
This is the published version of the master thesis:

Khoirunisya, Lina; Serra-Sagristà, Joan, dir. The Compression of IoT Opera-
tional Data Time Series in Automatic Weather Station (AWS). 2020. 67 pag.
(1170 Màster Universitari en Enginyeria de Telecomunicació / Telecommunication
Engineering)

This version is available at https://ddd.uab.cat/record/259529

under the terms of the license

https://ddd.uab.cat/record/259529

A Thesis for the

Master in Telecommunication Engineering

The Compression of IoT Operational Data Time

Series in Automatic Weather Station (AWS)

by

Lina Khoirunisya

Supervisor: Joan Serra-Sagristà

Department of Information and Communications Engineering

 Escola d’Enginyeria (EE)

 Universitat Autònoma de Barcelona (UAB)

Bellatera, June 2020

El sotasignant, Joan Serra-Sagristà, PURfeVVRU de l¶EVcRla d¶EQgiQ\eUia (EE) de la UQiYeUViWaW

Autònoma de Barcelona (UAB),

CERTIFICA:

Que el projecte presentat en aquesta memòria de Treball Final de Master ha estat realitzat sota

la VeYa diUecciy SeU l¶alXmQe Lina Khoirunisya.

I, perquè consti a tots els efectes, signa el present certificat.

Bellaterra, 26 de Juny de 2020.

Signatura: Joan Serra-Sagristà

i

Resum:

Aquest projecte examina la compressió d'algorismes per a dades de series temporals

d'Automatic Weather Station (AWS). El principal objectiu del projecte és obtenir una solució

de compressió eficient. S'analitza el rendiment de diversos algorismes de compressió per

reduir la quantitat de dades que es transmeten des del AWS al servidor. A més, s'ofereix

informació sobre la comparació d'algorismes que són adequats per aplicar sobre les dades de

AWS. Reduïnt la mida de les dades, podem disminuir també el cost de la transmissió. S'han

comparat quatre algoritmes, el Huffman Code, Arithemtic Coding, Lempel Ziv 7 (LZ77), i

Lempel Ziv 4 (LZ4). Al final, la simulació i l'anàlisis s'han portat a terme basant-se en els

resultats dels experiments fets al laboratori.

Resumen:

Este proyecto examina compresiones de algoritmos para datos de series temporales de

Automatic Weather Station (AWS). El principal objetivo del proyecto es dar con una

solución utilizando los datos del algoritmo de compresión para reducir la cantidad de datos

que se necesitan para transmitir desde el AWS al servidor. Además ofrece información sobre

la comparación de algoritmos que son adecuados para aplicar los datos de AWS. Reduciendo

el tamaño de los datos, podemos disminuir el coste de la transmisión. Se han comparado 4

algoritmos, estos son Huffman Code, Arithmetic Coding, Lempel Ziv 7 (LZ77), y Lempel

Ziv 4 (LZ4). Al final, la simulación y el análisis de han llevado a cabo basándose en los

resultados de los experimentos hecho en el laboratorio.

Summary:

This project examines compression algorithms for time series data from Automatic Weather

Station (AWS). The main goal of the project is to provide a solution using data compression

algorithm to reduce the amount of data that needs to be transmitted from AWS to the server.

Also to provide information about the comparison of algorithms that are suitable for

application in AWS data. By reducing the size of the data, we can decrease the cost of

transmission. Four compression algorithms are compared, those are Huffman Code,

Arithmetic Coding, Lempel Ziv 7 (LZ77), and Lempel Ziv 4 (LZ4). At the end, the simulation

and analysis have been carried out based on the results of experiments that have been done

in the laboratory.

ii

Acknowledgments

I like to express my sincere gratitude to the patrons of this work, without whom it was

impossible for me to accomplish this onerous task.

I would first like to thank my supervisor prof. Joan Serra-Sagristà for always kindly helping me

and giving so much guidance on my thesis. His encouragement helped in every stage of

accomplishment of this work.

Thank you to my family, Siti Maryam, Imam Turidi, Nadia Isnaini Rahmah, and M. Rifki

Cahaya Putra. To always supports me and provides unlimited motivation.

To my friends, those who always cheer me up: Paula Erill Roig, Laura Cortez, Brimoresa

Wahyu, Nadia Safitri, Anindya Samhita, Laura Rincon, Serra Sensoy, and Lucie Robaye. All

your love and advice means a lot to me.

To my bestfriends, Happy Fibi and Haris Hidayatulloh, for always be there.

Finally, special thanks to Diego Alexis and Ricardo Espejo for continuously encouraging me

throughout years of my study. Thank you for your constant love.

Lina Khoirunisya

Bellaterra, July 2020

iii

Table of Contents

1. Introduction.. 1

1.1. Background ... 1

1.2. Statement of the Problem .. 2

1.3. Objective ... 2

1.4. Methodology ... 2

1.5. Thesis Outline ... 4

2. Theory ... 5

2.1 Meteorology IoT .. 5

 2.1.1 Automatic Weather Station (AWS) ... 5

 2.1.2 Time Series Data .. 7

2.2 Lossy Data Compression .. 10

2.3 Lossless Data Compression .. 11

 2.3.1 Huffman Code .. 11

 2.3.2 Arithmetic Coding .. 12

 2.3.3 Lempel Ziv 7 (LZ77) .. 13

 2.3.4 Lempel Ziv 4 (LZ4) .. 14

2.4 Visual Studio Code .. 15

2.5 Related Works .. 16

3. Design and Analysis .. 18

3.1 Experimental Design .. 18

3.2 Algorithm Research ... 19

 3.2.1 Computational Difference Method .. 19

 3.2.2 Huffman Code .. 20

 3.2.3 Arithmetic Coding .. 24

 3.2.4 Lempel Ziv 7 (LZ77) .. 27

 3.2.5 Lempel Ziv 4 (LZ4) .. 29

4. Implementation .. 33

4.1 Implementation Results .. 33

4.1.1 Huffman Code .. 34

4.1.2 Arithmetic Coding .. 37

4.1.3 Lempel Ziv 7 (LZ77) .. 39

4.1.4 Lempel Ziv 4 (LZ4) .. 41

4.1.5 Comparison of 4 Algorithms ... 43

5. Conclusion and Future Work.. 47

5.1 Conclusion ... 47

5.2 Future Work ... 48

6. Bibliography .. 49

7. Appendix ... 50

iv

List of Figures

Figure 1.1 Methodology of the project .. 2

Figure 2.1 Automatic Weather Station (AWS) .. 6

Figure 2.2 The communication of Automatic Weather Station (AWS) 7

Figure 2.3 Automatic Weather Station location ... 7

Figure 2.4 Complete data file .. 9

Figure 2.5 Specific data file .. 10

Figure 2.6 Example of Huffman Tree .. 12

Figure 2.7 The value of encoded character .. 12

Figure 2.8 Step of Arithmetic Coding algoritm ... 13

Figure 2.9 Step of LZ77 algorithm .. 14

Figure 2.10 Sequence of LZ4 ... 15

Figure 2.11 Visual Studio Code ... 15

Figure 3.1 Input data .. 18

Figure 3.2 Example of computational difference method 19

Figure 3.3 Decoding process of Arithmatic Coding .. 26

Figure 3.4 LZ4 frame structure .. 29

Figure 3.5 LZ4 sequence structure ... 29

Figure 3.6 Linear Small Integer Code (LSIC) flowchart 30

Figure 3.7 Step of LZ4 compression .. 31

Figure 3.8 Deduplication of LZ4 .. 31

Figure 4.1 Compression ratio of complete data (Huffman) 34

Figure 4.2 Temperature data (Huffman) ... 35

Figure 4.3 Humidity data (Huffman) .. 35

Figure 4.4 Wind speed data (Huffman) .. 36

Figure 4.5 Wind direction data (Huffman) ... 36

Figure 4.6 Compression ratio of complete data (Arithmetic) 37

Figure 4.7 Temperature data (Arithmetic) .. 38

Figure 4.8 Humidity data (Arithmetic) ... 38

Figure 4.9 Wind speed data (Arithmetic) ... 38

Figure 4.10 Wind direction data (Arithmetic) ... 38

Figure 4.11 Compression ratio of complete data (LZ77) 39

Figure 4.12 Temperature data (LZ77) .. 40

Figure 4.13 Humidity data (LZ77) ... 40

Figure 4.14 Wind speed data (LZ77) .. 40

Figure 4.15 Wind direction data (LZ77) ... 40

Figure 4.16 Compression ratio of complete data (LZ4) 41

Figure 4.17 Temperature data (LZ4) .. 42

Figure 4.18 Humidity data (LZ4) ... 42

Figure 4.19 Wind speed data (LZ4) .. 42

Figure 4.20 Wind direction data (LZ4) ... 42

Figure 4.21 Compression ratio average of complete data.................................. 43

Figure 4.22 Compression ratio average of temperature data 44

Figure 4.23 Compression ratio average of humidity data 44

Figure 4.24 Compression ratio average of wind speed data 45

Figure 4.25 Compression ratio average of wind direction data 45

v

List of Tables

Table 1 Huffman character information .. 21

Table 2 Huffman code ... 24

Table 3 Arithmetic Coding data information .. 25

Table 4 Arithmetic Encoding Result .. 26

Table 5 LZ77 data information .. 27

Table 6 LZ4 character information ... 31

Table 7 Input data .. 31

Table 8 File size of input data .. 34

Table 9 Redundancy of simulation (Arithmetic) ... 38

1

1. Introduction

The Internet of Things (IoT) has now become an important part of our lives. Hundreds of

devices are capable of interacting with each other through wireless connections. IoT is expected

to be one solution to be able to apply the concept of smart life. In 2020, the estimated number

of IoT devices that have been installed is 28 billion [1]. With the addition of the amount of data

transmission usage, data compression on the IoT devices becomes an important part. Data

compression is the process of modifying, encoding, or converting the structure of the bit of data

to reduce the size [2].

The goal of this project is to define and evaluate a solution for transmitting time series data

from an Automatic Weather Station (AWS) system. This first chapter describes the background

behind the project, the context of the problem, the objective of the project, the methodology,

and the outline of the thesis.

1.1 Background

The concept of IoT has also been applied to the field of meteorology. An automatic weather

station is the main equipment for automatic surface observation. This station provides

information on weather and transmits or records observations obtained from measuring

instruments. Most of the AWS consist of a data logger, rechargeable battery, telemetry, and

meteorological sensors.

The sensor will record all information and store it in the data logger, then transmit it in real-

time through wireless networks to the server, consisting of temperature, relative humidity, wind

speed, and all the information of weather. The data logger manages the communication

protocols with the remote server. This tool is placed in strategic locations to find out weather

information in the area. In Barcelona, more than 100 AWS have been installed. All data will be

transmitted in real-time to provide accurate results because the weather is always changing

every time.

2

1.2 Statement of the Problem

Data loggers generally use a 3rd Generation (3G) and 4th Generation (4G) cellular network to

transmit the data. The problem refers to the huge amount of data that needs to be transmitted

from AWS to the server. It requires a high-cost service and huge memory storage. With tens of

AWS located in Barcelona, huge amounts of data need to be transmitted continuously.

1.3 Objective

The main objective of the project is to provide a solution using data compression algorithm to

reduce the amount of data that needs to be transmitted from Automatic Weather Station (AWS)

to the server. Also to provide information about the comparison of algorithms that are suitable

for application in AWS data. Alternatively, if no solution exists, then changes to the

requirements will be suggested that could enable a solution.

1.4 Methodology

The methodology used to obtain the final results in the present work is divided into 8 parts,

has been the following:

Figure 1.1. Methodology of the project

1. Qualitative Research

Research has been done by conducting a literature review with collecting information

from the journal, book, and conference paper regarding data compression, also analyzed

3

the data based on the method and its application. The last process was to implement the

technique using computer programming. This part is to give a clear idea about the theory

and application of data compression.

2. Goals and Requirement

Goals and requirements need to be set to make experiments works optimally. This is

needed due to limited time of the thesis process.

3. Data Gathering

Times series data will be obtained from AWS and consist of temperature, relative

humidity, and wind. The AWS is located in Barcelona, Spain.

4. Research of Algorithm

From the data collection, it will be decided which algorithm is the most effective for

data compression. In this section, we have selected the four most suitable algorithms for

compressing data from AWS.

5. Build Program

When the algorithm has been decide, the next step is to make the computer program.

The computer program will be build with C++ language using Visual Studio Code

application. The program should be able to compress the original data before it

transmitted to the server.

6. Simulation

The simulation will be conducted when all the data and computer program is created.

This process will give us the result of the experiment. In this case, we can still improve

the performance of the program.

7. Evaluation

The analysis will be done based on the compression ratio and the computational

complexity of the technique. In this section, a comparison of the techniques will be

discussed.

4

8. Improvement

After the evaluation, there will be a follow up to improve the experiment or suggestion

for the next work.

1.5 Thesis Outline

The outline of the project will be divided into five chapters accordingly to the development

process.

The chapter 1 shows the introduction, the problem statement, and the objective of the thesis.

Also explains the methodology used in this project.

In chapter 2 shows some theoretical concepts about data compression concept and data

compression techniques which are the basis of this project. In data compression techniques

section, four types of techniques will be introduced.

Chapter 3 is focused on the design and analysis of the proposed system. This section explains

the results obtained in simulation stage. The simulations have been carried out using the Visual

Studio Code application.

Chapter 4 intends to depict an analysis of the result data obtained from the simulation. The data

compression ratio and comparison among the techniques are shown.

Chapter 5 describes the conclusions of each stage along the project.

5

2. Theory

2.1 Meteorology Internet of Things (IoT)

The application of IoT in the field of meteorology became one of the discoveries that had a

significant impact. The weather changes all the time, so it needs a device that can always update

the weather data. The weather sensors produce data and gather information to be sent to various

destinations that might need insight into meteorological trends. These include the airline

company, news stations, event companies, logistics companies, and many others.

2.1.1 Automatic Weather Station (AWS)

Automatic Weather Station takes important place to provides information of the weather. It is

an instrument that measures and records meteorological parameters using sensors without

intervention of humans. Automatic Weather Station consists of several components:

• Solar Panel

Solar energy is the reliable source of energy since most of AWS are located at remote

stations. Solar panel provide power to run the devices in AWS.

• Battery

Batteries store the energy generated by the solar panels and ensure functioning when solar

energy is not available.

• Sensors

Some sensors that usually placed on AWS consists of Anemometer to measure the velocity

of the wind, Thermometer are used to measure the temperature of the photovoltaic panels,

Wind Vane to record the direction of the wind, Hygrometer are used to measure humidity,

Rain Gauge to find out the rate of rainfall, and Barometer to measure atmospheric pressure

at the given location.

• Data Logger

Data Logger is the core of every measurement station and perform key tasks. The main

functions of a data logger are measurements, calculations (average, minimum, etc.), data

storage, power supply, and communications. The system may report in near real time or

6

save the data for later recovery. Telemetry is usually attached in data logger and it is used

to transmit data from AWS to the server.

• Enclosure

In extreme weather areas waterproof box should be rust proof and salt resistant. These

enclosures should be made of suitable material or properly shielded so that inside

temperature does not increase considerably, causing malfunction to the electronic

equipment or batteries.

Figure 2.1. Automatic Weather Station (AWS)

In Barcelona there are hundreds of weather stations that operate and update data every time.

Sensor that have been installed on AWS will collect data according to their respective functions.

The data will be stored in a data logger in the form of float-point numbers (explain in Time

Series Data part). By using a transmission network, all data will be sent to the server. Data

loggers generally use a 3rd Generation (3G) and 4th Generation (4G) cellular network to

transmit the data. Central server will distribute the data to the client and monitor the weather

conditions. Currently there are many websites provides accurate weather data globally.

7

Figure 2.2. The communication of Automatic Weather Station (AWS)

In this project, there are 6 AWS used as references and data sources, all located in Barcelona.

From Figure 4 we can see the red point represent the location of every AWS in this project. The

list of the AWS are:

• Meteoblue Eixample

• Weathercloud Sant Pol de Mar

• Weathercloud Institut Europa

• Barcelona El Raval

• Observatori Fabra

• Barcelona Zona Universitaria

Figure 2.3. Automatic Weather Station location

8

2.1.2 Time Series Data

From data logger, we will obtain the time series data. The contents of the information and the

time span of every AWS are varied, this is due to the different AWS location and different

AWS type, some AWS provide more sensor than other AWS.

The sources of the data are some sensors mounted on AWS with the format of most raw data

in time series, containing timestamps and values. The value of time series data is all numeric,

i.e., none of these values are text or characters. Timestamps are represented as integer numbers,

while values are mostly float-point numbers, whose properties depend on the source of data. In

this matter, we changed all the data into an integer form. The floating-point data is not friendly

to be applied in data compression, because it cannot be represented exactly as a binary floating-

point value, but rather as a bit value. We can change all the data in this project into integer form

because we know exactly how decimal points of precision each variable has.

This section explains the source and contents of the file that will be compressed. All data

obtained from Automatic Weather Station (AWS) spread throughout Barcelona. The detail of

each station are:

1. Meteoblue Eixample

The data obtained from a website that provides information about the weather

(https://www.meteoblue.com/). Location of the AWS is in Eixample, Barcelona

with coordinate of 41.3˚N/ 2.16˚E. The time span of data is 1 year and 3 months with a

time difference of every hour. The contents of the file consist of temperature, humidity,

wind speed, wind direction, sun shine, snowfall, rain rate, and cloud cover.

2. Weathercloud Sant Pol de Mar

Weathercloud is a website who provides weather information from all over the world

(https://weathercloud.net/). AWS Sant Pol de Mar is located in Sant Pol de Mar,

Barcelona, with coordinate of 41.36˚N/ 2.37˚E. The time span of data is 2 years with a

time difference of every ten minutes. The contents of the file consist of temperature,

humidity, wind speed, wind direction, rain rate, and heat rate.

3. Weathercloud Institut Europa

This AWS located in L'Hospitalet de Llobregat, Barcelona, with coordinate of 41.21˚N/

2.6˚E and managed by Institut Europa. The time span of data is 2 years with a time

https://www.meteoblue.com/
https://weathercloud.net/

9

difference of every one day. The contents of the file consist of temperature, humidity,

wind speed, rain rate, sun radiation, wind direction, and wind speed.

4. Barcelona El Raval

From the website of city hall of Barcelona (https://opendata-ajuntament.barcelona.cat)

we obtained data for the El Raval area, with coordinate of 41.22˚N/ 2.10˚E. The file

consists of data of temperature, humidity, rain rate, wind speed, wind direction, air

pressure, and cloud information. The time span of data is 10 years with a time difference

of every one day.

5. Observatori Fabra

The data obtained from the city hall Barcelona database. This AWS is managed by

observatori Fabra located in Sarria, Barcelona, with coordinate of 41.41˚N/ 2.13˚E. The

content of the file consists of data of temperature, humidity, rain rate, wind speed, wind

direction, air pressure, and cloud information. The time span of data is 10 years with a

time difference of every one day.

6. Barcelona Zona Universitaria

From the database of city hall Barcelona, we managed to obtain AWS data for Zona

Universitaria. Located in coordinate of 41.22˚N/ 2.06˚E. The file consists of data of

temperature, humidity, rain rate, wind speed, wind direction, air pressure, and cloud

information. The time span of data is 10 years with a time difference of every one day.

There will be two different type of data we used in the simulation. Those are ‘complete data

file’ consists of all original data from the AWS. And ‘specific data file’, where we simulate one

type of data at a time.

Complete data file is a file that contains all the original information obtained from AWS. Data

is written in Ms. Excel (.xlsx) but it can not be processed perfectly by the computer program,

so all data in this simulation must be converted to a text file (.txt) and changed into integer

form.

Figure 2.4. Complete data file

https://opendata-ajuntament.barcelona.cat/

10

Beside of processing data from AWS as a whole, the compression process is also completed

using specific data. The specific data will be processed in this project are data of temperature,

humidity, wind speed, and wind direction. The reason to select these data from the data logger

is that this information is all collected from the sensor attached in AWS, all four sensors are the

main sensor of a weather station.

Temperature A degree of hotness or coldness the can be measured using a thermometer.

Humidity The concentration of water vapour present in the air.

Wind Speed Fundamental atmospheric quantity caused by air moving from high to low

 pressure.

Wind Direction Wind direction is reported by the direction from which it originates.

Figure 2.5. Specific data file

2.2 Lossy Data Compression

Lossy data compression is a compression method that does not decompress data back to the

original form. After the application of a lossy compression algorithm, the original data can not

be reconstructed from the compressed data. Some contents and parts may be lost. But with this

technique, we can get a high compression ratio. If we expect to get high compression capability

without regard to decompression results, then this technique is very suitable.

Lossy data compression is widely used in JPEG images, MPEG video, and MP3 audio formats.

One of the most common uses is in image compression. This method will degrade the image

quality to meet a given target data rate for storage and transmission. It will select only the main

pixel of the image, thus producing an image that is similar to the original image.

11

2.3 Lossless Data Compression

Lossless data compression allows the original data to be exactly recovered from their

compressed form. When we need certainty that we achieve the same what we compressed after

decompression, lossless compression methods are the only choice. The thesis will only focus

on the lossless compression because the data to be sent must be perfectly readable again by the

recipient and because of the importance of trace data integrity. The idea of all lossless

compression is to extract a pattern from the data, giving greater compression to the most

frequently appearing patterns, so that the total size shrinks while no information is lost. This

provides a full reconstruction of the original data.

One of the performance indicators of a compression technique is data compress ratio.

Compression ratio is the ratio between the size of the compressed file and the size of the source

file. The formula to calculate the data is written in equation 1.

Compression ratio = (1 –
𝑠𝑖𝑧𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑠𝑖𝑧𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
) x 100% (1)

2.3.1 Huffman Code

Huffman code is based on representing the symbols that have high occurrence probabilities with

shorter code words and assigning longer code words to symbols that have low occurrence

probabilities. It is an entropy coding technique published by David A. Huffman in 1952 [3].

The process consists of three steps. Those are calculate the probabilistic distribution of the

character, then create a binary tree. The leaves represent the symbols of the input file. The code

length for these symbols equals their depth in the tree, so it will be their distance to the root

node. And lastly, find the unencoded characters in the tree and encode them as the path from

the root to the leaf.

12

Figure 2.6. Example of Huffman Tree

Figure 2.7. The value of encoded character

The Huffman coding is simple, even though rebuilding the tree after processing each character

is quite complicated. The loss of this algorithm is relatively small, all because of its simplicity

and effectiveness. This is very appropriate if we want to prioritize the speed of compression.

Gallager[7] shows that the maximum inefficiency is bound by equation 2. Some of the

inefficiency are the maximum difference between the expected code length and the optimum.

From equation 2, Pm is the probability of occurrence of the most frequent symbol.

Pm + log
2 log 𝑒

𝑒
 ≈ Pm + 0.86 (2)

2.3.2 Arithmetic Coding

Arithmetic coding is one of the most optimal entropy coding techniques if the objective is the

good compression ratio [8], but it also has the most complicated complexity. This algorithm

was developed by IBM Company in 1979. Arithmetic coding can achieve a better compression

ratio compared with Huffman coding. It is because Arithmetic coding uses fractional bits for

its code words, while Huffman coding uses an integral number of bits. It does not produce a

13

single code for each symbol. Instead, it produces code for an entire message by incrementally

modifying the output code.

Arithmetic coding transforms the input data into a single rational number between 0 and 1 [8].

For each sequence symbol, the current interval is divided into subintervals of length

proportional to the frequencies of character occurrences. Then the subinterval of the current

symbol is chosen again. This procedure is repeated for all characters from the input sequence.

In the end, we output the binary representation of any number from the final interval. Some of

the difficulties in Arithmetic Coding is it requires more CPU power and the shrinking of the

current interval requires the use of high precision arithmetic. The encoding process in

Arithmetic code technique explain in figure 2.8.

Figure 2.8. Step of Arithmetic Coding algorithm

2.3.3 Lempel Ziv 7 (LZ77)

Lempel Ziv 7 or what is commonly referred to LZ77 works by examining the input using a

sliding window technique with a fixed size. The window consists of two parts, search buffer,

and look-ahead buffer.

The left part of the sliding window is a search buffer, which includes the symbols that have

been input and encoded recently. The length of the search buffer is equal to the length of the

14

dictionary, and it will be changed dynamically with the movement of the sliding window. The

right part is a look-ahead buffer, it processes the input stream to be encoded. The length of the

look-ahead buffer is equal to the value of the maximum length of the identical symbols. The

distance between the selected match and the start of the look-ahead buffer is called offset.

Figure 2.9. Step of LZ77 algorithm

The result of compression process is represented as distance that indicates the offset from the

start of the match symbols found in the sliding window to the current symbol, next symbol

indicates that new phrase was found, and length indicates the length of the match symbols.

2.3.4 Lempel Ziv 4 (LZ4)

LZ4 is a member of the LZ77 family, where this algorithm is focused on speed by lowering the

compression ratio [9]. LZ4 adds to the base LZ77 algorithm by using more complex output

codes that can better handle various cases. In the implementation, we have preference options

that allow for varying compression efficiency.

The compressed data format of LZ4 is defined by the structure of block which consists of

sequences. Each sequence starts with a token of one-byte value, separated into two 4-bits fields.

It will provide the value range 0f 0-15. 4 high-bits of a token are used in the first field, and it

will indicate the literal length. Following by literals, it is the uncompressed bytes to be copied

as-is. The value of literals is exactly the same as the literal length. The next structure is offset,

15

this is a 2 bytes values. The function of offsite is to represent the position of the match to be

copied from. The final structure is match length, where we use the second token field consists

of 4 bits value, with a range value of 0 - 15. The structure is shown in Figure 2.10.

Token Literal Length Literals Offset Match Length

1 bytes 0 - N bytes 0 – M bytes 2 bytes 0 - N bytes

Figure 2.10. Sequence of LZ4

After obtained offset and match length, decoder will proceed to copy the repetitive data from

the already decoded buffer. The process will start another one when it finished decoding the

match length. We also need to pay attention on the overlapped copy. It is a condition where

match length is bigger than offser, typically when there are numerous consecutive zeroes.

2.4 Visual Studio Code

Visual studio code is a source code editor for several programming language, such as C++, C#,

Java, Phyton and PHP. This application is available for Windows, macOS, and Linux. In this

project we use C++ programming language to build the program and windows as the computer

system. C++ language was chosen because it is a powerful, efficient and it is widely used.

Figure 2.11. Visual Studio Code application

16

2.5 Related Works

There are many existing works related to time series compression with various methods and

applications on IoT devices. Lossless algorithms are preferred on compressing data for real

time database. That is because this algorithm offers a full reconstruction of the compression

process, although it cannot provide a compression ratio at the level of lossy compression.

Fredrik Bjärås in his paper explain about the comparison of compression algorithms on time

series data for IoT devices [10]. His experiment evaluates the performances of several

algorithms by examining the combination of ratio, memory usage, and speed. Renzhi Xing also

conducted an experiments of compression of IoT operational data time series in vehicle

embedded system [11]. Where to compress the vehicle embedded system data, the best method

is combined compression, which is the combination of lossy and lossless compression. This

can be understood because the data to be sent in the project does not need to be reconstructed

perfectly. In her experiment, only the statistical results of the data to be transmitted to the server.

Peter Zaitsev and Vadim Tkachenko [12] evaluated common lossless database compression

algorithms regarding compression speed, compression ratio, and other relevant factors. From

their experiments, the recommendation method are LZ4 and Snappy because of their fast

compress/decompress speed and decent compression ratio.

The investigation about lossy and lossless compression on the electrodiagram (ECG) were also

carried out by Chacko John, Chun Hueng, and Yong Lian [13]. The data is compressed using a

lossy compression technique with a high compression and using lossy data with entropy coding.

From the application in ECG, the scheme achieves an overall lossless compression ratio of 2.1x

and a lossy compression ratio of 7.8x. The proposed scheme can be implemented either in

sensor software or on-chip hardware and can be extended to other physiological signals and

wireless sensors. The benefits of the proposed scheme which are demonstrated in an FPGA

prototype, shows low complexity and significant power reduction and therefore is highly suited

for wireless wearable sensors.

James Pope, Antonis Vafeas, Atis Elsts, George Oikonomou, Robert Pienchocki, and Ian

Craddock also provided a report of an accelerometer lossless compression algorithm and energy

analysis for IoT devices, where they use the sensor as a representation of IoT device [14]. From

17

the experiment, it can be concluded that the energy cost to compress data is less than energy to

transmission data. It means the compression process saved more energy than the transmission

process. An investigation about real-time quality control data compression was also carried out

by Simhadri Vadrevu and M. Manikandan, they proposed a new real-time quality-control data

compression framework implemented in Arduino Duo with a 32-bit Atmel SAM3X8E ARM

Cortex-M3 processor [15]. The experiment aims to reduce the amount of data that needs to be

transmitted that can significantly reduce the power consumption of wireless modules in health

monitoring devices. A new real-time quality control data compression framework is presented

for maximizing the battery life of IoT and Smartphone-based PPG monitoring devices. The

proposed quality control PPG signal compression algorithm achieves an energy saving between

83% and 92%.

18

3. Design and Analysis

3.1 Experimental Design

The purpose of the experiments is to see and compare the performance of the different

compression algorithms, also to see if different types of data affect the compression

performance. Some conditions are worth knowing before doing the simulation.

a. Test environment

The source code used in the experiments were all implemented in C++ programming

language, using a Windows 10 64-bit system. With 6GB and Intel i5-3317U CPU. The

application used to edit and debug the program is Visual Studio Code.

b. Experiment input

The input of simulation is divided into two types, those are ‘complete data file’ and

‘specific data file’. We apply both types of data in four algorithms, Huffman Code,

Arithmetic Coding, LZ77, and LZ4. We will also use input data after applying the

computational difference method (explain in Computational Difference Method part), this

is a part of the compression process to reach a better compression ratio. The detail of the

input data is explained in Figure 3.1.

Figure 3.1. Input data

Input Data

Original
(Before computational difference

method)

Process
(After computational difference

method)

Specific data file Complete data file Complete data file Specific data file

19

c. Experiment measurements

The experiment mainly measures the compression ratio, for both data types, ‘complete data

file’ and ‘specific data file’. The compression ratio was defined as in section 2.3. The other

comparison factor in this project is computational complexity.

3.2 Algorithm Selection and Design

In this section, we will discuss about four algorithms that has the potential as one of the best

algorithms to be applied to time series data, those are Huffman Code, Arithmetic Coding, LZ77,

and LZ4. But before we apply the algorithm, a computational difference method will be

introduced to be able to simplify the process of compressing data.

3.2.1 Computational Difference Method

Computational difference method (CDM) is a process to take the values of two consecutive

samples and calculate the difference between the first one and the next; the output is the

difference. It is one of the step in the compression process to obtain a smaller size of the file, it

also helps to perform a lossless compression achieving higher compression ratio. With this

computation, we can reduce the entropy of the data. The example of the process shown in figure

3.2. To find how much effect this process has on compression data, the method will be applied

to one of the main data input.

Figure 3.2. Example of computational difference method

Original data:

234

235

235

233

234

251

Result data:

234

1

0

-2

1

-3

CDM

20

3.2.2 Huffman Code

The general explanation of Huffman code has been discussed in 2.3.1. A Huffman tree

representation is also related to average code length for a symbol in a message. Average code

length can be defined as equation 3. Where Fi is the frequency of ith symbol, Pi is the probability

of ith symbol, and 𝑙𝑖 is the code length of ith symbol.

Average Code Length, ACL =
∑ 𝐹𝑖𝑙𝑖

𝑛
𝑖=𝑙

∑ 𝐹𝑖
𝑛
𝑖=𝑙

 = ∑ 𝑃𝑖𝑙𝑖
𝑛
𝑖=𝑙 (3)

To obtain the entropy of the message, we can use the equation 4.

 Entropy, H = − ∑ 𝑃𝑖 𝑙𝑜𝑔2 (𝑃
𝑖
)𝑛

𝑖=𝑙 (4)

To calculate the total number of bits in Huffman encoded message, we can apply equation 5.

Total Number of Bits, TNB = ∑ 𝐹𝑖𝑙𝑖
𝑛
𝑖=𝑙 (5)

The efficiency of Huffman coding in terms of size reduction is the result of difference of

characters frequencies. Compression ratio decrease when this difference is less, it makes the

probability of degeneration of Huffman coding is more. So compression ratio depends on

standard deviation. Standard deviation for a symbol from its average code length can be defined

by the following equation:

Standard Deviation, SD = √
∑ (𝐴𝐶𝐿− 𝑙𝑖)2𝑛

𝑖=𝑙

𝑛
 (6)

In its application, there are two major steps in Huffman Code, first is building a Huffman tree

from the input characters. The second is assigning code to the characters by traversing the

Huffman Tree. For example we have a data with detailed information as follows.

21

Character Frequency

A 6

B 9

C 3

D 6

E 3

! 3

Table 1. Huffman character information

Table 1 shows the information of characters will be processed and how often these characters

appear. To use Huffman code as data compression, we need to determine the Huffman code for

each character, the average code length, and the length of Huffman encoded message. We can

construct a Huffman tree in the following order.

a. Create a leaf node for each character of the text. It contains the occurring frequency of

that character. Arrange all the nodes in increasing order of their frequency value.

22

b. Considering the first two nodes having minimum frequency, create new internal node.

The frequency of the new node is the sum of two nodes frequencies. The first node will

be a left child and the second will be the right child of the newly created node.

c. We will do the same step until all the nodes form a single tree. The final tree is the

desired Huffman tree.

23

The final result of Huffman Tree shows below.

d. After we get the desired Huffman tree. We will assign weight to all the edges of the

constructed Huffman tree. In this case, we will assign weight of ‘0’ to the left edges and

weight of ‘1’ to the right edges.

24

e. The Huffman code is written by combining information from the root node to the leaf

node of the character. Table 2 shows the result of Huffman code. We can also conclude

the character that occures less frequently is assigned the larger code. And the character

occurs more frequently is assigned the smaller code.

Character Huffman Code

A 00

B 10

C 1100

D 01

E 1101

! 111

Table 2. Huffman Code

With all the information above, we can calculate the average code length using equation 3.

ACL =
∑ 𝐹𝑖𝑙𝑖

𝑛
𝑖=𝑙

∑ 𝐹𝑖
𝑛
𝑖=𝑙

 =
(6×2)+(9×2)+(3×4)+(6×2)+(3×4)+(3×3)

(6+9+3+6+3+3)

ACL = 2.83 bits/symbol

To obtain the value of entropy, we can use the equation 4.

 H = − ∑ 𝑃𝑖 𝑙𝑜𝑔2 (𝑃𝑖)
6
𝑖=𝑙

 = - 1/log2 [(0.2 log (0.2)) + (0.3 log (0.3)) + (0.1 log (0.1)) + (0.2 log (0.2))

+ (0.1 log (0.1)) + (0.1 log (0.1))]

= - 3.322 (-0.139 - 0.156 – 0.1 – 0.139 – 0.1 – 0.1)

 H = 2.438 bits/symbol

We can see that the entropy value is smaller than the average code length. Where the

difference is 0.392 bits/symbol.

25

3.2.3 Arithmetic Coding

Arithmetic coding is well known for its optimality, and the fact that it can be a very versatile

and powerful tool for coding complex data sources [16]. In arithmetic coding, a message is

represented by an interval of real numbers between 0 and 1. Frequently used characters will be

stored when a string is converted to arithmetic encoding, with fewer bits and ‘not frequently’

occurring characters will be stored with more bits, resulting in fewer bits used in total. As the

message becomes longer, the interval needed to represent it becomes smaller, and the number

of bits needed to specify that interval grows. In this matter, the successive symbols of the

message reduce the size of the interval in accordance with the symbol probabilities generated

by the model.

Before anything is transmitted, the first interval is [0, 1] with a half-open interval of 0 ≤ x < 1.

When the process of each symbol starts, the range is narrowed to that portion of it allocated to

the symbol. For example we have an information about some alphabets presented in Table 3.

Symbol Probability Range

A 0.2 [0, 0.2]

B 0.3 [0.2, 0.5]

C 0.1 [0.5, 0.6]

D 0.2 [0.6, 0.8]

E 0.1 [0.8, 0.9]

! 0.1 [0.9, 1.0]

Table 3. Arithmetic Coding data information

A message of ‘BACC!’ will be transmitted. The first symbol is ‘B’, and the encoder narrow it

into [0.2, 0.5] based on the range on the table. The second symbol that is ‘A’, will narrow the

new range to the first one-fifth of it. Because ‘A’ is allocated in the range of [0, 0.2]. The

encoding process produces [0.2, 0.26], since the previous range was 0.3 units long and one-

fifth of that is 0.06.

26

The third symbol is ‘C’ and allocated in the range of [0.5, 0.6]. We will apply the same

procedure as before to the [0.2, 0.26], so we will obtain the result of [0.23, 0.236]. The result

of the next symbol, ‘C’, is [0.233, 0.2336] and symbol of ‘!’ is [0.23354, 0.2336].

Symbol Result

B [0.2, 0.5]

A [0.2, 0.26]

C [0.23, 0. 236]

C [0.233, 0.2336]

! [0.23354, 0.2336]

Table 4. Arithmetic encoding result

The decoder deduce the first symbol based on the final range [0.23354, 0.2336]. It will shows

symbol of ‘B’ as the first character since the range lies entirely within the model of space Table

4 allocates for ‘B’. Proceeding like this, the decoder can deliver the entire message.

With this process, the decoder could also face a problem. That is, if the process arrives at the

end of the message, the decoder should know when the message has ended. To resolve the

ambiguity, we use special End-of-File (EOF) symbol known by both encoder and decoder. If

the decoder identifies the symbol, the process will automatically end. The decoder stops

decoding. And the final results will be presented. In our case, the EOF symbol is ‘!’.

Figure 3.3. Decoding process of Arithmetic Coding

27

3.2.4 LZ77

LZ77 compression works by finding sequences of data that are repeated. The term ‘sliding

window'’ is used, it means at any given point in the data, there will be a record of the characters

that have been processed. LZ77 iterates sequentially through the input string and stores any

new match into a search buffer.

In the condition where the next character to be compressed is identical with one in the record

list, the sequence of character is replaced by two numbers. Those are distance and length. A

distance is the information of how far it backs to the window where the sequence starts, and a

length represents the number of character for which the sequence is identical.

The compression process of LZ77 is divided into 3 step, first process is to find the longest

match of a string in the window for the look-ahead buffer, then it will give output of a triple o-

l-c (offset, length, and character), the last step is to move the cursor l+1 position to the right. A

null pointer is generated as the pointer in case of absence of the match, and the first symbol in

the look-ahead buffer (0,0,c).

Offset It represents the position number in order to find the start of the matching strings.

Length Represents the length of the match.

Character The character found after the match, denotes the next symbol to be encoded

For example we have a data set shown in Table 5.

Input Data

a b a b c b a b a b a a

Table 5. LZ77 data information

We will start from the left part with an empty search buffer. The first data is ‘a’, with no match

record in our search buffer. It gives us the result of o-l-c as (0,0,a), since we are not moving

backwards. We will move the cursor to l+1 position, where we can get the character of ‘b’.

28

Input Data

a b a b c b a b a b a a

Since we also have no record of ‘b’, the encoding result will be similar to the first character,

that is (0,0,b). At this moment, in the search buffer we can found the record of ‘a’ and ‘ab’, but

not ‘abc’. So, the next character we can find is ‘c’ with output of o-l-c is (2,2,c). It is because

we need to move the position two times to the left (o = 2), and read two characters (l = 2).

Input Data

a b a b c b a b a b a a

The next character to be processed is ‘b’. In the search buffer, we have the record of ‘ba’, ‘bab’

but not for ‘baba’ where this ‘b’ is located. So we need to put this information into the

dictionary. We move the position 4 times to the left (o = 4), and read 3 characters (l = 3). The

next character we can find is ‘a’, it gives us the encoding result of (4,3,a). The last two

characters in the data also need to be processed with the same way.

Input Data

a b a b c b a b a b a a

The process can give us a high compression ratio. But if we notice, the time complexity of the

algorithm does not seems to be the best. If all the character in the input data is different, we

would need to process lot of data one by one. The time complexity of the last position of the

data is shown by equation 7.

Time Complexity, O(n2) =
n (n−1)

2
 (7)

LZ77 encoding:

(0,0,a), (0,0,b)

LZ77 encoding:

(0,0,a), (0,0,b), (2,2,c)

LZ77 encoding:

(0,0,a), (0,0,b), (2,2,c), (4,3,a), (2,2,a)

29

3.2.5 LZ4

The LZ4 algorithm is focused on provides high speed by lowering the compress ratio. The

important design principle behind LZ4 has been simplicity. It is known for its easy code and

fast execution. To be able to find out more about this algorithm, it is important to know how

the integer encoder works.

LZ4 is build by a structure which consists of frames, shows by Figure 3.4. And the frames

composed from a magic number, frame descriptor, data blocks, end mark and content

checksum.

Magic Num. Descriptor Data Block (…) End Mark Content Cheksum

4 bytes 3-15 bytes Upto 4MB 4 bytes 0-4 bytes

Figure 3.4. LZ4 frame structure

The stream of LZ4 is divided into some segments called blocks. The compressed block is

composed of sequences, and each sequence starts with a token, which is a one-byte field

separated into two 4-bit fields. The higher field t1 is used for storing the length of literals. The

sequence structure showed by Figure 3.5.

Figure 3.5. LZ4 sequence structure

For values higher than 15 it uses a Linear Small Integer Code (LSIC), it loads another byte after

token adds it to the length and checks if the value of the read byte is equal to 0xFF. If this byte

is the maximum value (255), another byte is read and added to the sum. This process is repeated

until a byte below 255 is reached, which will be added to the sum, and the sequence will then

end. In simple words, this process will continue to add bytes until it reachs a non 0xFF byte.

All the processes are presented in Figure 3.6.

30

Figure 3.6. Linear Small Integer Code (LSIC) flowchart

The process using LSIC allows the LZ4 provide minimum number of byte used in the case of

a short match. The literal L determines the length of the block and the first (highest) field in the

token is used to define the literal. Then there is the match offset O which is taken from LZ77

family and the match length LISC value e2 which is used with lower part of the token t2. In

literal, if the field is in maximum value (15), the algorithm will read an integer with LSIC and

add it to the original value (15) to obtain the literal lengths. The process of decoding algorithm:

Loads the token
(t1 determines whether it should decode the

LSIC e1 of the literal length)

loads the match offset O
 (which points to already decoded stream)

If t2 = 15,

decodes the LSIC e2 of the match

length

31

Figure 3.7. Step of LZ4 compression

The compression process will be carried out in the section of match offset. It will reduces the

size of the input data. This process is also called deduplication (shown in Figure 3.8). The

decompression is fast and simple, provides a very short decompression time compared to other

algorithms.

Figure 3.8. Deduplication of LZ4

For example, consider the table of some characters shown in table 6.

Character Code

ab 0

abc 1

baba 2

aa 3

Table 6. LZ4 character information

And we have input data shown in the table 7.

Input Data

a b a b c b a b a b a a

Table 7. LZ4 Input data

Match offset will copy bytes from already

decoded stream to the front of it.

32

If we search the data of ‘ab’, we will get a partial match of ‘0’. And if we continue with the

other part of the message, we can obtain the value of ‘1’ for the data of ‘abc’. This process will

be carried out again with other parts of the message. In this matter, we can quickly find out how

many bytes they have in common as a prefix. In this case, it is 4 bytes. If in the process we

found no match, then we need to write the encoded message as literal until the good match is

obtained.

33

4. Implementation

4.1 Implementation Results

This section will explain the result of the implementation in the experiment. The performance

of a lossless compression algorithm usually will be judged by the saving percentage of the

compression algorithm (compression ratio), the complexity of the technique, and the usability

that refers to the ability of an algorithm to obtain good performances on the different data type.

The results are tabulated and analyzed to reach the best technique, advantages, and

disadvantages for each one, and when each one is best to use.

The experiments involve four algorithms, Huffman Code, Arithmetic Coding, LZ77, and LZ4.

The result will be the value of a percentage compression ratio. In our test, the compression ratio

defines as:

Compression ratio = (1 –
𝑠𝑖𝑧𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑠𝑖𝑧𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
) x 100% (1)

The equation above is used because we mainly consider spacing saving in this thesis instead of

the other popular definition used in many database compression methods, which is to calculate

the ratio between the original data size and the compressed size. The reason for adopting this

definition is because we want to obtain the objective of the thesis and it is easier to see the

absolute size reduction through the space saved. The result will be one of the determining

factors in choosing which algorithm is best to be applied to time series data in AWS.

To ensure the validity of the result, the experiments were carried out not only for the data

compression part but also for the decompression process. All data that has been compressed

must be able to be returned perfectly. The reliability of the experiment can be guaranteed by

applying different data types as input and ensure all work perfectly. Measuring the execution

time is indicative, but it might be misleading, as it depends on the optimization of the

implementation. So at this experiment, we do not consider the time execution as a performance

factor.

There are six datasets from six different sources that will be used in the simulation, Table 8

shows each size of the input data.

34

File Name

Complete

Data

(KB)

Temperature

Data (KB)

Humidity

Data (KB)

Wind

Speed Data

(KB)

Wind

Direction

Data (KB)

Eixample 4.211 429 164 456 434

Sant Pol de Mar 6.989 480 383 400 372

Hospitalet 1.759 59 60 59 44

Raval 6.144 495 507 457 486

Sarria 6.541 551 556 526 486

Zona Universitaria 6.138 490 504 453 485

Table 8. File size of input data

4.1.1 Huffman Code

The first experiment is a simulation using Huffman Code algorithm. Two input data is given,

those are original data and process data. Original data is the data obtained directly from AWS,

and process data is the data that has been processed using the computational difference method.

Two types of data are also given, namely complete data and specific data. Complete data is the

data that contains all information from the sensor installed in AWS. The specific data is one

type of data that is simulated at a time. It consists of data of temperature, humidity, wind speed,

and wind direction. All data is taken from six different AWS sources. The name of the simulated

file is adjusted to the location where AWS is located.

Figure 4.1. Compression ratio of complete data (Huffman Code)

58
55.7 56.4 54.9 55.8 54.9

60

66.2 63.8
60.8 61.4 60.7

0

10

20

30

40

50

60

70

Eixample Sant Pol de Mar Hospitalet Raval Sarria Zona
Universitaria

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Complete Data File

Original Data Process Data

35

The first graph, which we show in Figure 4.1, plots the percentage of the compression ratio of

complete data file after applying the Huffman code algorithm. The blue line shows the

performance of original data file, where the highest compression ratio reaches the number of

58%. For process data, we can obtained a higher compression ratio, with the lowest value of

process data is 60.7% and the highest compression ratio reaches the value of 66.2%. In general,

the value of compression ratio for process data is greater than the original data. This happens

because by applying the computational difference method, we can reduce the entropy of the

data. In this case, the size of the data will also become smaller.

For all the three data from the government of Barcelona (Raval, Sarria, and Zona Universitaria),

the result of compression ratio is almost the same. That is because the amount of data in the

three files is relatively the same. It has also the same weather information and the same time

span, the difference is the value provided by each AWS. The result obtained in this simulation

tends to be stable, with a range between 54.4% and 66.2%.

 Figure 4.2. Temperature data (Huffman) Figure 4.3. Humidity data (Huffman)

The result of compression ratio for a specific data type gives us the same pattern as simulation

before, where all the value of process data is greater than the original data. For temperature

data, the best compression ratio is at the point of 71.9% using the data process as input, and at

60.6% using original data as input.

58.7 59.1 60.2 59.3 60.6 59.7

67
71.9 67.7 69.6 70.5 69.3

0
10
20
30
40
50
60
70
80

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Temperature Data

Original Data Process Data

60.9 60.8 57.3
61.3 62 61.1

68.2
72

60 63.9 64.9 65.6

0
10
20
30
40
50
60
70
80

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Humidity Data

Original Data Process Data

36

Figure 4.3 shows the performance of humidity data. In this simulation, we obtained the same

performance result compared to temperature data. The compression ratio of Sant Pol de Mar

tends to be the highest between all of it, with a value of 72%.

 Figure 4.4. Wind Speed data (Huffman) Figure 4.5. Wind Direction data (Huffman)

The next simulation is a simulation of wind speed data and wind direction data. The

compression ratio of the data process once again outperforms the original data. The range

obtained from process data is 63.1% to 66.8% and 54.1% to 59.3% for original data.

From the simulation of wind direction, an interesting phenomenon has occurred. Where the

difference in data compression between the process data and the original data is not so huge for

Raval, Sarria, and Zona Universitaria. In fact, this behavior is reasonable since the difference

between the original data and data that has been processed by the computational difference

method is not so different.

From the five figures, we can conclude that by applying this algorithm, the compression ratio

values of all data are mostly in the same range. Both for process data and original data. In our

case, the range is between 54.2% to 72%. But the compression ratio cannot reach more than

72% even though we have applied the computational difference method and simulated it with

specific data. And the compression ratio result of process data always outperforms the original

data.

54.6 60.25 54.2
59.5 59.6 59.9

63.1 65.3 59.3 62.5 62.5
66.8

0
10
20
30
40
50
60
70
80

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Wind Speed Data

Original Data Process Data

54.1 56.1 56.8 58.8 58.4 59.3

58.5
66.6 57.5 60.2 60.2 60.8

0
10
20
30
40
50
60
70

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Wind Direction Data

Original Data Process Data

37

4.1.2 Arithmetic Coding

The second simulation is applying Arithmetic Coding algorithm to the data. The experiment

condition and data used in this simulation are the same as the experiments of Huffman code.

Figure 4.6 shows the performance of Arithmetic Coding. As expected, Arithmetic coding

yielded slightly better compression ratios than the Huffman coding in terms of compression

data. With the same data, Arithmetic Coding can provide data compression of 70%, where the

highest compression of Huffman coding is 66.2%.

Figure 4.6. Compression ratio of complete data (Arithmetic Coding)

The line red as the representation of process data shows a better performance than the blue line,

which is the representation of original data. Stable patterns are obtained from all five data

except data from Sant Pol de Mar. The algorithm can compress data from process data of Sant

Pol de Mar way better than using original data as input. It is because the time difference values

are very similar to each other. In this simulation, we computed the redundancy of each file. We

can obtain the fact that the file from Sant Pol de Mar has the greatest redundancy. For this

reason, it can provide the highest compression ratio results. The equation to calculate data

redundancy show in equation 8. Where Cr is compression ratio.

Data Redundancy, RD = 1 -
1

𝐶𝑟
 (8)

58.6
56.3 57.1 55.7 56.5 55.7

60.5

70
64.3

61.3 61.9 61.3

0

10

20

30

40

50

60

70

80

Eixample Sant Pol de Mar Hospitalet Raval Sarria Zona
Universitaria

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Complete Data File

Original Data Process Data

38

File Name Redundancy (Original Data) Redundancy (Compress Data)

Eixample 0.982 0.983

Sant Pol de Mar 0.982 0.985

Hospitalet 0.982 0.984

Raval 0.982 0.983

Sarria 0.982 0.983

Zona Universitaria 0.982 0.983

Table 9. Redundancy of simulation (Arithmetic)

Figure 4.7. Temperature data (Arithmetic) Figure 4.8. Humidity data (Arithmetic)

 Figure 4.9. Wind Speed data (Arithmetic) Figure 4.10. Wind Direction data (Arithmetic)

When we applied specific data for the input, all process data outperform the results of the

original data. On the wind direction simulation, the difference of process data and original data

59.4 60.4 57.6 60.6 61.7 60.4

68

79.5 69.5 70 70.9 70

0
10
20
30
40
50
60
70
80
90

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Temperature Data

Original Data Process Data

61.5 61.8 61.7
62.1 62.9

62.1

64.1
64.7

63

64.5
65.4

64.4

59
60
61
62
63
64
65
66

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Humidity Data

Original Data Process Data

55.9 61.3 57.6 60.1 60.4 60

68 66 61 63 63.1 62.6

0
10
20
30
40
50
60
70
80

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Wind Speed Data

Original Data Process Data

55.5 63.9 59 59.4 59.4 59.3

68.9 66.5
67.4

61 60.9 60.8

0
10
20
30
40
50
60
70
80

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Wind Direction Data

Original Data Process Data

39

is not very visible. But in the simulation of temperature, the difference even reached 19.5%.

That is because of the difference in the entropy values of each data, where the greater the

entropy, the smaller the compression ratio. From the input file, two-digit numbers of data is

presented in the temperature data, and three-digit numbers of data are presented in wind

direction data. The Arithmetic coding is marginally better than Huffman code, mainly in the

application of time series data file.

4.1.3 LZ77

The next simulation is using LZ77 algorithm. The LZ77 Compression Algorithm is used to

analyze input data and determine how to reduce the size of that input data by replacing

redundant information with metadata. Every duplicate occurrence of data is replaced with the

pointer to its first occurrence. The input data and the experimental environment are arranged

the same. From figure 4.11 the highest compression ratio is obtained in the simulation using

data of Eixample. This can be understood because in Eixample file, some data from one column

to another is the same. This behavior also confirms the theorem of LZ77 algorithm that the

result of compressing data is higher if the processed data contains data that has been stored in

the dictionary.

Figure 4.11. Compression ratio of complete data (LZ77)

86.5

72.1

61.9
65.4 67.2 65.4

90
81.82

69.9
68.4 69.6 68.4

0

10

20

30

40

50

60

70

80

90

100

Eixample Sant Pol de Mar Hospitalet Raval Sarria Zona
Universitaria

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Complete Data File

Original Data Process Data

40

With complete data as an input, the highest compression ratio can be reached up to 90%. And

the lowest compression ratio is 61.9%, it is better than using both Huffman code and Arithmetic

code. The average compression ratio is 74.6% for process data and 69.75% for original data. In

fact, the result of process data still outperforms the results of the original data.

Figure 4.12. Temperature data (LZ77) Figure 4.13. Humidity data (LZ77)

Figure 4.14. Wind Speed data (LZ77) Figure 4.15. Wind Direction data (LZ77)

We have also run the specific data type simulation presented in figure 4.14, figure 4.15, figure

4.16, and figure 4.17, there is a significant difference from the pattern of the graph that was

previously obtained. Where at this simulation, we can see the wave pattern of the line. We

obtained a drop point in file of Sant Pol de Mar, it is indicated that the data in the file has many

different values inside, so it requires more dictionary information. LZ77 algorithms achieve

compression by replacing repeated occurrences of data with references to a single copy of that

98.5

84.8

95 95.4

89

94.2

98.7

86.6

96 96.1

90

95.2

75
80

85

90
95

100

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Temperature Data

Original Data Process Data

98.8

85.8

94.9 94.3

86.2

92.8

99

90

96.6
94.7

87.6

93.4

75

80

85

90

95

100

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Humidity Data

Original Data Process Data

97.8

83.5

95 93.6

86.5

92.2

98.6

87.2

96.6
93.8

87

92.4

75
80
85
90
95

100

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Wind Speed Data

Original Data Process Data

98.1

88.7

95.4 93.2 95.6
91.5

98.6

89.2

96
93.7

97.5

92

82
84
86
88
90
92
94
96
98

100

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Wind Direction Data

Original Data Process Data

41

data existing earlier in the uncompressed data stream. The compression ratio of Eixample

always gives the best value among all.

An interesting fact revealed from the above results is that by using specific data we get higher

data compression compared to the result of complete data. The lowest compression ratio of

specific data is 83.5% for the original data, it is 21.6% higher than the result from the complete

data. And 9% improvement for process data.

4.1.4 LZ4

The last experiment is simulation using LZ4 algorithm. The LZ4 algorithm represents the data

as a series of sequences. Higher compression ratios can be achieved by investing more effort in

finding the best matches of information in the file. The input data and the experimental

environment are arranged the same.

Figure 4.16. Compression ratio of complete data (LZ4)

The overall appearance of the plot, we observe that the compression ratio of the complete data

file reached 82.7% and 82.1% for Eixample and Sant Pol de Mar. The average of 67%

compression ratio shown in the result of Hospitalet, Raval, Sarria, and Zona Universitaria. In

all four files, there are not many changes and the results located at almost the same point in the

compression ratio.

76.2
72.4

60.5
64.3 66 64.3

82.7 82.1

66.5 67.3 68.7 67.3

0

10

20

30

40

50

60

70

80

90

Eixample Sant Pol de Mar Hospitalet Raval Sarria Zona
Universitaria

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Complete Data File

Original Data Process Data

42

 Figure 4.17. Temperature data (LZ4) Figure 4.18. Humidity data (LZ4)

Figure 4.17 shows the result of temperature data using LZ4 algorithm. 98.8% of the

compression ratio can be obtained in this simulation. If we observe, the pattern on the graph

looks more stable compared to the results obtained in experiments using the LZ77 algorithm.

Figure 4.18 shows the result of humidity data. Where we obtained a compression ratio average

of 88.5% for original data and 87% for process data.

 Figure 4.19. Wind Speed data (LZ4) Figure 4.20. Wind Direction data (LZ4)

Similar plots for the wind speed data and wind direction data are depicted in Figure 4.19 and

Figure 4.20. The compression ratio average from wind speed is 83.9% for original data, and

85.7% for process data. Even in the result of Sant Pol de Mar, both original data and process

data shows the same compression ratio result. For the wind direction data, the algorithm can

compress the file until 98.1% for process data, and 97.6% for original data.

97.2
86.5 94.9

75.1 79.5 75.3

98.8 90.4
96.6

77.9 81.8 81

0
20
40
60
80

100
120

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Temperature Data

Original Data Process Data

96.3
85.6 95

80.8 83.8 80.9

98.7 87.5
95.2

82.2 84.9 83

0
20
40
60
80

100
120

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Humidity Data

Original Data Process Data

98.2
84.3

96.6
72.6 79.4 72.4

98.4 85.5
96.6

74.4 81.9 77.9

0
20
40
60
80

100
120

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Wind Speed Data

Original Data Process Data

97.6
88.9 95.4

70.5 82.770.72

98.1 94
95.4

72.8 86
72

0
20
40
60
80

100
120

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

Wind Direction Data

Original Data Process Data

43

4.1.5 Comparison of 4 Algorithms

Finally, we compared all the algorithms in this thesis, Huffman Code, Arithmetic Coding,

LZ77, and LZ4. The result can be found in figure 4.21 until Figure 4.25. To obtained the chart,

we took the average number of compression ratios from each simulation, both for original data

and process data.

Figure 4.21. Compression ratio average of complete data

The first chart shows the average value of the compression ratio of the complete data file.

Process data applied in all algorithms outperform the original data. Observe that we obtained

the highest compression ratio using LZ77 algorithm with a value of 74.68%. The performance

improvement varies from 55.95% to as much as 74.68%. The performance of Huffman code

and Arithmetic Coding slightly the same, although arithmetic is still superior with a difference

of only less than 1% of data compression.

The figure below shows the simulation results using specific data.

5
5

.9
5

%

5
6

.6
5

%

6
9

.7
5

%

6
7

.2
8

%

6
2

.1
5

%

6
2

.5
0

% 7
4

.6
8

%

7
2

.4
3

%

H U F F M A N C O D E A R I T H M E T I C
C O D I N G

L Z 7 7 L Z 4

C
O

M
P

R
ES

SI
O

N
 R

A
TI

O
 (A

V
ER

A
G

E)

COMPLETE DATA FILE

Original Data Process Data

44

Figure 4.22. Compression ratio average of temperature data

Figure 4.23. Compression ratio average of humidity data

6
2

.5
8

%

6
0

.0
0

%

9
2

.8
0

%

8
1

.3
0

%

7
0

.5
3

%

7
1

.3
1

%

9
3

.7
0

%

8
7

.7
5

%

H U F F M A N C O D E A R I T H M E T I C
C O D I N G

L Z 7 7 L Z 4

C
O

M
P

R
ES

SI
O

N
 R

A
TI

O
 (A

V
ER

A
G

E)

TEMPERATURE DATA

Original Data Process Data

5
8

.2
0

%

6
2

.0
0

%

9
2

.1
0

%

8
7

.0
0

%

6
5

.5
6

%

6
5

.7
0

%

9
3

.5
5

%

8
8

.5
0

%

H U F F M A N C O D E A R I T H M E T I C
C O D I N G

L Z 7 7 L Z 4

C
O

M
P

R
ES

SI
O

N
 R

A
TI

O
 (A

V
ER

A
G

E)

HUMIDITY DATA

Original Data Process Data

45

Figure 4.24. Compression ratio average of wind speed data

Figure 4.25. Compression ratio average of wind direction data

First, as expected, Arithmetic Coding can give us a better result than the Huffman Code. The

results range from 57.25% to 62.58% for the original data, and 60.6% to 71.31% for process

data. Another interesting aspect is that LZ77 and LZ4 work very well when we used only one

type of data in the simulation. This can be seen from the results of the compression ratio which

reached more than 85% in all specific data simulations. This is due to the workings of the

algorithm that can compress the data better by finding sequences of data that are repeated.

5
8

.0
0

%

5
9

.2
1

%

9
1

.4
0

%

8
3

.9
0

%

6
3

.2
5

%

6
3

.9
5

%

9
2

.6
0

%

8
5

.7
0

%

H U F F M A N C O D E A R I T H M E T I C
C O D I N G

L Z 7 7 L Z 4

C
O

M
P

R
ES

SI
O

N
 R

A
TI

O
 (A

V
ER

A
G

E)

WIND SPEED DATA

Original Data Process Data

5
7

.2
5

%

5
9

.3
5

%

9
3

.7
5

%

8
4

.3
0

%

6
0

.6
0

%

6
4

.2
5

%

9
4

.5
0

%

8
6

.3
0

%

H U F F M A N C O D E A R I T H M E T I C
C O D I N G

L Z 7 7 L Z 4

C
O

M
P

R
ES

SI
O

N
 R

A
TI

O
 (A

V
ER

A
G

E)

WIND DIRECTION DATA

Original Data Process Data

46

Moreover, LZ77 is extremely competitive with LZ4, since it dominates it in all of the data

compression results. The compression ratio of the process data in all simulation still shows

higher results than the results of the original data. Consequently, by applying the computational

method, the results of the simulation is improved.

47

5. Conclusion and Future Work

5.1 Conclusion

The result of these experiment prove that the lossless compression can be beneficially applied

on time series data. We created the simulation of Huffman Code, Arithmetic Coding, LZ77,

and LZ4. We have explained these algorithms in detail, and tested using different type of file

and size. The main conclusions of this thesis are the following:

• From the complexity technique, Arithmetic Coding is more complicated than the Huffman

Code. This algorithm processes data as a block of symbols instead of a single symbol. It

makes Arithmetic can yield more compression ratio shows by the result of the simulation

compared to the Huffman code.

• LZ77 and LZ4 work very well when the data is repeated. It performs almost equally and

are the most effective of all the algorithms we tested. In the specific data case, where the

data contains repeated values, this algorithm can compress data up to 99.8%. LZ77 has

greater technical complexity than other algorithms, so it requires a more sophisticated

processor. Even so, this algorithm is still possible to be applied to AWS, which generally

has low processing capability and low energy supply.

• For the time series data of AWS, it can be concluded that LZ77 provides the best result

than the other three methods. The values are drawn from the four algorithms based on

compressed file size. It can be considered as the most efficient algorithm among the

selected ones to be applied in AWS.

• Process data in all simulations show a better result than the original data. It helps to perform

a lossless compression achieving higher compression ratio because with applying the

computational difference method, we can reduce the entropy of the data.

• Specific data file shows better compression ratio results in all algorithms than the complete

data file. That is because, with the more diverse types of data in a file, the compression

process will be more complicated and the entropy becomes greater. It will produce a low

compression ratio.

48

5.2 Future Work

This section describes some suggestions for future work that might follow the work described

in this thesis.

• In this thesis we implemented four algorithms. Henceforth, other algoritms can be tested.

To find out the effect of the other algorithm on time series data from AWS.

• Calculate the communication cost reduction from data transmission based on the

compression ratio that has been obtained. So that we can find out the benefits gained from

an economic perspective and can be an opportunity to be applied in real terms.

• Investigate the energy usage of the algorithm due to the popularity of green power. Ideally,

with the data compression process, we can obtain energy savings.

• Use multiple data time series as input and compress at the same time. Because in this

experiment we simulate one data at a time.

49

6. Bibliography

[1] Perwej, Y., Kerim, B., Ahmed, M., and Harb, H., “An Extended Review on Internet of

Things (IoT) and its Promising Applications”, Al Baha University, Al Baha Kingdom of

Saudi Arabia, 2019.

[2] Cheng, L., Leung, A., and Ozawa, S., “Neural Information Processing”, Springer Nature,

Switzerland, 2018.

[3] Huffman, D., “A Method for the Construction of Minimum-Redundancy Codes”,

Massachusetts Institute of Technology, Cambridge, 1952.

[4] Salomon, D., Motta, G., “Handbook of Data Compression Fifth edition”, Springer, 2010.

[5] Chen, H. C. and Wang, Y. L. and Lan, Y. F., “A Memory Efficient and Fast Huffman

Decoding Algorithm”, Information Processing Letters, Vol. 69, No. 3, pp. 119- 122, 1999.

[6] Buro. M., “On the maximum length of Huffman codes”, Information Processing Letters,

Vol. 45, No.5, pp. 219-223, April 1993.

[7] Gallager, R.. “Variations on a theme by Huffman”, IEEE Transactions on Information

Theory, 24(6):668–674, 1978.

[8] Engineering and Technology History Wiki, “History of Lossless Data Compression

Algorithms”, ETHW website. 15-Jun-2018 [Online]. Available:

http://ethw.org/History_of_Lossless_Data_Compression_Algorithms. [Acessed: 4-June-

2020].

[9] Bartik, M. and Ubik, S., “LZ4 compression algorithm on FPGA”, IEEE International

Conference on Electronics, Circuits, and Systems (ICECS), Dec 2015.

[10] Bjärås, F., “Comparative study of compression algorithms on time Series Data for IoT

Devices”, Lund University, July 2019.

[11] Xing, R., “The Compression of IoT Operational Data Time Series in Vehicle Embedded

Systems”, KTH Royal Institute of Technology, Sweden, 2018.

[12] Zaitsev, P. and Tkachenko, V., “Evaluating Database Compression Methods: Update”,

Percona Database Performance Blog. 13-Apr-2016 [Online]. Available:

https://www.percona.com/blog/2016/04/13/evaluating-database-compressionmethods-

update/. [Accessed: 23-Apr-2018]

[13] Deepu, C., Heng, C., and Lian, Y., “A Hybrid Data Compression Scheme for Power

Reduction in Wireless Sensors for IoT”, IEEE TRANSACTIONS ON BIOMEDICAL

CIRCUITS AND SYSTEMS, VOL. 11, NO. 2, April, 2017.

http://ethw.org/History_of_Lossless_Data_Compression_Algorithms

50

[14] Pope, J., Vafeas, A., Elsts, A., Oikonomou, G., Pienchoki, R., and Craddock, I., “An

Accelerometer Lossless Compression Algorithm and Energy Analysis for IoT Devices”,

Wireless Communications and Networking Conference Workshops (WCNCW), IEEE,

April, 2018.

[15] Vadrevu, S., and Manikandan, M., “A New Quality-Aware Quality-Control Data

Compression Framework for Power Reduction in IoT and Smartphone PPG Monitoring

Devices”, IEEE Sensors Letters, Volume 3, July 2019.

[16] Witten, I., Neal, R., and Cleary, J., “Arithmetic coding for data compression,” Commun.

ACM, vol. 30(6), pp. 520–540, June 1987.

[17] Moon, A. Y., Kim, J., Zhang, J., and Son, S., “Lossy Compression on IoT Big Data by

Exploiting Spatiotemporal Correlation”, High Performance Extreme Computing Conference

(HPEC), IEEE, September, 2017.

[18] Park, J., Park, H., and Choi, Y., “Data Compression and Prediction Using Maching

Learning for Industrial IoT”, International Conference on Information Networking (ICOIN),

IEEE, January, 2018.

[19] Chatterjee, A., Shah, R., and Hasan, K., “Efficient Data Compression for IoT Devices

using Huffman Coding Based Techniques”, International Conference on Big Data (Big

Data), IEEE, December, 2018.

[20] Sarbishei, O., “Refined Lightweight Temporal Compression for Energy-Efficient Sensor

Data Streaming”, 5th World Forum on Internet of Things (WF-IoT), IEEE, April, 2019.

[21] Ez-Zazi, I., Arioua, M., and Oualkadi, A., “Analysis of Lossy Compression and Channel

Coding Tradeoff For Energy Efficient Transmission in Low Power Communication

Systems”, 9th International Symposium on Signal, Image, Video and Communications

(ISIVC), IEEE, November, 2018.

[22] Williams, R., “Adaptive Data Compression”, Springer, 1st edition, 1991.

51

7. Appendix

A. Table of Simulation Result

1. Huffman Code: Complete Data File (Original Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 4,211 KB 1,766 KB 58 %

Sant Pol de Mar 6,989 KB 3,090 KB 55.7 %

Hospitalet 1,759 KB 766 KB 56.45 %

Raval 6,144 KB 2766 KB 54.9 %

Sarria 6,541 KB 2888 KB 55.8 %

Z. Universitaria 6,138 KB 2763 KB 54.9 %

2. Huffman Code: Complete Data File (Process Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 4,211 KB 1,686 KB 60 %

Sant Pol de Mar 6,989 KB 2,251 KB 66.2 %

Hospitalet 1,759 KB 636 KB 63.8 %

Raval 6,144 KB 2,407 KB 60.8 %

Sarria 6,541 KB 2,521 KB 61.4 %

Z. Universitaria 6,138 KB 2,405 KB 60.7 %

3. Huffman Code: Temperature Data File (Original Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 429 KB 177 KB 58.7 %

Sant Pol de Mar 480 KB 196 KB 59.1 %

Hospitalet 59 KB 26 KB 60.2 %

Raval 495 KB 201 KB 59.3 %

Sarria 551 KB 217 KB 60.6 %

Z. Universitaria 490 KB 197 KB 59.7 %

4. Huffman Code: Temperature Data File (Process Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 429 KB 140 KB 67 %

Sant Pol de Mar 480 KB 100 KB 72 %

Hospitalet 59 KB 19 KB 60 %

Raval 495 KB 150 KB 63.9 %

Sarria 551 KB 162 KB 64.9 %

Z. Universitaria 490 KB 150 KB 65.6 %

52

5. Huffman Code: Humidity Data File (Original Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 164 KB 64 KB 60.9 %

Sant Pol de Mar 383 KB 150 KB 60.8 %

Hospitalet 60 KB 26 KB 57.3 %

Raval 507 KB 196 KB 61.3 %

Sarria 556 KB 211 KB 62 %

Z. Universitaria 504 KB 196 KB 61.1 %

6. Huffman Code: Humidity Data File (Process Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 164 KB 52 KB 68.2 %

Sant Pol de Mar 383 KB 107 KB 72 %

Hospitalet 60 KB 24 KB 60 %

Raval 507 KB 183 KB 63.9 %

Sarria 556 KB 195 KB 64.9 %

Z. Universitaria 504 KB 183 KB 65.6 %

7. Huffman Code: Wind Speed Data File (Original Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 456 KB 207 KB 54.6 %

Sant Pol de Mar 400 KB 159 KB 60.25 %

Hospitalet 59 KB 27 KB 54.2 %

Raval 457 KB 185 KB 59.5 %

Sarria 526 KB 212 KB 59.6 %

Z. Universitaria 457 KB 183 KB 59.9 %

8. Huffman Code: Wind Speed Data File (Process Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 456 KB 168 KB 63.1 %

Sant Pol de Mar 400 KB 139 KB 65.3 %

Hospitalet 59 KB 24 KB 59.3 %

Raval 457 KB 171 KB 62.5 %

Sarria 526 KB 197 KB 62.5 %

Z. Universitaria 457 KB 150 KB 66.8 %

9. Huffman Code: Wind Direction Data File (Original Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 434 KB 199 KB 54.1 %

Sant Pol de Mar 372 KB 136 KB 56.1 %

Hospitalet 44 KB 19 KB 56.8 %

Raval 486 KB 200 KB 58.8 %

Sarria 486 KB 202 KB 58.4 %

Z. Universitaria 485 KB 197 KB 59.3 %

53

10. Huffman Code: Wind Direction Data File (Process Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 434 KB 180 KB 58.5 %

Sant Pol de Mar 372 KB 124 KB 66.6 %

Hospitalet 44 KB 20 KB 57.5 %

Raval 486 KB 193 KB 60.2 %

Sarria 486 KB 194 KB 60.2 %

Z. Universitaria 485 KB 190 KB 60.8 %

11. Arithmetic Coding: Complete Data File (Original Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 4,211 KB 1,740 KB 58.6 %

Sant Pol de Mar 6,989 KB 3,050 KB 56.3 %

Hospitalet 1,759 KB 754 KB 57.1 %

Raval 6,144 KB 2,718 KB 55.7 %

Sarria 6,541 KB 2,841 KB 56.5 %

Z. Universitaria 6,138 KB 2,715 KB 55.7 %

12. Arithmetic Coding: Complete Data File (Process Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 4,211 KB 1,662 KB 60.5 %

Sant Pol de Mar 6,989 KB 2,232 KB 70 %

Hospitalet 1,759 KB 627 KB 64.3 %

Raval 6,144 KB 2,374 KB 61.3 %

Sarria 6,541 KB 2,491 KB 61.9 %

Z. Universitaria 6,138 KB 2,372 KB 61.3 %

13. Arithmetic Coding: Temperature Data File (Original Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 429 KB 174 KB 59.4 %

Sant Pol de Mar 480 KB 190 KB 60.4 %

Hospitalet 59 KB 25 KB 57.6 %

Raval 495 KB 195 KB 60.6 %

Sarria 551 KB 211 KB 61.7 %

Z. Universitaria 490 KB 194 KB 60.4 %

14. Arithmetic Coding: Temperature Data File (Process Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 429 KB 137 KB 68 %

Sant Pol de Mar 480 KB 97 KB 79.5 %

Hospitalet 59 KB 18 KB 69.5 %

Raval 495 KB 148 KB 70 %

Sarria 551 KB 160 KB 70.9 %

Z. Universitaria 490 KB 147 KB 70 %

54

15. Arithmetic Coding: Humidity Data File (Original Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 164 KB 63 KB 61.5 %

Sant Pol de Mar 383 KB 146 KB 61.8 %

Hospitalet 60 KB 25 KB 61.7 %

Raval 507 KB 192 KB 62.1 %

Sarria 556 KB 206 KB 62.9 %

Z. Universitaria 504 KB 191 KB 62.1 %

16. Arithmetic Coding: Humidity Data File (Process Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 164 KB 51 KB 68.9 %

Sant Pol de Mar 383 KB 105 KB 72.5 %

Hospitalet 60 KB 23 KB 61.6 %

Raval 507 KB 180 KB 64.5 %

Sarria 556 KB 192 KB 65.4 %

Z. Universitaria 504 KB 77 KB 64.4 %

17. Arithmetic Coding: Wind Speed Data File (Original Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 456 KB 201 KB 55.9 %

Sant Pol de Mar 400 KB 155 KB 61.3 %

Hospitalet 59 KB 25 KB 57.6 %

Raval 457 KB 182 KB 60.1 %

Sarria 526 KB 208 KB 60.4 %

Z. Universitaria 457 KB 181 KB 60 %

18. Arithmetic Coding: Wind Speed Data File (Process Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 456 KB 164 KB 64 %

Sant Pol de Mar 400 KB 136 KB 66 %

Hospitalet 59 KB 23 KB 61 %

Raval 457 KB 169 KB 63 %

Sarria 526 KB 194 KB 63.1 %

Z. Universitaria 457 KB 169 KB 62.6 %

19. Arithmetic Coding: Wind Direction Data File (Original Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 434 KB 193 KB 55.5 %

Sant Pol de Mar 372 KB 134 KB 63.9 %

Hospitalet 44 KB 18 KB 59 %

Raval 486 KB 197 KB 59.4 %

Sarria 486 KB 197 KB 59.4 %

Z. Universitaria 485 KB 198 KB 59.3 %

55

20. Arithmetic Coding: Wind Direction Data File (Process Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 434 KB 176 KB 59.4 %

Sant Pol de Mar 372 KB 121 KB 67.4 %

Hospitalet 44 KB 19 KB 56.8 %

Raval 486 KB 191 KB 58.1 %

Sarria 486 KB 190 KB 60.9 %

Z. Universitaria 485 KB 191 KB 58 %

21. LZ77: Complete Data File (Original Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 4,211 KB 568 KB 86.5 %

Sant Pol de Mar 6,989 KB 945 KB 72.1 %

Hospitalet 1,759 KB 669 KB 61.9 %

Raval 6,144 KB 2,125 KB 65.4 %

Sarria 6,541 KB 2,145 KB 67.2 %

Z. Universitaria 6,138 KB 2,122 KB 65.4 %

22. LZ77: Complete Data File (Process Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 4,211 KB 420 KB 90 %

Sant Pol de Mar 6,989 KB 1,270 KB 81.82 %

Hospitalet 1,759 KB 529 KB 69.9 %

Raval 6,144 KB 1,939 KB 68.4 %

Sarria 6,541 KB 1,984 KB 69.6 %

Z. Universitaria 6,138 KB 1,937 KB 68.4 %

23. LZ77: Temperature Data File (Original Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 429 KB 5 KB 98.8 %

Sant Pol de Mar 480 KB 68 KB 85.8 %

Hospitalet 59 KB 3 KB 94.9 %

Raval 495 KB 28 KB 94.3 %

Sarria 551 KB 76 KB 86.2 %

Z. Universitaria 490 KB 35 KB 92.8 %

24. LZ77: Temperature Data File (Process Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 429 KB 4 KB 99 %

Sant Pol de Mar 480 KB 48 KB 90 %

Hospitalet 59 KB 2 KB 96.6 %

Raval 495 KB 26 KB 94.7 %

Sarria 551 KB 68 KB 87.6 %

Z. Universitaria 490 KB 32 KB 93.4 %

56

25. LZ77: Humidity Data File (Original Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 164 KB 2 KB 98.7 %

Sant Pol de Mar 383 KB 58 KB 84.8 %

Hospitalet 60 KB 3 KB 95 %

Raval 507 KB 23 KB 95.4 %

Sarria 556 KB 61 KB 89 %

Z. Universitaria 504 KB 29 KB 94.2 %

26. LZ77: Humidity Data File (Process Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 164 KB 2 KB 98.7 %

Sant Pol de Mar 383 KB 51 KB 86.6 %

Hospitalet 60 KB 3 KB 95 %

Raval 507 KB 22 KB 95.6 %

Sarria 556 KB 61 KB 89 %

Z. Universitaria 504 KB 28 KB 94.4 %

27. LZ77: Wind Speed Data File (Original Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 456 KB 10 KB 97.8 %

Sant Pol de Mar 400 KB 66 KB 83.5 %

Hospitalet 59 KB 2 KB 96.6 %

Raval 457 KB 29 KB 93.6 %

Sarria 526 KB 71 KB 86.5 %

Z. Universitaria 457 KB 35 KB 92.2 %

28. LZ77: Wind Speed Data File (Process Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 456 KB 6 KB 98.6 %

Sant Pol de Mar 400 KB 51 KB 87.25 %

Hospitalet 59 KB 2 KB 96.6 %

Raval 457 KB 28 KB 93.8 %

Sarria 526 KB 68 KB 87 %

Z. Universitaria 457 KB 34 KB 92.4 %

29. LZ77: Wind Direction Data File (Original Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 434 KB 8 KB 98.1 %

Sant Pol de Mar 372 KB 42 KB 88.7 %

Hospitalet 44 KB 2 KB 95.4 %

Raval 486 KB 33 KB 93.2 %

Sarria 486 KB 21 KB 95.6 %

Z. Universitaria 485 KB 41 KB 91.5 %

57

30. LZ77: Wind Direction Data File (Process Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 434 KB 6 KB 98.6 %

Sant Pol de Mar 372 KB 43 KB 88.4 %

Hospitalet 44 KB 2 KB 95.4 %

Raval 486 KB 33 KB 93.2 %

Sarria 486 KB 22 KB 99.5 %

Z. Universitaria 485 KB 42 KB 91.3 %

31. LZ4: Complete Data File (Original Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 4,211 KB 1,001 KB 76.2 %

Sant Pol de Mar 6,989 KB 1,927 KB 72.4 %

Hospitalet 1,759 KB 694 KB 60.5 %

Raval 6,144 KB 2,190 KB 64.3 %

Sarria 6,541 KB 2,219 KB 66 %

Z. Universitaria 6,138 KB 2,188 KB 64.3 %

32. LZ4: Complete Data File (Process Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 4,211 KB 730 KB 82.7 %

Sant Pol de Mar 6,989 KB 1,250 KB 82.1 %

Hospitalet 1,759 KB 589 KB 66.5 %

Raval 6,144 KB 2,007 KB 67.3 %

Sarria 6,541 KB 2,046 KB 68.7 %

Z. Universitaria 6,138 KB 2,005 KB 67.3 %

33. LZ4: Temperature Data File (Original Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 429 KB 12 KB 97.2 %

Sant Pol de Mar 480 KB 65 KB 86.5 %

Hospitalet 59 KB 3 KB 94.9 %

Raval 495 KB 123 KB 75.1 %

Sarria 551 KB 113 KB 79.5 %

Z. Universitaria 490 KB 121 KB 75.3 %

34. LZ4: Temperature Data File (Process Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 429 KB 5 KB 98.8 %

Sant Pol de Mar 480 KB 46 KB 90.4 %

Hospitalet 59 KB 2 KB 96.6 %

Raval 495 KB 109 KB 77.9 %

Sarria 551 KB 100 KB 81.8 %

Z. Universitaria 490 KB 93 KB 81 %

58

35. LZ4: Humidity Data File (Original Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 164 KB 6 KB 96.3 %

Sant Pol de Mar 383 KB 55 KB 85.6 %

Hospitalet 60 KB 3 KB 95 %

Raval 507 KB 97 KB 80.8 %

Sarria 556 KB 90 KB 83.8 %

Z. Universitaria 504 KB 96 KB 80.9 %

36. LZ4: Humidity Data File (Process Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 164 KB 2 KB 98.7 %

Sant Pol de Mar 383 KB 48 KB 87.5 %

Hospitalet 60 KB 3 KB 95 %

Raval 507 KB 95 KB 81.2 %

Sarria 556 KB 89 KB 83.9 %

Z. Universitaria 504 KB 95 KB 81.1 %

37. LZ4: Wind Speed Data File (Original Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 456 KB 8 KB 98.3 %

Sant Pol de Mar 400 KB 63 KB 84.3 %

Hospitalet 59 KB 2 KB 96.6 %

Raval 457 KB 125 KB 72.6 %

Sarria 526 KB 108 KB 79.4 %

Z. Universitaria 457 KB 125 KB 72.4 %

38. LZ4: Wind Speed Data File (Process Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 456 KB 7 KB 98.4 %

Sant Pol de Mar 400 KB 58 KB 85.5 %

Hospitalet 59 KB 2 KB 96.6 %

Raval 457 KB 118 KB 74.1 %

Sarria 526 KB 95 KB 81.9 %

Z. Universitaria 457 KB 100 KB 77.9 %

39. LZ4: Wind Direction Data File (Original Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 434 KB 10 KB 97.6 %

Sant Pol de Mar 372 KB 41 KB 88.9 %

Hospitalet 44 KB 2 KB 95.4 %

Raval 486 KB 143 KB 70.5 %

Sarria 486 KB 84 KB 82.7 %

Z. Universitaria 485 KB 142 KB 70.72 %

59

40. LZ4: Wind Direction Data File (Process Data)

Source File Size (Original) File Size (Compressed) Compression Ratio

Eixample 434 KB 8 KB 98.1 %

Sant Pol de Mar 372 KB 59 KB 84.1 %

Hospitalet 44 KB 2 KB 95.4 %

Raval 486 KB 144 KB 70.4 %

Sarria 486 KB 86 KB 82.3 %

Z. Universitaria 485 KB 144 KB 66.8 %

60

B. Source Code

In this experiments we obtained the source code from several sources. All the information can

be accessed from the website below.

1. Huffman Code:

http://code.activestate.com/recipes/577480-huffman-data-compression/

2. Arithmetic Coding:

https://www.drdobbs.com/cpp/data-compression-with-arithmetic-encodin

3. LZ77:

https://github.com/encode84/ulz

4. LZ4:

https://github.com/encode84/lz4x

https://www.drdobbs.com/cpp/data-compression-with-arithmetic-encodin

