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ABSTRACT

Campylobacteriosis is the most reported gastrointestinal disease in humans in the EU,
representing 70% of all the reporting cases. Wild animals, especially birds, are well known
reservoirs for Campylobacter. The presence of pathogens in the Antarctica has received limited
attention due to the region’s isolation. However, Antarctic seabirds disperse across the Southern
Ocean and can even spend the winter in the northern hemisphere. Such large-scale movements
are thought to contribute to the introduction and dispersion of pathogens. To gain insight into
de epidemiology and genetic diversity of Campylobacter, C. lari isolated from south polar skua
(Stercorarius maccormicki) and brown skua (Catharacta antarctica) of the Southern Ocean
was analysed. A total of 231 isolates of C. lari were recovered and identified from cloacal swab
samples of 55 skuas. Birds were sampled at Adelaide Island, Gough Island, Falkland Islands,
and Svarthamaren in the Southern Ocean. Restriction fragment length polymorphism (RFLP)
was used to characterize the C. lari isolates using fla-A gene to study the genetic variation. A
second typing technique, pulse field gel electrophoresis (PFGE), was used for a higher power
resolution in the characterization. Analysis were completed by including RFLP and PFGE data
retrieved from a database containing data from C. lari isolates from additional locations from

the Southern Ocean.

Some profiles were found to be the same in both RFLP and PFGE, which was attributed to the
higher discriminatory capacity of PFGE and the high genetic instability of Campylobacter.
Through fingerprinting, similarities in pulsotypes between brown and south polar skuas and
between sampling sites were found. These similarities can be attributed to the role of migration
and hybridization between the skuas. These findings are important for a better understanding
of the transmission of pathogens in the Antarctic and its potential impact and relation to human
health.



1. Introduction

1.1 Zoonoses

Zoonotic diseases (also known as zoonoses) are defined as any disease or infection transmitted
from animals to humans (Chlebicz & Slizewska, 2018). Zoonoses can be caused by bacterial,

viral, fungi, or parasitic agents through (Karesh et al., 2012):

e Direct contact with the infected animal by saliva, blood mucus or other body fluids.

e Indirect contact with areas where the animals live or surfaces that have been
contaminated.

e Vector-borne (i.e. mosquitoes, ticks or fleas).

e Food-borne by eating or drinking contaminated food (i.e. raw, unpasteurized, etc).

e Water-borne by drinking or being in contact with contaminated water.

According to the World Health Organization (WHO), 75% of new emerging human infectious
diseases are defined as zoonotic (Gebreyes et al., 2014). As for the already known emerging
infectious diseases, it is estimated that 60% of the 1,461 infectious diseases recognized to occur
in humans by the National Academy of Science, Institute of Medicine, are caused by multi-host
pathogens, which means they are shared with wild or domestic animals (Bidaisee &
Macpherson, 2014).

Endemic zoonoses are the greatest burden of human health, causing about 1 billion illnesses
and millions of deaths every year (Karesh et al., 2012). Enteric zoonotic pathogens are the cause
of millions of those illnesses and thousands of deaths worldwide, most cases involve three
enteric bacteria -Campylobacter, Salmonella, and Escherichia coli. These cases are usually
originated in human, livestock, or wildlife waste (Smith et al., 2020). Among wildlife, birds
have been the centre of many studies as they can carry pathogens through large distances
because they are very mobile, especially during migration (Fu et al., 2019). Some of the routes
through which wild birds can transmit enteric bacteria to humans are direct contact by hunting
and consuming the meat, intentional interaction (i.e. feeding), and, more commonly, contact

with surfaces contaminated with wild birds’ faeces (Smith et al., 2020).



1.1.1 One health approach

One health concept was officially adopted by international organizations in 1984, it is defined
by the One Health Initiative Task Force (OITF) as “the promotion, improvement, and defence
for the health and well-being of all species by enhancing cooperation and collaboration between
physicians, veterinarians, and other scientific health professionals and by promoting strengths
in leadership and management to achieve these goals” (Kahn et al.,, 2016). This
multidisciplinary approach has a significant role in the control and prevention of zoonoses since
the emergence of infectious diseases is caused by a complex multifactorial set of circumstances.
Wildlife represents the most significant threat to global health of all emergence infectious
diseases (Jones et al., 2008). Most of these diseases in humans, livestock, and wild animals are
thought to be maintained in reservoir hosts. However, the reservoirs are often hard to identify,
especially when they are wildlife reservoirs (Haydon et al., 2002). Cross-sectoral collaboration
is key to manage the human-animal-environment interface and thus, improve global health
(Kelly et al., 2020).

1.2 Campylobacter

The genus Campylobacter consists of 47 species and belongs to the family
Campylobacteraceae, under the order of Campylobacterales, in the class of
Epsilonproteobacteria and in the phylum of proteobacteria (LPSN, 2020). The family is divided
into four genera: Campylobacter, Arcobacter, Dehalospirilum and Sulfurospirilum (Chlebicz
& Slizewska, 2018).

Campylobacter genus are gram-negative bacteria, microaerophilic (survives and grows best in
an environment characterized by a low oxygen tension -5% 02, 10% CO2, and 85% N2-)
(Facciola et al., 2017). This genus is non-spore forming and has a length between 0.5 and 5 um
and a width comprised between 0.2 to 0.9 um (Mardones & Lépez, 2017). The DNA is rich in
adenine and thymine and around 1-6-1.7 Mbps. Campylobacter species are usually mobile,
characterized by a polar flagellum present on one or both ends of the cell that causes a spiral
movement (Facciola et al., 2017). Campylobacter are mainly spiral-shaped, “S”-shaped, or
curved, rod-shaped bacteria with a typical movement like a corkscrew determined by the helical
shaped flagella (Chlebicz & Slizewska, 2018). The genes responsible for motility in
Campylobacter species are two flagellin genes flaA and flaB that can be found in tandem (Cody
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etal., 2010). Sequencing of many Campylobacter species has been achieved, which has allowed
by homologous recombination to determine that flaA is necessary for invasion while flaB is not
expressed as much. These genes undergo intergenic recombination and can further contribute

to the bacterial virulence (Meinersmann et al., 2005).

Campylobacter can synthesize the oxidase enzyme, except for C. gracilis, and can grow at pH
between 6.5 and 7.5 and temperatures between 37-42°C, being unable to grow at temperatures
above 55°C or below 30°C. The growth does not occur in environments with water activity (aw)
concentrations of less than 0.987 (sensitive to NaCl >2% wi/v), while it is optimal if equal to
0.997 (NaCl about 0,5% w / v) (Facciola et al., 2017). These bacteria are fragile and cannot
tolerate drying. Therefore, freezing reduces the number of Campylobacter bacteria on raw meat
(Chlebicz & Slizewska, 2018).

1.2.1 Campylobacteriosis

Campylobacteriosis is the most reported gastrointestinal disease in humans in the EU and has
been since 2005, representing 70% of all the reported cases, followed by other bacterial diseases
such as salmonellosis, STEC (Shiga toxin-producing E. coli) infections and yersiniosis (see
Figurel). Worldwide, the genus Campylobacter is one of four key global causes of diarrhoeal
diseases and considered to be the most common cause of bacterial human gastroenteritis (EFSA,
2019; Pérez-Boto et al., 2014). Campylobacter spp is found in the gastrointestinal tract of a
wide range of wild animals (mostly birds and mammals), farm animals (livestock, pigs,
poultry), and pets (dogs and cats) (Facciola et al., 2017).
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The transmission usually occurs through faecal-oral route, being the main environmental niche
the intestinal tract of all avian species. Poultry consumption represents 50-70% of human cases

of campylobacteriosis (Facciola et al., 2017).

Campylobacteriosis symptoms are acute and characterized by abdominal pain, nausea,
dehydration, diarrhoea, fever, and fatigue. Treatment is usually contraindicated except for the
most severe cases since the illness is typically self-limiting. Complications are rare, but
Campylobacter infections can be associated with the autoimmune disorders Miller-Fisher
syndrome and Guillain-Barré syndrome, which are neurological disorders characterized by
paralysis and weakness of limbs, anaemia, possible involvement of respiratory muscles, and
sensory loss, reactive arthritis involving knees and ankles, occurring about a month after
infection and for as long as 5 years (Chlebicz & Slizewska, 2018; WHO, 2012).

The high incidence of campylobacteriosis, along with the duration and complication, makes it
a high burden from a socio-economic perspective, especially in developing countries in which
diarrhoeal infections are very common in children under the age of 2 years and sometimes
results in death (Platts-Mills & Kosek, 2014; WHO, 2012).

From the 47 species and 16 subspecies assigned to Campylobacter, the so-called thermophilic
species (able to grow at 42°C but not below 30°C) are the causal agents of human
gastrointestinal disease (campylobacteriosis). Campylobacter jejuni is the cause of
approximately 90% of campylobacteriosis, followed in order of importance by C. coli, C.
upsaliensis (found in cats and dogs) and C. lari (found in seabirds in particular) (Fouts et al.,
2005).

Although most Campylobacter infections are considered food-borne, associated with the
consumption or handling of contaminated meat, sporadic cases in which the source of infection
goes undetermined are common (Meinersmann et al., 2005). Birds are an important reservoir,
as some species have shown to be asymptomatic, making the detection challenging and posing
a bigger threat to human health. In this context, production animals play an important role, as
consumption of uncooked meat is considered a risk factor (Moré et al., 2017). However, in
order to achieve a One Health approach to this subject, the role of wild animals must be also
considered (Smith et al., 2020).



1.3 Reservoirs

Campylobacter spp is widely distributed in nature, found naturally in soil, manure, and aquatic
systems. It is often caused by the contamination of poultry, beef, and pork. Bacteria from the
Campylobacter genus do not proliferate outside the alimentary tract of warm-blooded animals
but may survive for several weeks in food products that have been stored at low temperatures
(Chlebicz & Slizewska, 2018; EFSA, 2019; Jurado Tarifa et al., 2016).

The main Campylobacter reservoir are domestic and wild birds, but ruminants such as cattle,
goats, and sheep, may act also as an important reservoir for Campylobacter (Kemp et al., 2005).
Birds are considered a natural host of thermophilic Campylobacter spp because their body
temperature (41-42°C) seems to be well adapted to the bacteria (Tang et al., 2017). The bacteria
colonize mostly the gut (duodenum, jejunum, and intestines) rather than the rumen. In an
infected herd, these bacteria are present in up to 80% of animals (20% in sheep) (Facciola et
al., 2017). Besides the meat, milk can also pose a risk of infection. Raw milk can be
contaminated during milking or as a result of udder infections. Campylobacter spp can also
inhabit the alimentary tract of pigs with an incidence of 38-63%, although infections resulting
from the consumption of pork are rare, pigs are considered the main reservoir of C. coli.
Vegetables are also a frequent vector of transmission as a result of direct or indirect contact
with livestock faeces, mainly due to cross contamination during handling at the kitchen
(Chlebicz & Slizewska, 2018; EFSA, 2019).

Wild birds are considered natural vertebrate reservoirs of Campylobacter spp and thus are
frequently mentioned as possible vectors of transmission to other vertebrates such as poultry,
cattle, and humans (Cody et al., 2010; Waldenstrom et al., 2010). Migratory birds, due to their
ability to cover long distances and fly freely are thought to be an important reservoir (Cerda-
Cuellar et al., 2019). For example, the only foodborne illness outbreak traced back to a wild
bird source occurred from migrating sandhill cranes stopping over at a pea farm in Alaska
(REF). This ability to reach human-inhabited landscapes make it of special interest for public
health related issued (Smith et al., 2020).

The role of wild birds in the spreading of pathogens in the Antarctica has received limited
attention due to the region’s isolation and relatively few exploitations by humans. However,
some infectious agents may have invaded the region long before the arrival of humans due to
migratory birds (Barbosa & Palacios, 2009; Cerda-Cuéllar et al., 2019; Smith et al., 2020).



Skuas are seabirds from the genus Stercorarius that nest in the ground of both Arctic and
Antarctic poles. Up to 95% of wintering skuas practice kleptoparasitism, a form of feeding in
which skuas chase gulls, terns and other seabirds to steal their catches. Skuas are one of
Antarctica’s top avian predators, some even scavenge carcasses at breeding colonies of
pinnipeds and penguins. Evidence of hybridization exists for all species; the largest overlap is
found between the south polar skua (Stercorarius maccormicki) and brown skua (Catharacta
antarctica) (Gonzalez-Solis et al., 2017; Ritz et al., 2008).

1.3.1 South Polar Skua (Stercorarius maccormicki)

South polar skua, the smaller of the Antarctic skuas, have distinctive tan highlights in their
feathers and tend to be more reserved (see Figure 2). First breeds start at age 5-6 years and
usually the same birds share the same nest site every year after. One to two eggs are laid at a
time, the eggs are olive to brown, blotched with darker brown. Even when both eggs hatch, only
one young survive to fledging. Young are fed by both parents and leave nest soon after hatching
(Hemmings, 2013a; Ritz et al., 2008).

Figure 2. South polar skua (Stercorarius maccormicki) (Audubon, n.d.)

South polar skua can be found far to the north in both Atlantic and Pacific oceans, most common
in California during late spring and early fall where it remains far offshore. However, this
predatory seabird only nests around the edges of the Antarctic continent both on islands and
mainland (see Figure 3). The nests are usually close to penguin colonies, so the eggs and chicks
can be fed. When the nests overlap with those of the larger brown skua, they take over control
and the south polar skua must forage at sea. Nest site is on the ground scraped in soil or moss
(Carneiro et al., 2014; Ritz et al., 2006).
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Figure 3. Distribution map of south polar skua on the southern hemisphere (BirdLife International,
2020b)

1.3.2 Brown skua / subantarctic skua (Catharacta Antarctica)

The brown skua, also known as the subantarctic skua, is the biggest of the Antarctic skuas. It is
dark brown with a very robust sharp falcon-like beak and tiny claws at the end of their webbed
feet. Exhibits, during flight, a white patch on both upper and under wings (see Figure 4). The
subspecies vary in plumage from largely brown to pale brown. Field separation from the south
polar skua is difficult, even when the south polar has colder tones and smaller bill (Hemmings,
2013b; Ritz et al., 2008).

Figure 4. Brown / subantarctic skua (Catharacta Antarctica) (eBird, 2011)



Brown skuas hybridize with both south polar skuas and Chilean skuas, up to 12% of breeding
pairs in populations within a wide hybrid zone consist of a female brown skua and a male south

polar skua whose offspring can reproduce effectively (Ritz et al., 2008).

Brown skuas breed in the Antarctic and Sub Antarctic regions, but moves further north when
not breeding (see Figure 5). As a breeding ritual, each skua pair has it breeding territory in the
Antarctic that they occupy during the breeding season, where the pair scrapes a small depression
in the ground to lay the eggs. During the incubation, one skua is sitting on the nest while the
other looks for food, usually fish or carcasses from penguin colonies (Gonzélez-Solis et al.,
2017; Phillips et al., 2007).
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Figure 5. Distribution of brown skua on the Southern hemisphere (BirdLife International, 2020a)

1.4 Molecular epidemiology

Understanding the epidemiology of Campylobacter spp in wild birds is an essential part to study
outbreaks. Campylobacteriosis are usually sporadic case and outbreaks are rarely notified and
are difficult to investigate because it is possible that more than one strain coexists within the
same individual. Another characteristic that poses a challenge when studying an outbreak is the
genetic variability attributed to Campylobacter, that makes it possible for more than one



molecular profile to be present within the isolates of an outbreak (Cody et al., 2010; Mardones
& Lopez, 2017; WHO, 2012).

Even though the prevalence and genetic diversity of Campylobacter spp has been widely
studied in humans and poultry, in wild birds is yet to be further studied. The characterization of
Campylobacter is based in different phenotypic and genotypic markers. Conventional
phenotypic methods such as morphology under the microscope, biochemical (catalase, oxidase,
nitrate reductase) or serological tests are not so reliable and can be prone to false negatives. The
use of molecular techniques is more reliable and specific. Polymerase chain reaction (PCR)
allows the confirmation of Campylobacter species using different genes (Hubalek, 2004;
Ranjbar et al., 2014).

For molecular epidemiology studies, restriction fragment length polymorphism (RFLP) has a
high-resolution power. The molecular technique known as pulse field gel electrophoresis
(PFGE) is also widely used and considered as the “gold standard” typing method (Ranjbar et
al., 2014).

RFLP has been widely used to determine the genetic diversity of Campylobacter. In RFLP, a
DNA sample is digested into fragments by restriction enzymes, resulting in restriction
fragments that are then separated through electrophoresis according to their size, allowing to
determine homologous DNA sequences, also known as polymorphisms (Bahmani et al., 2019;
Steinhauserova et al., 2002). The flaA-RFLP technique consists in the amplification of the flaA
flagellin gene through PCR and its digestion with Ddel enzyme to generate the profile. This
technique is widely used in epidemiological studies for its simplicity and for its relative low
cost. However, due to the possibility of a recombination between flaA and flaB, this technique
is not suited for dynamic populations or long-term studies. Even though, flaA-RFLP can be a
useful first step, especially when it is used along with other typing techniques such as PFGE
(Taboada et al., 2013; Waldenstrom et al., 2010).

PFGE typing is a highly discriminative molecular technique used in epidemiological studies
worldwide. It consists on the enzymatic digestion of the entire chromosomal DNA of the
bacteria and the separation of the restriction fragments obtained using an electrical field of
alternating polarity in different sizes (30-1100 bp). By comparing any two isolates, you can find
out if they are clonal or not (Taboada et al., 2013). For Campylobacter, PFGE uses the enzymes

Smal and Kpnl that have infrequent recognition sites and that is how it creates the profile. One
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downside of this technique is that it is time consuming, require expensive equipment, and
reproducibility can be difficult to achieve despite standardized protocols, especially in bacteria
with genomic instability such as C. jejuni that can present different PFGE profiles after passing
through the intestine of a host. Nevertheless, PFGE is still a reliable technique for short-term
epidemiological analysis or for a high number of isolates (Bahmani et al., 2019; Shima et al.,
2006).

Combining RFLP and PFGE techniques can provide a reliable source for characterization of
Campylobacter. However, new technologies such as whole genome sequencing (WGS) by next
generation sequencing (NGS) make possible to examine the entire genome of bacterial isolates
and differentiate by a single nucleotide, providing the highest levels of accuracy for
epidemiological studies. These technologies are becoming more accessible and applicable for

a larger number of strains of interest (Forde & O’Toole, 2013).
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2. Objectives

The aim of this study is to gain insight into the epidemiology of C. lari by determining its
genetic diversity from isolates recovered from Brown skua (Catharacta antarctica) and South

Polar skua (Stercorarius maccormicki) from different locations from the Southern Ocean.
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3. Material and Methods

3.1 C. lariisolates

For the purpose of this study, C. lari isolation and identification had already been performed
by the research team where | have developed the research project. A total of 231 C. lari isolates
were recovered from cloacal swab samples of 55 skuas (brown skuas and south polar skuas)
collected between September 2016 and February 2019. Of the total number of isolates, N=66
was of south polar skuas collected in Adelaide Is.; N=5 was of subantarctic skua collected in
Gough Is.; N=32 was of brown skuas collected at Gough Base in Gough Is, N=58 was of brown
skuas collected in Svarthamaren; and N=70 was of brown skuas collected in Falkland Is. (see

Figure 6).

@ Gough island

@ svarthamaren

- ¥ Adelaide island

@ Falkland island

Figure 6. Map of the localization of Adelaide, Gough, Svarthamaren and Falkland Islands (Google

maps)

3.2 DNA extraction

DNA extraction from the C. lari isolates was performed using 100ul of InstaGene Matrix
(BioRad) and adding 250 pl of the bacterial suspension in PBS and mixed using vortex. The
suspension was then incubated in the bath at 56°C for 30 min and vortexed at high speed for 10

seconds, the suspension was then placed at 99°C in the thermoblock for 8 minutes. After the
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time has passed, the Eppendorf tubes with the mixture were centrifuged at 13000 rpm for 3 min.
Finally, 200 pl of the supernatant was collected into new tubes, labelled correctly and stored at
-20°C until use.

3.3 PCR-FlaA

FlaA gene amplicon was obtained using PCR. DNA was first quantified using BioDrop and
appropriate dilutions were prepared using MiliQ water, so each sample had the same DNA
concentration (20ng/ul). The primers used for the amplification of flaA gene of C. lari are

shown in Table 1 and PCR conditions are specified in Table 2.

Table 1. Primers used for the amplification of flaA in C. lari

Primers Sequence (5°3°)
Lari A-f (forward) ‘ GGA TTT CGT ATA AAT ACT AAT GTG GC
Lari A-r (reverse) ‘ TTG TAATAATCT CATTACATTTTG

Table 2. Reaction mix and conditions for the flaA amplification in C. lari

PCR flaA Reaction MIX

20ul H20d

25ul Master Mix Promega 2X

2ul primer Lari A-f 10uM (1/10)

2ul primer Lari A-r 10uM (1/10)

Total MIX (Reaction volume 50pl)

MIX 47,5ul

DNA 2,5ul

PCR program:

94°C, 5* // 94°C, 1’ / 45°C, 1’ / 72°C, 1’30 // 72°C, 7’ // 4°C, o
30 cycles

Electrophoresis was used to confirm if the flaA amplicon was obtained from the PCR (Figure
7). An agarose gel (100ml agarose 1.8% TAE + 180ul Etidium Bromide diluted 1/100) was run
at 120V for 30 minutes; 8ul of the sample (flaA amplicon mixed with blue dye) and 3ul of the
molecular weight marker 2-log DNA ladder were loaded into the gel and visualized using UV

light. The flaA amplicon of C. lari has a molecular weight of 1700bp.
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Figure 7. Agarose gel electrophoresis of flaA amplicons of C. lari

All isolates that showed flaA amplicon were analysed by RFLP and a selection of those were
further analysed by PFGE. Those samples that did not show flaA PCR amplicon were listed
directly for PFGE.

3.4 flaA-RFLP (Restriction Fragment Length Polymorphism)

The amplified product of flaA PCR fragment (1700bp) was digested using the restriction
enzyme Ddel (HypF3l; FastDigest®, Thermo Fisher Scientific, Waltham, MA, USA),

conditions used are shown in Table 3 below.

Table 3. Reaction mix for the flaA-RFLP enzymatic digestion

Reaction MIX:

12ul sterile H2O

2ul Buffer 2X (Green Dye)
1ul Ddel enzyme (HypF3l)
Total MIX (20ul):

MIX 15ul

DNA amplicon flaA 5pl
Digestion:

10 minutes at 37°C
Inactivation:

5 minutes at 65°C
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Once the enzymatic digestion was completed, the products were separated by electrophoresis
on a 2.5% agarose gel in 1x TAE buffer at 90V for 3h, 20ul of the sample and 3ul of the
molecular weight marker 2-log DNA ladder were loaded into the gel, UV light was used to

visualize the bands (Figure 8).
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Figure 8. Agarose gel of flaA-RFLP enzyme digestion

Band patterns resulting from flaA-RFLP were used to determine the PFGE selection. Isolates
from the same individual with the same flaA-RFLP profile were considered as the same strain
and only one of them was selected for PFGE.

3.5 Pulsed Field Gel Electrophoresis (PFGE)

PFGE was performed according to the standard operating procedure described in PulseNet
(https://pulsenetinternational.org/protocols/pfge/). lIsolates were digested using the Smal
restriction enzyme. Molecular weight marker used was Salmonella braenderup digested with
Xbal enzyme. Electrophoresis was performed with a Chef-DR 11l system (BioRad, Hercules,
CA, USA). The PFGE gel was dyed using EtBr and UV light was used to visualize the bands
(Figure 9).

l
i o
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Figure 9. Pulse Field Gel Electrophoresis band pattern
3.6 Band patterns comparison and analysis

RFLP and PFGE band patterns were analyzed using Fingerprinting 11 v3.0 software (Bio-Rad,
Hercules, CA, USA). Similarity matrices were calculated using the Dice coefficient with
tolerance and optimization values of 1.0%. Afterwards, dendrograms were constructed for both
RFLP and PFGE based on an unweighted-pair group method with arithmetic mean (UPGMA)

cluster analysis. A cut-off of 90% was used for the determination of the different profiles.

4. Results

We used flaA-RFLP in the first instance to determine the genetic diversity among
Campylobacter isolates within an individual host and within a colony, and lastly to determine
similarities among localities. Overall, 231 isolates of C. lari from 14 south polar skuas, 2
subantarctic skuas and 39 brown skuas were genotyped using flaA-RFLP, and 19 different
profiles (cut off, 90% similarity) were identified (Figure 10). In most cases, each bird carried a
single profile, but in some instances also the same profile was found among different
individuals from the same colony. More interestingly, same profiles were also found among
individuals from different localities (Adelaide Is and Gough Is) and bird species (brown skuas,
south polar skuas). When C. lari isolates from marine birds (mainly skuas) from other localities
from the Southern Ocean, previously characterized by RFLP and available in the database of
the research group were added to the analyses, the number of localities were the same strain
(=same profile) was found increased (Figure 11). Thus, same strain could be found in 2 (e.g.
Svarthamaren, Kerguelen; Adelaide, Kerguelen; Adelaide, Gough), 3 (e.g. King George Is,
Svarthamaren Falkland; Gough, Svarthamaren, Falkland), 4 (e.g. Adelaide, Falkland, Crozet
Kerguelen Is), 5 (e.g. Adelaide, King George Is, Falkland, Gough Is, Crozet) or up to 6 (e.g.

Adelaide, King George Is, Gough Is, Crozet, Kerguelen Is., Amsterdam Is) different localities.

The results from the flaA-RFLP were used to select the isolates that were suited for PFGE. In
the cases where isolates from the same individual showed the same RFLP profile only one of
the isolates were selected for PFGE. Four isolates from the same individual that did not show
flaA amplification (PCR) nor RFLP profile were also included in the PFGE. Overall, 37 isolates
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of C. lari from 15 south polar skuas, 2 subantarctic skuas and 9 brown skuas were genotyped
by PFGE, 27 different profiles were identified (Figure 12). From the comparison between flaA-
RFLP to PFGE two pulsotypes of isolates with the same RFLP (i.e. RFLP profile N° 4 and 14)
have also the same PFGE profile, and only one of them have isolates from different localities.
It is interesting to mention that these profiles that are consistent in RFLP and PFGE showed a
higher number of bands in RFLP which might contribute to a more accurate result. These
differences might be explained by the higher discriminatory power that is attributed to PFGE.

In order to increase the scope of this study, further analysis of PFGE of C. lari from a diverse
variety of localities that was available in the database of the research group was added to the
study (Figure 13). The same strains could be found in 2 (Marion, Kerguelen Is.), 3 (Livingston,
Gough, Marion), 4 (Adelaide, Gough Is, Cochons, Amsterdam), and up to 6 (Livingston,
Falkland Is, Gough Is, Strandfontain, Marion, Amsterdam Is.) different localities.
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Figure 10. flaA-RFLP dendrogram of C. lari isolates from brown skua, subantarctic skua, and south polar skua from Gough and Adelaide Islands.
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Figure 11. flaA-RFLP dendrogram of C. lari isolates including data retrieved from own database. Green squares highlight isolates from different localities showing >90%

similarity.
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Figure 12. PFGE dendrogram of C. lari isolates from brown skua, subantarctic skua, and south polar skua from Gough and Adelaide Islands
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Figure 13. PFGE dendrogram of C. lari isolates including data retrieved from own database. Green squares highlight isolates from different localities showing >90%

similarity.
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5. Discussion

Campylobacteriosis is the most reported gastrointestinal disease in humans. This specie can
invade the organisms of warm blood animals, including humans and specially birds due to their
blood temperature (Chlebicz & Slizewska, 2018). Migratory birds might be key for a better
understanding and management of emerging infectious diseases (Barbosa & Palacios, 2009;
Cerda-Cuéllar et al., 2019). In this study, we provided an insight of the epidemiology of
Campylobacter lari in brown and south polar skuas from the Southern Ocean and Antarctica.

The genetic diversity of C. lari was assessed using flaA-RFLP and PFGE. Both typing
techniques are widely used in epidemiological studies. PFGE showed a higher genetic diversity
against flaA-RFLP, this might be explained by the highly discriminative level of PFGE and
also to the high genetic instability of the Campylobacter genome (Waldenstrom et al., 2010). It
is of especial interest to mention that those profiles that were the same in RFLP but different in
PFGE coincide to profiles with fewer bands in RFLP, while the profiles that were the same both
in RFLP and PFGE had more complete band patterns, this can be explained because fewer
bands relate to a lower discriminative capacity. These variations in the typing techniques
reinforce the importance to use at least two techniques, like RFLP and PFGE, to confirm the
results. Furthermore, to prove the results of the C. lari profiles obtained in this study, the use
of a second enzyme (i.e. Kpnl) might be useful. The use of other techniques such as MLST
have also proven to provide more accurate results when used along with PFGE. (Bahmani et
al., 2019; Forde & O’Toole, 2013; Taboada et al., 2013)

The incorporation of previously characterized isolates to the RFLP and PFGE analyses proved
that many localities shared the same profiles. Wild birds are very mobile, and thus can carry
pathogens through large distances. Both brown skuas and south polar skuas can travel long
distances and from one island from the Southern Ocean to the other (Smith et al., 2020). Brown
skuas breed across a long latitudinal range from the Antarctic and South ocean to temperate
regions. Individuals often use a migration strategy which they follow year after year. However,
the variability of migration strategies among individuals and populations is remarkable, which
makes it difficult to establish a single pattern. Also, post-breeding movements might also vary
from true long distances like the Benguela current in the Atlantic Ocean to staying in the vicinity
of breeding grounds. Males usually have shorter migration than the females. As for the south

polar skua, it is also known that travel long distances during the wintering that can reach up to
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California. This skua can be both in the islands and in mainland. This intense migrations and
ability to communicate from island to island explain why there are C. lari isolates that share the
same profile even through the distance (Delord et al., 2018; Krietsch et al., 2017; Ritz et al.,
2008).

Migration is considered a response to seasonal variation, in specific to prey availability. During
breeding season both south polar and brown skuas tend to build nest near colonies of penguins,
and outside of the breeding period can range through much larger areas. This might provide an
insight of the broad molecular variability of C. lari in these birds as well as why some share the
same pulsotype (Cody et al., 2010; Delord et al., 2018; Schultz et al., 2018).

No special host specificity was observed. Even though there are certain profiles that are shared
by only one individual, there was also cases in which the same profile was shared by different
individuals and both by brown and south polar skuas. The overlap of species (South Polar skua
and Brown skua) that was found can be explained by the distribution of this taxa, in Figure 14
it can be observed an extensive area of hybridization between South Polar and Brown skuas.
These birds have shown an extensive variation during the post breeding movement. Up to 12%
of breeding pairs in populations within a wide hybrid zone consist of a female brown skua and
a male south polar skua whose offspring can reproduce effectively. This hybridization has also
made more challenging the distinction of one skua from the other (Ritz et al., 2006; Smith et
al., 2020).

77 g i
e Cave
South Amenca

Figure 14. Distribution of the five southern taxa skua (Ritz et al., 2008)
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This connectivity between the islands and the skuas pose a risk for the potential spread of
pathogens. Wild birds can exchange diseases with domestic birds, other animals such as pigs
or cattle, and humans. To establish a better understanding between wild birds and human
diseases is important to keep working towards understanding transmission (Barbosa & Palacios,
2009; Jones et al., 2008; Karesh et al., 2012). It has been established that pathogens can be
dispersed by migratory birds. Nonetheless, another reason of why studying this transmission is
important is that it has recently been stablished that humans have also contributed to their
dispersal. In the antarctica, reports of wildlife suggested the spread of enteric bacteria from
people to seabirds. Recurring outbreaks of emerging and re-emerging zoonoses are a reminder
that health of humans, animals and the environment are interconnected, an interdisciplinary and
cross-sectoral approach is necessary (Bidaisee & Macpherson, 2014; Cerda-Cuéllar et al., 2019;
Kahn et al., 2016).
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6. Conclusions

An insight into the molecular epidemiology of Campylobacter lari in skuas from the Southern
Ocean was performed using flaA-RFLP and PFGE genotyping techniques. Both proved to be
very useful to study the genetic diversity of the isolates, being PFGE the one with a stronger

discriminatory level.

A high number of molecular profiles were found, that evidence the genetic diversity of C. lari
in skuas. The similarities of some pulsotypes between the different species of skuas and
sampling sites are consistent with the distribution of this migratory birds and the overlap of
hybridization sites during breeding season. The role of migration and hybridization between

brown and south polar skuas posed as the reason of the interconnectivity of the islands

The role of wild birds is key to a better understanding of the transmission of pathogens in the
Antarctic, the introduction of emergent diseases and its potential impact and relation to human
health.
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