Diposit digital
de documents
de la UAB

UrnB

Universitat Autonoma
de Barcelona

This is the published version of the master thesis:

Pérez Conesa, Alejandro; Lépez Salcedo, José Antonio , dir. Design and imple-
mentation of a positioning service in the context of smart cities. 2020. 111 pag.
(1170 Master Universitari en Enginyeria de Telecomunicaci6 / Telecommunication
Engineering)

This version is available at https://ddd.uab.cat/record/259461
under the terms of the license

https://ddd.uab.cat/record/259461

UnB

Universitat Autonoma
de Barcelona

MASTER'S THESIS

MASTER IN TELECOMMUNICATION ENGINEERING

Design and Implementation of a Positioning

Service in the Context of Smart Cities

Alejandro Pérez Conesa

THESIS ADVISOR: Jose A. Lopez Salcedo

DEPARTMENT OF TELECOMMUNICATIONS AND SYSTEMS ENGINEERING

EscoLA D’ENGINYERIA (EE)

UNIVERSITAT AUTONOMA DE BARCELONA

Bellaterra, February 2020

UNB

El sotasignant, Jos¢ A. Lopez Salcedo, Professor de I’Escola d’Enginyeria (EE) de la

Universitat Autonoma de Barcelona (UAB),

CERTIFICA:

Que el projecte presentat en aquesta memoria de Treball Final de Master ha estat realitzat sota
la seva direccid per I’alumne Alejandro Pérez Conesa.

I, perque consti a tots els efectes, signa el present certificat.

Bellaterra, 2 , gener 202

Signatura: José A alcedo

Resum: en les Ultimes décades, les ciutats s'han convertit en els nuclis mundials de comerg,
cultura, ciencia i societat, sent també les majors consumidores d'energia i les més grans
emissores de carboni. Amb I'objectiu de solucionar aquesta problematica, les ciutats
sostenibles o "SmartCities" son un dels objectius a complir en I'Agenda 2030. Amb aquest
objectiu en ment i en el context del projecte
"Navigation and GNSS inSmart Cities — Testbed Concept Definition"(HANSEL), I'estudiant
pretén dissenyar i desenvolupar un servei a carrec del posicionament de sensors basats en
tecnologies GNSS i cel-lular per al posterior tractament de la informacid generada per a
diverses finalitats, com la detecci6 i localitzaci6 de fonts d'interferencia o la
hibridacio GNSS i cel-lular, donant lloc a posicions hibrides, més precises que les de cada
sistema per separat. Aquest servei pretén ser accessible mitjancant Internet al public general
(com un Software com a servei 0 SaaS), i aprofita els avantatges que la computacio en el
navol és capac d'oferir tant a nivell de prestacions com a nivell d'estalvi d'energia respecte
als dispositius de navegacio actuals.

Resumen: en las ultimas décadas, las ciudades se han convertido en los nicleos mundiales
de comercio, cultura, ciencia y sociedad, siendo también las mayores consumidoras de
energia y las mas grandes emisoras de carbono. Con el objetivo de solucionar esta
problematica, las ciudades sostenibles o "Smart Cities" son uno de los objetivos a cumplir
en la Agenda 2030. Con este objetivo en mente y en el contexto del proyecto "Navigation and
GNSS in Smart Cities — Testbed Concept Definition” (HANSEL), el estudiante pretende
disefiar y desarrollar un servicio a cargo del posicionamiento de sensores basados en
tecnologias GNSS y celular para el posterior tratamiento de la informacién generada para
diversos fines, como la deteccidn y localizacion de fuentes de interferencia o la hibridacion
GNSS y celular, dando lugar a posiciones hibridas, mas precisas que las de cada sistema
por separado. Dicho servicio pretende ser accesible mediante Internet al publico general
(como un Software como servicio 0 SaaS), y aprovecha las ventajas que la computacion en
la nube es capaz de ofrecer tanto a nivel de prestaciones como a nivel de ahorro de energia
con respecto a los dispositivos de navegacion actuales.

Summary: in recent decades, cities have become the global hubs of commerce, culture,
science and society, being also the largest consumers of energy and the largest carbon
emitters. With the objective of solving this problem, sustainable cities or "Smart Cities™ are
one of the objectives to be fulfilled in the 2030 Agenda. With this objective in mind and in the
context of the project "Navigation and GNSS in Smart Cities - Testbed Concept Definition™
(HANSEL), the student intends to design and develop a service in charge of sensor
positioning based on GNSS and Cellular technologies for the subsequent treatment of the
information generated for various purposes, such as the detection and location of sources of
interference or GNSS and Cellular hybridization, obtaining hybrid positions, more precise
than those of each system separately. This system or service is intended to be accessible to
the general public via Internet (as a Software as a Service or SaaS), and takes advantage of
the all the features cloud computing has to offer, both at performance and energy
consumption level.

Acknowledgments

This Master's Thesis represents the end of my student career (for the moment). These almost
seven years as university student (seven!) and three working for SPCOMNAYV group have
formed my character and have given me knowledge and opportunities I never thought would

be within my reach, such as setting foot in the European Space Agency.

First of all, I would like to thank my boss, supervisor, professor and friend, José A. Lbpez
Salcedo, for being my guide in the professional stage that | started in the group, for giving me
advice and for granting me the opportunities that he has given me during these three years
working in SPCOMNAV.

To my coworkers, those who were and those who are still there: Sergi Locubiche, Daniel Egea,
Jose Antonio del Peral Rosado, Alda Xhafa, Ning Chang, Alessandro Pin. Special mention to

Quim Garfiez, who has always been at the frontline when I needed him.

To my friends and master's classmates, Victor Pifiero, Saurabh Kulkarni, Borja Herranz, for the
mutual help and support during the Master's years. Also to Ander Pardo and Pablo Garrido,

Bachelor classmates, who have always been good friends.

To my lifelong friends, Albert Soldevila, Alexandru Oprea, for bearing my complaints about

almost everything and helping me out when | needed it.

And finally, as the most important thing is left for last, to my family and specially my partner,

Andrea Morante, for the overall support and the happiness you bring to my life. Thank you.

Alejandro Pérez Conesa
Bellaterra, February 2020

Table of contents

1

N o o un b

INTRODUCGTION ..cuituiieiiieiieniieitenieeiiaeresiessiascsssiesstassssssssssssssssssssssssssssnssssssasssnssssssasssnsssnssasssnsssnssassanns 1
1.1 IMIOTIVATION ...cttttetetteetet ettt et e e e e e se s e s bb et e e et et e eeeaeasaaesesassasssssasanasasasbb b e e e et aeesaeaeeeesesesessasanansnnnnsnsnrnnnnnes 2
1.2 (0121 oy 1Y S U P O PP PPP PPN 2
13 IMIETHODOLOGY ..vteuvtteuteenuteeuteesutesteesutessteesueesseesueesabeesaeesabeesasessseesatesnseesaseeseesaseenbeesnsesabeesasesnseesaseeseesanenn 3
14 THESIS OUTLINE «.teuteeuteesuteeutesuteesteeeseesueeesseesseesateesueesaseesaseenseesateesseesaseesseesaseenseeeabeesseesabeesasesaseesanesnseennneen 3

HANSEL POSITIONING TESTBEDccceuuuuuiiiiiiiiiiemmnnnsssisssimmmmmssssssssssssimmemsassssssssssismsssssssssssssssssssssssssses 5
2.1 TESTBED ARCHITECTURE. c..uteeuttesuteestteeuseesseesseesueeesseesusesseesusessseesaseesseesaseesssesnseeseesaseesseesaseesasesseesssesnseesseesn 5
2.2 DESCRIPTION OF THE MAIN TESTBED FUNCTIONALITIES ..eeuvtesuteeteesuresreesueessseesseessseesseesnsessssesssessnsesssessssesssaessnen 8

2.2.1 Positioning using GNSS snapshot-based cloud processing..............ccueeevveevieeeesiieescesesiieeessivneninns 8

2.2.2 Localization of jammers using GINSS SNAPSAOLSccccveeeeceieeeieeesiieeectieeeiteeesceeeeeeseessaaesaeeans 10

2.2.3 Positioning using terrestrial infrastructure and measurement hybridization................cccccouu..... 11

2.2.4 Centralized control, storage and ViSUGHZALIONcc.eeeeeuveeeciveeesiieeeiieeeeieeesieeessvseesvaaesaeean 12

SOFTWARE ARCHITECTURE ...ctetiiuueteeesaaietteeesasunteeeesesanseeteessannseeeesaaannateeesaannsaeeeseaanseneesssannneneesasnsnneeeesannrnnees 12
R OO TSROSO PRR RPN 12

2.3.1 Docker; packaging software into standardized units for developmentccceevveevuvnvuennene. 13

2.3.2 Application Programming Interfaces: the RESTful APl deSigN............cccuevereesereenieineeeeeecne 14

DEVELOPMENT OF A SOFTWARE-BASED SNAPSHOT POSITIONING SERVICE (SNAP)ccccuueeeecccrrernnnnnee 16
3.1 SINAP ARCHITECTURE. ...ttt teauttteeeeesuttteeeesauttteeeeaaseteeeesaunseeeeeesanseeeeeeaasbeeeeeeaaabeseeeeaaanbeeeeeesansseeeessannraeeas 18

3.1.1 SNAP'S externQl SEIVICE; CIOUTRXuuuueuuueeeeeiiiiiiieiiiiieieeeeeeeeetttessssiassssssererereesseeeseeeesseeessssssssnes 20
3.2 SINAP-G SUBSERVICE DESIGN ...tttteeeiuurteeeeesauittteessaauusteeeesaausseeeesasansseeeessaasseeeesssassseesssassssesesesansseeeesssnnsenees 21
33 SINAP-C SUBSERVICE DESIGN....evteeteeruurreeeeesaurteeessasuusreeessassseesesssasseeesssssssseseesssssssseesssssssseesssssssseseessssnsenees 22
3.4 SINAP-H SUBSERVICE DESIGN ...vtteeeeruuriteeeesaitteeesssauueteeessssussteeesssassseessssassseseesssssssseesssssnseeeessssssseseessssnsesees 24
3.5 SINAP DB DESIGN ...uuittteeteeniiiteeesesitteeeeeseittteeessutateeesssssteaeeeessssaaeessasbaaeesssassasaeessassssaeeessssnssaeeessssnsenees 25
3.6 SINAP APTIDESIGN ...ttt ettt et et e e e e e e e eesese s et sbr e b e teateeeeeaaaeaeaessesesasassssnsnsnssssnraneaeeeaeaaseeeeens 26

3.6.1 USEE MONGAGEMENT ...ttt e e e e et e e e e e e s e s ssse s s st sbebesennaaaaaaasasseesnens 27

3.6.2 SENSOI MANGAGEIMENT........uuiiiiiiiiieieteeeeeteteteeeeeeeeeseseesesessbstateteaeeetasateaaesessssesssssssssssssssssssssrenenennes 28

3.6.3 GNSS & Cellular snapshot Signal ProCeSSINGccuuweecueeeecieeeeeeeseeeesieee e s seeeseereessaaesaeeens 29

3.6.4 Cellular position SIMUIGLIONccc.uveeeeeeeseie ettt e et e e et a e e tteeeste e e sssaestesesasseaesaseaaas 32

3.6.5 GNSS data & simulated Cellular observables hybridizationcccccoveecvceeesiveeeciiieeiieeeiienn, 32

3.6.6 DALA MANGAGEMENT.......eeeeiiiieieieeettietttete ettt et e e e e eeese s esssa bbbttt aeeasaaeaaasessesasssssssssssssssssssssenennnnns 32
3.7 SNAP HIGH-LEVEL SOURCE CODE STRUCTUREvttteetsurereeeesaunreeeesasanseeeeessasreneessaanseneesssasnnneressesansenesessannnenees 33

SERVICE VALIDATION......ccitiitiirmuneniiiineiirenasssssssisssnsmsssssssssssssssssmessssssssssssssssessssssssssssssssssssnssssssssssans 35

CONCLUSIONS AND FUTURE LINESccciiiiiiiiiremnnnssssisiiienesmnsssnsnsssss 40

BIBLIOGRAPHYciiiiiiiiiiiieneeiiiiiiitetennnssssssisieteeenmnssssssssssssssssnsssssssssssssssssnsssssssssssssessnnssssssssssssssannns 42

APPENDICESciitieeeneensiiiriitneenensssssssssetsmesenssssssssssssssssnssssssssssssssessnssssssssssssssssnssssssssssssssssnnnnssssssssans 44
7.1 APPENDIX 1: APl ACTION DESCRIPTION ...ceteeiautttereesaureteessaaunreeeesesauseeeeessaasseseessaaassseeessasnsesessesansseesesssnnsenees 44

7.1.1 USBE CrOALION ... ettt ettt ettt e e ettt e e e e ettt e e e e e tst e e e e eeassneeaeesannnes 44

7.1.2 (0 R =T gl I3 =41 (o BT IPPUSRRPE 45

7.1.3 User information ODEAINMENTcoccuievieemeeeiiieieeeeste ettt ettt sttt e e 46

7.1.4 Authorization toKEN ODTAINMENTcc.eeeecueeeeeiieeeiie ettt e st e e e e saee e s eeesssteesesses 48

YA R U KT Y o | 1o [o | o BT SR 49

Y2 N R U KT 101V o] o [14 o ¢ OSSR 50

7.1.7 USEIr ACCOUNT UPGIAUE ..ottt ettt ettt et s et e st e et enateesseeeneenee 51

2% S S VK- o Tolale TV 1 L s (o 1Y/ Yo T ' [L= 51

7.1.9 Give a user account admin PriVilEgesueeecueeeiiueeeeiieesitieeeeieeestteeseteeeesteessaeasseaessssaesssses 52

7.1.10 Revoke privileges to an Admin GCCOUNTc..oeeecueeeecieeeeeeeeciee et e e se e e ste e s aeestaeaseteaesases 53

7.1.11 N =R g =10 1 =1 (PSP SPRNE 53

7.1.12 Sensor information MOGIfICALIONceeecveeeeieeesieeese et ste e et e et a e s teeessaa e s saaaesseaeeans 55

7.1.13 R = LYo gl (=] =1 1 o) TP RRURRRE 56

7.1.14 Sensor information OBEAINMENT..............ceeeceeeeeiieeeeeeese e eeeeeseeeeste st eestteesseaeseraneessseasanes 57

7.1.15 Sensor configuration ODEAINIMENTccecveeeeeeeeeieeesieeecee e st eeesta e s cteaestaeesseeesesenesssseaeanes 59
7.1.16 Sensor configuration MOAIfICAtION.ccccuveeeeeeeecieeesee e eseeeeete st e e st eeseea s eaeessrseaeanes 62
7.1.17 Sensor Configuration UPAALEoeecueeeecueeeeeieeesceeeestt e e eteeesteeeetta e s eteaessteassseaesaranesssseasnans 64
7.1.18 SENSON JOCALION.cveeeeieieeeeeeeeee ettt ettt et sttt s et s e e sbe e s e e btesbeesaeesateenseasases 65
7.1.19 TR =T (=1 (=g ol= Lo ol 11 Lo PO S 68
7.1.20 Located interference hiStoric ObtAINMENTtoeeeuveeecieieeiieeeseeeeeeeetee e s eesaa s 69
7.1.21 Observables computing from live TLE SIGNQIS.............c.ceecveeeeciveeesiieeesieeecieeesieaescieaeesieaesnnas 71
7.1.22 RY e T le e [o 1o WV 4] oo Lo [1o USRSt 72
7.1.23 Post-processing recorded GINSS AQLQ...........cccuueeecveeeiiieecsieeeceeesee e s cte e e ce e e e iaa e e aeeesraaeeases 73
7.1.24 Post-processing recorded real Cellular data...............cueecveeeeceeiesieeecieeeciee e s eea e 74
7.1.25 Recorded GNSS signal with simulated LTE signal hybridizationccceecvveeeecvveesvvveennen. 75
7.1.26 AAAING rSUILS 0 SINAP DB.......cooeeeeeeeeeeeeeee ettt e ettt et ettt e e e e ettt e e e e e sataaaaeesstsaaaaeasnses 77
7.1.27 SNAP database result OBtAINMENT...........ccccuvieeiiieiiieeeieeeee ettt estee e saeessiseeeaes 77
7.1.28 SNAP DB reSUIt AEILIONccccuvveeiieesieeeeiiteeeee ettt ettt stte e s site e e st e s staeesesaeesnsseaenaes 80
7.2 APPENDIX 25 SNAP APLI/O .ottt ettt e ettt e e ettt e e e ae e e st e e e st e e seaatessabeeesssteeesnsnessraeeas 84

7.3 APPENDIX 3. SOFTWARE LICENSESevvvvttttuuneeeeeeeerereersrsnnnieseeseessessssssssnaaesesssessssssssssmnesessssssssssssnsneeesessssens 103

List of figures

Figure 1. Testbed SyStem IEVEl OVEIVIEW.ccveiieiiiieiiere e 5
Figure 2. HANSEL SEIVICE SLIUCIUIE.cuecivieieiiiciieeee sttt ettt sra e 6
Figure 3. UAB cloud GNSS receiver operating on a network of heterogeneous GNSS-enabled
ol L= 010 £ O T TP TP 9
Figure 4. Jamming detection and localization by cloud-processing GNSS snapshots............. 10
Figure 5. Simplified API funCtionality..........cccooiiiiiiii s 14
Figure 6. High-level components 0f SNAP SEIVICE.ccoieriiiiiineiereseeee e 17
Figure 7. Detailed view of the service, including communication flows between components
AN EXTEINAL NEIWOTK. ... bbbt ne e 19
Figure 8. Interactions of a device with CloudRX platform. ... 21
Figure 9. SNAP-G structure and INtEraCtionS.ccovevueiierieiesie e 22
Figure 10. SNAP-C architecture and INteraCtions.cccocvveiiieeiieiiie s 23
Figure 11. SNAP-H architecture and iNteraCtions.cccevererererienineseeiee e 24
Figure 12. Simplified UML diagram of the stored information in SNAP DB..........cccccu..... 25
Figure 13. SNAP service SOUrce COUE StIUCLUI.cceeiieeirieiie et 34
Figure 14. Sensor POSITION FEOUEST.cveiiierierieitesie sttt 36
Figure 15. Left: sensor polling for new executions. Right: execution detected, signal gathering
and deliver to SNAP service for its forwarding.cccooeiiiiiiie i 36
Figure 15. Jobs triggered by a hybrid position reqQUEST.cccooiiiiiiiniiceese e 37
Figure 16. Cellular positioning simulator running while hybrid sensor captures GNSS signal.
.. 37
Figure 17. GNSS position computation started by external service (CIoudRX).cc.cce... 38
Figure 18. GNSS computation and Cellular computation finished. Hybridization of the
measurements Started aS CONSEAUENCE.cuururreruerieriesiesteereeeeee st steste e reeseeseeseeseesbesbesresnis 38
Figure 19. Hybridization finished. Results now available for the user to watch. 39

Figure 20. Hybrid position computation reSultS.cooviiiiinincnienieee e 39

List of tables

Table 1. Summary of API actions and access t0 its deSCriptions.cccvveverververesieesnennns 27
Table 2. Configuration parameters 0f SNAP-G SENSOIS.cc.civevuiiiiiieie e 84
Table 3. Input configuration parameters of the SNAP-G Service.cccocvvvenieniviienieneennns 85
Table 4. Output parameters of the SNAP-G SEIVICE.cceiviiiiiriiiieseeee e 87
Table 5. Configuration parameters of SNAP-C (Physical) SENSOIS.ccccvevevieiveviesieeiieeiens 88
Table 6. Input configuration parameters of the “Process real cellular signal” of SNAP-C
=] Y] o0 SRRSO 89
Table 7. Output parameters of the “Process real cellular signal” of SNAP-C service............. 89
Table 8. Configuration parameters of SNAP-C (Logical) SENSOrS.ceveriereereniieneesieeiens 90
Table 9. Input configuration parameters of the “Get cellular PVT” of SNAP-C service. 90
Table 10. Output parameters of the "Get cellular PVT" of SNAP-C Service.c..ccccoevvvennnne 93
Table 11. Configuration parameters of SNAP-H SENSOIS.cccveiiiiiieiie i 94
Table 12. External parameters of the SNAP-H service (input from FBS).........ccccoceociivnennnne 95
Table 13. Internal input parameters of the SNAP-H service (communication between SNAP-
G & SNAP-C 0 SNAP-H). ..o teieeie ettt sreans 100
Table 14. Output parameters of the SNAP-H SEIVICE.cccooiiiiiiiiiiieeee s 101
Table 15. Input parameters of the interference location Service.cccoeevveveseesiesve s, 101

Table 16. Output parameters of the interference location Service.cocevveveieevecvee s, 102

1 Introduction

In the past decades, cities worldwide have experienced a dramatic growth moving to what they
have become nowadays: powerful hubs for commerce, culture, science and social. Presently,
cities occupy just 3% of the Earth’s land, while they account for 60-80% of the energy

consumption worldwide and 75% of carbon emissions, according to the United Nations (UN)

[1].

To redress such an unbalanced situation, the UN included sustainable cities as one of the goals
to be achieved within the 2030 Agenda for Sustainable Development, in particular through goal
#11 on “Sustainable cities and communities” [2]. A crystallization of such goal is the emergence
of the so-called “Smart Cities”: urban developments meant to improve the quality of life,
increasing the efficiency of services and better meeting the residents’ needs through the use of

technology.

In this context, the European GNSS Agency (GSA) and the UN Office for Outer Space Affairs
(UNOOSA) have both acknowledged that GNSS is expected to be a key enabler for the design
of new city services, thus helping to achieve the UN Sustainable Development Goal on cities
[3]. GNSS-driven features such as autonomous machinery, provision of ambient intelligence
combining GNSS with 10T sensors, and positioning intelligence are naturally embraced by

Smart Cities, which become fertile ground for technological breakthroughs in the years to come.

All the reasons stated above lead to the European Space Agency Invitation To Tender (ITT)
AO/1-9494/18/NL/CRS [4], entitled Navigation and GNSS in Smart Cities — Testbed Concept
Definition (codenamed HANSEL), which considers as baseline the availability of a network of
distributed smart sensors and aims to design and develop a testbed to manage and efficiently

exploit the data generated by this network.

This project, framed in a collaboration between the consortium formed by the SPCOMNAV
group (Spain), Rokubun (Spain), Trafficnow (Spain), LINKS Foundation (ltaly) and
Politecnico di Torino (Italy) and the European Space Agency, started in February 2018, aims
to cover all the aspects and requirements of this ITT, with the focus of the development of a

navigation-based cloud Testbed in the context of Smart Cities.

2 Introduction

1.1 Motivation

The main motivation of this work is to develop a service that efficiently, both in computing and
energetic terms, generates and manages navigation information, taking a step forward to a
future where every device will be connected thanks to what we know as Internet of Things or
10T and all generated data will be analyzed searching for patterns thanks to Big Data analytics.
This work then is nothing but the prelude of all the data management technologies that are to
come in the following years, when 10T, Big Data, Smart Cities and all the related terms that

now are novelty become mundane and a staple in technology development.

It is important to note that the work presented in this thesis is just a fragment of the whole
developed project. While the contributions from other partners will be mentioned and shown,

it will be clarified whether the development belongs to the author or to a project associate.

1.2 Objective

The main objective of the whole HANSEL project is to develop a Testbed to demonstrate a
series of services around navigation and localization that could be implemented in the context
of Smart Cities. Such services are based on GNSS technologies as well as wireless

communication signals of opportunity (3G/4G/5G, WiFi).

Specifically to the present work, the main objective of this Master's Thesis is to:

1. Design, develop and validate a positioning platform that conforms one of the Testbed
services, covering the needs of GNSS positioning using snapshot-based cloud
processing (2.2.1),

2. jammer detection and localization using GNSS snapshots (2.2.2),
positioning using cellular infrastructure and hybridized measurements (2.2.3), and

4. the need of data storage and intercommunication with the rest of the platform, both
internal and external (2.2.4).

Due to the needs of the service, this thesis groups several engineering branches whose
knowledge was acquired in different subjects during the Master's Degree. This knowledge, in
addition to the acquired knowledge in SPCOMNAYV group, conforms a solid knowledge basis
that is able to be added as a valuable contribution to the main project. The main engineering
and technology topics and its related subject this work covers are, mainly:

Introduction 3

System modeling, design, operation, administration and maintenance. Related to
Communication Systems Design (CSD) and Telecommunication Projects (TP) subjects.
Software architecture design.

Network and Internet architectures. Related to Advanced Networks and Security (ANS)
subject.

Security mechanisms. Related to Advanced Networks and Security (ANS) subject.
GNSS positioning and GNSS technologies. Related to SPCOMNAYV group knowledge.
Cellular positioning and Cellular technologies. Related to SPCOMNAV group

knowledge.

1.3 Methodology

The methodology used to obtain results in the present work, mainly obtained by fulfilling the

project objectives, has been the following:

1.

Bibliographic review. The first step of the methodology consisted in an extensive
review of all the provided information that came with the project, such as proposal,
statement of work and specific objectives of the project.

Conceptual development. This phase is the one where the framework for the project was
decided along with the conceptual design of the platform i.e. identification and grouping
of the set of actions that the service has to perform.

Design development. In this phase, all the conceptual action sets took form as different
modules and submodules, each one with a unique and atomized task in order to fulfill a
specific requirement.

Software development. Each one of the designed modules and submodules are coded
following the previously selected framework, carefully following the stated design.
Test phase. Each one of the software modules are exhaustively tested in order to correct

the possible software errors, thus assuring the reliability of the platform.

1.4 Thesis outline

As for this thesis outline, Section 2 provides a general overview of the Testbed that is being to

be developed, specifically the main functionalities (2.2), based on project objectives and how

these functionalities are going to be implemented in terms of hardware (2.1) and software (2.3)

architecture.

4 Introduction

Section 3 explains and develops the service inside the Testbed that is being developed by the
student, showing and detailing the components of the service (3.1), its internal design (3.2, 3.3,
3.4, 3.5) and the service functionalities (3.6). Also, a high-level explanation of the developed

software code is presented (3.7).

Section 4 intends to depict an end to end execution example of the software, in order to

demonstrate and validate the correct functioning and behavior of the platform.

Sections 5 and 6 contain the Conclusions and the Bibliography of the present work,

respectively.

Section 7 presents de appendices of the project. They are, mainly, the documentation of the

developed platform, including all the developed requests, parameters and examples.

2 HANSEL Positioning Testbed

2.1 Testbed architecture

The Testbed platform architecture at system level description is shown in Figure 1. Blue elements

in the figure represent the elements that are being fully designed and developed by the project

partners. The different components of the architecture are:

Operators/Administrators. Users of the Testbed, that directly interact with the Testbed
front-end.

Nodes/Users. Either sensors or active equipment providing data to the server.

Server. The server or Central Processing Facility (CPF), where most of the computation
is performed.

Infrastructure. Consisting of GNSS transmitters, 4G/5G and WiFi access points, will
provide the Testbed with the needed signals or information, used so the Testbed users
can properly develop its activities. It is important to highlight that, whilst some of this
infrastructure is under the control and monitoring of the Testbed administration (WiFi
APs, sensors, smartphones), other is totally detached from it (4G/5G towers, GNSS
satellites), under the control of other agencies.

Network. The network of the Testbed encompasses the contents of the previously
mentioned components, and as a baseline will be deployed in UAB's facilities. UAB
campus stands as a Smart Campus Living Lab, the first of its kind to receive the title of
a certified member of the European Network of Living Labs (ENoLL), in 2014 [5].

D

o o »
@, Q O S5

3

Figure 1. Testbed system level overview.

5 bed

The cornerstone of the Testbed is the server (CPF), which on one side allows the data exchange
between all the Testbed components, and on the other side has enough computational power to
either compute navigation algorithms to obtain positions or to facilitate the data provision to
the Testbed users to they can perform its position computation. The implementation of the CPF
is based on various services encapsulated in containers, which are each one of the blue squares

in Figure 1.

All the previously mentioned functionalities materialize in a list of services that HANSEL
contains in order to satisfy the Testbed requirements. The architecture is distributed among
three different kinds of software: services in server, pieces of software running physically inside
the HANSEL CPF, applications, software applications running in nodes outside the server
(smartphones, sensors), which directly communicate to its corresponding services, and external
services, performing subtasks associated to its related services, already developed at the start
of the project by the corresponding partner. It is possible to see in Figure 2 where each service
is located and its corresponding developed applications (if any), that give support to the
services. This information is presented along with a color code, clarifying what is the

contribution of each partner to the project.

External services Services in server Applications (outside server)
SNAP CAC — SNApp
Snapshot Command & jleshediiion; Snapshat
processing relay Control EciRazklend Application
Raokubun's Service
Jason Paas
CPS
CAS GCcs CPA
— : m ’
GNSS Nirip GNSS Receiver Collaborativa Coleboratve
Caster Control Service Positioning ositioning
Service Applicalion
WA
UAB's h i POS VIS WALS 52
N WIFI/ GNSS
Cloud GNSS Rx ‘\ Jason-based GNSS Orbit Wifi Access point Fybrxl
Paositioning relay Visibility Service Location Service Application

Developer | PTT | |ROK| | uAB | TFN |

Figure 2. HANSEL service structure.

A brief summary of each service and application follows:

bed .

e CAC (Command And Control). This service is in charge of monitoring the Testbed user
position and (optionally) a route identifier. With this information the service sends
notifications to the user (e.g. via Android app). This module is the foundation that will,
in the future, a full-fledged command and control of vehicle platoons, formations, etc.

e POS (Positioning service). This module is a relay module that interfaces with
Rokubun’s Jason Positioning-as-a-Service in the cloud. The user is able to upload
RINEX files and compute its position (dynamic or kinematic) by means of PPK or SPP
(depending on available nearby stations). This service is a thin interfacing layer to
forward the requests and store the metadata that will be used for bookkeeping purposes.

e GCS (GNSS Receiver Control Service). This service is in charge of monitoring the data
provided by the GNSS receivers of the Testbed.

e CAS (GNSS Ntrip Caster). This service broadcasts the data from the Testbed GNSS
receivers so that users can perform DGPS or RTK if they are in the area of influence of
the Testbed.

e VIS (GNSS satellite visibility service). Provides the necessary tools to visualize the
status of the GNSS constellation above the Testbed (number of satellites, azimuth,
elevation, etc.)

e WALS (WiFi Access Location Service). The service that ingests data points from an
external application (described below) and will routinely compute the WiFi Access
point location within the Testbed.

e SNAP (Snapshot service). Service charge of providing the position and time of the
GNSS and cellular sensors, as well as the intermediate raw observables that were
obtained from the received signals. The service internally provides the option to
hybridize both GNSS and cellular observables in order to obtain a hybrid position
solution. The processing of real signals, either GNSS or cellular, is performed with the
UAB’s CloudRx Positioning-as-a-Service in the cloud, which hence will be an external
service to the Testbed. For cellular signals, SNAP additionally incorporates a simulator
to allow the generation of synthetic raw observables, in order to circumvent the
positioning problems posed by most of the existing cellular deployments.

e CPS (Collaborative Positioning Interface Service). The service in charge of
coordinating the exchange of raw measurements and navigation solutions among the
agents registered to the service (i.e. smartphones equipped with GNSS receivers). It

provides the temporary hosting of the data and it will store the positioning solution

8 bed

obtained by means of the CP to provide monitoring of the localization performance of
the cooperative algorithm implemented at the user application level.

e FBS (Front- and Back-end Service). Responsible of the hosting, managing,
configuration, monitoring and results data visualization of all the other services. The
user authentication and management also takes place in this service. It also provides
tools for the management and monitoring of all the hardware components of the testbed.

e SNAP Application (SNApp). Software (installed in a lite operative system) required by
the GNSS and cellular sensors interacting with the SNAP service in order to control,
manage, and configure them through the testbed.

e CP Application (CPA). Android-based application that will provide the interface
between the GNSS receiver integrated in the smartphones and the CPS. Guarantees the
reception and transmission of time-stamped raw measurements and navigation solutions
towards agents registered to the CPS. The CPA will implement a CP algorithm running
locally, thus distributing the logic of the cooperation at the node/user level.

e WALS Application. Android-based application that will interact with the Testbed
WALS service to upload data measurements from WiFi hotspots, among other features,

described below.

Besides the internal services running in the server, as already stated, the Cloud Receiver
(CloudRXx) service and Jason Positioning-as-a-Service will run externally to the Testbed and

will be accessible via network connectivity.

2.2 Description of the main testbed functionalities

2.2.1 Positioning using GNSS snapshot-based cloud processing

Internet of Things (10T) sensors, key component of any “Smart City” development, have
experienced a dramatic growth in the recent years due to the advent of low-power wireless
communication technologies such as LoRa, SigFox or narrowband 1oT (NB-I10T). However,
most of the sensors implementing positioning functionalities are still relying on GNSS chipsets
that process the received GNSS samples, compute the user’s position, and then report this
position together with additional data to the remote server. This approach implies high power
consumption that compromises the battery lifetime of these sensors. A means to reduce this

consumption is by moving from conventional “always-on” GNSS chipsets to ultra-low-power

bed 9

GNSS chipsets implementing “on-off” strategies by means of snapshot-based processing. The
user’s position is computed on-demand by processing a snapshot of received GNSS samples,
and the result is then reported to the remote server. While snapshot processing significantly
reduces the power consumption of IoT GNSS chipset, there are still many concerns when it
turns to implement advanced features such as authentication, multi-constellation (e.g. GPS,
Galileo, GLONASS, Beidou) and multi-frequency (e.g. L1/E1 and L5/E5a,b), where an
additional constraint appears due to the limited computational capabilities of GNSS-enabled

10T devices.

Furthermore, more computationally demanding techniques must be applied when the GNSS-
enabled 10T device operates under harsh environments such as urban canyons or soft-indoors,
typically encountered in Cities. In that case high-sensitivity techniques (i.e., using much longer
coherent and non-coherent integration times) are required at acquisition level. Similarly,
advanced signal processing techniques are needed to detect and mitigate interferences e.g.
jammers, a threat that could break the security and reliability of the GNSS data. This could
jeopardize the efficiency of the Smart City management and endanger GNSS-based safety-

critical or autonomous driving services.

All the mentioned problematics are solved through a paradigm shift in the way GNSS
positioning is carried out; where the snapshots of received GNSS samples are processed
remotely instead of locally at the user’s terminal. This concept is depicted in Figure 3.

GNSS satellite
GNSS satellite

s’ N

'. Z \ GNSS satellite
A ‘GNSS raw samples
i /—\\
| I ' R -
G(;d-based GNSS
4

i ’

\\;‘—/
= “@7] ntdata »/// R

1 /
—

Figure 3. UAB cloud GNSS receiver operating on a network of heterogeneous GNSS-enabled loT sensors.

10 bed

2.2.2 Localization of jammers using GNSS snapshots

The presence of either intentional or unintentional interferences is known to be a major threat
to the operation of GNSS receivers and therefore, to the services they provide in the context of
Smart Cities. The underlying reason is the extremely weak power of GNSS signals received on
Earth, which is one-billionth of a billionth the power consumed by a single 100W light bulb.
As a result, an interference source emitting with just 1W EIRP at a few kilometers distance
from a GNSS reference station, is received with an interference power to noise spectral Ci/No
of about 100 dBHz. This is more than 50 dB larger than the nominal carrier to noise spectral
density C/No of GNSS signals outdoors (on the order of 40-50 dBHz), and exceeds by large
the 24-27 dB of inherent interference protection that is provided by GNSS spreading codes. In
these circumstances, the performance of GNSS receivers dramatically degrades, and for the

case of Smart Cities, it poses a serious threat to safety-critical applications.

A pragmatic approach is followed by selecting the most appropriate technique considering the
nature of the Smart City users, whose GNSS-enabled devices are mostly based on mass-market
implementations specifically tailored to the loT domain. Thus, limited computational
capabilities and limited resources will be assumed to be available. In order to compensate this
limitation, localization of jammers using GNSS snapshots is carried out at the UAB's cloud
GNSS receiver platform, by fusing and jointly processing the GNSS snapshots delivered by the
Smart City users, as illustrated in Figure 4. This strategy has been previously considered in the
literature as the best approach to exploit information from neighboring sensors with the aim of

detecting and localizing the presence of potential threats [6].

GNSS satellite
/ GNSS satellite W
/) N GNSS satellite

Cloud-based
jamming localization
Received GNSS snapshots

GNSS snapshot at user #1
affected by jamming

J GNSS snapshot at user #2
@ ___ affected by jamming
Jammer User #2 :

Figure 4. Jamming detection and localization by cloud-processing GNSS snapshots.

bed 1

2.2.3 Positioning using terrestrial infrastructure and measurement

hybridization

As it is known, GNSS performs ideally in open-sky conditions where the satellite visibility is
not impaired. However, the performance of GNSS systems starts to degrade as more obstacles
and signal blockages occur. Such environment is found especially in cities (urban canyons) and
buildings (indoors). In these scenarios, other terrestrial-based signals-of-opportunity are being

explored to complement GNSS: cellular and WiFi.

Cellular networks not only play a key role on the provision of communications capabilities to
mobile devices, but they are also of importance for mobile positioning. The large cellular
communication infrastructure deployed by the different network operators can be re-used for
positioning purposes, providing an additional terrestrial positioning system in Smart Cities. The
re-use of cellular deployments for positioning has been studied with simulations and field
experimentations for the different network generations [7]. Results show a clear improvement
when comparing the stand-alone GNSS performance and the hybridized performance using

measurements from cellular networks such as 4G/5G.

In addition, governmental bodies have reinforced the need for complementary cellular-based
location methods, such as in emergency services [8]. This interest has led to the specification
of dedicated positioning signals, methods and protocols in 4G Long Term Evolution (LTE)
systems. Although these location methods are only adopted in certain 4G LTE commercial
networks (due to additional deployment costs), this trend is expected to change in the future
with the inherent technological improvements of future 5G networks [9].

Positioning engines based on signals-of-opportunity from cellular networks are severely limited
by the facts that network operators do not disclose the location of the base stations on one hand,
and the lack of time synchronization between base stations on the other hand, both required to
compute the user’s location. For this reason, besides the Testbed Cellular signal processing,
which provides the Testbed with the raw Cellular measurements, the Testbed also incorporates
a software engine capable of performing a simulation of the scenario with network

infrastructure and provide 4G/5G users’ corrected observables and/or position solutions.

Besides cellular-based positioning, WiFi-based positioning has been also explored as a means

to provide with indoor localization. Up to today, most approaches where based on the Received

1 bed

Signal Strength Indicator (RSSI) as a proxy of the distance between the WiFi router and the
terminal and then infer the positioning probabilistically by means of fingerprinting [10].
However, with the announcement of the Android P OS for smartphones, Google is giving
access to the Fine Time Measurements (FTM) of the Round Travel Time (RTT), i.e. Time-Of-
Arrival, which triggers the possibility to achieving meter-level accuracy indoors for devices
compliant with the 802.11mc protocol. Smartphone technologies will be then used to both

locate the position of WiFi routers as well as obtain positioning based on WiFi-ranges.

This functionality, comprising WiFi and Cellular positioning plus the hybridization of these
terrestrial systems with GNSS technologies, are in charge of Rokubun regarding WiFi
positioning plus WiFi and GNSS hybridization and of UAB when it comes to Cellular
positioning, Cellular signal processing and the hybridization between this technology and
GNSS.

2.2.4 Centralized control, storage and visualization

Each of the previous explained functionalities separate themselves into a different set of
services, each one of them having different needs in terms of visualization and user-interaction.
These different needs lead to the necessity of a way of homogenize the user interface, so an
operator interacting with the Testbed is able to see the platform as it is, a whole of connected
services, not as separated services put together in the same environment. Also, a storage system
and a centralized control of the platform is needed in order to have a general overview of the
whole system (visible GNSS satellites, Cellular base station and WiFi Access Point positioning,
users connected to the platform, network connections, etc.) so the administrator of the system

can easily access all the Testbed data and diagnose/solve problems if they appear.

The centralized control is refers to all the activities in charge of the data gathering from the
different services and the treatment of these data, being also responsible for the visualization of
the state of the GNSS satellites, the terrestrial infrastructure such as WiFi APs and Cellular base
stations, and the visualization of all the present nodes in the Testbed (sensors, smartphones,

etc.) out of the given data from the services.

2.3 Software architecture

One of the main requirements of the Testbed is the scalability and ease to add new services in

the future (i.e. expandability). These requirements shape the development approach that needs

bed 13

to be adopted for the implementation. Fundamentally, these requirements translate to the
following requirements in terms of architecture:
e There needs to be a strategy for service encapsulation.

e Standardized interfaces to/from the service must be enforced.

In view of these requirements, the Testbed is based on the deployment of Docker containers
[11] that will encapsulate all the components required by the service (executables, databases,
software libraries, etc.). Within the container, a component that will provide an API will be put
in place so that the communication to/from the service is done via a HTTP RESTful protocol
[12]. All the nodes/users that need to communicate with the Testbed will also use this protocol.

These technologies are explained in the following subsections.

2.3.1 Docker; packaging software into standardized units for development

Docker is a tool designed to create, deploy and run applications by using containers. A container
is nothing but a unit of software that packages code and its dependencies so the application can
run reliably from one computer environment to another without any hardware dependencies. A
Docker container is lightweight, standalone, executable package of software that includes
everything needed to run an application: code, runtime, system tools, system libraries and
settings. The usage of Docker containers has also beneficial side-effects to the development of
the HANSEL server:

e Ensures the expandability of the platform, making it as easy as developing a new
container and adding it to the Testbed.

e The implementation language or environment within the container is not determined by
the host machine which gives a higher degree of independence among the different
parties and developers involved in the implementation.

e The definition of the Docker container freezes the environment (e.g. software versions,
required development libraries, etc.) which guarantees a higher degree of traceability.

e Ensures the usage of the developed software out of the HANSEL framework, thus

adding value to the developed software out of the project.

14 HANSEL Positioning Testbed

2.3.2 Application Programming Interfaces: the RESTful API design

An Application Programming Interface (API) is an interface or communication protocol
between different parts of a computer program intended to simplify the implementation and
maintenance of software [13]. An API is, then, a layer added between the user and a software
core (service functionality), intended to homogenize, filter and manage all the requests, while
also protecting the service by isolating its direct interaction with the user. It could be considered
the entrance door to the service laying behind, which will only receive the requests that are in
line with the API documentation. A simplified diagram of this operation is depicted in Figure
5.

Request
_———>
API
‘—
% > Response
User Service

Figure 5. Simplified API functionality.

As stated before, the communication to and from the Testbed services is done in accordance to
the RESTful design (Representational State Transfer), taking advantage of HyperText Transfer
Protocol (HTTP). RESTful API design provides flexibility when it comes to data exchanges,
since the REST has the ability to handle multiple types of calls and return different data formats.
Main features of REST designs are:

e Stateless protocol. Every HTTP query includes all the necessary information to be
executed, eliminating the necessity of keeping track of a session/state.

e Uniform interface. Every query is unequivocally identified by specific action (GET,
POST, PUT, DETELE, etc.) and a Uniform Resource Identifier (URI). The structure
and format of the queries is also determined, and defined by a few parameters:

o Action or method. Defines what the query does. These actions are already
designed. All available actions can be seen in [14].

o Headers. Help the receiving entity to identify properties of the request, such as
content type, authorization (if any), message length, etc.

o Base URL. Defines the service that is being accessed e.g. www.google.com

bed 15

o URL parameters. Define the specific parameters sent to the service, so the
service can identify the specific functionality of the service that the user is
searching for e.g. www.google.com?search=how_to_pass. In the previous
example, "search” would be the parameter and "how_to_pass"” the parameter
value. In this case, the accessed service (Google) is going to know that the user
wants to make a search (due to the parameter name), and what the user wants to
search is "how_to_pass™ (due to the parameter value).

o Body. Contains parameters not able to be located into the URL, such as
passwords of another sensitive data.

The most widely used input/output format (for the request body and the response

message) is the JSON format [15], although not being officially defined.

For confidentiality purposes, HTTP is used under Transport Layer Security (TLS) protocol,
which encrypts requests from source to destination, also known as HTTPS. Moreover, for
Authentication and Authorization purposes all the platform services use OAuth (access tokens)
instead of basic HTTP authentication [16].

3 Development of a software-based snapshot
positioning service (SNAP)

SNAP is the service developed in the framework of the present thesis. Following the project
requirements, it should be in charge of providing to the Testbed an interface for processing
snapshots of GNSS/Cellular raw samples data gathered by the network of deployed
GNSS/Cellular sensors, obtaining information such as the position, time and measurements of
the sensors (and related information: visible satellites, visible LTE base stations, C/No values,
etc.). It should also in charge of the detection and localization of jammer interferences, the
simulation of Cellular measurements (observables), and also carries out the hybridization
between GNSS measurements and Cellular ones in order to improve the position accuracy. This
set of requirements posed the problem on how to combine and organize all the different
subfunctionalities, which actually comprise heterogeneous tasks such as data management,
storage, processing, communication and synchronization. In order to create a service with an
arranged structure, thus homogenizing what is common and isolating what it is not, a few points
were raised:
e All the signal processing should be done in the external service for the sake of
computational savings to the CPF.
e Each of the different subfunctionalities (GNSS processing and Cellular processing)
although related in concept, should be separated in modules and work standalone.
e Hybridization functionality of the Testbed should make use of GNSS and Cellular
processing modules.
e There is a need of a centralized storage facility i.e. a database.
e All the communication, data management and synchronization should be done by a

superior entity with respect to the processing modules, namely the service API.

It was decided to use Python v3 [17] as main tool for the service development, due to the
language being a very powerful to API development thanks to software packages such as Flask
[18] (and sublibraries), and Requests [19]. Python also possesses a lot of packages to ease the
database creation an interaction via the ORM technique [20], such as psycopg2 [21],
SQLAIchemy [22] and Marshmallow [23]. All these features, in addition to the widely-known
package for scientific computing Numpy [24] made Python the perfect candidate to carry on

all the development presented in this thesis.

16

SNAP — Snapshot Positioning Service 17

===
SN AP Cloudl%x.
GNSS sensor SNAP API
Hybrid sensor I SNAP-G |
| snAP-c |
Cellular sensor | SNAP-H |

‘ SNAP DB | .

Figure 6. High-level components of SNAP service.

Previous points are related to some project requirements the software has to fulfill, namely:

1.

10.
11.

The GNSS infrastructure should include constellations, signals and messages for GPS
and Galileo as defined in their respective interface specifications.

The GNSS signals in centre frequencies L1/E1 (1575.42 MHZz) and L5/E5a (1176.45
MHZz) should be used.

The ground cellular infrastructure should consist as a minimum of the mobile
broadband standards commonly known as 3G, 4G/LTE and 5G.

It should be possible to define the infrastructure attributes by means of internal and
external configuration data.

The infrastructure should be split between external and internal infrastructure.

The server should be designed and implemented in a modular way for both software
and hardware.

The (HANSEL) server should be able to execute all positioning and navigation
algorithms and processing tasks related to use cases and scenarios except when
external services are required.

It should be possible to define different areas within the network geography, as
urban/open sky areas, indoor/outdoor areas and controlled access areas.

The server software should be portable.

Services should be flexible with respect to the number of nodes.

The used protocols should enforce by design data integrity and security measures for

network traffic.

% . SNAP-Snapshot Positioning Service
3.1 SNAP architecture

Based on the points presented in the previous section, the service has been built over five
different components:
e SNAP-G, asubservice whose main function is to relay GNSS raw measurements to the
external service C1oudRx for its processing, for both position obtainment the jammer
detection and localization.

e SNAP-C, a subservice whose main functions are a) to relay LTE real samples to the
external service in order to its processing, and b) to simulate cellular-based position
fixes.

e SNAP-H, a subservice whose main function is to hybridize GNSS observables and
cellular observables in order to obtain a hybrid position fix.

e SNAP DB, a SQL database based in the PostgreSQL technology [25], which stores all
data flow of the service, including the position fixes from SNAP sensor network, all its
related parameters (such as sensor configurations and results), samples and related files.

e SNAP APIT, the solely entrypoint of the service, which interfaces the external network
to the SNAP-G, SNAP-C and SNAP-H subservices, as well as the subservices with
SNAP DB. The purpose of this component is to validate all the input and output data
flow (parameters), to manage all the data storing and retrieval and to perform the service

synchronization with the sensor network.

In line with the different subservices, the network of sensors if composed by:
e G Sensors (GNSS). Sensors capable of gathering GNSS signals by means of a
radiofrequency front-end and sending them via Internet to the service for its processing.
e C Sensors (Cellular). There are two types of Cellular sensors. As stated in 2.2.3, the
limitations on the corrected Cellular measurements computation raises the need of two
types of cellular sensors, developing different functions:

o CP Sensor (Cellular Physical). These sensors gather real Cellular signal by
means of a radiofrequency front-end, with the main objective of sending them
to the external service and computing the raw Cellular observables (not suitable
for position computation).

o CL Sensor (Cellular Logical). These sensors are called Logical because they are
not a physical entity, just a logical piece of software. They are in charge of

triggering a simulation in order to obtain corrected Cellular observables and

SNAP — Snapshot Positioning Service 19

compute a simulated Cellular position with them. They were created to simulate

a real-world scenario, where it would be possible to obtain the position out of

real Cellular signal if there were no constraints.
H sensors (Hybrid). These sensors are in able to both capture real GNSS signals and
trigger the simulation of corrected Cellular observables, with the main objective of
measurement hybridization. These sensors are needed since the hybridized
measurements necessarily need to have the same reference position, so instead of having
two sensors (one G and another CL) in the same position, it was decided to create the
hybrid sensors for simplicity reasons. That means if there were no limitations computing
cellular positions out of real signal, this type of sensor would be a physical sensor with
both GNSS and Cellular front-ends.

A high-level perspective of the service is shown in Figure 6. A more detailed view, including

the communication workflows between each of the service components and the external world,

both with the sensor network and the visualization service is depicted in Figure 7.

Data SNAP FBS
i Snapshot processing relay Testbed Front-and
gatnening Back-End Service
\ | SNAPG |#» SNAPH |*P SNAPC |
™ Gathered Getsensor || I/O visualization
’.I samples position
:ﬂ » SNAP AP| |«
Sensor < > { N
)) .
Configuration Sensors
— H
AR lat, lon, alt

Figure 7. Detailed view of the service, including communication flows between components and external network.

The communication flow of the SNAP service is structured as follows:

1.
2.

SNAP sensors are listening for orders or jobs.

Upon receiving a request, SNAP API detects the action and parameters and validates
them.
If the previous validation is successful, SNAP APl communicates with the

corresponding service functionality (SNAP-G, SNAP-C, SNAP-H).

The service functionality eventually interacts with its corresponding sensors by making
them capture samples.

When the sensor sends the samples back to the service, the corresponding module
communicates with a specific service tool (navigation algorithm) and triggers a specific

computation, either in the external service or inside the service.

20 SNAP — Snapshot Positioning Service

6. The results obtained from the computation are returned to SNAP API, which stores them
in SNAP DB.

3.1.1 SNAP's external service; CloudRx

CloudRx is the external service that complements the SNAP service of the HANSEL Testbed,
powered by Amazon Web Services (AWS) [26] and developed by the SPCOMNAYV research
group at UAB. The CloudRx service is responsible for all the Testbed snapshot processing.
Users communicating with the Testbed server will have access to the cloud GNSS receiver [27]
where snapshot processing and cooperative localization of jammers will take place. The basic
principle of the platform is the externalization of the signal processing and position computation
to a cloud platform (cloud SaaS), contrary to the (classical) procedure of the actual receivers,
performing the position computation in situ. This is performed by means of sending to the cloud
the gathered raw measurements for them to be processed. This approach is identified to be key
for future GNSS positioning applications in the context of ubiquitous Positioning, Navigation
and Timing (PNT) for connected 10T devices and Smart Cities [28]. Some obstacles that this

approach solves are:

e Battery life. Mathematical complex operations like position computation constitute a
high energy consumption due to all the related processes to satellite acquisition and its
processing. Externalization of such procedure constitute high energy savings that
translate into a longer battery life.

e Computational power. Limited device size avoids the implementation of powerful
computational cores, so the processing is bounded both temporarily and
computationally (there are functionalities that cannot be included due to computational
limitations). Cloud computing solves these issues, being capable of an optimal resources
assignment to optimize computation.

e Security. Due to the lack of computational power, devices are not able to perform
certification at signal level in order to verify its authenticity. Unlimited (virtually) cloud
computational resources enable the certification at signal level in order to avoid
spoofing or jamming.

e Cost. Actual devices need a full GNSS module, formed by radiofrequency front-end
and acquisition, tracking and navigation modules to compute a position. A CloudRx-
designed device is only in need of a radiofrequency front-end, so the fabrication cost of

the device is reduced.

SNAP — Snapshot Positioning Service 21

e Precision. Lack of computation power compromises the maximum precision that a
standard device can achieve. Cloud computational power also solves this issue.

e Flexibility. Actually, device updates are done through firmware, which limits the
flexibility of those updates (normally requires to physically access all the devices).

Cloud receiver software is easily updatable and allows high flexibility.

A high-level approach of the user the platform can be seen in Figure 8. Note that all the
subblocks inside the AWS main block, corresponding to AWS services, are totally transparent
to the user. The actual development within the framework of the project modifies the
interactions in the figure by adding an extra layer between the User and the AWS block; SNAP

and all its components, represented in the figure as "Web/API".

GNSS satellites (GPS/GLONASS/Galileo/BeiDou)

g Vo 'e'- " (
N .
I

i Container

! H S3 Batch
' sugfox (Storage) (Job management) (Job) |||

,['']

EC2

(Compmlng resources
= SQS RDS Web/API
— ‘\{Message queve) _ (Database) N ___ ___ ___ ___ ___ ___ ___ ¥

Cloud GNSS loT sensor -

|
I
|
I
|
|
|
|
I
|
I
|
|
|
|
|
)]
|
|

User
Figure 8. Interactions of a device with CloudRx platform.

3.2 SNAP-G subservice design

SNAP-G subservice, as its only function is to relay raw GNSS measurements to the CloudRx
external service, his main and only component is a relay, which is in charge of this information
forwarding. Following the points in 3, the structure was properly defined by atomizing the
functionalities of each subservice block. A block diagram of the subservice and interactions

with other components of the service can be seen in Figure 9.

As can be seen in the figure, the main SNAP-G interactions come from the sensor network,
which is periodically polling for position computation requests (more information in 3.6.2).
When one of these requests is detected, the demanded sensor captures GNSS signal and sends
itto SNAP-G via SNAP API. The service then relays the raw measurements file to the CloudRX,

which does the corresponding processing and returns to SNAP-G the obtained results, namely

22 SNAP — Snapshot Positioning Service

the PVT of the sensor (if possible to compute), status of GNSS signals, generated observables,

and the location of interference sources if any was detected.

”éloude

Results Data + Configuration / Data gathering
SNAP-G 7~
Data + Configuration
Relay GNSS sensor
Results

|

Figure 9. SNAP-G structure and interactions.

This module also has post-processing capabilities, allowing the operator to directly inject a
GNSS measurements file to the service, without the need of a sensor to gather the
measurements. The raw GNSS measurements file then follows the same workflow as if it was
gathered by the sensor, being sent to the CloudRx for its processing and its results being stored

in the database.

3.3 SNAP-C subservice design

SNAP-C subservice, due to its clear division between signal processing and simulation
capabilities was divided in two main functionalities in order to have clear functionalities per
software and easily work with each piece of software, Cellular simulated positioning and real
Cellular data processing. These functionalities divide the subservice in two main modules
according to the points in section 3, mainly the one stating that all the snapshot processing
should be done in CloudRx external service. These two main modules are:

e Cellular positioning simulator. It is a software that simulates a 4G/5G cellular
infrastructure and provides observables and/or position solutions. The simulation is
configurable by the user, by specifying several parameters e.g., reference position, base
station location, positioning method, etc. With this configuration, a deployment of base

stations is performed and used to compute the sensor position. As mentioned in 2.1, the

SNAP — Snapshot Positioning Service 23

sensors that make use of this simulation module are the so-called Cellular Logical (CL)
sensors, since they are actually virtual sensors part of the simulation software in charge
of generating cellular observables and position. These components can be seen in the
lower part of Figure 10. While sensors are part of the software, have been depicted
outside it for the sake of clarity.

e Cellular signal relay. Relay service in charge of forwarding real Cellular signals to the
CloudRx, where they are processed. The results (including raw observables, spectrum
image, detected base stations, etc.) returned to SNAP-C in order for them to be stored

in SNAP DB.. These components can be seen in the upper part of Figure 10.

== |
CloudRx
Observables Data + Configuration /f
SNAP-C e
Data + Configuration
Relay Celular sensor
Observables Physical sensor
e e— Cellular positioning simulator_
PVT + Status) !
- ——— - Logical sensor 1
BS deployment | | I Cellularsensor 1 |

t,%Data+ i
1 Configuration

-
I l
I
|
I
I

T e Tl — = = = = = = == = = = = = o o = =

Figure 10. SNAP-C architecture and interactions.

The workflow for SNAP-C computations depends on the module that is going to be used.
Regarding the Cellular signal relay, the workflow is very much the same as for SNAP-G, since
the carried task is the same: to forward samples to the external service (CloudRx) for its
processing. This module also has post-processing capabilities when it comes to the Cellular
signal relay, performing the same functionality as SNAP-G out of a previously recorded raw

Cellular measurements file.

When it comes to the Cellular positioning simulator, things are a little bit different; since the
sensors interacting with this piece of software are logical (a piece of software), there is no need
to interact and wait for data gathering as in previous cases. Once all the request parameters are
validated by the SNAP API, the simulator is triggered inside the own service (so no need to

communicate with the external service), and its results are directly stored in SNAP DB.

24 SNAP — Snapshot Positioning Service
3.4 SNAP-H subservice design

SNAP-H subservice mainly contains a hybrid PVT algorithm that uses GNSS and Cellular
observables as input. These observables are computed on demand when a hybrid position is
requested using SNAP-G and SNAP-C modules. The workflow of this service is, then, once a
Hybrid (H) sensor detects the position request, on one side gathers GNSS raw measurements
for its processing in the CloudRx, and on the other side triggers the Cellular positioning
simulator. Both computations are launched in parallel, and when both executions are finished
all the generated outputs are directly injected to the hybridization algorithm as input parameters.
The module performs the corresponding GNSS + Cellular measurement hybridization and
outputs the hybrid sensor position plus related parameters, such as the HDOP (Horizontal
Dilution Of Precision). A detailed block diagram of the subservice is shown in Figure 11. This
module also has post-processing capabilities in the same way as SNAP-G and SNAP-C

(Cellular signal relay).

The use of simulated Cellular observables instead of the ones obtained from real Cellular signal
computation (, upper part) is limited by implementation constraints out of the scope of the
development. Those are, on one side, the lack of knowledge about the exact position of the base
stations, and on the other side the lack of time synchronization between base stations. Even
assuming the base station positions are accurate enough, the synchronization constraint cause
the Cellular signal computation module only capable of obtaining the raw Cellular observables

i.e. observables without time synchronization corrections.

Data gathering

Js

GNSS [‘ -
Config X
GNSS ' SNAP-G

SNAP-H observables

SNAP AP| Cellular
Config

| SNAP DB
PVT + Status? Cellular

observables SNAP-C
Hybrid PVT ‘_._l

Figure 11. SNAP-H architecture and interactions.

SNAP — Snapshot Positioning Service 25
3.5 SNAP DB design

SNAP DB, the central storage facility of the SNAP service, is a database created with
PostgreSQL technology, an open source object-relational database system that uses and extends
the SQL language. As stated previously, the existence of Python v3 packages such as psycopg2
and SQLAIchemy, ORM (Object Relational Mappers) for this kind of SQL databases and
specifically PostgreSQL one, eases both the database creation, interaction and modification as
time progresses and the requirements are polished. This technology also possesses parameter
validation capabilities, thus adding another security layer to the service avoiding database

corruption and easing the API parameter validation process.

Database structure was designed following the Testbed hierarchy itself, where operators are on
top and each of them possesses nodes such as sensors or smartphones, and these nodes are
positioned by means of different technologies. SNAP comprises two different technologies
(GNSS, Cellular) and 4 different applications (GNSS positioning, Cellular processing, Cellular
simulated positioning, GNSS plus Cellular hybridization), giving place to the database structure

depicted in the UML diagram in Figure 12.

id int id int
sensor_id string execution_id string
execution_config siring execution_results string
N
sensor_id int id int id int
sensor_config string sensor_id string execution_id
execution_config string execution_results
CEE I
id Int id int id int id int id int
user_id n sensor_id nt sensor_id string execution_id sfring
sensor_info string sensor_canfig string execution_config string execution_results siring
id int id int
o [4] string execution_id string
execution_config string execution_results string
id int id int id int

sensor_id int sensor_id string execution_id string

sensor_config string execution_config string execution_results string

Figure 12. Simplified UML diagram of the stored information in SNAP DB..

26 SNAP — Snapshot Positioning Service
3.6 SNAP API design

The SNAP API is nothing but the entrypoint of the SNAP service, so it is the component
responsible of all the input/output (1/0) data of the service. It acts as a black box with respect
to other services, so it is important for SNAP to be standalone and reliable when it comes to its

internal procedures.

This need of reliability made the API to be built upon the Representational State Transfer design
(RESTful), which creates an environment with tools capable of handling high number of
request while also being modular, easing the scalability and modification of the service inner
functionalities. Since the design also detaches client and server side (while also providing a

homogeneous interface), any functionality modification is totally transparent to the user.

Security features are also important when it comes to a service that is going to be live on the
internet, and it is known that plain HyperText Transfer Protocol (HTTP) does not provide
enough safety. This reason led to place the RESTful API over Transport Layer Security protocol
(TLS), also known as HTTPS. This protocol stack provides data encryption and certification at
transport layer, thus assuring confidentiality and integrity of the data exchange. Security
features have been also added to the service at application level, such as username/password
log in and, most importantly, token-based identification for each performed interaction
(OAuth).

The following subsections describe the different actions that are covered by the API. For the
sake of clarity, next subsections just provide a superficial description of the actions and its main
API queries. For detailed information, please refer to Appendix 1. Table 1 shows a summary

of API actions and direct access to its descriptions.

Subservice/ Functionality Brief . .
o Detailed description
Component description
7.1.1 User creation
7.1.2 User deletion
7.1.3 User information obtainment
General User management 36.1 7.1.4 Authorization token obtainment

7.1.5 User validation

7.1.6 User invalidation

7.1.7 User account upgrade
7.1.8 User account downgrade

SNAP — Snapshot Positioning Service 27

7.1.9 Give a user account admin
privileges

7.1.10 Revoke privileges to an admin
account

7.1.11 Sensor

7.1.12 Sensor information

modification
7.1.13 Sensor deletion
All Sensor 7.1.14 Sensor information obtainment
: 3.6.2 , .
subservices management 7.1.15 Sensor configuration
obtainment
7.1.16 Sensor configuration
modification
7.1.17 Sensor configuration update
7.1.18 Sensor location
7.1.23 Post-processing recorded GNSS
GNSS signal 3.6.3.1 data
SNAP-G processing 3.6.3.2 7.1.19 Interference location
7.1.20 Located interference historic
obtainment
7.1.21 Observables computing from
Cellular signal 0 live TLE signals
SNAP-C processing 7.1.24 Post-processing recorded real
Cellular data
Cellylar position 3.6.4 7.1.18 Sensor location
simulation
GNSS data &

simulated Cellular 7.1.18 Sensor location
SNAP-H 3.6.5 7.1.25 Recorded GNSS signal with

observables . : N
hybridization simulated LTE signal hybridization

7.1.22 Signal data uploading
Results and data 7.1.26 Adding results to SNAP DB
SNAP DB 3.6.6 7.1.27 SNAP database result
management X

obtainment

7.1.28 SNAP DB result deletion

Table 1. Summary of API actions and access to its descriptions.

3.6.1 User management

As a standalone service, SNAP has its own user system. That means the service has to provide
the necessary means for user management. Those are mainly the following points:

e User privileges. Some users are designated as service administrators, who have a more

general overview of the environment and are able efficiently manage the users

registered into the platform.

28 SNAP — Snapshot Positioning Service

e User registration. A Testbed operator must be able to register himself into the SNAP
environment, and also to edit his information if needed. That also includes the capability
of deleting a user.

e User access. The service provides the means for a secure access to the platform, which
is implemented by means of OAuth.

e User account capabilities. The service has two type of platform accounts, "basic" and
"pro". The first provides basic operations, while the latter offers additional features
(such as better computational capabilities), added on top of the basic ones.

e User validation. Since the service is intended to be hermetic, the administrators are able
to grant or deny access to standard users.

Main API queries for user management are the use registration query (7.1.1), by which a user

registers in the SNAP service:

POST https://hansel.com/snap/api/user

and the user validation query (7.1.5), by which an administrator allows a user to access all the
SNAP capabilities:

POST https://hansel.com/snap/api/validate?user=john doe@gmail.com

3.6.2 Sensor management

When it comes to controlling the network of SNAP sensors, it is necessary to give to the Testbed
operator the possibility of registering a sensor in the service, as well of modifying the sensor
inner configuration, which defines how the devices captures GNSS and Cellular signal. Also,
since the sensors are designed to interact with the Testbed on an autonomous way, they have to

be able to reconfigure themselves without operator physical interaction.

The mentioned objectives are accomplished by programming the sensor to periodically poll the
service for new configuration and jobs (signal gathering tasks). That is, asking the service "Do
I have to reconfigure myself? If yes, with what configuration?” and "Do | have any job to do?
If yes, what job?", respectively. The followed approach for the achievement of this behaviors
is:

e Forthe new configuration retrieval, the service keeps a copy of the sensor configuration

in the database, with a flag indicating if the configuration has been modified since the

SNAP — Snapshot Positioning Service 29

last poll. Every time a sensor connects (asynchronously) to the service, the service
checks if the sensor configuration has been changed by the user since the last sensor
connection. If the flag says that configuration has been changed since the last time the
sensor accessed, that means that the current configuration of the sensor does not match
with the one present in the service database. Then, the new configuration is delivered to
the sensor so it can reconfigure himself. With this approach the dependence of
continuous service-sensor communication is eliminated, since the configuration
synchronization is done in an asynchronous way.

e For the job retrieval, the behavior is achieved by building a FIFO (First In First Out)
queue inside of the service database. Every time the sensor accesses the services, it
checks if there is any job in its queue. If there is, extracts the least recent job, so the jobs
are extracted giving priority to the ones that were firstly introduced. That approach
avoids the sensor to be overloaded with job requests.

Main queries for this set of service capabilities are the sensor registration (7.1.11), used by a

user to register a sensor in the environment:

POST https://hansel.com/snap/api/sensor

the sensor configuration query (7.1.16), used to change sensor capture parameters such as

sampling frequency, frequency shift, format, encoding, etc.:

PUT https://hansel.com/snap/api/configure?sensor=DoeSensor

the update request (7.1.17), responsible for the sensor to remotely update its configuration

parameters and check its corresponding job queue:

GET https://hansel.com/snap/api/update request?sensor=DoeSensor

and the data uploading request (7.1.22), the way a sensor is able to upload the gathered data to

the service for its forwarding to CloudRx.

POST https://hansel.com/snap/api/signal?execution=DoeExecution

3.6.3 GNSS & Cellular snapshot signal processing

GNSS and Cellular signal processing, have as main purposes to compute, on one side, the
position of the SNAP GNSS sensors and on the other side to obtain Cellular measurements

(observables) from real Cellular data. Another objective is to detect and locate possible

30 SNAP — Snapshot Positioning Service

interference sources (jammers) surrounding the sensor network. It also provides to the
hybridization module the necessary data to perform the measurement hybridization. The overall

architecture supporting these services can be seen in Figure 7.

3.6.3.1 GNSS snapshot positioning

GNSS positioning provided by SNAP-G relies on a software receiver running in AWS, the one
responsible of performing all the computationally demanding tasks in the cloud. As stated
before, the cloud GNSS receiver is accessed by the SNAP-G service via a relaying connection,

forwarding all requests for GNSS positioning that arrive to the SNAP service.

The receiver implements a high-sensitivity architecture where the user can make use of long
coherent and non-coherent correlations in order to improve the sensitivity. As snapshot
receiver, it only implements the acquisition stage, and the double-FFT algorithm is used to
perform the code-delay and frequency search (Doppler) in an optimal manner, making
extensive user of FFT operations to ease the implementation in devices already specialized in
this type of computation e.g. wireless communication devices already implementing the FFT
for OFDM signal processing. The GNSS software receiver is compatible with GPS L1/L5 and
Galileo E1C/E5a, and makes use of assistance information based on the prior knowledge of a
coarse position to boost the acquisition computation. The full list of specifications and
functionalities can be found in [29]. The position solution is obtained using a classical WLS
approximation, considering that there is no access to the navigation message thus using the

estimated Doppler frequency [30] for the resolution of the navigation system.

The main request that allows access to this resource is the sensor location request (7.1.18):

GET https://hansel.com/snap/api/g/position?sensor=DoeSensor

3.6.3.2 GNSS snapshot-based interference localization

In addition to the provision of GNSS position fixes, the SNAP-G service is also capable of
detecting the presence of interference signals within the GNSS band and to locate the position
of the emitting source by making use of measurements collected by the sensor network. The
adopted approach assumes that the sensors are not time nor frequency synchronized, so that the
only observations that become meaningful for localization purposes are Received Signal

Strength (RSS) measurements. Non-calibrated RSS-based localization algorithms have

SNAP — Snapshot Positioning Service 31

previously been reported in applications dealing with interference localization in GNSS. This
is the case for instance of [31], where the centroid method is used in the context of
crowdsourcing localization with a population of GNSS sensors. SNAP-G adopts this method

to localize potential detected interferences.

Main request that allows access to this resource is the interference location request (7.1.19),

which accesses to a SNAP-G service and performs the interference location:

POST https://hansel.com/snap/api/g/interference

3.6.3.3 Cellular measurements computation

The SNAP-C module can also process real LTE signals captured from a sensor. The LTE
downlink cell-specific reference signals (CRS) are used to estimate and track the time delay
between the receiver and the detected base stations. The LTE CRS follows the same diagonal
time-frequency pilot allocation pattern that significantly improves the robustness against inter-
cell interference or interference between neighbor BSs with respect to the LTE downlink

synchronization signals, which are overlapped in the same time-frequency resources.

For the module to perform optimally, the SDR sensor must be surrounded by at least one 4G
LTE cellular base station within a radius of one km from the sensor. This prerequisite is derived
from the low sampling frequency and low sensitivity of the low-cost sensors considered for
testing. The BS proximity of 1 km is a good trade-off in urban areas to acquire several BSs (and
at least one BS) due to the sufficient received power that compensates for the losses of the front-
end equipment. If LTE samples are captured with a large sampling frequency and in good
propagations conditions, the cellular base stations can be located at larger distances. LTE signal

processing is based on three main blocks:

e LTE samples loading. The LTE baseband signals are captured by the sensor and loaded
for data processing.

e LTE signal processing. The UAB LTE software receiver processes the snapshots of the
captured LTE downlink signals. This data processing is based on the cell detection,
signal acquisition and signal tracking for each detected BS.

e LTE output generation. The receiver provides as outputs the timing or pseudorange
observables of the tracked BSs, their estimated SNR level and a time-frequency

spectrum of the tracked signals.

32 SNAP — Snapshot Positioning Service

The main request that allows access to this resource is the sensor observables computation
request (7.1.21):

GET https://hansel.com/snap/api/c/observables?sensor=DoeSensor

3.6.4 Cellular position simulation

Due to the Cellular positioning simulator, SNAP-C module can also provide Cellular
positioning. This type of positioning is based on a simulator for the deployment of 4G/5G
cellular networks. The module, given the user position and a network deployment (either
simulated or provided as input), generates downlink TDoA observables as the ones mainly
adopted for positioning in the 4G/5G standard. Having these observables, the localization
engine only requires to know the network synchronization offset between the considered base
stations along with its accurate coordinates to compute the mobile position. These parameters

should be known, and provided as input to the module.

The main request that allows access to this resource is the sensor location request (7.1.18):

GET https://hansel.com/snap/api/c/position?sensor=DoeSensor

3.6.5 GNSS data & simulated Cellular observables hybridization

The SNAP-H modules computes a 3D PVT position with a tightly-coupled hybridization of the
available GNSS and cellular TDoA 4G/5G observables. These are provided by the SNAP-G
and SNAP-C subservices respectively, making use of the built-in simulator of 4G/5G
deployment of BSs in the case of SNAP-C. Given the use of 4G/5G TDoA observables, the
reference transmission time of the BSs can be independent of the GNSS reference time. Again,

the classical WLS solution is considered to solve this positioning problem.

The main request that allows access to this resource is the sensor location request (7.1.18):

GET https://hansel.com/snap/api/h/position?sensor=DoeSensor

3.6.6 Data management

Main sources of data generation in the SNAP service are the samples files, both GNSS and
Cellular, and ancillary information for the results obtainment, such as RINEX files or base

SNAP — Snapshot Positioning Service 33

station position dictionary (.kml files). Since a huge amount of data is generated on normal
usage, data management is an essential task for SNAP service. For this reason, a tools or ways

for accessing and managing that data is mandatory.

Main SNAP services that allow data managing are the results storage query (7.1.26), performed

either by CloudRx or the inner SNAP computation modules:

POST https://hansel.com/snap/api/results?execution=DoeExecution

The results retrieval query (7.1.27), able to output total or partial information about the results

stored in database:

GET https://hansel.com/snap/api/results?sensor=DoeSensor

and the data deletion query (7.1.28), which allows the system administrators to manage the

service storage and bookkeeping-related activities:

DELETE https://hansel.com/snap/api/results?sensor=DoeSensor

3.7 SNAP high-level source code structure

SNAP API service, created from scratch, has now over five thousand (5000) code lines
considering just the architectural source code, not the functional one. The source code is written
in the image of the architecture, divided first in the two main components of the API (database
and subservices) and then the subservices are divided into the general functionalities, common
to all three different blocks, and the specific functionalities of each subservice, giving place file
structure shown in Figure 13. The code is written following Python v3 style constraints [32], and
takes as basis the common software file structure, tailored to suit the specific service needs,
such as the presence of functional code (MATLAB compiled code). It is important to note that
this code is also responsible for the interactions with the functional code. That is, to make the
corresponding calls either to the compiled MATLAB modules or to CloudRx. Then, the API

retrieves the module's results and stores it into de database.

34 - I L ,

[T SNAP
I* snap_api
7 Compiled « contains compilables with the functional code (written in MATLAB)
[7 Migrations « contains all the information about the database structure
[7 Resources
[Helpers + contains support functions
[Mailers « contains functions to enable e-mail sending capabilities
[7 Requests
(= ¢] « contains SNAP-G specific requests
@ c «— contains SNAP-C specific requests
@ H « contains SNAP-H specific requests
* <files>.py « common requests for all subservices
* <files>.py « files containing metadata about API requests
= <files>.py « basic files for the API to run
* Dockerfile « Docker configuration file
* Docker-compose.yml « Configuration file with subservices — database interconnection

Figure 13. SNAP service source code structure.

As an additional feature to the developed software, the service API has been fully documented

regarding all the available queries, necessary parameters, accepted values and examples.

4 Service validation

This section intends to demonstrate and validate the correct behavior of the developed service
by means of a practical example. The practical example is going to be made from an operator
point of view, and it is going to consist of launching some requests to the SNAP environment
and see how the service reacts. This example departs from a registered and validated user with
already registered and configurated sensors. To see more information about user
registration/validation and sensor registration/configuration, see Sections 7.1.1, 7.1.5, 7.1.11
and 7.1.16, respectively. Important to note that the web environment that is shown in the
following figures was developed by one of the consortium partners, not by the student. Web
environment is nothing but a visual layer on top on the API responsible for the API request

triggers via a user-friendly interface.

Let's assume that the considered user, John Doe, with access token "I _Pa5S" and ID 1, has one
registered Hybrid (H) sensor, with Name "DoeSensor” and ID 1, located in the roof of his car.
Let's also assume that the sensor is in standby mode i.e. listening its corresponding job queue,

waiting for a job to come (Figure 15, left).

John Doe has parked in a very big, outdoor parking and does not remember where his car is.
He takes out his mobile phone, enters the HANSEL environment, SNAP service, selects the
option to locate his sensor (Figure 14) and sets up the corresponding parameters. As soon as
John Doe sends his request via the environment, which triggers the corresponding API request
(see 7.1.18 for more information) he is informed about the ID for the execution he launched
job is created in the queue for his hybrid sensor, which as the same time triggers a SNAP-G and
SNAP-C job, as can be seen in Figure 16. The sensor detects the jobs and starts gathering GNSS
signal (Figure 15, right) while, in parallel, a Cellular simulation is running inside the SNAP
service (Figure 17). Once the sensor finishes gathering the GNSS raw measurements, sends
them to SNAP API using the corresponding query, and SNAP-G relays the samples to CloudRx
for its processing (Figure 18). Eventually, both executions finish and SNAP-H hybridization
algorithm is triggered (Figure 19). As SNAP-H module finishes its job (Figure 20), it is possible
for John to see the results of the hybridization i.e. where his car is (Figure 21).

35

HANSEL® 2 aperez

Home / SNAP Sensor Position
4 Dashboard
SERVICE VISUALIZATION Visualization Sensors Actions Results Users
Lu VIZ

Action ~
= WALS
i=CcAS Position Request v
< CAC g

List of SNAP Sensors A X
® POS

10 4 records per page Search:
@ GCs

[+] - Description Type User Actions

<4 SNAP
<£CPs 1 DoeSensor H John Doe
FILES 2 Test sensor 2 G Jane Doe @ Position Request
& Downloads

3 Sensor test CL Jane Doe & Get PVT/Simulate scenario

executions to launch

"configuratio

"Not modified",

"next_execution": 0

executions to launch

"configuratio

"Not modified",

"next_execution": 0

executions to launch

"configuration"
"next_execution": @

"Not modifie

executions to launch
Figure 15. Left: sensor polling for new executions. Right: execution detected, signal gathering and deliver to SNAP service for its forwarding.

Figure 14. Sensor position request.

Mosndsinnadoon 1=+ ~odified",
“next_execution 4100
}

New execution to launch
AIRSPY
Starting Capture...

airspy_rx -d @ -a @ -b 1 ~f 1575.42 ~v 14 -m 14 -1 14 -n 600000 -r data/Sensor_59-20200129161917RAW.dat

airspy_rx v1.0.5 23 April 2016
serial_number_64bits -s 0x0000000000000000
packing -p @

frequency _MHz -f 1575.420000MHz (1575420000Hz)
sample_type ~t 2

biast -b 1

vga_gain -v 14

mixer_gain -m 14

lna_gain -1 14

num_samples -n 600000 (OM)

sample_rate -a @ (6.000000 MSPS IQ)

Device Serial Number: @x558466DC2EQF4958
Stop with Ctrl-C

Streaming at 6.000 MSPS

User cancel, exiting...
Total time: 0.9576 s

dona
GNSS Samples File: data/Sensor_59-20200129161917RAW.dat
{

}

“message": "Binary data correctly sent'

Validation

37

HANSEL®

A Dashboard

SERVICE VISUALIZATION

Lt V|2
= WALS
i=CAS
4 CAC
$FPOS
& GGCS
¥ SNAP
< CPS

FILES

&, Downloads

SETTINGS

4 Dashboard

SERVICE VISUALIZATION

14 VIZ
= WALS

i=S CAS

4 CAC

9 POS

L ele]

-« SNAP
<CPS

FILES

& Downloads

SETTINGS

Home / SNAP / Sensor Results

Visualization Sensors Actions.

List of Results

10 % records per page
Execution ID

2329

2330

2331

Search Execution ID

Showing 1,401 to 1,410 of 2,934 entries

Home / SNAP / Sensor Results

Visualization Sensors Actions

List of Results

10 + records per page

Execution ID

2329

2330

2331

Search Execution |D

Showing 1,401 to 1,410 of 2,934 entries

Users

Exec. State

in_queue

Search Exec. State

Type
H
G
CL
Search Type

+— Previous 1

Sensor ID

1 (DoeSensor)

1 (DoeSensor)

1 (DoeSensor)

Search Sensor ID

142 . 204

Figure 16. Jobs triggered by a hybrid position request.

Users

Exec. State

Search Exec. State

Type

G

cL

Search Type

Pravious 1

Sensor ID

1 (DoeSensor)

1 (DoeSensor)

1 (DoeSensor)

Search Sensor ID

142 - 294

User ID

1 (John Doe)

1 (John Doe)

1 (John Doe)

Search User ID

User ID
1 (John Doe)
1 (John Doe)
1 (John Doe)
Search User ID

Figure 17. Cellular positioning simulator running while hybrid sensor captures GNSS signal.

Search:

See results

See results

See results

Search Actions

Search:

See results

See results

See results

Search Actions

X aperez -

Actions

38

Validation

HANSEL®

4@ Dashboard

SERVICE VISUALIZATION

Lst VIZ
= WALS

iIZCAS

<% CPS

FILES

& Downloads

SETTINGS

Dashboard
SERVICE VISUALIZATION
Lt V|2

= WALS
i=CAS

& CAC
®FOS
®Gecs
 SNAP

< CPS

FILES

& Downloads

SETTINGS

Home / SNAP / Sensor Results
Visualization Sensors Actions
List of Results

10 4+ records per page

Execution ID

2329

2330

2331

Search Execution ID

Showing 1,401 to 1,410 of 2,934 entries

Figure 18. GNSS position computation started by external service (CloudRx).

Home / SNAP / Sensor Results
Visualization Sensors Actions
List of Results
10 4 records per page
Execution ID
2329
2330
2331

Search Execution ID

Showing 1,401 to 1,410 of 2,934 entries

Figure 19. GNSS computation and Cellular computation finished. Hybridization of the measurements started as consequence.

Results Users

“ Exec. State

f i

Search Exec. State

Results Users

- Exec. State

EIEE

Search Exec. State

Previous

Previous

Type

1

cL

Search Type

140

140

141

141

Sensor ID

1 (DoeSensor)

1 {DoeSensor)

1 (DoeSensor)

Search Sensor ID

142 294

Sensor ID
1 (DoeSensor)
1 (DoeSensor)
1 (DoeSensor)
search Sensor |
142 294

Next

Next

User ID

1 {John Dos)

1 {John Doe)

1 (John Doe)

Search User ID

User ID

1 {John Doe)

1 (John Doe)

1 (John Dos)

Search User ID

Search:

Actions

See results

See results

See results

Search Actions

Search:

Actions

See results

See results

See results

Validation

39

Figure 21. Hybrid position computation results.

HANSEL® . Raperez -
& Home / SNAP / Sensor Results
SERVICE VISUALIZATION Visualization ~ Sensors Actions Results = Users
L viZ

List of Results
2 WALS J |
=CAS W"'P"W' Search:
% CAC Execution ID 4 Exec. State : Type s Sensor ID : User ID B
9POS 2329 [done | H 1 (DoeSensor) 1 (John Doe) Seeresults
@acs i | | e

2330 G 1 (DoeSensor) 1 (John Doe) Seeresults |
4 SNAP ! | |
cen 2331 cL 1 (DoeSensor) 1 (John Doe) See results
FiLEs [Search Execution ID || [Search Exec. State | | [SearchType [Search Sensor ID [Search User ID Search Actions]
ki Bownioade Showing 1,401 to0 1,410 of 2,934 entries v)

Figure 20. Hybridization finished. Results now available for the user to watch.
*WAE Execution ID - 2329
= cas Variable Description Value Unit
SCAC sensor_pos Sensor position latitude, longitude and height coordinates [41.500942, 2.113718, 40.62] °om ‘
hdop Horizontal Dilution of Precision 1.3333

o POS |
®acs error_var Cellular observables error variances 25.5749 m2
4 SNAP
4cPs
FILES
& Downloads
SETTINGS
& Users
£ Service Settings
£ Testbed Settings
Logout

5 Conclusions and future lines

The present work had the main objective of creating a service capable of managing, processing

and storing the data generated by a distributed sensor network for the specific needs of

positioning and interference localization in the context of Smart Cities. The developed software,

actually functional and running in a real-life Testbed server, meets all the requirements defined

by the end user (defined in Section 3), in this case the European Space Agency through the
work statement of the ITT with reference AO/1-9494/18/NL/CRS. From all the work carried

out since the beginning of the project (February 2019), the following conclusions can be

extracted:

1.

A fully functional service has been added to the HANSEL Testbed, thus providing to
the server all the initially expected functionalities.

A modular an atomized service has been achieved, so any update or modification to any
particular module of the service can be easily done.

A homogeneous interface, achieved by means of the RESTful design methods, led to an
easy-to-access API, facilitating the consortium partners work in terms of integration
while also providing a simple access for any external entity.

Related with the previous point, the created documentation is also a breaking point in
terms of accessibility for any user or entity unrelated to the project, who now has
available all the guidelines and necessary examples to successfully use the service.
The externalization of all the compute-intensive processes into a cloud platform is a step
forward in the right direction for sustainable, energy-efficient devices as compared with
conventional technologies.

The previously mentioned computation externalization in addition to the encapsulation
of all the service logic thanks to Docker has led to a lightweight, portable software, thus

highly facilitating the deployment in any kind of platform and environment.

Moreover, while the development of the platform is already finished, several future lines are

still on the table to consider and further develop:

1.

As software development is known to be an iterative process, adjustments in the service
are going to be necessary as new issues appear during the testing phase.
Once the project finishes, further API interactions/functionalities are planned to be

developed, such as device calibration, which is now done manually. That would bring

40

Conclusions 41

to the platform even more versatility when it comes to the user, providing a one-in-all
service when it comes to device management.

3. As the development of the API has grouped all the logic in one place (the API itself),
now a dedicated, proprietary web interface could be developed without further problem,
since all the necessary data management and checks are done in the API core.

4. All the present submodules present inside the service (GNSS positioning service,
Cellular positioning service, Hybrid algorithm and interference detection and
localization) are planned to be improved, thus ending up providing a better service to

the user while having to perform little or no modification to the service architecture.

6 Bibliography

[1] "Sustainable cities and communities: Facts and figures," United Nations, 2015.
[Online]. Available: https://www.un.org/sustainabledevelopment/cities/.

[2] "Goal 11: Sustainable cities and communities,” United Nations Development
Programme, 2015. [Online]. Available:
https://www.undp.org/content/undp/en/home/sustainable-development-goals/goal-11-
sustainable-cities-and-communities.html.

[3] "Sustainable Development Goal 11: on Earth Observation and GNSS data support,”
United Nations: Office for Outer Space Affairs, 2018. [Online]. Available:
https://www.unoosa.org/oosa/en/ourwork/space4sdgs/sdgl1.html.

[4] "ITT - AO9494: Navigation and GNSS in Smart Cities: Testbed Concept Definition,"
European Space Agency, 16 July 2018. [Online]. Available:
http://www?2.rosa.ro/index.php/en/esa/oferte-furnizori/3003-navigation-and-gnss-in-
smart-cities-testbed-concept-definition-expro.

[5] "UAB Smart and Sustainable Campus Living lab," European Network of Living Labs
(ENoLL), 2014. [Online]. Available: https://enoll.org/network/living-
labs/?livinglab=uab-smart-and-sustainable-campus-living-lab#description.

[6] J. A. Garcia-Molina and J. M. Parro-Jimenez, "Cloud-based GNSS Processing of
Distributed Receivers of Opportunity: Techniques, Applications and Data-collection
Strategies," October 2017.

[7] J. A.d. Peral-Rosado, R. Raulefs, J. A. Lépez-Salcedo and G. Seco-Granados, "Survey
of Cellular Mobile Radio Localization Methods: From 1G to 5G," 2018.

[8] FCC Record; Volume 20, No. 3, February 17 - March 20, 2015.

[9] R. D. Taranto, S. Muppirisetty, R. Raulefs, D. T. M. Slock, T. Svensson and H.
Wymeersh, "Location-Aware Communications for 5G Networks: How location
information can improve scalability, latency, and robustness of 5G," November 2014.

[10] V. Honkavirta, T. Peréld, S. Ali-Loytty and R. Piche, "A comparative survey of WLAN
location fingerprinting methods,™ April 2009.

[11] "Docker main page,” Docker, [Online]. Available: https://www.docker.com.
[12] "REST API guidelines,” [Online]. Available: https://restfulapi.net.

[13] "Application Programming Interface article in Wikipedia," [Online]. Available:
https://en.wikipedia.org/wiki/Application_programming_interface.

[14] "RESTful API Methods," [Online]. Available: https://restful-api-
design.readthedocs.io/en/latest/methods.html.

[15] "JSON format main page,” [Online]. Available: https://www.json.org/json-en.html.
[16] "OAuth main page,” [Online]. Available: https://oauth.net.

[17] "Python main page,” [Online]. Available: https://www.python.org/.

[18] "Flask main page,” [Online]. Available: https://www.palletsprojects.com/p/flask/.

[19] "Requests: HTTP for Humans, main page,” [Online]. Available:
https://requests.readthedocs.io/en/master/.

[20] "Object-Relational Mapping article on Wikipedia," [Online]. Available:
https://en.wikipedia.org/wiki/Object-relational_mapping.

[21] "Psycopg main page,” [Online]. Available: https://pypi.org/project/psycopg?2/.

42

43 Bibliography

[22] "SQLAIchemy main page," [Online]. Available: https://www.sglalchemy.org.

[23] "Marshmallow main page,” [Online]. Available:
https://marshmallow.readthedocs.io/en/stable/.

[24] "Numpy main page,” [Online]. Available: https://numpy.org.

[25] "PostgreSQL main page,” PostgreSQL, [Online]. Available: https://www.postgresgl.org.

[26] "Amazon Web Services main page,” Amazon, [Online]. Available:
https://aws.amazon.com.

[27] "CloudGNSSrx main page,” SPCOMNAY group - Universitat Autonoma de Barcelona,
[Online]. Available: http://www.cloudgnssrx.com.

[28] "GNSS User Technology Report, Issue 2," European GNSS Agency (GSA), 2018.
[Online]. Available:
https://www.gsa.europa.eu/system/files/reports/gnss_user_tech_report_2018.pdf.

[29] "CloudGNSSrx documentation,” SPCOMNAYV group - Universitat Autonoma de
Barcelona, [Online]. Available: http://www.gloudgnssrx.com/documentation/.

[30] B. Peterson, R. Hartnett and G. Ottman, "GPS Receiver Structures for the Urban
Canyon".

[31] D. Borio, C. Gioia, A. Stern, F. Dimc and G. Baldini, "Jammer Localization: from
Crowdsourcing to Synthetic Detection,” 2016.

[32] "Python Style Constraints,” [Online]. Available: https://www.python.org/dev/peps/pep-
0008/.

7 Appendices

7.1 Appendix 1: API action description

7.1.1 User creation

Relative URL | /user

Action Adds a new user to SNAP service
Method POST
Access External (can be used by anyone)

Authorization Not needed

Querystring - -

Request body | JSON (application/json)

Returns 201 CREATED

400 BAD REQUEST

422 UNPROCESSABLE ENTITY

Use case Entity wants to create an account in the SNAP service

Example https://hansel.rokubun.cat/snap/api/user

The request body includes the information of the user to be registered, following the structure:

{
"email": "<email>",
"name": "<name>",
"password": "<password>",
"organization": "<organization to which the user belongs>",
"purpose": "<purpose of the user>"

An example of request body:

{
"email": "user@test.com",
"name": "User",
"password": "sample passwordl23",
"organization": "ESA",
"purpose": "Testing",

44

Appendices 45

The query will return, upon successful status code, a token that will be used to access the

platform upon validation:

{

"token": "<token>"

}

An example of JSON response:

{
"token": "DSTX1AvboFSyOyxVRgjV2XHbFh0dSfueNEfMVJIDR4OpPEs—

QY50062vob 05yvG7Gsp HUQZp3XXINt8cMOzMLMUlLFySFftOX4TgpVGLALWBuUSZB
5tAgqchFFgdwwoig"
}

7.1.2 User deletion

Relative URL | /user

Action Deletes a user from SNAP service
Method DELETE
Access External (can be used by anyone)

Authorization | Valid access token and admin privileges needed

Querystring user = <user_email> The user to be deleted
Request body -
Returns 200 OK

400 BAD REQUEST

404 NOT FOUND

Use case A HANSEL administrator wants to delete a user from SNAP service; a
SNAP user wants to delete his account

Example https://hansel.rokubun.cat/snap/api/user?user=em
ail@test.com

46 Appendices

7.1.3 User information obtainment

Relative URL | /user

Action Gets the users from SNAP database.
— Admin: obtains all the users from the database.

— Normal user: obtains the information of the requesting user.

Method GET

Access External (can be used by anyone)

Authorization | Valid access token needed.

Querystring (optional) (admin) Obtains the information of the
user=<user_email> requested user.

Request body -

Returns 200 OK & JSON (application/json)

400 BAD REQUEST

401 UNAUTHORIZED

404 NOT FOUND

Use case Admin wants to obtain user information; user wants to know his
information

Example
https://hansel.rokubun.cat/snap/api/user

The query will return, upon successful status code, a response based on the permissions of the
requesting user, following the structures:

e User is admin, no querystring

"users": |
{
"email": "<email 1>",
"name": "<name 1>",
"organization": "<organization to which the user 1
belongs>",
"purpose": "<purpose of the user 1>",
"account type": "<account type>",

"validated": <true or false>,
"admin": <true or false>,
"id": <user id>

y

Appendices

belongs>",

"email": "<email N>",
"name": "<name N >",
"organization": "<organization to which the user

"purpose": "<purpose of the user N>",
"account type": "<account type>",
"validated": <true or false>,
"admin": <true or false>,

"id": <user id>

e User is not admin, no querystring, or user is admin with querystring

"user":

belongs>",

"email": "<email>",
"name": "<name>",
"organization": "<organization to which the user

"purpose": "<purpose of the user>",
"account type": "<account type>",
"validated": <true or false>,
"admin": <true or false>,

"id": <user id>

Examples of request JSON response:

e User is admin, no querystring

"users":

[

"email": "user l@email.com",
"name": "User N1",
"organization": "UAB",
"purpose": "Testing",
"account type": "pro",
"validated": true,

"admin": true,

"id": 1

"email": "user 2@email.com",
"name": "Validation user",
"organization": "ESA",
"purpose": "Validation",

47

48 Appendices

"account type": "basic",
"validated": false,
"admin": false,

"id": 2

e User is not admin, no querystring, or user is admin with querystring

"user":

"email": "user 2@email.com",
"name": "Validation user",
"organization": "ESA",
"purpose": "Validation",
"account type": "basic",
"validated": false,

"admin": false,

"id": 2

7.1.4 Authorization token obtainment

Relative URL | /token

Action Delivers an authorization token to the requesting user.
Method GET
Access External (can be used by anyone)

Authorization | User password needed.

Querystring - -

Request body | JSON (application/json)

Returns 200 OK & JSON (application/json)

400 BAD REQUEST

401 UNAUTHORIZED

Use case SNAP user wants to obtain a new authentication token to interact with the
API

Example https://hansel.rokubun.cat/snap/api/token

Appendices 49

The request information includes the information of the user, following the structure:

{

"email": "<email>",
"password": "<password>"

}

The query will return, upon successful status code, a JSON-response containing the token

{

"token": "<token>"

}

An example of request body:

{

"email": "user@test.com",
"password": "sample passwordl23"

}

An example of JSON response:

{
"token": "hOLDg7FHFvPeoiRRZktXe -

8w _GULBHBVkh25b54zJBEZiSPdn0 NzOhIRtEDtQPZ£fdzO-
HU4jnSVR6v3pLJf fuR6MRN2k1B8dHt-QpW60z8U7gQCEF3fdjcpm4dkgO0"

}

7.1.5 User validation

Relative URL | /validate?user=<user email>

Action Validates a user
Method POST
Access External (can be used by anyone)

Authorization | Valid access token and admin privileges needed

Querystring user=<user_email> The user to validate
Request body -
Returns 200 OK

400 BAD REQUEST

50 Appendices
401 UNAUTHORIZED
404 NOT FOUND
Use case SNAP administrators want to validate a user so he can interact with the
platform
Example https://hansel.rokubun.cat/snap/api/validate?user
=email@test.com

Upon successful status code, the introduced user will be validated to interact with the service

by user the defined queries.

7.1.6 User invalidation

Relative URL | /validate?user=<user_ email>
Action Invalidates an already validated user
Method DELETE

Access External (can be used by anyone)

Authorization

Valid access token and admin privileges needed

Querystring user=<user_email> The user to invalidate
Request body -
Returns 200 OK
400 BAD REQUEST
401 UNAUTHORIZED
404 NOT FOUND
Use case Platform administrators want to invalidate a user to prevent him from
accessing the platform.
Example https://hansel.rokubun.cat/snap/api/validate?user

=email@test.com

Upon successful status code, the introduced user will be invalidated, thus will not be allowed
of using the SNAP API queries.

Appendices 51

7.1.7 User account upgrade

Relative URL /upgrade?user=<user_email>

Action Upgrades a user account from 'basic' to 'pro’
Method POST
Access External (can be used by anyone)

Authorization | Valid access token and admin privileges needed

Querystring user=<user_email> The user to upgrade
Request body -
Returns 200 OK

400 BAD REQUEST

401 UNAUTHORIZED

404 NOT FOUND

Use case Administrator wants to upgrade a user. Users with 'pro’ accounts have
access to better machines and faster processing of the data.

Example https://hansel.rokubun.cat/snap/api/upgrade?user=
email@test.com

Upon successful status code, the introduced user will be upgraded, so could make use of the

characteristics of a pro account.

7.1.8 User account downgrade

Relative URL /upgrade ?user=<user_email>

Action Downgrades a user account from 'pro’ to ‘basic’
Method DELETE
Access External (can be used by anyone)

Authorization | Valid access token and admin privileges needed

Querystring user=<user_email> The user to downgrade

Request body -

52 Appendices

Returns 200 OK

400 BAD REQUEST

401 UNAUTHORIZED

404 NOT FOUND

Use case Administrator wants to revoke a 'pro’ account.

Example https://hansel.rokubun.cat/snap/api/upgrade?user=
email@test.com

Upon successful status code, the introduced user will be downgraded, so will be no longer

capable of using of the characteristics of a pro account.

7.1.9 Give a user account admin privileges

Relative URL | /admin?user=<user_email>

Action Promotes a user account to admin.
Method POST
Access External (can be used by anyone)

Authorization | Valid access token and admin privileges needed

Querystring user=<user_email> The user to promote to admin
Request body -
Returns 200 OK

400 BAD REQUEST

401 UNAUTHORIZED

404 NOT FOUND

Use case Administrator wants to promote a user account to admin account.

Example https://hansel.rokubun.cat/snap/api/admin?user=em
ail@test.com

Upon successful status code, the specified user has administrator permissions and capabilities.

Appendices 53

7.1.10 Revoke privileges to an admin account

Relative URL | /admin?user=<user_email>

Action Revokes admin privileges to an administrator
Method DELETE
Access External (can be used by anyone)

Authorization | Valid access token and admin privileges needed

Querystring user=<user_email> The admin user to downgrade
Request body -
Returns 200 OK

400 BAD REQUEST

401 UNAUTHORIZED

404 NOT FOUND

Use case Administrator wants to revoke the administrator privileges to an admin
account.
Example https://hansel.rokubun.cat/snap/api/admin?user=em

ail@test.com

Upon successful status code, the introduced user will no longer have administrator permissions

and capabilities.

7.1.11 Sensor register

Relative URL | /sensor

Action Adds a new sensor to the database that belongs to the user that sent the
request and creates a default configuration for the registered sensor

Method POST

Access External (can be used by anyone)

Authorization | Valid access token needed

Querystring - -

54 Appendices

Request body | JSON (application/json)

Returns 201 CREATED & JSON (application/json)

400 BAD REQUEST

401 UNAUTHORIZED

404 NOT FOUND

Use case User wants to register one of their sensors to the platform

Example https://hansel.rokubun.cat/snap/api/sensor

The request information includes the information of the sensor that wants to be registered,
following the structure:

{
"description": "<sensor description>",
"type": <sensor type>

}

The query will return, upon successful status code, the basic information of the registered
sensor, following the structure:

{

"sensor:" {
"id": <sensor id>,
"user id": <user id>,
"description": <sensor description>,
"type": <sensor type>,
"last position": <last position known for the
sensor>,

"creation date": "<creation date of the sensor>"

An example of request body:
{

"description": "Roof sensor",
"type" . "G"
}

An example of JSON response:
{

"sensor": {
"id": 2,
"user id": 7,
"description": "Roof sensor",
"type": "G",
"last position": [41.99635, 2.112547, 140],

Appendices 55
"creation date": "2019-10-01T10:19:58.00+00:00"
}
}
7.1.12 Sensor information modification
Relative URL | /sensor?sensor=<sensor_id>
Action Modifies the description of a given sensor
Method PUT
Access External (can be used by anyone)

Authorization

Valid access token needed, user must be the owner of the sensor to update

Querystring

sensor=<sensor id>

The sensor to be updated

Request body | JSON (application/json)
Returns 200 OK & JSON (application/json)
400 BAD REQUEST
401 UNAUTHORIZED
404 NOT FOUND
Use case User wants edit the information of one sensor
Example https://hansel.rokubun.cat/snap/api/sensor

The request information includes the information of the sensor that wants to updated, following

the structure:

{

"description":

}

"<new sensor description>"

The query will return, upon successful status code, the updated information of the registered

sensor, following the structure:

{

"id": <sensor id>,

"user id

"description":

"type" .

": <user id>

"<sensor type>",

"<new sensor description>",

56 Appendices

"last position": <last position known for the sensor>,
"creation date": <creation date of the sensor>

}

An example of request body:
{

"description": "Roof sensor moved to lab"

}

An example of JSON response:

{

"id": 2,
"user id": 7,
"description": "Roof sensor moved to lab",
"type": "G",
"last position": [41.99635, 2.112547, 140],
"creation date": "2019-10-01T10:19:58.00+00:00"
}
7.1.13 Sensor deletion

Relative URL /sensor?sensor=<sensor_id>

Action Deletes a given sensor
Method DELETE
Access External (can be used by anyone)

Authorization | Valid access token needed, user must be the owner of the sensor to delete
or have admin privileges

Querystring sensor=<sensor id> The sensor to be deleted
Request body -
Returns 200 OK

400 BAD REQUEST

401 UNAUTHORIZED

404 NOT FOUND

Use case User wants edit the information of one sensor

Example https://hansel.rokubun.cat/snap/api/sensor

Appendices 57

7.1.14 Sensor information obtainment

Relative URL | /sensor

Action Gets present sensors in the database and its basic information.
— Admin: obtains all the sensors in the database.

— Normal user: obtains only his sensors.

Method GET

Access External (can be used by anyone)

Authorization | Valid access token needed

Querystring (optional) (admin) user=<user_email> | Returns the sensors of the
specified user.

(optional) sensor=<sensor_id> - Admin: returns the specified
sensor.

- Normal user: returns the
specified sensor if belongs to
the user who made the request.

Request body -
Returns 200 OK & JSON (application/json)
400 BAD REQUEST
401 UNAUTHORIZED
404 NOT FOUND
Use case Administrator wants to see registered sensors, user wants to see his
registered sensors
Example https://hansel.rokubun.cat/snap/api/sensor

https://hansel.rokubun.cat/snap/api/sensor?user=emaild@
test.com
https://hansel.rokubun.cat/snap/api/sensor?sensor=13

The query will return, upon successful status code, the requested information based on the
performed query, following the structure:

e Response for no querystring or querystring user=<user_email>

{

"sensors": [

58 Appendices

"id": <sensor 1 id>,

"user id": <user id>,

"description": "<sensor 1 description>",
"type": "<sensor 1 type>",

"last position": <last position known>,
"creation date": "<creation date of sensor 1>"

I

"id": <sensor N id>,

"user id": <user id>,

"description": "<sensor N description>",
"type": "<sensor N type>",

"last position": <last position known>,
"creation date": "<creation date of sensor N>"

e Response for querystring sensor=<sensor_id>

"sensor": {
"id": <sensor id>,
"user id": <user id>,
"description": "<sensor description>",
"type": "<sensor type>",
"last position": <last position known>,
"creation date": "<creation date of sensor>"

Examples of JSON response:

e Example response for no querystring or querystring user=<user_email>:

"sensors": [

TigWs 2,

"user id": 7,

"description": "Roof sensor moved to lab",
"type": "G",

"last position": [41.99635, 2.112547, 140],
"creation date": "2019-10-01T10:19:58.00+00:00"

"id": 3,

"user id": 7,

"description": "Roof sensor",

"type": "CL"

"last position": [41.99436, 2.11225, 160],

Appendices

59

"creation date": "2019-10-02T20:19:58.00+00:00"
I
{

"id": 4,

"user id": 7,

"description": "Parking sensor",

"type": "H",

"last position": [41.98456, 2.11225, 60]

"creation date": "2019-11-29T20:09:47.00+00:00"

e Example response for querystring sensor=<sensor_id>:

"sensor": {
nidr. 2,
"user id": 7,
"description": "Roof sensor moved to lab",
"type": "G",
"last position": [41.99635, 2.112547, 140],
"creation date": "2019-10-01T10:19:58.00+00:00"
%o
}
7.1.15 Sensor configuration obtainment
Relative URL | /g/configuration
/c/configuration
/h/configuration
Action Gets present sensor configurations in the database.
— Admin: obtains all the sensor configurations in the database.
— Normal user: returns all the configurations of the requesting
user.
Method GET
Access External (can be used by anyone)

Authorization

Valid access token needed

Querystring

sensor=<sensor_id> Returns the specified sensor configuration. An
admin can request for the configuration of any
sensor, while a normal user can only ask about
its sensors

Request body

60 Appendices

Returns 200 OK & JSON (application/json)

400 BAD REQUEST

401 UNAUTHORIZED

404 NOT FOUND

Use case Administrator wants to know the configuration of the registered sensors,
an user wants to know the configuration of his sensors

Example https://hansel.rokubun.cat/snap/api/g/configure
https://hansel.rokubun.cat/snap/api/c/configure
https://hansel.rokubun.cat/snap/api/h/configure
https://hansel.rokubun.cat/snap/api/g/configure?s
ensor=13
https://hansel.rokubun.cat/snap/api/c/configure?s
ensor=14
https://hansel.rokubun.cat/snap/api/h/configure?s
ensor=15

The query will return, upon successful status code, the requested configuration, following the

structure:

e Response JSON for no querystring:

"configurations": [

{

"sensor id": <sensor 1 id>,

"<conf parameter 1>": "<parameter 1
value>",

"<conf parameter N>": "<parameter N
value>"

by

{

"sensor id": <sensor N id>,

"<conf parameter 1>": <parameter 1
value>,

"<conf parameter N>": <parameter N
value>

e Response JSON for sensor=<sensor_id>

Appendices

"configuration":

value>,

value>

Examples of JSON responses:

{

"sensor id": <sensor id>,
"<conf parameter 1>": <parameter

"<conf parameter N>": <parameter

e Example of JSON response for no querystring: (/g, /h)

"configurations":

[

{
"sensor id": 2,
"ion": false,
"sampling freq": 2.8,
"bandwidth": 6.0,
"intermediate freq": 0.6,
"quantization": 1,
"format": "IQ"
"encoding": "SIGN",
"delay": 10,
"signal length": 100,
"update period": 1,

by

{

"sensor id": 7,

"ion": false,

"sampling freg": 2.6,
"bandwidth": 2.8,
"intermediate freq": 1.06,

"quantization": 16,
"format": "IQ",
"encoding": "INT",
"delay": 0,

"signal length": 20,
"update period": 5.0

e Example of JSON response for sensor=<sensor_id> (/g, /h)

"configuration":

{

61

62 Appendices

"sensor id": 2,
"ion": false,
"sampling freq": 2.8,
"bandwidth": 6.0,
"intermediate freq": 0.6,
"quantization": 1,
"format": "IQ"
"encoding": "SIGN",
"delay": 10,

"signal length": 100,
"update period": 1.0,

e Example of JSON response for sensor=<sensor_id> (/c)

"configuration": {
"sensor id": 13,
"sampling freq": 2.8,
"quantization": 1,
"format": "IQ",
"encoding": "SIGN",
"update period": 1.0,
}

Configuration parameters of the sensors can be seen in Appendix 2, Table 2 for GNSS sensors,

Table 5 for Cellular sensors and Table 11 for Hybrid sensors.

7.1.16 Sensor configuration modification

Relative URL | /g/configuration?sensor=<sensor id>
/c/configuration?sensor=<sensor_id>
/h/configuration?sensor=<sensor id>

Action Modifies a sensor configuration if the sensor belongs to the requesting
user.

Method PUT

Access External (can be used by anyone)

Authorization | Valid access token needed, the specified sensor must belong to the
requesting user.

Querystring sensor=<sensor_id> | ID of the sensor whose configuration is going to
be changed.

Appendices 63

Request body | JSON (application/json)

Returns 200 OK

400 BAD REQUEST

401 UNAUTHORIZED

404 NOT FOUND

Use case User wants to change the configuration of one of his sensors

Example https://hansel.rokubun.cat/snap/api/g/configure?s
ensor=13
https://hansel.rokubun.cat/snap/api/c/configure?s
ensor=14

https://hansel.rokubun.cat/snap/api/h/configure?s
ensor=15

The request information includes the values of the specific parameters that want to be changed

for a given sensor, following the structure:

{

"<parameter 1 name>": "<new parameter 1 value>",

"<parameter N name>": "<new parameter N value>"

Configuration parameters of the sensors that it is possible to modify can be seen in Appendix
2, Table 2 for GNSS sensors, Table 5 for Cellular sensors and Table 11 for Hybrid sensors.

An example of request body:

{
"bandwidth": 3.5,
"intermediate freq": 3.056,
"delay": 15

64 Appendices

7.1.17 Sensor configuration update

Relative URL | /g/update request?sensor=<sensor id>
/c/update request?sensor=<sensor id>
/h/update request?sensor=<sensor id>

Action Delivers to the specified sensor:

1. New configuration if available

2. Next execution to process
Handles the periodical requests coming from the GNSS sensors. This
action is necessary because the communication between the SNAP
service and the GNSS sensor must be initiated by the latter.

Method GET

Access Internal (only accessible to sensors)

Authorization | Valid token needed, the sensor must belong to the requesting user

Querystring sensor=<sensor_id> | The sensor checking if there is new configuration
and/or new execution to process.
Request body -
Returns 200 OK & JSON (application/json)
400 BAD REQUEST
401 UNAUTHORIZED
404 NOT FOUND
Use case Sensor wants to know if their user has changed its configuration and if
there is any new execution to be launched
Example https://hansel.rokubun.cat/snap/api/g/update requ

est?sensor=13
https://hansel.rokubun.cat/snap/api/c/update requ
est?sensor=14
https://hansel.rokubun.cat/snap/api/h/update requ
est?sensor=15

The query will return, upon successful status code, a JSON response containing the new
configuration if there is any and the ID of the execution that needs to be launched by the sensor,

following the structure:

{
"configuration": {
<New sensor configuration>

}

"next execution": <execution id of the next execution>

Appendices

In case there is no new configuration available, the value of the field "configuration" will

be exactly "Not modified". If there is no execution to launch, the value of the field

"next execution" will be exactly 0.

An example of JSON response:

{

"configuration":

{

}

"next execution":

"sensor id": 2,
"ion": false,

"sampling freq": 2.8,

"bandwidth": 3.5,
"intermediate freq": 3.056,
"quantization": 1,
"format": "IQ"

"encoding": "SIGN",
"delay": 15,

"signal length": 100,
"update period": 1.0,

4

155

7.1.18 Sensor location
Relative URL | /g/position?sensor=<sensor id>
/c/position?sensor=<sensor_id>
/h/position?sensor=<sensor_id>
Action Gets the position of a given sensor using the corresponding technique.
Method GET
Access External (can be used by anyone)

Authorization
requesting user.

Valid access token needed and the specified sensor must belong to the

Querystring sensor=<sensor_id> ID of the sensor whose position is
requested.

Request body | JSON (application/json)

Returns 201 ACCEPTED & JSON (application/json)

66 Appendices

400 BAD REQUEST

401 UNAUTHORIZED

404 NOT FOUND

Use case User wants to know the position of one of his sensors

Example https://hansel.rokubun.cat/snap/api/g/position?se
nsor=13
https://hansel.rokubun.cat/snap/api/c/position?se
nsor=14
https://hansel.rokubun.cat/snap/api/h/position?se
nsor=15

The type of sensor should be consistent with the type of positioning method being requested.
In particular:

e for GNSS positioning the /g field must be present in the URL query, right after the /snap
field, and the sensor being requested must be a physical sensor of type "G" capable of
gathering GNSS samples. This information is introduced at the time of registering the
sensor into the testbed (see "Register sensor" action described above).

e for cellular positioning the /c field must be present in the URL query, right after the
/snap field and the sensor being requested must be a logical sensor of type "CL". This
information is introduced at the time of registering the sensor into the testbed (see
"Register sensor" action described above).

e for hybrid positioning the /h field must be present in the URL query right after the /snap
field and the sensor being requested must be a sensor of type "H". This information is
introduced at the time of registering the sensor into the testbed (see "Register sensor"
action described above).

e and be of the corresponding type (type G for /g, type CL for /c, type H for /h).

The request information includes all the configurable execution parameters, following the

structure:

{

"<execution parameter 1>": "<parameter 1 value>",

"<execution parameter N>": "<parameter N value>",

Appendices 67

The query will return, upon successful status code, a JSON object containing the ID of the

execution that just launched to the platform, following the structure:

{

"execution id": <execution id>

}

Execution parameters can be found in Appendix 2, Table 3 for GNSS sensor positions, Table

9 for simulated Cellular positions and Table 12 for Hybrid positions.

An example of request body for G executions (/g/position):

{
"nearfar": 0,
"band": "1",
"system": "GPS",
"num snap": 1,
"delta snap": O,
"coh time": 20,
"num noncoh": 1,
"gpdit": O,
"sam": O,
"dec rate": 1,
"interference": O,
"generate agnss": 1,
"manual sat search": 0,
"assisted dopp": 1,
"ref pos": [41.5002, 2.11292, 140.0]

An example of request body for C simulation execution (/c/position):

{
"prs bandwidth": 100,

"carrier freq": 4,
"max bs": 7,
"deployment": O,

"num measurement": 1,
"sync _error": O,
"network type": "4G",
"pos method": "OTDOA",

"ref pos": [41.5002, 2.11292, 140.0]

An example of request body for hybrid processing (/h/position):

{

"nearfar": O,

68

Appendices

"band": "1",
"system": "GPS",
"num snap": 1,
"delta snap": O,
"coh time": 20,

"num noncoh": 1,
"gpdit": O,

"sam": O,

"dec rate": 1,
"interference": O,
"generate agnss": 1,
"manual sat search": 0,
"assisted dopp": 1,

"prs bandwidth": 100,

"carrier freq": 4,

"max bs": 7,

"deployment": O,

"num measurement": 1,
"sync_error": O,

"network type": "4G",

"pos method": "OTDOA",

"ref pos": [41.5002, 2.11292, 140.

7.1.19 Interference location
Relative URL | /g/interference
Action Gets the location of interference sources (if any) surrounding the
deployed SNAP GNSS sensors.
Method POST
Access External (can be used by anyone)

Authorization

Valid access token needed

Querystring

Request body

Returns

200 OK & JSON (application/json)

400 BAD REQUEST

401 UNAUTHORIZED

404 NOT FOUND

Appendices 69
Use case User wants to know if there is any interference source surrounding his
GNSS sensors
Example https://hansel.rokubun.cat/snap/api/g/interferenc
e

The query will return, upon successful status code, either a JSON object containing the

jammer position if detected or a message informing that no jammer was localized, following

the structure:

{

"Jjammer pos": [<jammer latitude>,

or

<jammer longitude>,
<jammer height>]

"message": "No Jammer was located."

7.1.20 Located interference historic obtainment

Relative URL

/g/interference

Action

Retrieves the historic of located interferences.

Method

GET

AcCCess

External (can be used by anyone)

Authorization

Valid access token needed.

Querystring

Request body -
Returns 200 OK & JSON (application/json)
400 BAD REQUEST
401 UNAUTHORIZED
404 NOT FOUND
Use case User wants to know what interference sources were located in the past

70

Appendices

Example
e

https://hansel.rokubun.cat/snap/api/g/interferenc

The query will return, upon successful status code, either a JSON object containing the

jammer position if detected or a message informing that no jammer was localized, following

the structure:

"jJammers": |

was

by

was

by

An example of JSON response:

{

"Jammers": [

22T15:37:19+00:00"
} s
{

"jammer pos": [
<jammerl latitude>,
<jammerl longitude>,
<jammerl height>

I
"id": <jammerl id>,
"creation date": <date when jammer 1
detected>
"jammer pos": [

<jammerN latitude>,
<jammerN longitude>,
<jammerN height>

I

"id": <jammerN id>,
"creation date": <date when jammer N
detected>

"jammer pos": [

42.4992,
2.115,
140
I
"id": 1,
"creation date": "2019-11-

Appendices 71

"jammer pos": [

45.3688,
3.663,
70
I
"id": 2,
"creation date": "2019-11-
23T19:34:53+00:00"
by
}
7.1.21 Observables computing from live TLE signals

Relative URL | /c/observables?sensor=<sensor_id>

Action Computes the raw observables from real cellular signal.
Method GET
Access External (can be used by anyone)

Authorization | Valid access token needed and the specified sensor must belong to the
requesting user.

Querystring sensor=<sensor_id> ID of the sensor whose observables
are requested.

Request body | JSON (application/json)

Returns 201 ACCEPTED & JSON (application/json)

400 BAD REQUEST

401 UNAUTHORIZED

404 NOT FOUND

Use case User wants to know the observables that a Cellular sensor is gathering

Example https://hansel.rokubun.cat/snap/api/c/observables
?sensor=16

The type of sensor that is allowed to send that request are only CP sensors, since are the only
ones that capture real Cellular signal. The request information includes all the configurable

execution parameters, following the structure:

{

"<execution parameter 1>": "<parameter 1 value>",

72

Appendices

"<execution parameter N>": "<parameter N value>",

The query will return, upon successful status code, a JSON object containing the ID of the

execution that just launched to the platform, following the structure:

{

"execution id": <execution id>

}

Execution parameters can be found in Appendix 2, Table 6.

An example of request body:

{

"bandwidth": 100

}

An example of JSON response:

{

"execution id": 369

}

7.1.22 Signal data uploading

Relative URL | /signal?execution=<exec_id>&ref time=<ref time>
Action Adds the samples file for the specified execution.

Method POST

Access Internal (only accessed by sensors).

Authorization

Valid access token needed, the execution must belong to the requesting
user.

Querystring

execution=<exec_id> | ID of the execution whose samples are being
delivered

ref_time=<ref_time> [Time in which the samples were gathered. Format
should be YYYYMMDDHRMNSC.

Request body

Binary data (application/octet-stream)

Appendices 73

Returns 202 ACCEPTED

400 BAD REQUEST

401 UNAUTHORIZED

404 NOT FOUND

Use case The FBS has requested a given sensor to provide its location and after the
request fetching by the sensor, the latter responds to this action by
gathering and sending the signal samples to the testbed.

Example https://hansel.rokubun.cat/snap/api/signal?execut
ion=50

This action is used by sensors to deliver signal samples to the testbed. That is, a given sensor
captures GNSS/cellular live signals (as specified in the corresponding execution ID
configuration file) and sends the gathered samples to the SNAP service, which will relay these

samples to the external cloud platform in charge of the samples processing.

7.1.23 Post-processing recorded GNSS data

Relative URL | /g/process

Action Computes the position for a given raw GNSS samples file along with its
configuration

Method POST

Access External (can be used by anyone)

Authorization | Valid access token needed.

Querystring - -

Request body | JSON (application/json)

Returns 200 OK & JSON (application/json)

400 BAD REQUEST

401 UNAUTHORIZED

404 NOT FOUND

Use case User wants to post-process a previously recorded GNSS raw samples file

Example https://hansel.rokubun.cat/snap/api/g/process

74 Appendices

The request body includes all the configurable execution parameters under the key

'params ', following the structure:

{

"<execution parameter 1>": "<parameter 1 value>",

"<execution parameter N>": "<parameter N value>",

Also the request body should include the samples file, under the key ' samples'. Optionally
the request body could include a RINEX file for the processing, under the key 'rinex'. If

the RINEX file is not included, the receiver will look for it automatically.

The query will return, upon successful status code, a JSON object containing the ID of the

execution that just launched to the platform, following the structure:

{

"execution id": <execution id>

}

Execution parameters can be found in Appendix 2, Table 3.

An example of request body as well as for JSON response are the same as for G position

(/g/position) plus the samples file and (optionally) a RINEX file.

7.1.24 Post-processing recorded real Cellular data

Relative URL | /c/process

Action Computes the observables for LTE real signal samples, given the
parameters of the samples.

Method POST

Access External (can be used by anyone)

Authorization | Valid access token needed.

Querystring - -

Request body | JSON (application/json)

Returns 200 OK & JSON (application/json)

Appendices 75

400 BAD REQUEST

401 UNAUTHORIZED

404 NOT FOUND

Use case User wants to post-process a previously recorded Cellular raw samples
file
Example https://hansel.rokubun.cat/snap/api/c/process

The request body includes all the configurable execution parameters under the key 'params ',

following the structure:

{

"<execution parameter 1>": "<parameter 1 value>",

"<execution parameter N>": "<parameter N value>",

Also, the request body should include the samples file, under the key 'samples’.

The query will return, upon successful status code, a JSON object containing the ID of the

execution that just launched to the platform, following the structure:

{

"execution id": <execution id>

}

Execution parameters can be found in Appendix 2, Table 6.

An example of request body as well as for JSON response are the same as for GET

/c/observables plus the cellular samples file.

7.1.25 Recorded GNSS signal with simulated LTE signal hybridization

Relative URL | /h/process

Action Computes the hybridized position given a raw GNSS samples file, a
Cellular data simulation and its configuration parameters.

Method POST

Access External (can be used by anyone)

76 Appendices

Authorization | Valid access token needed.

Querystring - -

Request body | JSON (application/json)

Returns 200 OK & JSON (application/json)

400 BAD REQUEST

401 UNAUTHORIZED

404 NOT FOUND

Use case User wants to post-process a previously recorded GNSS raw samples file
and hybridize it with a Cellular data simulation

Example https://hansel.rokubun.cat/snap/api/h/process

The request body includes all the configurable execution parameters under the key

'params ', following the structure:

{

"<execution parameter 1>": "<parameter 1 value>",

"<execution parameter N>": "<parameter N value>",

Also the request body should include the GNSS raw samples file, under the key 'samples’.
Optionally the request body could include a RINEX file for the processing, under the key

"rinex'. If the RINEX file is not included, the receiver will look for it automatically.

The query will return, upon successful status code, a JSON object containing the ID of the

execution that just launched to the platform, following the structure:

{

"execution id": <execution id>

}

Execution parameters can be found in Appendix 2, Table 12.

An example of request body as well as for JSON response are the same as for H position

(/n/position))plus the samples file and (optionally) a RINEX file.

77

Appendices

7.1.26 Adding results to SNAP DB

Relative URL | /results?execution=<exec_id>

Action Adds to database the results for the specified execution.
Method POST

Access Internal (only accessed by the external service, CloudRXx).

Authorization

Valid access token needed, the execution must belong to the requesting
user.

Querystring

execution=<exec_id> | ID of the execution whose results are being

commited

Request body | JSON (application/json)
Returns 200 OK

400 BAD REQUEST

401 UNAUTHORIZED

404 NOT FOUND
Use case CloudRx stores all the execution results into SNAP DB
Example https://hansel.rokubun.cat/snap/api/results?execu

tion=50

The request body includes the information about the results of the execution, that will be

identified by its ID number. The result parameters can be seen in Appendix 2, Table 4 for GNSS

executions, Table 7 for real Cellular signal executions, Table 10 for simulated Cellular signal

executions and Table 14 for Hybrid executions.

7.1.27 SNAP database result obtainment
Relative URL | /results
Action Gets execution solutions present in the database.

— Admin: obtains all the results in the database.
— Normal user: obtains the results of his executions only.

Method

GET

AcCCcess

External (can be used by anyone)

78 Appendices

Authorization | Valid access token needed, execution must belong to the user that
requested the results.

Querystring (optional) (admin) Obtains the execution results of the
user=<user_email> executions launched by a given
user.
(optional) sensor=<sensor_id> - Admin: obtains all the results of
the executions launched by given
sensor.

- Normal user: obtains the results
of the executions launched by the
given sensor if it belongs to the
requesting user.

(optional) - Admin: obtains the results of the
execution=<execution_id> given execution.

- Normal user: obtains the results
of the given execution if it belongs
to the requesting user.

Request body | JSON (application/json)

Returns 200 OK & JSON (application/json)

400 BAD REQUEST

401 UNAUTHORIZED

404 NOT FOUND

Use case FBS wants to represent execution results, administrator wants to see an
overview of the platform execution results, user wants to see the results of
his executions

Example https://hansel.rokubun.cat/snap/api/results
https://hansel.rokubun.cat/snap/api/results?user=
email@test.com
https://hansel.rokubun.cat/snap/api/results?senso

r=13
https://hansel.rokubun.cat/snap/api/results?execu
tion=50

The query will return, upon successful status code, the information about the executions results,
following the structure:

e Response JSON for no querystring or querystring user=<user_email>:

"results": {

Appendices

79

"G": [
{
<GNSS execution 1 results>
by
{
<GNSS execution N results>
}
1,
"CP": |
{
<Cell execution 1 results>
b
{
<Cell execution N results>
}
1,
"CL": [
{
<Cell execution 1 results>
bo
{
<Cell execution N results>
}
1,
"H": [

<Hybrid execution 1 results>

<Hybrid execution N results>

Response JSON for querystring sensor=<sensor_id>: (G sensor)

"results": [

<Execution 1 results>

y

<Execution N results>

80

Appendices

7.1.28 SNAP DB result deletion

Relative URL | /results?execution=<execution_id>

Action Allows the platform administrators to delete execution results.
Method DELETE

Access External (can be used by anyone)

Authorization

Valid access token needed, user must have admin privileges

Querystring

(optional) (admin) Deletes the execution results for the
execution=<execution_id> execution with 1D <execution_id>
(optional) (admin) Deletes the execution results for all
sensor=<sensor_id> the executions that belong to the

sensor with id <sensor_ID>

(optional) (admin) user=<user_id> [Deletes the execution results for all
the executions that belong to the
user with id <user_ID >

Request body -
Returns 200 OK
400 BAD REQUEST
401 UNAUTHORIZED
404 NOT FOUND
Use case System administrator wants to free machine storage
Example https://hansel.rokubun.cat/snap/api/results?user=

4
https://hansel.rokubun.cat/snap/api/results?senso
r=13
https://hansel.rokubun.cat/snap/api/results?execu
tion=50

e Response JSON for querystring execution=<execution_id>: (G execution)

"result":

{

}

<Execution results>

If results of one specific execution are not yet available, the value for <execution results>

field will follow the structure:

Appendices

"execution id": <execution id>,

"execution state": <state of the execution>

Examples of JSON responses:

e Example response for no querystring or querystring

"results": {
"G": [

"execution id": 1,

"sensor pos": [41.49963, 2.112638, 176,433],
"observables": [23875764, 24678082, 22787820,

21896799, 2289765017,
"sat pos":
[[4273454.6,21090102.1,15656972.0],

user=<user_email>:

(15940910, -

14818167.7,15751421.117,
[21454094.27430468.65,14446305.11,
[26334172.9,250734.11,4225974.83],

[11226598.9,12057242.7,20782552]],

"cn0": [30.86, 33.65, 30.83, 36.39, 40.25],

"prn": [13, 16, 23,

"dopp": [2815.69, 12.40, -2209.43, 100.67,

2795.88]
, "tow": 402547,
"detected": null,
"jammer pos": null,
"user id": 1,
"sensor id": 1,

2, 71,

"creation date": "2019-10-

01T22:22:22.0+00:00"

"execution id": 2,
"execution state":

"execution id": 3,

"execution state":

"execution id": 19,
"snr": [6.98, 2.98,

"in process",

"in queue",

1.08, 3.85, 10.43]

"observables": [90.59, 20.098, 87.667,

50.0874, 20.0858]7,

Tlog_ielVs [1, B, 7 9, 18],
"spectrum image": true,

"spectrum image url":

"creation date": "2019-12-

13T700:22:13.0+00:00"

http://www.url.com,

81

82 Appendices

"execution id": 12,
"execution state": "failed"

i
"CL": [

"execution id": 16

"bs pos":

"pos method": "OTDOA",

"scenario": "UMa",

"observables": [90.987, 57.675, 30.451,
10.857, 100.8598],

"error var": [1.875, 2.08, 4.09, 2.09, 1.09],

"flag los": true,

"snr": [10.50, 3.988, 6.09, 8.987, 3.09717,

"ref pos": [41.49989, 2.112643, 170.0],

"sensor pos": [41.49963, 2.112638, 176,433],

"sensor pos_error": 4.076,

"creation date": "2019-10-
01T07:32:43.0+00:00"

"execution id": 17,

"sensor pos": [41.49463, 2.112638, 176,433],

"hdop": 1.5,

"error var": 3.65,

"creation date": "2019-10-
01T02:12:03.0+00:00"

"execution id": 21,
"execution state": "in process"

e Example response for querystring sensor=<sensor_id>:

"results": {

"execution id": 1,

"sensor pos": [41.49963, 2.112638, 176,433],

"observables": [23875764, 24678082, 22787820,
21896799, 228976507,

"sat pos":
[[4273454.6,21090102.1,15656972.0],

[15940910, -

14818167.7,15751421.17,

[21454094.27430468.65,14446305.17,

[26334172.9,250734.11,4225974.83]1,

Appendices

[11226598.9,12057242.7,20782552]],
"cnO": [30.86, 33.65, 30.83, 36.39, 40.25],
"orn": [13, 16, 23, 2, 7],
"dopp": [2815.69, 12.40, -2209.43, 100.67,
2795.88],
"tow": 402547,
"detected": null,

"jammer pos": null,

"user id": 1,

"sensor id": 1,

"creation date": "2019-10-

01T22:22:22.0+00:00"

"execution id": 2,
"execution state: "in process"

e Example response for querystring execution=<execution_id>:

"result": {

"execution id": 1,

"sensor pos": [41.49963, 2.112638, 176,433],

"observables": [23875764, 24678082, 22787820,

21896799, 228976507,

"sat pos": [[4273454.6,21090102.1,15656972.0],
[15940910,-14818167.7,15751421.17,
[21454094.27430468.65,14446305.1]
[26334172.9,250734.11,4225974.83],

[11226598.9,12057242.7,20782552]1],
"cnO": [30.86, 33.65, 30.83, 36.39, 40.257,
pena%s [13, 16, 23, 2, 7],
"dopp": [2815.69, 12.40, -2209.43, 100.67,

4

2795.88],
"tow": 402547,
"detected": null,

"jammer pos": null,
"user id": 1,
"sensor id": 1,

"creation date": "2019-10-01T22:22:22.0+00:00

84

Appendices

7.2 Appendix 2: SNAP API I/O

Table 2. Configuration parameters of SNAP-G sensors.

/update_request updates

Variable Description Type Value Size Unit Requirement
ion Enable ION GNSS Metadata Bool {0, 1} - - -
Standard decoding file
sampling_freq Sampling frequency Float Strictly positive - MHz ion=0
bandwidth Bandwidth Float Strictly positive - MHz ion=0
intermediate_freq Intermediate frequency Float - - kHz ion=0
format Sample format String {IF, 1Q, QlI, - - ion=0
SC16}
encoding Encoding String {INT, FLOAT, - - ion=0
SIGN}
quantization Quantization bits Unsigned int Strictly positive - Bits ion=0
delay File pointer offset Unsigned int Positive - ms -
signal_length Length of the signal to be Unsigned int Strictly positive - ms -
captured
update_period Time between Float Positive - S -

Appendices

Table 3. Input configuration parameters of the SNAP-G service.

85

Variable Description Type Value Size Unit Requirement
nearfar Enable near-far detector Bool {0, 1} - - -
band GNSS band String {1, 5} - - -
system GNSS system String {GPS, Galileo} - - -
num_snap Number of snapshots Unsigned int Strictly positive - - -
delta_snap Time gap (delta) between Unsigned int Positive - ms -
snapshots
coh_time Coherent integration time Unsigned Int Strictly positive - ms -
num_noncoh Number of non-coherent Unsigned int Strictly positive - - -
integrations
gpdit Enable Generalized Post- Bool {0, 1} - - -
Detection Integration
Truncated Technique
sam Enable multipath analysis Bool {0, 1} - - -
(SAM metric)
dec_rate Decimation rate Unsigned int Strictly positive - - -

86

Appendices

visible satellite

interference Enable interference detection Bool {0, 1} - - -
and localization
manual_sat_search | Enable manual satellite search Bool {0, 1} - - -
sat_list Satellites to be searched Integer array - 1 x N_sat - manual_sat_search
=1
assisted_dopp Enable (manually) assisted Bool {0, 1} - - if
Doppler frequency manual_sat_search
=0, assisted_dopp
must be 1
generate_agnss Enable automatic generation Bool {0, 1} - - assisted _dopp =1
of assistance data (visSat and
dopp#)
max_doppler_searc | Maximum Doppler frequency | Unsigned int - - kHz assisted_dopp =0
h search
visible_sat Visible satellites Unsigned int - 1x N_sat - generate_agnss =
array 0
(so, assisted_dopp
= 1), sorted with
dopp
dopp Doppler frequency of each Float array - 1 x N_sat kHz generate_agnss =

0

Appendices

87

(so, assisted_dopp
= 1), sorted with

visible_sat
ref_pos Reference position latitude, Float array 0< latitude < 90, 3x1 °0m -
longitude and height -180 < longitude
coordinates. Has to be +75km <180,
accurate to solve the height positive
navigation equations. In
testing operations, should be
the true position so position
error becomes the actual error
between the estimated
position and the true one.
Table 4. Output parameters of the SNAP-G service.
Variable Description Type Value Size Unit Requirement
Sensor_pos Sensor position latitude, Float array 0< latitude < 90, 3x1 °,%m -
longitude and height -180 < longitude
coordinates <180,
height positive
tow Sensor time of week Float 0 to 604799 - S -
cn0 Satellites C/NO Float array Positive 1 x N_sat dBHz sorted with
observables

88

Appendices

observables GNSS corrected Float array Positive 1x N_sat m sorted with

pseudoranges observables

sat_pos Satellite positions in ECEF Float matrix | x,yand z strictly | 3 x N_sat [m, m, m] sorted with

coordinates (X, Y, 2) positive observables

detected Detection of Bool {0, 1} - - (optional)
interference/jammer
Sensor_pow Power values of the samples Float matrix Positive 1 x N_pow W (optional)

detected = 1

prn PRN identification for each Integer matrix Valid PRN 1 x N_sat - sorted with

satellite in acquisition stage observables

prn_pvt PRN identification for each Integer matrix Valid PRN 1 x N_sat -

satellite in PVT stage

dopp Doppler shift for each Float matrix Float 1 x N_sat Hz sorted with

satellite observables

creation_date Timestamp when the Timestamp - - - -
execution results where stored
Table 5. Configuration parameters of SNAP-C (Physical) sensors.
Variable Description Type Value Size Unit Requirement
sampling_freq Sampling frequency Float Strictly positive - MHz -

Appendices

89

format Sample format String {IF, 1Q, QlI, - - -
SC16}
encoding Encoding String {INT, FLOAT, - - -
SIGN}
quantization Quantization bits Unsigned int Strictly positive - Bits -
update_period Time between Float Positive - S -
/update_request updates
Table 6. Input configuration parameters of the “Process real cellular signal” of SNAP-C service.
Variable Description Type Value Size Unit Requirement
bandwidth System bandwidth Float Strictly positive - MHz -
Table 7. Output parameters of the “Process real cellular signal” of SNAP-C service.
Variable Description Type Value Size Unit Requirement
snr Signal-to-Noise Ratio Float array - 1XxN_bs dB -
observables Cellular observables Float array Positive 1x N_bs - -
bs_id Physical cell identifier Integer array Valid identifiers 1 X N_bs - -

90

Appendices

spectrum_image Indicates if a time-frequency Bool {0,1} (optional)

spectrum is generated

spectrum_image _ur | Time-frequency spectrum String - (optional)

I image url spectrum_image =
1
Table 8. Configuration parameters of SNAP-C (Logical) sensors.
Variable Description Type Value Requirement

SNAP-C Logical sensors have no inner configurations since they are just conceptual sensors, not real ones

—

longitude, height coordinates

True position of the sensor so

the generated Cellular data is
consistent.

-180 < longitude
<180,
height positive

able 9. Input configuration parameters of the “Get cellular PVT” of SNAP-C service.
Variable Description Type Value Requirement
deployment Deployment mode Bool {0, 1} -
ref_pos Reference position in latitude, Float array 0< latitude < 90, -

91

Appendices
set_ref coord Use reference coordinate for Bool {0, 1} - - deployment =1
network deployment
ref_coord Reference coordinate position Float array 0< latitude < 90, 3x1 %% m deployment =1,
for network deployment -180 < longitude set_ref coord=1
<180,
height positive
ratio_rural Probability or ratio to be RMa Float Otol - % deployment =1,
(rural) deployment set_ref coord =0,
ratio_rural
+ ratio_suburban
+ ratio_urban =1
ratio_suburban Probability or ratio to be UMa Float Otol - % deployment =1,
(sub-urban) deployment set_ref coord =0,
ratio_rural
+ ratio_suburban
+ ratio_urban =1
ratio_urban Probability or ratio to be UMi Float Otol % deployment = 1,
(urban/dense urban) set_ref coord =0,
deployment ratio_rural
+ ratio_suburban
+ ratio_urban =1
isd_rural Inter-site distance in RMa Float Positive m deployment =1
(rural)

92

Appendices
isd_suburban Inter-site distance in UMa Float Positive m deployment =1
(sub-urban)
isd_urban Inter-site distance in UMi Float Positive m deployment =1
(urban/dense urban)
scenario Type of scenario for ref_pos String array {UMi, UMa, - (deployment = 0)
RMa} or
(deployment = 1
and
set_ref coord =
1)
prs_bandwidth System Positioning Reference Float {1.4,5, 10, 20, MHz -
Signal (PRS) bandwidth 50, 100}
sync_error Network synchronization Float {0, 50} ns -
num_measurement Number of measurement Unsigned int {1, 2,5, 10} - -
integrations per position fix
max_bs Maximum number of BSs for | Unsigned int 1to 10 - -
positioning
pos_method Positioning method String {OTDOA, - -
Cellld}
network_type Network type (4G/5G) String {4G, 5G} - -
carrier_freq Carrier frequency Float {0.9, 2, 4, 6} GHz -

Appendices

In addition to these parameters, there is the possibility to upload a KML file containing real cell. The real cell locations should be carefully

provided with the corresponding physical cell ID (PCI), which matches the PCI of the acquired LTE signals in SNAP-C.

Table 10. Output parameters of the "Get cellular PVT" of SNAP-C service.

longitude, height coordinates

-180 < longitude
<180,

Variable Description Type Value Size Unit Requirement
bs_pos BS location in latitude, Float matrix 0< latitude <90, | 3 X N_bs [°,©, m] -
longitude and height -180 < longitude
coordinates <180,
height positive
pos_method Positioning method String {OTDOA, - - -
Cellld}
scenario Type of scenario for ref_pos String array {UMi, UMa, - - -
RMa}
observables Cellular observables Float array Positive 1 X N_bs [m] -
error_var Cellular observables error Float array Positive 1x N_bs m2 -
variances
flag_los Flag of cellular observables in Bool {0, 1} - - -
LoS conditions
snr Signal-to-noise ratio Float array Signed 1 X N_bs dB -
ref_pos Reference position in latitude, Float array 0< latitude < 90, 3x1 °°%m -

94

Appendices

height positive

Sensor_pos Sensor position in latitude, Float array 0< latitude < 90, 3x1 °°m -
longitude, height coordinates -180 < longitude
<180,
height positive
Sensor_pos_error Sensor position error Float Positive - m -
(in the horizontal coordinates)
Table 11. Configuration parameters of SNAP-H sensors.
Variable Description Type Value Size Unit Requirement

SNAP-H sensor configuration parameters are the same as SNAP-G sensor parameters + SNAP-C (logical) sensor parameters, since
they have to launch a GNSS execution to obtain GNSS observables and launch a (simulated) Celullar execution to obtain Cellular
observables. Since there is no SNAP-C (logical) sensor parameters, this configuration remains the same as SNAP-G sensor

parameters.
ion Enable ION GNSS Metadata Bool {0, 1} - - -
Standard decoding file
sampling_freq Sampling frequency Float Strictly positive - MHz ion=0
bandwidth Bandwidth Float Strictly positive - MHz ion=0

Appendices

95

intermediate_freq Intermediate frequency Float - - kHz ion=0
format Sample format String {IF, 1Q, QlI, - - ion=0
SC16}
encoding Encoding String {INT, FLOAT, - - ion=0
SIGN}
quantization Quantization bits Unsigned int Strictly positive - Bits ion=0
delay File pointer offset Unsigned int Positive - ms -
update_period Time between Float Positive - S -
/update_request updates
Table 12. External parameters of the SNAP-H service (input from FBS).
Variable Description Type Value Size Unit Requirement

Configuration parameters to launch a hybrid execution (h/position) should be the necessary to launch a GNSS execution (g/position)
+ a Cellular execution (c/position) in order to obtain the observables to hybridize them. (remains necessary to define if some
parameter should have a default value in order to avoid the user entry)

nearfar Enable near-far detector Bool {0, 1} - - -
band GNSS band String {1, 5} - - -
system GNSS system String {GPS, Galileo} - - -

Appendices

num_snap Number of snapshots Unsigned int Strictly positive - - -
delta_snap Time gap (delta) between Unsigned int Positive - ms -
snapshots
coh_time Coherent integration time Unsigned Int Strictly positive - ms -
num_noncoh Number of non-coherent Unsigned int Strictly positive - - -
integrations
gpdit Enable Generalized Post- Bool {0, 1} - - -
Detection Integration
Truncated Technique
sam Enable multipath analysis Bool {0, 1} - - -
(SAM metric)
dec_rate Decimation rate Unsigned int Strictly positive - - -
interference Enable interference detection Bool {0, 1} - - -
and localization
manual_sat_search | Enable manual satellite search Bool {0, 1} - - -
sat_list Satellites to be searched Integer array - 1x N_sat - manual_sat_search
=1
assisted_dopp Enable (manually) assisted Bool {0, 1} - - if

Doppler frequency

manual_sat_search
=0, assisted_dopp
must be 1

Appendices

97

generate_agnss Enable automatic generation Bool {0, 1} - - assisted_dopp =1
of assistance data (visSat and
dopp#)
max_doppler_searc | Maximum Doppler frequency | Unsigned int - - kHz assisted_dopp =0
h search
visible_sat Visible satellites Unsigned int - 1 x N_sat - generate_agnss =
array 0
(so, assisted_dopp
= 1), sorted with
dopp
dopp Doppler frequency of each Float array - 1 x N_sat kHz generate_agnss =
visible satellite 0
(so, assisted_dopp
= 1), sorted with
visible_sat
ref_pos Reference position in latitude, Float array 0< latitude < 90, 3x1 °°%m -
longitude, height coordinates -180 < longitude
True position of the sensor so <180,
the generated Cellular data is height positive
consistent.
deployment Deployment mode Bool {0, 1} - - -
set_ref _coord Use reference coordinate for Bool {0, 1} - - deployment =1

network deployment

98

Appendices
ref_coord Reference coordinate position Float array 0< latitude < 90, 3x1 °%°%m deployment = 1,
for network deployment -180 < longitude set_ref coord=1
<180,
height positive
ratio_rural Probability or ratio to be RMa Float Oto1l - % deployment = 1,
(rural) deployment set_ref _coord =0,
ratio_rural
+ ratio_suburban
+ratio_urban=1
ratio_suburban Probability or ratio to be UMa Float Otol - % deployment =1,
(sub-urban) deployment set_ref coord =0,
ratio_rural
+ ratio_suburban
+ ratio_urban=1
ratio_urban Probability or ratio to be UMi Float Otol - % deployment =1,
(urban/dense urban) set_ref coord =0,
deployment ratio_rural
+ ratio_suburban
+ ratio_urban =1
isd_rural Inter-site distance in RMa Float Positive - m deployment =1
(rural)
isd_suburban Inter-site distance in UMa Float Positive - m deployment =1

(sub-urban)

Appendices

99

isd_urban Inter-site distance in UM Float Positive - m deployment =1
(urban/dense urban)
scenario Type of scenario for each of String array {UMi, UMa, 1 x N_pos - (deployment = 0)
the entries of user_pos RMa} or
(deployment =1
and
set_ref coord =
1)
prs_bandwidth System Positioning Reference Float {1.4,5, 10, 20, - MHz -
Signal (PRS) bandwidth 50, 100}
sync_error Network synchronization Float {0, 50} - ns -
num_measurement Number of measurement Unsigned int {1, 2,5, 10} - - -
integrations per position fix
max_bs Maximum number of BSs for | Unsigned int 1to0 10 - - -
positioning
pos_method Positioning method String {OTDOA, - - -
Cellld}
network_type Network type (4G/5G) String {4G, 5G} - - -
carrier_freq Carrier frequency Float {0.9, 2, 4, 6} - GHz -

100

Table 13. Internal input parameters of the SNAP-H service (communication between SNAP-G & SNAP-C to SNAP-H).

Appendices

Variable

Description

Type

Value

Size

Unit

Requirement

Internal parameters for a hybridized position (h/position) will be the ones coming from GNSS execution and Cellular execution and
will only be used internally in SNAP.

ref_pos Reference user position in Float array 0< latitude < 90, 3x1 [°, °, m] External input
latitude, longitude and height -180 < longitude from h/position
coordinates <180,
height positive
bs_pos BS locations Float matrix 0< latitude <90, | 3 X N_bs [°, °, m] Output from
-180 < longitude c/position
<180,
height positive
pos_method Positioning method String {OTDOA, - - Output from
Cellld} c/position
cellular_observable Cellular observables Float array Positive 1xN_bs | Dependson Output from
S pos_method c/position
error_var Cellular observables error Float array Positive 1 X N_bs m2 Output from
variances c/position
gnss_observables GNSS corrected Float array Positive 1 x N_sat m Output from
pseudoranges g/position

Appendices

cn0 CNO of the satellites Float array - 1x N_sat dBHz Output from
g/position
sat_pos Satellite positions in ECEF Float matrix | X,y and z strictly | 3 x N_sat [m, m, m] Output from
coordinates (X, Y, 2) positive g/position
Table 14. Output parameters of the SNAP-H service.
Variable Description Type Value Size Unit Requirement
Sensor_pos Sensor position Float array 0< latitude < 90, 3x1 [°° m] -
-180 < longitude
<180,
height positive
hdop Horizontal Dilution of Float Strictly positive - - -
Precision
Sensor_pos_error Sensor position error Float Positive - m -
(in the horizontal coordinates)
Table 15. Input parameters of the interference location service.
Variable Description Type Value Size Unit Requirement

Internal parameters for the jammer location service (g/interference) will be coming from SNAP-DB and will only be used internally
in SNAP-G interference module.

102 Appendices

sensor_positions Latitude, longitude and height Float matrix 0< latitude < 90, 3x [°,°, m] Positions should
coordinates of each sensor. - i
180 < longitude < 180, | | sengors be the ones
height positive -]
coming from the

sensors possible

affected by
jammers.
Sensor_powers RSS samples levels from each sensor Float matrix Positive number | N_RSS x w Sorted with
N_sensors sensor_positions.
Table 16. Output parameters of the interference location service.
Variable Description Type Value Size Unit Requirement

Internal parameters for a hybridized position (h/position) will be the ones coming from GNSS execution and Cellular execution and
will only be used internally in SNAP.

jammer_pos Latitude, longitude and height Float array 0< latitude < 90, 3x1 00'm
- coordinates of the jammer -180 < longitude < 180, -
height positive

103

Appendices

7.3 Appendix 3: Software licenses

Software License License Website description
Type
Apache | https://github.com/docker/docker/blob/master/LICENSE
Docker 20
Gitlab CE MIT | https://gitlab.com/gitlab-org/gitlab-foss/blob/master/LICENSE
Python BSD 3- | https://docs.python.org/3/license.html
Clause
Flask BSD 3- | https://github.com/pallets/flask/blob/master/LICENSE.rst
Clause
Flask restful BSD 3- | https://github.com/flask-restful/flask-
- Clause restful/blob/master/LICENSE
Flask_script https://github.com/smurfix/flask-script/blob/master/LICENSE
Flask_migrat MIT https://github.com/miguelgrinberg/Flask-
e Migrate/blob/master/LICENSE
Flask_sglalch | BSD 3- | https://github.com/pallets/flask-
emy Clause | sqglalchemy/blob/master/LICENSE.rst
Flash_marsh https://flask-marshmallow.readthedocs.io/en/latest/license.html
mallow
https://github.com/maxcountryman/flask-
Flask-Berypt bcloypt/%Iob/master/LICENSEy
Berypt https://github.com/grnet/python-bcrypt/blob/master/LICENSE
numpy BSD | https://numpy.org/license.html
marshmallow https://marshmallow.readthedocs.io/en/stable/license.html
marshmallow MIT https://github.com/marshmallow-code/marshmallow-
-sglalchemy sglalchemy/blob/dev/LICENSE
Apache https://github.com/psf/requests/blob/master/LICENSE
requests 20
GNU | http://initd.org/psycopg/license/
DSycopg2 Less?r
Public
License
passlib https://passlib.readthedocs.io/en/stable/copyright.html
sglalchemy MIT https://docs.sglalchemy.org/en/13/copyright.html
boto3 Apache https://github.com/boto/boto3/blob/develop/LICENSE

2.0

https://github.com/docker/docker/blob/master/LICENSE
https://gitlab.com/gitlab-org/gitlab-foss/blob/master/LICENSE
https://docs.python.org/3/license.html
https://github.com/pallets/flask/blob/master/LICENSE.rst

