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Resum: 

 

Aquest treball de fi de Màster s’ha centrat en l’estudi de les traces Random Telegraph Noise 

(RTN) per a l’entrenament de les xarxes neuronals. Concretament, s’ha estudiat 

l’aleatorietat de les traces RTN, mitjançant una primera conversió a bits i una posterior 

validació basada en la incertesa en la repetició dels símbols binaris consecutius. Aquest 

estudi s’ha realitzat a nivell de simulació, utilitzant el model de les xarxes neuronals basat 

en les traces RTN, mitjançant l’aplicació de NNStart de MATLAB. 

 

 
Resumen: 

 

Este Trabajo de final de Máster se ha centro en el estudio de las trazas Random Telegraph 

Noise (RTN) para el entrenamiento de las redes neuronales. Concretamente, se ha estudiado 

la aleatoriedad de las trazas RTN mediante una primera conversón a bits y una posterior 

validación, basada en la incertidumbre en la repetición de símbolos binarios consecutivos. 

Este estudio se ha realizado a nivel de simulación, utilizando el modelo de redes neuronales 

basado en las trazas RTN, mediante la aplicación de NNStart de MATLAB.  

 

 
Summary: 

 

This Master's thesis has focused on the study of Random Telegraph Noise (RTN) traces for 

the training of neural networks. Specifically, the randomness of RTN traces has been studied 

by means of a first conversion to bits and a subsequent validation, based on the uncertainty 

in the repetition of consecutive binary symbols. This study has been carried out at the 

simulation level, using the neural network model based on the RTN traces, by means of 

MATLAB's NNStart application.  
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Presentation 

 

The main objective of this work is to use a virtual neural network capable of 

discriminating which Random Telegraph Noise (RTN) traces are valid and which are not. 

To do so, the traces generated will be measured and classified according to the uncertainty 

in the repeatability of consecutive binary symbols.  

 

MATLAB, a programming software, and, in particular, the NNStart application will be 

used to train the neural network. This application is capable, on its own, of verifying and 

validating the traces.  

 

It has been decided to use the characteristics of RTN traces because of their ability to not 

follow decipherable patterns. This randomness makes it an interesting phenomenon for 

encryption applications, cybersecurity and security applications such as random one-time 

codes, PUDFs, etc... 

 

In order to fulfil the established objective, the following tasks have been executed: 

 

-Generate different RTN traces by modifying the statistical parameters of the random 

variables that generate the levels, the emission and capture times, etc.... 

 

-Obtain codes of different lengths from the RTN traces and make validations using two 

different methods: average current value and capture and emission events.  

 

-Validate the binary codes separately, associating a 01 if the code is correct and a 10 if 

the code is not correct.  

 

-Make the WTLP of each generated binary code to be used as input to the neural network. 

 

-Train the neural network and analyse the training results.  
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1. Introduction 

 

This section of the work introduces the basic concepts on which this master's thesis is 

based. First, the MOSFET transistor and its main characteristics (operating regions, I-V 

curves...) will be presented, including variability effects such as RTN that occurs during 

the device operation. Then, it will be explained how RTNs (Random Telegraph Noise) 

traces can be used as random phenomena for security applications, and how the Matlab’s 

NNstart can be used to classify the RTN traces depending on their own characteristics. 

To conclude this section, we will describe the different characteristics and/or objectives 

of these concepts and how we will work to achieve the objective of the work.  

 

1.1 MOS structure and its operation regions 

 

A MOSFET transistor is based on the MOS (Metal-Oxide Semiconductor) structure. It 

consists of a metal (usually polysilicon), silicon oxide (insulator, SiO2) and an N-type or 

P-type silicon semiconductor. In the case of an N-type structure (NMOS), it consists of a 

silicon substrate doped with holes. If it is a P-type structure (PMOS), it consists of an 

electron-doped silicon substrate. 

Figure 1: MOS structure. 
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Figure 2: NMOS (a) and PMOS (b) structures. 

 

In both structures the device behaves like an electronic capacitor due to the accumulation 

of electrical charges on the oxide and the semiconductor. Depending on the level of 

applied voltage, three regions of operation are distinguished: accumulation region, 

depletion region and reversal region. 

 

-Accumulation region: in this stage the charges are stored in the oxide. The dielectric is 

polarised proportional to the applied electric field. In an NMOS, by applying a negative 

gate potential, electrons are induced, attracting holes to the interface and creating an 

electric field. If the structure is a PMOS, the applied gate potential will be positive, 

inducing holes and also creating an electric field. 

 

-Depletion region: In this region, the gate potential is increased, causing electrons and 

holes to begin to recombine in the semiconductor. In NMOS, a positive potential is 

applied to the gate, accumulating positive charge on the metal, attracting electrons to the 

interface and pushing the holes away. This generates an electric field from the metal to 

the semiconductor (opposite direction to the build-up case). In PMOS, the potential 

applied to the gate is negative, attracting the holes to the interface and creating an electric 

field. In this case, the holes are attracted to the interface and the electrons are repelled, 

producing an electric field in the build-up direction.  

 

-Reversal region: by further increasing the gate voltage, the reversal region is reached. 

When working with an NMOS, the applied voltage is so negative that the material is filled 

with electrons. In this way, the semiconductor holes are attracted to the interface, creating 
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an electric field from the semiconductor to the metal. When working with a PMOS, a 

very positive voltage is applied, inducing many holes in the metal and creating a large 

electric field from the metal to the semiconductor (high intensity). 

 

 

Figure 3: Capacitances vs voltage of MOS-C devices for n-type. 

 

1.2 MOSFET structure 

 

MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) are semiconductor 

switching devices that have three terminals: gate (S), source (G) and drain (D). One of 

the fundamental characteristics of the MOSFET is that it is a device in which there is no 

electrical connection between the port and the substrate, making the gate isolated.  This 

type of transistor is used to amplify or switch electronic signals. There are two types of 

MOSFETs: enrichment ones and deplexing ones. 

 

-Enrichment MOSFETs: these are based on the creation of a channel between the drain 

and source by applying a gate voltage. This voltage attracts minority carriers into the 

channel, creating an inversion region (the opposite region to the original substrate). When 

there is an increase in electron concentration in the channel, an nMOSFET or NMOS is 

obtained. When the concentration is of holes, it has pMOSFET or PMOS. Therefore, an 

NMOS is built with a p-type substrate and a PMOS with an n-type substrate. 
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-Duplexing MOSFET: an electrical voltage is applied to the gate to make the channel, 

which is in a quiescent state, disappear. This voltage generates a decrease in the number 

of charge carriers and conductivity. 

 

 

Figure 4: MOSFET cross sections NMOS transistor (a) and PMOs transistor (b). 

 

1.2.1 Operation regions of MOSFET structure 

 

There are different regions of operation for NMOS and PMOS transistors. These depend 

on the voltage between drain and source (VDS), the voltage between gate and source (VGS) 

and the threshold voltage of the transistor (VTH). The different operating regions will be 

explained for the NMOS case, and the table 1 will also show them for the PMOS case. 

 

The first of the regions is called cut-off region which occurs when VGS < VTH. At this 

point, the drain current (ID) is practically zero. Therefore, it is said that in this region the 

transistor is turned off. 

 

In the linear region the applied voltage is higher than the threshold creating a depletion 

region in the region separating source and drain. If the applied voltage is further increased, 

in an NMOS transistor the minority carriers will be electrons and in a PMOS transistor 

the minority carriers will be holes. In this region the transistor behaves like a resistor 

depending on the gate voltage. 
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The last of the regions is the saturation region. In this region, the drain and source voltages 

exceed a certain limit causing the channel to disappear. The ID current is invariant to 

changes in VDS and depends only on the applied VGS voltage. 

 

Table 1: Regions of operations to NMOS and PMOS transistors, where ‘V’ is the voltage and the sub-indexes mark 

whether it is the gate (G), the drain (D), the source (S) or voltage threshold (TH). 

 

The drain current must also be considered. Depending on the area and the type of 

MOSFET, PMOS or NMOS, it has different values (see table 2). 

 

Regions of 

operations 

NMOS currents PMOS currents 

Cut-off region 𝐼𝐷 = 0 𝐼𝐷 = 0 

Linear region 𝐼𝐷 = µ𝑛𝐶𝑜𝑥
𝑊

𝐿
[(𝑉𝐺𝑆 − 𝑉𝑇𝐻)𝑉𝐷𝑆 −

𝑉𝐷𝑆
2

2
] −

𝑉𝐷𝑆
2

2
  𝐼𝐷 = µ𝑝𝐶𝑜𝑥

𝑊

2𝐿
[(𝑉𝑆𝐺 − |𝑉𝑇𝐻|)𝑉𝑆𝐷 −

𝑉𝑆𝐷
2

2
] 

Saturation 

region 

𝐼𝐷 = µ𝑛𝐶𝑜𝑥
𝑊

𝐿
(𝑉𝐺𝑆 − 𝑉𝑇𝐻)2  𝐼𝐷 = µ𝑝𝐶𝑜𝑥

𝑊

2𝐿
(|𝑉𝐺𝑆| − |𝑉𝑇𝐻|)2 

Table 2: NMOS and PMOS transistor currents for minimum output voltage.  

 

All these concepts can be seen in the figure below (Figure 5). The different operating 

regions of the transistor are shown as a function of the drain current (ID) and the voltage 

between drain and source (VDS). 

Regions of 

operations 

NMOS PMOS 

Cut-off region 𝑉𝐺𝑆 ≤ 𝑉𝑇𝐻 𝑉𝐺𝑆 ≥ 𝑉𝑇𝐻 

Linear region 𝑉𝐺𝑆 ≥  𝑉𝑇𝐻 

𝑉𝐷𝑆 < 𝑉𝐺𝑆 − 𝑉𝑇𝐻 

𝑉𝐺𝑆 ≤ 𝑉𝑇𝐻 

𝑉𝐷𝑆 > 𝑉𝐺𝑆 − 𝑉𝑇𝐻 

Saturation region 𝑉𝐺𝑆 ≥ 𝑉𝑇𝐻 

𝑉𝐷𝑆 ≥  𝑉𝐺𝑆 − 𝑉𝑇𝐻 

𝑉𝐺𝑆 ≤ 𝑉𝑇𝐻 

𝑉𝑆𝐷 ≤ 𝑉𝐺𝑆 − 𝑉𝑇𝐻 
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Figure 5: MOSFET regions of operations. 

 

1.2.2 Scaling MOSFET devices 

 

One of the main objectives of the semiconductor industry is scaling. This technique 

consists of reducing the size of devices while maintaining the same performance, 

reducing the cost of production, and offering a larger number of devices per area. 

 

Moore's laws [1] have been followed for many years, but the constant evolution of 

technology and the need for constant performance improvement means that this technique 

has evolved and is now in all semiconductor parameters: length, thickness, channel, 

supply voltages, etc. The development of the MOSFET scaling technology is shown in 

Figure 6.  

 

The conventional CMOS device is approaching its scaling limits. When the MOSFET 

device was introduced, the gate length was measured in micrometres. Today, the channel 

length has reached the nanoscale. Although the fabrication of reduced-size transistors 

presents some advantages such as area efficiency, increased speed or improved 

performance, decreasing the gate length introduces several problems. These problems 

arise when the size of the MOSFET enters the nanoscale, as its performance degrades. 
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Figure 6: Schematic diagram of device scaling. 

 

Two scaling techniques are generally used: constant voltage scaling and constant field 

scaling. Constant voltage scaling consists of decreasing the MOSFET dimensions by a 

factor α except for the supply and terminal voltages. This type of mechanism can lead to 

reliability problems by generating oxide breakdown, electrical overload and 

electromigration. In contrast, in constant field scaling, the dimensions and voltages are 

reduced by the factor α and the doping and charge densities are increased by an equal 

factor α', causing the electric field to be unaffected. Thus, the circuit velocity increases 

by a factor α and the circuit density increases by a factor 2α. Due to the problems 

discussed with constant voltage scaling, constant field scaling is the most used.  

 

1.2.2.1 Threshold voltage effect 

 

When scaling techniques are applied, the reduction of the MOSFET channel is also 

proportional to the reduction of the supply voltage and active power. In contrast, the 

threshold voltage cannot be reduced in the same way because the higher power 

consumption is due to the leakage current of the device. 

 

Therefore, the 𝑉𝑇𝐻 scaling has been slowed down to avoid a drastic increase in 𝐼𝑂𝐹𝐹. To 

achieve to achieve a large drive current, the gate overload (𝑉𝐷𝐷  −  𝑉𝑇𝐻) must be 

significant and therefore the 𝑉𝐷𝐷 scaling also has to be slower, which results in an increase 

of the active power, which results in an increase of the active power density. 
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1.2.2.2 Quantum tunnelling limit 

 

As explained above, the supply voltage cannot be reduced in proportion to the channel 

length. Scaling techniques cause the electric field strength across the gate oxide to be 

increased. This increased electric field in turn causes the mobility of the carriers to be 

impaired and cause disturbance to the devices. The possibility of carrier movement 

through a scaled MOSFET can be seen in Figure 7. 

 

 

Figure 7: Potential barrier between two transistors. 

 

1.2.2.3 Gate oxide tunnelling 

 

Since the thermal electron voltage, kT/q, is a constant at room temperature, the ratio of 

operating voltage to thermal voltage decreases as the MOSFET size is reduced. This can 

lead to higher leakage currents due to thermal diffusion of electrons. When applying 

scaling techniques that lead to reductions in channel lengths, they require that the 

reduction in oxide thickness be taken into account. These reductions are subject to 

quantum tunnelling as the gate leakage current increases exponentially as the gate 

thickness is reduced. 

 

1.2.2.4 Short Channel Effect (SCE) 

 

A MOSFET is considered short-channel when the channel length is comparable to the 

depletion layer widths of the source and drain junctions. It is when the voltage applied to 

the device is significantly reduced that short-channel effects appear. These effects include 



 

19 

 

drain-induced barrier lowering, velocity saturation, quantum confinement and hot carrier 

degradation. 

 

1.2.2.5 Drain-Induced Barrier Lowering (DIBL) 

 

This effect is due to the drain bias and intensifies the short-channel effects. In contrast to 

a long channel, an increase of the drain-source bias causes a reduction of the threshold 

voltage and an increase of the sub-threshold current. Therefore, the short-channel effect 

is intensified due to the DIBL that increases with high drain voltages and shorter channel 

lengths. This type of effect can cause permanent damage to the transistors due to localised 

melting of the material. 

 

Figure 8 shows how the short-channel effect is intensified by the polarisation of the drain, 

due to the drain induced barrier lowering [2]. 

 

 

Figure 8: Effect by reducing the length of the transient gate affects the tension barrier by reducing it [2]. 

 

1.2.2.6 Channel Length Modulation  

 

Short channel effects (SCE) occur when the channel length is reduced as the potential 

differential between gate and drain increases. Therefore, as discussed above, the channel 

length will now depend on the 𝑉𝐷𝑆 voltage. To correct for this effect, a term (1+λ𝑉𝐷𝑆) is 

added where λ is the modulation coefficient and depends inversely on the channel length. 

That is, the smaller this coefficient is, the longer the channel length will be. The drain 

current would be defined by the following equation: 



 

20 

 

 

𝐼𝐷 = µ𝐶𝑜𝑥

𝑊

2𝐿
(𝑉𝐺𝑆 − 𝑉𝑇𝐻)2(1 + 𝜆𝑉𝐷𝑆) (1) 

 

Adding the term (1+λ𝑉𝐷𝑆) results in a slope in the 𝐼𝐷 − 𝑉𝐷𝑆 characteristic in the saturation 

region. The drain current saturates at the 𝑉𝐷𝑆 value causing a channel pinch at the drain 

end. 

 

1.2.3 FD-SOI technology 

 

In order to solve scaling problems, fully depleted silicon-on-insulator (FD-SOI) 

technology is a process that takes advantage of existing manufacturing methods and offers 

reduced silicon geometries with increased performance and low power consumption. In 

this way, it is possible to extend Moore's Law [1] without the need for such complex 

manufacturing processes. This process is made possible by combining the use of an ultra-

thin oxide insulator on top of the base silicon and the use of a very thin layer of silicon 

that creates the transistor channel. The thinness of this channel allows the transistor to be 

depleted, i.e. the channel does not need to be doped. The FD-SOI structure is therefore 

the result of the evolution of the bulk CMOS process.  

 

 

Figure 9: NMOS transistor cutting (left) vs FD-SOI technology cross section (right). 

 

As can be seen in Figure 9, the parasitic capacitance between the source and drain of the 

Bulk-CMOS structure is reduced due to the buried FD-SOI oxide layer. Thus, the electron 

flow between the source and drain is also reduced. This effect also reduces the leakage 

current which degrades performance and power. The channel, which is fully depleted, 

also reduces potential leakage [3]. 
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With this technology, it is possible to control the behaviour of the transistors through the 

gate or by applying a voltage (biasing) to the substrate underneath the device. This 

technique is made possible by low stray current leakage because the dielectric insulation 

created by the buried oxide layer is much more effective. The properties of the insulation 

allow higher bias voltages to be used, allowing dynamic control of the transistor to select 

between speed and energy efficiency. These advantages allow for lower transistor 

manufacturing costs. 

 

There are two types of biasing: Forward Body Biasing (FBB) and Reverse Body Biasing 

(RBB). The first requires less gate voltage to switch the transistor, resulting in faster 

transistor switching with less power consumption (power minimisation). The second bias, 

RBB, applies gate voltage to the transistor to switch the transistor. This type of biasing 

allows designers to choose between faster or more efficient operation when high speed is 

required or lower leakage power when performance is not as critical. 

 

1.2.4 Variability and Aging mechanisms 

 

As explained in the previous sections, scaling techniques can cause different physical 

phenomena in scaling devices affecting their reliability. In order to measure the reliability 

of these devices, variability and degradation techniques are used. The best known in 

MOSFET transistors are the Channel Hot Carries (CHC), the Random Telegraph Noise 

(RTN) and the Bias Temperature Instability (BTI). 

 

1.2.4.1 Channel Hot Carries (CHC) 

 

This phenomenon is also known as Hot Carrier Injection (HCI) in which charges, 

electrons or holes, gain enough kinetic energy to break an interface state. The term "hot" 

refers to the effective temperature used to model the carrier density, not the overall 

temperature of the device. These charges can be injected into the gate oxide and become 

trapped in the gate of a MOS transistor, the switching of the transistor can be modified. 

New interface states can also be generated and produce effects on the gate current. 
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Figure 10: Schematic diagram of channel-hot-carrier injection. 

 

The accumulation of such damage can degrade the device over extended periods of time 

by affecting parameters such as the threshold voltage, which would be shifted by such 

damage. The accumulation of damage resulting in device degradation due to hot carrier 

injection is referred to as "hot carrier degradation". 

 

1.2.4.2 Bias Temperature Instability (BTI) 

 

The Bias Temperature Instability (BTI) describes a phenomenon that degrades the 

performance of a device when a bias is applied to the gate of the MOSFET, and that 

channel is turned on. This phenomenon will increase the device umbra voltage |𝑉𝑇𝐻| 

reducing the device conduction current |𝐼𝐷| (Figure 11 a) and the operating frequency of 

the circuit. It will also increase the absolute "off" current 𝐼𝐷𝑂𝐹𝐹 (Figure 11 b) and gate 

leakage 𝐼𝐺  (Figure 11 c) increasing the circuit power consumption [4]. 
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Figure 11: MOSFET 𝐼𝑑 − 𝑉𝑔 (IV) curves show (a) |𝑉𝑇𝐻| and (b) |𝐼𝐷𝑂𝐹𝐹| increases under NBTI stress. 𝐼𝑑 − 𝑉𝑔 

measurements show gate leakage (𝐼𝐺) also increase 

 

The standard BTI lifetime criterion is that |𝛥𝑉𝑇𝐻| does not exceed a certain level, 

approximately 100 mV, after the device reaches its lifetime. The lifetime of a device is 

10 years, which is too long to reach in a laboratory. For this reason, accelerated BTI 

testing is done by applying a much more severe voltage than the operating condition. The 

device lifetime at operating conditions is projected from the accelerated tests within an 

acceptable test time (<106 seconds) using a time evolution model. The predictive 

capability of the model can be checked by comparing the predicted value with test data 

under operating conditions, as shown in Fig. 12. 

 

 
Figure 12: Example of BTI lifetime projection form accelerated test to operating condition. (a) Test data under high 

|𝑉𝐺 − 𝑉𝑇𝐻| (accelerate stress) condition is used to extract model parameters and predict device lifetime. (b) The 

accuracy of the prediction is usually verified by the comparison of test data under use-bias and model prediction.  
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As for the applied gate voltage, it can be positive (Positive Bias Temperature Instability, 

PBTI) or negative (Negative Bias Temperature Instability, NBTI). When a positive gate 

potential, PBTI, is applied, the effects only occur on the NMOS transistors by shifting the 

threshold voltage 𝑉𝑇𝐻to higher values. In contrast, when a negative gate voltage, NBTI, 

is applied, the effects occur on both NMOS and PMOS.  NBTI manifests itself as an 

increase in umbra voltage, a degradation of mobility, drain current and transconductance. 

These two effects can cause the device to degrade as shown in the figure below (Figure 

13).  

 

 

Figure 13: (a) NBTI to PMOS transistors degradation. (b) PBTI to NMOS transistors degradation [5]. 

 

1.2.4.3 Random Telegraph Noise (RTN) 

 

This phenomenon is a type of electrical noise that occurs in ultra-thin gate semiconductors 

[6]. It is a low-frequency noise that increases with decreasing device size. RTN consists 

of unexpected step shapes between two or more discrete voltage or current levels that 

occur randomly and unpredictably. These shapes appear in the drain current between 

discrete current levels when the voltage is constant at both the gate and the drain. Figure 

14 shows an RTN signal obtained in a 45 nm MOSFET.  

 

 

Figure 14: Two-level RTN waveform along with an illustration of the underlying carrier trapping process 

[7]. 
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This noise allows to know the reliability of the devices by obtaining data analysis, 

verifications and simulations. To compare the behaviour and analyse the defects 

appearing in the devices, the measurements will be made with the "new" transistor and 

after applying stress techniques. 

 

The RTN phenomenon consists of three essential parameters: amplitude, capture time and 

emission time. The amplitude reflects the impact of the RTN trap, the averaged capture 

time (𝜏𝑐) and emission time (𝜏𝑒) can be used to extract information of the trap energy 

according to equation (1). 

 

𝜏𝑐

𝜏𝑒
= exp (

𝐸𝑇 − 𝐸𝐹

𝑘𝑇
) (2) 

 

Where: 

𝐸𝑇 is the RTN responsible trap energy, 

𝐸𝐹 is the fermi level, 

𝑘  is the Boltzmann constant, 

𝑇 is the temperature in Kelvins. 

 

In some cases, the RTN cannot be easily obtained as noise can mask current changes 

making the detection of possible defects in the reliability of devices unlikely. It is for this 

reason that there are two possible analyses of the RTN: when it is not masked by noise 

and when it is masked by noise. 

 

In the first case, the Time Lag Plot (TLP) is used to detect the RTN. This technique is 

based on the study of the correlation of two different data series. To do so, it plots an 'i' 

data series plus the next 'i+1', so that the traps can be visualised [8][9]. 

 

This process can be seen in Figure 15, where the TLP plots the samples obtained 

depending on the level of the RTN and the path of the transitions. The final process 

obtained is a mapping of the transitions and the level at which the defect is found, Figure 

16. 
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Figure 15: (a) It is a waveform with two levels, the first level is at 3.80 µA and the second level at 3.60 

µA. (b) In the figure give a vision of the TLP that shows two states (2 levels described in (a)), plus points 

that it has detected in the middle of a transition [8]. 

 

 
Figure 16: Explanation of Time Lag Plot (TLP) [8]. 

 

In the second case, when the RTN is hidden by background noise (Figure 17), the 

Weighted Time-Lag Plot (WTLP) is used. This method extends the TLP by minimising 

the effect of noise on the RTN and allows a more accurate extraction of the parameter. 

 

 

Figure 17: RTN hidden by background noise [9]. 
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The process consists of marking the coordinates (i, i+1) and defining the 

equationɸ𝑖(x, y). Equation 3 is a bivariate normal distribution with an 'alpha' deviation 

and a correlation coefficient of zero, representing the probability of corresponding to a 

level or transition [9]. 

 

ɸ𝑖(x, y) =
1

2𝜋𝛼2
exp (

(𝐼𝑖 − 𝑥)2 + (𝐼𝑖+1 − 𝑦)2

2𝛼2
) (3) 

 

The weighted time lag equation is defined as equation 4, where the value of 'K' which is 

constant is to normalize the maximum value to '1' and N is the number of points in the 

Random Telegraph Signal (RTS). Giving the TLP histogram. 

 

Ψ(x, y) = 𝐾 ∑ ɸ𝑖

𝑁−1

𝑖−1

 (4) 

 

Other interesting parameters of the RTN are often analysed. The first of these is the 

multiple levels that the signal can have. Another important data that is also analysed is 

the time in which the defect of an RTN prevails in its level. These parameters can be seen 

in Figures 18 and 19 respectively. 

 

 

Figure 18: - (a) Typical multilevel RTN signal measured with a semiconductor parameter analyser. VAPP=1.25V, 

step time ∼6ms and number of measured points 8000. (b) Trap levels obtained by using the W-TL method [10]. 
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Figure 19: Oscilloscope traces captured in different time window, obtaining the interval time of a deffect 

[10]. 

 

1.3 Neural Networks 

 

Neural networks are a mathematical computational model that structurally details the 

biological behaviour of a neural system. These networks are made up of a set of artificial 

neurons that are connected to each other and work together, without each one having a 

specific function. The key to such networks is to emulate all the possible connections of 

a neuron, of approximately 104. There are two modes of operation of an artificial synapse: 

the analogue mode and the digital mode (also known as binary mode).  

 

In the former mode, the synaptic weight can be set from a range. This results in continuous 

control over the conductivity of the system. To increase the performance of the system, 

it is necessary to control the linearity and symmetry of the conductivity change, either in 

increasing or decreasing conductivity. 
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In the second mode, the binary mode, a comparison is made between the synaptic weight: 

high (HCS) or low (LCS). This simplicity makes the system more tolerant to conductivity 

variation. The consequence of this mode is that the system decreases its performance.  

 

This type of network consists of identical nodes (neurons) that communicate with each 

other and are grouped in different layers: input and output layer and hidden layer. All 

nodes in a layer are connected between nodes in other layers by connections called 

synapses. Each of these connections has a different weight. The greater the relationship 

between connections, the more related the neurons are. The output value of each neuron 

is multiplied by this weight.  

 

In Figure 20, an example of a neural network with n input and output layers and three 

hidden layers can be seen. The circles correspond to neurons (perceptrons). The lines 

correspond to synapses. 

 

 

Figure 20: Diagram of a neural network with two input and output layers and three hidden layers. 

 

The input layer collects the signals fed into the neural network and sends them to the 

hidden layer. In this last layer, all the mathematical alterations are made to the input 

signals due to the interaction of the perceptrons and their weights with the received signal. 

Finally, the resulting signal from the hidden layer reaches the output layer where linear 
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perceptrons are responsible for transmitting the information to the output of the neural 

network.  

 

The goal of a network is to learn from previous experiences and to be able to solve any 

problem in real time, behaving as a biological brain would do. It is for this reason that 

this type of network is based on learning algorithms where new patterns are constantly 

being created so that these networks are capable of self-managing themselves. 

 

1.4 MATLAB and NNstart 

 

MATLAB is a programming language and numerical computing environment developed 

by MathWorks. This software allows the manipulation of matrices, the plotting of 

functions and data, the implementation of algorithms, the creation of user interfaces and 

the interconnection with programs written in other languages.  

 

MATLAB is initially intended for numerical computation, but also uses an optional 

toolbox using a MuPAD symbolic engine that allows access to symbolic computation 

capabilities. There is also an additional package, Simulink, which adds multi-domain 

graphical simulation and model-based design for dynamic and embedded systems. 

MATLAB users come from various fields of engineering, science and economics. 

 

Simulink is a MATLAB-based graphical programming environment for modelling, 

simulating and analysing multidomain dynamic systems. Its main interface is a graphical 

block diagramming tool and a customisable set of block libraries. It offers tight 

integration with the rest of the MATLAB environment and can drive MATLAB or be 

programmed from MATLAB. Simulink is widely used in automatic control and digital 

signal processing for multidomain simulation and model-based design [11][12].  

 

NNstart opens a window with start buttons for the Neural Net Fitting, Neural Net Pattern 

Recognition, Neural Net Clustering and Neural Net Time Series applications. It also 

provides links to lists of datasets, examples, etc. All these applications allow to: 
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- Import data from a file, the MATLAB® workspace, or use one of the example 

datasets.  

- Define and train a neural network. 

- Evaluate network performance using mean squared error and regression analysis. 

- Analyse the results using visualisation plots, such as autocorrelation plots or an 

error histogram. 

- Generate MATLAB scripts to reproduce the results and customise the training 

process 

- Generate functions suitable for deployment with MATLAB Compiler™ and 

MATLAB Coder™ tools, and export to Simulink® for use with Simulink Coder. 

 

 

Figure 21: NNStart Interface. 

 

However, there are some of the functions of these applications that are specific depending 

on the desired requirements or objectives: 

 

- Neural Net Fitting and Neural Net Pattern Recognition: these applications make 

it possible to create, visualise and train a two-layer feed-forward network to solve 

data fitting problems. It also makes it possible to divide data into training, 

validation and test sets. 

- Neural Net Clustering: this application provides the possibility to create, visualise 

and train networks of self-organising maps to solve clustering problems. It also 



 

32 

 

allows to analyse the results through visualisation graphs, such as distance 

between neighbours, weight planes, sample impacts and weight position. 

- Neural Net Time Series: The Neural Net Time Series application allows you to 

create, visualise and train dynamic neural networks to solve three different types 

of non-linear time series problems. It also makes it possible to divide data into 

training, validation and test sets. 
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2. RTN trace generation 

 

This chapter of the paper focuses on the creation of RTN traces. The most relevant 

characteristics and the parameters used to parameterise them will be described. Once 

these parameters have been explained, the changes that have been made will be detailed. 

To conclude the chapter, the different RTN traces obtained will be visualised and the 

effects caused by the changes will be analysed. 

 

2.1 Characterisation of experimental RTN 

 

In MOSFETs, RTN is associated with charge trapping in device defects. These defects 

can be inherent to the manufacturing process or created by ageing mechanisms triggered 

during device operation.  

 

As explained above, the management and understanding of RTN signals has become of 

great interest as they allow the reliability of electronic devices to be determined. Some of 

the most characteristic parameters of RTN traces are explained below.  

 

2.1.1 Gaussian distribution 
 

In order to represent the levels of the RTN traces, Gaussian distributions have been used 

(Figure 22). These distributions are described by the following equation 5: 

 

𝑓𝑋(𝑥) = 𝒩 (𝑥;  𝜇, 𝜎2) =
1

√2𝜋𝜎2 
𝑒−

1
2

(
𝑥−𝜇

𝜎
)

2

  (5) 

 

Where: 

𝑥 random variable, 

𝜇 is the mean, 

𝜎 standard deviation, 

and 𝜎2 vaciance. 
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Figure 22: The red curve is the standard normal distribution. 

 

Two Gaussian distributions are needed; one for the higher (upstream) values and one for 

the lower (downstream) values. For each of the generated RTN current levels, a Gaussian 

distribution is constructed. For this reason, two means and two standard deviations have 

to be defined, respectively.  

 

The upstream parameters will be called emission parameters, and the downstream 

parameters will be called capture parameters. In the following section, these parameters 

will be detailed. 

 

2.1.2 Signal noise 

 

Noise is the result of various types of disturbances that tends to mask information when 

it is presented in its bandwidth. It is impossible to eliminate noise, as electronic 

components are not perfect, but it is possible to limit its value so that the quality of 

communication is acceptable.  
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In testing and modelling communication channels, Gaussian noise is used. A Gaussian 

process is a stochastic process, a collection of random variables indexed by time or space, 

such that each finite collection of these random variables has a multivariate normal 

distribution. Each finite linear combination of them is distributed following a normal 

distribution. 

 

When 𝑈 = (
𝑥−𝜇

𝜎
) is normal with mean is 0 and variance 1: 

 

𝑓𝑈(𝑢) = 𝒩 (𝑢;  0,1) =
1

√2𝜋 
𝑒−

1
2

𝑢
2

  (6) 

 

A special case is white Gaussian noise, where the values are identically distributed and 

statistically independent and therefore uncorrelated. 

 

For this reason, additive white Gaussian noise (AWGN) has been added in the generation 

of RTN traces, as it allows the modelling of numerous natural, social and psychological 

phenomena. The noise value used in all cases is a mean equal to 0 (𝑛𝑚𝑒𝑎𝑛 = 0) and a 

standard deviation 𝑛𝑠𝑖𝑔𝑚𝑎 = 10−8. These values can be seen in Table 3. 

 

 Case1 Case2 Case3 Case4_1 Case4_2 Case5 Case6_1 Case6_2 

𝒏𝒎𝒆𝒂𝒏 0 0 0 0 0 0 0 0 

𝒏𝒔𝒊𝒈𝒎𝒂 10−8 10−8 10−8 10−8 10−8 10−8 10−8 10−8 

Table 3: Values of 𝑛𝑚𝑒𝑎𝑛 and 𝑛𝑠𝑖𝑔𝑚𝑎 in the different cases 

 

2.1.3 Number of defects 

 

This parameter measures the number of defects or traps that a channel of a device may 

contain. Depending on the number of defects the signal will have a deterministic set of 

values.  

 

With the following equation, equation 7, the possible states in which a trace can be found 

can be obtained: 
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𝑁𝐸𝑃 = 2𝑁  (7) 

 

Where: 

𝑁𝐸𝑃 is the number of possible states, 

𝑁 is the number of defects. 

 

Since the value of the defects is binary, 0 or 1, its behaviour can be parameterised through 

a Poisson distribution.  

 

2.1.4 Jumps 

 

A jump marks the numerical contribution of a defect in a signal. That is, each defect in a 

transistor will have a jump value associated with it. It is for this reason that RTN traces 

have the same number of jumps as defects. This parameter can be identified graphically 

as a change of state. 

 

2.1.5 Offsets 

 

The offset of a signal is the continuous base value on which all other values are found. In 

the case of RTN traces, this parameter is the value obtained when the carrier flux is 

constant.  

 

This parameter also follows the Gaussian distribution as the noise does. Therefore, it is 

also necessary to determine a mean value, a standard deviation and a variance. To find 

the mean value and the variance of the Offset, it is necessary to find the value closest to 

zero for each trace. 

 

2.2 Definition of the criterial for the generation of RTN traces 

 

The main objective of this point is to create different RTN traces with different 

characteristics. Considering that RTN traces can be parameterised according to certain 

intrinsic specifications, it has only been necessary to modify them. In the following, the 
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different parameters that have been considered in the generation of these traces will be 

defined 

 

2.2.1  Number of traces to be generated and number of samples per 

RTN traces 
 

As is well known, both the experimental and mathematical worlds are subject to 

limitations because physical and computational resources are not infinite. This is where 

it becomes important to correctly size the amounts of data to be worked with.  

 

For this reason, different tests have been carried out by changing the number of traces 

(𝑁). On the other hand, the number of samples (𝑛𝑡) of each of the traces has remained 

the same for all cases. In the following table, Table 4, the different values of the traces 

and the value of the number of samples per trace chosen can be seen: 

 

 Case1 Case2 Case3 Case4_1 Case4_2 Case5 Case6_1 Case6_2 

𝑵 10000 3750 3750 2500 2500 3750 2500 1250 

𝒏𝒕 10000 10000 10000 10000 10000 10000 10000 10000 

Table 4 Values of 𝑁 and 𝑛 in the different cases. 

 

2.2.2 Transmission and capture time 

 

The period is the time elapsed between two equivalent points in the waveform. The 

sampling rate is defined as the number of samples per unit time taken from a continuous 

signal to produce a discrete signal, during the process necessary to convert it from 

analogue to digital.  

 

For the generation of RTN traces, two periods of the signal have been used: the emission 

time (𝑇𝑒𝑚𝑒𝑎𝑛
) and the capture time (𝑇𝑐𝑚𝑒𝑎𝑛

). This concept considers the geometry of each 

defect and the capacity to retain or release the carriers circulating in the channel.  

 

The different time values are listed in the following table (Table 5): 
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 Case1 Case2 Case3 Case4_1 Case4_2 Case5 Case6_1 Case6_2 

𝑻𝒄𝒎𝒆𝒂𝒏
 0.5 0.5 0.5 0.3 0.3 0.5 0.15 0.05 

𝑻𝒆𝒎𝒆𝒂𝒏
 0.5 0.5 0.5 0.1 0.003 0.5 0.3 0.3 

Table 5: 𝑇𝑐 and 𝑇𝑒 values in the different cases. 

 

2.2.3 Transmission and capture mean 

 

Theoretically, the mean is obtained from the sum of all its values divided by the total 

number of addends. The mathematical expression of this concept is given in the equation 

8: 

 

𝜇 =
1

𝑁
∑ 𝑥𝑖

𝑁−1

𝑖=0

 (8) 

 

In the practical case, this average has been used to generate normal distributions of the 

emission (𝑚𝑒𝑚𝑒𝑎𝑛) and capture (𝑚𝑐𝑚𝑒𝑎𝑛) processes. The different values of these 

parameters are shown in Table 6: 

 

 Case1 Case2 Case3 Case4_1 Case4_2 Case5 Case6_1 Case6_2 

𝒎𝒄𝒎𝒆𝒂𝒏 10−5
 10−5

 10−5
 10−5

 10−5
 3 · 10−6 10−5

 10−5
 

𝒎𝒆𝒎𝒆𝒂𝒏 1.8 · 10−5 10−5
 1.8 · 10−5 1.8 · 10−5 1.8 · 10−5 1.8 · 10−5 1.8 · 10−5 1.8 · 10−5 

Table 6: 𝑚𝑒𝑚𝑒𝑎𝑛 and 𝑚𝑒𝑚𝑒𝑎𝑛 values in the different cases. 

 

2.2.4 Standard deviation and variance 

 

The standard deviation is a measure of the amount of variation or dispersion of a set of 

values. A low standard deviation indicates that the values tend to be close to the mean, 

while a high standard deviation indicates that the values are spread over a wider range. 

 

This parameter is most often represented by the lower case Greek letter sigma 𝜎. The 

standard deviation of a random variable is the square root of its variance. Equation 9 

shows the formula for its discrete calculation: 
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𝜎 = √
1

𝑁
∑(𝑥𝑖 − µ)2

𝑁

𝑖=1

 (9) 

 

In contrast, the variance is a measure of dispersion defined as the expectation of the square 

of the deviation of that variable from its mean. It is represented by letter sigma squared 

𝜎2. Its mathematical expression is the following (equation 10) 

 

𝜎2 =
1

𝑛 − 1
∑(𝑥𝑖 − �̅�)2

𝑛

𝑖=1

 (10) 

 

2.3 Table of RTN traces parameters 

 

The following table lists the different parameter values used for the generation of the 

RTN traces. In this way, it is easier to visualise the applied changes. 

 

 Case1 Case2 Case3 Case4_1 Case4_2 Case5 Case6_1 Case6_2 

𝑵 10000 3750 3750 2500 2500 3750 2500 1250 

𝒏𝒕 10000 10000 10000 10000 10000 10000 10000 10000 

𝑻𝒄𝒎𝒆𝒂𝒏
 0.5 0.5 0.5 0.3 0.3 0.5 0.15 0.05 

𝑻𝒆𝒎𝒆𝒂𝒏
 0.5 0.5 0.5 0.1 0.003 0.5 0.3 0.3 

𝒎𝒄𝒎𝒆𝒂𝒏 10−5 10−5 10−5 10−5 10−5 3 · 10−6 10−5 10−5 

𝒎𝒆𝒎𝒆𝒂𝒏 1.8 · 10−5 10−5 1.8 · 10−5 1.8 · 10−5 1.8 · 10−5 1.8 · 10−5 1.8 · 10−5 1.8 · 10−5 

𝒏𝒎𝒆𝒂𝒏 0 0 0 0 0 0 0 0 

𝒏𝒔𝒊𝒈𝒎𝒂 10−8 10−8 10−8 10−8 10−8 10−8 10−8 10−8 

Table 7: Table of RTN signal parameters.  

 

2.4 Results of generated RTN traces 

 

In this section of the chapter, the generated RTN signals are plotted. As mentioned above, 

different cases have been generated to test the effects that can be caused by changes in 

the values that parameterise the RTN signals. Different plots have been collected from 

each of the generated traces. 
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The first graph corresponds to the number of RTNs generated. As explained above, the 

parameter used for this purpose is N. Therefore, as many traces as indicated will be 

obtained 

 

The second, always identified as (a) of the combination of 4 graphs, shows the behaviour 

of the current during the time that voltage is applied together with the values of the drain 

current.  

 

The third one, always identified as (b) of the combination of 4 graphs, shows the different 

levels of the RTNs.  

 

The fourth, identified as (c) of the combination of 4 plots, shows a Gaussian that reports 

the number of points at the different levels of maximum and minimum current that gives 

rise to the RTN. 

 

The last of the plots, identified as (d) of the combination of 4 plots, details the Weighted 

Time-Lag Plot (WTLP) of the RTN signals. This technique allows the RTN levels along 

with the sub-levels, as well as the steps between these levels, to be easily plotted. 

 

2.4.1 Case 1 graphs 

 

It can be deduced that this is an ideal case. As can be seen in Table 7, this is the model 

that generates the most traces (Figure 23). 

 

 

Figure 23: RTN signals case 1. 
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On the one hand, If the group of graphs is analysed, the noise does not noticeably affect 

the samples as the RTN signal can be identified in Figure 24 (b). 

 

 

Figure 24: Behaviour of drian current case 1. 

 

On the other hand, it is easy to identify the two Gaussians generated in Figure X (c) which 

clearly show that the maximum current occurs at approximately 𝐼𝐷 =  −4.75 𝐴 and the 

minimum current at approximately 𝐼𝐷 =  −5.5 𝐴. 

 

The WTLP also identifies these two current levels and details them in yellow. The 

transitions between levels are reflected in the verticals of the diagonal peaks, marked in 

a much lower yellow colour according to the number of transitions present in the 𝐼 − 𝑡 

trace. 

 

2.4.2 Case 2 graphs 

 

The changes introduced have been applied to the number of traces generated and the 

average emission. Both values have been reduced. With regard to the number of traces, 

the number of traces generated has been reduced from 10000 traces (𝑁1 = 10000) to 

3750 (𝑁2 = 3750). In the case of the emission mean, it has been forced to have the same 
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value as the capture mean, changing its initial value from 𝑚𝑒𝑚𝑒𝑎𝑛1
= 1.8 · 10−5 to 

𝑚𝑒𝑚𝑒𝑎𝑛 = 𝑚𝑐𝑚𝑒𝑎𝑛 = 10−5. 

 

The graphs for case 2 are shown below. 

 

 

Figure 25: RTN traces case 2. 

 

 

Figure 26: Behaviour of drian current case 2. 
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At first glance, quite a few changes can be perceived with respect to case 1.As expected, 

in Figure 25, much less RTN signals can be observed due to the reduction of the 𝑁 value. 

 

In the following figure, Figure 26, it can be seen that the noise now has more weights in 

the samples obtained. It is also visible that the current levels are now stronger and more 

similar. This causes that in the WTLP the intensities are plotted with a more intense 

yellow colour, while the transitions have the same value as in the previous case. 

 

2.4.3 Case 3 graphs 

 

In this case, the average capture and emission used to generate the noise have been forced 

to have the same value. For this reason, that the effect of the noise is very noticeable in 

the graphs obtained. 

 

 

Figure 27: RTN signals case 3. 

 

In contrast to the previous cases, in Figure 27, only noise is observed. This effect is due 

to the fact that the noise masks the RTN traces and overlaps their values. 
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Figure 28: Behaviour of drian current case 3. 

 

Analysing the following representations of Figure 28; it is intuitive that the effect 

produced by the noise is also noticeable. In representations (a) and (b) it is impossible to 

identify any shape reminiscent of the RTN traces. 

 

In (c) only 1 Gaussian is visible, since, as mentioned above, both averages for the 

generation of the emission and capture noise are identical. This effect also causes the 

WTLP to only be able to. 

 

2.4.4 Cases 4 graphics 

 

Unlike the previous ones, in this section of the RTN trace generation, two sections have 

been generated, where the emission time has been forced to be always lower than the 

capture time. Another of the changes has been to reduce, once again, the number of traces 

generated, setting it at 𝑁 = 2500 traces. 

 

In the following, the figures obtained above will be plotted and the results will be 

compared between the two sections. 
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Figure 29: RTN signals case 4 (section 1). 

 

 

Figure 30: RTN signals case 4 (section 2). 

 

If you compare the two figures above with each other, Figure29 and Figure 30, it is 

difficult to see any difference. On the other hand, if it is compare them with the cases 

mentioned above, it can be perceived a decrease in the traces generated. 

 



 

46 

 

 

Figure 31: Behaviour of drian current case 4 (setion 1). 

 

 

Figure 32: Behaviour of drian current case 4 (section 2). 

 

When comparing the 4 graphical representations in Figures 31 and 32, the applied 

changes in the values of emission time and capture time are more evident. 

 

f figures (a) and (b) of both figures are compared, it can be seen that in Figure 32 there 

are more changes of state. This effect is due to the reduction of 𝑇𝑒, since it goes from 

𝑇𝑒=0.1, case Figure 31, to 𝑇𝑒=0.03 ,case Figure 32. 
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Finally, if we analyse graph (c) it can see that the current levels when 𝑇𝑒 = 0.03 are 

higher. Consequently, the WTLP (d) in Figure 32, the yellow colour representing the 

current level is intensified. 

 

2.4.5 Case 5 graphics 

 

This model is particularised by the change in standard deviation. In all other models, this 

value is 𝑚𝑐𝑚𝑒𝑎𝑛
= 10−5. In the current model, the value of the standard deviation is 

𝑚𝑐𝑚𝑒𝑎𝑛
= 3 · 10−6. 

 

In addition, the number of traces to be generated is reduced from 𝑁 = 10000 traces to 

𝑁 = 3750, thus recovering the number of traces of cases 2 and 3. 

 

 

 

Figure 33: RTN signals case 5. 
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Figure 34: Behaviour of drian current case 5. 

 

In the different representations of Figure 34, it can be seen that the noise is not very 

noticeable in the samples obtained. 

 

2.4.6 Cases 6 graphics 

 

As in case 4, two possible scenarios have also been generated in this case. Although in 

this case, the value that is reduced is that of 𝑇𝑐 and not 𝑇𝑒. The values of 𝑁, which marks 

the number of traces to be generated, have also been modified. 

 

In the first scenario, a total of 𝑁 = 2500 traces were generated with a capture time 𝑇𝑐 =

0.15 and an emission time of 𝑇𝑒 = 0.3. In the second scenario, 𝑁 = 1250 traces were 

created with a capture time 𝑇𝑐 = 0.05 and an emission time of 𝑇𝑒 = 0.3. 
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Figure 35: RTN signals case 6 (section 1). 

 

 

Figure 36: RTN signals case 6 (section 2). 

 

As with case 4, it is also difficult to identify differences in this case. Even so, as explained 

above, it can be seen that in Figure 36 the number of traces is much smaller than in Figure 

35. 
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Figure 37: Behaviour of drian current case 6 (section 1). 

 

 

Figure 38: Behaviour of drian current case 6 (section 2). 

 

 

When comparing Figures 37 and 38, some differences can be quickly detected. The first 

one is detected by looking at the graph (b) of both figures: reducing the value of 𝑇𝑐 has 

caused the minimum current value to appear in smaller intervals. This event is the 

opposite of what occurred in case 4, as it was the 𝑇𝑒 that was reduced and the maximum 

current value that appeared in smaller intervals. The second is detected when analysing 

the graphs (c), as the levels in Figures 38 are higher. 
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3. Conversion of RTN traces to binary codes 

 

Once the different RTN traces have been obtained, the next step is to convert them into 

binary codes. To do this, two methods have been developed: a method based on the 

average current value and a method based on captures and emissions.  

 

The main objective of these conversion methods is data compression. The reduction of 

data allows storage capacity to be gained. On the other hand, it is obvious that some 

accuracy is lost. However, this loss of accuracy is acceptable for the purpose of this work. 

 

3.1 Method based on the average current value 

 

3.1.1 Procedure 

 

The objective of this point is to establish a mean value, marked in red in Figure X, for 

each of the traces generated. Once this average value has been obtained, it will be 

discretised by assigning a 1 to values above this average value and a 0 to values below it. 

Therefore, the bit allocation is determined by the value of the level. 

 

 

Figure 39: Example of balanced RTN.  
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In summary, it can be deduced that the more samples the files working with this method 

have, the more accurate they will be as the mean value will be more accurate and the 

easier it will be. 

 

3.2 Catch-emission method 

 

3.2.1 Procedure 

 

When an RTN trace does not have approximately the same number of points at the high 

level as at the low level, it is unbalanced. An example of such a trace is shown in Figure 

39.  

 

Applying the average current value method would result in many more 0's than 1's, since 

the time the signal is at the low level is much longer than the time it is at the high level. 

 

 

Figure 40: Example of unbalanced RTN. 

 

For this reason, an alternative method must be used. Bit 0 or 1 will now be set only when 

there is a transition, i.e. a change of state. The value of this bit will be maintained until 

the next state change. Therefore, no matter how much more frequent one of the signal 

levels is than the other, a balancing between the bits will be obtained. Unlike the mean 

value method, this can be a good method when there are only a few samples. 
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4. Binary code validation 

 

The last step before training a neural network is to develop a method that is able to 

determine whether a trace is correct or not.  

 

By having the generated RTN traces converted into bits, it has been easier to develop a 

method for the validation of these signals. This method has to be able to certify both bit 

traces based on the average current value and those based on the capture and emission 

method. 

 

This method and the results obtained once it is applied to the generated traces will be 

explained in more detail below. 

 

4.1 Method based on the probability of followed bits 

 

Once the generated traces have been transformed into bits, it only remains to develop a 

validation method for these traces. Considering that two procedures have been used in 

the conversion of RTN signals to bits, the validator will have to be able to perform its 

function in both procedures.  

 

As the name indicates, this method focuses its resources on finding the probability 

between equal binary symbols. RTN traces have been assigned two bits: 1 and 0. 

 

Therefore, the probability that once a 1 or a 0 appears, the same bit will appear again is 

to be calculated. This concept can be defined mathematically by the following equation 

(Equation 11): 

 

𝑓(𝑛) =
1

2𝑛
 (11) 
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Where: 

𝑛 is the number of consecutive times the same bit can appear. 

 

Thus, each time 𝑛 is increased, the probability of the same bit appearing decreases. A 

perfect case of this mathematical function can be seen in Figure 41. 

 

 

Figure 41: Function 𝑓(𝑛) =  
1

2𝑛
. 

 

Considering RTN traces are governed by random processes, the graph obtained will not 

be the same as the one depicted in Figure 41, but it should resemble it.  

 

For this reason it is necessary to provide a margin of error to the measurements obtained. 

Four degrees of probability (𝑛 = 4) have been established, assuming that they are already 

sufficient to validate that the trace follows the Equation 11. The margin of error for each 

n-value can be seen in the following table (Table 8): 

 

𝒏 Probabilities (𝑷𝒏𝒃) Range of probabilities 

1 𝑃1𝑏 = 50 [42.5 < 𝑃1𝑏 < 57.5] 

2 𝑃2𝑏 = 25 [21 < 𝑃2𝑏 < 29] 

3 𝑃3𝑏 = 12.5 [11 < 𝑃3𝑏 < 14] 

4 𝑃4𝑏 = 6.25 [5 < 𝑃4𝑏 < 7.5] 
Table 8: Table of probabilities as function of 𝑛. 
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Figure 42: MATLAB function 𝑓(𝑛) =  
1

2𝑛. 

 

 

The validation process for case 3 is shown in Figure 42 below. As can be seen, the 

shape of the function follows the same pattern as the one depicted in Figure 41. 
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5. Neural network training 

 

The last procedure of this work is to train the neural network. To do it, RTN traces had 

to be generated, converted to binary codes and validated. Once the necessary validations 

have been made, all the information has to be prepared for training the neural network. 

To achieve it, the inputs and outputs of the neural network must be organised and a 

criterion must be established to assess whether the training of the network has been 

correct or not.  

 

As mentioned above, the MATLAB application NNStart will be used to train the network. 

This application uses, by default, 70% of the data to train the network, 15% to measure 

the generalisation of the network and to stop training when the generalisation stops 

improving, and 15% to provide an independent measure of the network performance 

during and after training. The application allows the last two percentages to be changed 

according to the requirements of each user.  

 

It is also possible to save the weights of the network, its architecture and then continue to 

use the weights resulting from the network training.  

 

5.1 Code groups used 

 

The initial idea of this work was to train the neural network with different traces of 

different lengths. Due to limited time and resources, it was decided to choose a more 

practical and simplified case. 

 

The chosen case is case 3. As it has been seen in section 2.4, among all the cases, it is the 

most realistic case due to the fact that noise is more present in the samples obtained. In 

some of the traces generated with the specifications of case 3, it could be observed that 

the noise was capable of masking the samples. This effect results in the generation of 

invalid traces. For this reason, by choosing the traces generated in case 3, the training of 

the neural network will be more realistic.  
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5.2 Network input data preparation 

 

To do the neural network training well, it is necessary to have a set of valid inputs. To 

achieve it, it has been decided to use the Weighted Time-Lag Plot (WTLP) of the binary 

code and to divide the obtained maps into columns. 

 

As explained above, the WTLP is able to obtain a three-dimensional graphical map that 

takes into account the position of each data item and its weight (times it is repeated). Once 

WTLP has been applied, the data are synthesised in a matrix that represents each of the 

RTN traces generated. The problem now arises because the data are synthesised in the 

form of a matrix and it is of interest that they are synthesised in the form of a vector. Two 

three-dimensional WTLPs are shown in the following figures (Figure 43 and 44). 

 

 

Figure 43: Binary WTLP of case 2. 

 

 

Figure 44: Binary WTLP of case 3. 



 

59 

 

 

To achieve it, is neceesary to rotate the data columns of the matrix and concatenating 

them into a vector. This methodology is easier to understand with a simple example: 3x3 

matrix. 

 

In the first iteration, the first column of the matrix is copied and moved to the first three 

positions of the output vector. In the second iteration, the second column of the matrix is 

copied and moved to positions 4, 5 and 6 of the vector. Finally, the third column of the 

matrix shall be copied and moved to positions 7, 8 and 9 of the output vector. 

 

5.3 Network output data preparation 

 

Once the inputs to the neural network have been prepared, it is important to do the same 

for the outputs. In order to be able to validate which traces are correct and which are not, 

the neural neutwork must be trained with codes that have valid and invalid traces.  

 

As mentioned above, the method used to validate the traces will be the probability of 

consecutive bits. If a trace does not follow the shape of Figure 41, it means that the trace 

is incorrect. 

 

Once the output vector has been configured, as explained in the previous section, 

validation must be carried out. For each of the columns of the input vector, a 01 will be 

assigned if the trace is adequate, and a 10 if the trace is not.  

 

Although this way the number of cases obtained is greatly reduced and information is 

lost, this discretisation also allows the neural network training to be faster. 

 

5.4 Results of training 

 

As mentioned above, the MATLAB application NNStart has been used to train the neural 

network. This application allows us to obtain different graphs that describe the different 

behaviours of the trained traces.  
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The NNStart application, specifically the Pattern Recognition app, allows different 

graphs describing the behaviour of the trained traces to be obtained. It also allows the 

performance of the network to be evaluated by means of the cross-entropy and confusion 

matrices. 

 

In the trainings carried out, the default percentage has been used. That is, 70% of the data 

will be used for training, 15% for validation and 15% for testing. 

 

5.4.1 Training specifications 

 

Once the data has been organised, the network training can be executed. But first, the 

different information that can be obtained with the Pattern Recognition app will be 

described. The graphs obtained with this application are the following ones: 

 

- Performance: This graph plots the error values of the training log versus the 

number of training epochs (Figure 45). Generally, the error reduces after more 

training epochs, but may start to increase in the validation dataset when the 

network starts to overfit the training data. By default, training stops after six 

consecutive increases in validation error, and the best performance is taken from 

the epoch with the lowest error. 

 

 

Figure 45:Example of patter recognition app performance. 
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- Training state: This function plots the values of the training state. It is observed 

that 2 plots are obtained: one for the gradient and one for the validation checks. 

 

 

Figure 46: Example of patter recognition app training state. 

 

- Error Histrogram: The error histogram plots a confusion matrix for the true labels 

(targets) and the predicted labels (outputs). 

 

 

Figure 47: Example of patter recognition app error histrogram. 
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- Confusion: In this graph, the rows correspond to the output class and the columns 

to the destination class. The cells on the diagonal correspond to the correctly made 

observations. The cells outside the diagonal correspond to the incorrectly 

classified observations. In each cell you can see the number of observations and 

the percentage of the total number of observations. The following chapter will 

clarify this concept. 

 

- Receriver operating Characteristics: This function of the Pattern Recognition app 

plots the ROC where the receiver operating characteristic is plotted for each 

output class. In this particular case, it plots the ROC of the training part, the 

validation part and the test part. The following chapter will clarify this concept. 

 

It should also be noted that this application allows to know the cross-entropy (quality of 

classification, CE) and the error rate (fraction of samples that are misclassified, %E). 

 

5.4.2 Training specifications 

 

As mentioned at the beginning of this chapter, the case selected for training the neural 

network was case 3. One of the advantages of the "Pattern Recognition app" tool is that 

it allows you to choose the number of neurons in the hidden layer that you want to work 

with. The 3 cases carried out are shown below: for 10, 100 and 1000 neurons in the hidden 

layer. 

 

- 10 neurons in the hidden layer 

 

The graphs obtained by fixing 10 neurons for the hidden layer can be seen below. 

In figure 48, you can see the cross-entropy minimisation and the percentage error. 

It can be seen that the entropy value is close to 0, so it can be considered that a 

good classification has been made. As far as the error is concerned, it can be seen 

that the percentage is high. 

 



 

63 

 

 

Figure 48: Basic training results (10 neurons in the hidden layer). 

 

Figure 49 shows the confusion plot for training. In order not to be repetitive, only 

the training case will be explained as the analysis would be the same for validation 

and testing.  

 

The first two diagonal cells show the number and percentage of correct 

classifications of the network. 0.1% of the generated traces are correctly classified 

as valid. 77% are correctly classified as invalid traces.  

 

In this case, none of the incorrect traces that are classified as correct have been 

detected (0%). In contrast, 22.9% of the valid traces analysed are incorrectly 

classified as invalid. 

 

 

Figure 49: Confusion matrix results (10 neurons in the hidden layer). 
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Figure 50 shows the ROC. Two values are calculated in these plots: the true 

positive ratio and the false positive ratio. The closer the plotted functions are to 

the left and top edges, the better the classification. In this particular case, it can be 

seen that the procedure with the best classification is the validation procedure. 

 

 

Figure 50: ROC graphs results (10 neurons in the hidden layer). 

 

- 100 neurons in the hidden layer 

 

The analysis of this case will follow the methodology used in the previous case 

but now with 100 neurons in the hidden layer.  

 

Figure 51 again illustrates the minimisation of the cross-entropy and the error rate. 

Comparing it with the previous case, it can be seen that the increase of neurons in 

the hidden layer does not imply a great advantage, since the values of the CE and 

%E parameters are very similar. 
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Figure 51: Basic training results (100 neurons in the hidden layer). 

 

In the following figure (Figure 52), the confusion plot is shown. A small 

improvement can be seen in both the validation and test matrices. Even so, it is 

still very similar to the previous case. 

 

 

Figure 52: Confusion matrix results (100 neurons in the hidden layer). 
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Figure 53: ROC graphs results (100 neurons in the hidden layer). 

 

Figure 53 shows the ROC of the processes. A substantial improvement can be 

seen in all processes. Especially in the testing process. 

 

- 1000 neurons in the hidden layer 

 

In the last of the training runs, 1000 neurons have been used in the hidden layer 

to see if more neurons result in optimal training for the neural network.  

 

The first parameters to be analysed are the cross-entropy minimisation and the 

error rate (Figure 54). As with the first increase of neurons in the hidden layer, 

this increase does not translate into an improvement of the CE and %E parameters 

either. 

 

 

Figure 54: Basic training results (1000 neurons in the hidden layer). 
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Figure 55: Confusion matrix results (1000 neurons in the hidden layer). 

 

Figure 56 shows the confusion plot. In this case, although the values are very 

similar to the values of the previous cases, it can be seen that there is an increase 

in the errors in the training of the neural network. 

 

 

Figure 56: ROC graphs results (1000 neurons in the hidden layer). 
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To conclude the training study, Figure 56 shows the ROC of the training, 

validation and test procedures. In the training method, there is a very 

noticeable improvement.  

 

It should be noted that, although the other two processes do not have 

improvements to highlight, it is observed that the ROC of all the processes 

together is the best of the three cases carried out. 
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6. Conclusions 

 

This work has studied the behaviour of Random Telegraph Noise (RTN) for the training 

of a neural network. The initial objective of the project has been achieved, which was to 

create and apply a methodology capable of training a neural network that, in the end, 

would be able to discern which of the traces introduced are correct and which are not. 

 

In order to achieve the established objective, the behaviour and the most relevant 

parameters of the RTN signals had to be parameterised first. Once the nature of these 

signals was understood, they were converted into binary codes. 

 

Two validation methods have been developed: a method based on the mean current value 

and a method based on catches and emissions. It has been shown that, depending on the 

behaviour of the generated traces, one method or the other should be used. It should be 

emphasised that the mean current value method is more suitable for training neural 

networks because the more traces generated (more data), the more accurate it is. 

 

Before the neural network could be trained, it was necessary to set an acceptance criterion. 

The purpose of this criterion was to identify whether the generated traces are valid or not. 

To achieve this, a method has been developed that focuses its resources on searching for 

the probability between equal binary symbols with a specific degree of acceptance. 

 

Finally, the neural network was trained. MATLAB's NNStart application was used, 

specifically the Pattern Recognition app. As mentioned in the previous chapter, due to a 

lack of computational resources and limitations in the delivery date of the work, the 

training of the neural network had to be limited. For this reason, a specific case has been 

chosen (case 3). 

 

The results obtained after training indicate that no matter how many more neurons are 

used in the hidden layer, it does not mean that the training will improve. It has been 

observed that a balance must be found between the amount of data to be worked on and 

the number of neurons required. In other words, if more neurons are used than strictly 

necessary, the probability of errors increases. 
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It should be noted that modifications could be made to extend the development, training 

and study of the neural network. With a higher computational level, the neural network 

could be supplied with much more data.  

 

This increase in data would also lead to an increase in the training of the neural network. 

In this way, the criteria used for the validation of the generated RTN traces could be 

readjusted. In summary, an increase in software resources would allow the development 

of a neural network with higher accuracy, higher performance and higher efficiency. 
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