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Ciguatera Fish Poisoning (CFP), a global health problem 

2. Abstract 

 

In the recent years, different cases of Ciguatera Fish Poisoning (CFP) appeared in the 

European coastlines. CFP is produced by two dinoflagellate genus called Gambierdiscus and 

Fukuoya and recently, both insolated in the coastlines of Greece and Macaronesia islands due 

the new distribution change of these species induced by the Climate Change effects. Due the 

important repercussions that this could have in human and environmental health, economical 

and food safety in the European coastlines, the European Food Safety Authority (EFSA) 

started to create risk assessment and prevention plans against CFP. In this review we wanted 

to resume all the key points that we think are necessary to know about the biology, 

epidemiology, and environmental factors that affects these dinoflagellate genera and that are 

important for a good risk and prevention plans assessment. As the results show a great 

variability among the species that compounds the genus in environmental factors, biological 

characteristics and even in toxicity depending on the geographical region they are isolated, the 

new tendencies about modeling the potential risk of CFP points to a more localized risk and 

preventions plans, being assessed in function of the characteristic of the species and the 

environment present in the target area and not big extrapolations can be made.  

3. Introduction 

Ciguatera Fish Poisoning (CFP) is the most common non-bacterial disease caused by fish 

consumption in the tropical and sub-tropical areas of the planet (Kibler et al., 2012). This 

disease affects globally, between 25000 and 50000 people annually, although the incidence 

could be higher due the misreporting cases. (Berdalet, et al., 2017). This intoxication is caused 

by consumption of contaminated fish containing ciguatoxin (CTX), a potent thermo and cryo 

resistant toxin that produce gastrointestinal and, in some cases, cardiac and neurological 

symptoms in between 24-48h after consuming the contaminated fish. There’s no storage, 

preparation or cooking procedure that can destroy the toxin. (Friedman et al., 2017). 

This toxin is produced by dinoflagellates of the genera Gambierdiscus and Fukuoya which 

produce the precursor agent and that one, accumulates and activates through the food web till 

arrives to the human consumption.  
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There are three types of CTX detected nowadays, Pacific CTX (P-CTX), Caribbean CTX (C-

CTX) and Indian CTX (I-CTX), being the first one the most powerful and toxic (Bravo et al., 

2015).  

The effects of CFP are beyond the human health in the endemic areas. 

Typically, the areas assumed endemic for CFP were the tropical and sub-tropical regions of the 

planet, where fishing and fish consumption were and are heavily important. These areas are 

also known by the heavy affluence of tourists and the role of tourism in the regional economics 

(Berdalet et al., 2017). These two points are the two big problems of CFP in this areas, forcing 

the communities to change their alimentary habits to avoid it and facing the repercussions on 

tourism by CFP outbreaks.  

In the recent years this traditional point of view could change drastically, due the new CFP 

cases reported in more temperate areas of the planet, included the European coasts. Although 

imported cases of CFP were common in temperate areas, due the international seafood trade 

and travel, in 2004 the first autochthonous outbreak of CFP in the European coasts was reported. 

The outbreak occurred in Macaronesia islands, exactly in the Canary Islands, by consumption 

of Amberjack fish (Pérez-Arellano et al., 2005.) After this first autochthonous outbreak, others 

followed in the same European region. 

To understand why this phenomenon is happening in the traditionally considered non-endemic 

areas (Boada et al 2010), it is necessary to focus on the first responsible of CFP, the genera 

Gambierdiscus and Fukuoya., producers of CTX. 

The biology, ecology and epidemiology of these dinoflagellate species depends in a great 

measure on the environmental factors occurring in the waters they live. It has been proved that 

Climate Change and other environmental events change their range of distribution globally and 

it is also proved that it could increase in the incoming years. 

These changes in the geographical distribution of the CTX producers, turns CFP in a more 

important and global problem. 

 

4. Objective 

 

With this perspectives, the aim of this study is to make a compilation, filtration and 

synthetization of information related with the environmental factors that affect these 

dinoflagellates species, as well as to know and put together some points of their biology, 
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ecology and epidemiology to create a background for the future risk characterization and 

assessment plans to prevent and predict new cases of CFP in the European coasts.  

Due to the wide global distribution that CFP is going to take in the incoming years and the 

complexity and quantity of different factors that play a role in this intoxication by fish 

consumption, CFP requires to be assessed through a multidisciplinary way, treating it as a One 

Health Problem.  

5. Materials and methods 

 

The methodology used for this document consisted in conducting a systematic review of 

different scientific articles and reports related to CFP starting from the 40’s and 50’s, when 

CFP investigations began, to the most actual ones, 2017, following the criteria of the European 

Food Safety Authority (EFSA) for a systematic search of the appropriate information. 

Examples of these EFSA criteria are exposed in the Table 1, Table 2 and Table 3: 

 

Table 1: 

EFSA points to asses 

 

 

 

 

 

 

 

 

 

 

 

   Points to asses: 

 

1. Studying the population dynamics of Gambierdiscus spp. and Fukuyoa spp. 

2. Predicting blooms of toxin-producing microalgae and outbreaks   of CFP. 

3. Distinguishing the relative importance of local (production of ciguatoxins by local populations 

of Gambierdiscus spp. and transfer of toxins through the food webs) and imported (migration of 

ciguateric fish to these waters from distant ciguatera areas) contribution. 

4. Understanding the ecological mechanisms leading to ciguatera toxins accumulation in fish. 
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Table 2: 

EFSA questions to answer 

 

 

Table 3 

EFSA information search methodology 

 

The information research has been done using the search portals PubMed and Google Scholar, 

always using the EFSA criteria statements for the paper selection. 

The objective of the present document is to provide answers to most of the previous questions 

with the purpose of clarifying different aspects that remain unclear in reference to the biology, 

ecology and epidemiology of this toxic disease

. 

 

 

 

    Questions to answer: 

 

1. What is the geographical distribution of Gambierdiscus and Fukuyoa species in the world? 

2. Which are the temperatures in the places where these dinoflagellate species are present? 

3. Which are other environmental variables that may determine the presence of these dinoflagellate species, their 

toxicity, the bioaccumulation to herbivores and carnivores and the possibility of an outbreak in the Macaronesia 

and the Mediterranean Sea? 

4. Which is the seasonality in the different geographical areas worldwide for the presence and for the abundances 

of these dinoflagellate species in the different geographical areas worldwide? 

5. Which are the fish and shellfish species that have been reported to contain ciguatoxins in the world? 

6. Are these fish species present in European waters and where? 

7. Which information is available on the trophic dynamics in the food web and the bioaccumulation process? 

8. Which are the relevant modelling tools for predicting purposes? 

 

Methodology: 

 

1. The protocol for the systematic literature searches will include the following keywords (individually or 

grouped) using the Boolean terms “and” and “or”: ciguatera, CFP, fish poisoning, food poisoning, 

Gambierdiscus, Fukuyoa, ichthyotoxic. 
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6. Results: The key points for Ciguatera risk assessment in the 

European coasts 

 

6.1 CFP global distribution 

6.1.1 Endemic distribution 

 

CFP has a wide global distribution nowadays, but for many years this disease related to 

consumption of toxic fish was only described to the tropical and sub-tropical areas of the planet. 

The traditional distribution of CFP englobes from the Atlantic coasts of the USA, passing by 

the Gulf of Mexico and the Caribbean and the French Polynesia as a one of the biggest endemic 

areas of CFP in the world.  

In exception of the USA coasts and certain parts of the Gulf of Mexico, most of the endemic 

areas correspond to islands.  

In these islands, but as well of some coasts in the Gulf of Mexico and USA, fishery and fish 

consumption is on the most important activities, as much as for subsistence as an economically 

resource. Another reliable activity islands support is tourism and CFP affects directly to these 

main activities of these islands and coastlines: 1) Safety of daily meals in this areas is 

compromised, forcing these populations to change their protein source to new imported ones 

and 2) decreasing the tourism revenue. But not only, other problems associated to CFP are: 3) 

the reduction of the productivity due to illness, 4) due the insecurity, fisheries resources are 

underutilized, 5) the imported new protein is more expensive than local fish and finally, 6) the 

costs of a good prevention and control plans of the disease are expensive. (Berdalet et al., 2017). 

That’s why CFP is an important problem in these endemic regions, and maybe that’s the reason 

why investigation and study of CFP prevention are so extensive in those areas.

 

6.1.2 Non-endemic distributions 

The cases reported in the temperate areas of the planet were, since recently, imported cases. 

These cases normally come from travelers who visit endemic areas (Mak et al., 2013, Bravo et 

al., 2015) or due the trade and travel of seafood and fish products from those to non-endemic 

ones (Kohli et al., 2015).  
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In Europe, different cases were reported between 2000 and 2013 in Germany and France 

(Epelboin et al., 2013, Mattei et al., 2014), but none from eating fish from the coastlines of 

continental Germany and France.  

New distribution of CFP is changing worldwide.  

This new CFP distribution to non-endemic areas includes the Eastern Atlantic Ocean of the 

northern hemisphere and the Mediterranean Sea (Bravo et al., 2015) and in consequence, the 

European coastlines.  

In 2004 the first autochthonous species of Gambierdiscus are detected in the Macaronesia 

islands (Aligizaki et al., 2008), till then to 2012 cases of confirmed autochthonous CFP 

outbreaks appeared in those European islands by consumption of Amberjack fish fished near 

the Portugal island of Madeira (Pérez-Arellano et al., 2005, Bravo et al., 2015). 

Other autochthonous CFP outbreaks may occur as well in the Greek coastlines since Aligizaki 

et al., 2008 have detected the presence of the toxic species in Greek waters. 

These new autochthons CFP outbreaks in European areas were not the only ones. Nowadays 

CFP outbreaks are mainly reported from Australian, Indonesian and Japanese coastlines among 

others. 

Maybe, in the recent years and the incoming ones, temperate areas of the planet need from the 

knowledge accumulated in the endemic ones to made their own prevention and protective plans. 

  

6.2 CFP producers: dinoflagellates from the genera Gambierdiscus and 

Fukuyoa 

 

6.2.1 Taxonomy and ecology 

The genus Gambierdisucs was characterized in 1979 by Fukuyo and Adachi in the Gambier 

Islands, French Polynesia (Adachi and Fukuyo, 1979).  

This marine dinoflagellate usually grows in tropical and subtropical waters as an epiphyte on 

macro algae in coral reefs, mangrove systems, and on artificial surfaces, sand or detritus 

(Caillaud et al., 2010, Friedman et al., 2017). These substrates provide protection and 

stability, protecting them from light and providing a bending system that permits these 

dinoflagellates to interact with other species and groups of the marine plankton, even bacteria. 

As it will be commented later, the preference water conditions of these dinoflagellates to live 

are the calm, transparent, low depth and warm waters of the tropical and sub-tropical 

coastlines but they had been isolated in other different and more adverse conditions. 
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These dinoflagellates together with the recently erected Fukuoya genus are the producers of 

the precursor toxin that finally creates CTX and are linked to the CFP outbreaks worldwide. 

 

In 1979, Adachi and Fukuyo described the first Gambierdiscus spp. as Gambierdiscus 

toxicus.  

Previously, in 1977, Yasumoto et al. hypostatized the 

relationship of dinoflagellates with the production of 

CTX and consequently, to be the cause of CFP (Tester et 

al., 2014).  

The genus Gambierdiscus remained as an only one 

specie genus till 1995 when Faust et al. proposed the 

multi species theory and isolating G. belizeanus in the 

Belize coastlines. Other studies availed this theory 

describing the variability of morphology, toxicity, 

physiological characteristics and differences in 

ribosomal RNA (rRNA) genes (Kohli et al., 2015). 

 

 

After that, the diversification of the Gambierdiscus species grows exponentially, reaching to 

the actual number of 15 Gambierdiscus species, 5 genetically described as phylotypes and 3 

Fukuoya species distributed worldwide.  

The genus Fukuoya was introduced by Gomez et al. in 2015 when they realized that the 

morphological characteristics of G. yasumotoi and G. ruetzleri were found to be different 

enough to erect another dinoflagellate genus. The globular structure of this organisms in 

comparison to the anterio-posteriorly compressed one of the other Gambierdiscus species 

confirms that theory.  

Nowadays, these two species of the previously Gambierdiscus genus are named Fukuoya 

yasumotoi and Fukuoya rueltzleri respectively and the present Gambierdiscus and Fukuoya 

species described are resumed in Table 4.  

The morphology of the major species of those genera is resumed in figure 1, Fukuoya species 

are not included in figure 1, this figure was published by Litaker et al. in 2009. 

 

 

 

Figure 1. Morphology of the major 

species of Gambierdiscus. Modified from 

Litaker et al., 2009 
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Finally, the discoveries of new Gambierdiscus species has continued to the actuality, 2017.  

Species like G.lapillus discovered in the Great coral reef in Australia in 2016, G. honu in the 

Cook islands in 2017 by Rhodes et al., 2017, G. balechii in the Celebes Sea by Fraga et al. 

2016 or G.cheloniae by Smith et al. 2016 and 

Fukuoya paulensis in 2015 by Laza et al. in the 

Balearic Islands are the newest discovered.  

This discoveries show that it may be that not all  

Gambierdiscus and Fukuoya species have been 

discovered yet, and if we add the great inter and 

intra variability among species and strains that 

this genus present in the recent laboratory studies 

the global distribution of Gambierdiscus could be 

more extensive than the one given by the studies 

in the field.  

 

 

 

 

  

Finally, as Berdalet et al. 2017 present in their study, reliable taxonomy is fundamental for 

efficient monitoring systems to know the real distribution, toxicity and to interpret the 

environmental influences of the Gambierdiscus population dynamics and, as Tester et al 2014 

stated: “It should be noted that in an active area of research, it is not unexpected that 

taxonomic revisions will be necessary.” 

 

6.2.2 Global distribution 

 

Due to the great diversity of the species, the distribution of these dinoflagellate genera is 

worldwide. Typically, the main distribution was in the tropical and sub-tropical areas and at 

low latitudes (∼35 °N–35 °S), where the climatology and water conditions are more favorable 

to that kind of microalgae (Pérez-Arellano et al., 2005, Kibler et al., 2015, Kohli et al., 2015). 

Recently this has changed, due 1) the change of the climate and water conditions in great part 

Table 4. Gambierdiscus and Fukuoya actual species. 

Summarized from Kohli et al., 2015. 

 



 12 

cause the Climate change and 2) the identification of new species of both genera in more 

temperate areas of the world, possibly due the first factor.  

 

Actually, the genera Gambierdiscus. and Fukuoya are distributed globally, affecting several 

coastlines worldwide.  

Some species as G. caribaeus, G. carpenteri and G. belizeanus are distributed widely, present 

in both Atlantic and Pacific Oceans and in several other coastlines around the world due their 

great adaptability to the different conditions of environmental factors that affect their survival 

in the environment (Litaker et al., 2010, Berdalet et al., 2017).  

On the other hand, some 

species are less adaptable to 

the changes in the ranges of 

environmental factors. Their 

distribution is more closely 

related to some punctual and 

individual places, were the 

water and environmental 

conditions play a better role 

to their necessities.  

It’s not unusual that more 

than one species of these 

dinoflagellates coexist in the 

same coastlines.  

 

 

The coastlines affected worldwide goes from the Atlantic and Pacific ones to the Australian, 

Indonesian, Japanese, Red Sea coastlines and the Europeans coasts of Greece and 

Macaronesia islands.  

The actual distribution of the major Gambierdiscus and Fukuoya species is resumed in table 5 

and figure 2. The new species G. balechii, G. cheloniae, G. honu, G. lapillus and F.paulensis 

are not included in figure 2 since they were described very recently.  

 

 

 

Table 5. Major Gambierdiscus species and their global 

location. Summarized from Gurjeet S. Kohli et al., 2015 
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This actual global distribution 

of the two dinoflagellate genera 

is just a temporal picture.  

Recent studies show that due 

the Climate change and the 

change of environmental 

factors that affect these species, 

a new redistribution of the 

species from both genera could 

occur in the incoming years. 

(Kibler et al., 2015, Berdalet, et 

al., 2017).  

 

Different studies affirmed that this change is not going to happen as an invasion of tropical 

and subtropical species to more temperate waters, instead as a specie displacement from one 

ecological niches to others. An example is the one that Kibler et al., 2015 explains in their 

study, the prevalent species in the tropical regions of the Great Caribbean and Gulf of Mexico 

are going to change their own distribution.  

As the Caribbean region change their seawater temperatures (SST) in 1-2 °C, the species that 

tolerates higher water temperatures are going to become more prevalent in this concrete 

region. Likewise, in the coasts of the Gulf of Mexico and the Atlantic coasts of USA where 

water temperatures are lower in annual average, species more resistant to low and mild 

temperature are going to increase their range of activity.  

In the case that water temperatures will be not low enough due the Climate Change then the 

coexistence of diverse species in the same coasts will be the result, incrementing the risk of 

CFP outbreaks in these more temperate areas, as it is explained below. 

This redistribution pattern of Gambierdiscus and Fukuoya species explains why new species 

are appearing in the considered non-endemic areas of the planet.  

 

 

 

 

Figure 2. Global distribution of the major Gambierdiscus and Fukuoya species. Summarized 

from Tester et al., 2014.  
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6.2.3 Toxicity 

 

CFP is produced by the ingestion of toxins of the type CTX. This kind of toxin are sodium 

channel activators that affect the voltage sensitive channels located along the nodes of 

Ranvier (peripheral nerve cells) (Tester et al., 2014). There are three major families of CTX: 

1) P-CTXs (Pacific Ocean), 2) C-CTXs (Caribbean region) and 3) I-CTX (Indian Ocean) 

(Mak et al., 2013). 

The intoxication produces gastrointestinal symptoms in the first 24-48h, but not only, 

neurological symptoms and, in severe intoxication, cardiovascular ones could appear. 

Control of CTX is difficult, this toxin is thermostable, cryostable and no cook or preparation 

methods can destroy it (Kohli et al., 2015).  

It’s formed by a cyclic polyether ladders which are lipophilic and that’s why different studies 

affirm that the body parts with more CTX concentration in fish are the viscera instead of flesh 

of fish. It plays an important role in the bio magnification and accumulation trough the food 

web (Haro et al., 2013). 

MTX or maitotoxin is another toxin produced by the genus Gambierdiscus and Fukuoya 

(Tester et al., 2014). This toxin is considered the largest non-proteinous and highly toxic 

natural products known, but their role with CFP is not yet clarified. It’s a highly potent 

calcium channel inhibitor but their complete mode of action and primary target in mammalian 

cells have not yet been fully elucidated (Kohli et al., 2015). 

As CTX, there’s different kinds of MTX discovered in various areas of the world, P-MTX 

(Pacific Ocean) and C-MTX (Caribbean ocean) and it seems that the biophysical mechanisms 

of each one are quite different.  

Despite that, they normally have less tendency to accumulate in fish flesh and more to the 

stomach and intestines so, as CTX, in the fish viscera (Kohli et al., 2015). 

The relation of CTX/MTX and Gambierdiscus. and Fukuoya species is clear.  

CTX and MTX had been isolated from different species of Gambierdiscus.  

An example could be G.excentricus, considered the major producer of CTX in the Caribbean 

region  (Berdalet et al., 2017). However, the definition: “in the Caribbean region” is maybe 

the important thing here, no consensus is already accepted in reference to which species of 

Gambierdiscus are more or less toxic, more CTX productive or where they could be in the 

planet.  
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The handicap about that is that the major studies in toxicology were made when G. toxicus 

was considered the only specie known, so no distribution among species could be assessed by 

those studies (Kohli et al., 2015).     

Another theory about that phenomena are related to the huge inter specie variability and the 

low toxicity studies available. But not only, some authors refer that the intra specific 

variability that could show some strains of the same Gambiersdiscus specie could lead to be 

more toxic ones than others (Litaker et al., 2010), making this process to elucidate the real 

toxicity of the species more complex.  

This could explain why some species in a concrete area of the planet could be considered high 

toxigenic and in other areas they are not.  

At least, more studies are needed to clarify the toxin profile of all of the species and 

genotypes of the Gambierdiscus and Fukuoya now known. That’s an important matter in 

terms of create good and personalized risk assessment and prevention plans in the European 

coastlines.  

 

6.3 Food web relations 

 

How CFP arrives to the human consumption or his food web relation had been discussed 

since the beginning of CFP cases. The most accepted theory is the simplest one. 

Gambierdiscus and Fukuoya grows in dead and live coral reef. Herbivorous fish searching 

food in those zones became toxic by ingestion of CTX precursor toxin, that this one at his 

time, suffers a biotransformation to CTX inside them (Bravo et al., 2015). Carnivorous and 

omnivorous fish who eats herbivorous finfish accumulates the toxin in their bodies, mostly in 

the head, liver or viscera due the high lipophilic character of that toxin (Haro et al., 2013).  

When this major toxic fishes are fished and eaten by humans, CFP cases appear.  

These food web relations are showed in Figure 3. Realize that in the low stratum natural 

disturbances and human disturbances are showed, that’s because these disturbances are one of 

the major causing of Gambierdiscus population proliferation, as we will discuss later.  
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 Nowadays, thanks to recent studies, we know that 

these relations are not as simple as it seems. The 

complexity of the food web relations of CFP and 

how it arrives to the human consumption comes for 

many reasons. 

CFP toxicity in a determinate fish depend mostly in 

their alimentary habits, their efficiency of   

assimilation, depuration rate and growth capacity. 

(Mak et al., 2013, Gaboriau et al., 2014).  

 

 

These factors had been long studied in different endemic zones and there’s no general 

consensus yet. Some studies affirm that toxin depuration by fish could not exist or exist in 

low rates, but others show that differences between fish families had been documented in 

terms of toxin assimilation, metabolizing and excretion. (Gaboriau et al., 2014).   

It is true that there are some fish families considered to be high risk for CFP intoxication and 

they are resumed in table 6, but lots of studies show that to ensure which specie could be a 

risky one, more local studies had to be done. However, it’s true that there’s no evidence that 

we can generalize for all the fishes in the world, mostly due these inter-specie differences. 

 

Another accepted theory was that big 

fishes had more possibilities to be 

CTX toxin positive.  

Studies made in the endemic region of 

French Polynesia had shown that even 

the small reef herbivory fish can 

accumulate amounts of CTX enough 

to cause CFP to an adult person. 

(Gaboriau et al., 2014).  

As same happens with the theory of high risk family fishes, length and weight of fish is not 

good criteria to select fishes for consume, and no advantages had reported in the endemic 

areas where applied these methodologies as a prevention one (Gaboriau et al., 2014, Friedman 

et al., 2017). 

Figure 3. Food web relations. Modified from 

Chinain et al., 2016 

Table 6. Common ciaguatoxigenic fish species. Modified from Friedman et al., 2017. 
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Also, we have to remark that not only fishes could be toxic for human consumption. Clams, 

mollusks and even octopus had shown amounts of CTX in their bodies enough to cause CFP, 

and some of them, due filtration, an accumulation of Gambierdiscus species that can produce 

CTX (Roue et al., 2016). This phenomenon is called CSP and it makes visible that not only 

fishes are risky for human consumption and that food web relation for CFP intoxication could 

be more complex than we think (Mak et al., 2013, Kohli et al., 2015). 

That’s why in this study we propose that the best way to asses that toxic consumption 

problem is to propose more studies trying to bring some light to which can be risky fishes and 

toxic seafood in a local area. We are not capable of make generalizations in terms of fish 

toxicity and the studies had to be more localized together with an effort to develop new and 

more efficient mechanisms to CTX detection in ways to help investigations and even 

veterinarians to detect as quickly as possible new potential cases of CFP in the commercial 

points of fish distribution.  

 

6.4 Environmental key points 

 

Environmental factors rule a fundamental role in the biology, ecology and epidemiology of  

Gambierdiscus and Fukuoya species. 

As we commented before, since 1995, the genus Gambierdiscus remained as a unique specie 

genus, and most of the studies trying to understand the influence of these factors are not 

useful.  

In the last years, new studies had tried to figured out who much factors as temperature, 

salinity or irradiance, among others, affects this genus global distribution.  

The two first factors mentioned had been established as the most important ecological drivers 

of this dinoflagellate biology (Kibler et al., 2012, Sparrow et al., 2017). 

The results, show a great diversity among species, as it could be supposed, but not only, the 

intra-specie variability that these dinoflagellate genus presents, could play a vital role in the 

future prevention plans instauration.  

The ongoing theory is that these plans will need to be ideated thinking in the local species that 

habits in an area, more than being considered as a global prevention plans. (Xu et al., 2016). 
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Nevertheless, in this study we try to show the latest results available in the bibliography about 

the environmental effects and biological limits of the Gambierdiscus and Fukuoya species. 

The description of the biological limits is going to be done using the following nomenclature: 

Xo: lower limit for growth, Xu: maximum limit for growth, Xm: maximum growth levels, 

Xop1: optimum growth range for parameters Salinity (S), Irradiance (I) and Temperature (T). 

 

1This value shows the optimal parameter when growth rate is > or equal to 0,8 max, 

 

6.4.1 Salinity 

 

Salinity had been described by the bibliography as the second most important parameter 

which affects the biological distribution of the Gambierdiscus genus.  

The general biological parameters are: 25-35 for Sm, which coincide with the normal 

salinity ranges in the most oceans of the world. From 14 to 21 and 41 or even more for the 

So and Su respectively. And finally from 22 to 36 in the range for Sop. Even so, these 

biological parameters are showed in table 7. for different species. 

 

 

Different studies show that the wide range in salinity parameters that Gambierdiscus 

species can resist goes from 16 to 41. (Xu et al., 2016, Tawong et al., 2016).  

This great variation in the salinity biological ranges is due the inter-specific differences 

that these dinoflagellate species show (Tawong et al., 2016).  

It’s worth it to comment that normally salinities in bellow 20 dinoflagellate populations 

decrees dramatically in the most of the species, but as we saw, So can reach levels till 14, 

corroborating a great difference in between resistances (Kibler et al., 2012).  

The same can be appreciated for Su, laboratorial studies affirmed that some species of this 

dinoflagellate genus can reach till 43 or even 50 in salinity range resistance.  

Table 7. Salinity biological parameters of different Gambierdiscus species. Modified from Kibler et al., 2012. 
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This different resistances and tolerances to different ranges of salinity among species are 

showed in figure 4.  

This phenomenon could be one of the reasons of the great diversity and expansion of 

different species in diverse coastlines around the world, and why some species are 

distributed more widely (Kibler et al., 2012, Tawong et al., 2016).  

 

 

 

 

.  

 

 

 

 

 

 

6.4.2 Irradiance 

 

As an ephitic photosynthetic dinoflagellate genus, irradiance have an important effect in the 

growth of Gambierdiscus and Fukuoya in the normal habit of these dinoflagellate. The 

average irradiance that these microalgae is exposed normally is of 10% as suggested by 

Kibler et al., 2012.  

The information that irradiance can give to us is useful to determinate the vertical distribution 

of this genus (Xu et al., 2016). The same author cited before stipulated that in the normal 

habits of the dinoflagellate these can reach deeps of 75m and in laboratorial conditions even 

can be found till 125-150m deep where only blue and violet light arrives, the needed for 

photosynthesis to be done.  

In general, the biologicals parameters stipulated for irradiance tolerances are in between 2,5 – 

10% for Im that equals to 49– 231μ mmol photons m2. s1 and the minimum grow rates or Io 

reaches 0,2 and 0,7% of surface irradiances that is equal to 6 and 17 mmol photons m2. s1. 

These values are consistent among all the species, resumed in table 8.  

Nevertheless, for Iu, differences between species are observed. The average threshold limit 

Figure 4. Inter-specific differences in 

growth over different salinity conditions. 

Modified from Xu et al., 2016.  
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tolerance for irradiation in the most of Gambierdiscus species is 690 mmol photons m2. s1 but 

F. ruetzleri can reach irradiances above 1000 mmol photons m2. s1, a lethal irradiance for the 

rest of the species.  

These irradiances are much superior to the 10% stablished by Kibler et al., 2012 as a 

maximum growth threshold. 

Berdalet et al., 2017 explains in his study that mucus production, shadowing strategies using 

the substrates this dinoflagellate genus is attached at and symbiotic relations with other 

microalgae to increase cell densities, helps Gambierdiscus cells to protects themselves from 

high irradiation. That’s why high irradiations are better accepted than lower ones (Richlen et 

al., 2011, Parsons et al., 2012). 

Finally, returning to vertical distribution, non consensus has arrived when the laboratories 

results are compared to the field studies results.  

Kibler et al., 2012 assumes that Gambierdiscus cells could be found till 75 m deep, as we 

comented before, but, other authors declare that in French Polynesia is more common to find 

them in 2-3 m deep than in 10-15m. In Johnston Atoll in the Pacific Ocean, 13m deep is usual 

and in the US Virgin island Gambierdiscus could form blooms in between 10 to 20m deep 

(Richlen et al.,2011, Yoshimatsua et al., 2014, Xu et al., 2016). 

 

2 these profundities are only speculations in functions of the laboratorial results, the field 

samples never reach the 30 or 40 meters.  

 

 

 

 

 

 

 

Table 8. Irradiance biological parameters of different Gambierdiscus species. Modified from Kibler et al.,2012.  
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6.4.3 Temperature 

Temperature is considered the main environmental factor that explains the actual 

redistribution of the Gambierdiscus and Fukuoya species to the non-endemic areas of the 

planet.  

This redistribution is due the increment of the Sea Surface Temperatures (SST) due the 

Climate Change (Kibler et al., 2015). 

The differences in the biological limits for temperature among the different species are 

resumed in table 9. The average general parameters are in between 25– 31 Co for Tm and the 

upper and lower thermal limits reaches in between 31-34 Co and 15-21 Co respectably for Tu 

and To. However, different studies affirmed that some species are capable to survive in 

temperatures in below 11-14 Co in laboratorial assays and above the 35 Co in some regions of 

the Red sea and the Pacific. This is explained due the inter and intra-variability presented by 

these dinoflagellate genus species (Kibler et al., 2012, Tawong et al., 2016).  

As we commented before, the Climate change is expected to increase the SST in the Great 

Caribbean Region (GCR) in 1-2 Co in the next decades (Kibler et al., 2015) and in different 

studies, the shapes of the temperature vs. growth curves indicated that even small differences 

of 1 or 2 Co notably affected growth potentials of this genus. 

These discoveries explain and define the recent and incoming redistribution of the 

Gambierdiscus species in the endemic areas and consequently the increases of CFP outbreaks 

in certain areas. 

As well, this phenomenon could explain the apparition of CFP cases in the more tempered 

areas of the planet, the potential new endemic areas, as the European coastlines. It is supposed 

to happen not as an endemic areas species invasion but as a new adaption of autochthonous 

Gambierdiscus species that remand in minority due the lower temperatures. This theory is 

proposed by Rodríguez et al., 2017 in his study about the new cases of CFP in the Canary 

Islands.  

 

 

 

 

 

 

 Table 9. Temperature biological parameters of different Gambierdiscus species. Modified from Kiblet et al., 2012 
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6.4.4 Intra-specific variations  

The studies that describe the biological levels of that three main environmental factors 

describe too an intra-specific variation among the Gambierdiscus species.  

In salinity levels, Sparrow et al., 2017 expose intra-specific variation resistances to this 

environmental factor from strains of G. carpenteri. in the great coral reef of Australia and in 

irradiation ones, Yoshimatsua et al., 2016 described different growth responses of 

Gambierdiscus under various light conditions that may vary between strains of a given 

species such as G. australes. 

These intra-specific variations are normally seen in the extremes of the environmental factors 

tolerances and can drive some species to be more tolerant to one or another factor in depend 

on the regionality they are.  

These makes strong the theory proposed in this study that the prevention and risk assessment 

plans have to be done in a local or regional are, studying the spices presents in there and the 

strains that compound them, as well as the local ranges of environmental factors tolerances 

(Richlen et al.,2011).  

Finally, as Yoshimatsu et al., 2014 said in his study: “growth characteristics of each 

species/phylotype have to be investigated using several strains for each species/phylotype, 

because growth characteristic and toxicity potential can vary between strains within a 

species”. 

Figures 5. and 6 illustrates that intra-specific variations among strains in the extreme 

adaptability levels.   

 

  

 

Figures 5 and 6. Intra-specific variations among different Gambierdiscus species in Salinity and Irradiance growth rates. Modified from Xu et al., 2016. 
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6.4.5 Nitrates 

 

Nitrates can play an important role as a limiting factor for cell growing. 

No only, some studies show that could be an important factor affecting toxin production.  

The low concentrations of nitrates in the environment normally decrease Gambierdiscus 

populations, but as the results of the study published by Lartigue et al., 2008, show, some 

strains of G.toxicus can increment their toxin production when nitrates are limiting.  

This toxin production increase normally occurs during the stationary phase, not into the 

exponential one. However, the toxin that Lartigue et al., 2008 results show to are MTX.  

Another interesting discover is that not all the nitrate substrates can be used by 

Gambierdiscus, species, for example putrescine and free amino acids (FAA) are only used 

when these dinoflagellate is in combination with bacteria and urea is totally negative 

correlated with growth. 

Other interesting characteristics of nitrates on Gambierdiscus growth is that these genus is 

capable to do future growth retaining amounts of nitrates in the days before. That’s why 

growth rates are better if nitrates are delivered in pulse. This could allow the genus to 

continue growing in the field instead the nitrates are over (Lartigue et al., 2008).  

Due this affirmation, we ca conclude that nitrates are not an environmental factor that affects 

so much in the distribution of these dinoflagellate, at least no as salinity, irradiance or 

temperature does.  

 

6.4.6 Macro algae substrate 

 

As we know Gambierdiscus and Fukuoya. are ephitic dinoflagellates, but it has been 

demonstrated that no all macro algal hosts are preferred to them, they are conditional ephitic 

organisms (Parsons et al., 2012, Rains, 2015).  

Known witch kind of macro algal hosts is preferred by the species attachment and which ones 

can stimulate growing it’s important to understand where and why these dinoflagellates are. 

The main macro alga’s substrates that Gambierdiscus uses in the endemic areas are resumed 

in figure 7 together with it’s effects on growth cell densities. 

Little is known about how micro algae substrates interacts whit this genus, but some studies 

confirm that, as we had commented, there are some kind of macro algal who could stimulate 
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the growth of this dinoflagellates meanwhile others can suppress it (Richlen et al.,2011, 

Rains, 2015).  

Other important factor is the ephitic behavior, attachment or not attachment of the 

dinoflagellates to the macro algal structure. Studies as the one presented by Rains, 2015 had 

studied these relationships with the main common macro algae that Gambierdiscus uses in the 

main endemic areas, the same resumed in Figure 7.  

 

 The results show that in growth rates, 

there’s a high variability among 

Gambierdiscus species and different 

macro algal substrates.  

The different species grows more or less 

in cell densities among the different 

substrates.  

However, the macro algal substrate that 

shows to provide more growing among 

the different species is Acanthophora 

from the phyla Rhodophyta and the 

species G. caribeaus the one that grew 

faster in     

mostly all macro algal substrates.  

 

In the other hand, species as G. carolinianus are completely inhibited in all macro algal 

substrates. This could happen 

because this specie could be a 

low competitor for nutrients or 

because his absorbing rates are 

lower than the other species. 

Related to ephitic behaviour, 

attachment vs non attachment 

results shows that macro algae 

Polysiphonia (Rhodophyte) and 

Derbesia (Chlorophyte) from 

different phyla but with the same 

Figure 7. Growth densities in different macro algal substrates. Modified 

from Rains, 2015. 

Table 10. Attachment rates of Gambierdiscus species in different macro 

algal substrates. Modified from Rians, 2015. 
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filamentous structure provides better attachment than other macro algal substrates with 

different structure, although, they provide less substrate than others, as resumed in table 10. 

This suggest that for these dinoflagellate genus, attachment depends more in the structure than 

the nutrients provided (Nakahara et al., 1996). 

Overall, in many cases, the hosts with the lower attachment percentages were the ones that 

showed the most Gambierdiscus cell growth. This may suggest that conditions of the 

microenvironment around host algae like nutrient levels, stimulatory or inhibiting 

metabolites, etc. may be influencing without physical attachment to that host. 

As a related characteristic, these studies also had showed that palatability of the macro algal 

substrates is an important factor in the risk to make pass CTX trough the food web. 

Finally, we have to comment that these macro algal relationships are studied with the ones 

found typically of the endemic zones. To really know who this can affect the European 

coastlines, studies with the local macro algal substrates had to be made.  

 

6.4.7 Seasonality 

 

Seasonality is an important point to keep in mind in the risk assessment plans. This 

phenomenon is linked to the water temperatures and directly related to the distribution of the 

Gambierdiscus species.  

Two main ideas had to be commented about seasonality. The distribution of dinoflagellate 

among winter and summer seasons, or cold and hot seasons, and the high variability that this 

can cause depending on the profundity of the water.  

General consensus had arrived in the fact that the areas where hot and cold season are very 

differentiated, the changes in dinoflagellate species distribution due the water temperature 

changes is marked. Recent studies show that normally the CFP cases outbreaks are happening 

at the end of the hot season, that’s explained because areas where the temperature is too low 

in the winter season to permit cell growing become more prevalent in the hot season due the 

temperature increase of the SSTs (Kibler et al., 2015). Another factor that makes the end of 

the hot season more prevalent of CFP outbreaks is the great effluence of tourism and travelers 

that visit the endemic areas in that season. 

This diversification of Gambierdiscus species and consequently, due the variability in 

toxicity, the high risk to induce CFP outbreaks had seen more marked in the low depth 

coastlines, where the distance between the surface of the water and the sand is lower.  
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In the other hand, in the areas of the planet where the difference between summer and winter 

is less marked, like in the European coastlines of the Canary Islands, this diversity of 

dinoflagellates is more stable, but unfortunately, this can produce more proliferation of the 

present Gambierdiscus species, increasing the risk of creating blooms (Rodríguez et al., 

2017).  

 

6.4.8 Environmental phenomena 

 

The major environmental phenomena affecting the worldwide distribution of Gambierdiscus 

and Fukuoya species and consequently, the new epidemiology of CFP, is the Climate Change. 

Their effects both into the endemic and non-endemic areas are going to be discussed later, but 

Climate Change is not the unic environmental phenome that has been described affecting 

these dinoflagellate biology, but maybe it’s the causing about some of them.  

Others environmental factors affecting Gambierdiscus species biology are: 

 

- Coral Bleaching: Coral bleaching is the previous stage to the death of a coral reef. 

It happens when the water temperature exceeds in 1-2 Co the normal temperatures 

for at least four weeks. When it happens, the coral reef suffers a biological shift, 

macro algal substrates invade the skeletons of the death coral, providing to 

Gambierdiscus substrate to be attached at and growth. (Cheal et al.,2010, Sparrow 

et al., 2017).  

It’s true that this phenomenon is linked to Climate Change, but the consequences 

in the proliferation of Gambierdiscus and to the different species of the genus, can 

affect the coastlines around the world (Hales et al.,1999). 

- Hurricanes and tropical storms: Another environmental factor linked to the 

Climate change. Different studies had linked this kind of environmental disaster to 

the increase of Gambierdiscus cell densities and in some cases the CFP outbreaks 

in a period of time around 13-17 month after the disaster occurrence. This is called 

outbreak lag., or the time between that the environmental conditions change and 

the first CFP outbreaks or Gambierdiscus blooms appear.  

It’s true that intensive amount of water delivered in a short period of time into a 

concrete zone can decrease the salinity of the water, and the high disturbances that 



 27 

hurricanes creates in the water movement can decrease the dinoflagellates 

communities, but maybe this is the reason why these phenomena produce CFP 

outbreaks in a large time period (Chateau-Degat et al., 2005). 

Decreased salinity could select different species of Gambierdiscus more resistant 

to it, and even more toxic than the previous ones, and the water motions together 

with the low salinities are the managers who make possible the elimination of the 

previous dinoflagellate species. 

- Human disturbances: These non-environmental disturbances are not linked to the 

Climate change, the human being can affect the biology of the Gambierdiscus 

species due the destruction of the marine environment, pollution and overfishing 

(Sparrow et al., 2017). These human effects produce the same consequences as 

could produce coral bleaching, providing macro algal substrate to the 

dinoflagellate genus (Lartigue et al., 2008).  

Even so, as happens in coral bleaching no direct rations with increases of CFP 

outbreaks had been stipulated, but positives correlations to the increment of cell 

densities of different Gambierdiscus. and Fukuoya species, a potential risk for 

CFP outbreaks.  

 

No direct relations between cell densities increments and CFP outbreaks exists because lots of 

factors play a role on it. Among them, the kind of Gambierdiscus species and his variable 

toxicity, the toxin production in the stable phase and not in the exponential phase of growing 

and finally the complex food web relations that allows a CFP outbreak (Rains, 2015). 

7. Discussion  

 

7.1 The effects of Climate Change on CFP 

 

Climate change is the major environmental phenomena that nowadays affects the distributions 

of this dinoflagellate genus. This phenomenon increases the SSTs of the oceans and seas due 

the hibernacula effect and increases the frequency and probability of natural disasters, as 

hurricanes, tropical thunders or coral bleaching phenomena (Kibler et al., 2015). 

The effects of this event are global, but the consequences of it are different among endemic 

and non-endemic areas in CFP terms.  
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7.1.1 Endemic areas 

 

In the endemic areas, Gambierdiscus and Fukuoya had a traditional distribution among the 

Gulf of Mexico coasts, the USA southeast coastlines and the Caribbean in the Atlantic and 

among the French Polynesia in the Pacific.  

The majority of the recent studies had been turned heavily into the knowledge of how this 

environmental phenomenon could affect that dynamics in that endemic areas.  

As the same Kibler et al., 2015 said, and we commented before, Climate change mainly 

affects in a new redistribution of the Gambierdiscus species into new ecological niches and 

increasing the risk of new CFP outbreaks around the endemic coastlines. For example, in the 

more temperate areas of the Gulf of Mexico and the southeast USA coasts, the average 

number of species is going to increase, this is due to the SSTs increases, and allows more 

thermal resistant species to survive there instead as the cryo resistant ones only (Tester et al., 

2010). More concretely the typical species of these areas, G.carolinianus and G. ribotype 2 

are going to decrees in prevalence meanwhile more warm-tolerant species like G. belizeanus, 

G. caribaeus and F. ruetzleri, more typical in the Caribbean sea, will increase their range 

distribution and growth rates. 

In the other hand, into the Caribbean Sea, where SSTs normally are higher, the climate 

change will have an inhibitory role into Gambierdiscus species. Only the most high 

temperature resistant species as the same G. caribaeus and F.ruetzleri will survive there 

(Kibler et al., 2015). 

In terms of CFP incidence, it’s believed that in the coastlines of Gulf of Mexico and USA, the 

incidence is going to increase, meanwhile in the Caribbean Sea, will remain stable or decrees 

lightly.  

These predictions are only supposed because this could change due the variability in the 

toxicity of the species and the environmental factors that Climate Change can bring, as more 

incidence of hurricanes, tropical thunders or coral bleaching (Tester et al., 2010, Kibler et al., 

2015).  

Finally, all the studies conclude that only when toxicity of each species had been fully 

characterized, the real incidences could be assessed (Kohli et al., 2015).  

This example can be applied in the other endemic areas of the planet and of course into the 

new geographic latitudes that can become new endemic.  
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7.1.2 The European coasts as a new endemic area  

 

The European coastlines that are starting to be considered as potential new endemic areas for 

CFP are the Greek coastlines and the coast of the Macaronesia islands.  

In this study the affords had been focused in the second one.  

In the Macaronesia islands, different studies had been made to understand why could be an 

important new endemic area in Europe since outbreaks of 2004 had not cased to actuality.  

Some studies defend that the orography of these island is perfect for the Gambierdiscus. 

species development and that these new cases are due autochthonous species that were less 

prevalent but still existing in these area (Rodríguez et al., 2017). These makes sense with the 

theory that redistributions of Gambierdiscus species is not done by the invasions of tropical 

species but due the increases of prevalence of species that since now had not enough cell 

densities and environmental conditions to develop CFP cases or maybe, the ones given where 

so low that were not reported. Now due the increases of SSTs by the climate change CFP 

starts to outbreak. 

One example of this theory could be the Gambierdiscus specie G.silvae, that is only present in 

these temperate Atlantic Ocean areas (Fraga et al., 2014).  

Another important factor that these European coastlines have are the low difference between 

the winter and summer season. This makes more stable the Gambierdiscus populations, 

increasing the probabilities that if the tendency is still ongoing, the cases of CFP outbreaks 

will increase in these areas in the incoming years (Fraga et al., 2014). 

Finally, as well as we commented in the endemic areas, the new CFP outbreaks not only 

depends on the cell densities of the Gambierdiscus species in a determinate area, 

tropicalitzation of the finish and water environments in these regions could play and 

important role on it (Rodríguez et al., 2017), as well as the increment on the environmental 

phenomena linked to the same great big problem, the Climate change. 
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7.2 CFP as a One Health problem 

 

As we had been discussed in this study, CFP is not a simple problem, and it requires a 

multidisciplinary point of view to be successful in the modeling of prevention and risk 

assessment plans.  

The big quantity and the complexity of the factors that involve that problem makes this idea 

stronger. Multi specialist collaboration is needed to: 

 

• Asses the principal problem, to better known the relations between this 

dinoflagellate genus and the environment that involves them. More studies 

focusing, in the specie specific toxicity, the local food web relations and the local 

environmental factors that affects in a determinate area are necessary. 

• Better understanding and preventions of the human CFP cases. Good information 

and knowledge about the distribution and symptoms of the CFP cases by human 

physicians is needed. As well as a good awareness to the endemic areas 

populations about the high risk that it involves.  

• Better and efficient identification tools that allows to detects CTX and if possible 

species of Gambierdiscus present in certain areas or in the finfish sold in the local 

and big markets over the endemic areas. 

• And finally, the big economics impacts that these intoxication problem can bring 

to the endemic societies and the good education to the population about the real 

risk and how to avoid that is a huge job that has to be done by sociologists and 

economists. 
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8. Conclusions 

 

8.1 Modelling and risk assessment proposals 

 

As we had discussed along all this bibliographical study, the major conclusion found in the 

biography is that risk assessment and prevention plans will need of different actions to be 

accomplished: 

 

• The plans will be assessed depending on the species in the regional areas. 

However not only the species had to be studied regionally, the orography, 

water conditions and environmental phenomena in a certain area had to be 

studied properly to accomplish a great risk assessment plan. As well, food web 

relations depend in the fish and dietary habits that exist in a certain area, 

regional studies in that field had to be done.  

 

• New and better species and toxin detectors had to be developed if an accurate 

risk and prevention plan has to be made. These detectors will help to 

determinate the species in a certain area and the kind of toxicity they can show. 

Even so, these detectors will help the veterinary services to detects CTX toxins 

in the finfish that is going to be sold in the markets.  

 

•  Finally, more studies destined to develop new techniques to depurate and 

grow Gambierdiscus species in laboratorial conditions had to be proposed, as 

much accurate the isolation of Gambierdiscus cells could be and more similar 

to the natural environments the laboratorial experiments are, better responses 

to the real interactions these dinoflagellates suffer in their own environments 

and better understanding of the real epidemiology of CFP will be.  
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