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ABSTRACT 

 

The main challenge to obtain a stable meat emulsion such as frankfurters and bolognas is 

the control of the emulsification process as a result of the lack of warning signs for 

emulsion breakdown during chopping. The chopping process is designed to reduce meat 

and fat particle sizes, which results in better protein extraction and fat-water holding 

capacity. Under-chopping results in minimal binding and over-chopping causes a massive 

fat and water separation during the cooking process. In both cases the emulsion stability is 

inadequate and the emulsion breakdown is only evident during the heating process, but at 

this point it is too late to introduce corrective actions. Results of previous studies suggest 

that light extinction spectroscopy could provide information about emulsion stability. In 

this study six different treatments were analyzed corresponding to the industrially-

generated meat emulsions and frankfurters made with two variables: a) formula at two 

levels ˗high quality (no starch) and low quality (starch at 2% in the meat emulsion)˗ and b) 

chopping speed at three levels ˗low, medium and high˗. The most appropriate optical 

configuration to monitor industrial emulsion samples was identified and optical predictors 

containing useful information on the stability of emulsions were generated from the optical 

spectra. In order to identify the best optical predictors for the meat emulsion 

stability/quality indexes evaluated (emulsions: chemical composition, cooking losses, color 

and rheology; frankfurters: chemical composition, rheology and texture), Pearson 

correlations between these physical-chemical variables and the optical predictors were 

evaluated.  The results showed that there exist high correlations between physical-chemical 

properties of both meat emulsions and frankfurters and the optical predictors found. 

Therefore, light backscatter has potential as an early predictor of emulsion stability during 

finely comminuted meat products manufacturing. 

 

Keywords: Meat emulsions, frankfurters, starch, chopping speed, light extinction 

spectroscopy, light transmission, light backscatter, optical predictors.  
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RESUMEN 

 

El principal desafío para obtener una emulsión cárnica estable tales como salchichas y 

mortadelas requiere un mejor control del proceso de emulsificación debido a la falta de 

señales de advertencia de rotura de la emulsión durante el picado. El proceso de picado está 

diseñado para reducir el tamaño de la carne y de las partículas de grasa, dando como 

resultado una mejor extracción de proteínas y mayor capacidad de retención de agua y 

grasa. Un tiempo de picado insuficiente resulta en una unión mínima mientras que el 

exceso de picado causa una separación masiva de la  grasa y el agua durante el proceso de 

cocción. En ambos casos, la estabilidad de la emulsión es inadecuada y la rotura de la 

emulsión es sólo evidente durante el proceso de calentamiento, pero en este momento ya es 

demasiado tarde para introducir acciones correctivas. Los resultados de estudios previos 

sugieren que la espectroscopía de extinción de la luz podría proporcionar información sobre 

la estabilidad de la emulsión.  En este estudio seis tratamientos diferentes fueron analizados 

correspondientes a las emulsiones de carne y salchichas procesadas industrialmente con dos 

variables: a) fórmula en dos niveles -alta calidad (sin almidón) y baja calidad (almidón al 

2% en emulsión de carne)- y b) velocidad de picado en tres niveles -: bajo, medio y alto. Se 

identificó la configuración óptica más apropiada para monitorear las muestras industriales, 

y se generaron  predictores ópticos con información útil sobre la estabilidad de las 

emulsiones. A fin de identificar los mejores predictores ópticos para los índices de 

estabilidad/calidad de las emulsiones evaluados (emulsiones: composición química, 

pérdidas por cocción, color y reología; salchichas: composición química, reología y 

textura), se obtuvieron y evaluaron las correlaciones de Pearson entre dichas variables 

físico-químicas y los predictores ópticos generados. Los resultados mostraron que existen 

numerosas correlaciones significativas entre las propiedades físico-químicas tanto de las 

emulsiones cárnicas  como de los frankfurts y los predictores encontrados, por lo tanto la 

dispersión de luz tiene un fuerte potencial como predictor de la estabilidad de las 

emulsiones durante la fabricación de productos cárnicos finamente picados. 
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Palabras clave: Emulsiones cárnicas, salchichas, almidón, velocidad de picado, 

espectroscopía de extinción de la luz, transmisión de luz, dispersión de la luz, predictores 

ópticos.  
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ABBREVIATIONS 

 

C: Collagen 

CF: Crude Fat 

CP: Crude Protein 

IT: Integration Time 

L: Losses 

M: Moisture 

S: Salt 

N: Newton 

Pred: Predictors 
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1. Introduction 

 

Production and consumption of meat continues growing worldwide and according to the 

Agricultural Outlook 2015-2024 (OECD-FAO, 2015) in the coming years it will continue 

to grow. The reason lies in the population growth and economic development in many 

countries. Specifically, world meat production is expected to increase from 297 million tons 

in 2011 to 350 million in 2021. The expected annual world growth production for beef and 

pork is 1.8% and 1.4%, respectively (Emphasis Alimentation, 2015). 

 

Frankfurters and bolognas are the most popular comminuted products. In the US, they 

account for the 25% of all sausages sold (NHDSC, 2006).  In 2007, consumers spent more 

than 4.1 billion dollars on hot dogs and sausages in US supermarkets, which equals more 

than 0.68 billion kilos of hot dogs and sausages bought at retail stores alone (Álvarez et al., 

2009).  

 

Meat emulsions are finely chopped and cooked products composed of water, protein, fat, 

salt, and non-meat ingredients where meat proteins serve as the natural emulsifier. Before 

cooking, proteins must surround fat particles to allow proper fat emulsification. The 

chopping process is designed to reduce meat and fat particle sizes, which results in better 

protein extraction and fat-water holding capacity (Xiong, 2000).  

 

Under-chopping results in minimal binding because fat particles are too large to yield a 

stable product. Over-chopping triggers a massive fat and water separation during the 

cooking process due to very small fat particles with highly increased surface area requiring 

more protein to emulsify the fat. In both cases the emulsion stability is inadequate. Indeed, 

obtaining a stable emulsion requires improved control of the emulsification process as a 

result of the lack of warning signs for emulsion breakdown during chopping (Barbut, 

1998). 

 

Based on an average cooking loss of  2.64% (w) under optimum chopping conditions, the 

estimated economic loss resulting from non-optimum emulsion stability during the cooking 
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process was estimated to range between 0.2 and 1.65 billion dollars per year in USA and 5-

40 million euros in Spain (Nieto et al., 2014). 

 

The three main requirements for optimum emulsion stability and final product quality are 

directly dependent on the chopping process. The first requirement is an extensive extraction 

and dispersion of myofibrillar proteins from the cellular structures. The second requirement 

is the optimum reduction of particle sizes and the third requirement is to keep the degree of 

myofibrillar proteins denaturation to a minimum during chopping to ensure optimum 

coating of the fat particles. In summary, obtaining a high quality finely comminuted meat 

product requires adequate gelation of myofibrillar proteins during cooking. In general, loss 

of emulsion stability leads to a low quality product (Jones and Mandingo, 1982; Allais et 

al., 2004).  

 

Improving process control and automation of the meat emulsification process would reduce 

the economic impact of emulsion breakdown in meat industry worldwide. To date, only 

empirical and subjective methods based on experience and process time and temperatures 

are being used to control meat emulsion stability during meat chopping at production scale. 

There are no effective inline alternative technologies (Nieto et al, 2014). Emulsification 

defects result in weight product losses of 5 to 20%. Thus, meat processors are keen on 

introducing technological innovations that would allow them to improve their 

competitiveness by increasing their productivity and, consequently, their profitability. 

 

Several authors have observed the correlation between emulsion color parameters and fat 

and water losses induced by the emulsion heat treatment. Cooking losses can be predicted 

from the change on the raw emulsion lightness (L*) during the chopping process 

(Serdaroglu, 2006; Álvarez, et al., 2007). These evidences suggest that the intensity of 

backscattered light could also be correlated with physical-chemical properties changing 

during emulsification and impacting emulsion stability. 

 

The application of light scatter sensors for process control and optimization has already 

been deeply studied in the dairy industry (Mateo et al., 2010). Few years ago, this 
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technology has aroused great interest in the meat sector. Álvarez et al. (2009 and 2010) 

made a study of the optical properties of beef emulsions having different fat/lean ratios at 

various chopping durations and at several distances between the emitting and detecting 

optical fibers in order to detect changes in comminuted meats that may be correlated with 

technological parameters associated with emulsion stability (e.g., cooking losses, water, 

and fat separation, etc.). The results of these studies suggested that light extinction 

spectroscopy could provide information about emulsion stability. 

 

In addition, Nieto et al. (2014 and 2015) worked on establishing whether light scatter 

measured at several radial distances from the light source in fresh pork emulsions having a 

range of lipid oxidation, and presence or not of hydrolyzed potato protein and emulsion 

stability tendencies could be used to predict important final product stability indices such as 

textural parameters, susceptibility of the emulsion to phase separation during cooking and 

lipid oxidation during subsequent refrigerated storage and the results showed that light 

backscatter response measured during meat emulsification has potential as an early 

predictor of emulsion stability during finely comminuted meat products manufacturing. 

 

The Objective of the present study is included into a global project objective, which 

addresses optimization of the process of meat emulsion manufacture in order to reduce the 

cooking losses and, concomitantly, increase the final product yield, using an optical inline 

sensor technology. Within the frame of this work, the first specific objective was to identify 

the most appropriate optical configuration for real-time stability monitoring of industrial 

meat emulsion samples. The second objective was to identify the optical predictors 

containing useful information on the stability of emulsions through the analytical 

determination of optical and physical-chemical parameters of pork meat emulsions and the 

subsequent analysis of correlations between those optical and physical-chemical 

parameters. 
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2. Setting up the optical measurement system and methodology 

 

Previous studies were performed at the Food Engineering Lab (Department of Biosystems 

and Agricultural Engineering, University of Kentucky), which aimed the measurement of 

light scatter in laboratory-generated comminuted meats at different fiber optic distances in 

order to identify and detect physical–chemical changes occurring during chopping that may 

be correlated to emulsion stability. Based on these previous studies, an improved optical 

laboratory system and data acquisition methodology has been designed, set up and 

implemented in the Optical Sensor Laboratory at UAB (Department of Animal and Food 

Science) in order to optimize the acquisition of optical data in industrially-generated 

emulsion samples. 

 

2.1. Differences between the previous and the current optical measuring systems  

 

A laboratory optical sensor prototype was designed, built and tested in the Food 

Engineering Lab at the University of Kentucky. Two small plastic probes were built and 

configured such that light scatter from the sample could be detected using a High-

Resolution Fiber Optic Spectrometer (Model HR4000, Ocean Optics, Inc., Dunedin, FL, 

USA). The light source utilized was a tungsten halogen (300–1100 nm) bulb (LS-1, Ocean 

Optics, Inc.). 

 

Fiber optic cables were manufactured using 600 μm diameter fibers (Spectran Specialty 

Optics, Avon, CN, USA). The terminating (i.e., measuring) ends of the two fibers were 

built into the plastic probes while the other two ends were connected, using an SMA 

connector, to the spectrometer and light source. The data acquisition system consisted of a 

PC connected by a USB port to the spectrometer and programmed for data acquisition with 

SprectraSuit Spectroscopy Platform Software (Ocean Optics, Inc.). Before each 

measurement, the terminating ends of the fibers were aligned vertically and horizontally to 

the same level. 
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Emulsion samples were placed in a double-jacketed sample holder. The fiber tips were 

immersed into the emulsion sample up to a final depth of approximately 12.7 mm from the 

surface of the sample. The temperature of the sample was controlled by means of 

connecting the sample holder to a water bath (Lauda Ecoline RE220. Brinkman Instruments 

Inc. NY. USA; ± 0.01 °C of accuracy). Light scatter intensity of the samples was measured 

at the target radial distances of 2, 2.5, and 3 mm from the emitting light source, and at an 

integration time (IT) ranging from 19 to 60 s where IT was the detector light exposure time.  

 

 

Figure 1. Initial optical device to determine the light scattering in meat emulsions at different radial 

distances. 
 

Based on these previous studies, a portable measuring optical system was designed and 

assembled at Autonomous University of Barcelona. A halogen light source sends visible 

and infrared light to a measuring cuvette containing the meat emulsion samples having 

different levels of emulsion stability. A portable spectrophotometer measures light scatter 

generated by the industrially-generated samples revealing microstructural/compositional 

characteristics of the samples.  

 

The new and considerably simplified control system consists of two commercial optical 

fibers with a diameter of 600 μm (Ocean Optics, Inc., Dunedin, FL, USA). The first one 

connected at one end with a miniature fiber optic spectrophotometer (High-Resolution 

Fiber Optic Spectrometer, model HR4000, Ocean Optics, Inc., Dunedin, FL, USA) and the 

other with a light scattering probe (Reflectronics Inc, Lexington, Kentucky, USA) 
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constituted by two separated optical fibers at a distance of 700 μm. The second fiber 

connected the probe to a halogen source (LS-1, Ocean Optics, inc.).  

 

 

Figure 2. New portable optical device with a specific probe adapted to a distance between fibers of 

700 μm.  

 

The probe is housed in the wall of a small measuring cell (Figure 2) where the emulsion 

sample is placed. This cell has four holes arranged at 90° where probes (or plugs where no 

probe is used) can be introduced in various measurement configurations: transmission (two 

probes), dispersion at 90° (two probes) or backscatter at 180° (one probe) (Figure 3). An IT 

of three seconds was used for data acquisition.  

 

Figure 3. Alternative optical measurement configurations using fiber optic. 

 

Light backscatter intensity of the samples was measured at a constant radial distance of 

700 μm from the emitting light source, and at an integration time (IT) of 3 s, where IT was 

the detector light exposure time. 

 

Sampling cell with
sensor in the wall

Portable spectrometer
and light source

SAMPLE

IT, ()LIGHT, 

OPTICAL FIBER 
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2.2. Optical Configuration 

 

According to previous results, transmission configuration was evaluated in first place. 

However, transmission configuration was too difficult to work with. During setting up of 

the transmission configuration, it was observed that the shape of the transmission spectrum 

was inconveniently sensitive to minimal alignment deviations, which discouraged the 

application of this methodology using the current probes (note that the current probes 

contain two optic fibers). Taking in account the assays made with transmission 

configuration, similar difficulties were anticipated for side scatter configuration (90°), and 

subsequently this configuration was dismissed directly. 

 

Experimental assays were made many times and they allowed the optimum selection of 

measurement settings, determining light scattering at 180° as the more suitable 

configuration as this configuration used only one optical united and did not present the 

problems that the others configurations did. The backscatter configuration also showed the 

maximum reproducibility between analyses therefore was selected as the best one for 

determining meat emulsions information by a simple, dedicated spectrophotometric 

method.  

 

2.3. Light backscatter measurement procedure 

  

Industrially-generated meat emulsion samples were delivered by Grupo Alimentario 

ARGAL. Samples were delivered chilled and vacuum packed. Once samples were received, 

the optical analysis was immediately performed. The introduction of the sample in the 

measurement cell was another problem as the degree of compactness and homogeneity of 

the sample was highly dependent on the procedure to introduce the sample on the sampling 

cell. As a result, the reproducibility of the optical response varied widely between samples. 

As a result, a trial-error procedure was used to optimize the measurement procedure 

maximizing the reproducibility. After this trial-error procedure was concluded, a number of 

exploratory assays were performed using samples with extreme degrees of emulsion 

stability generated by Grupo Alimentario Argal to fine-tune the optical measurement 
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methodology in order to optimize differences in the spectra with a maximum response to 

meat emulsion stability.  

 

2.4. Improvements obtained in the optical spectrum 

 

By comparing the shape of the spectra resulting from previous studies with those obtained 

from the new optical configuration, it was found that:  

 

a) the shape of the two spectra types was quite similar. In both cases, an absolute maximum 

peak was observed at 627 nm and two relative maxima peaks at 500 and 560 nm were 

detected. In the previous optical configuration, the peaks were observed at 493, 560 

(relative maximum peaks 1 and 2), and 636 nm (maximum peak);  

 

b) even when the appearance of the two relative peaks were less evident in the current 

spectra than in those from the previous configuration, the intensity of the maximum peak 

(i.e., the intensity of the optical response) was substantially much higher (4-5 times higher 

as an average) than in previous experiments, even though in the current configuration the 

IT used was substantially smaller (3 s versus ITs ranging from 20 to 60 s previously used). 

The increase of optical response obtained was attributed to the proximity between the 

optical fibers used, which seems to allow improved sensitivity and, in turn, higher accuracy 

and precision. On the other hand, the decrease in the IT introduced in the current 

configuration seems to represent a clear advantage for the industrial implementation of the 

proposed optical control system.   
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Figure 4. Typical optical spectrum scan using (a) previous configurations and (b) current configuration. 

 
 

3. Experiment  

 

3.1. Materials and methods 

 

The first part of the study (section 2) identified the most appropriate optical configuration 

for real-time monitoring in meat emulsions samples while the second part addressed the 

identification of the optical predictors, which contained useful information not only about 

the stability degree of the meat emulsions, but also about several other physical-chemical 

emulsion properties such as color, cooking losses, chemical composition and rheological 

indexes as well as textural and rheological parameters in final frankfurters. The generated 

information was obtained and analyzed with the aim of finding correlations between the 

optical predictors and all the measured emulsion/frankfurter quality parameters. A total of 

six different treatments were analyzed corresponding to the meat emulsions and 

frankfurters made with two types of formula: high quality (no starch) and low quality 

(starch) and three different chopping speeds: low, medium and high.  

 

3.1.1. Meat emulsion processing, chemical composition and cooking losses 

 

Meat emulsions were prepared by Grupo Alimentario Argal, a company with a history of 

25 years in the Spanish market and one of the pioneers -in its day- in the production of meat 
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products, using an industrial crusher/mixer INOTEC (Model IM-4500, Reutlingen  

Germany), where meat, salt, spices and other ingredients were mixed. After that, the 

mixture went through a mill homogenizer INOTEC (Model - I175CDVM-90D, Reutlingen 

Germany). During this second processing step, different times of chopping were obtained 

by changing the screw speed of the homogenizer. Homogenized mix at different speeds of 

chopping were stuffed in an edible collagen casing intended for human consumption for the 

production of fresh, cured, cooked and/or smoked sausages. 

 

Meat emulsions and Frankfurters were delivered cold and under vacuum by Grupo 

Alimentario ARGAL. The company also performed a basic composition analysis of 

protein, moisture, fat, salt, and collagen in meat emulsions and frankfurters using a Food 

Scan NIR Meat Analyzer (DK-3400, FOSS, Hillerød, Denmark). The previously calibrated 

equipment used performed the measurement in the range of 850-1050 nm, with a precision 

wavelength < 0.5 nm and a wavelength accuracy < 0.01 nm. Analyses of cooking losses 

were made by difference of weights between fresh and cooked frankfurters. 

 

3.1.2. Light backscatter measurement of meat emulsions 

 

Meat emulsion samples (~5 g) were placed in the double jacked sample holder of the 

laboratory optical sensor prototype described in the section 2 of this study (Figure 2). The 

tip of the fiber probe was introduced through one of the wall holes on the side of the holder 

and immersed into the meat emulsion up to a depth of ~12.7 mm from the surface of the 

sample. Delrin caps were introduced on the remaining wall holes of the sample holder to 

close them and properly retain the sample inside the holder. An opaque delrin enclosure 

was used on the top side of the holder to isolate the sample from ambient light interference. 

Nine measurements were performed at room temperature using an IT of 3 s for each meat 

emulsion. The results were plotted in a graph and the six closest corresponding 

measurements were used for statistical analyses.  
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3.1.3. Color of meat emulsions 

 

Color of meat emulsions were measured with a portable Hunter Lab spectrocolorimeter 

(MiniScan™ XETM, Hunter Associates Laboratory INC., Reston, Viriginia, USA). Meat 

emulsions were measured under D65 illuminant, with a 2º observer angle.  L* value 

describes lightness-darkness (ranges between 100-0), a* value indicates greenness 

(negative values) to redness (positive values) and b* values reflects blueness (negative 

values) to yellowness (positive values). Five measurements were made per sample at 

constant room temperature (~21 °C).  

 

3.1.4. Rheology of meat emulsions and frankfurters 

 

Rheology analyses of meat emulsions were made with a rotational rheometer (Rheo Stress 

1, Haake, Thermo Electron Corporation, Karlsruhe, Germany), coupled to a thermostatic 

bath (Phoneix C25P, Haake, Thermo Electron Corporation). Meat emulsion samples were 

cautiously transferred from the bag to the flat serrated base plat MPC/DC60 and the upper 

flat serrated probe PP60 was slowly lowered down onto the sample until a distance of 1 mm 

from de base plate, and any excess of meat was carefully removed with a spatula. Dynamic 

oscillatory test was performed at 21 °C with a frequency sweep range of 1-100 Hz at a 

maximum strain of 0.01%.  Rheowin software (Rheo Stress 1, Haake, Thermo Electron 

Corporation, Karlsruhe, Germany) was used to obtain storage (G’), loss (G’’) and shear 

(G*) moduli at 10 Hz. These rheology parameters were determined by quadruplicate tests 

by sample.  

 

Rheology analyses of frankfurters were made with the same equipment and conditions as 

for meat emulsions. Four frankfurters were analyzed per treatment and they were sliced 

with a blade in four cylindrical pieces of ~6 mm of height. An upper flat serrated probe 

PP35 was slowly lowered down onto the sample until a distance of 3 mm from de base 

plate. Frequency sweep was carried out over the range 1-100 Hz at a maximum strain of 

0.02%. The rheology analyses of frankfurters were made sixteen times by sample. 

 



16 
 

3.1.5. Texture of frankfurters  

 

A uniaxial compression test was carried out with a TA-XT2 texture analyzer (State 

Microsystem, Surrey, UK). Four frankfurters were analyzed per treatment and they were 

sliced with a blade in four cylindrical pieces of ~1.9 mm of height. Frankfurters were 

compressed to 85% of their original height using a compression cylinder probe of 50 mm of 

diameter at a crosshead speed of 2 mm s
-1

. Fracture force, distance and work parameters 

were obtained with Exponent program (Stable Micro System, Surrey, UK). The texture 

analyses of frankfurters were performed sixteen times per treatment.  

 

3.1.6. Statistical analyses 

 

The whole experiment was repeated in 3 independent occasions. Data was processed to 

evaluate differences between chopping speeds of the two different formulas by multifactor 

analysis of variance (MANOVA) and one-way (ANOVA) using the general linear models 

procedure of Statgraphics (Statgraphics Inc., Chicago, IL, USA) taking into account both 

chopping speed and production factors, as well as their interaction and the replica (i.e., the 

batch). LSD test was used for comparison of sample data, and evaluations were based on a 

significance level of P < 0.05. In addition, data was ordered and processed to evaluate 

correlations of physical-chemical characteristics –chemical composition, cooking losses, 

color and rheology of meat emulsions, chemical composition and rheology and texture of 

frankfurters– with the optical predictors by multiple-variable analysis and Pearson lineal 

correlation test using Statgraphics software (Statgraphics Inc.). 

 

3.2. Results and discussion  

 

3.2.1. Composition and cooking losses 

 

Table 1 shows the basic composition and cooking losses of meat emulsions for both 

formulas at the three chopping speeds. It was found that there were no statistically 
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significant differences between values at any speed by formula. However there was a clear 

difference between formulas, having the high quality the greater values for all the analyses.  

 

Referring to cooking losses, high quality meat emulsion reached around 3% more than low 

quality formula. According to Foegeding, Lanier, and Hultin (2000), improving fat coating 

of comminuted products, usually requires starch and non-meat proteins addition to enhance 

the textural properties of the products. Starch gelatinizes during cooking, increasing the 

emulsion viscosity and reducing fat globule mobility. Chopping operation and addition of 

starch are factors that influence in final product properties, resulting in smaller cooking 

losses and harder gels. 

 

Similar values were found in previous studies by Allais et al. (2004), Álvarez et al. (2007) 

and Bañón et al. (2008). The increase of cooking losses also could be related to the speed of 

chopping, increased of temperature, and chemical composition of the meat emulsions (ratio 

fat/protein). Over-chopping and subsequent over-heating negatively affected further 

gelation, increasing cooking losses and diminishing gel strength (Bañón et al., 2008). 

 

 

Table 1. Composition and cooking losses of meat emulsions per chopping speed for both formulas
†
.
 

 
†
 Mean value ± s.d.; n=9; values per formula were not significantly different (P<0.05). M: Moisture; CP; Crude Protein, 

CF; Crude Fat; S: Salt, C: Collagen; L: Loses 
 

 

As for frankfurters was concerned (Table 2), there were no statistically significant 

differences between values of composition at any speed by formula. Although, in general, 

large changes in composition between the meat emulsions and the final product were not 

observed, the moisture content decreased in frankfurters as compared to emulsions. This is 

what was expected since water is separated from the emulsion during cooking and the 

SPEED

Low 63.25 ± 1.09 12.38 ± 0.74 13.04 ± 1.57 2.10 ± 0.22 2.11 ± 0.43 7.67 ± 1.53

Standard 63.50 ± 1.10 12.50 ± 0.67 13.15 ± 1.29 2.25 ± 0.21 1.59 ± 0.37 7.05 ± 0.29

High 63.19 ± 1.05 12.55 ± 0.91 13.23 ± 1.18 2.24 ± 0.24 1.85 ± 0.38 6.73 ± 1.57

Low 65.11 ± 0.34 13.61 ± 1.07 14.60 ± 1.83 2.29 ± 0.05 2.21 ± 0.55 10.49 ± 2.75

Standard 64.89 ± 0.68 13.39 ± 0.36 14.87 ± 2.05 2.29 ± 0.11 2.01 ± 0.19 10.45 ± 2.55

High 65.02 ± 0.60 13.16 ± 0.81 14.82 ± 1.80 2.29 ± 0.13 2.15 ± 0.56 11.51 ± 2.37

MEAT EMULSIONS

Low quality

High quality

M (%) CP (%) CF (%) S (%) C %  L(%)
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surface therefore becomes dehydrated, corresponding the largest decrease to the high 

quality formula (Tables 1 and 2) as it does not contain starch. 

 

In contrast, the fat values increased in frankfurters, being the larger increase observed for 

high quality formula. However, the difference of protein and salts contents between 

emulsions and frankfurters remained mostly unchanged between formulas. Collagen also 

increased for frankfurters, due to the collagen casing that was used when stuffing the 

cooked product. 

 

 

Table 2. Composition of frankfurters per chopping for both formulas 
†
. 

 
†
 Mean value ± s.d.; n=9; values per formula were not significantly different (P<0.05). M: Moisture; CP; Crude Protein, 

CF; Crude Fat; S: Salt, C: Collagen. 
 

 

Values obtained for frankfurters composition are within the usual commercial ranges as 

indicated by Denmark National Food Institute. 

 

3.2.2. Optical Predictors 

 

The letters presented in Table 3 corresponded to 58 optical predictors found by the analysis 

performed with the optical sensor, but for confidentiality reasons the description/definition 

of each predictor and the mean values have not been presented in the table but only the 

classification obtained by the statistical method MANOVA LSD.  

 

The values of all predictors indicated in the table were found to be significantly different 

depending on the speed for the two formulas or at least for one of them. Predictors 10 and 

15 for both formulas showed significantly different values for the three speeds. This means 

SPEED

Low quality

Low 61.19 ± 1.20 15.78 ± 6.14 14.98 ± 1.46 2.17 ± 0.21 2.95 ± 0.51

Standard 61.22 ± 1.16 12.45 ± 0.95 14.99 ± 1.43 2.19 ± 0.19 2.89 ± 0.53

High 61.41 ± 0.98 12.49 ± 0.75 14.87 ± 1.45 2.14 ± 0.20 2.87 ± 0.48

High quality

Low 61.51 ± 0.98 14.27 ± 0.30 17.52 ± 2.74 2.20 ± 0.11 3.36 ± 0.26

Standard 61.55 ± 2.84 14.32 ± 0.25 17.62 ± 2.54 2.26 ± 0.09 2.78 ± 0.65

High 61.16 ± 1.64 14.53 ± 0.20 17.75 ± 2.39 2.23 ± 0.06 3.01 ± 0.18

FRANKFURTERS

M (%) CP (%) CF (%) S (%) C %
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that these two predictors were able to categorize meat emulsion processing speeds 

independently of the formula. However, a wide range of predictors was able to categorize 

meat emulsions processing speeds depending on the formula. Predictors showing different 

values for the three different speeds were predictor 20 for low quality formula, and 

predictors 9, 11, 14, 16 in the case of high quality.  

 

The rest of predictors showed significantly different values in one or both formulas but they 

were not able to categorize the three speeds since at least two of the latter were found not to 

be statistically different. 
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Table 3. Ranges of different optical predictors per chopping speed for both formulas. 

 
n=54; values per formula without common characters were significantly different (P<0.05). 

 

 

Low speed
Standard 

speed
High speed Low speed

Standard 

speed
High speed

Predictor 1 a b b a a a

Predictor 3 c c b b b b

Predictor 4 b a a a a a

Predictor 5 a a a a,b a b

Predictor 6 a a a a,b a b

Predictor 9 a b a c b a

Predictor 10 a c b c b a

Predictor 11 b b a c b a

Predictor 12 a a a b a,b a

Predictor 13 a,b b a a a a

Predictor 14 a b a c b a

Predictor 15 a c b c b a

Predictor 16 a b a c b a

Predictor 17 b a a a a a

Predictor 18 a b b a a a

Predictor 19 a b b a a a

Predictor 20 c a b a a a

Predictor 21 a b b a a a

Predictor 22 b a a a a a

Predictor 23 a a a b a a,b

Predictor 24 a b b b a b

Predictor 25 b a a b a b

Predictor 26 a a a a b a,b

Predictor 27 b a a a b a

Predictor 28 a b b a b a

Predictor 33 b a a a a a

Predictor 34 a a a,b a a a

Predictor 35 b a a,b a a a

Predictor 36 a a a,b a a a

Predictor 39 b a a,b a a,b b

Predictor 40 a b a,b b a,b a

Predictor 41 a a a a a,b b

Predictor 42 a a a b a,b a

Predictor 43 b a a a a a

Predictor 44 a b b a a a

Predictor 47 a b b a a a

Predictor 48 b a a a a a

Predictor 49 b a a,b a a a

Predictor 50 a a a a,b a b

Predictor 51 a a a b a a,b

Predictor 52 a b a b a a,b

Predictor 53 a a a b a b

Predictor 54 a b a,b a a a

Predictor 55 a a a a,b b a

Predictor 56 a a a a b a,b

Predictor 57 b a b a b a,b

Predictor 58 a a a a b a

Low quality High quality
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3.2.3 Color 

 

Color of meat emulsions was significantly affected by chopping speed (Table 4), 

production and the interaction between both of them. Considerable changes in light 

reflection were observed between formulas. Lightness (L*) for high quality formula 

obtained higher values against low quality formula. In contrast, a* and b* values were 

larger for low quality formula.  

 

Different trends were observed taking into account the formula. For example, in the case of  

L* value, significantly higher values were observed for low speed emulsions in low quality 

formula whereas in high quality L* value significantly decreased compared with the other 

two speeds. In the case of a* values, for low quality formula, the value increased as the 

speed increased; on the contrary, for high quality formula, a* value decreased as the speed 

increased. Finally, the behavior of b* value did not show a clear trend. Higher b* values 

were observed for standard speed in the low quality formula, which corresponded to the 

lowest b* value in high quality emulsions. 

 

As for chopping speed, similar trend values for L* in low and high quality formula were 

found by Álvarez et al. (2007) and Bañón et al. (2008). According to Barbut (1998) and 

Álvarez et al. (2007), the maximum L* value corresponds to the maximum degree of meat 

emulsion stability (i.e., minimum cooking losses) during chopping and could provide useful 

information to predict cooking losses.  

 

The increase in redness (a*) for low quality emulsions means that these samples reflected 

more light and could be explained by a reduction of exudation, i.e., quantity of liquid in the 

meat emulsion surface was likely smaller, since starch improves the water-binding capacity 

(Bañón, 2008). Indeed, color changes in meat batters during chopping have been attributed 

to a combination of physical-chemical phenomena, probably associated with fat particle 

size variations, the presence of air bubbles and/or protein–fat interactions (Álvarez et al., 

2007). In fact, both the reduction in fat particle size and the presence of air bubbles 

entrapped in the meat emulsion may act as light scattering agents (Palombo et al., 1994). 
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Table 4. Color of meat emulsions per chopping speed for both formulas 
†
. 

 
a-b Mean value ± s.e.; n=45; values per formula without common superscripts were significantly different (P<0.05).† L*: 

lightness; a*: green-red component; b*: blue-yellow component. 

 

 

3.2.4. Rheology of meat emulsions and frankfurters 

 

The storage modulus (G′) of tested meat emulsions were always higher than the loss 

modulus (G′′), which demonstrates that meat emulsions have an elastic characteristic rather 

than a viscous one (Table  5). Therefore, meat emulsions can be described as a weak gel or 

to have gel-like behavior (Flores et al., 2007; Kara-man et al., 2011; Dogan et al., 2013; 

Hernandez-Marín et al., 2013; Li et al., 2013; Savadkoohi et al,.  2013). 

 

Moreover, the rheological parameters studied (G′, G’’ and G*) were significantly influenced 

by both factors speed and production and their interaction, only for high quality formula. 

For low quality formula, their values decreased with increasing chopping speed although no 

statistical differences were found between low and standard speeds for the two formulas.  

 

In general the values of the three moduli for high quality formula were lower than those for 

low quality formula, which could mean that the starch addition increased these figures and 

contributed to the elastic properties of the low quality meat emulsion. 

Low 59.90 ± 0.89 a 18.53 ± 0.65 b 21.74 ± 0.76 b

Standard 59.08 ± 0.89 b 18.68 ± 0.88 b 22.43 ± 0.60 a

High 58.94 ± 0.85 b 19.54 ± 0.45 a 21.69 ± 0.69 b

Low 62.07 ± 0.84 b 16.86 ± 0.53 a 20.72 ± 0.22 a,b

Standard 63.28 ± 0.60 a 16.46 ± 0.45 b 20.44 ± 0.10 b

High 63.09 ± 0.21 a 16.39 ± 0.12 b 20.87 ± 0.25 a

Low quality   SPEED

High quality

     L*        a*       b*
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Table 5. Rheology of meat emulsions per chopping speed for both formulas 
†
. 

 
a-b Mean value ± s.e.; n=36 values per formula without common superscripts were significantly different (P<0.05). † G’: 
storage modulus; G’’: loss modulus; G*: shear modulus. 

 

As for high quality formula meat emulsions, the values of the three moduli in cooked 

frankfurters were significantly influenced by both factors (speed and production) and their 

interaction. In general, high quality formula showed greater G′, G′′ and G* than low 

quality. Standard speed yielded the highest values for the three parameters in both low and 

high quality formulas.  

 

Rheology in frankfurters has not been as studied as texture but in our study we can make 

comparisons with the raw emulsions. For both low and high quality formulas, the three 

moduli increased in frankfurters. However, it can be observed that for low quality formula 

meat emulsions there were no significant differences between speeds whereas in 

frankfurters the differences between speeds in low quality formula were clear. Additionally, 

for frankfurters there was a clear difference between low and standard speed irrespectively 

of the formula considered. 

 

Table 6. Rheology of frankfurters per chopping speed for both formulas)
 †
. 

 
a-b Mean value ± s.e.; n=144; values per formula without common superscripts were significantly different (P<0.05). 
† G’: storage modulus; G’’: loss modulus; G*: shear modulus. 
 

SPEED

Low quality

Low 8.88 ± 0.28 a 1.90 ± 0.06 a 9.08 ± 0.29 a

Standard 8.55 ± 0.26 a 1,82 ± 0.05 a 8.75 ± 0.27 a

High 8.43 ± 0.48 a 1.82 ± 0.11 a 8.62 ± 0.49 a

High quality

Low 8.33 ± 0.20 b 1.76 ± 0.03 a,b 8.51 ± 0.20 b

Standard 8.36 ± 0.18 b 1.73 ± 0.05 b 8.53 ± 0.19 b

High 8.98 ± 0.13 a 1.84 ± 0.04 a 9.17 ± 0.13 a

G′ (kPa) G′′ (kPa) G* (kPa)

MEAT EMULSIONS

SPEED

Low 18.75 ± 0.81 b 3.97 ± 0.14 b 19.17 ± 0.82 b

Standard 21.48 ± 0.60 a 4.46 ± 0.11 a 21.94 ± 0.61 a

High 20.11 ± 0.70 a,b 3.93 ± 0.11 b 20.50 ± 0.71 a,b

High quality

Low 25.81 ± 0.82 b 5.02 ± 0.16 b 26.30 ± 0.84 b

Standard 28.20 ± 1.31 a 5.33 ± 0.25 a 28.70 ± 1.33 a

High 27.09 ± 0.86 a,b 5.28 ± 0.14 a,b 27.61 ± 0.86 a,b

G′ (kPa) G′′ (kPa) G*  (kPa)

FRANKFURTERS

Low quality
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3.2.5. Texture of frankfurters 

 

Meat emulsions such as e.g., sausage and pate are emulsions in which the continuous phase 

is a complex colloidal system of gelatin, proteins, minerals and vitamins, were fat globules 

are dispersed (Yada, 2004). In solid food emulsions, the texture is determined by the 

composition of the food, the homogenization conditions and post-processing operations 

such as heating or freezing (Fellows, 2000).  

 

To measure the texture of frankfurters, a Uniaxial Compression Test was performed in 

which two peaks corresponding to two successive fractures were observed. The first 

fracture was internal, which was not visually observed (i.e., inside meat) while the second 

one represented a larger resistance by the cooked collagen membrane.  

 

As per the rheology, texture profile of frankfurters was affected by both factors (chopping 

speed and formulation) and their interaction. Frankfurters made with low quality formula 

and chopped at standard speed required less force to start breaking (Table 7). Equally, 

frankfurters made with the mentioned formula and speed required the minimum force to get 

finally broken. In frankfurters made with high quality formula, the minimum force to start 

braking was obtained with meat emulsion chopped at high speed.   

 

Values for distance remained similar for low and high quality formula, which means that 

frankfurters showed similar percentage of plasticity despite of the quantity of added starch. 

Since our results showed that low quality formula obtained the lowest values for force this 

could mean that the percentage of added starch did not affected the final structure of the 

frankfurters.  

 

In high quality formula, the mentioned decrease of firmness observed as chopping speed 

increased might have been due to improper fat emulsification as fat size decreased (i.e., the 

globule surface to volume ratio increased) and/or to the local denaturation of meat 

emulsifying proteins. This lack of consistency was typically accompanied by a significant 

increase of cooking losses (Barbut, 1998).  
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The texture of foods is mostly determined by the moisture and fat contents, and the types, 

amounts and interactions of structural carbohydrates (cellulose, starches and pectic 

materials) and proteins that are present. Changes in texture are caused by loss of moisture 

or fat, formation or breakdown of emulsions and gels, hydrolysis of polymeric 

carbohydrates, and coagulation or hydrolysis of proteins (Felloes, 2000).  

 

Bourne (2002) and Bañón et al. (2008) described the variables force and distance as the 

mechanical parameter of hardness and springiness. The figures presented in Table 7 agree 

with Allais et al. (2004), which found that hardness decreased as speed increased. Bañon et 

al. (2008) found that with less chopping time the value of hardness and springiness 

decreased despite of the added percentage of starch according with our previous conclusion 

about starch.  

 

Table 7. Texture of frankfurters per chopping speed for both formulas)
†
. 

 
a-b Mean value ± s.e.; n=169 and 126 for low quality formula and high quality formula respectively; values per formula 

without common superscripts were significantly different (P<0.05). 
† Force 1 and Distance 1: force and distance 
 

3.2.6. Correlations 

 

As shown in Table 8, there is a positive correlation between predictors 54 to 58 and 

moisture and cooking losses; however predictors 9 and 10 showed the highest correlations 

with cooking losses. Predictor 18 showed a high correlation with moisture and protein. , As 

show in Table 9, predictors 19 and 28 showed a high negative correlation with salt content 

in frankfurters whereas predictors 20 and 24 showed the highest positive correlation with 

the same additive.  

SPEED

Low quality

Low 64.49 ± 1.42 b 9.50 ± 0.07 a 80.17 ± 1.28 a 12.31 ± 0.12 a

Standard 62.23 ± 1.97 b 9.47 ± 0.09 a 75.39 ± 1.45 b 11.94 ± 0.06 b

High 63.74 ± 2.24 b 9.22 ± 0.10 b 79.35 ± 1.89 a 12.01 ± 0.09 b

High quality

Low 81.41 ± 1.75 a 9.56 ± 0.11 a 95.07 ± 2.55 b 11.76 ± 0.15 b

Standard 77.23 ± 1.58 b 9.22 ± 0.12 b 96.04 ± 1.39 b 11.76 ± 0.08 b

High 75.93 ± 2.11 b 8.94 ± 0.12 b 96.48 ± 1.51 b 11.72 ± 0.06 b

Distance 2 (mm)

FRANKFURTERS

Force 1 (N) Distance 1 (mm) Force 2 (N)
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Additionally, when comparing tables 8 and 9, it can be observed that a number of the 

correlations obtained in the meat emulsions were not observed in the frankfurters. As 

expected, many predictors were correlated with color attributes as a result of the optical 

nature of both types of measurements.   

 

Table 8. Correlation matrix with Pearson values between the variables (optical predictors vs. physical-

chemical parameters) with significant correlations – Physical-chemical parameters considered: basic 

composition of meat emulsions and cooking losses. 

 
n=54; values per formula without common characters were significantly different (P<0.05). M: Moisture; CP; Crude 
Protein, CF; Crude Fat; S: Salt, C: Collagen; L: Loses 
  

 

For color, predictors 19 to 28 showed correlations with the three color attributes: L*, a* and 

b*. The highest positive and negative correlations for L* and a* values corresponded to 

predictor 10 (r values of 0.92 and -0.89, respectively).  As per b* value, predictors 24, 25, 

27 and 28 had the highest correlation values (ǀrǀ > 0.85). As a consequence of the intrinsic 

adaptability of light scatter measurements for inline implementation, the existing 

correlation between color attributes and numerous light backscatter predictors represents an 

Predictors L (%) M (%)  CP (%) CF (%) S(%) C (%)

Pred. 1 -0.62 -0.71 -0.60

Pred. 3 0.73 -0.05

Pred. 9 -0.70 -0.53 0.34 0.73 -0.05

Pred. 10 0.68 0.75 0.67

Pred. 11 0.53 0.61

Pred. 17 -0.49 -0.87 -0.21

Pred. 18 0.52 0.87 0.74

Pred. 19 -0.68 -0.70 0.88

Pred. 20 0.64 0.67 0.89 -0.47

Pred. 21 0.71

Pred. 22 -0.47 -0.71

Pred. 23 -0.65 -0.55 -0.57 -0.55

Pred. 24 0.57

Pred. 25 -0.55 0.64 -0.70

Pred. 26 0.63 0.59 0.52 0.53

Pred. 27 -0.50 -0.65

Pred. 28 0.50 -0.70 0.67

Pred. 54 0.56 0.55

Pred. 55 0.56 0.57

Pred. 57 0.56 0.54

Pred. 58 0.54 0.51

MEAT EMULSIONS
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advantage, which shows potential for industrial meat emulsion processing control 

improvement.   

 

Table 9. Correlation matrix with Pearson values between the variables (optical predictors vs. physical-

chemical parameters) with significant correlations – Physical-chemical parameters considered:  

composition of cooked frankfurters and color properties of meat emulsions. 

 
n=54; values per formula without common characters were significantly different (P<0.05). M: Moisture; CP; Crude 
Protein, CF; Crude Fat; S: Salt, C: Collagen; L: Loses, L*: lightness; a*: green-red component; b*: blue-yellow 
component. 

 

Values observed in table 8 and 9 agree with previous studies of Álvarez et al., (2009, 2010 

and 2014), which showed that many of the optical parameter (predictors) studied were 

highly correlated with cocking losses and color parameters in lab-scale generated 

emulsions. 

 

Data presented in Table 10 shows that predictors 27 and 33 had a high negative correlation 

with G′, G′′ and G* values for meat emulsions while predictors 24 and 34 showed the 

highest positive correlation for these variables.  

 

Predictors  L* a* b* M (%) CF (%) S (%) C (%)

Pred. 1 -0.63 0.56 0.60 -0.68

Pred. 9 -0.79 -0.78 -0.73 -0.58 -0.71

Pred. 10 0.92 -0.89 -0.66 -0.49 0.75

Pred. 11 0.75 -0.72 -0.45 -0.60 0.61

Pred. 17 -0.59

Pred. 18 0.53

Pred. 19 0.49 -0.52 -0.67 -0.81 0.50

Pred. 20 -0.51 0.53 0.67 0.79 -0.50

Pred. 21 0.59 -0.57 -0.56

Pred. 22 -0.60 0.59 0.57 -0.48

Pred. 23 -0.62 0.58 0.65 -0.62

Pred. 24 -0.61 0.59 0.85 0.75 -0.65

Pred. 25 0.76 0.74 0.88 -0.52 0.57 -0.62

Pred. 26 0.55 -0.51 -0.60 0.58

Pred. 27 0.59 -0.58 -0.85 -0.81 0.65

Pred. 28 0.73 -0.72 -0.89 -0.64 0.62

Pred. 54 0.57 -0.48

Pred. 55 0.56 -0.47

Pred. 56 0.58 -0.49

Pred. 57 0.59 -0.50

Pred. 58 0.53 -0.44

Frankfurters                   Meat Emulsions
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Table 10. Correlation matrix with Pearson values between the variables (optical predictors vs. physical-

chemical parameters) with significant correlations – Physical-chemical parameters considered: 

rheological properties of meat emulsions and frankfurters. 

 
n=54; values per formula without common characters were significantly different (P<0,05). G’: storage modulus; G’’: loss 
modulus; G*: shear modulus. 

 
 

As observed in composition correlations, rheology of meat emulsion presented more 

significant correlations than rheology for frankfurters. This could be because the structure 

of frankfurters changed with the cooking process, which presumably modified the existing 

Predictors

G′ 

(kPa)

G′′ 

(kPa)

G* 

(kPa)

G′ 

(kPa)

G′′ 

(kPa)

G* 

(kPa)

Pred. 1 0.53

Pred. 3 0.52 0.48 0.48

Pred. 5 -0.53 -0.52

Pred. 8 0.58 0.53 0.57

Pred. 9 -0.50 -0.50 -0.50

Pred. 12 -0.68 0.75 -0.69

Pred. 13 -0.68 -0.64 -0.68

Pred. 14 -0.59 -0.60 -0.59

Pred. 17 -0.57 -0.47 -0.57

Pred. 18 0.54 0.54

Pred. 19 -0.65 -0.54 -0.65 -0.59 -0.55 -0.59

Pred. 20 0.64 0.54 0.64 0.57 0.54 0.57

Pred. 23 0.56

Pred. 24 0.84 0.85 0.84

Pred. 25 0.71 0.73 0.71

Pred. 26 -0.53

Pred. 27 -0.86 -0.84 -0.86

Pred. 28 -0.75 -0.75 -0.75

Pred. 33 -0.86 -0.84 -0.86

Pred. 34 0.84 0.85 0.84

Pred. 35 0.48

Pred. 37 -0.47 -0.57

Pred. 38 0.54

Pred. 39 -0.65 -0.54 -0.65 -0.55 -0.59

Pred. 40 0.64 0.54 0.64 0.57 0.54 0.57

Pred. 42 -0.51

Pred. 45 0.72 0.80 0.72

Pred. 46 -0.74 -0.80 -0.74

Pred. 47 0.63 0.69 0.63

Pred. 48 -0.65 -0.70 -0.65

Pred. 49 -0.50 -0.49

Pred. 50 -0.53

Pred. 55 0.48 0.47

Pred. 56 0.48 0.47

Pred. 58 0.51 0.51

Meat Emulsions Frankfurters
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correlations. Therefore according to table 10, predictors have more potential to predict 

successfully rheological properties in meat emulsions than in frankfurters. 

 

According to Table 11, predictors 19 and 39 obtained the highest negative correlations for 

force 1 and predictors 17, 19 and 37 showed the highest negative correlations for force 2. 

Predictors 17 to 20 were highly correlated with the three of the four textural attributes 

tested: forces 1 and 2, and distance 2.   

 

Generally, Table 11 shows that many of the predictors obtained are correlated with texture 

parameters, which suggests that the use of an optical sensor to study light backscatter in 

finely comminuted meat emulsions may have potential for predicting the texture of the final 

product. 

 

Values observed in table 11 agree with previous studies of Álvarez et al. (2014), which 

showed that many of the optical parameter (predictors) studied were highly correlated with 

hardness texture parameter. Additionally, the results point in a similar direction to those 

obtained by Allais et al. (2004) who suggested that prediction found a correlation between 

final texture parameters of meat emulsions and fluorescence spectroscopy measurements.  
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Table 11.  Correlation matrix with Pearson values between the variables (optical predictors vs. 

physical-chemical parameters) with significant correlations – Physical-chemical parameters 

considered: texture properties of frankfurters. 

 
n=54; values per formula without common characters were significantly different (P<0.05). 

 

 

 

 

 

 
 

 

 

Predictors

Force 1  

(N)

Force 2 

 (N)

Distance 2

(mm)  

Pred. 5 -0.55 -0.67 0.54

Pred. 6 -0.48

Pred. 7 0.57

Pred. 8 0.55

Pred. 9 -0.51

Pred. 13 -0.67 -0.61 0.48

Pred. 14 -0.53

Pred. 17 -0.69 -0.74 0.53

Pred. 18 0.64 0.70 -0.53

Pred. 19 -0.76 -0.70 0.57

Pred. 20 0.73 0.67 -0.56

Pred. 24 0.48

Pred. 27 -0.56 -0.47

Pred. 29 -0.51

Pred. 30 0.50

Pred. 31 -0.49

Pred. 32

Pred. 33 -0.59 -0.50 0.22

Pred. 34 0.48

Pred. 37 -0.69 -0.70 0.57

Pred. 38 0.64 0.70

Pred. 39 -0.76

Pred. 40 0.73 0.67 -0.56

Pred. 49 -0.48

Pred. 50 -0.51

Pred. 55 0.47

Pred. 58 0.49

Frankfurters
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4. Conclusions 

 

 

The numerous correlations found strongly suggest the feasibility of these optical parameters 

not only as potential predictors of meat emulsification degree and potential exudates but 

also of relevant rheological and textural attributes of meal emulsions and frankfurters at 

industrial level. The information reported by light backscattering configuration could have 

potential in the development of a new inline optical sensor technology to select the 

optimum end-point of chopping that would be able to minimize cooking losses and 

maximize the yield.  

 

Successful development of this technology could be implemented at industrial level since 

the samples used for the experiment were made and delivered by an important meat process 

plant and the results obtained were similar to those found in previous studies named in this 

work where the experiment was made at lab scale or in a pilot plant. 
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