en una zona en la que no pugui captu-
rar cap pedra enemiga, i a més tingui 0 llibertats.

Es important destacar que un ull no té perque estar format de una inter-
seccié només. Pot ser composat per dues o més. Aixi doncs, encara que el
jugador enemic pugui col-locar pedres, si el grup realment té aquesta forma-
cié seran pedres virtualment mortes. Aixo es aix{ perque arribara un moment
en que el jugador defensor podra capturar-les sense posar en risc cap de les
seves pedres. El segiient exemple mostra aquesta situacié.

61

LE D DOEEoE o
£

19
18

A7

Figura B.2: Dos ulls multiples

Un error molt com en els jugadors principiants és confondre una formacié
de dos ulls, amb una formacié que realment esta potencialment amenacada.
Aquest tipus de formacions s’ anomenen falsos ulls, i sén interseccions on 1’
oponent pot jugar a les llibertats internes, capturant les pedres que formen
els falsos ulls.

AR
B = =

7,
-

7

-
A B CDEF

- M Wk

Figura B.3: Exemple d’ ull fals

En aquest exemple, un jugador principiant podria pensar que C1 forma
dos ulls juntament amb Al. Pero les blanques tenen rodejada D1, amb la
qual cosa és facil veure que poden capturar el grup sencer jugant a C1 per
capturar D1, i seguidament a Al (les negres no poden tornar a jugar a D1
ja que trencaria la regla del KO).

En resum, i com es pot veure, si un jugador domina la formacié de dos
ulls, domina gran part del joc. La principal dificultat d’ aixo, és que hi ha
centenars de patrons i formes que tenen com a objectiu final aquesta formacié
de dos ulls, i cadascuna d’ elles té les seves debilitats i els seus punts forts.
Una de les habilitats de un bon jugador de Go, és saber quina d’ aquestes
formes jugar a cada moment, i amb quin objectiu.

62

Bibliografia

[1] Article de Wikipedia Computer Go Computer Go. en.wikipedia.org

[2] Article de Wikipedia sobre Tsumegos Life and death.
http://en.wikipedia.org

[3] Article sobre els algorismes més utilitzats en el Computer Go Computer
Go Algorithms. http://senseis.xmp.net/?ComputerGoAlgorithms

[4] Article sobre 'algorisme de Benson Benson’s Definition of Unconditional
Life. http://senseis.xmp.net /?BensonsDefinitionOfUnconditionalLife

[5] Article de Wikipedia sobre els metodes de Monte Carlo Monte Carlo
method. http://en.wikipedia.org

[6] Article de Wikipedia sobre Monte Carlo Tree search Monte Carlo tree
search. http://en.wikipedia.org

[7] Article amb un exemple del MCTS What is MCTS?.
http://mects.ai/about/index.html

[8] Article amb un exemple del MCTS Monte Carlo Tree Search.
https://sites.google.com/a/lclark.edu/drake/courses/drakepedia/monte-
carlo-tree-search

[9] Article de Wikipedia sobre l’algorisme de dos passos Connected-
component labeling. http://en.wikipedia.org

[10] Web i documentaci6 oficial d’OpenMP OpenMP.
http://openmp.org/wp/

[11] Web i documentacié oficial de CUDA CUDA toolkit documentation.
http://docs.nvidia.com/cuda

[12] Web i documentacié oficial de QT QT Project. http://qt-
project.org/doc/

63

[13] Web 1 documentacié oficial del projecte GNU Go GNU Go.
https://www.gnu.org/software/gnugo/

[14] Web d’ajuda a la programacié stackoverflow. http://stackoverflow.com/

64

Resum

S’ha implementat una intel-ligéncia artificial relativament senzilla per a resoldre Tsumegos en el joc del Go.
Per a aix0, s’ha fet un estudi per a saber quins eren els algorismes més interessants, tenint en compte sempre

un equilibri entre complexitat i resultats, degut al temps del que es dispossa.

Com a conseqiiéncia, també s’ha implementat una interficie grafica per a poder jugar partides complertes

entre dos jugadors, i poder veure els resultats de I'intel-ligéncia artificial.

Resumen

Se ha implementado una inteligencia artificial relativamente sencilla para resolver Tsumegos en el juego del
Go. Paraello, se hallevado a cabo unestudio para saber cuales eran los algoritmos mas interesantes, teniendo

en cuenta siempre un equilibrio entre complejidad y resultados, debido al tiempo del que se dispone.

Como consecuencia, se ha implementado también una interficie grafica para poder jugar partidas completas

entre dos jugadores, y poder ver los resultados de la inteligencia artificial.

Abstract

We have implemented a relatively simple artificial intelligence to solve Tsumegos in Go Game. To this end,
it has been conducted a study to find out what was the most interesting algorithms, always considering a

balance between complexity and performance due to the available time.

As aresult, it has also implemented a graphical interface to play complete games between two players, and

see the results of the artificial intelligence.

