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Información Suplementaria nº1 

Modelo bioelectroquímico del cátodo de una celda de combustible microbiana 

Discretización espacial de la ecuación de difusión-reacción. Condiciones de contorno 

Usando el método de diferencias finitas centrales se construye una matriz Laplaciana para ambas 

coordenadas aplicando las aproximaciones que se muestran en las Ec. (38) y Ec. (39) del artículo. 

En Ec. (S1) y Ec. (S2) se muestran las matrices Laplacianas construidas por la coordenada x (Lx) 

y coordenada y (Ly) respectivamente. 
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  ∈ 𝑀𝑁𝑥×𝑁𝑥      (S1) 

[𝐿𝑦] =  
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  ∈ 𝑀𝑁𝑦×𝑁𝑦      (S2) 

Los operadores de una dimensión mostrados se pueden extender a dos dimensiones usando 

el tensor de Kronecker, generando así una matriz Laplaciana de dos dimensiones (A∆). El cálculo 

realizado se muestra en la Ec. (S3). 

[𝐴∆] =
1

∆𝑥2
· [𝐿𝑥]⨂[𝐼𝑦] + [𝐼𝑥]⨂[𝐿𝑦] ·

1

∆𝑦2
 ∈ 𝑀𝑁𝑥×𝑁𝑦     (S3) 

Donde Ix e Iy son las matrices identidad en la dimensión x e y respectivamente. Para la 

resolución del sistema, es necesario definir el vector de concentraciones en función del cálculo de 

Kronecker utilizado. En la Ec. (S4) se muestra como se ha definido el vector de concentraciones 

en el tiempo n (𝜙𝑛). 

𝜙𝑛 = 

(
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𝑛
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𝑛
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𝑛
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𝑛
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Entonces, la ecuación de difusión-reacción definida en al Ec. (1) se puede reescribir de 

forma matricial según la Ec. (S5), incorporando la discretización temporal y espacial. 

(𝐷𝐼 −  𝜓 · [𝐴∆]) · 𝜙
𝑛+1 = (𝐷𝐼 +  𝜓 · [𝐴∆]) · 𝜙

𝑛 + 𝑅(𝜙𝑛) · ∆𝑡                     (S5) 

Donde 𝐷𝐼 es una matriz identidad de dimensiones 𝑀𝑁𝑥×𝑁𝑦 y 𝜓 es un vector con la misma 

estructura que 𝜙𝑛 donde cada elemento se define como 𝜓𝑖,𝑗
𝑛 . En la Ec. (S6) se muestra cómo se 

calcula cada uno de los elementos. 

𝜓𝑖,𝑗
𝑛 =

𝔻𝑖,𝑗
𝑛 ·∆𝑡

2
          (S6) 

Donde 𝔻𝑖,𝑗
𝑛  es el coeficiente de difusividad efectiva calculado mediante la Ec. (21) del 

artículo (m2 h-1). 

Para resolver la Ec. (S5) en todo el dominio, es necesario incorporar las condiciones de 

contorno definidas previamente en el artículo (Fig. S1). En este caso, se definen cuatro tipos de 

condiciones de contorno. 

Fig. S1. Condiciones de contorno consideradas en este trabajo. {O2} Indica que la condición de contorno 

se aplica únicamente al oxígeno; {Ac} indica que la condición de contorno se aplica únicamente al 

acetato y {O2 + Ac} indica que la condición de contorno se aplica a ambas sustancias.  

BC: Condición de contorno 
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1. Extremos de la coordenada x: se asume la condición de contorno periódica (Periodic 

Boundary Condition, PBC). Para implementar esta condición de contorno, la segunda 

derivada del primer y último nodo de la coordenada x se aproximan mediante las Ec. (S7) 

y Ec. (S8) respectivamente. 

𝜕2

𝜕𝑥2
𝜙1,𝑗
𝑛 ≈

𝜙𝑁𝑥,𝑗
𝑛  − 2·𝜙1,𝑗

𝑛  + 𝜙2,𝑗
𝑛

∆𝑥2
       (S7) 

𝜕2

𝜕𝑥2
𝜙𝑁𝑥,𝑗
𝑛 ≈

𝜙𝑁𝑥−1,𝑗
𝑛  − 2·𝜙𝑁𝑥,𝑗

𝑛  + 𝜙1,𝑗
𝑛

∆𝑥2
       (S8) 

2. Límite PTFE/CC (Oxígeno) y límite biopelícula/Bl (Acetato): la concentración del 

oxígeno en el límite PTFE/CC se asume que es la de saturación. Mientras que la 

concentración del acetato en el límite biopelícula/bulk liquid se asume que es la del bulk 

liquid, la cual se va actualizando mediante el balance molar que se muestra en la Ec. (14). 

Ambas condiciones se modelizan implementando la condición de contorno de Dirichlet, 

en el cual se impone el valor de la concentración en el límite del sistema (𝛾). La segunda 

derivada en el límite PTFE/CC y en el límite biopelícula/bulk liquid se aproximan según 

las Ec. (S9) y Ec. (S10) respectivamente. 

𝜕2

𝜕𝑦2
𝜙𝑖,1
𝑛 ≈

𝛾𝑂2  − 2·𝜙𝑖,1
𝑛  + 𝜙𝑖,2

𝑛

∆𝑦2
       (S9) 

 
𝜕2

𝜕𝑦2
𝜙𝑖,𝑁𝑦
𝑛 ≈

𝜙𝑖,𝑁𝑦−1
𝑛  − 2·𝜙𝑖,𝑁𝑦

𝑛  + 𝛾𝐴𝑐

∆𝑦2
       (S10) 

3. Límite PTFE/CC (Acetato): debido a que la capa de PTFE es impermeable y no deja pasar 

el líquido, se asume un muro sólido en la interfaz entre la capa de PTFE y CC (tela de 

carbono). Por lo tanto, no hay transferencia de substratos a través del PTFE sino una 

acumulación. Este muro se modeliza mediante la condición de contorno null Neumann. 

Dicha condición se aproxima usando el método de diferencias finitas de primer orden 

para acoplarla a la matriz Laplaciana correspondiente (Ec. (S11)). 

𝜕

𝜕𝑦
𝜙𝑖,1
𝑛 ≈

𝜙𝑖,2
𝑛  − 𝜙𝑖,1

𝑛

∆𝑦
= 0        (S11) 

4. Límite biopelícula/BL (Oxígeno): para la reducción de la carga computacional, se asume 

una condición de contorno Neumann para el oxígeno en el límite biopelícula/BL (bulk 

liquid). Para calcular el valor del flujo molar (𝐹𝑂2
𝑛 ) se usa la primera ley de Fick, tal y 

como se muestra en la Ec. (13) del artículo. Dicha condición se aproxima usando el 

método de diferencias finitas de primer orden para acoplarla a la matriz Laplaciana 

correspondiente (Ec. (S12)).  
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𝜕

𝜕𝑦
𝜙𝑖,𝑁𝑦
𝑛 ≈

𝜙𝑖,𝑁𝑦
𝑛  − 𝜙𝑖,𝑁𝑦−1

𝑛

∆𝑦
=

1

𝔻𝑖,𝑗
𝑛 𝐹𝑂2

𝑛       (S12) 

Para implementar las condiciones de contorno descritas anteriormente, es necesario realizar 

modificaciones en las matrices Laplacianas de ambas coordenadas. La Ec. (S13) muestra la 

modificación de la Laplaciana de la coordenada x para ambos substratos (oxígeno y acetato). Las 

Ec. (S14) y Ec. (S15) muestran las modificaciones de las Laplacianas de la coordenada y para el 

oxígeno y el acetato respectivamente. 

 [𝐿𝑥
∗ ] =  

(

 
 

−2
1

1

1
−2
⋱
1

1
1
⋱
−2
1

1
−2)

 
 
  ∈ 𝑀𝑁𝑥×𝑁𝑥      (S13) 

[𝐿𝑦
∗ ] =  

(
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1

1
⋱
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1

1
−1)

 
 
  ∈ 𝑀𝑁𝑦×𝑁𝑦      (S14) 

[𝐿𝑦
∗ ] =  

(

 
 

−1
1

1
−2
⋱
1

1
⋱
−2
1

1
−2)

 
 
  ∈ 𝑀𝑁𝑦×𝑁𝑦      (S15) 

La matriz Laplaciana modificada en dos dimensiones [𝐴∆
∗ ] se calcula según la Ec. (S3) 

utilizando debidamente [𝐿𝑥
∗ ] y [𝐿𝑦

∗ ]. Para incluir la condición de contorno Dirichlet y Neumann 

en los nodos 𝑁𝑖,1 y 𝑁𝑖,𝑁𝑦 se define las matrices que se muestran en las Ec. (S16) y Ec. (S17) 

respectivamente. Igual que con la matriz Laplaciana, se usa el tensor de Kronecker para obtener 

la matriz de condición de contorno en dos dimensiones [𝑏∆], mostrada en la Ec. (S18). 

[𝑏𝑦
𝐵] =  (

1 … 0
⋮ ⋱ ⋮
0 … 0

)   ∈ 𝑀𝑁𝑦×𝑁𝑦       (S16) 

[𝑏𝑦
𝑇] =  (

0 … 0
⋮ ⋱ ⋮
0 … 1

)   ∈ 𝑀𝑁𝑦×𝑁𝑦       (S17) 

[𝑏∆] = 0𝑁𝑥,𝑁𝑥⨂[𝐼𝑦] + [𝐼𝑥]⨂[𝑏𝑦] ·
1

∆𝑦2
 ∈ 𝑀𝑁𝑥×𝑁𝑦     (S18) 
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Finalmente, la ecuación de difusión-reacción se reescribe incluyendo las condiciones de 

contorno impuestas en el sistema obteniendo la expresión de la Ec. (S19) para el oxígeno y la 

expresión de la Ec. (S20) para el acetato. 

(𝐷𝐼 −  𝜓 · [𝐴∆
∗ ]) · 𝜙𝑛+1 = (𝐷𝐼 +  𝜓 · [𝐴∆

∗ ]) · 𝜙𝑛 + 2 · 𝜓 · 𝛾𝑂2 · [𝑏∆
𝐵] − 2 · 𝐹𝑂2

𝑛 · [𝑏∆
𝑇] · 𝑑𝑦 + 𝑅(𝜙𝑛) · ∆𝑡        (S19) 

(𝐷𝐼 −  𝜓 · [𝐴∆
∗ ]) · 𝜙𝑛+1 = (𝐷𝐼 +  𝜓 · [𝐴∆

∗ ]) · 𝜙𝑛 + 2 · 𝜓 · 𝛾𝐴𝑐 · [𝑏∆
𝑇] + 𝑅(𝜙𝑛) · ∆𝑡                (S20) 

Donde [𝑏∆
𝐵] es la matriz de condición de contorno para el interfaz entre la capa PTFE y la 

tela de carbono y [𝑏∆
𝑇] es la matriz de condición de contorno para el interfaz entre la biopelícula y 

el bulk liquid. A cada iteración del tiempo se resuelven las Ec. (S19) y Ec. (S20) calculando 𝜙𝑛+1. 

Para el balance de electrones se usa el mismo método comentado anteriormente. Por lo 

tanto, el balance de electrones (Ec. (18) del artículo) se reescribe incluyendo las condiciones de 

contorno impuestas obteniendo la expresión mostrada en la Ec. (S21). 

 [𝐴∆
∗ ] · 𝜂𝑎𝑐𝑡

𝑛+1 = −𝛾𝜂𝑎𝑐𝑡 · [𝑏∆
𝐵] +

𝐹·𝑛

𝜎𝑒𝑓𝑓
· 𝑟𝑂2,𝑐𝑎𝑡                    (S21) 

Donde [𝑏∆
𝐵] es la matriz de condición de contorno para el interfaz entre la tela de carbono y 

el catalizador Pt/C. 
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Implementación de la “matching condition” 

Para la explicación de la implementación de la “matching condition” se utiliza la nomenclatura 

que se muestra en la Fig. S2. 

 

Fig. S2. Diagrama de los puntos de malla en la interfaz entre capas de materiales diferentes. La notación i 

indica el número del nodo; j indica la capa. 

Al término de difusión del punto de la interfaz entre materiales (𝜙𝑖) se le aplica la 

aproximación diferencias finitas centrales, obteniendo la expresión que se muestra en la Ec. (S22). 

𝔻𝑗
𝜕2𝜙𝑖

𝜕𝑦2
=
𝔻𝑗+1

𝜕𝜙𝑏+
𝜕𝑦

 + 𝔻𝑗
𝜕𝜙𝑏−
𝜕𝑦

∆𝑦
                      (S22) 

Aplicando el método de diferencias finitas forward y backward de primer orden en la 

Ec. (S22), para realizar la discretización espacial, se obtiene la expresión que se muestra en la 

Ec. (S23). 

𝜕

𝜕𝑦
(𝔻𝑗

𝜕𝜙𝑖

𝜕𝑦
) =

𝔻𝑗+1
𝜙𝑖+1−𝜙𝑖

∆𝑦
 + 𝔻𝑗

𝜙𝑖 − 𝜙𝑖−1
∆𝑦

∆𝑦
=  

𝔻𝑗+1𝜙𝑖+1 − (𝔻𝑗+1+ 𝔻𝑗)𝜙𝑖 + 𝔻𝑗𝜙𝑖−1

∆𝑦2
           (S23) 

Finalmente, la matriz Laplaciana que incorpora los coeficientes de difusión y la “matching 

condition” se muestra en la Ec. (S24). 

(

 
 
 
 …
…
…

⋱

𝔻𝑗
0
0

⋱
−2𝔻𝑗
𝔻𝑗
0

𝔻𝑗
−𝔻𝑗 − 𝔻𝑗+1

𝔻𝑗+1

0
𝔻𝑗+1
−2𝔻𝑗+1
⋱

0
0
𝔻𝑗+1

⋱

…
…
…

)

 
 
 
 

(

 
 
 
 

⋮
𝜙𝑖−2
𝜙𝑖−1
𝜙𝑖
𝜙𝑖+1
𝜙𝑖+2
⋮ )

 
 
 
 

      (S24) 

Se aplica exactamente el mismo procedimiento y argumento en la “matching condition” de 

la conductividad eléctrica, substituyendo la difusividad efectiva (𝔻) por la conductividad efectiva 

en las ecuaciones y matrices mostradas en este documento. 
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Algoritmo de empuje entre las bacterias 

Para entender mejor el algoritmo de empuje, en este apartado se realiza la explicación detallada 

de cómo funciona mediante imágenes. Primero, después de que una bacteria se divida, el 

algoritmo analiza todas las bacterias para comprobar si hay una superposición (overlap) de 

bacterias o no. En la Fig. S3 se muestra un ejemplo de la nomenclatura utilizada en el artículo. 

 

Fig. S3. Cálculo de superposición entre dos bacterias. 𝑥𝑖/𝑦𝑖  son la posición en la coordenada x e y de la 

bacteria i (m), Mi es la masa de la bacteria i (g), ri es el radio de la bacteria i (m) y |𝑐|i,j es la distancia 

entre la bacteria i y la bacteria j (m). 

Cuando dos bacterias no están superpuestas, como las bacterias 1 y 2 de la Fig. S3, el 

overlap será negativo (𝑜𝑣𝑒𝑟𝑙𝑎𝑝1,2 < 0). En cambio, cuando dos bacterias están superpuestas, 

como las bacterias 3 y 4 de la Fig. S3, el overlap será positivo (𝑜𝑣𝑒𝑟𝑙𝑎𝑝3,4 > 0). Si el valor de 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝3,4 es mayor que el valor de superposición máximo fijado por el usuario (𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑟𝑒𝑓), 

las bacterias se “empujan”. Como mayor sea el valor de 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑟𝑒𝑓, se permitirá mayor 

superposición entre las bacterias.  

Cuando el algoritmo detecta que hay dos bacterias superpuestas en la biopelícula 

(𝑜𝑣𝑒𝑟𝑙𝑎𝑝3,4 > 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑟𝑒𝑓), se pone en marcha el algoritmo de empuje. Las nuevas posiciones 

de las bacterias dependen de la masa (am y am+1) y la posición local de estas, y el porcentaje de 

superposición “𝑝” (Ec. (30) – Ec. (36) del artículo). 
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Estequiometria del metabolismo de las bacterias aerobias y anaerobias 

El metabolismo de las bacterias se divide en tres procesos principales: catabolismo, anabolismo 

y muerte celular (decay). Cada uno de los procesos descritos se rigen por una estequiometria 

determinada. A continuación, se muestran ejemplos de estequiometrías para el catabolismo  

(Ec. (S25)), anabolismo (Ec. (S26) ) y decay (Ec. (S27)): 

𝛼 · 𝑒𝐷 +  𝛽 · 𝑒𝐴 →  …                 (S25) 

𝛾 · 𝐶𝑠  + 𝜖 · 𝑁𝑠  +  …  →  … +  1 · 𝑋               (S26) 

1 · 𝑋 + …  →  …                   (S27) 

Donde 𝑒𝐷 es el donador de electrones, 𝑒𝐴 es el aceptador de electrones final, 𝐶𝑠 es la fuente 

de carbono, 𝑁𝑠 es la fuente de nitrógeno y 𝑋 es la biomasa considerando que su fórmula promedio 

es CH1.8O0.5N0.2. 

La estequiometria del metabolismo (Met) se calcula mediante la Ec. (S28), la cual depende 

de la estequiometría del anabolismo (Ana), de la estequiometria del catabolismo (Cat) y del 

coeficiente de rendimiento biomasa/substrato (YX/S). 

𝑀𝑒𝑡 =
1

𝑌𝑋 𝑆⁄
· 𝐶𝑎𝑡 + 𝐴𝑛𝑎            (S28) 

Para cada población de bacterias que tiene en cuenta el modelo (HAB y HAnB) se le define 

una estequiometria concreta. Para el cálculo de la estequiometria del catabolismo y anabolismo 

se sigue el método de cálculo de Kleerebezem y Van Loosdrecht (2010). A continuación, se 

muestra el procedimiento que se ha llevado a cabo para calcular la estequiometria catabólica y 

anabólica de las HAB. 

Estequiometria del catabolismo de las HAB 

𝑒𝐷: 𝐴𝑐  ||  𝑒𝐴: 𝑂2 

D: −1 · 𝐶𝐻3𝐶𝑂𝑂
− − 4 · 𝐻2𝑂 + 2 · 𝐻𝐶𝑂3

− + 9 · 𝐻+ + 8 · 𝑒− = 0 

A: −1 · 𝑂2 − 4 · 𝐻
+ − 4 · 𝑒− + 2 · 𝐻2𝑂 = 0  

1× D 

2× A 
 

−1 𝐶𝐻3𝐶𝑂𝑂
−  −4 𝐻2𝑂 +2 𝐻𝐶𝑂3

− +9 𝐻+ +8 𝑒− = 0 

 −2 𝑂2 +4 𝐻2𝑂  −8 𝐻+ − 8 𝑒− = 0 
  

Cat: −1 𝐶𝐻3𝐶𝑂𝑂
− −2 𝑂2  +2 𝐻𝐶𝑂3

− +𝐻+  = 0 
 

𝑒𝐷
−

𝑒𝐴
−⁄ = 8𝑒

−

4𝑒−⁄ = 2 
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Estequiometria del anabolismo de las HAB 

𝐹𝑢𝑒𝑛𝑡𝑒 𝑑𝑒 𝑐𝑎𝑟𝑏𝑜𝑛𝑜: 𝐴𝑐  ||  𝐹𝑢𝑒𝑛𝑡𝑒 𝑑𝑒 𝑛𝑖𝑡𝑟ó𝑔𝑒𝑛𝑜: 𝑁𝐻3 

An*:  −0.5 · 𝐶𝐻3𝐶𝑂𝑂
− − 0.2 · 𝑁𝐻3 − 0.7 · 𝐻

+ − 0.2 · 𝑒− + 𝐶𝐻1.8𝑂0.5𝑁0.2 + 0.5 · 𝐻2𝑂 = 0 

Dado que la formación de biomasa es una reacción demandante de electrones (−0.2 · 𝑒−) 

es necesario la incorporación de un donador de electrones externo (se asume que es el acetato): 

D: −1 · 𝐶𝐻3𝐶𝑂𝑂
− − 4 · 𝐻2𝑂 + 2 · 𝐻𝐶𝑂3

− + 9 · 𝐻+ + 8 · 𝑒− = 0 

0.025 × D 

1 × A 
 

−0.025 𝐶𝐻3𝐶𝑂𝑂
−   −0.1 𝐻2𝑂 +0.05 𝐻𝐶𝑂3

− +0.225 𝐻+ + 0.2 𝑒− = 0 

−0.500 𝐶𝐻3𝐶𝑂𝑂
− −0.2 𝑁𝐻3  +0.5 𝐻2𝑂  + 𝐶𝐻1.8𝑂0.5𝑁0.2 −0.7 𝐻+ − 0.2 𝑒− = 0 

  

An: −0.525 𝐶𝐻3𝐶𝑂𝑂
− −0.2 𝑁𝐻3 +0.4 𝐻2𝑂  +0.05 𝐻𝐶𝑂3

− −0.475 𝐻+ + 𝐶𝐻1.8𝑂0.5𝑁0.2 = 0 
 

 

Reacciones del catabolismo y anabolismo de las HAB 

Cat: 𝐶𝐻3𝐶𝑂𝑂
− + 2 · 𝑂2 → 2 · 𝐻𝐶𝑂3

− + 𝐻+ 

An: 0.525 · 𝐶𝐻3𝐶𝑂𝑂
− + 0.2 · 𝑁𝐻3 + 0.4 · 𝐻2𝑂 + 0.05 · 𝐻𝐶𝑂3

− → 𝐶𝐻1.8𝑂0.5𝑁0.2 + 0.475 · 𝐻
+ 

Para las bacterias HAnB se ha seguido el mismo procedimiento que las HAB. Se asume que la 

fuente de carbono, la fuente de nitrógeno y la fórmula promedio de la biomasa de las HAnB es la 

misma que las HAB. A continuación, se muestra las ecuaciones del catabolismo y anabolismo 

para las HAnB: 

Cat: 𝐶𝐻3𝐶𝑂𝑂
− + 𝐻+ → 𝐶𝑂2 + 𝐶𝐻4        (Fermentación del acetato) 

An: 0.525 · 𝐶𝐻3𝐶𝑂𝑂
− + 0.2 · 𝑁𝐻3 + 0.4 · 𝐻2𝑂 + 0.05 · 𝐻𝐶𝑂3

− → 𝐶𝐻1.8𝑂0.5𝑁0.2 + 0.475 · 𝐻
+ 

  

𝑒𝐴
−

𝑒𝐷
−⁄ = 0.2𝑒

−

8𝑒−⁄ = 0.025 


