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Abstract

Background: Omics technologies are becoming increasingly useful at characterising health
status. In terms of environmental epidemiology, omics profiles may confer a source of markers
of environmental exposures, especially in the early-years of life, that can be of great use at
understanding the molecular mechanisms that link the environmental exposures and the clinical

outcomes of children.

Objective: To assess the intra- versus the inter-individual variability of omics signatures
(proteome, transcriptome, serum and urine metabolome and miRNA) in the short term in 156

children from five European countries.

Materials and methods: The population under study are 156 children from the Child Panel
Study that belongs to the HELIX project. Blood and urine samples of the children were
collected at two different time-points (=6 months), and urine samples were collected twice a
day: first morning void and night-time. Proteins, transcripts, miRNA and serum metabolites
were measured on blood samples (transcriptome: HTA V.2.0, Affymetrix; miRNA: SurePrint

Human miRNA rel 21, Agilent; plasma proteins and metabolites: Luminex, cytokines 30-plex,

apoliprotein 5-plex and adipokine 15-plex). Urine metabolome was measured using 'H NMR

spectroscopy.

Results: Mean proportion of variance explained by intra-, inter-individual and variability
differs among omics although all of them present the highest variability at the intra-individual
level (59% for proteomics, 70% for urine metabolome, 50% for serum metabolome, 63% for
miRNA and 84% for transcriptome). Also, within omics, there is diversity among different
markers, ones being more explained by one level of variance or another. When biological traits
and technical effects are included in the model as explanatory variables, little proportion of
variance is attributed to each of them, except for seasonality, that generally accounts for a

greater percentage of variation.

Conclusion: This study is the first to provide a multi-omics scope in omics variability in the
short-term in children population. Intra- and inter-individual variability has been estimated for
proteome, transcriptome, miRNA and serum and urine metabolome markers and differences on
the behaviour between and within omics has been found. Further studies are needed in order to
characterize the most meaningful markers in terms of environmental epidemiology and

biological significance.



Introduction

Omics technologies, such as transcriptomics, proteomics or metabolomics, are becoming
increasingly useful at characterizing health status by providing highly detailed molecular
information. As human diseases are complex at many biological levels, the information
provided alone by one omics or another may not be enough to understand whole pattern of a
disease. Therefore, the integration of multiple technologies may confer a more comprehensive
view of human biology and disease. Additionally, omics could be measured at different stages
of life to predict later health outcomes or to understand diseases occurring at different stages of
life. This potential use of omics makes these technologies likely to become commonplace in

the future clinical practice for diagnosis and prognosis (Karczewski & Snyder, 2018).

In environmental epidemiological studies, omics may provide biomarkers of key events, such
as smoking, and indicate early molecular changes at low levels of environmental exposures.
This statement comes from the idea that since the existence of low dose effects exists, a

molecular change at those levels of exposure should also be able to be detected (Vineis, 2018).

The study of the temporal variability of omics can be implemented to characterise which omics
markers behave in a more stable or dynamic way in order to compare them through time and
determine possible associations with any clinical outcome. The determination of the levels and
sources of variations among different omics could be essential in order to distinguish which
alterations are really due to disease from those caused by physiological conditions (Shau et al.,
2019). Therefore, systematic prospective and longitudinal biological sample collections in
large-scale epidemiological studies open up new research opportunities. Especially during the
early years of life, starting from (pre)conception, omics variability may be useful and play an
essential role in understanding and discovering the impact of pre-natal and post-natal exposures

on the onset of child and subsequent adult physiological conditions.

How omics vary over time and their variation patterns are thought to provide useful information
for clinical purposes. The metabolome varies widely within individuals over time (Sampson et
al., 2013). This is because metabolites are a result of all types of in vivo substances and are
involved in a wide range of biological processes and network systems. Alterations in
metabolites are linked to multiple factors that include genetic, environmental, drug, dietary
factors and circadian rhythms (Zhan, Long & Lu, 2018); thus, we could expect metabolomics
to be more dynamic in front of environmental events, which would make the metabolome

worthy to reflect the status of physiological and pathological processes (Zhan, Long & Lu,



2018). The components of the proteome and their variations over time are also found to be
influenced by many inherent and environmental factors that include age or medication, for
example, and alterations in protein expression and/or content have been found to be useful at
diagnosing many pathologies (Liu, Song, Guo, Sun & Liu, 2019). MicroRNAs (miRNAs), in
turn, regulate gene expression by binding directly to specific mRNAs. Certain miRNAs appear
to be highly variable because, depending on the physiological conditions, are selectively
secreted to extracellular spaces (Yoon, Belmonte, Kasten, Bateman & Kim, 2017). Therefore,
these regulatory elements have been found to be involved in a wide range of pathologies,
including cancer or cardiovascular diseases, and may emerge as potential biomarkers (Keller et
al. 2017). In the same way, transcriptomics (gene expression) variability is becoming
increasingly acknowledged as a metric by which to evaluate transcriptome data, providing

relevant information for human disease (Erickson, Otoupal & Chatterjee, 2017).

All omics, in terms of variation, have in common that their quantification is always influenced
by technical effects such as experimental procedures that jeopardise the within-individual
variability by reducing the power of epidemiological studies, especially in large-scale studies
(Sampson et al., 2013; Liu, Song, Guo, Sun & Liu, 2019). Then, before any omics analysis that
pursues a clinical application or biomarker research, it is necessary to understand the factors

that introduce variability by themselves (Li-Gao et al., 2019).

Intra- and inter-individual variability regarding omics has been previously described in various
studies, but these mainly focused in a particular omics. Kim et al. (2014), for example, assessed
meal-time, temporal, and daily variability of the human urinary and plasma metabolomes in a
tightly controlled environment by conducting Variance component analyses (VCA) to estimate
the relative contributions of the temporal factors to the total variation in metabolite intensities.
Shao et al. (2019) assessed individual variation in the urinary proteome and revealed gender-
related and age-related differences in urinary proteins from healthy adult donors, and suggested
that these factors should be considered as crucial factors in experimental design and data
analyses of further studies. Hughes et al. (2015), in turn, evaluated intra- and inter-individual
variation in the human placental transcriptome performing Analyses of variance (ANOVA),
both incorporating environmental and biological factors such as the new-born weight and the
maternal age. Keller et al. (2017) collected miRNA samples with a time interval of 5 years in
order to determine sources of variability in circulating human miRNA, and found a group of
135 miRNAs that showed low variability between individuals and across the time-span, and

were highly independent of the sampling process, which pointed them to be promising



biomarker candidates. Regarding multi-omic approaches, Piening et al. (2018) performed a
controlled longitudinal weight perturbation study combining multiple omics strategies
(genomics, transcriptomics, multiple proteomics assays, metabolomics, and microbiomics)
during periods of weight gain and loss in humans and results demonstrated that omics signatures
associated with insulin resistance that may serve as novel diagnostics. Chen et al. (2012), on
the other hand, presented an integrative personal omics profile combining genomic,
transcriptomic, proteomic, metabolomic and autoantibody profiles from a single individual over

14 months in order to reveal changes during healthy and disease states.

Nevertheless, none of the studies above-mentioned allowed for the integration of the whole
omics profiles variability interpretation in the global population from an epidemiological scope,
and only few of them addressed short or medium term variability. Maitre et al. (2017) applied
Intra-class correlation coefficients (ICC) and mixed effect models to characterize short-term
variability (6 days) in urinary metabolites measured from 20 children aged 8-9 years old. Using
ICC as well, Peck et al. (2009) evaluated intra- and inter-individual variability of urinary
phthalate metabolite concentrations in Hmong women of reproductive age during a month.
Nagaraj & Mann (2011) characterised the urinary proteome of seven healthy human donors
over three consecutive days and attributed 7.5%, 45.5% and 47.1% of the variability to
technical, intrapersonal and interpersonal effects, respectively. These studies suggest that some
specific markers might be useful at providing biological information over short periods of time

due to their characteristic behaviour in terms of variability.

Hence, little is known about the changes related to short- and medium-term variability and
seasonality in omics profiles, in particular in free-living human populations and child studies,
and the concrete contribution (in terms of percentage) of different factors such as the BMI, the

age or the ethnicity.

The HELIX subcohort study represents a multicentre European cohort of 1300 children and
aims to assess the exposome. The exposome is defined as the totality of environmental
exposures from conception to death, and it can be separated in the external exposome, the
environmental exposures we are exposed to, and the internal exposome, the molecular
responses of our organism to the external exposome to control homeostasis. It is precisely the
internal exposome (or molecular/omics signatures) that might be used to: (1) identify novel
biomarkers of exposures and (2) understand the molecular mechanism that link environmental

exposures with health outcomes (Maitre et al., 2018). The children that took part in the HELIX



subcohort study present complete omics profiles for transcriptomics, epigenetics and
metabolomics. Extensive data was collected about their environmental exposures and their
lifestyle from pregnancy until childhood (7-11 years). Among these children, 157 did a second

clinical visit, in average 6 months later, and omics analyses were repeated (Maitre et al., 2018).

The purpose of this study is to describe, in this repeated design, the inter-individual versus the
intra-individual variability of the omics signatures in 156 children from the HELIX child panel
study. In order to quantify this variability, a variance decomposition analysis has been
performed using mixed effect models, taking into account intra- and inter-individual variability,

cohort, and other technical effects and explanatory variables.

Research aim and specific objectives

The present study aims to assess the omics signature variability in the short-term in 156 children
from five European countries, by estimating the intra- versus the inter-individual variability in

transcriptomics, metabolomics, miRNA and proteomics.
The main objectives are:
1. To describe the child panel study population and repeated variables.

2. To estimate the overall variance explained by intra-, inter-individual and cohort effects

in the five omics datasets.

3. To estimate the proportion of variance attributable to the measured factors (technical

effects and explanatory variables).

4. To assess and determine whether the model under- or over-estimates the proportion of

variance attributable to the measured factors.

Materials and Methods

Study design and population

The HELIX (Human Early Life Exposome) study is a collaborative project of six-population
based birth cohorts in different European Countries: United Kingdom (BiB: Born in Bradford)
(Wright et al., 2012), France (EDEN: Etude des Déterminants pré et postnatals du
développement et de la santé de I’Enfant) (Heude et al., 2015) , Spain (INMA: Infancia y Medio
Ambiente) (Guxens et al., 2011), Lithuania (KANC: Kaunus cohort) (Grazuleviciene et al.,



2009), Norway (MoBa: Norwegian Mother and Child Cohort Study) (Magnus et al., 2016) and
Greece (RHEA: Mother Child Cohort study in Crete) (Chatzi et al., 2017) (Maitre et al., 2018).

The aim of the Human Early Life Exposome (HELIX) study was to measure and describe
multiple environmental exposures during early life (pregnancy and childhood) in a prospective
cohort and associate these exposures with molecular omics signatures and child health
outcomes. The project used a multilevel study design with the entire study population totalling
31 472 mother-child pairs, recruited during pregnancy, in the six existing cohorts (first level);
a subcohort of 1301 mother-child pairs where biomarkers, omics signatures and child health
outcomes were measured at age 611 years (second level) and repeat-sampling panel studies
with around 150 children and 150 pregnant women aimed at collecting personal exposure data

at two time points (third level) (Maitre et al., 2018).

Concretely, the panel-studies collected data on short-term (mean difference between the two
visits: 6.11 months, SD: 2.18 months) (Figure 1) temporal variability in exposure biomarkers
and omics biomarkers, individual behaviours (physical activity, mobility) and personal and
indoor exposures (Donaire-Gonzalez et al., 2019). The child panel study included children from
the HELIX sub-cohort (n=157, from all cohorts except MoBa) who lived in a first floor
apartment or private house and were sampled following a maximum variation sampling strategy
to high traffic-density exposure at home address. The present work focuses on the child panel
study in order to characterise in depth the variability of the omics measurements (Maitre et al.,

2018).

The study population has been restricted to children with complete information for both periods
A and B for at least one of the omics (proteome, transcriptome, miRNA, serum metabolome or
urine metabolome), which left 1 child out of the study (N=156). The final sample size, different
for each omics, is 149, 105, 100, 154 and 154 children for proteome, transcriptome, miRNA,

serum metabolome and urine metabolome, respectively.

Prior to the start of HELIX, national ethics committees had previously evaluated all participants
as required and granted all the required permissions that allowed the participants cohort
recruitment and follow-up visits. Additionally, all the participants were asked to sign a HELIX

specific informed consent and new ethics approvals (Maitre et al., 2018).



Figure 1. Time difference between sample collection by cohort in the HELIX child panel study
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Sample Collection

During the sub-cohort follow-up examination, new biological samples suitable for all planned
omics analyses were collected using the same standardised protocols across all five cohorts.
Urine samples were collected twice daily (first morning void and bedtime sample) in high-

quality polypropylene tubes (Sarstedt: 75.9922.744). The two urine samples were brought by
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the participants to the centre in cool packs and stored at —4°C until processing. After aliquoting,
the urine samples were frozen at —80°C under optimized and standardised procedures. If the
families did not bring urine samples with them, a new sample was collected on arrival at the
centre (this occurred in 6.6% of the sub-cohort children). A pooled sample of both the morning

and the night urine samples was used for analyses if available.

18mL of blood was collected at the end of the clinical examination of the child, ensuring an
approximate 3hour fasting time since the last meal. Blood samples were collected using a
‘butterfly’ vacuum clip and local anaesthetic and processed into a variety of sample matrices
for serum, plasma, whole blood for RNA extraction (Tempus tubes - Life Technologies Cat.
No.: 4342792), red cells and a buffy coat for DNA extraction. After processing, these samples

were frozen at —80°C under optimised and standardised procedures (Maitre et al., 2018).

Measurement of omics signatures

In the sub-cohort, the following measurements of molecular omics signatures at the age of 6—
11 years were obtained: blood leucocyte DNA methylation (450K, Illumina), whole blood
transcription (HTA V.2.0, Affymetrix and SurePrint Human miRNA rel 21, Agilent), serum

metabolites (AbsoluteIDQ p180 kit, Biocrates), urine metabolites (proton nuclear magnetic

resonance (lH NMR spectroscopy) and plasma proteins (Luminex, cytokines 30-plex,
apoliprotein 5-plex and adipokine 15-plex). All the samples went through quality control

procedures and only those with good quality markers were kept for study.

The number of omics markers varies greatly across the omics platforms: from 36 for proteomics
to 58,254 for the transcriptome (Table 1). The platforms and data processing procedures
selected for the proteins and serum metabolome were in fact targeted assays (<200 features) in
order to obtain the best quality data for a large number of samples with fully annotated proteins

and metabolites.

Further data filtering was applied to decrease the apparent complexity in the omics data.
Proteins were filtered out if 30% of samples were outside of the linear range of quantification.
Transcriptome and miRNA features with a call rate above 25% were kept for analysis. Serum
metabolites were excluded following two criteria: 1) %CV >30% AND ii) % BLD+zeros >30%.
In the urine metabolome, generated from untargeted NMR spectroscopic analysis from 128K
spectral data points, 44 metabolite integrals were calculated only for resonances with high

abundance and limited overlap with other metabolite signals. Urine metabolites were



normalized using the median fold change (Dieterle, Ross, Schlotterbeck & Senn, 2006) (Table

1.

Table 1. Omics analysis description in 156 children from the HELIX child panel study.

LOQI and LOQ?2: limits of quantification of the machine,; CV: ratio of the standard deviation to the mean;
BLD: “below limit of detection”; Call rate: proportion of reliable measures for a given sample or probe.

Omics Matrix N-umber of Exclusion criteria Laboratory processing
omics markers
Proteome Plasma 36 <30% LOQ1 or LOQ2 Full random
Low abundance and
Urine metabolome | Urine 44 limited overlap with Full random
other signals.
<30 %CV and
Serum metabolome | Serum 177 94BLD-+zeros Full random
miRNA Whole blood 1117 <25% call rate Paired in batch (array)
Transcriptome Whole blood 58254 <25% call rate Paired in batch (array)

Explanatory variables

Explanatory variables considered for the statistical analyses were classified according to their

different scopes: 1) omics platform-specific technical variables, 2) sample collection, 3) Intra-

individual variability and 4) inter-individual variability. Table 2 shows the different explanatory

variables that were included in the models.

Table 2. Explanatory variables considered for the variance decomposition analyses.

PROTEOME TRANSCRIPTOME MIRNA SERUM URINE
METABOLOME METABOLOME
Omics
latform
Py * Already e Already corrected © izl o Plate batch e Batch
technical corrected corrected
variables
. e Time to last . p
T to last
Sample ° 3;11::216 to last e Time to last meal meal ° ;F(;rlrlle:eci)if(;n ° ml:;le 0 1as
collection
variables e Hour of blood ¢ ?o(ﬂlerc(t)ii)lr)ll()()d ¢ El?)gii()f (morning, night e Hour of blood
i llecti
collection collection or pool) collection
o Cohort o Cohort o Cohort o Cohort o Cohort
Inter- * Sex * Sex o Sex o Sex o Sex
individual o Age (months) o Age (months) o Age (months) o Age (months) o Age (months)
e BMI score e BMI score e BMI score e BMI score e BMI score
e Ethnicity o Ethnicity e Ethnicity e Ethnicity e Ethnicity
Intra- * Season e Season * Season e Season e Season
individual * BMI change o BMI change rate ¢ BMI change o BMI change e BMI change
rate rate rate rate




The explanatory variable “age”, in months, was different at both visits, which allowed the

model to take into account the time difference between the two visits, between subjects.

Statistical analysis

We count on a three-level hierarchical clustered data:

-Level 1: i=1,... I cohorts (I=5),
- Level 2: j=1,...J individuals within cohort i,

- Level 3: k=1,2 (unbalanced) measurements within each individual.

The outcome of the model (Yijk) is the value of a specific omics marker, Y, at the moment of
measurement k for individual j within cohort i.

The covariates have been selected based on a review of the literature (Hughes et al., 2016;

Maitre et al., 2017; Piening et al., 2018) and are the following:

Ageijk: age (continuous) of individual j in cohort i at the moment of measurement k.
= Sexijj: sex (categorical) of individual j in cohort i.

Ethnicityij: ethnic group (categorical) of individual j in cohort i (as Caucasian or non-

Caucasian).

Moment of sample collection: moment (continuous) of the day in which measurement k in

individual i of cohort i was taken.
zBMI: BMI score (continuous) of individual j in cohort i at the moment of measurement.

= BMI change rate: how fast or slow BMI from individual j of cohort / changed between the
two measurements k. This value was calculated as the zBMI difference divided by the age
difference between the two visits:
zBMl;j, — zBMlI,j,
Age;j, —Ageij,

BMI change rate =

Time to last meal: hours (continuous) of fasting since the last meal to the moment of the day

in which measurement k in individual i of cohort j was taken.

Season: season (categorical) in which measurement k in individual i of cohort j was taken.

10



= Urine sample type: for urine metabolome, moment (categorial) in which measurement k in

individual i of cohort j was taken.
= Run order: for urine metabolome, the order in which the sample was run.

- Plate batch: for serum metabolome, the concrete batch at which the sample was analysed
(from 1 to 19).

Taking all this into account, the study aims to carry out a variance partition estimation: inter-

cohort, Inter-individual and intra-individual variance, modelled as random effects and of known

factors: age, sex, ethnicity, BMI score, BMI change rate, season, moment of sample collection

and time to last meal, modelled as fixed effects.

We have considered two mixed effect linear models, the first being a model that does not adjust
for the explanatory variables (except for age at both visits) which has been used to estimate the

proportion of variance attributed to intra-individual, inter-individual and cohort variability,

Yijk = Bo + B1Ageiji + BCohort; + BIndividual; + €k

and the latter adjusting for the above-mentioned explanatory variables to determine the

proportion of variance that can be attributed to these.

Yi]'k = ﬁO + ,BlSexl-j + ﬁzAgeijk + ,B3Ethmatyu + ﬁ4ZBMIijk

<ZBMIij2 — ZBMIijl
5 Age;j, —Age;j;
+ BgTime to last meal;j, + pCohort; + BIndividual; + €;j;

> + BeSeason;j, + B;Moment of sample collection; j

The models were considered by assuming:

1. There is a specific baseline level of the outcome in each cohort, but potential effects of
covariates are the same in all cohorts. Therefore, a random effect of the cohort in the

intercept is included in the model.

2. There is a specific baseline level of the outcome in each individual but potential effects of
explanatory variables are the same in all individuals. Therefore, a random effect of the

individual in the intercept is included as well.

3. There is a possible intra-individual effect of the rate of change of BMI in the outcome.

Therefore, a fixed effect of the intra-individual rate of change of zZBMI is added.

11



4. Adjustment for: Age, Sex, Ethnicity, Hour of blood sampling, Hours to last meal, zZBMI,

BMI change rate, seasonality.

5. There is a possible effect of the varying time difference between visit A and B across
individual. However, since time is actually measured by age, if we adjust for age, we are

indeed adjusting for time.

These regression models were calculated for each omics marker using the R package “lme4”

and the function “Imer” (Bates et al., 2015). The proportion of variance explained, or multiple
R?, was calculated as ratios of the total variance and represented as the per cent of variability

because of differences between children and between cohorts. In addition, the residual
variance of the model contains the intra-individual, which includes the variability attributed
to the technical effects and the explanatory variables, this latter being added in the second

model.

Firstly, the proportion of variance explained by each of the explanatory variables
independently was calculated as ratios of the total variance. Parallel to this, the total variance
attributable to these was extracted using the function “r.squaredGLMM” of the package
“MuMIn” (Bartén, 2013), which gives the proportion of variance explained by the totality of
the fixed effects, including their respective positive or negative covariances). For the
categorical explanatory variables, the ratio was calculated separately for each comparison
between categories and summed in order to obtain the whole proportion of variance attributed

to such variable.

Results

Population description

From visit A to visit B sample collection and across the five cohorts, some of the
characteristics of the children under study varied. Among the changes between the cohorts,
we found children from EDEN cohort were considerably older (10.83 years old at visit A and
11.08 years old at visit B) compared to the mean age of the other cohorts (7.84 years old at
visit A and 8.35 years old at visit B), being almost three years older than the total population
average. Regarding zBMI, this was in average 0.27 points higher in period B, although most

of the population was in the healthy range based on the zBMI categories stablished by the
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World Health Organization (growth reference 5-19 years) ("BMI-for-age (5-19 years)",

2019). Also, time of fasting was shorter in an average of 0.99 hours for period B.

Table 3. Population description

Number of children

Male
Female
Ethnicity
Caucasian
Other
Cohort
BIB
EDEN
KANC
RHEA
SAB
Age (years)
Total mean (SD)
BIB mean (SD)
EDEN mean (SD)
KANC mean (SD)
RHEA mean (SD)
SAB mean (SD)
zBMI
mean (SD)
zBMI categories
Thinness (<2)
Healthy
Overweight (>1)
Obese (>2)
Time to last meal (hours)
mean (SD)
Time of sample collection (hours)
mean (SD)
zBMI change between time points
mean (SD)
Age difference between time points (months)
mean (SD)
zBMI change rate
mean (SD)

Period A Period B
156
89
67
145
11
28
28
30
30
40
7.84 (1.70) 8.35 (1.65)
6.69 (0.23) 7.20 (0.31)
10.83 (0.46) 11.08 (0.48)
6.65 (0.45) 7.16 (0.46)
6.31 (0.15) 6.83 (0.16)
8.6 (0.52) 9.28 (0.51)
0.392 (1.21) 0.419 (1.32)
1 2
111 108
27 27
17 19
3.57 (1.19) 2.58 (1.51)
16.9 (2.85) 16.3 (3.05)
0.027 (0.525)
6.11 (2.18)

0.00114 (0.104)
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Omics variability by intra-individual, inter-individual and cohort

variability

The proportion of mean variance explained by the intra-individual, inter-individual and cohort
variability varied across the different omics (Table 4), based on the results obtained by the
mixed effect linear model without taking into account the explanatory variables. Intra-
individual variability appeared to explain higher proportion of variation in the transcriptome,
whereas serum metabolome markers were the most influenced by the inter-individual

variability and proteome features accounted for the highest inter-cohort variability.

Table 4. Summary of the mean explained variance by omics (model without fixed effects)

Proteome Urine metabolome Serum metabolome miRNA Transcriptome
Cohort 23.78 3.43 8.72 11.32 1.128
Inter-individual ‘ 18.00 26.88 41.67 25.33 14.04
Intra-individual ‘ 59.98 69.69 49.60 63.35 84.83

Also, within each particular omics, biomarkers behaved in different ways (Figure 3). For
instance, proteome markers mostly contained highest proportions of intra-individual and cohort
variability, but there were also another group of proteins that were situated towards the inter-
individual variability corner, which indicated that their variability was mostly inter-individual.
Urine and serum metabolites variability was mostly due to either intra- or inter-individual
variability since no points appeared to tend to the cohort variability corner. miRNA markers
mostly contained higher proportions of cohort and intra-individual variability. In contrast, the
transcriptome was the omics that showed the most variety among its omics markers as it is
shown in the density plot, where there were dots spread all along the area going from one very
corner to the other, although there was more density in-between the cohort and the intra-

individual variability corners.

Boxplots in Figure 4A reflect how distant from the mean were some groups of markers. The
results determined, in average, that more than a half of the proteome variability was explained
by the intra-individual effect (55.30%; SD: 17.41). Urine metabolites presented higher
proportion of variability explained by intra-individual effect (69.69%; SD: 17.16) and a small
percentage of variance explained by cohort (3.34%; SD: 5.65). Serum metabolites were the
markers that obtained the highest mean of variability explained by inter-individual effect

(41.67%; SD: 15.02). miRNAs and transcripts variabilities, in turn, were the most explained by
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intra-individual effects (78.90%; SD: 20.66 for miRNAs, 87.13%; SD: 17.33 for transcripts)
and transcripts were almost not influenced by cohort effect (1.02%; SD: 2.52).

Figure 3. Density plot of the omics markers in terms of intra-, inter-individual and cohort variability
percentage by omic

Proteome variability Urine metabolome variability Serum metabolome variability

Cohort

miRNA variability

Can the intra-individual and inter-individual variability observed be

explained by measured factors?

In order to correct for the explanatory variables, these were added as fixed effects to the model
(Figure 4B). The distribution of variabilities differed slightly from the model without fixed
effects (Figure 4A). The intra-individual variability in the proteome increased in a 4.68%
(59.98%; SD: 17.05). Urine metabolites were ones that varied less from one model to the other
by only increasing a 0.67% their intra-individual variability and diminishing a 0.62% their
cohort variability. Serum metabolites, in contrast, presented a decrease of 8.4% in their inter-
individual variability (33.27%; SD: 14.42) and an increase of 7.55% in their intra-individual
variability (from 49.60%; SD: 15.20, to 57.15%; SD: 17.44). miRNAs and transcripts continued
having the highest intra-individual variabilities (79.43%; SD: 20.12 for miRNAs, 84.47%; SD:
18.59 for transcripts), although transcripts increased in a 2.17% their inter-individual variability
(from 11.85%; SD: 16.78, to 14.02%; SD: 17.94) by decreasing a 2.66% their intra-individual

variability.
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Figure 4. Omics variability without fixed effects in the model (A) and with fixed effects in the model (B)
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Overall, the proportion of variance attributed to the explanatory variables (assuming they were
independent) was low for all omics (Figure 5), although some differences were found among
them. The variation attributed to both biological and technical effects accounted for 17.2%,
18.3%, 13.7%, 24.2% and 20.9% for proteome, urine metabolome, serum metabolome, miRNA
and transcriptome, respectively, of the total variation. Most of this variance was due to

seasonality in all omics.

The zBMI (4.62%; SD: 10.36) and seasonality (6.94%; SD: 7.93) were the explanatory
variables that explained most of the variability in the proteome, whereas the urine sample type
(morning, night or pool) (3.59%; SD: 4.67) and season (10.07%; SD: 9.89) were the more
relevant ones in the urine metabolome. Apart from seasonality (5.37%, SD: 5.46), serum
metabolome variability appeared to be mostly explained by the age of the individuals (2.57%;
SD: 3.17). Except for seasonality (16.64%; SD: 17.19 for miRNA, 16.50%; SD: 17.01 for
transcriptome), the explanatory variables explained little miRNA and transcriptome variability

(Figure 5).

In order to know which omics markers presented the highest intra-, inter-individual and cohort
variabilities, we sorted them and represented a “top 10” for each of the three effects by omics
(see Annex 1). Annex 1A shows each top 10 by proportion of variability explained by intra-,
inter-individual and cohort effect and Annex 1B represents, for the top 10 markers, the amount

of variability attributed to the different explanatory variables.

Among the urine metabolites with the highest intra-individual variability, N-methylpicolinic

acid, trimethylamine oxide and dimethylamine were found (see Annex 1A).

C14:1 (Tetradecenoylcarnitine) and C16:1 (Hexadecenoylcarnitine) were among the top 10
intra-individual variability serum metabolites that presented the most variability due to sex
differences. Regarding the top 10 inter-individual variability serum metabolites, PC aa C40:4

(a glycerophospholipid) was the metabolite most influenced by child zBMI (see Annex 1B).

Among the proteins with the highest inter-individual variation, we found that variation in il6
(Isoleucine 6) was largely explained by zZBMI, as well as the time of fasting for insulin, which

was one of the proteins that presented more intra-individual variation (see Annex 1B).

Hsa-miR-100-5p was found to be one of the miRNAs presenting the most inter-individual

variability (see Annex 1A).

17



Figure 5. Variance explained by fixed effects.

h_ethnicity: ethnicity; e3_sex. sex; zBMI ra te: zBMI change rate; hs_dift mealblood imp: time to last
meal; blood _sam4: time of sample collection; age _sample _months: age in months at the time of sampling.
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Are we overestimating or underestimating the fixed effect proportion of

variance explained by the explanatory variables?

The total proportion of variance explained by the fixed effects of the model was calculated,
taking into account both the negative and positive covariances between them. These results
were compared with the previous models were we independently calculated the proportion of
variance explained by each explanatory variable and summed all the values. In the previous
models we were assuming that the fixed effects were independent and that they did not
covary. The total variance explained by fixed effects differed according to the model

assumptions based on “r.squaredGLMM” package.

For proteome, urine metabolome, miRNA and transcriptome, the proportion of variability
explained by the fixed effects was overestimated in a mean of 7.4, 12.5, 14.7 and 15.7%,

respectively, since the values of our sum were substantially higher than the total value,
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whereas for serum metabolome, the variability attributed to the explanatory variables was

underestimated in a 8.4% (see Annex 2A).

When comparing the over- and underestimation for the markers with highest intra- and inter-
variability (see Annex 2B), in the case of the omics that were overestimated (proteome, urine
metabolome, miRNA and transcriptome), a pattern could be observed: those markers that
were highly explained by season (e.g. adiponectin protein and succinate urine metabolite)

had, in general, an overestimation of the variability explained by the fixed effects.

Are we overestimating the proportion of variance explained by the intra-

individual variability due to technical effects?

For each particular omics, figure 6 shows the association between the intra-individual
variability for each markers and a parameter representative of the quality of measurement of
the marker or its level of detection. We used the percentage of limit of quantification 1 (pLOQ1)
for the proteome, the percentage of coefficient of variation (% CV) for urine and serum

metabolome, and the percentage of call rate (% call rate) for miRNA and transcriptome.

Figure 6. Association between intra-individual variability and Quality Control parameters

pLOQI: percentage under limit of quantification, %CV: percentage of coefficient of variation,
%BLD+zeros: percentage below limit of detection and zeros.
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In terms of pLOQ1, most of the proteome markers were around the first quartile and its intra-

individual variability varied along the intra-individual variability axis.

For both urine and serum metabolome, there was a tendency of the markers with the higher

coefficient of variation presenting a higher intra-individual variability.

Transcriptome and miRNA markers with the lower call rate, in turn, appeared to have higher
intra-individual variability, while those with the highest quality (highest call rate) tended to be

more stable.

Discussion

The current study modelled for the first time the variability of five different types of omics
data for 156 children from five European countries at two time points of 6-month interval,
providing a multi-omics perspective of short-term variability in the early years of life. We
found a disparity within each omics in terms of their stability over time and their specificity

among children.

We estimated the proportion of variance attributed to intra-individual, inter-individual and
cohort variability correcting for those explanatory variables we had complete information
about, and we thought to be of greater importance. Although technical effects had been
previously minimized through the quality control procedures, some of the intra-individual
variability might still be due to technical difficulty to measure those omics markers with low

concentrations at the time of analysis.

In general, proportions of variability attributed to cohort effects were low, in average, but
some particular markers stood out to higher levels of cohort variability. It would be interesting
to analyse more in depth which markers are these as well as their function since they could

provide valuable epidemiological information at a large geographical scale level.

To our knowledge, only two previous studies have assessed omic markers variability in a way
that can be commensurable to ours, regarding short-term and early years of life, in spite of
the fact that they focus in a particular omics. Maitre et al. (2017) performed the
characterization of short-term variability in urinary metabolites. The study focused on a
subset of 20 children from the INMA cohort (Guxens et al., 2011) in Spain, aged 8-9 years
old. They collected two daily urine samples during six consecutive days, first morning void

and night-time, and they performed the analyses with the pooled samples, just the way our
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urine metabolome analysis was carried out. The effects of inter-/intra-individual differences
on the child urinary metabolome were estimated through mixed effect models. Among the
metabolites that were found to have the highest intra-individual variability, N-methylpicolinic
acid, trimethylamine oxide and dimethylamine were found. Interestingly, these also appear
among the top ten metabolites with highest intra-individual variability in our study.
Interestingly these metabolites were identified as representative of seafood consumption and

gut microbial metabolism.

On the other hand, Hughes et al. (2015) estimated the gene expression variation of 66 human
placentas (transcriptomics) as well as determined the contribution of environmental, technical
and biological factors to the total variation. In their study, technical and biological traits effects
accounted for roughly 2% of total gene expression variation (Hughes et al., 2015). This value
agrees with the proportion of variation found to be attributable to most of the explanatory
variables in our study (a clear exception would be seasonality). Remarkably, the transcriptome
variation in our study is mostly due to intra-individual variation (84.8%) whereas Hughes et al.
(2016) attributed 58.9% of the variability to inter-individual variation. We could expect these
differences to be due to differences in tissue and differences in life-stage of the study, being our

study conducted in children aged 8 years, approximately, and theirs in placental tissue.

Our results were consistent with previous studies. For example, among the proteins with the
highest intra- and inter-individual variability we found Insulin and IL6, respectively. When we
assessed the proportion of variance attributed to the explanatory variables in the proteins that
presented highest intra- and inter-individual variability, we found these protein variabilities
highly depended on “Time to last meal” and “zBMI”, respectively. This fact strengthens our
results since (1) Insulin is a hormone related to the intake of food and (2) IL6 is a glycoprotein
expressed by immune cells, and the body mass index and the immune response have been found
to be strongly associated (Ilavska et al., 2012). For serum metabolites, as well, C14:1 (T
etradecenoylcarnitine) and C16:1 (Hexadecenoylcarnitine) had been previously positively
correlated with the female sex, and PC aa C40:4 (a glycerophospholipid) was reported to be
negatively associated to zBMI in the HELIX subcohort (Lau et al., 2018). Hsa-miR-100-5p
miRNA, for instance, is involved in the negative regulation of vascular smooth muscle cell

differentiation, so further study on its potential role as a biomarker could be interesting.

De Candia, Torri, Pagani & Abrignani, 2014, suggested serum miRNAs as biomarkers of

lymphocyte activation since lymphocytes release a great number of nano-sized vesicles
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containing T-cell characteristic miRNAs. Interestingly, transcripts in our study were assessed
mostly from immune cells and miRNA from circulating blood. Therefore, it would be useful
for further analyses in the HELIX child panel study to see if the children had had or were having
a cold prior to the sample collections, in order to assess if some of the variability seen could be

attributable to a lymphocyte activation.

Limitations of our study

In the first place, the proteome and the serum analysis were in fact targeted assays, which
therefore did not cover a wide range of markers and so there might be potential important

information that we missed by only analyzing a narrow spectrum of proteins and metabolites.

Secondly, despite we added many explanatory variables to correct for in the model, there are
still more interesting variables that could be taken into account such as diet or physical activity,
which are expected to influence the variability of omics such as the metabolome. In general, it

would be interesting to study if and how other factors account for variability within omics.

Thirdly, our study is based on data collected at two time points. A more exhaustive collection
of repeated samples across short periods of time would provide more robust and meaningful

information of omics variability over time.

Of course, a higher population size would provide higher statistical power to our model given
the fact that our study was conducted with 156 children and not all of them had complete data

for all omics.

Finally, regarding the variation due to the explanatory variables, a great limitation of our study
is the fact that the values obtained for each variable were calculated by assuming independence
and no covariation among them. However, by running “r.squaredGLMM” function of the
package “MuMIn” (Bartén, 2013), we could measure how over- or underestimated was the
proportion of variance attributable to the fixed effects of the model in each omics. A reason
of the overestimation in proteome, urine metabolome and miRNA might be due to an
overestimation of the season effect, since, interestingly, those markers that are highly
explained by seasonality are also really overestimated. Deeper analysis on the seasonality
would be needed in order to understand this phenomenon and determine how seasonality
really affects variability. This factor is often overlooked in clinical or epidemiological settings

measuring omics and could confer large uncertainty in the measurements.
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Strengths of our study

This is the first study that assessed omics variability in the short-term in general populations
from a multi-omics approach, concretely in child cohorts. Especially for miRNA, there is scarce
previous data on its variability over time. In any case, the analysis of the different omics
altogether is already useful to have global vision, all at once, of how different omics vary (1)
over time and among them and (2) within, between individuals and between cohorts from

different countries.

The fact that children from five European countries took part in the study allow the results to
be more generalized and meaningful in terms of environmental epidemiology, as well as more

generalizable.

By having these data on variability in different omics, this study could be the base of a deeper
and exhaustive research in order to analyze which are the markers that present more inter-
individual and cohort variability and how these can provide useful information for

epidemiological purposes.

Conclusion

Omics technologies are of valuable use at characterizing health status and omics markers may
serve as indicators of environmental exposures through time, especially during the early-life
years of life. This study characterizes intra-, inter-individual and cohort variability in children
from five European child cohorts and finds that most of the variability within omics is due to
intra-individual variability, despite this proportion varies among omics and within omics. On
the other hand, the explanatory variables that have been included in the model explain low
proportions of variability separately. As omics markers behave in different ways within omics,
and omics themselves show different patterns of variability, future studies will look at the most
outlying markers and will deepen into their biological function in order to give biological

meaning to the research and find potential biomarkers for early-life environmental exposures.

23



Bibliography

Barton, K. (2013). MuMIn: Multi-modal inference. Model selection and model averaging based
on information criteria (AICc and alike). http://cran.r-
project.org/web/packages/MuMIn/index.html

Bates, D., Méchler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models
Using Ime4. Journal Of Statistical Software, 67(1). doi: 10.18637/jss.v067.101

BMI-for-age (5-19 years). (2019). Retrieved from
https://www.who.int/growthref/who2007 bmi_for age/en/

Chatzi, L., Leventakou, V., Vafeiadi, M., Koutra, K., Roumeliotaki, T., & Chalkiadaki, G. et
al. (2017). Cohort Profile: The Mother-Child Cohort in Crete, Greece (Rhea Study).
International Journal Of Epidemiology, 46(5), 1392-1393k. doi: 10.1093/ije/dyx084

Chen, R., Mias, G., Li-Pook-Than, J., Jiang, L., Lam, H., & Chen, R. et al. (2012). Personal
Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes. Cell, 148(6), 1293-
1307. doi: 10.1016/j.cell.2012.02.009

de Candia, P., Torri, A., Pagani, M., & Abrignani, S. (2014). Serum microRNAs as Biomarkers
of Human Lymphocyte Activation in Health and Disease. Frontiers In Immunology, 5. doi:
10.3389/fimmu.2014.00043

Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic Quotient
Normalization as Robust Method to Account for Dilution of Complex Biological Mixtures.
Application inlH NMR Metabonomics. Analytical Chemistry, 78(13), 4281-4290. doi:
10.1021/ac051632c

Donaire-Gonzalez, D., Valentin, A., van Nunen, E., Curto, A., Rodriguez, A., & Fernandez-
Nieto, M. et al. (2019). ExpoApp: An integrated system to assess multiple personal
environmental exposures. Environment International, 126, 494-503. doi:
10.1016/j.envint.2019.02.054

Erickson, K., Otoupal, P., & Chatterjee, A. (2017). Transcriptome-Level Signatures in Gene
Expression and Gene Expression Variability during Bacterial Adaptive Evolution. Msphere,
2(1). doi: 10.1128/msphere.00009-17

Grazuleviciene, R., Danileviciute, A., Nadisauskiene, R., & Vencloviene, J. (2009). Maternal
Smoking,GSTM1 and GSTT1 Polymorphism and Susceptibility to Adverse Pregnancy
Outcomes. International Journal Of Environmental Research And Public Health, 6(3), 1282-
1297. doi: 10.3390/ijerph6031282

Guxens, M., Ballester, F., Espada, M., Fernandez, M., Grimalt, J., & Ibarluzea, J. et al. (2011).
Cohort Profile: The INMA—INfancia y Medio Ambiente—(Environment and Childhood)
Project. International Journal Of Epidemiology, 41(4), 930-940. doi: 10.1093/ije/dyr054

Heude, B., Forhan, A., Slama, R., Douhaud, L., Bedel, S., & Saurel-Cubizolles, M. et al. (2015).
Cohort Profile: The EDEN mother-child cohort on the prenatal and early postnatal determinants

24



of child health and development. International Journal Of Epidemiology, 45(2), 353-363. doi:
10.1093/ije/dyv151

Hughes, D., Kircher, M., He, Z., Guo, S., Fairbrother, G., & Moreno, C. et al. (2015).
Evaluating intra- and inter-individual variation in the human placental transcriptome. Genome
Biology, 16(1). doi: 10.1186/s13059-015-0627-z

Ilavska, S., Horvathova, M., Szabova, M., Nemessanyi, T., Jahnova, E., & Tulinska, J. et al.
(2012). Association between the human immune response and body mass index. Human
Immunology, 73(5), 480-485. doi: 10.1016/;.humimm.2012.02.023

Karczewski, K., & Snyder, M. (2018). Integrative omics for health and disease. Nature Reviews
Genetics, 19(5), 299-310. doi: 10.1038/nrg.2018.4

Keller, A., Rounge, T., Backes, C., Ludwig, N., Gislefoss, R., & Leidinger, P. et al. (2017).
Sources to variability in circulating human miRNA signatures. RNA Biology, 14(12), 1791-
1798. doi: 10.1080/15476286.2017.1367888

Kim, K., Mall, C., Taylor, S., Hitchcock, S., Zhang, C., & Wettersten, H. et al. (2014).
Mealtime, Temporal, and Daily Variability of the Human Urinary and Plasma Metabolomes in
a  Tightly  Controlled  Environment. Plos  ONE, 9(1), €86223. doi:
10.1371/journal.pone.0086223

Lau, C., Siskos, A., Maitre, L., Robinson, O., Athersuch, T., & Want, E. et al. (2018).
Determinants of the urinary and serum metabolome in children from six European populations.
BMC Medicine, 16(1). doi: 10.1186/s12916-018-1190-8

Li-Gao, R., Hughes, D., le Cessie, S., de Mutsert, R., den Heijer, M., & Rosendaal, F. et al.
(2019). Assessment of reproducibility and biological variability of fasting and postprandial
plasma metabolite concentrations using 1H NMR spectroscopy. PLOS ONE, 14(6), €0218549.
doi: 10.1371/journal.pone.0218549

Liu, X., Song, Y., Guo, Z., Sun, W., & Liu, J. (2019). A comprehensive profile and inter-
individual variations analysis of the human normal amniotic fluid proteome. Journal Of
Proteomics, 192, 1-9. doi: 10.1016/j.jprot.2018.04.023

Magnus, P., Birke, C., Vejrup, K., Haugan, A., Alsaker, E., & Daltveit, A. et al. (2016). Cohort
Profile Update: The Norwegian Mother and Child Cohort Study (MoBa). International Journal
Of Epidemiology, 45(2), 382-388. doi: 10.1093/ije/dyw029

Maitre, L., Lau, C., Vizcaino, E., Robinson, O., Casas, M., & Siskos, A. et al. (2017).
Assessment of metabolic phenotypic variability in children’s urine using 1H NMR
spectroscopy. Scientific Reports, 7(1). doi: 10.1038/srep46082

Maitre, L., de Bont, J., Casas, M., Robinson, O., Aasvang, G., & Agier, L. et al. (2018). Human

Early Life Exposome (HELIX) study: a European population-based exposome cohort. BMJ
Open, 8(9), €021311. doi: 10.1136/bmjopen-2017-021311

25



Nagaraj, N., & Mann, M. (2011). Quantitative Analysis of the Intra- and Inter-Individual
Variability of the Normal Urinary Proteome. Journal Of Proteome Research, 10(2), 637-645.
doi: 10.1021/pr100835s

Peck, J., Sweeney, A., Symanski, E., Gardiner, J., Silva, M., Calafat, A., & Schantz, S. (2009).
Intra- and inter-individual variability of urinary phthalate metabolite concentrations in Hmong

women of reproductive age. Journal Of Exposure Science & Environmental Epidemiology,
20(1), 90-100. doi: 10.1038/jes.2009.4

Piening, B., Zhou, W., Contrepois, K., Rost, H., Gu Urban, G., & Mishra, T. et al. (2018).
Integrative Personal Omics Profiles during Periods of Weight Gain and Loss. Cell Systems,
6(2), 157-170.e8. doi: 10.1016/j.cels.2017.12.013

Sampson, J., Boca, S., Shu, X., Stolzenberg-Solomon, R., Matthews, C., & Hsing, A. et al.
(2013). Metabolomics in Epidemiology: Sources of Variability in Metabolite Measurements
and Implications. Cancer Epidemiology Biomarkers & Prevention, 22(4), 631-640. doi:
10.1158/1055-9965.epi-12-1109

Shao, C., Zhao, M., Chen, X., Sun, H., Yang, Y., & Xiao, X. et al. (2019). Comprehensive
Analysis of Individual Variation in the Urinary Proteome Revealed Significant Gender
Differences. = Molecular &  Cellular  Proteomics, 18(6), 1110-1122.  doi:
10.1074/mcp.ral19.001343

Vineis, P. (2018). From John Snow to omics: the long journey of environmental epidemiology.
European Journal Of Epidemiology, 33(4), 355-363. doi: 10.1007/s10654-018-0398-4

Wright, J., Small, N., Raynor, P., Tuffnell, D., Bhopal, R., & Cameron, N. et al. (2012). Cohort
Profile: The Born in Bradford multi-ethnic family cohort study. International Journal Of
Epidemiology, 42(4), 978-991. doi: 10.1093/ije/dys112

Yoon, H., Belmonte, K., Kasten, T., Bateman, R., & Kim, J. (2017). Intra- and Inter-individual
Variability of microRNA Levels in Human Cerebrospinal Fluid: Critical Implications for
Biomarker Discovery. Scientific Reports, 7(1). doi: 10.1038/s41598-017-13031-w

Zhan, X., Long, Y., & Lu, M. (2018). Exploration of variations in proteome and metabolome
for predictive diagnostics and personalized treatment algorithms: Innovative approach and
examples for potential clinical application. Journal Of Proteomics, 188, 30-40. doi:
10.1016/j.jprot.2017.08.020

26



Annex 1

A - Top 10 omics markers for intra-individual, inter-individual and cohort

variability by omics
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*Top 10 not available for transcriptome since thousands of markers have the highest values.

Serum metabolome variance (TOP 10)
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B - Top 10 omics markers by variability of the explanatory variables by omics
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A - Mean over-/underestimation of the proportion of variance due to the
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B - Mean over-/underestimation of the proportion of variance due to the

explanatory variables for the Top 10 intra- and inter-individual variability

markers
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Serum metabolome
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*Top 10 not available for transcriptome since thousands of markers have the highest values.
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