(@
Fig. 21. Subset A classified using H-a plane: (a) subset A, (b) area of subset A in detail

The water of the river is mainly classified as medium entropy multiple scattering zone, as
well as some areas in the top right corner that also had the higher image entropy values
compared with the rest of the forest. When the classified image is seen in more detail (Figure
21.b) some pinky areas appear in the river, which correspond to even higher entropy due to
the randomness caused by the water surface. The general part of forest in the image is a
combination of medium entropy surface scattering and low entropy surface scattering, while
the crops (at the left of the image) appear more clearly as low entropy surface scattering class
due to the homogeneity of the area. The regions with buildings (Figure 19) are classified as
low entropy multiple scattering zones (dihedral reflectors) due to the double bounce effect of

the radar wave.

e SubsetB

(b)

Fig. 22. Parameters extracted from the subset B: (a) entropy, (b) alpha angle
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In both Figures 22.a and 22.b the main forest and the water of the river behaves in a similar
way than in the subset A; so in the water appears the highest entropy due to the smoothness of
the surface causes specular reflection while in the forest there is a medium value of entropy.
Unlike in subset A, near the top center and the left center of the subset B there are some forest
areas with lower value of entropy, which indicates that the soil in this area is wetter so the
large difference in electrical properties between water and air results in higher backscattered
radar intensity. At the bottom right of subset B there is a zone with very low entropy and very

high alpha referred to an area of buildings that generate a double bounce response.

The corresponding H-a plane for the subset B is represented in Figure 23.

eidegrens)

Alptiaang

Fig. 23. H-a plane of the subset B: (a) zones with diferent colors, (b) density plot of the plane

Both figures (23.a and 23.b) are very similar to the ones of the subset A due to the similarity
of the terrain. In Figure 23.b can be appreciated that the zone 8 has more density of pixels

than the set A due to the higher quantity of river.

A first classification of the subset B according to the zone to which each pixel belongs in the
H-a plane is shown in Figure 24. The classification of the subset B follows a similar structure
than in the subset A, so the water of the river is classified as medium entropy multiple
scattering zone and the general part of forest is classified as a combination of medium entropy
surface scattering and low entropy surface scattering. The previously mentioned wet areas of
the forest appear more clearly as low entropy surface scattering class. The regions with
buildings at the bottom right of the subset B are classified as low entropy multiple scattering

zones due to the double bounce scattering mechanism at this area.
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Fig. 24. Subset B classified using H-o plane

e  Subset C

Alphaangle
90

(@
Fig. 25. Parameters extracted from the subset C: (a) entropy, (b) alpha angle

In both Figures 25.a and 25.b the forest and the water of the river behaves again in the same
way than in the subset A (in the water appears the highest entropy values while in the forest
there is a medium value of entropy). There are some clearly visible ships mainly on the left
side of the river that are classified as targets with very low entropy and very high alpha due to

the double bounce effect of the radar wave.
The corresponding H-a plane for the subset C is represented in Figure 26. Both subfigures

(Figure 26.a and Figure 26.b) are very similar to the ones of the subset A and B, although in

Figure 26.b it can be appreciated that the zone 7 has more density of pixels than in the subset
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B due to in this case the river, which has pixels with high entropy, occupies approximately a

half part of the image.

Aptadngle (cegrees)

Mphaangle (decress)

L ;
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(a) (b)
Fig. 26. H-0. plane of the subset C: (a) zones with diferent colors, (b) density plot of the plane

A first classification of the subset C according to the zone to which each pixel belongs in the

H-a plane is shown in Figure 27.

(@) (b)

Fig. 27. Subset C classified using H-a plane: (a) subset C, (b) area of subset C in detail

The classification of the subset C follows again a similar structure than the subset A and B,
being the water of the river classified as medium entropy multiple scattering zone and the
forest as a combination of medium entropy surface scattering and low entropy surface

scattering. The ships on the river are easily distinguishable over the water and are clearly
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classified as low entropy multiple scattering targets (dihedral reflectors) due to the generated

double bounce of the wave.

These first classifications of the three subsets based on the resulting H-a plane zones of each
pixel of the images give an initial idea of the different image areas, but the resulting areas
mainly are a combination of two or more classes so it results in noisy classification images
with heterogeneous regions. Hence, in the next Chapter a classification algorithm is going to
be applied to these first classification images in order to segment more properly the initial

SAR data and achieve more homogenous zones.

45



Chapter 6

Fuzzy clustering applied to the Case Study

6.1 Theory of Fuzzy clustering

Clustering techniques are procedures that group a set of data points in such a way that points
in the same group, called a cluster, are more similar in some sense to each other than to those
in other clusters and points from different clusters are dissimilar. Usually, points are in a high
dimensional space and similarity is defined using a distance measure (for example Euclidean,
Cosine or Jaccard) [43]. Clustering techniques are widely used in data segmentation,
classification and image processing. There are two types of clustering techniques depending
on the way they allocate the data points. Hard clustering is based on classical set theory,
where data is divided into distinct clusters and each data element only belongs to one cluster.
In fuzzy clustering, data elements can belong to several clusters at the same time, having a

different degree of membership for each of them [44].

This thesis is focused in one of the most widely used fuzzy clustering algorithms, the called
fuzzy c-means clustering method. This technique was originally introduced by Jim Bezdek in
1981 as an improvement on earlier clustering methods [45]. Fuzzy c-means clustering is a
pretty standard least squared errors model that generalizes an earlier and very popular non- c-
means model that produces hard clusters in the data. It provides a method that shows how to
group data points that populate some multidimensional space into a specific number of
different clusters, assigning to each of the data points several clusters with different grade of
membership and iterating to move each of the clusters until they achieve a right position

within the dataset.
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6.1.1 Fuzzy partition

The objective of clustering is to partition a given dataset Z into ¢ clusters. Similar to the hard
partition, the fuzzy c-partitions can also be represented by partition matrices U, but allowing
that the data points partially belong to different subsets with a degree of membership referred
as U;,, which attain real values in [0, 1], that represents the degree to which the element i

belongs to the kth sets [45].

The idea of fuzzy partitioning stems from fuzzy sets theory. A fuzzy partition includes a
given number of fuzzy sets. Each set in turn includes individual elements and for these
elements there are a number of grades of membership. Conditions for a fuzzy partition matrix

are given by (28a), (28b) and (28c) [46]:

Ui € 10,1], 1<i<c, 1<k<N (28a)
c
Z““‘:l' 1<k<N (28b)
i=1
N
OSZuik<N, 1<i<c (28¢)
k=1

The ith row of the fuzzy partition matrix U contains values of the ith membership function of
the fuzzy subset A4; of Z. Depending on the value of the degree of membership y;, different

cases are possible [47]:

Uir =0 ith element is not a member of the kth fuzzy set
Uir =1 ith element is a complete member of the kth fuzzy set
0<pr <1 ith element is a relative member of the kth fuzzy set

The space of all fuzzy partitions is denoted by My and is defined in as (29) [48].

c N
M. = U € RO |y € [0, 1], V4, k;zuik = 1,Vk;0 < Z i < N, Vi} (29)
i=1 k=1
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6.1.2 Fuzzy c-means Functional

In the fuzzy c-means clustering method, the objective is to minimize the sum-of-squared error
or minimum variance objective function called the fuzzy c-means functional. This function
represents the distance from any given data point to a cluster center weighted by that data

point's membership grade and it is formulated as (30) [49]

c N
JWYIZ =Y ()™l = vill (0)

i=1 k=1
where Z is a given dataset, z;, is the ith of d-dimensional data,
U = [uix] € My, (31)
is the fuzzy partition matrix of the dataset,
V =[vy, vy, .., 0], v; ER" (32)
is a vector of cluster prototypes (centers) that have to be determined,

Dfa = lzic — vill3 = (2 — v A(2x — 1) (33)
is a squared inner-product distance norm expressing the similarity between any data point and
the center of the cluster, where A is the norm-inducing matrix, which mainly determines the
shapes of the clusters (a common choice is A = I, which gives the standard Euclidean norm
and results in a circular shape for the clusters [50]), and

m € [1, ) (34)

1s a parameter (fuzziness exponent) which significantly influences the fuzziness of the
resulting clusters. If m = 1, then the partition becomes hard, that is y;, € (0,1) and v; are

ordinary means of the clusters. However, when m — oo, the partition becomes completely
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fuzzy, that is y;;, = 1/c for all i, k and the cluster means are all equal to the mean of Z. A

typical value is m = 2.
6.1.3 Fuzzy c-means Algorithm

The fuzzy c-means algorithm solves the nonlinear optimization problem that represents the
minimization of the fuzzy c-means functional doing a simple Picard iteration through the

first-order conditions for stationary points of the fuzzy c-means functional [51].

The fuzzy c-means algorithm starts with an initial guess for the cluster centers, which are
intended to mark the mean location of each cluster [52]. The initial guess for these cluster
centers is most likely incorrect. Additionally, the fuzzy c-means algorithm assigns every data
point a membership grade for each cluster. By iteratively updating the cluster centers and the
membership grades for each data point, the algorithm iteratively moves the cluster centers to

the right location within the dataset.
Given the dataset Z, a chosen number of clusters 1 <c < N, the weighting exponent m > 1,

the norm-inducing matrix A and a termination parameter €; the partition matrix is initialized

randomly, such that U® € M. The following steps of the fuzzy c-means algorithm are [50]:

* Compute the weighted means of the clusters using:

” ) — legzl(uik(l_l))mzk

j ) 1<i<c (35)
l Rzt (i )™
* Compute the distances:
forallclusters 1 <i <c
for all data objects 1 <k < N
Di,=(zx—v®) A(zx —v®), 1<i<c, 1<k<N (36)

* Update the partition matrix:
for all data objects 1 <k < N
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if Dy > 0foralli =1,2,...,c

1
D =
Hik = S (Dyen/ Dyea) 2D’ 37

otherwise

c
tie® = 0if Dy > 0, and py® € [0, 1] with Z.uik(l) =1
i=1

until |[U® — U3|| < € for some norm || .|| and for some defined €.

The fuzzy c-means algorithm stops iterating when the norm of the difference between U in
two successive iterations is smaller than the termination tolerance parameter €. When this
happens usually the partition matrix U does not significantly change anymore. Often € = 0.01

or € = 0.001 works well enough, depending on the trade-off between run-time and accuracy.

The fuzzy c-means algorithm converges to a local minimum of the c-means functional [53].

Hence, different initializations may lead to different results.

6.2 Application of Fuzzy clustering to the Case Study

The fuzzy c-means algorithm has been applied to the three different subsets of the Indonesia
dataset. A three-dimensional space has been created to represent three parameters for each
pixel of the image: its C11 element of the coherency matrix, its C22 element of the coherency
matrix and its value of entropy. The off-diagonal terms of the coherency matrix are frequently
ignored since they provide less amount of information. This three-dimensional space
represents the data to be clustered by the algorithm, which uses as an input data a matrix for

each subset where each row is a sample data point to be classified.

In order to achieve a segmentation in zones comparable with the one obtained by the H-a
plane, the initial number of clusters is set to 8 (¢ = 8), which is the number of zones that
provides the H-a plane according the predetermined boundaries (Table 5), and the exponent
for the partition matrix U is set to 2 (m = 2). Regarding the termination criterion, the
clustering process stops when the maximum number of iterations is reached (this number is

initially set to 50, as it has been checked that after this number of iterations the fuzzy c-means
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functional remains more constant) or when the objective function improvement between two

consecutive iterations is less than the minimum amount of improvement specified.

After segmenting the input three-dimensional matrix, the partition matrix U is pseudo-colored
in such a way the different segmentation zones are plotted with different colors. Taking into
account that in the first step of the fuzzy c-means algorithm the partition matrix is initialized
randomly and so is the class color assignation, different initializations lead to different

colored results, having no correspondence the same class color within different data subsets.

Both the segmentation algorithm and the data visualization have been carry out in Matlab

programming language.

6.3 Segmentation results of the Case Study

¢  Subset A

The fuzzy c-means functional is strongly minimized after the two first iterations of the fuzzy
c-means algorithm during the segmentation of the subset A (Figure 28). It remains nearly
constant between iterations two and five and then decreases again until iteration twelve. After
this value, it remains more constant although there is a continuous minimization of the
objective function, but it is difficult to appreciate due to the high steps of the axis. Fifty

iterations offer a good compromise between the execution time and the segmentation results.

x10" Objective Function Values
T r T T

Objctive Function Yalus

4 1 L 1 1 L 1 L L 1
S 10 15 20 25 30 35 40 45 50

Iteration Count

Fig. 28. Objective function values in the first 50
iterations for the subset A
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The results of the subset A segmentation for different number of iterations are shown in
Figure 29. After five iterations the resulting image is mainly composed by two colors, which
separate the principal areas of the image, that is the silhouette of the river and the ground.
After some iterations, the quality of the segmented image is highly improved; obtaining at ten
iterations a visually good result and finally at fifty iterations an even better one, which has
removed some apparent noise and has achieved a more homogeneous separation of the

classes.

After 25 Rerations

© @

Fig. 29. Segmented and pseudo-colored image of the subset A after applying the fuzzy c-means algorithm:
(a) after S iterations, (b) after 10 iterations, (c) after 25 iterations and (d) after 50 iterations.

The blue-colored class perfectly separates the part of the river, which corresponds to the
highest entropy and the highest alpha angle area of the image. The green-colored class covers

a medium-high entropy and medium alpha angle area that appears at some parts of the forest
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with sparse vegetation and around the crops. There is a pinkish area at the left of the image in
the zone occupied by the crops that indicates a region with the lowest values of entropy and
alpha angle in the whole image. The rest of the forest, with medium entropy and medium

alpha angle, is formed by a combination of different classes, mainly red, pink and green.

The segmentation of three-dimensional space formed by the entropy and the parameters C11
and C22 of the coherency matrix after applying the fuzzy c-means algorithm is shown in

Figure 30, where the resulting different colored classes of the data points can be identified.

C22coherencymalrix parameter

C11coherencymathix parameter

Fig. 30. Different classes obtained in the three-dimensional space after
applying the fuzzy c-means algorithm in the subset A

e Subset B

The fuzzy c-means functional in the subset B (Figure 31) evolves in a similar way that in the

subset A.
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Fig. 31. Objective function values in the first 50
iterations for the subset B
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Hence, it is highly minimized after the two first iterations, then it is nearly constant between
iterations two and six and then decreases again until iteration twelve approximately. After this
value, it remains apparently constant until iteration fifty although it has a low continuous

minimization imperceptible due to the steps of the axis in the plot.

The results of the subset B segmentation for different number of iterations are shown in
Figure 32. The behavior of the algorithm is similar that in the case A, so after five iterations
there is a two-colored segmentation of the main areas of the image (differentiating between
river and ground); after ten iterations the different classes are more perceptible and as the
segmentation algorithm advances the zones become more uniform and less noisy, obtaining at

fifty iterations the more homogeneous result.

After Siterations After 10Rerations

(2)

After 25 Rerations. ater SO Rerstions

)

Fig. 32. Segmented and pseudo-colored image of the subset B after applying the fuzzy c-means
algorithm: (a) after S iterations, (b) after 10 iterations, (c) after 25 iterations and (d) after 50 iterations.
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The river appears homogenously segmented in the blue-class, which covers the highest
entropy and the highest alpha angle area of the image. This blue-class also appears in two
small areas at the bottom-left and at the bottom-right of the image due to they have a similar
value of alpha angle, although the river does not occupy this area. It is noticed that there are
some yellow and green-colored area at the top-right and at the bottom-left of the image that
were not noticeable in the entropy and alpha images (Figure 22) but they really are in the
satellite view (Figure 13.b), so the quality of the segmentation has considerably increased
regarding the first H-a segmentation. The yellow-class covers medium-high entropy areas.
The rest of the forest appears as a combination of pink and green colored classes, indicating
areas with medium entropy and medium alpha angle. At the bottom-right corner of the image

there are some clearly distinguishable ships in the river that have been well segmented.

The final colored-classes after the segmentation of three-dimensional space formed by the
entropy and the parameters C11 and C22 of the coherency matrix of each image data point is

shown in Figure 33.

?

C22 coherencymattix parameter C11coherencymatrix parameter

Fig. 33. Different classes obtained in the three-dimensional space
after applying the fuzzy c-means algorithm in the subset B

e  Subset C

The fuzzy c-means functional in the subset C (Figure 34) has a similar evolution than in the
subset A, but it decreases stronger after the two first iterations. Then it continues nearly
constant between iterations two and five. After iteration five, the objective function decreases
again, but slower, until iteration twelve approximately. Finally, it remains apparently constant
until iteration fifty although there is a continuous reduction of the objective function that is

almost unnoticeable.
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Fig. 34. Objective function values in the first 50
iterations for the subset C

The results of the subset B segmentation for different number of iterations are shown in
Figure 35. As happened in the previous cases with subsets A and B, at five iterations there is a
rough segmentation in the main areas in cyan and blue color, separating the river and the
ground. The ships that are in the river are already noticeable at this number of iterations. At
ten iterations there is a considerably good separation of classes and the different areas of the
image can be differentiated. As the fuzzy c-means algorithm advances and the number of
iterations is increased, the segmented image becomes more uniform and the classes are better

defined, having at fifty iterations the more homogeneous result.

The river appears homogenously separated in the blue-class, representing an area with the

After 10iterations

o T

After Siteration:

(a) (b)
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After 25iterations After S0iterations

(d)

Fig. 35. Segmented and pseudo-colored image of the subset C after applying the fuzzy c-means
algorithm: (a) after S iterations, (b) after 10 iterations, (c) after 25 iterations and (d) after 50 iterations.
highest entropy and alpha angle values. The pinkish color that appears in the forest around the
image covers an area of moderated high entropy and high alpha angle; it is observed that in
this case the fuzzy segmentation detects more contours and zones than the first segmentation
done based on the values of entropy and alpha angle (Figure 25). The main forest appears as a
combination of principally yellow and pink colors, indicating an area of medium entropy and
medium alpha angle. The ships of the river, which have high alpha angle, have been well
segmented and its contours are clearly distinguishable. A green-class at the bottom-left corner

of the image appears at the points of high alpha angle.

The final segmentation of three-dimensional space formed by the entropy and the parameters

C11 and C22 of the coherency matrix of each image data point is shown in Figure 36.

1

C22 coherencymaltix parameter

C11coherencymaltix parameter

Fig. 36. Different classes obtained in the three-dimensional space
after applying the fuzzy c-means algorithm in the subset C
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Chapter 7

Conclusions

An unsupervised segmentation technique developed in MATLAB computing environment for
dual-polarized polarimetric SAR data has been presented; using H-o theorem for data
decomposition and fuzzy c-means clustering by means of entropy and diagonal coherency

matrix parameters for image segmentation.

By the analysis of the H-a decomposition using TerraSAR-X dual-polarized data is concluded
that entropy and alpha parameters should be considered in the polarimetric analysis, as they
provide essential information about the scattering mechanisms of interaction between the
incident radar wave and the target on the ground. The information in these parameters
extracted by local estimation of coherency 2x2 matrix corresponds to the scattering
mechanism in the pixel to be classified. It has been observed that with increasing incidence
angle higher entropies are observed. This is explained by that the larger is the angle of
incidence the electromagnetic wave has to go through more volume, causing it bounces more
times, which generates greater disorder (high entropy). As expected, it has been obtained a
high entropy value in the river region due to the specular reflection of the incident radar

pulses in smooth surfaces, so very little energy is scattered back to the radar sensor.

According to the obtained results, dual-polarized SAR data, which is currently being
increasingly popular, provides enough scattering information of the target to generate good
segmentation results. It also offers a good trade-off between computational cost and physical
knowledge of the scattering mechanisms. Dual-polarization data can be a good alternative to
full-polarization data, which is linked to strong constraints in the data acquisition system and

a high size of data that is difficult to manage.

58



The proposed image segmentation method using fuzzy c-means algorithm by means of
entropy and diagonal coherency matrix parameters has generated excellent results in the areas
of the image occupied by water, while the quality of the segmentation in the rest of targets has
slightly decreased, though the obtained results in these parts are reasonably similar to the ones
obtained with the more common segmentation methods like Wishart classifier. It has been
tested that using fifty iterations of the algorithm offer a good compromise between the
execution time and the segmentation results. So, due to the mentioned results in the different
image areas, the whole approach exposed in this thesis could be effectively used to detect

objects on the rivers surface and also could be extended to the sea.
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