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ABSTRACT 

Due to the advantage that resistant proteins provide, studies in the protein thermostability 

change has been of great interest because of its importance for industries, 

biotechnological and biomedical research. Multiple computational predictors have been 

created with the objective of identifying mutable residues that help improving the protein 

stability. However, the search of a highly accurate predictor has been unsuccessful. That 

is the reason why the idea of combining different predictors to create a consensus 

metapredictor comes up. Its main goal is to take advantage of all the other predictors’ 

strengths and minimize their weaknesses. In this thesis, we have developed four 

metapredictors, from which RF-Classifier, and its combined model with RF-Regressor, 

has the best performance. Besides, we have conducted three retrospective studies and a 

prospective one with an alpha/beta hydrolase to filter and select the most stabilizing 

mutations. 

1. INTRODUCTION 

Protein stability is a very important characteristic of proteins that highly affects their 

function, activity and regulation. Sometimes, single point polymorphism appears and 

therefore protein decreases their thermostabily, so they produce new variants that cause 

diseases or reduced immunogenicity (local or global unfolding or aggregation) (Broom, 

Jacobi, Trainor, & Meiering, 2017). In other situations, organisms evolved to produce 

other variants that increase protein thermostability and allow them to live in extreme 

conditions (for example thermophilic bacterias), thanks to the new version of these 

proteins that can keep their functionality. Stability residues show high conservation 

between sequences.  It is widely known the existence of both situations and, for this 

reason, studying protein stability is highly desirable for both biomedical and 

biotechnological applications. In particular, for an industrial purpose and in this master 

thesis, the main objective is increasing protein stability and aiding in finding new 

thermostable proteins (Chakravorty, Khan, & Patra, 2017; Musil et al., 2017). From an 

industrial point of view, these proteins can withstand  harsh industrial environments and 

keep their activity, so there is a continuous interest in these type of studies. 

There are several approaches to get thermostable proteins, although not all of them are 

feasible. For example, in vitro mutagenesis experiments, based on rational/semi rational 

or directed evolution approaches,  are costly and time consuming. As a cheaper and faster 
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alternative, computational methods, that have become more accurate and fast in the last 

years, can be helpful in estimating the effects of a mutation on a protein structure; we find 

an increasing  number of predictions methods (Musil et al., 2017; Pucci, Bernaerts, 

Kwasigroch, & Rooman, 2018).  

Protein stability is guided by numerous non-covalent interactions: hydrophobic, hydrogen 

bonding, electrostatic and Van der Waals interactions (Dill, 1990; Ponnuswamy & 

Michael Gromiha, 1994). From all them, the most important are hydrophobic interactions 

that are believed to be the driving force in folding and stability, although other cooperative 

long-range interactions between residues helps to overcome the local tendency to unfold 

(Gromiha & Selvaraj, 2004; Ponnuswamy, 1993).  

1.1. ∆∆G explanation 

To measure the change in protein stability upon a point mutation we use Delta Delta G 

(DDG or ∆∆G). ∆∆G is the change in Gibbs Free Energy between the folded and unfolded 

states in the wildtype protein and in the mutant one (Figure 1). This measurement is very 

useful to guess if a point mutation will increase protein stability or decrease in 

computational protein engineering. The units that are commonly used are Kcal per mol 

of substance. 

 

 

 

 

 

 

 

 

Figure 1. Schematic representation of the energy landscape for the wild-type protein and its 

mutant (left and right, respectively) where the x-axis represents the entropy and the y-axis the 

Gibbs energy. The minima represent the different conformational changes that explore the protein 

during folding. The difference between the global minima in the wildtype and in the mutant is the 

∆∆G value. (Figure extracted from Cyrus Biotech | Molecular Modeling and Design. (n.d.), from 

https://cyrusbio.com/) 
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During protein folding, the internal energy decreases due to packing of hydrophobic 

residues, optimized polar groups orientation and adjustment of bond lengths and angles. 

Entropy of the protein decreases but the entropy of the system increases due to the solvent. 

Mutations affect the way that residues interact and stabilize the structure (Figure 2). There 

is a preference of hydrophobic residues to be buried as well as to avoid the appearance of 

cavities in the interface of the protein caused by mutations that reduce the size of the 

residue (Goldenzweig & Fleishman, 2018). It is important to consider the modification 

of Van der Waals interactions and hydrogen bonds. In general, flexible parts are more 

feasible to increase stability than rigid parts that tend to destabilize (Goldenzweig & 

Fleishman, 2018). 

 

 

Figure 2. Example of protein interactions that affects the overall protein stability. (Figure 

extracted from Cyrus Biotech | Molecular Modeling and Design. (n.d.), from 

https://cyrusbio.com/) 

 

There are different experimental techniques for protein stability measurement. 

Traditionally, the most used have been far-UV circular dichroism, differential scanning 

calorimetry and fluorescence spectroscopy using unfolding methods (Sanavia et al., 

2020).  

Other additional techniques have been developed: Differential Scanning Fluorimetry, 

SPROX (Stability of Proteins from Rates of Oxidation), high-throughput stability 

analysis using yeast surface two-hybrid system, Nuclear Magnetic Resonance, Pulse 

Proteolysis, Capillary Iso-electric Focusing with Whole-Column Imaging detection 

(CIEF-WCID) and 96-Well Microtitre Plates (Ó’Fágáin, 2017).  
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1.2. Types and classification of available computational protein stability 

predictive methods 

There are lots of computational methods that predict the changes in protein stability 

caused by mutations as a measure of the difference in free energy of unfolding between 

wildtype and its mutant (Khan & Vihinen, 2010a). These methods are bioinformatics 

predictors that mainly combine computer science, physics, statistics, and mathematics 

(Farhoodi et al., 2017), being rather  easy to use due to their simple input (protein 

structure, generally in PDB) format and output (a value or estimation for change in 

stability) (Broom et al., 2017).  

We can classify different methods in four categories: physical potential approaches, 

statistical potential approaches, empirical potential approaches and machine learning 

methods. Newest and most robustness methods usually make combinations of them. 

1.2.1. Physical Potential Approach 

This type of approach, the earliest to be used, simulates the atomic force fields of the 

protein structure, typically by means of molecular mechanics in the form of  molecular 

dynamics and/or monte carlo methods, to obtain relative free energies levels (Bash, 

Singh, Langridge, & Kollman, 1987; Prevost, Wodak, Tidor, & Karplus, 1991). The 

difference in unfolding free energy upon single mutations in the protein can be computed 

with the statistical mechanical relation (Pitera & Kollman, 2000). In particular, they use 

a thermodynamic cycle approach. The idea is to use processes that are easily studied 

theoretically (modelled) in replacement of the real physical process of interest, folding in 

this case, thus facilitating the computation of the former difference (Wong & 

McCammon, 1987). 

Physical potential approaches are computationally very expensive, so they are used only 

on small sets of mutants (Guerois, Nielsen, & Serrano, 2002). One possible solution to 

the intense computation is the use of implicit terms for solvation energies and side-chains 

entropies, although it still needs a significant amount of time to get a reliable estimation 

(Guerois et al., 2002). 

1.2.2. Statistical Potential Approach 

Statistical potential approaches use potential functions derived from statistical analysis of 

protein features to make predictions. Protein features are extracted from experimentally 

databases of known proteins (Gilis & Rooman, 1997). Usually, they derive various types 
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of potentials from databases and compute the changes in folding free energies. Then, they 

compared the results with the measures one in the real database. Statistical potentials are 

relatively simple, accurate and computationally efficient (Shen & Sali, 2006). It is 

important to select the correct potentials to estimate the stability changes caused by 

mutations, depending of the role that they play in the protein stability, so there are 

different approaches that can be used to characterize the contribution to folding stability 

(Gilis & Rooman, 1996; Zhou & Zhou, 2004). Probabilities are transformed into energy 

functions employing usually Boltzmann’s law and it is justified by theory of conditional 

probabilities and linear and quadratic information theory (Cossio, Granata, Laio, Seno, & 

Trovato, 2012).  A drawback is the difficulty to add improvements without introducing 

overlaps in the underlying energies (Guerois et al., 2002). 

 

1.2.3. Empirical Potential Approach 

Empirical potential approaches combine weighted physical, energy terms and structural 

descriptors to produce the energy function containing an optimised set of parameters. It 

is basically a combination of the elements of the two previous approaches (Schymkowitz 

et al., 2005). 

They are computer algorithms whose energy terms have been weighted using empirical 

data. It is difficult to set the balance between the different energy terms that contribute to 

protein stability, for developing the protein force-field (Guerois et al., 2002). They 

combine a physical description of the interactions with features learned from 

experimental data. The resulting energy function uses a minimum of computational 

resources (Kellogg, Leaver-Fay, & Baker, 2011). 

1.2.3. Machine Learning Approach 

Machine learning approaches are trained with protein examples that have the wildtype 

protein and its mutant with the experimental measure of the change in unfolding free 

energy. They can be divided into sequence-based methods and structure-based methods 

depending on the input information.   

Machine learning methods learn a function from large data sets, and a set of features 

established, so these methods map the input information to the energy change. It does not 

consider the physics underlying mutation stability, although they combine selected 

physical, statistical and empirical features (Fang, 2020). There are a wide range of 

machine learning algorithms to face the problem of predict thermostability 
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They often reduce the amount of computer resources needed when compared with other 

approaches. They usually require as features the sequence, solvent accessibility, pH, 

temperature, or structure information, to make accurate prediction, being generally 

applicable to any protein (Zhou, X., & Cheng, J., 2016). The main limitation is the size 

and selection of the training and testing datasets, with the caution of overtraining. 

Moreover, several performance reviews failed to reproduce the high accuracies reported 

by authors once they change the databases (Buß, Rudat, & Ochsenreither, 2018; Khan & 

Vihinen, 2010a), resulting in real applicability limitations. 

1.3. Machine learning 

Machine learning is a branch of artificial intelligence that studies computer algorithms 

that classify, group, and learn from data with the objective of improving themselves 

automatically through experience (Awad & Khanna, 2015). They build a model using a 

set of data points labelled by the corresponding output value. Once the model is trained, 

it can make predictions on a set of new data points. 

There are traditionally three approaches: supervised learning, where the algorithm learns 

a rule to map inputs to outputs given a set of data. Unsupervised learning where the 

algorithm on its own search for a structure in the input information. Reinforcement 

learning, the algorithm learns from a dynamic environment when exact models are 

infeasible (Radford, Metz, & Chintala, 2016). 

Machine learning finds generalizable predictive patterns. They have been used for many 

applications such as handwriting recognition, face detection, speaker identification, 

microarray expression data analysis… (Awad & Khanna, 2015). They have been also 

developed to help predict changes in protein stability upon point mutations and to infer 

critical residues. 

Principal machine learning techniques of interest to this master thesis: 

• Support vector machines (SVM).  They were developed by Vladimir N. (1995) 

and can be used for solving classification and regression problems. SVM 

generates a regression function that maps implicitly input data using a kernel 

function (this kernel function can be linear or non linear – polynomial, sigmoid or 

radial). The drawback is that it can suffer from overfitting due to the use of kernel 

functions that can introduce them. 
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• Random forest (RF) was developed by Breiman (2001). It is capable for binary 

classification as well as regression problems. It is an ensemble learning method 

that utilizes the power of decision trees on multiple random sub-samples of the 

training set. Each decision tree infers a decision from the training data following 

a decision rule generated based on the value of a feature. It is resistant to 

overfitting problems and fast training processes. 

• Artificial neural network (ANN), can be used both for classification and 

regression, requiring a large diversity of training sets. When an element of the 

neural network fails, it can continue thanks to its parallel nature that simulates 

biological neural networks (Jia, Yarlagadda, & Reed, 2015a). 

1.4. State of art 

Different types of approaches have been developed to increase the thermostability of 

proteins. One of the first experimental approaches was directed evolution which consists 

of subjecting a protein to random mutagenesis, experimentally testing and, finally, 

selecting the best mutants that have the properties we were looking for (Socha & Tokuriki, 

2013). Then, the process is repeated once and again until the desired result is obtained. 

The drawbacks are that directed evolution is expensive and slow because the number of 

mutations that need to be tested increases exponentially.  

As an alternative for experimental methods, other computational approaches quickly 

emerged, which were quite efficient and lowered costs. 

Consensus design is a phylogeny-based stability design technique that has been widely 

used. The proteins that have been improved with this technique have achieved increments 

of up to 20 ºC (Lehmann, Pasamontes, Lassen, & Wyss, 2000). The main advantage is 

that neither the protein structure nor an energy model are required. During evolution, 

proteins accumulate a series of mutations that can be destabilizing, so when studying a 

family of homologous proteins, the most conserved aminoacids for each position will be 

the most stabilizing while maintaining the structure and function of the protein, as they 

have been conserved in evolution (Steipe, Schiller, Pluäckthun, & Steinbacher, 1994). As 

a drawback, it can lead to false positives since it does not consider the atomic details of 

the protein and may require experimental testing. Moreover, a large number of 

homologous sequences is needed to obtain unambiguous sequence alignments (Lehmann, 

Pasamontes, Lassen, & Wyss, 2000). 
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There are also some protocols, like FRESCO (Framework for Rapid Enzyme Stabilization 

by Computational libraries), which have a first computational design part that scans the 

entire protein structure to identify stabilizing disulphide bonds and point mutations. Then, 

it explores their effect by molecular dynamic simulations, and provides mutant libraries 

with variants that have a good chance to exhibit enhanced stability to produce highly 

robust enzymes in its second experimental validation part (Just, 2014; Muk et al., 2019). 

However, it needs a large amount of calculation power to carry out their molecular 

dynamics simulations since it increases along with the protein size and shape.   

Other tools, like the webserver Fireprot (Musil et al., 2017), automatically designs 

thermostable multiple point mutant proteins combining a consensus of two bioinformatic 

predictors (FoldX and Rosetta). The iRDP webserver (Panigrahi, Sule, Ghanate, 

Ramasamy, & Suresh, 2015) is another existing platform that combines iCAPS, iStability 

and iMutant modules to an effective rational engineering of proteins.  

In recent years, the development of metapredictors such as DUET (Pires, Ascher, & 

Blundell, 2014a), iStable 2.0 (Chen, Lin, Liao, Chang, & Chu, 2020), Dynamut 

(Rodrigues, Pires, & Ascher, 2018) and Threefoil (Broom et al., 2017) has increased in 

order to search for thermostable proteins. The metapredictors combine different 

individual predictors to which they give different importance for each type of mutation, 

so that the overall result is better than the individual results. The idea of using 

metapredictors that combine other tools has already been successfully used in other areas 

such as the covalent modification of proteins (Wan et al., 2008) or protein aggregation 

(Emily, Talvas, & Delamarche, 2013).   

DUET combines mCSM (Pires, Ascher, & Blundell, 2014b) and SDM (Pandurangan, 

Ochoa-Montaño, Ascher, & Blundell, 2017). Dynamut studies both protein stability and 

dynamics, calculated with Bio3D (Grant, Rodrigues, ElSawy, McCammon, & Caves, 

2006), ENCoM (Frappier, Chartier, & Najmanovich, 2015) and the DUET metapredictor. 

iStable is an online metapredictor that combines 10 individual predictors and its own 

machine learning algorithm. Threefoil combines 11 biopredictors by making a scale based 

on how well each one works.  

However, very few of these predictive tools have been experimentally tested to improve 

protein stability (Deng et al., 2014; Floor et al., 2014; Heselpoth, Yin, Moult, & Nelson, 

2015; Larsen et al., 2015; Song et al., 2013).    
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For this thesis, we will use the results of different multiple point mutation studies that 

achieved an increased thermostability of different enzymes: limonene epoxide hydrolase 

(LEH), a dimer of 149 aminoacids which increased +35 ºC the mean temperature of 

protein unfolding (Wijma et al., 2014), ω-transaminase (ω-TA), a dimer of 455 

aminoacids which increased +23 ºC the mean temperature of protein unfolding (Meng et 

al., 2020) and short-chain dehydrogenase (ADHA), a tetramer of 246 aminoacids which 

increased +45 ºC the mean temperature of protein unfolding (Aalbers et al., 2020). 
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2. OBJECTIVE 

The present master thesis consists in developing an integrated analysis tool for the 

prediction of stabilizing mutations as part of a more ambitious objective which is the 

development of a new methodology to get thermostable proteins. The following points 

are primary objectives: 

1. Designing and developing a new metapredictor mixing different bioinformatics 

predictive tools. 

2. Performance evaluation of the new metapredictor. 

3. Application to three retrospective studies and a prospective one and an analysis 

of the comparative result.



 

 

11 

 

3. MATERIALS AND METHODS 

3.1. Single-mutation datasets 

We built a dataset that contains single point mutations with its corresponding wildtype 

and the ∆∆G value experimentally determined as other studies have done before (Khan 

& Vihinen, 2010a). The signs for ∆∆G values are the opposite of those given in the 

Protherm database (Bava, Gromiha, Uedaira, Kitajima, & Sarai, 2004) because our 

consensus is that negative values are stabilizing ones. Moreover, we express the values 

in Kcal/mol.  

We use a dataset from Varibench (Sasidharan Nair & Vihinen, 2013), which is a 

benchmark database suite that comprises several experimental validated subdatabases, 

screening and cleaning of redundant data and manually checking, that have been used 

previously for developing and testing other prediction tools. The data is derived from 

Protherm, a huge database that contains a collection of thermodynamic measures of 

protein stability and it is freely available at https://www.iitm.ac.in/bioinfo/ProTherm/. 

This dataset contains 1784 mutations from 80 proteins with experimentally determined 

∆∆G values. There are 931 destabilizing mutations (∆∆G < 0.5), 631 neutral mutations 

and 222 stabilizing mutations (Khan & Vihinen, 2010a; Kumar et al., 2006). 

From the first dataset, we generate a subset where there are 79 different proteins and 1000 

mutations (See Supplementary Table 2), where 448 mutations have a negative ∆∆G value 

(stabilizing), 44 mutations with a ∆∆G value equal to 0 and 508 mutations with a positive 

∆∆G value (destabilizing). Then, we randomly divided our database in two parts, one for 

training (training data) and other for testing (testing data).  

In testing data there are 59 different proteins and 300 mutations, where 145 mutations 

have a negative ∆∆G value (stabilizing), 11 mutations with a ∆∆G value equal to 0 and 

144 mutations with a positive ∆∆G value (destabilizing). 

Each mutation in the dataset has the PDB identification code, the mutation, wild-type and 

position and the reference to the study from which it was extracted. 

3.2. Available published bioinformatic predictors used in this work 

For ∆∆G predictions we used the following tools: MAESTRO, CUPSAT, AUTOMUTE-

SVM and TR, FOLDX, INPS3D, MUPRO, I-MUTANT, EVOEF and IPTREESTAB 

which main characteristics are resume in Table 1. 
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3.2.1. MAESTRO (Multi AgEnt STability pRedictiOn, 

https://pbwww.che.sbg.ac.at/maestro/web/maestro/workflow) 

MAESTRO (Laimer, Hiebl-Flach, Lengauer, & Lackner, 2016; Laimer, Hofer, Fritz, 

Wegenkittl, & Lackner, 2015) is a structure-based predictor of unfolding free energy 

change in proteins upon point mutations that requires protein structures as input. The 

structure can be either experimentally resolved or modelled. MAESTRO makes 

predictions using statistical scoring functions and protein properties, following a multi-

agent machine learning strategy that combines three artificial neural networks, three 

support vector machines and a multiple linear regression to get a consensus value that is 

filtered  to remove outliers. Finally, MAESTRO gives a consensus ∆∆G prediction and 

its corresponding confidence score. We specify the temperature and pH values when they 

are different from 25 ◦C and 7, respectively. 

3.2.2. CUPSAT (Cologne University Protein Stability Analysis Tool, 

http://cupsat.tu-bs.de/) 

CUPSAT (Parthiban, Gromiha, Abhinandan, & Schomburg, 2007; Parthiban, Gromiha, 

& Schomburg, 2006) is a structure-based predictor of the change in protein stability upon 

point mutations. It uses the specific environment of the mutation site, which is assessed 

with the aminoacid atom potentials and torsion angles potentials to build a prediction 

model that allows prediction of the difference in unfolding free energy between the 

wildtype and the mutant proteins. It uses statistical potentials without machine learning. 

3.2.3. INPS3D (Impact of Non synonymous variations on Protein Stability, 

http://inpsmd.biocomp.unibo.it) 

INPS 3D (Fariselli, Martelli, Savojardo, & Casadio, 2015; Savojardo, Fariselli, Martelli, 

& Casadio, 2016) is a structured-based predictor that uses nine sequence features (as the 

INPS sequence version), but now includes two new features derived from the protein 3D 

structure: the relative solvent accessibility (RSA) of the native residue and  the local 

energy difference between wildtype and mutant protein structures. It uses a Support 

Vector Regression with a radial basis function kernel to predict the ∆∆G value. We will 

refer to it as INPS. 

3.2.4. AUTOMUTE 2.0 (AUTOmated server for predicting functional consequences 

of amino acid MUTations in protEins, http://binf.gmu.edu/automute/)  

AUTOMUTE (Masso & Vaisman, 2010) is a structure-based predictor that transforms 

aminoacids into coordinates in a 3D space. Then, it applies a tessellation and calculates a 
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residue environment score for each tetrahedral in both the wildtype and the mutant, 

considering the spatial perturbation caused by the mutation in the 3D structure. It makes 

the vector difference of the profiles to calculate the environmental change. There are 

several classification and regression models available to predict the change in stability 

upon point mutations. We use two regression models available in the webserver, a Tree 

regression (REPTree) and Support Vector Machine regression (SVMreg) to obtain a 

predicted value of the change in free energy. We will refer them as AUTO-RT and 

AUTO-SVM respectively. We specify the temperature and pH values when they are 

different from 25 ◦C and 7, respectively. 

3.2.5. iPTREE-STAB (interpretable decision tree based method for predicting 

protein stability, http://203.64.84.190:8080/IPTREEr/iptree.htm)  

iPTREE-STAB or IPTREESTAB (L. T. Huang, Gromiha, & Ho, 2007) is a sequence-

based predictor that uses the information of the three residues before and after the 

mutation site, experimental conditions, and a set of several rules from the knowledge of 

experimental conditions. With that information, it makes a classification and regression 

tree (CART) to get a prediction in stability change. There is also a predictive 

discrimination mode for classification into stabilizing and destabilizing. We specify the 

temperature and pH values when they are different from 25 ◦C and 7, respectively. 

3.2.6. I-MUTANT 3.0.1 (http://gpcr2.biocomp.unibo.it/cgi/predictors/I-

Mutant3.0/I-Mutant3.0.cgi) 

I-MUTANT 3.0.1 (Capriotti, Fariselli, Calabrese, & Casadio, 2005; Capriotti, Fariselli, 

Rossi, & Casadio, 2008) is a structure-based or sequence-based support vector machine 

predictor that can classify the mutations into three classes: stabilizing, neutral or 

destabilizing. Moreover, it can be used as a regression estimator of the ∆∆G value upon 

mutation that works with Support Vector Machine. We use the protein structure version 

of the software to predict ∆∆G values. It is feature-based with machine learning. We 

specify the temperature and pH values when they are different from 25 ◦C and 7, 

respectively. It is a stand-alone executable. 

3.2.7. MUpro (Prediction of Protein Stability Changes for Single Site Mutations 

from Sequences, http://mupro.proteomics.ics.uci.edu/) 

We used the sequence-based predictor of MUPRO (Cheng, Randall, & Baldi, 2006) to 

predict the change of unfolding free energy upon point mutations. It uses a support vector 

machine method to predict the ∆∆G from the sequence and structure information around 
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the mutation site. We specify the temperature and pH values when they are different from 

25 ◦C and 7, respectively. It is a stand-alone feature-based machine learning executable. 

3.2.8. FOLD-X (http://foldxsuite.crg.eu/) 

FoldX (Schymkowitz et al., 2005) is a structure base predictor that uses an empirical 

potential approach. It requires to compute a previous step of reparation of the input data 

to minimize the energy and correct structure errors. Fold-X combines different energy 

terms to estimate the difference in free energy of the folded and unfolded protein. It is a 

stand-alone executable. 

3.2.9. EVOEF (Energy Function for EvoDesign, 

https://zhanglab.ccmb.med.umich.edu/EvoEF/) 

EVOEF (X. Huang, Pearce, & Zhang, 2020) is a structure-based predictor that employs 

a physics-base energy function. It is very similar to FoldX and it also requires the 

reparation of protein structure before computing the difference in stability between the 

mutant and the wildtype. It is a standalone executable. 

Table 1. Resume of main characteristics of the selected predictors. 

Predictor 
Published 

(year) 
Functionality 

Time execution 

per mutation 
Classification 

MAESTRO 2016 
Online/Stand-

alone 
< 15 s 

Multi-agent machine learning 

system 

CUPSAT 2006 Online < 15 s 

Statistics potential approach: 

specific atom potentials and 

torsion angle potentials. 

INPS 2016 Online < 20 s 
Machine learning approach: 

support vector regression. 

AUTOMUTE 2010 
Online/Stand-

alone 
< 20 s 

Machine learning approach: 

support vector machine and 

random forest. 

iPTREESTAB 2007 Online < 20 s 

Machine learning approach: 

adaptive boosting algorithm, 

classification and regression 

tree. 

I-mutant 3.0 2006 
Online/Stand-

alone 
< 20 s 

Machine learning approach: 

support vector machine based 

predictor. 

MUPRO 2006 
Online/Stand-

alone 
< 30 s 

Machine learning approach: 

support vector machine based 

predictor. 

Fold-X 2005 Stand-alone < 30 s 

Empirical potential approach: 

empirical force field 

calibrated with experimental 

∆∆G values 

EvoEF 2019 
Online/Stand-

alone 
< 30 s 

Empirical potential approach: 

empirical force field 

calibrated with experimental 

∆∆G values 
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3.3. Creation of the dataset of descriptors to train machine learning 

To make this process easier and increase the number of tests, we have developed a 

pipeline to automatically predict with the majority of the predictors the mutations from 

databases (ProTherm and VariBench) (Figure 3) and generate our own database of 

predictions and real values. We have developed scripts for each bioinformatic predictor 

and a general script that coordinates the request and download results, saving the data in 

the same format. In Supplementary Information 1, you can find a coding example with 

the coordination of three individual predictors. 

When one predictor fails to predict due to exceptions or errors, we put a 0 for that 

prediction as it cannot estimate any change in stability. 

 

 

Figure 3. Scheme of the general process followed to extract and analyse data from ProTherm and 

VariBench databases and estimate the accuracy of the thermostability predictors. The pipeline is 

divided in four parts. 1) The input information required is the wild-type residue, the position and 

the mutation. Moreover, some predictors require the temperature and pH conditions, when it is 

not provided the value, we assume 25 ºC and pH 7. 2) A general/master script coordinates the 

request and download of different predicted values with 10 bioinformatic predictors previously 

selected. 3) Generation of a library with experimental mutations and predicted values. 4) Use of 

the new library to generate a new metapredictor that combines all previous information. *This 

input data is not needed for all predictors. 
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3.4. Machine learning algorithms to combine the methods 

The input data to train the machine learning algorithm consist of a comma-separate 

value (csv) file where the first column is a protein-mutation identifier, followed by the 

∆∆G real value extracted from the database and obtained experimentally. Then, we have 

set up a column called “STABILITY” that will take value 1 if ∆∆G is negative and 

therefore stabilizing, and value 0 otherwise. The rest of columns will be filled with the 

∆∆G values predicted by each predictor for each mutation indicated in the identifier 

column. We create a vector of features with the prediction values of the different 

bioinformatic predictors.  

If the energy change ∆∆G is negative, the mutation increases stability and is classified as 

a positive example. Otherwise, we will consider it as a negative example.  

3.4.1. Random Forest Classifier 

We are going to use it to classify whether an isolated mutation in a protein is stabilizing 

or not from the ∆∆G data provided by various available predictors. Each Random Forest 

Decision Tree takes as input data the results ∆∆G of a random subset of predictors and as 

output it will have a value of 1 (stabilizer) or value 0 (otherwise). You can also get a 

quantity between 0 and 1 that indicates the proportion of trees that return output 1 

(stabilizer). By default, we consider a mutation as stabilizing if the proportion is bigger 

than 50 %. 

We selected the parameters for the Random Forest that are common to RF-Classifier and 

RF Regressor by default ('bootstrap': True, 'min_samples_leaf': 1, 'n_estimators': 100,               

'min_samples_split': 2, 'max_features': 'auto', 'max_depth': None, 'max_leaf_nodes': 

None) 

• Bootstrap: True - means that all data is divided in random groups to train different 

decision trees. 

• Min_samples_leaf: 1 – the tree is going to subdivide until each division gives 1. 

• N_estimators: 100 – this is the number of trees in the forest. It was set to 100 after 

the optimization of the hyperparameter. Less trees reduced the accuracy, while 

increasing the number did not change the performance when we tested it. 

• Min_samples_split: 2 – data is divided until there is less than this amount of data. 

• Max_features: ‘auto’ – how many predictors will catch in each tree. By default, 

they select the root square of the number of predictors. 
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• Max_depth: None – this is the maximum number of divisions in each tree. 

• Max_leaf_node: None – we can set the number of leaves that will have each tree. 

3.4.2. Random Forest Regressor 

We are going to use a random forest regressor to estimate the ∆∆G value of a mutation 

from the values provided by different available predictors. We keep the parameters by 

default. 

parameters = {'bootstrap': True, 'min_samples_leaf': 1,'n_estimators': 100,               

'min_samples_split': 2,'max_features': 'auto', 'max_depth': None, 'max_leaf_nodes': 

None,               'random_state':1}  

3.4.3. 10-Fold Cross-Validation 

Cross-validation procedure is a method that is used to optimize the use of available data 

for training and testing. The goal is to estimate the accuracy of our trained machine 

learning models, dividing the training and testing 10 times. 

3.5. Statistical analysis of predictor’s performances 

3.5.1. Analysis of the classification performance 

To analyse the classification performance of the different thermostability predictors, we 

transform all ∆∆G estimated and real values into a binary classification: stabilizing or 

destabilizing where stabilizing values are negatives ones and destabilizing are the 

positives.  

To evaluate the result and analyse the predictive ability of the different predictors we 

develop a contingency table or confusion matrix (Stephen, 1997). In the contingency table 

we count the number of true positives (TP), which are the number of times in which a 

predictor estimates correctly that a mutation is stabilizing, true negatives (TN), are the 

number of times a predictor estimates correctly that a mutation is not stabilizing. We also 

count the number of false positives or type I error (FP), the number of times that a 

predictor estimates that a mutation is stabilizing while it is not, and the number of false 

negatives or type II error (FN), the number of times that a predictor estimates that a 

mutation is not stabilizing while it is. 

From the handling of these terms, a series of statistics have been developed that provide 

information on the different methods and help to assess which is the best: accuracy (Acc), 
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sensitivity (Sn), specificity (Sp), Precision (Pr) and Matthews Correlation Coefficient 

(MCC). 

The accuracy corresponds to the proportion of data that have been correctly estimated by 

the predictors as an indicator of the overall performance: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  

Precision is the number of hits in estimating positives out of the total number of positives, 

both false positives and true positives (Equation 2).  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (Pr) =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
   

Although accuracy seems to intuitively carry a lot of weight, having a low number of 

false positives results in higher precision (Trevethan, 2017). Other types of accuracy that 

are used are specificity and sensitivity. The first focuses on those correctly estimated 

negative values of the total existing negatives (ability to exclude true negatives). The 

second is the same as the previous one but for the positives (ability to include true 

positives).  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑝)  =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝑛) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Matthews Correlation Coefficient is a coefficient that measures the quality of binary 

classifications in the field of bioinformatics and machine learning. Their range of values 

goes from 1, for perfect predictions, to - 1 for opposite predictions while 0 corresponds 

with random predictions. 

𝑀𝑎𝑡𝑡ℎ𝑒𝑤𝑠 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑀𝐶𝐶)  =  
𝑇𝑃 𝑥 𝑇𝑁−𝐹𝑃 𝑥 𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
  

With this data, we can define a ROC (Receiver Operating Characteristic) space, a type of 

plot used to illustrate the different predictor’s performances as binary classifiers (Metz, 

1978). We represent the sensitivity in the y-axis and 1-specificity in the x-axis, where the 

perfect classifier would be in the coordinates (0,1) corresponding with a tool with no false 

positives and no false negatives. 
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3.5.2. Analysis of the regression performance 

To evaluate the performance of the ability to predict an estimated value for ∆∆G, we 

consider the Pearson Correlation Coefficient (PCC), Mean Square Error (MSE) and Mean 

Absolute Error (MAE). 

Pearson Correlation Coefficient (Pcc or ρ) is a measure of the linear dependence of two 

variables whose value ranges between 1 and -1 and is independent of the scale. In this 

work, we study the relationship between the estimated value (X) and the real value (Y). 

For a perfect predictor, the estimated and the real value should be equalled, so there would 

be a perfect positive correlation ρ = 1. In the case of perfect negative correlations, it would 

be ρ = -1. Those values that are close to 0 indicate that the data is not correlated. 

ρ =  
𝑐𝑜𝑣(𝑋, 𝑌)

𝑠𝑑𝑋𝑠𝑑𝑌
 

The Mean Square Error (MSE) is a statistic that calculates the average error made when 

calculating the difference between the actual (Y) and the estimated value (X). It is an 

estimator of the bias of the measures that considers the variance. 

𝑀𝑆𝐸 =
∑ (𝑋𝑖 − 𝑌𝑖)𝑛

𝑖=1
2

𝑛
 

The Mean Absolute Error (MAE) is a statistical measure used to estimate the precision 

of a method. It would be the equivalent of the distance that separates each of the data 

from the exact value it should have. 

𝑀𝐴𝐸 =
∑ |𝑋𝑖 − 𝑌𝑖|

𝑛
𝑖=1

𝑛
 

3.6. Description of the Consensus Metapredictor  

Our metapredictor coordinates the massive download of the thermostability changes 

predicted by each of the 10 bioinformatic predictors through a series of scripts (in the 

Supplementary Data there is an example of MUPRO script). Once all the data is 

downloaded, it is integrated into a single python dictionary. Then, from that dictionary 

we generated a dataframe with all the predictions and we saved it in a csv file. 

The required input by the combined consensus Random Forest Classifier and Regressor 

model is the structure of the protein or its PDB code, the protein amino acid sequence, 

the temperature, and the pH in which we want to work and calculate the changes in protein 

stability. 



20 

 

In resume, the process consists in a pipeline that combines web server functionalities and 

stand-alone tools. We combine all the predictions in a consensus so the result of the 

metapredictor will be more accurate than the result of all predictors separately (Figure 4). 

The output consists in a list of the most stabilizing mutations obtained, sorted from highest 

to lowest stabilizing ∆∆G value. In addition, we also generate a thermostability sensitivity 

profile in the form of boxplots for a quick visual inspection. 

  

Figure 4. Scheme of the general process followed to obtain the sensitive thermostability mutation 

profile and the topmost stabilizing single mutations for a protein.  
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The consensus metapredictor model will be used for three retrospective thermostability 

improved proteins, limonene epoxide hydrolase (LEH), ω-transaminase (ω-TA) and 

short-chain dehydrogenase (ADHA). In addition, a prospective study will be carried out 

on an alpha/beta hydrolase enzyme (MGS-MilE3) (Stogios, 2016). The aim of the 

prospective is carried out a posterior experimental validation and thus verify the 

effectiveness of the new method. Table 2 summarizes the main characteristics of these 

four proteins. 

Table 2. Resume of retrospective and prospective proteins information. 

Study Protein 
PDB 

ID 
SEQ 

∆Tm 

(ºC) 

Total  

Predicted 

Total 

Stabilizing 

Hit 

ratio   

% 

Retrospective 

LEH 1NWW 
149 

aa 
+ 35 268 47 17.5 

ω-TA 6G4B 
455 

aa 
+ 23 204 31 15.2 

ADHA 6TQ5 
246 

aa 
+ 45 177 21 11.9 

Prospective 
MGS-

MilE3 
5JD5 

321 

aa 
- - -  

 

3.7. Python libraries 

Most of the code generated has been written using the Python 3 language for the 

development of this thesis. The following free python libraries have been widely used: 

• Math is a python library that facilitates the use of mathematical utilities. 

• Matplotlib and Seaborn Python are comprehensive libraries for creating 

visualizations. All the graphs produced in this work have been created using any 

of them. 

• Numpy is a python library used to work with matrices, arrays, and calculations. 

• Pandas Python is a very useful library for handling large amounts of data and 

statistical analysis. It has been widely used for the creation of dictionaries and 

dataframes and the exportation of the results in csv files format. 

• Pickle is a python library that allows you to manipulate data structures and save 

them in pkl format for later use. 

• Scikit-learn is a Python library widely used for predictive data analysis. It is an 

open source, built on SciPy, Matplotlib and Numpy. 
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• Selenium Python: provides a webdriver protocol to control web browsers and 

automate web scraping and the control and managements of the request in the 

online webservers, yet it simulates clicking on buttons, filling forms or 

downloading results files. 
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4. RESULTS AND DISCUSSION 

4.1. Generation of input data features for training and testing 

4.1.1. Real experimental values data 

A complete database has been generated with real values and the estimations of ten 

bioinformatic predictors that belong to empirical, statistical, machine learning and 

combined approaches.  

Other studies that use several predictive tools (Broom et al., 2017; Khan & Vihinen, 

2010b) have also generated their own databases to test and analyse the performance of 

the different predictors. The results from recalculation of experimental values with the 

different predictors are usually quite different from what the authors reported. It has been 

shown that the non-symmetry in the distribution of ∆∆G values and the imbalances in the 

proportion of stabilizing and destabilizing mutations have a great effect on machine 

learning based predictions (Sanavia et al., 2020). Many of the published and available 

datasets are usually biased to destabilizing (Montanucci, Capriotti, Frank, Ben-Tal, & 

Fariselli, 2019). 

Some studies (Khan & Vihinen, 2010b; Montanucci, Capriotti, Frank, Ben-Tal, & 

Fariselli, 2019; Sasidharan Nair & Vihinen, 2013) (DDGun, Performance, Varibench…) 

have tried to face this problem selecting subsets of the database and controlling the 

proportions of both types of mutant, in a way of fixing the disbalance and to avoid a 

prediction bias toward destabilizing variations (Montanucci et al., 2019).  

From all above, we have selected those mutations that have been reported to be manually 

checked in other studies or that have been experimentally reproduced (Sasidharan Nair & 

Vihinen, 2013). Moreover, we have tried to keep a continuous and normal distribution of 

all values, to create a balanced dataset (Figure 5). 
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Figure 5. Histogram of the distribution of training and testing data in green and red, respectively. 

We can differentiate three regions depending on the value of ∆∆G, stabilizing, neutral and 

destabilizing. 

 

It is very difficult to assure that datasets do not include variations used in the 

bioinformatic predictors training step, because the number of mutations in the database is 

limited, and all predictors try to use as much mutants as possible, so most of the predictors 

have been trained on subsets of the ProTherm database (Jia, Yarlagadda, & Reed, 2015b). 

In our study, we have distributed all the stabilizing mutants and we have selected 

destabilizing values in the same proportion. If we observe the distribution of the values 

of ∆∆G in kcal/mol of all the mutants of our database, we can observe that they are 

distributed symmetrically (Figure 6).  
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Figure 6. Distribution of empirical ∆∆G values for training and testing data. In x-axis all mutants 

are sorted from minimal ∆∆G value to maximum ∆∆G value and y-axis contains the empirical 

values in kcal/mol extracted from Protherm database and Varibench database. Training data is 

color green (x) and testing data in color red (+). 

 

We need to take care when considering what we call “real data”. The results from 

experimental data that we consider as the real values are subjected to common errors 

derived to the technical procedure and measure errors. Besides, authors sometimes 

approximate the values when there are redundancies in the databases (Kumar et al., 2006), 

due many times to the fact that we can find the same mutation with different values or in 

different conditions, so some authors average the result. Other authors, like Capriotti 

(2008), divides all ∆∆G values in three categories, clearly stabilizing (∆∆G < -0.5 with 

our consensus sign), neutral (|∆∆G|<0.5) and destabilizing (∆∆G > 0.5). With this 

criterion we can be more confident to say that one mutation is stabilizing or destabilizing 

and we discard all those data that are slightly destabilizing when we need to make a 

decision. 

Reliable reference data is an important issue for all computational simulation tools, as we 

cannot forget that they are models and approximations that try to explain reality. The 

more accurate and precise of the experimental data the more reliable will be the result. 

The existence of experimental databases with thermodynamic information becomes 

essential. They should work to increment the number, reliability and truthfulness of the 

data (Potapov, Cohen, & Schreiber, 2009).  
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4.1.2. Predictive values data 

We have developed a pipeline to automatize the request and download of predictions from 

the different webservers to generate as output a dataframe that contains the real value, 

from the database (Khan & Vihinen, 2010a) and all the estimations keeping a consensus 

format the sign for the ∆∆G value and the units in kcal/mol. Each predictor uses its own 

criteria, so we need to unify them to develop a formal consensus. The most logical sense 

will be considered negative values for ∆∆G as stabilizing, agreeing with thermodynamics 

estimations.  

A practical, usefulness and easy handling criteria was used to the selection of the different 

predictive tools with preferable short execution times and stand-alone functionalities. 

Some predictors such as Duet (Pires et al., 2014a), DynaMut (Rodrigues et al., 2018), 

mCSM (Pires et al., 2014b) and SDM (Pandurangan et al., 2017) (Supplemental Table 1) 

take too long to run each computation, so they were discarded as they were unfeasible to 

calculate all possible mutations for a given protein, which is one of the objectives of this 

thesis.  

Other problems affecting the predictors were: i) internet crashes, ii) websites temporarily 

unavailable, iii) impractical request and download formats (some predictors requested an 

email to send the results individually or no more than one request could be sent). 

Thus, the possibility to obtain from a same script several predictions for a same mutant 

in a relatively fast way is advantageous. And, moreover, it is the first step to an analysis 

to combine all that information and increment in a synergistically way the result.  

Although mostly freely available published predictors report high reliable and accuracy 

ratio, actually, only few of them have been laboratory tested. Comparative studies have 

usually shown underperformances (Broom et al., 2017). Moreover, it should be noted that 

there are few databases that have not been used to train predictors, so we make 

redundancy mistakes. 

4.2. Creation of a thermostability consensus predictor 

In this thesis, we try to generate a consensus solution between several bioinformatic 

predictor tools that improve the sensitivity to estimate the stability of a mutation in a 

significant way, in comparison with the results of the different biopredictors taken into 

account separately. Our idea is to use the predictive power of all predictors combined as 

a first step of a methodology that will increase proteins’ thermostability with an interest 
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mainly focused on the industry, leaving aside the biomedical study of destabilizing 

mutations (Figure 7). 

In order to achieve our goal, we selected: MAESTRO, CUPSAT, AUTOMUTE-SVM 

and TR, FOLDX, INPS, MUPRO, I-MUTANT, EVOEF and IPTREESTAB. 

Our first consensus approach was “MEAN-PRED”, a mean consensus which consists in 

the average of the outputs of all the predictors. Those values that differed from the average 

by three times the value of the standard deviation were excluded. These outliers have a 

probability of occurrence of less than a 3 %.  

MEAN-PRED has been previously tested with other predictors (Khan & Vihinen, 2010b). 

The main disadvantage is that all predictors have the same weight when averaging the 

values, so if one predictor is less precise, the accuracy of the others decreases. In some 

studies, they average the value of each predictor depending on the characteristics of the 

mutation, based on a previous study in which they determine which predictor is the most 

reliable in each case (Broom et al., 2017). Although the result was promising, it was 

necessary to test it more times.  

Another possibility was to create a classifier to separate stabilizing mutations from 

destabilizing ones depending on the majority consensus sign. This approach was called 

“SIGN-PRED”. If half or more of the predictors estimate that the mutation is stabilizing, 

we trust the consensus and decide that it is so. In case of a draw, we assume that the 

mutation is stabilizing to avoid losing predictive power (type II error). 

Finally, we are facing a decision problem for each position trying to guess if a given 

mutation is stabilizing or destabilizing. As we have mentioned before in the introduction, 

there are robust and important algorithms in machine learning that are specialized in 

learning how to decide given a set of features. Within the machine learning algorithms, 

Random Forest  stands out for its robustness. The approach using Random Forest is much 

more efficient and performs better when making decisions since this type of algorithm 

learns how to distribute the accuracy of the different predictors to increase the overall 

performance. 
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Figure 7. Scheme of the analysis and implementation of Consensus Approaches. We can 

differentiate the already developed predictors (divided in stand-alone or webservers) and the 

metapredictors generated in this work that combines the outputs of the previous ones. To select 

the best method, we performed a statistical analysis of the different predictors’ characteristics. 

 

We used both versions available from Random Forest ensemble, Classifier and Regressor, 

and we have generated two models, RF-Classifier and RF-Regressor, which have stood 

out for their good results. On the one hand, the former can tell apart the stabilizing 

mutations from the destabilizing ones thanks to their percentage associated with the 

probability of the estimation. Cappriotti (2004) reports that in many cases, the 

classification of the mutation is more relevant than its value. On the other hand, the latter 

can approximate the real value of ∆∆G.  

All different predictors that participated in the training are important. After defining the 

Random Forest Classifier and training with the learning data previously selected, we can 

see the mean proportional importance of each predictor in the predictions made by the 

RF-Classifier. Among the different predictors that work as features for the model, the 

most important is MUPRO which participates with a relevance of 26 % followed by I-

MUTANT 12.9 % and the least important is AUTOMUTE-SVM with a relevance of 

5.5 % (Figure 8A). 
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Figure 8. Feature’s importance in RF-Classifier (A) and RF-Regressor (B). The importance of 

each predictor is highlighted by a barplot. 

 

In RF-Regressor, when we trained the algorithm, the predictors that acquire more 

relevance are: MUPRO with a relevance of 30.8 % followed by I-MUTANT with 23 % 

and IPTREESTAB with 14.7 % (Figure 8B). The least representative is again 

AUTOMUTE-SVM with a 3 %. 

A) 

B) 
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Although there may be significant differences in the apparent contributions made by each 

predictor when these are compared, Random Forest learns from all the features achieving 

a synergistic effect that takes advantage of all the predictors. 

 

4.3. Analysis and evaluation of the performances 

One advantage of Random Forest Predictor is its robustness and the low risk of 

overfitting. After applying a 5-fold cross-validation and repeating 10 times this validation 

for RF-Classifier, we obtain a mean accuracy of 0.77 (+/- 0.07). The accuracy can vary 

in an interval equal to (0.70, 0.84) with a high probability (in a normal distribution that 

probability is 95%), regardless of the division of the dataset into test and training. 

Similarly, in RF-Regressor the mean square error is 0.43 Kcal/mol and can vary in an 

interval equal to (0.22, 0.64) with high probability. 

 

4.3.1 Accuracy of the regressions 

In a predicted value vs experimental value axis graph, the accuracy of the predictions can 

be seen to the extent that the resulting points for each mutation in the test group are 

distributed along the diagonal line of the first quadrant (Figure 9A). We compare this line 

with the linear regression line of the resulting scatter plot, also showing its Pearson 

correlation coefficient and the least squares error associated with each predictor (Figure 

9B). 

The best predictors are RF-Regressor with a correlation coefficient of 0.792, followed by 

MEAN-PRED, I-MUTANT and MUPRO, whose Pcc are 0.595, 0.585 and 0.55 

respectively. 
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Figure 9. A) Representation of the Pearson Correlation Coefficient of each predictor. 

B) Relationship between predicted and experimental changes in stability for the different 

predictors. The dotted black line indicates a perfect correlation, whereas the red dotted line 

indicates the correlation of the predicted and experimental values.  

A) 

B) 
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We also calculate the mean absolute error committed by each predictor as another 

measure of the accuracy. It is evident that the metapredictor RF-Regressor is the most 

accurate following this criterion since it has the lowest mean absolute error (Figure 10A). 

Moreover, if we observe the distribution of the error values, best predictors are MUPRO 

and RF-Regressors, as their boxplot and mean are proximate to 0, which is no error at all. 

Narrow boxes indicate that the different measures have approximate absolute errors. The 

worst is IPTREESTAB, whose median of error values is the furthest from 0 and has the 

biggest dispersion of absolute errors. MUPRO has a very low median, but its dispersion 

is bigger than RF-Regressor (Figure 10B). 

 

Figure 10. A) Representation of the mean absolute error of each predictor. B) Distribution of the 

absolute error of measuring ∆∆G. The median absolute error corresponds with the notched region. 

The coloured region of each box includes the 50 % of the data, the rest are inside the whiskers. 

Outliers have been omitted in this plot. 

B) 

A) 
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4.3.2. Accuracy of the classifications 

We calculate the sensitivity, specificity, precision, accuracy and MCC of all predictors to 

be able to compare with the same conditions. For further information about these statistics 

see materials and methods. 

We use ROC analysis considering the sensitivity and specificity of each predictor as a 

classifier of the stability of the mutations, representing them as points in the ROC space 

(Figure 11). Predictors are better classifiers insofar as they are represented as points 

closest to the point (0,1), which represents an ideal infallible classifier (see materials and 

methods). A quick visualization of the best predictor can be done with ROC space. 

The results show that our method, using the three encoding schemes, performs better than 

all other methods using most evaluation measures.  

The best predictor is RF-Classifier followed by RF-Regressor. The worst is EvoEf with 

the worst specificity, precision, accuracy and MCC. Random Forest increase the mean 

values of all the other predictors, improving strengths and decreasing weaknesses. 

RF-Classifier is the closest predictor to position (0,1) that corresponds to a perfect 

classifier (0.28 u), whereas the furthest is AUTO-SVM (0.70 u). However, the worst 

predictor would be EvoEF due to its distance from both axes, so it is less specific than 

any other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Comparison of the overall performance in Receiver Operating Characteristic (ROC) 

Space. Each predictor is represented by a different symbol. The red dotted line diagonal represents 

random guess performances.  
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Figure 12. Comparison of the overall performance in Receiver Operating Characteristic (ROC) 

Space. Each predictor is represented by a different color line. The red dotted line diagonal 

represents random guess performances.  

 

Another indicator widely used to compare classification methods is the AUC (Area Under 

the ROC Curve). The classification of a mutation between stabilizing or destabilizing is 

based on a threshold ∆∆G value which has been set to 0 by default.  Each ROC curve is 

generated varying the threshold from the minimum ∆∆G value to the maximum and 

calculating the corresponding associated dot in the ROC space. 

The AUC is the mean sensitivity value for all possible specificity values and allows the 

comparison between predictors (Hanley & McNeil, 1982). A perfect predictor will have 

an area of 1, the larger the area, the better the predictor. The four metapredictors have the 

highest AUC values (Figure 12, Table 3) and the best predictor is RF-Classifier (0.887), 

followed by RF-Regressor (0.821). 
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Figure 13. Representation of the Matthews Correlation Coefficient of each predictor. 

Finally, we consider the Matthews Correlation Coefficient (MCC). The higher MCC the 

better. The lowest values for FoldX and EvoEF indicate that the predicted stability and 

the true states are weakly correlated. The best predictor is RF-Classifier, followed by 

MUPRO and the rest of consensus approaches (Figure 13). 

Table 3. Resume comparison table of predictors and meta-predictors. The best result for each 

metric is highlight in green whereas the worst is coloured red. 

Predictor Sensitivity Specificity Precision Accuracy MCC AUC 

MAESTRO 0.497 0.768 0.667 0.637 0.275 0.688 

CUPSAT 0.531 0.768 0.681 0.653 0.308 0.707 

MUPRO 0.531 0.968 0.939 0.757 0.559 0.760 

AUTO-SVM 0.297 0.981 0.935 0.650 0.384 0.675 

AUTO-RT 0.393 0.910 0.803 0.660 0.356 0.769 

IPTREESTAB 0.310 0.910 0.763 0.620 0.277 0.574 

I-MUTANT 0.303 0.942 0.830 0.633 0.322 0.766 

INPS 0.366 0.852 0.697 0.617 0.249 0.668 

FOLDX 0.517 0.697 0.615 0.610 0.218 0.662 

EVOEF 0.697 0.497 0.564 0.593 0.197 0.646 

RF-Classifier 0.745 0.871 0.844 0.810 0.622 0.887 

RF-Regressor 0.779 0.697 0.706 0.737 0.477 0.821 

MEAN-PRED 0.469 0.916 0.840 0.700 0.433 0.782 

SIGN-PRED 0.517 0.903 0.833 0.717 0.459 0.812 
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4.4. Selection of most stabilizing mutations 

The final objective is selecting the mutations more stabilizing given a protein sequence, 

so we are going to do a test to see with each predictor which percentage of the most 

stabilizing mutations will be selected. In this way, if we must select a fixed number of 

mutations as the most stabilizing, we will take the first ones in this ranking. 

Since there is not available databases with the estimated ∆∆G values for all possible 

mutations in a protein, we alternatively propose to compare how well each predictor 

would order mutations from its lowest ∆∆G to the highest, even if they come from 

different proteins.  

If we sort the list of 300 testing data mutations from the lowest ∆∆G to the highest real 

∆∆G, we compare which predictor would have better performance sorting that list so its 

100 top mutations were the largest possible proportion of the true top 100 values. 

 By pure chance, if we choose m mutations of all of them by random in an sorted list of n 

elements, approximately a quantity given by m*m/n (that is, a proportion of m/n of them) 

will result from the first m. Therefore, a predictor makes a good selection of mutations if 

an amount above that proportion results in the ranking of the first m. We will call that 

amount above “improved selection”. For instance, if we select the top 100 mutations from 

300, we need to exceed a minimum of 30 by random guess and it is an evidence that the 

predictor is sorting this particular ranking well. This can be done for each predictor and 

compared with the ranking provided by our RF-Regressor and MEAN-PRED predictors.  

On the other hand, we can study the way to combine the information on classification and 

the estimation of ΔΔG values to improve our selection ranking. Two strategies are 

proposed: the first, weighting the ΔΔG value estimated by RF-Regressor multiplying it 

by the value returned by RF-Classifier, which represents the proportion of trees in the 

Random Forest that determine the stabilizing character of a mutation. In this way, 

mutations with a high proportion of stabilizing predictor trees will gain positions in the 

ranking of the best mutations compared to other mutations with a low proportion or 

consensus on their stabilizing character. We will call this way of establishing the ranking 

"RFC * RFR". A second strategy consists of forming ordered pairs of values given by 

(RF-Classifier, RF-Regressor) and ordering the ranking by such ordered pairs. In this way 

we give priority to the proportion of stabilizers and, in the event of a tie, it is ordered by 
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the lowest estimated value of ΔΔG. We will name this way of establishing the ranking as 

"(RFC, RFR)". 

Once again, we will use the test data to compare the different rankings of the most 

stabilizing mutations (lower ΔΔG). To compare them with each other, we will take the 

ranking of the 100 best mutations according to experimental data and we will see what 

percentage of them fall within the ranking of each predictor used. We will finally choose 

the predictor that provides the best percentage (Figure 14A). 

When doing so, the combination of both RF algorithms turned out to be the best solution 

taking advantage of the performances of the two metapredictors. Our metapredictor is 

better than all of them, and the basic fundamental is that we are combining tools that are 

quite good separately, but in combination, the percentages of accuracy are multiplied and 

we take the best of each one (Figure 14B). 

It can be observed with the test data that the predictor that manages to introduce the 

majority of mutations in the top group through its particular ranking depends on the top 

group. It is likely that if we prioritize the guarantee that a mutation is stabilizing against 

the higher or lower value of its ∆∆G, the best predictor turns out to be the (RFC, RFR), 

while if our priority is to achieve very low values of the ∆∆G, then will be better predictors 

RFR or RFC * RFR. 
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Figure 14. A) Representation of the best predictive behavior. Each predictor is represented by a 

different color. The red dotted line diagonal represents random guess performances. On the x-axis 

we show the size of the top group (in percentage of the size of the test group) and on the y-axis 

we show the percentage of mutations that have really entered the true top group. B) 

Representation of the predictive behavior for 25 % of the best mutations. Blue dotted line 

represent random selection, individual tools are colored green and metapredictors in red. 

 

4.5. Studies with real-case data 

The final objective of the metapredictor is to locate those mutations that allow obtaining 

thermostable proteins of biotechnological interest from their structure. In order to test the 

procedure that would be followed with a prospective study, we have searched in the recent 

publications and other studies that have been carried out following the FRESCO protocol 

which first combines two biopredictors (Rosetta and FoldX) to select the most stabilizing 

B) 

A) 
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mutations. After the process of selection, they applied a molecular filter, visual inspection 

and finally experimental verification where they recorded the change in mean temperature 

of denaturalization obtained for each mutant. The three retrospective studies that were 

selected are: an alcohol dehydrogenase, a transaminase, and a hydrolase (Table 2). From 

these studies, a list of mutations as well as the ∆∆Gs that the authors predicted with the 

FRESCO protocol and experimentally tested values were extracted. This data can be used 

to check whether with our approach, we would have still selected those mutations that 

experimentally have been shown to be stabilizers. 

All the ∆∆G values estimated by the 10 predictors were calculated, as described in section 

of Materials and Methods, and the RFR * RFC model was applied, which values can be 

seen for a quick inspection in the sensitivity profile of mutations for the prospective 

(Figure 15) and retrospectives (Supplementary Figure 1). Besides, we provide the first 

150 mutation most stabilizing in Supplementary Data 1. Our metapredictor uses the 

predictions made by FoldX as one of the descriptors, so we will also take this into account 

when estimating the results to compare the predictive power of both methods. 

For 6TQ5, in the FRESCO protocol (FoldX + Rosetta) there were 21 stabilizing mutations 

from a total of 177 mutations (see Table 2), although 11 of those were initially ruled out 

because they inactivated the enzyme. From those 21, FoldX without Rosetta predicts 17 

are stabilizers, while our metapredictor RFR * RFC predicts only 7 are stabilizers. 

Then, 1NWW reported 47 stabilizing mutations from 268 mutations that were predicted 

with FRESCO (see Table 2), and FoldX without Rosetta predicts 32 of them are 

stabilizers, while RFC * RFR predicts 18. Finally, 6G4B published 31 stabilizing 

mutations from 204 that were tested with FRESCO (see Table 2), and FoldX only predicts 

15 of them are stabilizers, while RFC * RFR predicts 18. 

From the mutations selected by FRESCO, which are the result from following other steps 

such as visually filtering as well as experimental verification, it seems that our 

metapredictor does not consider most of them to be stabilizers. Since our metapredictor 

seems to be more accurate, we cannot jump to conclusions because it may detect other 

highly stabilizing point mutations that may have gone unnoticed by FRESCO. Therefore, 

it will be necessary to wait in order to carry out a prospective study with the 5JD5 protein 

and its experimental validation to study the percentage of stabilizing mutations 

successfully detected. 
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Figure 15. Sensitive Mutation Profile of the protein MGS-MilE3 (5JD5). Representation of all ∆∆G values 

calculated with the RFC * RFR model for each position. The colour gradually varies from dark red for 

positions with a more destabilizing estimated mean value, with a positive ∆∆G value, to navy blue for 

positions with a more stabilizing estimated mean value. A horizontal blue line indicates the neutral values 

that do not modify the protein stability. The most interesting mutations are negative outliers and blue-

coloured positions. 
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5. CONCLUSION AND FUTURE PROSPECTS 

The design of thermostable enzymes is of great interest for industries and biomedical 

research. As we have seen, there are many predictors whose purpose is to screen all 

possible mutations that a protein may undergo in order to reduce production time and 

experimental costs. The idea of using metapredictors, which combine the estimates of 

different individual tools to produce a more reliable result, has been spreading for some 

years. We have developed two metapredictors under the Machine Learning paradigm: 

Random Forest Classifier and Random Forest Regressor metapredictors. Each of them 

combines a total of 10 already published protein stability predictors. Moreover, we 

proposed two ways of organizing them to increase their predictive power: sorting them 

by the result of multiplying their outputs or by the vector that contains both outputs.  

After the study of the performance of all the predictors throughout the previously 

mentioned tests, the following conclusions can be obtained: 

• In all cases, the RF-Classifier has behaved with greater accuracy than the rest. 

• There are predictors that contribute very little to the accuracy of our RF-Classifier. 

The computational cost would have to be weighed against the loss of accuracy. 

Candidate predictors to be suppressed from RF are those that are very far from the 

optimum accuracy (point (0,1) in the ROC space) or those for which the FPR is 

very large since they provide too many false positives, which can negatively affect 

the choice of the ranking of the most stabilizing mutations (rightmost points in the 

ROC space). Following this criteria, we could delete the "EVOEF" predictor. 

• From now on, we will stop using the "MEAN-PRED" and "SIGN-PRED" based 

strategies, which have been clearly outperformed in accuracy by RF-Regressor 

and RF-Classifier, respectively. 

When making a ranking of the most stabilizers, we will use the "RFC * RFR" predictor 

if the percentage of the most stabilizing of the total size is less than ~30% and if it is not, 

we will use the "(RFC, RFR)". Although we cannot draw decisive conclusions from 

retrospective studies, we are going to send an experimental evaluation of the result of the 

predictions in order to verify the real efficacy of our metapredictor. 

After experimental validation, the following steps will include cluster and accumulation 

of the effective stabilizing mutations to produce multiple point stabilizing mutations. To 
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cluster mutations we could use a clustering algorithm like k-means algorithm, which is 

very powerful in data mining problems (Jain, 2010). Our goal is decreasing the risk of 

combining mutations with antagonistic effects and independence of specific structure. 

Finally, we should experimentally validate the result of the prospective study with 5JD5. 
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7. SUPPLEMENTARY DATA 

Supplementary table 1. Already published protein stability predictors. 

Predictor Description Published (year) 

AUTOMUTE 

Automated server for predicting functional consequences of amino acid 

mutations in proteins. 

http://binf.gmu.edu/automute/AUTO-MUTE_Stability_∆∆G.html 

2010  

COREX 

Web browser-based predictor that calculates regional stability variations within 

protein structures 

http://best.utmb.edu/BEST/ 

2005 

CUPSAT 
Predicts changes in protein stability upon point mutations. 

http://cupsat.tu-bs.de/ 
2006 

DUET 

A web server for an integrated computational approach to study missense 

mutations in proteins. 

http://biosig.unimelb.edu.au/duet/stability 

2014 

DynaMut 

Predicting the impact of mutations on protein conformation, flexibility and 

stability. 

http://biosig.unimelb.edu.au/dynamut/prediction 

2018 

EASE-MM 

Sequence-Based Prediction of Mutation-Induced Stability Changes with Feature-

Based Multiple Models. 

http://sparks-lab.org/server/ease 

2016 

ERIS 
Predict impact of mutation, stability. 

https://dokhlab.med.psu.edu/eris/login.php 
2007 

EvoEF2 

Accurate and fast energy function for computational protein design (de novo 

sequence design on a given fixed protein backbone (standalone) 

https://zhanglab.ccmb.med.umich.edu/EvoEF 

2020 

FoldX 5 

Provide quantitative estimation of the importance of the interactions contributing 

to the stability of proteins and protein complexes. 

http://foldxsuite.crg.eu/ 

2005 

I-MUTANT 3.0 

Predicting stability changes upon mutation from the protein sequence or 

structure. 

http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi 

2005 

INPS-MD 

The prediction of protein stability changes upon single point variation from 

protein sequence and/or structure. 

http://inps.biocomp.unibo.it 

2016 

 

 

IPTREESTAB 

Interpretable decision tree based method for predicting protein stability changes 

upon mutations. 

http://203.64.84.190:8080/IPTREEr/iptree.htm 

2007 

iSTABLE 

Predicting protein stability changes. Stability change, input PDB or sequence, 

stability. 

http://ncblab.nchu.edu.tw/iStable2 

2020 

MAESTRO 
A web server for structure based protein stability prediction. 

https://pbwww.che.sbg.ac.at/maestro/web 
2016 

http://binf.gmu.edu/automute/AUTO-MUTE_Stability_ddG.html
http://best.utmb.edu/BEST/
http://cupsat.tu-bs.de/
http://biosig.unimelb.edu.au/duet/stability
http://biosig.unimelb.edu.au/dynamut/prediction
http://sparks-lab.org/server/ease
https://dokhlab.med.psu.edu/eris/login.php
https://zhanglab.ccmb.med.umich.edu/EvoEF
http://foldxsuite.crg.eu/
http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
http://inps.biocomp.unibo.it/
http://203.64.84.190:8080/IPTREEr/iptree.htm
http://ncblab.nchu.edu.tw/iStable2
https://pbwww.che.sbg.ac.at/maestro/web
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Predictor Description Published (year) 

mCSM 
Effect of mutations on stability, PPI, protein-DNA 

http://biosig.unimelb.edu.au/mcsm/stability 
2014 

MUpro 

Prediction of Protein Stability Changes for Single-Site Mutations from 

Sequences. 

http://mupro.proteomics.ics.uci.edu/ 

2005 

Mutation tool - 

NeEMO 

A method using residue interaction networks to improve prediction of protein 

stability upon mutation. 

http://protein.bio.unipd.it/neemo/ 

2014 

POPMUSIC 
An algorithm for predicting protein mutant stability changes. 

https://soft.dezyme.com/query/create/pop 
2009 

pPerturb 

Predicting Long-Distance Energetic Couplings and Mutation-Induced Stability 

Changes in Proteins via Perturbations. 

https://pbl.biotech.iitm.ac.in/pPerturb/ 

2020 

PPSC 
Prediction of Protein Stability Changes  

http://structure.bmc.lu.se/PPSC/ 
2012 

PremPS 
Predicting the Effects of Mutations on Protein Stability. 

https://lilab.jysw.suda.edu.cn/research/PremPS/ 
2020 

Pro-Maya 
Protein Mutant stability Analyzer 

http://bental.tau.ac.il/ProMaya 
2011 

ProTSPoM 

Estimating the Effect of Single Point Mutations on Protein Thermodynamic 

Stability. 

https://cosmos.iitkgp.ac.in/ProTSPoM/ 

2020 

pStab 
Prediction of Stable Mutants. 

 http://pbl.biotech.iitm.ac.in/pStab 
2018 

SDM2 
Site Directed Mutator for predicting stability changes upon mutation. 

http://marid.bioc.cam.ac.uk/sdm2/ 
2017 

SRide 
Identification of Stabilizing Residues in proteins, stability changes. 

http://sride.enzim.hu 
2005 

StaRProtein A Web Server for Prediction of the Stability of Repeat Proteins 2015 

STRUM 

A method for predicting the fold stability change (delta-delta-G) of protein 

molecules upon single-point nssnp mutationsv. 

https://zhanglab.ccmb.med.umich.edu/STRUM/ 

2016 

PROVEAN 
Stability prediction for a protein sequence. 

http://provean.jcvi.org/seq_submit.php 

2012 

ELASPIC 
Predict stability effects of mutations on protein folding and interactions. 

http://elaspic.kimlab.org/ 
2016 

 

 

 

 

 

 

http://biosig.unimelb.edu.au/mcsm/stability
http://mupro.proteomics.ics.uci.edu/
http://protein.bio.unipd.it/neemo/
https://soft.dezyme.com/query/create/pop
https://pbl.biotech.iitm.ac.in/pPerturb/
http://structure.bmc.lu.se/PPSC/
https://lilab.jysw.suda.edu.cn/research/PremPS/
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http://provean.jcvi.org/seq_submit.php
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C 

 

Supplementary Figure 1. Sensitive Mutation Profile of the retrospective proteins: A) LEH 

(1NWW), ADHA (6TQ5) and C) ω-TA (6G4B). Representation of all ∆∆G values calculated 

with the RFC * RFR model for each position. The colour gradually varies from dark red for 

positions with a more destabilizing estimated mean value, with a positive ∆∆G value, to navy 

blue for positions with a more stabilizing estimated mean value. A horizontal blue line indicates 

the neutral values that do not modify the protein stability. The most interesting mutations are 

negative outliers and blue-coloured positions. Each window shows 50 residues of the total protein 

sequence. 
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Supplementary data 1: part of the final output sorted list of the different proteins 

calculated with the model RFR*RFC. 

A) List of the 150 most stabilizing mutations for ADHA (6TQ5) from a total of 4674 

possible mutations: 

1) 39I, -2.11 Kcal/mol, 78. %; 2) 65L, -1.70 Kcal/mol, 91. %; 3) 65I, -1.68 Kcal/mol, 89. %; 4) 61I, -1.68 Kcal/mol, 83. %; 5) 17L, -

1.53 Kcal/mol, 88. %; 6) 39V, -1.84 Kcal/mol, 73. %; 7) 51L, -1.48 Kcal/mol, 85. %; 8) 61L, -1.52 Kcal/mol, 81. %; 9) 62I, -1.42 

Kcal/mol, 85. %; 10) 8V, -1.43 Kcal/mol, 84. %; 11) 65V, -1.71 Kcal/mol, 70. %; 12) 67W, -1.75 Kcal/mol, 67. %; 13) 242I, -1.61 
Kcal/mol, 72. %; 14) 46F, -1.78 Kcal/mol, 65. %; 15) 34I, -1.49 Kcal/mol, 77. %; 16) 229F, -1.26 Kcal/mol, 90. %; 17) 46I, -1.61 

Kcal/mol, 70. %; 18) 46M, -1.67 Kcal/mol, 67. %; 19) 67F, -1.69 Kcal/mol, 66. %; 20) 69M, -1.66 Kcal/mol, 67. %; 21) 67I, -1.70 

Kcal/mol, 65. %; 22) 67A, -1.57 Kcal/mol, 70. %; 23) 17I, -1.69 Kcal/mol, 64. %; 24) 65F, -1.84 Kcal/mol, 57. %; 25) 69L, -1.77 
Kcal/mol, 60. %; 26) 39L, -1.51 Kcal/mol, 70. %; 27) 76M, -1.23 Kcal/mol, 86. %; 28) 46L, -1.64 Kcal/mol, 64. %; 29) 67R, -1.61 

Kcal/mol, 65. %; 30) 67E, -1.49 Kcal/mol, 68. %; 31) 67M, -1.50 Kcal/mol, 66. %; 32) 17V, -1.58 Kcal/mol, 63. %; 33) 46V, -1.46 

Kcal/mol, 68. %; 34) 56V, -1.15 Kcal/mol, 86. %; 35) 67V, -1.61 Kcal/mol, 60. %; 36) 65Y, -1.46 Kcal/mol, 66. %; 37) 76L, -1.20 
Kcal/mol, 79. %; 38) 59I, -1.13 Kcal/mol, 83. %; 39) 69F, -1.83 Kcal/mol, 51. %; 40) 65M, -1.62 Kcal/mol, 56. %; 41) 8I, -1.03 

Kcal/mol, 88. %; 42) 67Y, -1.46 Kcal/mol, 62. %; 43) 67L, -1.52 Kcal/mol, 59. %; 44) 76R, -1.15 Kcal/mol, 77. %; 45) 59L, -0.98 

Kcal/mol, 88. %; 46) 65W, -1.41 Kcal/mol, 61. %; 47) 49V, -1.16 Kcal/mol, 74. %; 48) 69I, -1.58 Kcal/mol, 53. %; 49) 112M, -1.13 
Kcal/mol, 71. %; 50) 112I, -1.19 Kcal/mol, 67. %; 51) 117I, -1.12 Kcal/mol, 70. %; 52) 51F, -1.38 Kcal/mol, 56. %; 53) 10I, -0.96 

Kcal/mol, 81. %; 54) 70W, -1.46 Kcal/mol, 53. %; 55) 69V, -1.58 Kcal/mol, 47. %; 56) 218L, -1.03 Kcal/mol, 70. %; 57) 49I, -0.98 

Kcal/mol, 73. %; 58) 133I, -0.84 Kcal/mol, 84. %; 59) 49L, -0.85 Kcal/mol, 82. %; 60) 70Y, -1.28 Kcal/mol, 53. %; 61) 49F, -0.99 
Kcal/mol, 68. %; 62) 8L, -0.74 Kcal/mol, 90. %; 63) 119I, -0.92 Kcal/mol, 72. %; 64) 59V, -1.28 Kcal/mol, 50. %; 65) 10V, -0.76 

Kcal/mol, 82. %; 66) 130M, -0.62 Kcal/mol, 98. %; 67) 56L, -0.68 Kcal/mol, 89. %; 68) 62L, -0.63 Kcal/mol, 94. %; 69) 182L, -0.64 

Kcal/mol, 92. %; 70) 81I, -0.70 Kcal/mol, 84. %; 71) 212R, -0.80 Kcal/mol, 73. %; 72) 185I, -0.72 Kcal/mol, 80. %; 73) 137L, -0.61 
Kcal/mol, 94. %; 74) 109W, -0.69 Kcal/mol, 83. %; 75) 81L, -0.65 Kcal/mol, 87. %; 76) 100F, -0.71 Kcal/mol, 79. %; 77) 182I, -0.64 

Kcal/mol, 87. %; 78) 76Q, -0.70 Kcal/mol, 79. %; 79) 232M, -0.76 Kcal/mol, 73. %; 80) 98I, -0.61 Kcal/mol, 90. %; 81) 117L, -0.76 

Kcal/mol, 72. %; 82) 239I, -0.74 Kcal/mol, 74. %; 83) 98L, -0.57 Kcal/mol, 95. %; 84) 86I, -0.88 Kcal/mol, 62. %; 85) 56I, -0.62 
Kcal/mol, 87. %; 86) 41L, -0.61 Kcal/mol, 89. %; 87) 97M, -0.64 Kcal/mol, 84. %; 88) 76A, -0.72 Kcal/mol, 75. %; 89) 67C, -0.72 

Kcal/mol, 75. %; 90) 119L, -0.78 Kcal/mol, 69. %; 91) 243W, -0.79 Kcal/mol, 67. %; 92) 109L, -0.73 Kcal/mol, 73. %; 93) 62M, -

0.60 Kcal/mol, 86. %; 94) 236Q, -1.02 Kcal/mol, 51. %; 95) 230L, -0.76 Kcal/mol, 68. %; 96) 67T, -0.82 Kcal/mol, 63. %; 97) 239V, 
-0.71 Kcal/mol, 72. %; 98) 229L, -0.61 Kcal/mol, 84. %; 99) 109F, -0.69 Kcal/mol, 74. %; 100) 39F, -0.69 Kcal/mol, 74. %; 101) 

56F, -0.61 Kcal/mol, 83. %; 102) 17M, -0.66 Kcal/mol, 77. %; 103) 182M, -0.54 Kcal/mol, 93. %; 104) 109E, -0.65 Kcal/mol, 78. %; 

105) 76N, -0.69 Kcal/mol, 73. %; 106) 232W, -0.74 Kcal/mol, 68. %; 107) 109M, -0.67 Kcal/mol, 74. %; 108) 70L, -0.60 Kcal/mol, 
82. %; 109) 70F, -0.82 Kcal/mol, 60. %; 110) 229V, -0.67 Kcal/mol, 73. %; 111) 86L, -0.77 Kcal/mol, 64. %; 112) 36V, -0.82 

Kcal/mol, 59. %; 113) 117F, -0.85 Kcal/mol, 56. %; 114) 56M, -0.51 Kcal/mol, 92. %; 115) 92I, -0.81 Kcal/mol, 57. %; 116) 109K, 
-0.71 Kcal/mol, 66. %; 117) 230C, -0.84 Kcal/mol, 55. %; 118) 195I, -0.52 Kcal/mol, 88. %; 119) 76Y, -0.62 Kcal/mol, 73. %; 120) 

70I, -0.66 Kcal/mol, 68. %; 121) 25I, -0.79 Kcal/mol, 56. %; 122) 212M, -0.61 Kcal/mol, 73. %; 123) 235L, -0.59 Kcal/mol, 75. %; 

124) 37T, -1.01 Kcal/mol, 44. %; 125) 63I, -0.76 Kcal/mol, 57. %; 126) 134R, -0.68 Kcal/mol, 64. %; 127) 39M, -0.60 Kcal/mol, 73. 
%; 128) 58L, -0.48 Kcal/mol, 90. %; 129) 235I, -0.57 Kcal/mol, 75. %; 130) 133V, -0.53 Kcal/mol, 80. %; 131) 154L, -0.47 Kcal/mol, 

90. %; 132) 12M, -0.76 Kcal/mol, 56. %; 133) 241L, -0.72 Kcal/mol, 59. %; 134) 126I, -0.45 Kcal/mol, 93. %; 135) 130F, -0.46 

Kcal/mol, 92. %; 136) 70M, -0.67 Kcal/mol, 63. %; 137) 25A, -0.74 Kcal/mol, 56. %; 138) 209G, -1.05 Kcal/mol, 40. %; 139) 136L, 
-0.46 Kcal/mol, 90. %; 140) 72P, -0.56 Kcal/mol, 74. %; 141) 76F, -0.65 Kcal/mol, 64. %; 142) 242L, -0.59 Kcal/mol, 70. %; 143) 

152I, -0.49 Kcal/mol, 84. %; 144) 36I, -0.81 Kcal/mol, 51. %; 145) 76H, -0.55 Kcal/mol, 75. %; 146) 222I, -0.55 Kcal/mol, 75. %; 

147) 70V, -0.64 Kcal/mol, 64. %; 148) 70R, -0.77 Kcal/mol, 53. %; 149) 76V, -0.57 Kcal/mol, 71. %; 150) 232F, -0.60 Kcal/mol, 68. 
%;  

B) List of the 150 most stabilizing mutations for MGS-MilE3 (5JD5) from a total of 6099 

possible mutations: 

1) 307I, -1.57 Kcal/mol, 84. %; 2) 18F, -1.47 Kcal/mol, 89. %; 3) 18Y, -1.38 Kcal/mol, 94. %; 4) 307L, -1.63 Kcal/mol, 79. %; 5) 

307V, -1.78 Kcal/mol, 71. %; 6) 318L, -1.67 Kcal/mol, 75. %; 7) 18W, -1.53 Kcal/mol, 81. %; 8) 25L, -1.35 Kcal/mol, 90. %; 9) 

167L, -1.40 Kcal/mol, 83. %; 10) 14F, -1.57 Kcal/mol, 74. %; 11) 318I, -1.48 Kcal/mol, 78. %; 12) 18V, -1.35 Kcal/mol, 85. %; 13) 
307M, -1.60 Kcal/mol, 70. %; 14) 14M, -1.58 Kcal/mol, 69. %; 15) 30I, -1.67 Kcal/mol, 65. %; 16) 193I, -1.40 Kcal/mol, 77. %; 17) 

253L, -1.72 Kcal/mol, 62. %; 18) 307F, -1.75 Kcal/mol, 61. %; 19) 18M, -1.13 Kcal/mol, 93. %; 20) 36F, -1.59 Kcal/mol, 66. %; 21) 

161W, -1.61 Kcal/mol, 63. %; 22) 167I, -1.43 Kcal/mol, 70. %; 23) 253W, -1.70 Kcal/mol, 59. %; 24) 25I, -1.19 Kcal/mol, 84. %; 
25) 193L, -1.26 Kcal/mol, 79. %; 26) 313L, -1.82 Kcal/mol, 54. %; 27) 172I, -1.56 Kcal/mol, 63. %; 28) 265L, -1.03 Kcal/mol, 93. 

%; 29) 36L, -1.46 Kcal/mol, 64. %; 30) 30F, -1.72 Kcal/mol, 54. %; 31) 253F, -1.74 Kcal/mol, 53. %; 32) 256L, -0.99 Kcal/mol, 91. 

%; 33) 253M, -1.72 Kcal/mol, 52. %; 34) 18L, -1.03 Kcal/mol, 85. %; 35) 265I, -0.96 Kcal/mol, 91. %; 36) 253I, -1.64 Kcal/mol, 53. 
%; 37) 253V, -1.57 Kcal/mol, 54. %; 38) 161L, -1.53 Kcal/mol, 55. %; 39) 30V, -1.22 Kcal/mol, 68. %; 40) 264I, -1.40 Kcal/mol, 57. 

%; 41) 18I, -0.97 Kcal/mol, 83. %; 42) 161M, -1.45 Kcal/mol, 55. %; 43) 161F, -1.51 Kcal/mol, 53. %; 44) 161Y, -1.53 Kcal/mol, 

52. %; 45) 313I, -1.59 Kcal/mol, 50. %; 46) 273R, -1.10 Kcal/mol, 71. %; 47) 62I, -0.84 Kcal/mol, 92. %; 48) 178L, -0.91 Kcal/mol, 
84. %; 49) 14R, -1.03 Kcal/mol, 73. %; 50) 253R, -1.50 Kcal/mol, 50. %; 51) 30L, -1.13 Kcal/mol, 66. %; 52) 94L, -1.03 Kcal/mol, 

72. %; 53) 161V, -1.55 Kcal/mol, 47. %; 54) 283M, -0.83 Kcal/mol, 88. %; 55) 171M, -0.96 Kcal/mol, 76. %; 56) 161I, -1.43 Kcal/mol, 

51. %; 57) 36H, -0.90 Kcal/mol, 80. %; 58) 94Y, -1.15 Kcal/mol, 62. %; 59) 256I, -0.77 Kcal/mol, 91. %; 60) 166I, -0.97 Kcal/mol, 
72. %; 61) 256M, -0.77 Kcal/mol, 89. %; 62) 265M, -0.73 Kcal/mol, 94. %; 63) 265A, -0.78 Kcal/mol, 88. %; 64) 62L, -0.73 Kcal/mol, 

93. %; 65) 178I, -0.79 Kcal/mol, 86. %; 66) 284M, -0.71 Kcal/mol, 96. %; 67) 265V, -0.75 Kcal/mol, 90. %; 68) 318V, -0.86 Kcal/mol, 

78. %; 69) 283F, -0.88 Kcal/mol, 76. %; 70) 302M, -0.74 Kcal/mol, 90. %; 71) 302I, -0.72 Kcal/mol, 92. %; 72) 253T, -1.30 Kcal/mol, 
51. %; 73) 253Y, -1.27 Kcal/mol, 52. %; 74) 256V, -0.76 Kcal/mol, 86. %; 75) 253S, -1.28 Kcal/mol, 51. %; 76) 178M, -0.71 

Kcal/mol, 91. %; 77) 284L, -0.70 Kcal/mol, 93. %; 78) 62M, -0.69 Kcal/mol, 94. %; 79) 62F, -0.71 Kcal/mol, 89. %; 80) 313F, -1.28 



H 

 

Kcal/mol, 49. %; 81) 253A, -1.30 Kcal/mol, 48. %; 82) 171W, -0.89 Kcal/mol, 70. %; 83) 214I, -0.88 Kcal/mol, 69. %; 84) 94I, -0.99 

Kcal/mol, 61. %; 85) 302L, -0.74 Kcal/mol, 82. %; 86) 166M, -0.87 Kcal/mol, 69. %; 87) 171Y, -0.86 Kcal/mol, 69. %; 88) 27V, -

0.83 Kcal/mol, 71. %; 89) 30M, -0.92 Kcal/mol, 64. %; 90) 121C, -0.79 Kcal/mol, 74. %; 91) 194L, -0.81 Kcal/mol, 72. %; 92) 178Y, 

-0.64 Kcal/mol, 91. %; 93) 94F, -1.08 Kcal/mol, 54. %; 94) 108F, -0.98 Kcal/mol, 59. %; 95) 145L, -0.71 Kcal/mol, 81. %; 96) 214F, 

-0.80 Kcal/mol, 72. %; 97) 318P, -0.87 Kcal/mol, 66. %; 98) 40W, -0.84 Kcal/mol, 68. %; 99) 270Y, -0.98 Kcal/mol, 57. %; 100) 
194I, -0.93 Kcal/mol, 61. %; 101) 256C, -0.71 Kcal/mol, 80. %; 102) 208M, -0.67 Kcal/mol, 85. %; 103) 257V, -0.87 Kcal/mol, 65. 

%; 104) 208L, -0.67 Kcal/mol, 84. %; 105) 116V, -0.90 Kcal/mol, 62. %; 106) 44M, -0.60 Kcal/mol, 93. %; 107) 35Y, -0.86 Kcal/mol, 

64. %; 108) 155P, -0.81 Kcal/mol, 68. %; 109) 51L, -0.80 Kcal/mol, 69. %; 110) 270F, -0.90 Kcal/mol, 61. %; 111) 77L, -0.56 
Kcal/mol, 98. %; 112) 302V, -0.60 Kcal/mol, 90. %; 113) 195L, -0.84 Kcal/mol, 65. %; 114) 286L, -0.69 Kcal/mol, 78. %; 115) 253E, 

-0.86 Kcal/mol, 63. %; 116) 166T, -0.89 Kcal/mol, 61. %; 117) 27M, -0.75 Kcal/mol, 72. %; 118) 270L, -0.76 Kcal/mol, 71. %; 119) 

164I, -0.68 Kcal/mol, 79. %; 120) 109L, -0.61 Kcal/mol, 88. %; 121) 123I, -0.63 Kcal/mol, 84. %; 122) 318W, -0.63 Kcal/mol, 84. 
%; 123) 167M, -0.75 Kcal/mol, 70. %; 124) 283I, -0.58 Kcal/mol, 91. %; 125) 243L, -0.58 Kcal/mol, 91. %; 126) 318M, -0.63 

Kcal/mol, 83. %; 127) 108M, -0.74 Kcal/mol, 70. %; 128) 27I, -0.73 Kcal/mol, 71. %; 129) 14T, -0.71 Kcal/mol, 73. %; 130) 265F, 

-0.57 Kcal/mol, 90. %; 131) 145V, -0.66 Kcal/mol, 78. %; 132) 173L, -0.57 Kcal/mol, 90. %; 133) 14P, -0.66 Kcal/mol, 78. %; 134) 
51W, -0.70 Kcal/mol, 73. %; 135) 161A, -0.80 Kcal/mol, 64. %; 136) 27F, -0.67 Kcal/mol, 76. %; 137) 159P, -0.74 Kcal/mol, 69. %; 

138) 90L, -0.57 Kcal/mol, 89. %; 139) 193V, -0.80 Kcal/mol, 64. %; 140) 120I, -0.58 Kcal/mol, 88. %; 141) 27E, -0.75 Kcal/mol, 67. 

%; 142) 264L, -0.74 Kcal/mol, 68. %; 143) 167K, -0.68 Kcal/mol, 74. %; 144) 190L, -0.59 Kcal/mol, 85. %; 145) 292L, -0.64 
Kcal/mol, 79. %; 146) 266C, -0.89 Kcal/mol, 56. %; 147) 77W, -0.80 Kcal/mol, 62. %; 148) 125L, -0.70 Kcal/mol, 71. %; 149) 40R, 
-0.67 Kcal/mol, 74. %; 150) 26M, -0.54 Kcal/mol, 91. %; 

 

C) List of the 150 most stabilizing mutations for LEH (1NWW) from a total of 2831 

possible mutations. 

1) 125F, -1.77 Kcal/mol, 80. %; 2) 125I, -1.83 Kcal/mol, 77. %; 3) 125L, -1.81 Kcal/mol, 77. %; 4) 23W, -1.57 Kcal/mol, 87. %; 5) 

23V, -1.58 Kcal/mol, 82. %; 6) 23I, -1.65 Kcal/mol, 77. %; 7) 23F, -1.47 Kcal/mol, 84. %; 8) 64W, -2.07 Kcal/mol, 59. %; 9) 64R, -

1.79 Kcal/mol, 68. %; 10) 125V, -1.63 Kcal/mol, 71. %; 11) 23L, -1.45 Kcal/mol, 78. %; 12) 125M, -1.54 Kcal/mol, 73. %; 13) 109V, 
-1.66 Kcal/mol, 66. %; 14) 143I, -1.48 Kcal/mol, 73. %; 15) 64C, -1.64 Kcal/mol, 65. %; 16) 64V, -1.81 Kcal/mol, 57. %; 17) 125Y, 

-1.50 Kcal/mol, 70. %; 18) 143F, -1.77 Kcal/mol, 59. %; 19) 83L, -1.27 Kcal/mol, 82. %; 20) 36L, -1.32 Kcal/mol, 79. %; 21) 143W, 

-1.49 Kcal/mol, 69. %; 22) 64Y, -1.83 Kcal/mol, 56. %; 23) 68V, -1.35 Kcal/mol, 76. %; 24) 64L, -1.88 Kcal/mol, 54. %; 25) 143V, 
-1.48 Kcal/mol, 68. %; 26) 68M, -1.20 Kcal/mol, 83. %; 27) 64Q, -1.72 Kcal/mol, 56. %; 28) 64H, -1.71 Kcal/mol, 56. %; 29) 67L, -

1.49 Kcal/mol, 65. %; 30) 83F, -1.32 Kcal/mol, 73. %; 31) 86I, -1.20 Kcal/mol, 80. %; 32) 64A, -1.79 Kcal/mol, 53. %; 33) 143L, -

1.56 Kcal/mol, 61. %; 34) 83I, -1.20 Kcal/mol, 79. %; 35) 64K, -1.69 Kcal/mol, 56. %; 36) 143M, -1.34 Kcal/mol, 70. %; 37) 116M, 
-1.19 Kcal/mol, 77. %; 38) 64F, -1.79 Kcal/mol, 51. %; 39) 83M, -1.30 Kcal/mol, 70. %; 40) 66I, -1.43 Kcal/mol, 63. %; 41) 24M, -

1.14 Kcal/mol, 77. %; 42) 68F, -1.22 Kcal/mol, 71. %; 43) 12L, -1.08 Kcal/mol, 80. %; 44) 64M, -1.65 Kcal/mol, 52. %; 45) 86L, -

1.26 Kcal/mol, 67. %; 46) 64P, -1.48 Kcal/mol, 56. %; 47) 64T, -1.58 Kcal/mol, 53. %; 48) 24L, -1.06 Kcal/mol, 78. %; 49) 120I, -
1.29 Kcal/mol, 64. %; 50) 64S, -1.56 Kcal/mol, 53. %; 51) 114F, -1.08 Kcal/mol, 76. %; 52) 88W, -1.10 Kcal/mol, 74. %; 53) 110L, 

-0.85 Kcal/mol, 95. %; 54) 109L, -1.35 Kcal/mol, 60. %; 55) 122R, -1.06 Kcal/mol, 76. %; 56) 114Y, -1.13 Kcal/mol, 71. %; 57) 
83W, -1.16 Kcal/mol, 69. %; 58) 69L, -0.82 Kcal/mol, 97. %; 59) 83Y, -1.22 Kcal/mol, 65. %; 60) 68L, -0.94 Kcal/mol, 84. %; 61) 

68I, -0.91 Kcal/mol, 86. %; 62) 110F, -0.88 Kcal/mol, 89. %; 63) 64E, -1.62 Kcal/mol, 48. %; 64) 120L, -1.27 Kcal/mol, 61. %; 65) 

64I, -1.61 Kcal/mol, 48. %; 66) 110V, -0.90 Kcal/mol, 86. %; 67) 64N, -1.42 Kcal/mol, 54. %; 68) 114W, -1.11 Kcal/mol, 69. %; 69) 
41L, -1.13 Kcal/mol, 67. %; 70) 89V, -1.21 Kcal/mol, 63. %; 71) 88P, -1.19 Kcal/mol, 63. %; 72) 128I, -0.86 Kcal/mol, 86. %; 73) 

88V, -1.04 Kcal/mol, 70. %; 74) 109F, -1.51 Kcal/mol, 48. %; 75) 88L, -1.03 Kcal/mol, 70. %; 76) 88F, -0.91 Kcal/mol, 79. %; 77) 

100L, -1.06 Kcal/mol, 67. %; 78) 84I, -0.79 Kcal/mol, 88. %; 79) 88Y, -0.93 Kcal/mol, 75. %; 80) 114M, -1.03 Kcal/mol, 67. %; 81) 
84L, -0.77 Kcal/mol, 89. %; 82) 67F, -0.93 Kcal/mol, 73. %; 83) 60I, -0.81 Kcal/mol, 83. %; 84) 134L, -0.92 Kcal/mol, 73. %; 85) 

41F, -1.02 Kcal/mol, 66. %; 86) 41V, -1.08 Kcal/mol, 62. %; 87) 23M, -0.82 Kcal/mol, 81. %; 88) 23Y, -0.90 Kcal/mol, 73. %; 89) 

149I, -0.70 Kcal/mol, 93. %; 90) 149L, -0.70 Kcal/mol, 93. %; 91) 83V, -0.89 Kcal/mol, 73. %; 92) 49P, -0.89 Kcal/mol, 73. %; 93) 
86M, -0.86 Kcal/mol, 76. %; 94) 120V, -0.98 Kcal/mol, 66. %; 95) 11M, -0.85 Kcal/mol, 76. %; 96) 24W, -0.83 Kcal/mol, 77. %; 97) 

69M, -0.72 Kcal/mol, 89. %; 98) 60L, -0.77 Kcal/mol, 81. %; 99) 89I, -1.06 Kcal/mol, 59. %; 100) 60C, -0.84 Kcal/mol, 74. %; 101) 

114V, -0.75 Kcal/mol, 82. %; 102) 12M, -0.86 Kcal/mol, 72. %; 103) 60M, -0.77 Kcal/mol, 80. %; 104) 4L, -0.69 Kcal/mol, 89. %; 
105) 127F, -0.79 Kcal/mol, 77. %; 106) 139T, -1.05 Kcal/mol, 57. %; 107) 128L, -0.79 Kcal/mol, 76. %; 108) 24F, -0.82 Kcal/mol, 

73. %; 109) 88I, -0.85 Kcal/mol, 70. %; 110) 110M, -0.63 Kcal/mol, 94. %; 111) 12F, -0.85 Kcal/mol, 69. %; 112) 88M, -0.75 

Kcal/mol, 78. %; 113) 60F, -0.72 Kcal/mol, 81. %; 114) 123F, -0.75 Kcal/mol, 77. %; 115) 133W, -0.76 Kcal/mol, 75. %; 116) 122Y, 
-0.87 Kcal/mol, 65. %; 117) 134V, -0.89 Kcal/mol, 64. %; 118) 48M, -0.77 Kcal/mol, 73. %; 119) 24V, -0.81 Kcal/mol, 69. %; 120) 

67I, -0.96 Kcal/mol, 57. %; 121) 12I, -0.80 Kcal/mol, 69. %; 122) 67M, -0.94 Kcal/mol, 57. %; 123) 80W, -0.86 Kcal/mol, 63. %; 

124) 49R, -0.83 Kcal/mol, 65. %; 125) 32R, -0.84 Kcal/mol, 64. %; 126) 32L, -0.89 Kcal/mol, 60. %; 127) 49W, -0.84 Kcal/mol, 63. 
%; 128) 29I, -0.87 Kcal/mol, 61. %; 129) 80C, -0.78 Kcal/mol, 67. %; 130) 16Y, -0.73 Kcal/mol, 72. %; 131) 7L, -0.68 Kcal/mol, 77. 

%; 132) 86C, -0.93 Kcal/mol, 56. %; 133) 38L, -0.96 Kcal/mol, 54. %; 134) 38W, -0.95 Kcal/mol, 55. %; 135) 48L, -0.74 Kcal/mol, 

70. %; 136) 97V, -0.79 Kcal/mol, 65. %; 137) 110I, -0.55 Kcal/mol, 94. %; 138) 49K, -0.71 Kcal/mol, 72. %; 139) 126L, -0.58 
Kcal/mol, 88. %; 140) 49F, -0.83 Kcal/mol, 61. %; 141) 48F, -0.75 Kcal/mol, 67. %; 142) 12R, -0.65 Kcal/mol, 77. %; 143) 143R, -

0.79 Kcal/mol, 63. %; 144) 29M, -0.83 Kcal/mol, 60. %; 145) 4I, -0.54 Kcal/mol, 91. %; 146) 149M, -0.54 Kcal/mol, 92. %; 147) 
14I, -0.52 Kcal/mol, 94. %; 148) 122F, -0.79 Kcal/mol, 62. %; 149) 60Y, -0.64 Kcal/mol, 77. %; 150) 122W, -0.77 Kcal/mol, 63. %; 

 

D) List of the 150 most stabilizing mutations for ω-TA (6G4B) from a total of 8645 

possible mutations: 

1) 449F, -1.70 Kcal/mol, 87. %; 2) 449L, -1.68 Kcal/mol, 84. %; 3) 449M, -1.63 Kcal/mol, 86. %; 4) 449I, -1.68 Kcal/mol, 83. %; 5) 

421L, -1.56 Kcal/mol, 87. %; 6) 76L, -1.50 Kcal/mol, 89. %; 7) 201I, -1.62 Kcal/mol, 80. %; 8) 201L, -1.64 Kcal/mol, 77. %; 9) 292L, 



I 

 

-1.57 Kcal/mol, 80. %; 10) 448W, -1.57 Kcal/mol, 80. %; 11) 201F, -1.62 Kcal/mol, 76. %; 12) 76I, -1.61 Kcal/mol, 74. %; 13) 201M, 

-1.55 Kcal/mol, 76. %; 14) 311W, -1.51 Kcal/mol, 76. %; 15) 92I, -1.55 Kcal/mol, 72. %; 16) 421I, -1.28 Kcal/mol, 85. %; 17) 452F, 

-1.65 Kcal/mol, 64. %; 18) 167I, -1.41 Kcal/mol, 74. %; 19) 168I, -1.52 Kcal/mol, 68. %; 20) 448V, -1.67 Kcal/mol, 62. %; 21) 185Y, 

-1.24 Kcal/mol, 83. %; 22) 167M, -1.32 Kcal/mol, 77. %; 23) 94I, -1.24 Kcal/mol, 82. %; 24) 449W, -1.77 Kcal/mol, 56. %; 25) 133I, 

-1.35 Kcal/mol, 72. %; 26) 445L, -1.49 Kcal/mol, 65. %; 27) 312F, -1.15 Kcal/mol, 83. %; 28) 134F, -1.41 Kcal/mol, 68. %; 29) 
201V, -1.44 Kcal/mol, 66. %; 30) 343W, -1.19 Kcal/mol, 80. %; 31) 168V, -1.53 Kcal/mol, 62. %; 32) 312L, -1.17 Kcal/mol, 81. %; 

33) 292M, -1.21 Kcal/mol, 78. %; 34) 409L, -1.06 Kcal/mol, 89. %; 35) 353L, -1.19 Kcal/mol, 79. %; 36) 167L, -1.30 Kcal/mol, 72. 

%; 37) 464L, -1.07 Kcal/mol, 87. %; 38) 312I, -1.11 Kcal/mol, 83. %; 39) 313L, -1.06 Kcal/mol, 86. %; 40) 167V, -1.24 Kcal/mol, 
74. %; 41) 133M, -1.11 Kcal/mol, 82. %; 42) 274L, -0.91 Kcal/mol, 99. %; 43) 94L, -1.11 Kcal/mol, 81. %; 44) 292V, -1.45 Kcal/mol, 

62. %; 45) 94M, -1.20 Kcal/mol, 74. %; 46) 449Y, -1.82 Kcal/mol, 49. %; 47) 201W, -1.18 Kcal/mol, 75. %; 48) 201Y, -1.03 Kcal/mol, 

84. %; 49) 122I, -1.10 Kcal/mol, 78. %; 50) 353I, -1.07 Kcal/mol, 79. %; 51) 122K, -1.34 Kcal/mol, 63. %; 52) 258Q, -1.21 Kcal/mol, 
70. %; 53) 350I, -0.91 Kcal/mol, 93. %; 54) 116I, -1.28 Kcal/mol, 66. %; 55) 76V, -1.56 Kcal/mol, 54. %; 56) 292I, -1.27 Kcal/mol, 

66. %; 57) 146V, -1.16 Kcal/mol, 72. %; 58) 449V, -1.76 Kcal/mol, 47. %; 59) 185I, -0.89 Kcal/mol, 92. %; 60) 73I, -1.20 Kcal/mol, 

68. %; 61) 27L, -0.92 Kcal/mol, 88. %; 62) 152M, -0.94 Kcal/mol, 86. %; 63) 94V, -0.99 Kcal/mol, 81. %; 64) 448M, -1.12 Kcal/mol, 
72. %; 65) 26L, -0.86 Kcal/mol, 93. %; 66) 158F, -1.12 Kcal/mol, 71. %; 67) 311E, -1.10 Kcal/mol, 72. %; 68) 134L, -1.06 Kcal/mol, 

74. %; 69) 242F, -1.02 Kcal/mol, 77. %; 70) 356M, -1.03 Kcal/mol, 75. %; 71) 26I, -0.87 Kcal/mol, 88. %; 72) 185L, -0.80 Kcal/mol, 

95. %; 73) 448F, -1.12 Kcal/mol, 68. %; 74) 185M, -0.80 Kcal/mol, 94. %; 75) 356F, -0.85 Kcal/mol, 88. %; 76) 201R, -0.97 Kcal/mol, 
77. %; 77) 12A, -1.17 Kcal/mol, 63. %; 78) 356V, -1.15 Kcal/mol, 64. %; 79) 449R, -1.50 Kcal/mol, 49. %; 80) 418Y, -0.95 Kcal/mol, 

77. %; 81) 180I, -0.85 Kcal/mol, 86. %; 82) 407M, -0.96 Kcal/mol, 76. %; 83) 407L, -0.80 Kcal/mol, 90. %; 84) 67M, -0.94 Kcal/mol, 

77. %; 85) 168L, -0.88 Kcal/mol, 82. %; 86) 166I, -0.81 Kcal/mol, 88. %; 87) 445I, -1.01 Kcal/mol, 71. %; 88) 377I, -0.91 Kcal/mol, 
78. %; 89) 185F, -0.77 Kcal/mol, 92. %; 90) 258E, -0.98 Kcal/mol, 72. %; 91) 400F, -0.82 Kcal/mol, 86. %; 92) 377L, -0.90 Kcal/mol, 

78. %; 93) 166V, -0.77 Kcal/mol, 90. %; 94) 134I, -1.30 Kcal/mol, 53. %; 95) 150C, -1.13 Kcal/mol, 61. %; 96) 198M, -0.89 Kcal/mol, 

77. %; 97) 408I, -0.86 Kcal/mol, 79. %; 98) 185D, -0.75 Kcal/mol, 90. %; 99) 59V, -0.73 Kcal/mol, 93. %; 100) 152I, -0.80 Kcal/mol, 
85. %; 101) 266L, -0.73 Kcal/mol, 92. %; 102) 312M, -0.97 Kcal/mol, 70. %; 103) 210I, -0.72 Kcal/mol, 94. %; 104) 313I, -1.04 

Kcal/mol, 65. %; 105) 52I, -0.96 Kcal/mol, 70. %; 106) 200L, -0.97 Kcal/mol, 69. %; 107) 185S, -0.71 Kcal/mol, 94. %; 108) 185E, 

-0.71 Kcal/mol, 94. %; 109) 350L, -0.69 Kcal/mol, 96. %; 110) 30C, -0.97 Kcal/mol, 69. %; 111) 293W, -0.91 Kcal/mol, 73. %; 112) 
464I, -0.78 Kcal/mol, 85. %; 113) 74M, -0.82 Kcal/mol, 81. %; 114) 311I, -1.06 Kcal/mol, 62. %; 115) 448R, -0.91 Kcal/mol, 72. %; 

116) 400M, -0.72 Kcal/mol, 90. %; 117) 259L, -1.02 Kcal/mol, 64. %; 118) 356I, -1.00 Kcal/mol, 65. %; 119) 160M, -0.81 Kcal/mol, 

79. %; 120) 325L, -0.69 Kcal/mol, 92. %; 121) 150W, -1.03 Kcal/mol, 62. %; 122) 259I, -1.01 Kcal/mol, 63. %; 123) 332F, -0.81 
Kcal/mol, 79. %; 124) 343L, -0.76 Kcal/mol, 83. %; 125) 89I, -0.72 Kcal/mol, 88. %; 126) 180L, -0.81 Kcal/mol, 77. %; 127) 198F, 

-0.89 Kcal/mol, 70. %; 128) 198W, -1.02 Kcal/mol, 61. %; 129) 402M, -0.79 Kcal/mol, 78. %; 130) 308L, -0.74 Kcal/mol, 83. %; 

131) 89M, -0.69 Kcal/mol, 89. %; 132) 337L, -0.73 Kcal/mol, 85. %; 133) 16V, -0.74 Kcal/mol, 83. %; 134) 185T, -0.65 Kcal/mol, 
94. %; 135) 311F, -0.93 Kcal/mol, 66. %; 136) 74F, -0.82 Kcal/mol, 74. %; 137) 312V, -1.15 Kcal/mol, 53. %; 138) 448L, -0.98 

Kcal/mol, 62. %; 139) 210L, -0.67 Kcal/mol, 91. %; 140) 396M, -0.65 Kcal/mol, 93. %; 141) 441M, -0.77 Kcal/mol, 79. %; 142) 

273M, -0.93 Kcal/mol, 65. %; 143) 332M, -0.77 Kcal/mol, 78. %; 144) 76F, -0.84 Kcal/mol, 72. %; 145) 402I, -0.77 Kcal/mol, 78. 
%; 146) 95A, -1.00 Kcal/mol, 60. %; 147) 198P, -0.77 Kcal/mol, 78. %; 148) 437M, -0.94 Kcal/mol, 64. %; 149) 158M, -0.77 
Kcal/mol, 78. %; 150) 152L, -0.70 Kcal/mol, 85. %; 

 

 

Supplementary Table 2: Dataset extracted from Khan’s dataset (2010a) and Kumar’s 

dataset (2006). For each mutation we specify the PDB ID, the mutation (wild-type 

residue, position and new mutant residue) and the ∆∆G in Kcal/mol. For further 

information you can review the original datasets. 

PDB ID Mut ∆∆G PDB ID Mut ∆∆G PDB ID Mut ∆∆G PDB ID Mut ∆∆G PDB ID Mut ∆∆G 

1A23 H32Y -0.5 1LRP G48S -0.68 1YCC N52M -2.58 1FLV G87L 0.21 1CSP E12K 0.19 
1AAR F45W -0.32 1LRP K4Q -0.43 1YCC N52Q 0.08 1FLV G87V -0.12 1CSP E19K 0.5 
1AAR H68Q -0.55 1LRP Q33Y -1.32 1YCC N52S 0.05 1FLV V18I -0.08 1CSP E21K 0.07 
1AAR K29N 1.48 1LRP Q44Y 0.02 1YCC N52T 0.53 1FLV V18L -0.04 1CSP E21Q 0.24 
1AAR K6E -0.53 1LRP Y88C -2.4 1YCC N52V -1.67 1FTG A101V -0.16 1CSP E3K -2.75 
1AAR K6Q -0.26 1LZ1 A32L 0.1 1YCC P76G 0.78 1FTG A84G 0.47 1CSP E3L -1.01 
1AAR R42E -1.63 1LZ1 A32S 0.33 1YCC P76V 1.07 1FTG D126K -0.03 1CSP E3Q -1.1 
1AAR R72Q 0.33 1LZ1 A47P -0.1 1YCC T69E -1.3 1FTG D150K -0.01 1CSP E3R -1.72 
1AJ3 W22Y 0.23 1LZ1 A92S -0.81 1YCC T96A -0.8 1FTG D43A 0.03 1CSP E42K 0 
1AKK L94V 1.2 1LZ1 A96M -0.02 2ABD D21A -0.42 1FTG D65K -0.09 1CSP E42Q 0.12 
1AM7 H31N -1.8 1LZ1 A9S 0.02 2ABD E67A 0.36 1FTG D75K 0.01 1CSP E43G -2.82 
1ANK R88G 0.2 1LZ1 D102N -0.07 2ABD F5A 2.52 1FTG E107A -0.15 1CSP E43K -0.14 
1AQH Q58C -1.87 1LZ1 D120N -0.05 2ABD K32A 1.02 1FTG E20K -0.14 1CSP E43Q -0.02 
1ARR N29A -1.32 1LZ1 D18N 0.53 2ABD K32E 1.68 1FTG E40K 0.06 1CSP E43S -0.29 
1ARR P8L -2.4 1LZ1 D49N 0 2ABD K52M -0.18 1FTG E61K -0.22 1CSP E50K -0.02 
1AYF C95S -0.96 1LZ1 D67N 0.24 2ABD K54M -0.27 1FTG G68A -0.38 1CSP E53K 0.05 
1AYF D73E -0.45 1LZ1 D91P 0.4 2ABD T35A 1.09 1FTG I156V 0.69 1CSP E53Q -0.12 
1AYF T51S -0.05 1LZ1 E35L 0.53 2ABD Y31N 1.52 1FTG I21A 0.02 1CSP E66K -2.18 
1AYF Y79F 0.01 1LZ1 E7Q -0.1 2ABD Y73F -0.27 1FTG I21G -0.17 1CSP E66L -1.77 
1AYF Y79L 0.36 1LZ1 G127A 0.55 2AFG C117S 0.26 1FTG I22A 0.67 1CSP F17A -0.55 
1AYF Y79S 0.33 1LZ1 G129A -0.14 2AFG F108Y -0.33 1FTG I51V 0.41 1CSP F27A 0.12 
1AYF Y79W 0.21 1LZ1 G19A 1.77 2AFG H102Y -0.1 1FTG I52V 0.18 1CSP F38A -0.31 
1B26 E231A 0.17 1LZ1 G37A 0.29 2AFG H21Y -0.38 1FTG L143A 0.11 1CSP K13E 0.29 
1B26 K193A -0.23 1LZ1 G37Q 0.26 2AFG H93G -1.08 1FTG L50A -0.02 1CSP K13Q 0.07 



J 

 

PDB ID Mut ∆∆G PDB ID Mut ∆∆G PDB ID Mut ∆∆G PDB ID Mut ∆∆G PDB ID Mut ∆∆G 

1B26 R190A 0.15 1LZ1 G48A -0.45 2AFG L44F -0.31 1FTG L6A 1.11 1CSP K39E 0.05 
1B5M D58R -0.14 1LZ1 G68A 0.12 2AFG L44P 0.14 1FTG N97A 0.22 1CSP K39Q 0 
1BCX S100C -3 1LZ1 G72A 0.36 2AFG L73V 0.89 1FTG Q111G -0.22 1CSP K65E 0.79 
1BCX V98C -1.3 1LZ1 H78A 0.14 2AFG V109I 0.08 1FTG Q99A -0.43 1CSP K65I -1.53 
1BNI A32C 1 1LZ1 H78G 0.12 2CHF D12A -2.5 1FTG S110A 0.18 1CSP K65Q 0.12 
1BNI A32F 0.7 1LZ1 I106A 0.93 2CHF D13A -2.7 1FTG S71A 0.11 1CSP M1R -1.75 
1BNI A32H 0.8 1LZ1 I106V 0.72 2CI2 D42A 0.96 1FTG T122S -0.11 1CSP N10D -0.26 
1BNI A32K 0.2 1LZ1 I23V 0.36 2CI2 E26A 0.47 1FTG V117A 0.95 1CSP N55D -0.38 
1BNI A32L 0.3 1LZ1 I56L 0.1 2CI2 E26Q 0.62 1FTG V18I -0.19 1CSP N55K -0.1 
1BNI A32M 0.3 1LZ1 I59L 0 2CI2 E33A -0.64 1FTG V31A 0.46 1CSP N55S 0.17 
1BNI A32N 0.7 1LZ1 I89V 0.35 2CI2 E33D 0.52 1FTG V83I -0.05 1CSP R56Q -0.17 
1BNI A32Q 0.5 1LZ1 N118A -0.19 2CI2 E33Q 0.29 1G6N S129A 0.26 1CSP S48E 0 
1BNI A32S 0.4 1LZ1 N118G -0.05 2CI2 E34Q 0.47 1G6N S129P -0.14 1CSP S48K -0.48 
1BNI A32T 0.8 1LZ1 P103G 0.1 2CI2 E45A 0.32 1HFY A30I -0.3 1CSP S48R -1.58 
1BNI A32V 0.9 1LZ1 P71G 1.6 2CI2 E60A 0.68 1HFY A30T -0.06 1CYO F35H 2.82 
1BNI D12A -0.28 1LZ1 Q58A -0.91 2CI2 I48V 0.92 1HFY T29I -0.12 1CYO V45H 1.34 
1BNI D22M 0.27 1LZ1 Q58G -1.87 2CI2 I49V -0.08 1HFY T29V -1.86 1CYO V61K 2.34 
1BNI D44E -0.1 1LZ1 R21A -1.32 2CI2 I56A 0.03 1HFY T33I -0.18 1DYJ D27N -1.4 
1BNI D54A 3 1LZ1 R21G -1.15 2CI2 I76V -0.09 1HFZ H107Y 0.19 1EL1 A93S 0.26 
1BNI D8A -0.1 1LZ1 R50A -0.43 2CI2 K21A 0.55 1HFZ H32Y -0.07 1EL1 H21G 0.48 
1BNI E29Q 0 1LZ1 R50G -0.26 2CI2 K21M 0.67 1HFZ L110E 0.19 1EL1 I56L 0.24 
1BNI G34H 2.6 1LZ1 V100A 0.26 2CI2 K30A -0.42 1HFZ L110R -0.43 1FC1 K392A 0.4 
1BNI G65S -0.5 1LZ1 V100F 1.65 2CI2 K36A 0.49 1HFZ Q54A 0.41 1FC1 L351A 1.3 
1BNI H18G -0.31 1LZ1 V100T 0.29 2CI2 K37A -0.21 1HFZ Y103P 0.22 1FC1 L398A 0.1 
1BNI H18K 1.19 1LZ1 V110A -0.07 2CI2 K37G 0.97 1HME G35H 0.24 1FLV A101V 0.69 
1BNI I25V 1.1 1LZ1 V110D -0.17 2CI2 K43A -0.26 1HME I34H 0 1FLV G87A 0.09 
1BNI I4A 1.4 1LZ1 V110F 0.05 2CI2 K72N 0 1HME N47H -0.27 1RTB A4S 0.22 
1BNI I51V 1.8 1LZ1 V110G -0.48 2CI2 L27A 2.64 1HUE A56S 0.13 1RTB A5S -0.08 
1BNI I55V 0.3 1LZ1 V110I -0.86 2CI2 L51I 0.26 1HUE M69I 0 1RTB D121A 0.72 
1BNI I76V 0.8 1LZ1 V110L -0.07 2CI2 L51V 0.5 1HUE S31T -0.41 1RTB D121N 0.76 
1BNI I88L 0.3 1LZ1 V110M -0.53 2CI2 N75D 1.21 1HUE V42I 0.82 1RTB H119A -0.2 
1BNI I96V 0.9 1LZ1 V110N -0.07 2CI2 Q41A 0.02 1IGV D19N -0.52 1RTB I107A 2.85 
1BNI K108R -0.9 1LZ1 V110P -0.5 2CI2 Q41G 0.6 1IGV E17Q -0.26 1RTB I107V 0.08 
1BNI K19R -0.2 1LZ1 V110R -0.89 2CI2 Q47M -0.32 1IGV E26Q -0.09 1RTB I81V 0.43 
1BNI K27G 0.4 1LZ1 V110Y 0.14 2CI2 S31G 0.8 1IOB K97R 0.5 1RTB S123A -0.46 
1BNI K66A -0.2 1LZ1 V125A 1.32 2CI2 T22A 0.85 1IOB K97V -0.8 1RTB V108I 0.44 
1BNI L89V 0.3 1LZ1 V130A 0.84 2CI2 T22V 0.32 1IOB T9G 2.6 1RTB V108L 0.7 
1BNI N58A 2.7 1LZ1 V2D 1.44 2CI2 T55A -0.23 1IRO I33L -0.76 1RTB V116A 0.67 
1BNI N58D -0.5 1LZ1 V2I -1.1 2CI2 T55S 0.02 1IRO V24I -0.36 1RTB V118G 2.78 
1BNI Q104A 0.2 1LZ1 V2M 0.31 2CI2 T55V 0.76 1K9Q D26T -0.35 1RTB V54I 1.95 
1BNI Q15A 0.2 1LZ1 V2R 0.38 2CI2 T58A 0.69 1K9Q L22Y -0.17 1RTB V63A 2.03 
1BNI Q15I -1 1LZ1 V2S 1.41 2CI2 T58D -0.04 1KFW G253P 0.65 1RTP A21P -0.45 
1BNI Q31A -0.1 1LZ1 V2Y 0.36 2CI2 V38A 0.46 1KFW G405Q -0.62 1RTP H26P -1.25 
1BNI Q31G 0.98 1LZ1 V74D 0.43 2CI2 V53A 0.63 1KFW G92P -0.5 1RTP K80S 0.29 
1BNI Q31S 0.2 1LZ1 V74F 0.29 2CI2 V70A 1.95 1KFW N197K -0.81 1RX4 E139Q 1.36 
1BNI R110A 0.4 1LZ1 V74G 0.22 2CI2 V82A 1.45 1L63 F104M 0.4 1RX4 L28R -0.5 
1BNI R69M 2.12 1LZ1 V74I -0.45 2HPR S46D -0.7 1L63 I50M 0.4 1RX4 V75A 0.2 
1BNI S28A -0.41 1LZ1 V74L -0.19 2LZM A129V 0.7 1L63 I78A 1.2 1RX4 V75C 0.2 
1BNI S28E -0.4 1LZ1 V74M -0.65 2LZM A130S 1 1L63 L66M 1 1RX4 V88A -0.2 
1BNI S28G 0.45 1LZ1 V74N 0.33 2LZM A134S 0.1 1L63 M106A 1.9 1SHG A11V -0.6 
1BNI S85A 0.12 1LZ1 V74R 0.07 2LZM A146T 1.5 1LRP A15G 0.55 1SHG F52Y 0.44 
1BNI S91A 1.16 1LZ1 V74S 0.38 2LZM A41D -0.29 1LRP A20G -0.87 1SHG K18F -2.33 
1BNI T100G 2.8 1LZ1 V74Y 0.24 2LZM A41S 0.6 1LRP A37G -0.62 1SHG K18Y 0.05 
1BNI T16A 0.27 1LZ1 V93A 0.74 2LZM A41V -0.3 1LRP A49G -1.25 1SHG K59F -1.71 
1BNI T16R -0.2 1LZ1 V93T 0.67 2LZM A73S 0.4 1LRP A63G -1.49 1SHG K59Y -0.84 
1BNI T26D 0.08 1LZ1 V99T 0.5 2LZM A82P 0.07 1LRP A66G -0.07 1SSO I29V 0.4 
1BNI T26E 0.05 1LZ1 Y124F 0.36 2LZM A82S 0.3 1LRP A66T 2.99 1STN D77G 2.2 
1BNI T26G 1.5 1LZ1 Y20F 0.5 2LZM A93P -0.03 1LRP G46A -0.66 1STN F61A 2.4 
1BNI T26N 1.29 1LZ1 Y38A 2.49 2LZM A93S 0.2 1LRP G48A -0.87 1STN F76V 0 
1BNI T6D -0.11 1LZ1 Y45F -0.07 2LZM A93T -0.06 1LRP G48N -0.79 1STN G88V -0.5 
1BNI T6N 1.27 1LZ1 Y63F 0.24 2LZM C54T -0.3 1TUP R249S 1.95 1STN H46Y 0 
1BNI T6Q 1.87 1MGR Y33F -0.5 2LZM C54V 0.7 1VQB A86T 0.7 1STN I18M 0.2 
1BNI T6S 0.22 1MGR Y55F 2.1 2LZM D127A -0.24 1VQB A86V -0.5 1STN K116G -1 
1BNI T79V -0.3 1MGR Y89F 0 2LZM D20A 0.3 1VQB C33A 0.5 1STN N118D 2.5 
1BNI V36A 1.3 1PGA D47A -0.36 2LZM D20N -1.3 1VQB C33V 0.2 1STN S141A 0.12 
1BNI W94L -0.33 1PGA I6A 0 2LZM D20S -0.7 1VQB E30F -1.17 1STN V66L -0.3 
1BNI W94Y 0.99 1PGA I6E -0.16 2LZM D20T -0.9 1VQB E30M -0.6 1STN W140F 0.6 
1BNI Y103F 0 1PGA I6F -2.1 2LZM D47A 0.28 1VQB E40T 0.4 1STN W140H 0.4 
1BNI Y13F 0.41 1PGA I6K -1.6 2LZM D92N 0.1 1VQB F73W -0.8 1SUP G169A -0.3 
1BNI Y17A 2 1PGA I6L -2.8 2LZM E11A -1.1 1VQB H64C -0.5 1SUP M50F -0.48 
1BNI Y17F 0.3 1PGA I6N -1.94 2LZM E11F -1.7 1VQB I47L 0.6 1SUP N218S -1.07 
1BNI Y24F 0 1PGA I6R -0.16 2LZM E11H -0.1 1VQB I6V 0.04 1SUP N76D -0.45 
1BPI D3A -0.2 1PGA I6T -1.11 2LZM E11M -1.6 1VQB I78V 1.3 1SUP Q206C -1.25 
1BPI D50A 0.4 1PGA I6V -2.5 2LZM E128A -0.16 1VQB K24V -0.8 1SUP Y217K -0.72 
1BPI E49A 0.2 1PGA K10P 0.2 2LZM E128K 1.16 1VQB K69M -0.1 1TEN E887A -1.61 
1BPI G28A 1 1PGA K50A 0.45 2LZM E22K -0.57 1VQB L28V -1.1 1TUP C242S 2.94 
1BPI G56A 0.2 1PGA T16I -1.82 2LZM E45A -0.01 1VQB L32W -2.8 2LZM V111A 1.1 
1BPI G57A 0.2 1PGA T16L -2.06 2LZM F153I 0.2 1VQB L65P 1.5 2LZM V111I 0.69 
1BPI K15A 0.4 1PGA T16V -2.15 2LZM F153L -0.2 1VQB M77C 0 2LZM V131A -0.15 
1BPI K26A 0 1PGA T49A 0.86 2LZM F153M 0.6 1VQB M77F 0.2 2LZM V131D -0.08 
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1BPI K41A 0.4 1PGA T53A -0.08 2LZM G113A -0.1 1VQB M77I -1.6 2LZM V131E -0.2 
1BPI K46A -0.1 1PGA T53E -0.23 2LZM G113E -0.3 1VQB M77L 1.2 2LZM V131I -0.16 
1BPI L29A 0 1PGA T53H -0.37 2LZM G30A -0.1 1VQB M77T 0.8 2LZM V131L -0.09 
1BPI P8A 0.3 1PGA T53I -1.25 2LZM G77A -0.4 1VQB M77V -1.2 2LZM V131M -0.12 
1BPI P9A 0.8 1PGA T53K -0.35 2LZM I100M 1.6 1VQB T48V 0 2LZM V131S 0.05 
1BPI R17A 0.3 1PGA T53L -0.45 2LZM I100V 0.4 1VQB T62C 0.7 2LZM V149I 0 
1BPI R1A 0.5 1PGA T53M -0.9 2LZM I3A 0.7 1VQB T62V -1.3 2LZM V71A 1.5 
1BPI R39A 0 1PGA T53N -0.52 2LZM I3F 0.53 1VQB V19C 0.3 2LZM V87I 0.3 
1BPI R42A 0.5 1PGA T53Q -0.38 2LZM I3L -0.4 1VQB V19T 0.6 2LZM V94A 1.8 
1BPI R53A 0.1 1PGA T53R -0.4 2LZM I3M 0.3 1VQB V35I 0.6 2LZM W138Y 1.71 
1BPI T11A 0 1PGA T53S -0.87 2LZM I3V 0.4 1VQB V35M 1 2RN2 A125T 0 
1BPI T32A 0.1 1PGA T53V -2.37 2LZM K124G 0 1VQB V43T 1.6 2RN2 A24V -0.73 
1BPI T54A 0.1 1PGA T53W -1.04 2LZM K147E -0.1 1VQB V45C 0.1 2RN2 A52C -0.8 
1BPI V34A 1.2 1PGA T53Y -1.63 2LZM K16E -0.1 1VQB Y41A 0.4 2RN2 A52D 1.9 
1BPI Y35A 1.1 1PGA V21P 0.1 2LZM K60H 0.1 1VQB Y41F 0.6 2RN2 A52F -0.03 
1BTA C82A -0.48 1PGA V54A 0.1 2LZM K60P 0 1W4E A139G 2.3 2RN2 A52I -1.19 
1BVC A130K 0.9 1POH K49E -2 2LZM K83H 0.4 1W4E A168G 0.3 2RN2 A52M -0.5 
1BVC A130L -0.1 1POH S46D -1.4 2LZM L118M 0.7 1W4E D145N 0.9 2RN2 A52T 0.8 
1BVC D44A 0.15 1POH S46N -0.3 2LZM L121M 0.8 1W4E E141A 0.7 2RN2 D10A -2.4 
1BVC D60A 0.1 1REX T43V -0.96 2LZM L133F 0.2 1W4E E141Q 0.4 2RN2 D10E -1.05 
1BVC E109A -0.17 1RGG D17K 1.1 2LZM L133M 0.4 1W4E I130A 0.7 2RN2 D10N 0.7 
1BVC E109G 0.89 1RGG D25H -0.9 2LZM L99F -0.03 1W4E I130V 0.2 2RN2 D134E -0.72 
1BVC E18A 0.5 1RGG D79E 0.3 2LZM L99I 1.4 1W4E I163V 0.5 2RN2 D134L -1.33 
1BVC E4A 0.55 1RGG D79H -1.8 2LZM L99M 0.4 1W4E L159G 1.9 2RN2 D134Q -0.48 
1BVC G129A -1.1 1RGG D79I -2.8 2LZM M102L 0.74 1W4E L167V 0.2 2RN2 D134S -0.26 
1BVC G23A -0.74 1RGG D79K -2.3 2LZM M106I -0.2 1W4E V129A 0.7 2RN2 D134T -0.12 
1BVC G65A 0.11 1RGG D79L -2.7 2LZM M106L -0.5 1WQ5 C81A 0.69 2RN2 D134V -0.31 
1BVC H116A -0.2 1RGG D79N -1.18 2LZM M120A 0.2 1WQ5 C81G 1.58 2RN2 D70A 0.1 
1BVC H36Q 0.1 1RGG D79R -2.7 2LZM M120L -0.5 1WQ5 E49C -0.01 2RN2 D70E -0.1 
1BVC I111M 1.1 1RGG D79W -2.3 2LZM M120Y 0.1 1WQ5 E49D 0.03 2RN2 D94R -1.1 
1BVC I142L -0.6 1RGG D79Y -2.9 2LZM M6I 1.38 1WQ5 E49G -0.08 2RN2 E119V 0.06 
1BVC I142M -0.9 1RGG E41K 0.7 2LZM N116A -0.17 1WQ5 E49H -0.33 2RN2 E135K 0.22 
1BVC I28V 0 1RGG E74K -0.1 2LZM N116D 0.1 1WQ5 E49I -0.46 2RN2 E48A 0.1 
1BVC K140A -0.35 1RGG H85Q 0 2LZM N132F -1.3 1WQ5 E49K -0.2 2RN2 E48D -0.2 
1BVC K56A 0.2 1RGG N39A 2.2 2LZM N132I -1.2 1WQ5 E49L -0.44 2RN2 E48Q 0.1 
1BVC K77A 0.02 1RGG N39S 2.3 2LZM N132M -1.5 1WQ5 E49M 0.05 2RN2 G23A -0.5 
1BVC L11A 0.4 1RGG Q38A -0.4 2LZM N144D 0.1 1WQ5 E49N -0.27 2RN2 H62D 0.17 
1BVC L135M 0.8 1RGG Q94K -0.2 2LZM N144E -0.2 1WQ5 E49P 0 2RN2 H62R 0.03 
1BVC L149A 1.6 1RGG R65A 1 2LZM N144H -0.3 1WQ5 E49Q 0.23 2RN2 K117R -0.03 
1BVC L29A 2.4 1RGG T16V -0.3 2LZM N163D 0.21 1WQ5 E49S -0.09 2RN2 K91R 0 
1BVC L29M -0.1 1RGG T18V 1.4 2LZM N40A -0.2 1WQ5 E49T 0.26 2RN2 K95A -0.1 
1BVC L69A 1.2 1RGG T5V 0 2LZM N40D -0.44 1WQ5 E49V -0.14 2RN2 K95G -1.8 
1BVC L69I 0 1RGG T67V 0 2LZM N53A 0.8 1WQ5 E49W 0.97 2RN2 K95N -0.88 
1BVC L69M 0 1RGG T82V 1.7 2LZM N55G 0.5 1WQ5 E49Y 0.17 2RN2 Q113P 0.2 
1BVC L69V 0.1 1RGG V43T 0.5 2LZM N68A 0.05 1WQ5 F139W 0.07 2RN2 Q76L -0.24 
1BVC P88A -0.6 1RGG Y30F -0.4 2LZM Q105A 0.6 1WQ5 F258W 0.16 2RN2 Q80L 0.03 
1BVC Q8A -0.98 1RGG Y49F 0.2 2LZM Q105E 0.5 1WQ5 G211D -0.2 3SSI M73K -0.05 
1BVC Q8G 0.5 1RGG Y80F 1.5 2LZM Q122A 0.24 1WQ5 G211E -0.3 3SSI M73L 0.13 
1BVC S117A 0.3 1RGG Y81F 1.2 2LZM Q123E -0.1 1WQ5 G211R -0.1 3SSI V13I 0.84 
1BVC T67A 0.3 1RGG Y86F 0.3 2LZM Q69P 2.9 1WQ5 G211V -0.2 451C Q37R -0.5 
1BVC V114A -0.31 1RN1 A21C 0.74 2LZM R119A 0.17 1WQ5 G211W 0.5 451C V13M -0.4 
1BVC V68T 0.2 1RN1 A21D -0.33 2LZM R119E 0 1WQ5 P132G 0.78 4LYZ A31I -1.4 
1BVC W14F 0.5 1RN1 A21E -0.05 2LZM R119M -0.1 1WQ5 P57A 0.04 4LYZ A31L -1.8 
1BVC W7F -0.1 1RN1 A21H 0.17 2LZM R154E -0.2 1WQ5 P62A 0.52 4LYZ A31V -1.2 
1C2R K32E -0.2 1RN1 A21I 0.44 2LZM R80K 0.17 1WQ5 Y175C 0.1 4LYZ D101E 0 
1C9O E12K 0.1 1RN1 A21K 0.51 2LZM S117A -1.16 1YCC C102A -2.9 4LYZ D101F -0.72 
1C9O E21A 0.29 1RN1 A21L 0.13 2LZM S117F -1.2 1YCC C102S -2.8 4LYZ D101G -0.45 
1C9O E21K -0.17 1RN1 A21M 0.15 2LZM S117I -1.7 1YCC F82Y 0.7 4LYZ D101K -0.19 
1C9O E36K 0.19 1RN1 A21N -0.34 2LZM S117V -2 1YCC H33P 0.8 4LYZ D101N -0.04 
1C9O E50K -0.26 1RN1 A21Q 0.26 2LZM S38A 0.77 1YCC K73I 0.4 4LYZ D101Q 0.08 
1C9O G23Q 0.1 1RN1 A21R 0.41 2LZM S38D 0.1 1YCC K73V -0.1 4LYZ D101R -0.27 
1C9O H29E 0.29 1RN1 A21S 0.4 2LZM S38N 0 1YCC N52G -0.9 4LYZ D101S -0.87 
1C9O L66E 1.24 1RN1 A21V 0.66 2LZM S44A -0.34 1YCC N52I -2.02 4LYZ F34Y -0.19 
1C9O N11S -0.22 1RN1 A21W 0.3 2LZM S44C 0.11 1YCC N52L -2.56 4LYZ F3Y 0.45 
1C9O N55K -0.1 1RN1 A21Y 0.39 2LZM S44D 0.11 2RN2 R41C -0.12 4LYZ G102A -0.02 
1C9O Q2L -0.29 1RN1 D49H -1.1 2LZM S44E 0 2RN2 S68G 2.4 4LYZ G102R -0.38 
1C9O Q53E 0 1RN1 E58A 0.77 2LZM S44F -0.06 2RN2 S68L 0.5 4LYZ G102V 0.04 
1C9O R3A 1.05 1RN1 H92A 0.62 2LZM S44G 0.53 2RN2 S68V -0.6 4LYZ G49N 0.96 
1C9O R3K 0.14 1RN1 N36A 0 2LZM S44H -0.04 2RN2 V74I -0.6 4LYZ G71A 0.38 
1C9O R3L 0.22 1RN1 N81A 2.87 2LZM S44I -0.31 2RN2 V74L -1 4LYZ I55A 2.77 
1C9O R56E -0.24 1RN1 N9A 0.71 2LZM S44K -0.2 2TRX L79C -2.7 4LYZ I55L 0.45 
1C9O S24D -0.19 1RN1 S17A -0.57 2LZM S44L -0.39 2TRX T77C -2.1 4LYZ I55M 2.27 
1C9O T31S -0.17 1RN1 Y42F -1.14 2LZM S44N 0.14 2WSY A18G 0.3 4LYZ I55V 0 
1C9O V64T 0.19 1RN1 Y42W 0.14 2LZM S44Q -0.27 2WSY A18V -0.2 4LYZ M12F -0.28 
1C9O Y15F 0.05 1RN1 Y56F 0.71 2LZM S44R -0.24 2WSY I232V 0.5 4LYZ N103D -0.24 
1CAH C206S -0.1 1RN1 Y57F 0.44 2LZM S44T -0.01 2WSY L209V 0.2 4LYZ N77H 0.38 
1CAH I256C 0.3 1ROP D30A -0.3 2LZM S44V -0.1 2WSY Y175Q 0.9 4LYZ Q121H 0.45 
1CAH L60C 0.1 1ROP D30C -0.8 2LZM S44W -0.05 2ZTA H19R -0.22 4LYZ R114H -0.68 
1CAH S56C 0.5 1ROP D30E -1 2LZM S44Y -0.19 3BLS Y150F 0.7 4LYZ R21Q 0.15 
1CAH W123C 0 1ROP D30G -2 2LZM T109D 0.3 3HHR E74D 0.55 4LYZ R73K -0.23 
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PDB ID Mut ∆∆G PDB ID Mut ∆∆G PDB ID Mut ∆∆G PDB ID Mut ∆∆G PDB ID Mut ∆∆G 

1CAH W16F -0.3 1ROP D30H -0.9 2LZM T109N 0 3HHR S71T -0.33 4LYZ S91A 0.15 
1CAH W5F -0.1 1ROP D30I 0.8 2LZM T115E 0 3MBP D55N 0 4LYZ S91D 2.31 
1CDC A40G -0.72 1ROP D30K -0.9 2LZM T151S -0.39 3MBP P133A 0.3 4LYZ S91T -0.99 
1CDC I18V -1.17 1ROP D30L 0.1 2LZM T152C 0.5 3MBP P159A 1.8 4LYZ S91V 0.08 
1CDC I57V -0.43 1ROP D30M -0.6 2LZM T152I 0.4 3MBP P159S 2.1 4LYZ T40S 0.27 
1CDC L16V -2.01 1ROP D30N -0.8 2LZM T152V -0.2 3MBP P48A -0.5 5CRO A36S -0.4 
1CDC L50V 0.37 1ROP D30Q -1.8 2LZM T157A 0.5 3MBP P48S -0.3 5CRO Q16L -2.8 
1CDC L89V -0.14 1ROP D30R -0.8 2LZM T157D 1.1 3MBP T345I -0.7 5CRO Y26C -2.2 
1CDC L95V -0.75 1ROP D30S -1 2LZM T157I 1.2 3SSI M103I 1.89 5CRO Y26D -2.7 
1CDC V78A -3.01 1ROP D30V 0.4 2LZM T157R -0.3 3SSI M103L -0.15 5CRO Y26F -0.4 
1CSP A46E -0.02 1ROP D30W 0.4 2LZM T26S -0.57 3SSI M103V 1.35 5CRO Y26H -1.9 
1CSP A46K -1.41 1ROP D30Y -0.2 2LZM T34A 0.2 3SSI M73A -0.13 5CRO Y26L -1.1 
1CSP D24K 0.36 1ROP L41V 2.53 2LZM T59D 0.9 3SSI M73D -1.31 5CRO Y26Q -1.4 
1CSP D24N 0.45 1RRO P21A 0.74 2LZM T59N 0.6 3SSI M73E -0.35 5CRO Y26V -0.9 
1CSP D25K 1.08 1RRO P26A 0.74 2LZM T59S 0.2 3SSI M73G 0.06 5CRO Y26W 0.1 
1CSP D25Q 0.41 1RTB A109G 0.43 2LZM V103I 0.5 3SSI M73I 0.73 8TIM K193A -1 

 

Supplementary Information 1: Part of the general script that was used for the 

coordination and download of the different mutations using different predictors (only 

shown for MAESTRO (webserver), IPTREESTAB (webserver) and MUPRO (stand-

alone). 

A) Coding example of the general script: 

#!/user/bin/python 

 

########################################## 

#                                        # 

#         General Script Database        # 

#                                        # 

########################################## 

 

##  

import re 

import sys 

import os 

from csv import reader 

from Bio.PDB import * 

import numpy as np 

import pandas as pd 

 

###################################################### 

# 1. Definition of the necessary functions           # 

###################################################### 

 

### Input file is the csv with the data from ProTherm 

 

input_file = open(str(sys.argv[1]),"rt") 

lines = [] 

# read csv file as a list of lists with all the mutations in the database 

with open(sys.argv[1],'rt') as input_file:  

    # pass the file object to reader() to get the reader object 

    csv_reader = reader(input_file,delimiter="\t") 

    # Pass reader object to list() to get a list of lists 

    lines = list(csv_reader) 

 

lines=lines[1::] # Eliminate the header 

 

print("\n") 

print("We select chain A by default, in case we want to diferenciate chains, we should 

change that argument.") 

print("\n") 

 

# function to extract the input information from the database 

def extract_real_data(i): 

 print("Extraction of data:") 

 pdb_pos = i[0] 

 pdb = pdb_pos.split(",")[0] 
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 mutation = i[2] 

 chain = i[1] 

 newres = mutation[-2] 

 wt = mutation[0] 

 position = re.findall("\d+",mutation)[0] 

 ddg_real = i[3] 

 ph = i[4] 

 temp = i[5] 

 print("PDB: "+str(pdb)+"\n"+"Chain: "+str(chain)+"\n"+"Real DDG value (kcal/mol): 

"+str(ddg_real)+"\n"+"Temperature: "+str(temp)+" ยบC\n"+"pH: "+str(ph)+"\n") 
 return [pdb,chain,wt,position,newres,ddg_real,ph,temp] 

 

### Download and move to directory pdb and fasta files 

 

# Assign paths 

fasta_files_path="./fasta_files" 

pdb_files_path="./pdb_files" 

script_path = "./scripts" 

 

 

# function to download and save PDB and FASTA files for each different protein 

# creation of a index dictionary to avoid redundant downloads 

dic_pdb_seq = {} 

         

def get_pdb_fasta(pdb): 

    pdb_files = os.listdir(pdb_files_path) 

    if pdb+".pdb" not in pdb_files: 

        ## PDB" 

        os.system("wget -O - https://files.rcsb.org/download/"+str(pdb)+".pdb > 

"+str(pdb)+".pdb") 

        os.system("mv "+pdb+".pdb "+pdb_files_path) 

        ## fasta 

        os.system("wget -O - https://files.rcsb.org/download/"+pdb+".pdb 2>/dev/null    

| python3 -c \"import sys; from Bio import SeqIO; SeqIO.convert(sys.stdin, 'pdb-atom', 

sys.stdout, 'fasta')\" > "+pdb+".fasta") 

        os.system("mv "+str(pdb)+".fasta "+fasta_files_path) 

        pdb_files.append(pdb) 

        with 

open("/home/anarobmr/Documentos/all_programs_database/fasta_files/"+pdb+".fasta",'rt') 

as input_file:  

            lines = [line.strip() for line in input_file] 

        chains = "" 

        for line in lines: 

            if line[0]!=">": 

                chains+=line 

        sequence = list(chains) 

        dic_pdb_seq[pdb] = sequence 

        return pdb_files 

    else: 

        return pdb_files 

     

#### IPTREESTAB 

 

## This function is going to generate the data necessary to the webserver request. From 

a FASTA file it extracts the sequence and builds a diccionary with the pdb code as key. 

 

# Path to the individual iptreestab request script 

iptreestab_script = 

"/home/anarobmr/Documentos/all_programs_database/scripts/iptreestab_script.py" 

 

translation = {'CYS': 'C', 'ASP': 'D', 'SER': 'S', 'GLN': 'Q', 'LYS': 'K', 

     'ILE': 'I', 'PRO': 'P', 'THR': 'T', 'PHE': 'F', 'ASN': 'N',  

     'GLY': 'G', 'HIS': 'H', 'LEU': 'L', 'ARG': 'R', 'TRP': 'W',  

     'ALA': 'A', 'VAL':'V', 'GLU': 'E', 'TYR': 'Y', 'MET': 'M'} 

 

def iptreestab_single_request(iptreestab_script,data,structure): 

    pdb = data[0] 

    chain = data[1] 

    wt = data[2] 

    pos = data[3] 

    mut_to = data[4] 

    ph = data[6] 

    temp = data[7] 

    ### Bio.PDB from Biopython; we extract the residue from the fasta file 

    res_list = structure.get_residues() 

    # We try to extract the three aminoacids in three code letter before and after the 

mutation. 
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    # Sometimes, FASTA file contains positions does not agree with real  

    # positions. For that, we manage PDB files and bio.PDB where we can call specific 

positions. 

    try: 

        wt = translation[(structure[0][str(chain)][int(pos)]).get_resname()] 

        b3 = translation[(structure[0][str(chain)][int(pos)-3]).get_resname()] 

        b2 = translation[(structure[0][str(chain)][int(pos)-2]).get_resname()] 

        b1 = translation[(structure[0][str(chain)][int(pos)-1]).get_resname()] 

        a1 = translation[(structure[0][str(chain)][int(pos)+1]).get_resname()] 

        a2 = translation[(structure[0][str(chain)][int(pos)+2]).get_resname()] 

        a3 = translation[(structure[0][str(chain)][int(pos)+3]).get_resname()] 

         

        # Execution of the individual script for IPTREESTAB using OS library. 

        iptreestab_dic = os.system("python3 "+iptreestab_script+" "+pdb+" "+chain+" 

"+wt+" "+str(pos)+" "+mut_to+" "+ph+" "+temp+" "+b3+" "+b2+" "+b1+" "+a1+" "+a2+" "+a3) 

        return True 

    except: 

        # In case of error, we return False and continue with the script 

        return False 

    

# This function extract useful information once it is request and downloaded. 

def extract_iptreestab_data(dic_line): 

    # IPTREESTAB individual script has created the output file 

"result_iptreestab.output"  

    input_file_iptreestab = 

open("/home/anarobmr/Documentos/all_programs_database/result_iptreestab.output","rt") # 

open file 

    input_file_iptreestab.readline() # read file 

    ddg_values_iptreestab = (-1)*float((input_file_iptreestab.readline()).split()[5]) # 

Extract predicted DDG value  

    dic_line['IPTREESTAB'] = float(ddg_values_iptreestab) # Add to the dictionary for 

this mutation the corresponding value for this predictor 

    os.system("rm 

/home/anarobmr/Documentos/all_programs_database/result_iptreestab.output") # Remove the 

file    

    return dic_line    # Return the dictionary  

 

mupro_script = "/home/anarobmr/Documentos/all_programs_database/scripts/mupro_script.py" 

def mupro_single_request(mupro_script,data,structure): 

    pdb = data[0] 

    chain = data[1] 

    wt = data[2] 

    pos = data[3] 

    res_list=Selection.unfold_entities(structure, "R") 

    pos_initial = (res_list[0]).id[1] 

    pos = (int(pos) - int(pos_initial)) + 1 

    mut_to = data[4] 

    ph = data[6] 

    temp = data[7] 

    mupro_dic = os.system("python3 "+mupro_script+" "+pdb+" "+chain+" "+wt+" 

"+str(pos)+" "+mut_to+" "+ph+" "+temp) 

    return mupro_dic 

 

def extract_mupro_data(dic_line): 

    input_file_mupro = 

open("/home/anarobmr/Documentos/all_programs_database/muproresultadofinal.txt","rt") 

    input_file_mupro.readline() 

    ddg_values_mupro = (-1)*float((input_file_mupro.readline()).split()[0]) 

    dic_line['MUPRO'] = float(ddg_values_mupro) 

    os.system("rm 

/home/anarobmr/Documentos/all_programs_database/muproresultadofinal.txt") 

     

    return dic_line  

     

 

### MAESTRO  

maestro_script 

="/home/anarobmr/Documentos/all_programs_database/scripts/maestro_script.py" 

 

def maestro_single(maestro_script,data): 

    pdb = data[0] 

    chain = data[1] 

    wt = data[2] 

    pos = data[3] 

    mut_to = data[4] 

    ph = data[6] 

    temp = data[7] 
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    maestro_dic = os.system("python3 "+maestro_script+" "+pdb+" "+chain+" "+wt+" "+pos+" 

"+mut_to+" "+ph+" "+temp) 

    return maestro_dic 

     

def extract_maestro_data(dic_line): 

    input_file_maestro = 

open("/home/anarobmr/Documentos/all_programs_database/maestro.output","rt") 

    input_file_maestro.readline() 

    ddg_values_maestro = float((input_file_maestro.readline()).split()[5]) 

    dic_line['MAESTRO'] = float(ddg_values_maestro) 

    os.system("rm /home/anarobmr/Documentos/all_programs_database/maestro.output") 

 

    return dic_line 

 

###################################################### 

# 2. MAIN PROCESS INTEGRATION                        # 

######################################################  

 

# Creation of two empty list that will be the future dataframe indexes    

all_dics = [] 

all_mutations = [] 

 

counter = 0 

os.system("touch 

/home/anarobmr/Documentos/all_programs_database/result"+str(counter)+".csv")  

for line in lines: 

    # For each mutation in the dataset, we create an empty dictionary which will be an 

empty descriptor template 

    dic_line = {'real':0,'I-

Mutant':0,'MAESTRO':0,'INPS':0,'CUPSAT':0,'MUPRO':0,'FoldX':0,'AUTO-SVM':0,'AUTO-

RT':0,'IPTREESTAB':0,'EVOEF':0} 

    data = extract_real_data(line) # Data for the first line of the csv_reader 

     

    pdb = data[0] 

    mutation = pdb+"."+data[2]+data[3]+data[4] # The name of each row is 

PDB.WT+POSITION+MUTATION, (for example: 8TIM.S27A) 

     

    all_mutations.append(mutation) # To create the index of the Dataframe 

    dic_line['real'] = float(data[5]) 

     

    get_pdb_fasta(pdb) # DOWNLOAD FASTAS AND PDB AND SAVE THEM IN FOLDERS. IT ALSO 

UPDATE A LIST WITH ALL THE PDBs 

    p = PDBParser() 

    structure=p.get_structure("X", 

"/home/anarobmr/Documentos/all_programs_database/pdb_files/"+pdb+".pdb") 

     

    result = iptreestab_single_request(iptreestab_script,data,structure) 

    print("---->> IPTREESTAB request done. \n \n") 

    if result == False: 

        print("Iptreestab cannot calculate the result.") 

    else: 

        dic_line = extract_iptreestab_data(dic_line) 

        print("---->> IPTREESTAB data added to Dataframe. \n \n") 

     

    mupro_single_request(mupro_script, data,structure) 

    print("---->> MUPRO request done. \n \n") 

    dic_line = extract_mupro_data(dic_line) 

    print("---->> MUPRO data added to Dataframe. \n \n")     

    maestro_single(maestro_script,data) 

    print("---->> MAESTRO request done. \n \n") 

    dic_line = extract_maestro_data(dic_line) 

    print("---->> MAESTRO data added to Dataframe. \n \n") 

     

  

    counter+=1 

    print("\n###########################################################") 

    print("\n"+str(counter)+" of "+str(len(lines))+" have been calculated.\n") 

    print("#############################################################") 

     

    all_dics.append(dic_line) # To later create the content of the Dataframe 

     

    print(all_dics) 

    # In each mutation we update the final output result and delete the previous one.  

    # This is a save way of keep the information in case of something interrupt the 

overall process 

    df = pd.DataFrame(all_dics, index = all_mutations) 

    df.to_csv('resultado'+str(counter)+'.csv',sep=';') 
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    os.system("rm 

/home/anarobmr/Documentos/all_programs_database/resultado"+str(counter-1)+".csv") 

     

    ## The end of the main function will be a list with all the values ddg of the 

different predictors 

     

 

 

B) Coding example of the IPTREESTAB individual script: 

#!/user/bin/python 

 

########################################## 

#                                        # 

#       IPTREESTAB Script Database       # 

#                                        # 

########################################## 

 

from selenium import webdriver 

from selenium.webdriver.common.keys import Keys 

from selenium.webdriver.support.ui import Select # Select from a desplegable menu 

from selenium.webdriver.support.ui import WebDriverWait 

from selenium.webdriver.common.action_chains import ActionChains 

from selenium.webdriver.chrome.options import Options # hide browser 

from bs4 import BeautifulSoup 

from selenium.common.exceptions import NoSuchElementException # Avoid error 

NoSuchElementException when the link is not found 

 

import time 

import os 

import re 

import sys 

 

window_size = "1920,1080" 

 

def internet_browser(pdb,mut_from,pos,mut_to,temp_value,ph_value,b3,b2,b1,a1,a2,a3): 

#The arguments varies for each predictor internet browser 

 

    # Initialize a Firefox webdriver 

    chrome_options = Options() 

    chrome_options.add_argument("--headless") 

    chrome_options.add_argument("--window-size=%s" % window_size) 

    chrome_options.add_argument("start-maximized"); # 

https://stackoverflow.com/a/26283818/1689770 

    chrome_options.add_argument("enable-automation"); # 

https://stackoverflow.com/a/43840128/1689770 

    chrome_options.add_argument("--no-sandbox"); 

#https://stackoverflow.com/a/50725918/1689770 

    chrome_options.add_argument("--disable-infobars"); 

#https://stackoverflow.com/a/43840128/1689770 

    chrome_options.add_argument("--disable-dev-shm-usage"); 

#https://stackoverflow.com/a/50725918/1689770 

    chrome_options.add_argument("--disable-browser-side-navigation"); 

#https://stackoverflow.com/a/49123152/1689770 

    chrome_options.add_argument("--disable-gpu") 

    try: 

        driver = webdriver.Chrome(chrome_options=chrome_options) 

        # Grab the web page 

        driver.get("http://203.64.84.190:8080/IPTREEr/input.jsp") 

        entervalue_service = 

driver.find_element_by_xpath("/html/body/center/font/form/input[2]") 

        entervalue_service.click() 

 

        # Second page; Fullfill the required information 

        # they are dropdown options: search, select and enter the corresponding 

information: 

        mutationfrom = 

Select(driver.find_element_by_xpath("/html/body/center/font/form/select[1]")) 

        mutationfrom.select_by_value(mut_from) 

 

        mutationto = 

Select(driver.find_element_by_xpath("/html/body/center/font/form/select[2]")) 

        mutationto.select_by_value(mut_to) 
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        before_3 = 

Select(driver.find_element_by_xpath("/html/body/center/font/form/select[3]")) 

        before_3.select_by_value(b3) 

 

        before_2 = 

Select(driver.find_element_by_xpath("/html/body/center/font/form/select[4]")) 

        before_2.select_by_value(b2) 

     

        before_1 = 

Select(driver.find_element_by_xpath("/html/body/center/font/form/select[5]")) 

        before_1.select_by_value(b1) 

     

        after_1 = 

Select(driver.find_element_by_xpath("/html/body/center/font/form/select[6]")) 

        after_1.select_by_value(a1) 

     

        after_2 = 

Select(driver.find_element_by_xpath("/html/body/center/font/form/select[7]")) 

        after_2.select_by_value(a2) 

     

        after_3 = 

Select(driver.find_element_by_xpath("/html/body/center/font/form/select[8]")) 

        after_3.select_by_value(a3) 

         

        if ph_value!=str(7): 

            ph = driver.find_element_by_xpath("/html/body/center/font/form/input[3]") 

            ph.clear() 

            ph.send_keys(ph_value) 

        if temp_value!=str(25): 

            temp = driver.find_element_by_xpath("/html/body/center/font/form/input[4]") 

            temp.clear() 

            temp.send_keys(temp_value) 

 

        search_button = driver.find_element_by_name("submit") 

        search_button.click() 

        # Third page 

        ddg_value = driver.find_element_by_xpath("/html/body/font/p[4]/span") 

        ddg = ddg_value.text.strip().split()[0] 

 

        #result.append(link) 

        output_file.write(str(pdb)+" "+str(pos)+" "+str(mut_to)+" "+str(temp_value)+" 

"+str(ph_value)+" "+str(ddg)+"\n") 

         

        driver.close() 

    except NoSuchElementException: 

    # In case there were some problem, we put a DDG value of 0 and reported the error. 

        output_file.write(str(pdb)+" "+str(pos)+" "+str(mut_to)+" "+str(temp_value)+" 

"+str(ph_value)+" "+"0"+"\n") 

        print(pdb+" "+mut_from+" -> "+pos+mut_to+" string "+b3+b2+b1+mut_from+a1+a2+a3) 

        pass 

 

###################################################### 

# 1. Preparation of the output file.                 # 

###################################################### 

 

output_file=open("/home/anarobmr/Documentos/all_programs_database/result_iptreestab.outp

ut","wt") 

output_file.write("# PDB POS NEWRES TEMP PH DDG \n") 

lines_mutations = [] 

 

###################################################### 

# 2. Classfication of the input information, variable#  

# creation.                                          # 

###################################################### 

 

# Input information classification  

pdb=sys.argv[1] 

chain = sys.argv[2] 

mut_from=sys.argv[3] 

pos=sys.argv[4] 

mut_to=sys.argv[5] 

temp_value=sys.argv[7] 

ph_value=sys.argv[6] 

b3=sys.argv[8] 

b2=sys.argv[9] 

b1=sys.argv[10] 

a1=sys.argv[11] 
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a2=sys.argv[12] 

a3=sys.argv[13] 

 

###################################################### 

# 3. Internet browser function                       # 

###################################################### 

 

internet_browser(pdb,mut_from,pos,mut_to,temp_value,ph_value,b3,b2,b1,a1,a2,a3) 

output_file.close() 

 

 

Supplementary information 2: Example of the automatization of the request of all 

possible mutations for a protein. This example uses the stand-alone functionality 

MUPRO:  

#!/user/bin/python 

 

########################################## 

#                                        # 

#     Calculation of all mutations       # 

#               Python MUPRO             # 

#                                        # 

########################################## 

 

import re 

import sys 

import os 

 

# This option is for the protein in study. 

# the name of the PDB code for your protein 

pdb_name = sys.argv[1] 

 

# name of the fasta file  as input file for MUPRO 

input_file = sys.argv[2] 

 

# chain") 

chain = sys.argv[3] 

 

# the initial position (1 or another in case of fragments of proteins) 

initial_position = sys.argv[4] 

 

# the temperature (ºC)") 

temp = sys.argv[5] 

 

# the pH 

ph = sys.argv[6] 

 

# Resume of the input data: 

print("The input file is "+str(input_file)+"\n") 

print("\n") 

print("PDB: "+str(pdb_name)+"\n"+"Chain: "+str(chain)+"\n"+"Initial position: 

"+str(initial_position)+"\n"+"Temperature: "+str(temp)+" ºC\n"+"pH: "+str(ph)+"\n") 

 

# Create tree of folders 

print("\n") 

print("Creation of folders and directories: mutations and outputs") 

print("\n") 

os.system("mkdir mutations") 

os.system("mkdir outputs") 

 

# Assign paths 

mutations_path="./mutations" 

outputs_path="./outputs" 

 

###################################################### 

# 1. Read fasta file to obtain the protein sequence. # 

###################################################### 

 

with open(input_file,'rt') as input_file:  

    # input_file is a fasta file 

    lines = [line.strip() for line in input_file] 

 

# Creation of a empty string to join all the aa. 
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sequence="" 

for line in lines: 

    if line[0]!=">": 

        sequence+=line 

 

###################################################### 

# 2. Generation of all possible mutation files.      # 

###################################################### 

i=0 

position=int(initial_position) 

longitud=len(sequence) 

 

for wt in sequence: 

    

output_file=open(mutations_path+"/"+str(pdb_name)+"_"+str(chain)+"_systematic_mutation_"

+str(wt)+"_"+str(position)+".txt","wt") 

    output_file.write(str(pdb_name)+str(chain)+"\n") 

    output_file.write(str(sequence)+"\n") 

    output_file.write(str(position)+"\n") 

    output_file.write(str(wt)+"\n") 

    output_file.write("*") 

    output_file.close() 

    i+=1 

    position+=1 

 

input_file.close() 

 

###################################################### 

# 3. MUPRO calculations with all the files.          # 

###################################################### 

filelist = os.listdir(mutations_path) 

 

mupro_script_systematic = "/home/anarobmr/Escritorio/mupro1.1/bin/predict_regr_all.sh" 

 

for f in filelist: 

    os.system("bash "+ mupro_script_systematic +" "+mutations_path+"/"+f+" > 

"+outputs_path +"/"+"ddg_values_" + f) 

    print(outputs_path +"/"+"ddg_values_" + f+" has been succesfully generated.") 

 

# Deletion of the  temporaly mutation files 

os.system("rm -r mutations") 

 

################################################################### 

# 4. Merge all the outputs files and extraction of the data.      # 

################################################################### 

 

filelist_outputs = os.listdir(outputs_path) 

 

print("\n") 

print("Generation of the final output as resultadofinal.txt ...") 

print("\n") 

 

final_output = open("mupro_"+str(pdb_name)+".predictions","wt") 

final_output.write("PDB CHAIN WT POS NEWRES DDG (kcal/mol) \n") 

 

for f in filelist_outputs: 

    # Open each file and extract all lines. 

    with open(outputs_path+"/"+f,"rt") as f_in: 

        lines = (line.rstrip() for line in f_in) 

        lines = list(line for line in lines if line) # we eliminate empty lines. 

    # From the name of the file we extract some data: pdb, chain, wt and position. 

    file1 = f.split("_") 

    pdb = file1[2] 

    chain = file1[3] 

    wt = file1[6] 

    pos = int(re.findall("\d+",file1[-1])[0]) 

    # Lines with data (start with AA) are processed to extract ddg. 

    for line in lines: 

        if line.split()[0]=="AA": 

            newres=line.split()[2] 

            ddg=line.split()[6] 

            linea = [pdb,chain,wt,str(pos),newres,ddg] 

            # Final result is written.  

            final_output.write(" ".join(linea)+"\n") 

 

    print(f+" data has been succesfully extracted and saved in "+str(final_output)) 
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# Elimination of the  temporaly outputs files     

os.system("rm -r outputs") 

final_output.close() 

 

 


