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ABSTRACT 
 

Important vector borne zoonotic diseases are transmitted by different mosquito species. 

Mosquito surveillance needs expert entomologists and is time-consuming. Trap-captured 

mosquitoes are transported to the laboratory for counting and identification, and there are over 

3,500 species of mosquitoes in the world. In order to improve mosquito surveillance, we 

evaluated the accuracy of a novel optoelectronic sensor prototype that captures the shadow of 

the mosquito while is being sucked into a trap. This is the first time that species, sex and age 

classification of mosquitoes is made with the forced flight condition of a commercial ventilator-

based mosquito trap, where the natural wing-beat is distorted. Culex pipiens, Aedes albopictus 

and Aedes aegypti were used to test the sensor. Various algorithms on different feature 

combinations were trained and optimized for machine learning to recognize automatically 

mosquitoes’ sex, age and species. Our system was capable to distinguish between species and 

sex in terms of fundamental frequency, showing that the fundament frequency was higher in 

males than females and higher in mosquitoes of Aedes than in Culex genus. The system 

proposed in this study is useful for genus classification with accuracy values that ranged from 

93.83% to 95.73%. More data and training will be necessary to optimize the sensor to better 

classify mosquito species of the same genus since the accuracy for Aedes genus was 76.06%. 

Regarding gender identification, male and female were discriminated with more than 93.11% 

of accuracy after machine learning techniques. This information will be important for arbovirus 

surveillance programs since the females are the unique implied in arbovirus transmission. The 

accuracy in terms of age ranged from 69.81% to 90.97%, allowing to know how old the 

mosquito population is, providing useful data due to the importance of the age in vector capacity 

which it is important to estimate the risk assessment for arbovirus diseases.  
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Introduction  

Every year more than one billion people are infected, and more than one million people die 

because of vector-borne diseases (VBD) (malaria, dengue, yellow fever, schistosomiasis, 

leishmaniasis, Chagas disease, lymphatic filariasis, onchocerciasis, and many other different 

VBD) (WHO, 2014). Approximately 30% of the world’s human population still lives with the 

threat of insect-borne disease (Becker et al., 2010). A world increasingly connected through 

travel, trade and tourism is an important factor for VBD spreading such as dengue, West Nile 

fever, yellow fever, chikungunya and malaria, all of them transmitted by mosquitoes (Lee et al. 

2013, ECDC, 2014). Climate change and global warming may contribute to more favorable 

conditions for survival and life cycle completion of the vector (Rossati, 2017), but climate 

warming does not necessarily lead to an increase in mosquito abundance (Roiz et al., 2014) and 

furthermore, temperature alters the replication of the virus in the mosquito and infection rates 

(Kilpatrick et al., 2008). Moreover, the effects of climate are species-specific, place-specific 

and non-linear (Roiz et al., 2014). This specificity requires tailored parameters for individual 

vector-pathogen systems to more accurately project the impact of climatic changes on VBD 

transmission (Parham et al. 2015). 

Important vector borne zoonotic diseases are transmitted by different mosquito species. There 

are over 3,500 species of mosquitoes in the world (Mosquito Catalog, 2018), mainly belonging 

to the Culex, Aedes and Anopheles genera. Aedes aegypti and Aedes albopictus species can 

transmit Chikungunya, dengue, yellow fever and Zika viruses. In the case of Ae. albopictus, it 

can also transmit Rift Valley fever and West Nile viruses (Brustolin et al., 2016 and Brustolin 

et al., 2017). Both mosquito species are two of the most invasive mosquito species and are 

important vectors of arboviruses. Aedes aegypti is predicted to occur primarily in the tropics 

and sub-tropics, but with relatively few areas of possible suitability in some Mediterranean 

countries and temperate North America. Aedes albopictus distribution extends into southern 

Europe, northern China, southern Brazil, northern United States, and Japan (Kraemer et al., 

2015). This reflects Ae. albopictus ability to tolerate lower temperatures (Brady et al., 2013). 

In general, Ae. aegypti develops preferably in urban areas due its antropophily, endophily and 

endophagy, while Ae. albopictus can be found spread anywhere limited only to the presence of 

their particular breeding sites, common in cemeteries and containers in humanized zones 

(Valdés et al., 2009 and Caputo et al., 2012). In certain areas, habitat segregation in terms of 

distance from the coast can influence its distribution. Frequently they fight over their 

distribution zones, which often causes the competitive displacement of one of the species (Rey 
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and Lounibos 2015). In Europe and other temperate and tropical regions, members of the Culex 

pipiens complex are the most ubiquitous mosquito species which serve as principal vectors for 

various arboviruses such as Rift Valley fever and West Nile viruses (Rudolf et al., 2013, WHO 

2014). Culex pipiens global distribution combined with their mixed feeding patterns on birds 

and mammals (including humans), increases the transmission of several avian viruses to 

humans (Farajollahi, 2011). Culex pipiens species is formed by two biotypes, pipiens and 

molestus, which can form hybrids. Both biotypes and their hybrids are morphologically 

identical but differ in their behavior (Vogels 2017). The typical pipiens biotype prefers birds as 

host, diapauses during winter, mates in swarms and requires a blood meal prior to egg laying 

(anautogenous) (Byrne & Nichols 1999). The molestus biotype prefers mammals as host, can 

remains active year-round, mates in confined spaces and can lay its first egg batch without a 

blood meal (autogenous) (Rudolf et al., 2013). Hybrid forms fed on birds and mammals, and 

human bloodmeals are common, predisposing them to serve as potential bridge vectors from 

birds to humans (Medlock et al., 2005). The considerable presence of hybrids in peri‐ urban 

areas suggests that these urban borders may represent high‐ level hybridization zones, in which 

conditions support the co‐ occurrence and interbreeding of molestus and pipiens forms. 

Molestus form typically occupies underground and confined breeding habitats in peri-urban 

areas (Osório, 2014). To sum up, invasive and native mosquitoes are vectors of pathogens with 

high human and veterinary relevance and entomological surveillance belongs to animal and 

human disease surveillance within the ‘One Health’ concept where interdisciplinary 

collaboration and communication in healthcare for humans and animals is crucial (ECDC 2014 

and ECDC 2012).   

Adult mosquitoes share the characteristic of most Diptera in having a single pair of wings and 

they are relatively strong fliers. Wing characters provide useful information for identifying the 

sex of culícids (Virginio et al., 2015). Mosquito adults are small flying midge-like insects with 

long, slender wings (Eldridge, 2005). Mosquito flight is powered by indirect flight muscles, 

which produce wing strokes by deforming the thoracic box. These are asynchronous fibrillar 

muscles. Most female mosquitoes have long, slender proboscis that is adapted for piercing skin 

and sucking blood. Male mosquitoes also have a proboscis, but it is adapted for sucking plant 

juices and other sources of sugars. Most male mosquitoes are generally smaller than females of 

the same species and have much longer maxillary palps and bigger and hairier antenna. The 

bodies of mosquito adults are covered with small scales, often with patterns of contrasting 

colors. These patterns are used to identify morphologically mosquitoes to species. The wing-
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beat frequencies of males are always higher than females (Clements, 1992), but mosquitoes 

sometimes modulate their flight tone to communicate. For some species, male and female flight 

harmonics converge toward a common frequency while mating (Genoud et al., 2018). Tones 

are detected by the antennae of the male, which are more sensitive to vibration (Arthur et al., 

2014). The characteristics of mosquito wingbeat were studied through acoustic, optical, and 

radar approaches, but there are certain difficulties for implementing a robust system for in-field 

mosquito population monitoring using these methods and due to the tinny size of the study 

subject, the optical methods suffered from the resolution of the sensor.  With the rapid progress 

of computers, automatic classification algorithms were introduced in the studies on insect 

wingbeat (Ouyang, 2015).  

Mosquito surveillance consists in routine monitoring of both larval and adult mosquito 

populations over the course of an entire mosquito season. It is critical to a successful mosquito 

control program. Mosquito surveillance program allow: i) monitoring changes in mosquito 

populations, ii) identifying which mosquito species are present, allowing the identification of 

new invasive species, iii) detecting mosquito-borne diseases and iv) determining what control 

measures need to be conducted (Flores, 2005). This kind of surveillance needs expert 

entomologists and is time-consuming because of specialist technicians set adult mosquito traps 

and the mosquitoes captured are transported to the laboratory for counting and identification. 

The purpose of the present study is to evaluate the accuracy of a novel optoelectronic sensor 

prototype that can capture the shadow of the mosquito is being sucked into the trap by the 

ventilator of a commercial trap. In the literature, basic wing-beat studies have been reported for 

mosquitoes in free flight (Villarreal et al., 2017, Arthur et al., 2013, Cator et al., 2012 and Iams, 

2012), but this is the first time that species, age and sex classification of mosquitoes is made 

with the forced flight condition of a commercial ventilator-based mosquito trap, where the 

natural wing-beat is distorted making it insufficient for species classification until now. Culex 

pipiens, Ae. albopictus and Ae. aegypti species were used to asses it. With this data, machine 

learning techniques were used to develop pipelining techniques that enables the sensor to 

always recognize automatically the sex, age and species. 

Material and methods  
 

Mosquito rearing  

The colonies used for the sensor testing were: i) Cx. pipiens 2012 strain Gavà, Barcelona, Spain 

(41.3º, 2.0167º), ii) Ae. albopictus, 2005 strain Sant Cugat del Vallès, Barcelona, Spain 
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(41.4667º, 2.0833º) and iii) Ae. aegypti 1994 strain Paea, Tahiti, French Polynesia (-

17.688889°, -149.586944°). Culex pipiens and Ae. albopictus were reared in biosafety level 2 

(BSL2) laboratory and Ae. aegypti in biosafety level 3 (BSL3) laboratory at CReSA-IRTA 

facilities. 

Culex pipiens, Ae. albopictus and Ae. aegypti immature stages and adults were reared under 

controlled environmental conditions at 28ºC and 80% RH in climatic chambers, with a 

photoperiod of 12:12 hours light:dark cycle: 8am to 8pm of light and 8pm to 8am of darkness 

for Ae. albopictus and Ae. aegypti and 11am to 11pm of darkness and 11pm to 11am of light 

for Cx. pipiens, with half an hour of twilight in each period. 

Larvae were kept in plastic trays with dechlorinated tap water and fed with fish pellets (Goldfish 

Sticks – TETRA) ad libitum and water renovation three times a week. Pupae were immediately 

placed in insect cages (BugDorm-1 Insect Rearing Cage, W30 x D30 x H30 cm). After 

metamorphosis, adults were fed with sucrose solution (10%) ad libitum changed two times a 

week. Females of all species were never fed with blood to avoid a body-size increase and flight 

modifications. Sucrose solution (10%) was removed before mosquito transferring to the insect 

cage with the trap inside to increase their appetite. Aedes mosquitoes and Cx. pipiens fasted 24 

and 48 hours respectively to improve their affinity for the attractant. 

 

Sensor description and data acquisition process 

The commercial trap used to test the sensor was “BG-Mosquitaire” from Biogents, Germany. 

It contained an electrical fan which creates a flow of air down through the entrance funnel in 

the lid of the trap, and into a catch bag in the body of the trap. The air was then expelled through 

a white grill at the top of the trap. The trap was fitted with a sachet containing an artificial 

human scent called BG-Sweetscent, from Biogents AG, whose odor was released with the 

expelled air to attract mosquitoes to the trap. In this manner, mosquitoes that were flying close 

to the mouth of the funnel were overpowered by the air flow from the suction fan and were 

sucked in through the funnel. The sensor was fitted between the entrance funnel of the trap and 

the body of the trap (Figure 1). In this manner, mosquitoes which were drawn into the funnel 

by the suction fan were sensed before being trapped in the catch bag. The size of the insect cage 

where the trap was allocated was W47.5 x D47.5 x H93.0 cm. (BugDorm-4S4590 Insect 

Rearing Cage). 

https://shop.bugdorm.com/bugdorm-4s4590-insect-rearing-cage-p-71.html
https://shop.bugdorm.com/bugdorm-4s4590-insect-rearing-cage-p-71.html
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Figure 1, Irideon sensor (rectangular black box) fitted to the top of a BG Mosquitaire mosquito trap (brown 

cylinder with white lid. 

To introduce the mosquitoes into the cage, a mouth aspirator was used in BSL2 conditions and 

a mechanical aspirator in BSL3 conditions. In this case, Ae. aegypti were previously separated 

by gender in small cages of 10 individuals using carbon dioxide to anesthetize them. The 

mosquitoes were introduced in batches of 20 in Cx. pipiens and Ae. albopictus species to avoid 

saturation of the trap and because the sensor needs a second between each flight. In the case of 

Ae. aegypti the batches were reduced to 10 because they had more affinity to the attractant.  

In the Irideon sensor, the optical emitter was formed by a two-dimensional (2D) array of 940 

nm wavelength infrared light emitting diodes (LEDs) and optical lenses; and the optical receiver 

was formed by a two-dimensional (2D) array of 940 nm photodiodes and optical lenses. The 

sensor had an active length of around 70 mm in the downward direction, corresponding to a 

sensor length of 4 LEDs in the emitter and 4 photodiodes in the receiver. The air flow due to 

the ventilator in the trap was approximately 3 m/s in the downward direction. The duration of 

a typical mosquito flight through the field of view of the sensor was around 50 ms, therefore 

the typical flight speed was 1.4 m/s. The Irideon sensor contained two extinction sensors in a 

special configuration, so each flight event comprises two 50 ms recordings. A sampling 

frequency of 9603 samples per second was used on each of the channels. The sensor also 

recorded the ambient temperature and relative humidity at the time of each fight and tagged 

each flight with a time stamp, with 1 second resolution. 
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The sensor box contained electronics and firmware to drive the LEDs, and to amplify and 

acquire the signal from the photodiodes. When a mosquito entered into the field of view of the 

sensor, the resultant dip in receiver output triggered a short recording of the sensor output, 

which also included the receiver output immediately prior to the trigger. At the end of each 

laboratory experiment, recordings each mosquito flight were downloaded to a laptop via a USB 

cable. Each recording was in the form of a .csv file that could be imported and viewed in a 

spreadsheet program such as Microsoft Excel.  

To evaluate the wingbeat frequency and accuracy of the prototype optoelectronics sensor, 

mosquitoes were separated according to species, sex and age. Different ages (2-4 days, 7-9 days 

and 14-16 days) were tested for each species (Cx. pipiens, Ae. albopictus and Ae. aegipty) and 

sex (female and male), with a total of 18 conditions were analyzed.  

Data analysis 
 

Preprocessing and feature extraction  

The preprocessing and feature extraction process prepares the data for the machine learning. It 

consists of three steps: 

i) Audio conversion. The raw data is converted to an audio .wav file for later analysis. 

A Python script has been developed for this.  

ii) Deletion of invalid data. A flight viewer in Python has been developed in order to 

be able to visualize the audio signal and be able to delete invalid data like false 

triggers, double flights or cut flights. 

iii) Feature extraction. An audio feature extraction library in Python has been developed 

to extract features from the flight which could be useful for the machine learning. 

All features, except the MFCC, are extracted from an estimate of the power spectral 

density (PSD) using Welch’s method (Villwock and Pacas, 2008). See Annex I.  

 

Characteristics groups 

The features were grouped in groups for reducing the number of characteristics combinations. 

- Fresnel: includes Fresnel amplitude, Fresnel frequency and Fresnel power (3 features). 

- Harmonic form: includes first harmonic start, first harmonic length, second harmonic start, 

second harmonic length, third harmonic start and third harmonic length (6 features). 
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- Harmonic frequencies: includes fundamental frequency, second harmonic frequency and 

third harmonic frequency (3 features).  

- Harmonic powers: includes first harmonic power, second harmonic power, third harmonic 

power (3 features).  

- Mel: includes MFCC and Mel-scaled spectrogram (64 features). 

- Peak amplitudes: includes first peak amplitude, second peak amplitude, third peak 

amplitude (3 features). 

 

Machine learning  

Various algorithms on different feature combinations were trained and optimized for machine 

learning. 

i) Logistic Regression 

ii) Random Forest 

iii) XGBoost 

iv) Support Vector Machines 

v) Fully connected artificial deep neural network 

All the data sets are balanced and 75% of the respective data sets were used for training the 

model and the other 25% for testing it. 

 

Statistical analysis 
 

Difference between sexes for the different species  

First, we evaluated the normality of the frequency parameter in both males and females for the 

different species using the Shapiro-Wilk test. When data was normally distributed, mean 

frequencies in males and females mosquitos in a given species were compared using the t-test. 

When data was non-normally distributed, mean frequencies in males and females mosquitos in 

a given species were compared using the Wilcoxon rank sum test (=Mann–Whitney U test).  

Difference between species within the same sex category  

Given the results of the evaluation of normality of the frequency parameter in both males and 

females for the different species, we applied parametric or non-parametric test to assess the 

differences in the mean frequencies between species within the same sex category. When data 

was normally distributed, groups were compared using the ANOVA test, and in case of 
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significance, post-hoc comparisons were carried out using the Tukey test. When data was 

normally distributed, groups were compared using the Kruskal-Wallis test, and in case of 

significance, post-hoc comparisons were carried out using the Dunn's test with Bonferroni 

correction to adjust for multiple tests (i.e. conservative estimation). 

 

Results and discussion 

Efficiency of mosquito rearing  

A total of 5,671 Cx. pipiens, 4,886 Ae. albopictus and 2,053 Ae. aegypti larvae were reared to 

adults for the sensor testing. The percentage of survival of larva to pupa were 89.95% for Ae. 

albopictus, 79.59% for Ae. aegypti and 60.41% for Cx. pipiens (Table 1).  Cx. pipiens had less 

survival during mosquito rearing, different larvae food could be tested to optimize it and to 

increase the number of pupae after larvae rearing. 

Table 1, Mosquito rearing 

  Species 

  Culex pipiens Aedes albopictus Aedes aegypti 

  01/03/2018 to 

25/06/2018 

27/02/25018 to 

09/05/2018 

04/05/25018 to 

18/06/2018 

  Larvae Pupae Larvae Pupae Larvae Pupae 

Rearing 

1 1,282 676 492 371 976 830 

2 258 199 2,451 2,159 731 603 

3 600 391 950 918 346 201 

4 2,090 1,204 993 947 - - 

5 1,441 956 - - - - 

Total 5,671 3,426 4,886 4,395 2,053 1,634 

% Survival  60.41  89.95 79.59 

 

Efficency of data acquisition 

The adult mosquitoes that were used to test the sensor were 1,155 Cx. pipiens, 1,885 Ae. 

albopictus, and 1,178 Ae. aegypti (Table 2). In the case of male mosquitoes of 14-16 days of 

age, there were a smaller number of tested specimens because they do not tend to survive until 

that age. The percentage of valid recorded of mosquitoes in respect of the total mosquitoes 

captured in the trap was 86.15% for Cx. pipiens, 76.39% for Ae. albopictus and 79.97 for Ae. 

aegypti.  
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Table 2, Number of adult mosquitoes used to test the sensor 

 

The reason of this valid recorded percentage was mainly because of two mosquitoes entered in 

the trap at the same time causing “double flights”. Other reason was fan errors, causing “slow 

flights”, hindering the correct detection of mosquitoes. Therefore, decrease the time needed 

between mosquito flights (actually 1 second), might improve the efficiency of the sensor. One 

the other hand, if the number of mosquitoes introduced in the box where the trap is allocated 

double flight could decrease.  

 

Fundamental frequency of Cx. pipiens, Ae. albopictus and Ae. aegipty 

The fundamental frequencies represent the wingbeat mosquito frequencies. The fundamental 

frequencies of each species obtained by the sensor are showed in Figure 2. Two peaks in each 

species are visualized in the histogram and they correspond to the sex peaks.  

 
2-4 days old 7-9 days old 14-16 days old 

Total 

mosquitoes 

captured in 

the trap 

 

Valid 

recorded 

mosquitos 

(females and 

males) 

 

Valid 

recorded 

vs captured 

mosquitoes 

(%) 

Species Male Female Male Female Male Female  

Culex pipiens 260 170 280 218 56 171 1,155 

995 (494 

females and 

501 males) 

86.15 

Aedes albopictus 380 322 387 396 56 344 1,885 

1,440 (776 

females and 

664 males) 

76.39 

Aedes aegypti 299 130 287 221 64 177 1,178 

942 (442 

females and 

520 males) 

79.97 

TOTAL 939 622 954 835 176 692 4,218 

3,377 (1,712 

females and 

1,685 males) 

80.06 
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Figure 2, Fundamental frequency by sex. A) Cx. pipiens B) Ae. albopictus C) Ae. aegypti 

The fundamental frequency histogram of species, sex and age showed that in all the age-points; 

2-4 days (Figure 3), 7-8 days (Figure 4) and 14-16 days (Figure 5), the fundamental frequency 

by sex were always higher in males than in females but no differences have visually seen in 

fundamental frequency by age. 

 

Figure 3, Fundamental frequency by age and sex (2-4 days) A) Cx. pipiens B) Ae. albopictus C) Ae. aegypti 
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Figure 4, Fundamental frequency by age and sex (7-9 days) A) Cx. pipiens B) Ae. albopictus C) Ae. aegypti 

 

Figure 5, Fundamental frequency by age and sex (14-16 days) A) Cx. pipiens B) Ae. albopictus C) Ae. aegypti 

Fundamental frequencies for specie and sex detected by the sensor are presented in Table 3. 

The values of fundamental frequency were not normal and showed statistical differences 

(p<<0.05) between females and males of each species. These results are in agreement with 

previous knowledge that males have high fundamental frequency that females for the same 

species (Clements, 1992). The wing beat fundamental frequency could be enough predictive 

variable to identify the gender of a mosquito as previously reported (Genoud et al., 2018). 

Biologically, differences in wing shape between species for both males and females have been 

previously reported since all mosquito species have sexually dimorphic wings (Cator et al., 

2011). 
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Moreover, there were statistical differences in the mean fundamental frequencies of the female 

and male mosquitoes among the different species (p<<0.05). The results of the Dunn's test with 

Bonferroni correction indicate that all groups are statistically different from each other. Culex 

pipiens showed the lowest frequency followed by Ae. aegipty and Ae. albopictus, which had 

the highest frequency in our system where the ventilator was present. These results are in 

agreement with previous studied where the fundamental frequency was detected in free flight 

(Genoud et al., 2018). 

Table 3, Mean fundamental frequency values by sex and specie 

 

 

 

  

An example of fundamental frequency in free flight at 18±1 ºC is: 344±7 for female and 541±7 

for male of Cx. pipiens, 456±6 for female and 681±5 for male of Ae. albopictus, and 425±2 for 

female and 628±6 for male of Ae. aegypti (Genoud et al., 2018). All the fundamental frequency 

values are lower than the obtained in the present study, which has been done at average 

temperature of 25.79ºC and RH of 52.13 % for Cx. pipiens and Ae. albopictus (BSL2 

conditions) and at average temperature of 26.15ºC and RH of 51.88% for Ae. aegypti (BSL3 

conditions). It has been seen that fundamental frequency is susceptible to temperature, 

increasing 8-13 Hz each ºC gain (Villareal, 2017), so this difference could be due to this factor. 

Other studies (Cator et al., 2011) in free flight at average temperature of 36.2ºC and RH of 

59.9%, shows a fundamental frequency (Hz) of 664.3±4.6 for females and 982.0±1.0 for males 

of Ae. aegypti species. These results were higher values that those obtained in the present study. 

In practice, when a sensor such as the one in the present study is used in the field, different 

environmental factors should be considered, since, as can be seen, different temperatures 

affected the fundamental frequency. 

In the Figure 6, the variations of fundamental frequency by age are shown. As the age of the 

mosquitoes progressed, the fundamental frequency increased until it became stable, like 

indicated previous free-flight reports (Clements, 1992). 

 
Mean fundamental frequency (Hz) 

 
♀     ♂ 

Culex pipiens 457.240515 620.890075 

Aedes albopictus 531.230713 684.221659 

Aedes aegypti 508.986023 696.99659 
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Figure 6, Fundamental frequency by species, sex and age. A) Females B) Males 

 

Classification between species, sex and age by machine learning 
For species, sex and age classification on the test set using machine learning 844 samples were 

used, which consisted in 25% of the number of available samples and had not been used during 

the training, which had used 2,533 samples. 
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Species classification 

In this section the results of the species classification using machine learning are described. A 

machine learning process for all the combinations of species with two classes was performed. 

Aedes albopictus and Culex pipiens 

In the Table 4, the 3-best results of the classification between the species Ae. albopictus and 

Cx. pipiens are shown. The highest accuracy obtained was 93.83%. 

 Table 4, Results of species classification between Aedes albopictus and Culex pipiens 

* This is the size of the data set including train and test set. The best result is highlighted in green. 

The training and cross-validation score curves (Figure 7) indicated that with more data, the 

results could improve as there was a low bias but a high variance to achieve a highly successful 

classification between Ae. albopictus and Cx. pipiens. 

 

Figure 7, Learning and validation curves for species classification between Ae. albopictus and Cx. pipiens 

Characteristics used Number of 

features 

Number of 

mosquito flight 

records* 

Algorithm Accuracy 

Fresnel, Mel, peak 

amplitudes 

70 972 XGBoost 93.83% 

Harmonic form, Mel 70 972 XGBoost 93.01% 

Fresnel, Mel 67 976 XGBoost 91.80% 
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Aedes aegypti and Culex pipiens 

In the Table 5, the 3-best results of the classification between the species Ae. aegypti and Cx. 

pipiens are shown. The highest accuracy obtained was 95.73%. 

Table 5, Results of species classification between Aedes albopictus and Culex pipiens 

Characteristics 

used 
Number of 

features 

Number of 

mosquito flight 

records* 

Algorithm Accuracy 

Fresnel, harmonic 

frequencies, Mel, 

peak amplitudes, 

73 1,688 Artificial neural 

network 

95.73% 

Fresnel, Mel, peak 

amplitudes 

70 1,688 Artificial neural 

network 

95.73% 

Fresnel, Mel 67 1,688 Artificial neural 

network 

95.49% 

* This is the size of the data set including train and test set. The best result is highlighted in green. 

These were the high accuracy results between species classification and the learning and 

validation  curves (Figure 8) indicated that more data could improve the results further as they 

have not converged yet. At this moment, the obtained results of accuracy are similar to those 

reported by Silva et al. (2015) who showed an accuracy of 95% for Ae. aegypti and is higher 

than the results obtained by Ouyang et al. (2015) who reported an accuracy of 88.1%. 

 
Figure 8, Learning and validation curves for species classification between Aedes Aegypti and Culex Pipiens 
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Aedes aegypti and Aedes albopictus 

In the Table 6, the 3-best results of the classification between the species Ae. aegypti and Ae. 

albopictus are shown. The highest accuracy obtained was 76.06%. 

Table 6, Results of species classification between Ae. aegypti and Ae. albopictus 

Features used Number of 

features 

Number of 

mosquito flight 

records* 

Algorithm Accuracy 

Fresnel, harmonic 

forms, Mel 

73 1,688 XGBoost 76.06% 

Fresnel, Mel, peak 

amplitudes 

70 1,688 Artificial Neural 

Network 

76.06% 

Fresnel, harmonic 

frequencies, 

harmonic powers, 

Mel 

73 1,688 XGBoost 75.96% 

* This is the size of the data set including train and test set. The best result is highlighted in green. 

The obtained scores in the training curve decreased with the number of training samples (Figure 

9). However, it might be possible to differentiate the two species using the present model since 

the gap between learning curve and validation curve indicates that with more training data the 

results would improve. 

 

Figure 9, Learning and validation curves for species classification between Ae aegypti and Ae. albopictus 
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An entomologist can distinguish between Culex and Aedes genus practically without error due 

to their macroscopically visible biological differences. In this study, an accuracy of 93.83% 

between Ae. albopictus and Cx. pipiens and 95.73% between Ae. aegypti and Cx. pipiens have 

been shown. Instead, an accuracy of 76.07% between Ae. albopictus and Ae. aegypti showed, 

like previous results reported, that species in the same genus share similar wingbeat patterns, 

suggesting that the classification between two groups in the same genus would be challenging 

(Ouyang et al., 2015). 

Sex classification 

A machine learning process was implemented for all the three species with the goal to 

distinguish between females and males. 

Culex pipiens 

In the Table 7, the 3-best results of the classification of Cx. pipiens into females and males are 

shown. The highest accuracy obtained was 93.11%. 

Table 7, Results of sex classification of Cx. pipiens 

Features used Number of features Number of 

mosquito flight 

records* 

Algorithm Accuracy 

Fresnel, harmonic 

form, Mel 

73 988 XGBoost 93.11% 

Harmonic form, Mel 70 988 XGBoost 93.11% 

Fresnel, harmonic 

frequencies, Mel, 

peak amplitudes,  

73 988 XGBoost 93.11% 

* This is the size of the data set including train and test set. The best result is highlighted in green. 

These results were the lowest of all species for sex classification. Moreover, the learning and 

validation curves (Figure 10) indicated that in this moment it would not improve the results to 

have more training data as both curves have converged. It seems to be some laboratory errors 

and that some samples were labeled incorrectly in terms of sex. Therefore, to improve the 

results more Cx. pipiens should be reared to relabel correctly and retrain. 
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Figure 10, Learning and validation curves of sex classification of Cx. pipiens 

 

Aedes albopictus 

In the Table 8, the 3-best result of the classification of Ae. albopictus into females and males 

are shown. The highest accuracy obtained was 94.27%. 

Table 8, Results of sex classification of Ae. albopictus 

Features used Number of 

features 

Number of 

mosquito flight 

records* 

Algorithm Accuracy 

Fresnel, harmonic 

powers, Mel 

70 1,328  Artificial neural 

network 

94.27% 

Fresnel, harmonic 

frequencies, 

harmonic powers, 

Mel 

73 1,328 XGBoost 94.27% 

Mel 64 1,328 XGBoost 93.97% 

* This is the size of the data set including train and test set. The best result is highlighted in green. 

Females and males of Ae. albopictus (Figure 11A) are not as easily distinguishable as the sexes 

of Ae. aegypti (Figure 11B) since there is more overlapping in some features (fundamental 
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frequency and first peak amplitude). Consequently, we need a more complex model to obtain 

high scores. 

 

 

Once more, the learning curves (Figure 12) indicated that more training could improve the 

results because of the low bias and high variance. 

 

Figure 12, Learning and validation curves for sex classification of Ae. albopictus 

 

A B 

Figure 11, Scatter plot of fundamental frequency and first peak amplitude. A) Ae. albopictus B) Ae. aegypti. 
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Aedes aegypti 

In the Table 9, the 3-best result of the classification of Ae. aegypti into females and males are 

shown. The highest accuracy obtained was 99.05%. 

Table 9, Results of sex classification of Aedes aegypti 

* This is the size of the data set including train and test set. The best result is highlighted in green. 

The females and males of Ae. aegypti were easy to classify so that even a quite simple model 

obtains very high scores. Only 2 samples were wrongly classified by the present model. The 

learning and validation curves (Figure 13) indicated that with more training samples it would 

be possible improve the classification between sex of Ae. aegypti. As it was mentioned before, 

for Ae. aegypti, it is easier to visually differentiate with a fundamental frequency and first peak 

amplitude scatter plot (Figure 11B). 

Features used Number of 

features 

Number of 

mosquito flight 

records* 

Algorithm Accuracy 

Fresnel, power 

spectral density 

without baseline, 

peak amplitudes 

263 844 Artificial neural 

network  

99.05% 

Fresnel, harmonic 

powers 

6 844 Support vector 

machines 

99.05% 

Fresnel, peak 

amplitudes, 

harmonic 

frequencies 

9 844 Logistic regression 99.05% 
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Figure 13, Learning and validation curves for sex classification of Ae. aegypti 

Age classification 

A machine learning process was implemented for both sexes of all the three species with the 

goal to distinguish between age-groups. Two age-groups were used for the classification: 2-4 

days and 7-9 days. The specimens of 14-16 days were removed because there were less samples. 

The reason was that males do not tend to survive until this period.  

Culex pipiens females 

In the Table 10, the 3-best results of the classification of the age of the females of Cx. pipiens 

are shown. The highest accuracy obtained was 78.04%. 
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 Table 10, Results of age classification for females of Cx. pipiens 

* This is the size of the data set including train and test set. The best result is highlighted in green. 

These results and the learning and validation curves (Figure 14) indicate that with more training 

samples it would be possible to successfully classify females of Cx. pipiens into age groups.  

Figure 14, Learning and validation curves of age classification for females of Cx. pipiens 

Culex pipiens males 

In the Table 11, the 3-best results of the classification of the age of the males of Cx. pipiens are 

shown. The highest accuracy obtained was 69.81%. 

 

Features used Number of 

features 

Number of 

mosquito 

flight 

records* 

Algorithm Accuracy 

Fresnel, Mel 67 326 Artificial Neural Network 78.04% 

Fresnel, harmonic 

frequencies,Mel, peak amplitude 

73 326 XGBoost 76.74% 

Fresnel, harmonic forms, Mel 73 326 Artificial Neural Network 75.60% 
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Table 11, Results of age classification for males of Culex Pipiens 

Features used Number of 

features 

Number of mosquito 

flight records* 

Algorithm Accuracy 

Fresnel, harmonic 

frequencies,  harmonic 

powers, Mel 

73 424 XGBoost 69.8113% 

Fresnel, harmonic 

frequencies Mel, peak 

amplitudes,  

73 424 XGBoost 67.9245% 

Harmonic powers, Mel, 

PSD 

324 424 XGBoost 66.9811% 

* This is the size of the data set including train and test set. The best result is highlighted in green. 

These were the results with lower accuracy. Once more, with more samples they are worse than 

those of females of Cx. pipiens indicating that males are more difficult to classify. The learning 

and validation curves (Figure 15215) indicate that with more training data the results would 

improve because the curves have not converged. 

 

 
Figure 152, Learning and validation curves for age classification of males of Culex Pipiens 
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Aedes albopictus females 

In the Table 12, the 3-best results of the classification of the age of the females of Ae. albopictus 

are shown. The highest accuracy obtained was 90.97%. 

Table 12, Results of age classification for females of Ae. albopictus 

Features used Number of 

features 

Number of mosquito 

flight records* 

Algorithm Accuracy 

Fresnel, MFCC 67 530 Artificial neural 

network 

90.97% 

MFCC, power 

spectral density, 

peak amplitudes 

324 530 XGBoost 90.97% 

harmonic powers, 

MFCC, power 

spectral density 

324 530 XGBoost 90.97% 

* This is the size of the data set including train and test set. The best result is highlighted in green. 

The obtained results were interesting considering the small amount of training data available. 

Furthermore, the learning and validation curves (Figure 16) indicated that with more data the 

results could improve as learning curve and validation curve have not converged using the 

maximum of available training examples. 

 
Figure 16, Learning and validation curves of age classification for females of Ae. albopictus 



27 
 

Aedes albopictus males 

In the Table 13, the 3-best results of the classification of the age of the males of Ae. albopictus 

are shown. The highest accuracy obtained was 86.84%. 

Table 13, Results of age classification for males of Ae. albopictus 

Features used Number 

of features 

Number of mosquito 

flight records* 

Algorithm Accuracy 

Fresnel, harmonic frequencies, 

harmonic powers, MFCC 

73 606 Artificial neural 

network 

86.84% 

MFCC, harmonic powers, 

power spectral density 

324 606 XGBoost 86.18% 

Fresnel, harmonic 

frequencies,MFCC, peak 

amplitudes 

73 606 Artificial neural 

network 

85.52% 

* This is the size of the data set including train and test set. The best result is highlighted in green. 

These results were also quite good for the small amount of training data and indicated that is 

possible to classify the males of Ae. albopictus into age groups. Having more data of males than 

for females but worse results might be an indication that the females are easier to classify into 

age groups with these methods. In the Figure 17, the validation curve indicated that more data 

would improve the results.  

Figure 17, Learning and validation curves of age classification for males of Ae. albopictus 
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Aedes aegypti females 

In the Table 14, the 3-best results of the classification of the age of the females of Ae. aegypti 

are shown. The highest accuracy obtained was 71.42%. 

Table 14: Results of age classification for females of Ae. aegypti 

Features used Number of 

features 

Number of mosquito 

flight records* 

Algorithm Accuracy 

Fresnel, MFCC 67 224 Artificial Neural 

Network 

71.42% 

Fresnel, harmonic form, 

MFCC 

73 224 XGBoost 71.42% 

Fresnel, harmonic 

frequencies, MFCC, 

peak amplitudes 

73 224 XGBoost 71.42% 

* This is the size of the data set including train and test set. The best result is highlighted in green. 

The obtained results were not very good, but the training data set was also very small and the 

learning and validation curves (Figure 18) indicated that more data would improve the results 

because learning and validation curve have not converged. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18, Learning and validation curves of age classification for females of Aedes aegypti 
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Aedes aegypti males 

In the Table 15, the 3-best results of the classification of the age of the males of Ae. aegypti are 

shown. The highest accuracy obtained was 70.75%. 

Table15, Results of age classification for males of Ae. aegypti 

* This is the size of the data set including train and test set. The best result is highlighted in green. 

The obtained results were worse than for the females with almost the double amount of training 

data available. As with Cx. pipiens and Ae. albopictus, this might be an indication that, with 

these methods, males are more difficult to classify into age groups, like learning and validation 

curves shown (Figure 19). 

 

Figure 19, Learning and validation curves of age classification for males of Aedes aegypti 

Features used Number of 

features 

Number of mosquito 

flight records* 

Algorithm Accuracy 

Fresnel, harmonic 

frequencies, Mel, peak 

amplitudes 

73 422 XGBoost 70.75% 

Mel 64 422 Artificial Neural 

Network 

67.92% 

Harmonic forms, Mel, 

total power 

71 422 XGBoost 67.92% 
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Entomologists can distinguish gender of a specie visually in the field, due to the biological 

differences in body size, maxillary palps and antennae, but they have to do very laborious 

dissections to estimate their physiological age, and age is an important factor in the vector 

capacity of mosquitoes, the older they are, the grater possibility of being infected and vector 

(Novoseltsev et al., 2012). In this study, more accuracy for the age classification of females 

have been seen than in males. This is advantageous in a surveillance plan because females are 

the important one of arbovirus transmissions. 

Conclusions 
 

- For the first time, an optical sensor connected in an air-forced trap has been evaluated and 

machine learning used for mosquito species, sex and age evaluation.  

- In this study, the results obtained with an optical sensor connected in an air-forced trap 

were significant and capable to distinguish between species and sex in terms of 

fundamental frequency showing that the fundament frequency was higher in males than 

females and higher in mosquitoes of Aedes than in Culex genus.  

- The system proposed in this study is advantageous because of its superior accuracy on 

genus classification compared with other optical sensors. More data and training is 

necessary to optimize the sensor to better classify mosquito species of the same genus. 

- In the case of gender identification, male and female were discriminated with more than 

93.11% of accuracy. This information will be important for arbovirus surveillance 

programs since the females are the unique implied in arbovirus transmission. 

- It has been possible, for the first time, to classify mosquitoes according to ages with a 

range accuracy from 69.81% to 90.97% using machine learning and an optical sensor 

connected in an air-forced trap. This data might allow to know how old the mosquito 

population is and it would provide data useful for risk assessment due to the importance 

of the age in vector capacity. 

- More biological (body size, females gonotrophic status) and ecological variables 

(environmental conditions) should be analyzed to increase the variance of the estimated 

mosquito model and validate it in the field so that optimize this novel optical sensor 

connected in a mosquito trap in order to improve mosquito vector surveillance.  

 



 

Annex I 
Extracted features 

- MFCC: The MFCC of the audio signal. It was generated with 32 mel frequency bands 

(Zheng et al., 2001). Number of features: 32. 

- Mel-scaled spectrogram: The mel-scaled spectrogram of the audio signal. Number of 

features: 32. 

- PSD and PSD without baseline:  The power spectral density of the waveform describes 

the power present in the signal as a function of frequency, per unit frequency [Hz] 

(Figure A). It has been generated using the python signal processing library scipy.signal 

with a Hanning window, a segment length of 512 points and an overlapping of 256 

points. The Power spectral density without baseline is the whole estimate of the power 

spectral density generated the same way as described above but with the baseline 

subtracted (Martin, 2001). Number of features: 257 each. 

 

Figure A, PSD with and without baseline 

- First harmonic power: the integrated power under of the first harmonic peak expressed 

in dB (Figure B). The first harmonic power is marked as a green area. Second and third 

harmonic power are also extracted features. Number of features: 1 each. 



 

 

Figure B, First harmonic power: the green area marks the first harmonic power. 

- First harmonic start and length: The number of the value of the PSD at which the first 

harmonic begins. If we have, for example, a record of 976 samples and the estimate of 

the power spectral density would have a length of 257 the first harmonic start might be 

at the sample number 16. First harmonic length is the width of the base of the first 

harmonic expressed in the number of points of the PSD (Figure C). Second and third 

harmonic start and length are also extracted features. Number of features: 1 each. 

 

Figure C, First harmonic start and length 

- First peak amplitude: The maximum PSD amplitude of the first harmonic expressed in 

dB (Figure D). Second and third peak amplitude are also extracted features. Number of 

features: 1 each. 

 

Figure D, First peak amplitude 



 

- Fundamental frequency: The frequency of the peak of the first harmonic expressed in 

Hz (Figure E). Second and third harmonic frequency are also extracted features. 

Number of features: 1 each. 

 

Figure E, Fundamental frequency 

- Fresnel amplitude, frequency and power: The maximum PSD amplitude, in dB, of the 

low frequency peak to the left of the first harmonic (Figure F). The so called “Fresnel 

modulation” arises because the light intensity across the surface of the 2D sensor is not 

perfectly uniform. As the mosquito flies down through the sensor, it passes through 4 

intense light regions, each with a less intense region above and below. This gives rise 

to amplitude modulation of the time domain signal, which is then reflected in the PSD 

plot. Fresnel amplitude is larger for mosquitoes with larger bodies. It is also larger for 

flights with faster transit times, because the response of the sensor falls by around 12 

dB per octave below 300 Hz approximately. 

The Fresnel frequency is the frequency of the Fresnel modulation. With a typical transit 

time of 50 ms, the modulation frequency is 80 Hz.   

The Fresnel power, in dB, is the integrated power under the Fresnel modulation peak. 

Number of features: 1 each. 

 

Figure F, Fresnel modulation 

- Standard deviation: The standard deviation of the estimate of the power spectral density 

expressed in dB rms. Number of features: 1. 



 

- Standard deviation without baseline is the standard deviation of the estimate of the 

power spectral density with the baseline subtracted expressed in dB rms. Number of 

features: 1. 

- Total power: The total power of the estimate of the power spectral density expressed 

in dB (Figure G). The green area marks the total power. Number of features: 1. 

 

Figure G, Total power: The green area marks the total power. 

 

- Total power without baseline: The total power of the estimate of the power spectral 

density with the baseline subtracted expressed in dB. Number of features: 1. 
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