UrnB

Universitat Autonoma
de Barcelona

Diposit digital
de documents
de la UAB

This is the published version of the master thesis:

Mo, Ganyong; Castells-Rufas, David, dir. FPGA implementation of bluetooth
low energy physical layer with OpenCL. 2022. 82 pag. (1170 Master Universitari
en Enginyeria de Telecomunicaci6é / Telecommunication Engineering)

This version is available at https://ddd.uab.cat/record /261004
under the terms of the license

https://ddd.uab.cat/record/261004

UnB

Universitat Autonoma
de Barcelona

A Thesis for the

Master in Telecommunication Engineering

FPGA Implementation of Bluetooth Low
Energy Physical Layer with OpenCL

by
Ganyong Mo
Ganyong.Mo@autonoma.cat

Supervisor: David Castells Rufas
David.Castells@uab.cat

Department of Computer Architecture and Operating Systems

Escola Técnica Superior d’Enginyeria (ETSE)

Universitat Autonoma de Barcelona (UABS)

June, 2022

mailto:Ganyong.Mo@autonoma.cat
mailto:David.Castells@uab.cat

UNB

El sotasignant, David Castells Rufas, Professor de I’Escola Técnica Superior d’Enginyeria
(ETSE) de la Universitat Autonoma de Barcelona (UAB),

CERTIFICA:

Que el projecte presentat en aquesta memoria de Treball Final de Master ha estat realitzat sota

la seva direccio per I’alumne Ganyong Mo.
I, perque consti a tots els efectes, signa el present certificat.

Bellaterra, 30 de Juny de 2022

Firmado digitalmente
por DAVID CASTELLS

f ; o_,\/\ RUFAS - DNI
39355627M
Fecha: 2022.06.30
11:25:17 +02'00'

Signatura: David Castells Rufas

Resum:

Aquesta dissertacio presenta principalment el disseny de processament digital de senyals
(DSP) entre la transmissié en Capa Fisica de Bluetooth de Baixa Energia (BLE PHY), i la
seva implementacié en dispositius Field Programmable Gate Array (FPGA) utilitzant Open
Computing Language (OpenCL).

Durant el disseny de DSP, es basa en I'arquitectura en fase / quadratura-fase (1Q) per construir
els processos de modulacié i demodulacié del senyal mitjancant I'Gs d'un esquema de
modelador de senyal anomenat Gaussian Frequency-Shift Keying (GFSK), en la
comunicacio de curt abast que presenta un fort rendiment anti-interferéncia. Pel que fa a
I'OpenCL, és un dels métodes de sintesi d'alt nivell (HLS) per al disseny de FPGA. No homés
compta amb una alta productivitat, siné que també pot realitzar una alta eficiéncia operativa
per FPGA mitjancant I'is d'arquitectura de programacio paral-lela. A més, aqui invoca una
plataforma remota anomenada Intel DevCloud per controlar el FPGA per verificar el
programa, faria que el disseny fos més comode i economic.

Paraules clau: BLE PHY, GFSK, FPGA, OpenCL, Intel DevCloud, etc.

Resumen:

Esta disertacion presenta principalmente el disefio de Procesamiento Digital de Sefiales
(DSP) entre la transmision en Bluetooth Low Energy Physical Layer (BLE PHY), y su
implementacién en Field Programmable Gate Array (FPGA) con Open Computing Language
(OpenCL).

Durante el disefio de DSP, se basa en la arquitectura In-Phase/Quadrature-Phase (IQ) para
construir los procesos de modulacion y demodulacion de la sefial mediante la utilizacion de
un esquema de modelador de sefial llamado Gaussian Frequency-Shift Keying (GFSK), en
la comunicacion de corto alcance presenta un fuerte rendimiento anti-interferencia. Con
respecto al OpenCL, es uno de los métodos de sintesis de alto nivel (HLS) para el disefio de
FPGA. No solo presenta una alta productividad, sino que también puede lograr una alta
eficiencia operativa para FPGA mediante el uso de la arquitectura de programacion paralela.
Ademas, aqui invoca una plataforma remota Illamada Intel DevCloud para controlar la FPGA
para verificar el programa, lo que haria que el disefio fuera mas conveniente y econémico.

Palabras clave: BLE PHY, GFSK, FPGA, OpenCL, Intel DevCloud, etc.

Summary:

This dissertation is primarily presenting the design of Digital Signal Processing (DSP)
between the transmission in Bluetooth Low Energy Physical Layer (BLE PHY), and its
implementation in a Field Programmable Gate Array (FPGA) device with Open Computing
Language (OpenCL).

During the design of DSP, it bases on the In-Phase/Quadrature-Phase (1Q) architecture to
construct the modulation and demodulation processes of signal by utilizing a signal shaper
scheme called Gaussian Frequency-Shift Keying (GFSK), in the short-rang communication
it features strong anti-interference performance. Regarding with the OpenCL, it’s one of
High-Level Synthesis (HLS) methods for FPGAs design. It not only features high productive,
but also can realize high operational efficiency for FPGA by using parallel programming
architecture. Moreover, here invokes a remote platform called Intel DevCloud to control the
FPGA for verifying the program, it would make the design more convenient and economic.

Key words: BLE PHY, GFSK, FPGA, OpenCL, Intel DevCloud, etc.

Acknowledgments

ACKNOWLEDGMENTS

After worked for three years, it's so amazing for me that | could back to campus again for further
studying. Therefore, thanks for Universitat Autonoma de Barcelona (UAB) gave me this
opportunity two years ago, even if we were encountering the grave global pandemic, she also
offered me the best studying environment in this duration.

I'm grateful to meet many professional, knowledgeable, and adorable tutors and professors
within the campus. Especially my supervisor David, who is a patient teacher as well. He guided
me to learn much specialized knowledge, and shared many novel, helpful ideas with me.
Meanwhile my views were further broadened during this study, thanks for him sincerely.

I'm deeply appreciative for my parents, my sister, my uncle, and his family, meanwhile, I really
miss my grandmother. They always are the most significant people in my life, I’'m able to hold
on all the time that is because they are always understanding, concerning, supporting and

encouraging for me, I want to express my genuine gratitude for my family once more.

Thanks for Jingming, his wisdom always inspired me at key moments, whether working or
studying.

Thanks for Marc, he gave me a lot of help when | need something in this project research.
Thanks for my roommates, Sorayda, Leonador, Yuanjiao, Di, Merceders and Haotian, they

were accompanying with me when | was studying in Barcelona. They made me felt happiness

and warmth as well, though | was far away from my motherland and family.

Thanks for my old friends, Sipan, Sihao, Zhengbiao, Yijie, Minging, Jinyuan, Xiuhui, Xin,
Fanglai ..., they always stood with me and gave me courage to face when | stuck in serious

troubles or was at rock bottom every time.

Finally, thanks for all of authors who gave me helpful references for finishing this design and

dissertation, and thanks all the people I've met ever.

Table of Contents

TABLE OF CONTENTS
ACKNOWIEAGMENTS ... bbbt nb b sbeene s i
Table OF CONTENLS ...ttt I
IS A0 T U =TSSP v
LISE OF TADIES. ...t vii
LiSt OF ADDIEVIALION ... viii
N [011 (o [FTox {To] o ISP P O P PSP U PP PRPPRO 1
11 Communication CONSLIUCTIONcc.eoviirieiieinie e 1
1.2 Background and APProach...........ccceeieeieiieie e 2
1.3 DiSSertation OULHNE.........coiiiiiiieieee e 4
2 TIREOTIES ...tk b b bbbttt b e bbbt 5
2.1 B e nns 5
211 WHY BLE......ciiiie e 5
2.1.2 BLE PHY e 6
2.2 Gaussian Frequency-Shift KEYINGccooeiiiiiieiiiineseee e 8
2.2.1 MOAUIALION ... e 9
2.2.1.1 Binary None Zero (BNZ)ccceovvevveieiieie e 10
2.2.1.2 Up-Samplingccoeviiiiiieceee e 10
2.2.1.3 Gaussian FIlter..........coiiiiie 11
2214 ATGUMENT. ... 13
2.2.15 INEEQIALON ... 13
2.2.1.6 1/Q Basebandsccooveeviiiiiiie e, 13
2.2.2 DemOodUlatioNncccooveiiiiiiiiieeee e 14
2221 ATCTANGENT ... 15
2.2.2.2 UNWEAD 1.t 15

Table of Contents

233.1
2.3.3.2
2.3.4
2.4 OpenCL
24.1
24.2
24.2.1
24.2.2
24.2.3
2424
24.2.5
2.4.2.6
24.3
243.1
24.3.2
2.4.3.3

2434

3 Simulation....................

DEIIVALIVE ..o 15
COUBT . 16
DoWN-Samplingccooeviiiiiiiieecee e 16
... 16
FPGA ArChiteCtUre........ccveiiiiiieiiice e 17
FPGA Design Flow and Design toolscccccovevenenne. 18
Hardware Algorithms...........ccoooooveiiienini e 19
PIPEHINING .o 19
Parallel Processingcccvoveieerieiieieeie e sie e e, 20
The Platform of Intel DevCloud...........ccooceiininiiiiienen, 21
... 22
Structure of OpPenCLcccccocvveiviiecece e, 23
HOSE COUB..... .ot 23
PIAtFOIM . 24
DIBVICE. ...ttt 26
CONEXE ... 27
PrOgramceeiiic et 27
KEIMEL ... 29
ComMMANd QUEUE..........ooueiviiiirieciieiieie e 30
Kernel CoOecooeiiiiiiisce e, 31
Architecture of kernel CoSt ..., 32
Extension of channel ... 32
Autorun attribution ..., 33
Unrolling pragmacccceevveeiie e 33
... 34

Table of Contents

3.1 GFSK modulation with SIMUliNK............cooeiiiiii 34
3.11 Bernoulli Binary Generator...........ccccceoeeeienenenesieinenn. 34
3.1.2 Unipolar to Bipolar COnVerter..........ccoceevveienineeieienn. 35
3.13 Gaussian filter in SIMUNK...........ccooooiviinniee, 36
3.1.4 Argument MUltiplying.......cccccveve e 37
3.1.5 Integrator in SIMUIINK ... 37
3.1.6 1/Q Basebands in SIMUINK..........ccccoooviiiiniiiniiencse e, 38

3.2 GFSK demodulation in SIMUINK ... 38

4 Realization With OpenCL INFPGA ...t 41

4.1 HOSE PAIT ... s 41

4.2 KEINEI PAIT. ... 46
4.2.1 GFSK modulation in OpenCL.........ccccccovevviiieieerieciennn, 48
4.2.2 GFSK demodulation in OpenCL.........ccccccoevvvevveiieiieennenn, 52

4.3 Compiling, Executing and Debugging with FPGA in Intel DevCloud Plaform.54

4.3.1 Compiling and executing the codesc.ccoovvvriveiiennenn. 55

4.3.2 Debugging the COdescccovviiiiiiiccccceee e 57

4.4 Verification with real BLE data Stream.............ccoeoviiiiiiineneinc e, 62
CONCIUSION ...ttt bbbttt b et b ettt 66
APPENAIX L HOSE COUR ...ttt bbbttt 67
APPENTIX 2 KEINEI COUE........eeiieiiceceee ettt re et e s teebeeneenres 73
BIDIOGIapNY ... 79

-iv -

List of Figures

LIST OF FIGURES
Figure 1.1 Architecture of wireless communication SYStEMccccovvvriereniieneenenienneens 1
Figure 1.2 The options for digital SyStem designccovviiiiiiiiieiiee e 3
Figure 2.1 Protocol Stacks Of BLEcccciviiiiiieiece e 6
Figure 2.2 BLE PHY frequency Dands............cccooueiiiiiiieiiec e 7
Figure 2.3 BLE packet format (1) advertising channel (2) data channelc.......... 7
Figure 2.4 The example of passband repreSentedcoovvvrereieneiene e 9
Figure 2.5 Architecture of GFSK modulation............cccccevveiiiiiiecic e 9
Figure 2.6 The example of Up Samplingccccceoveiieiiiicceec e 10
Figure 2.7 The shape of the Gaussian Filter initializationccccccoociiiiiiinicieen, 12
Figure 2.8 Implementation of the integrator in discrete domain............ccocevervrininnennnn, 13
Figure 2.9 Architecture of GFSK modulation passband.............ccccociiniiiniiininicieen, 14
Figure 2.10 Architecture of GFSK modulation passband............ccccccevvvieieeneiieseecnee 15
Figure 2.11 Architecture of GFSK demodulation.............ccccoveeiiieiecie s 15
Figure 2.12 The island-style structure of FPGAccoiiiiiiic e, 18
Figure 2.13 Design flow of FPGA IN HDLcoooiiiiiiiiieeeee e, 19

Figure 2.14 The comparison of schemes between (1) non-pipelined and (2) pipelining. 20

Figure 2.15 The structures of parallel processingccccceevveveiieeieeie s 21
Figure 2.16 The relationship of the main elements in host code............c.ccocovvviiiinennnn. 24
Figure 3.1 GFSK modulation in SIMulink ..o, 34
Figure 3.2 Parameter configured of Bernoulli Binary Generator (Simulink) 35
Figure 3.3 Output of Bernoulli Binary Generator (SIimulink)............c.cooceoveiiiiiecineene, 35
Figure 3.4 Output of Unipolar to Bipolar Converter (Simulink)cc.ccocvivinnennn, 35
Figure 3.5 Parameter configured of FIR filter (SIMulink)ccccoooiiniiniiiiiieen, 36
Figure 3.6 Output of gaussian filter (SIMUlINK)ccooviiiiiiic 37

-V -

List of Figures

Figure 3.7 Output of argument multiplying (Simulink)cccccceviveviiieiiennce e 37
Figure 3.8 Output of integrator (SIMUIINK)cccooeiiiiiiiniece s 37
Figure 3.9 Waveform of In-phase baseband (SImulink)cccooooiiiniiiiiiiiice, 38
Figure 3.10 Waveform of Quadrature-phase baseband (Simulink)c.cccccoevvennne. 38
Figure 3.11 GFSK demodulation in SIMulinkcccccooveiieiiiii i 38
Figure 3.12 Result of Arctangent (SIMUINK).........ccoooiiiiiinieie e 39
Figure 3.13 Result of Unwarp (SIMUliNK).........cccooiiiiiiiie e 39
Figure 3.14 Result of discrete derivative (SIMUlINK)cccoovviveiieiiicce e 39
Figure 3.15 Result of Coder (SIMUIINK).........ccooiiiiiieeccceee e 40
Figure 3.16 Output of Bipolar to Unipolar converter (SImulink)c.ccocvvvininnennnn. 40
Figure 4.1 The processing flow of main() function in host partcc.ccocvvvininennn, 43
Figure 4.2 Processing Flow of GFSK Modulation and Demodulation in Kernel Part..... 47
Figure 4.3 The constructures of host part and kernel part before and after compiled54
Figure 4.4 Configuration of FPGA environment in DevCloud..............ccocovininiinnnnnn, 56
Figure 4.5 Synthesis result of OpenCL deSIgN..........ccoiririiiniiieneie e, 56
Figure 4.6 Result of execution with down sampling in kernel partcccccooovevivennne. 57
Figure 4.7 The result of down-sampling process in Host partccccooevvveviiieiveinee, 61
Figure 4.8 The final result of adding preamble Kernel ..., 62
Figure 4.9 The system structure of BLE data packet capturing..........ccccooevvnvrinnnnnnnnn. 63
Figure 4.10 The stream of BLE data...........ccccoveviiiieiiciecccece e 63
Figure 4.11 The Parts about the Preamble and Access address of BLE packet............... 64
Figure 4.12 Ater dOWN SAMPIE.......ccoiiiiiiiiecee e 64
Figure 4.13 Captured SEQUENCEocveiuirieriieiieiieieie ettt st 65

-Vi -

List of Tables

LIST OF TABLES
Table 2.1 Characteristics comparing of BLE, Zigbee and Wi-Fi..........ccccooevvvniiiinininnn. 5
Table 2.2 The preamble and access address format in advertising channel...................... 8
Table 2.3 OpenCL Platform Information Parameters............c.ccocvveveieeveesesiieceese e 25
Table 2.4 OPENCL DEVICE TYPESuiiieiiieieeiesieeitesiesteesteesee s este et e e sreesaesnaessaesaeaneesres 26
Table 2.5 OpenCl command QUEUE PrOPEITIEScoeiiririeieieie st 30
Table 4.1 Some usages for programs compiling and executing in Devcloud.................. 55
Table 4.2 The result of comparison between Simulink and OpenCLccccoeevveienen. 58

- Vil -

List of Abbreviation

LIST OF ABBREVIATION
Adaptive LOGIC MOUUIESoouiiiiii e ALMs
Amazon Elastic Compute Cloud...........ccooviiieiiiieeee e Amazon EC2
AMAZON WED SEIVICES ... AWS
ANAIOG t0 DIGITAL......oeiiicee s AD
BINAIY NONE ZEIO.....cceieieeie bbbt b bbb ene s BNZ
BIt EITON RAEE ...ttt BER
BLE PRYSICAI LAYETocvviiecece ettt BLE PHY
BIUBTOOtN LOW ENEIGY ...ttt BLE
Central ProCessing UNIt.........coouoiiiiiiiie et CPU
Complex Programmable LOGIC DEVICEccoviieiiiiriesiesieseseeeee e CPLD
Configurable LOgIiC BIOCK.........c.ooiiiiece e CLB
Cyclic RedundanCy ChECKoiioii ittt CRC
Digital SIgNal PrOCESSINGccuiiviiiiiiiiiiieiesie et DSP
Digital SIgNal PrOCESSOISccviiiiiiiiieiieieie ettt DSPs
DiIgital 10 ANAIOGciiieicieee et et re e ae e rs DA
Dynamic Random ACCESS MEMOIYccveiuiiieiieiieeiesteeiie e ste e seesae e sreesrearaesraenee s DRAM
Field Programmable Gate AITAYc.cooiiiiiiiiiee e FPGA
FINite IMPUISE RESPONSEveiiiiieieie e sb bbbt FIR
FIFSE-IN, FIFST-OUL ...t FIFO
FreqUENCY HOPPINGveiiieeiie ettt ettt e b e e e e te e e be e s aeeabeeasaeereeas FH
Frequency SHIft KKEBYINGcooiiiiiiiiee e FSK
Gaussian Frequency-Shift KEYINGcoociiiiiiiiiiiiie e GFSK
Gaussian Minimum Shift KEYING.........coviiiiiiiiiie e GMSK

List of Abbreviation

Graphic ProCesSING UNIt........ccoiieiieieiiesieeie e sae e aenae e saenne e sneenneans GPU
Hardware DeSCription LANQUAGE........couerterieriiriirieeieiee ettt HDL
HIgN-LeVel SYNTNESISccuiiiiiiiice e HLS
High-Performance COMPULINGcovviiiiiiiecie et ene s HPC
Industrial, SCIeNtific, METICalcccoiiiiiiii e ISM
INFiNIte IMPUISE RESPONSE ...ttt IR
IN-Phase/QuUAadrature-PREAsecouiiiiieiie e 1/Q
Inter SYMBDOI INTEITEIENCE.cvi e e ISI
LOGIC AITAY BIOCK.ottt et ae e sra e LAB
LOOK-UP TADIE ...t bbb b et LUT
ot o ToTo] 1 o] | - oSSR ucC
ot o] o 0ot} OSSPSR uP
Multiple Instruction Stream Multiple Data Stream............cccccovveieiiiiiene e MIMD
Multiple Instruction Stream Single Data Streamccocoovviiiniiieieee e MISD
NON=RETUIMN ZEIO ..ttt nnn e NRZ
Open ComMPULING LANGUAGEeoveeiveereieieiteeie sttt ettt sre e sra e ens OpenCL
OPEratioNS PEr CYCIE........eceiieieceiece ettt et re e re e ae e OPC
OVEISAMPIE RALEveieeeeee bbbt b e bbbt enes OSR
Programmable LOGIC DEVICE........cc.eiiiiiiiiiieieiee ettt PLD
ProtoCOl Data UNit........ccviiiieiiieieie sttt PDU
o [To T 1= [V 1= o [os Y SRS RF
RANAOM-ACCESS MEIMOIIESecuveiieeieeieiieesieeieseesie e s e ste et esre e e sraesreeaesseesseaeesneenreas RAMs
REQISLEr TranSTEr LEVELc.o i RTL
SaMPIE PEr SYMDBDON ..o s sps
Single Instruction Stream Multiple Data Streamcccocveiieiii i SIMD

-IX -

List of Abbreviation

Single Instruction Stream Single Data Streamcccoveveiieiieie e, SISD
SOftWare DefiNe RAGIOccve it ns SDR
VHSIC HDL ...ttt e e e e e sr e e e ab e e e sne e e e nseeeanneeas VHDL

1 Introduction

1 INTRODUCTION

The communication between the Bluetooth Low Energy (BLE) is working on the 2.4GHz radio
wave band, which is licence-free and mainly provide for the fields of Industrial, Scientific,
Medical (ISM), so that we can utilize this band for the data transmission easily. Regards with
this project, the first we will describe the short-range wireless communication architecture in

order to figure out what we mainly need to do.

1.1 Communication Construction

The Figure 1.1 is showing the basic architecture of signal communication, there are three parts,
which consists of the Radio Frequency (RF) Transceiver for receiving and transmitting data,
Analog to Digital (AD) / Digital to Analog (DA) Transform for changing signals, and the part
of Digital Signal Processing (DSP) [1]. However, for this thesis, here is mainly presenting how
to design an DSP, where the signal is received from the BLE Physical Layer (BLE PHY), and
complete it in Field Programmable Gate Array (FPGA) by using Open Computing Language
(OpenCL). Where OpenCL is a framework that includes a method to describe the accelerator
(FPGAs, Graphic Processing Units (GPUSs)) behaviour by using C/C++, and in the case of
FPGA, the C/C++ kernels can be converted into Hardware Description Language (HDL) via a
process of High-Level Synthesis (HLS) methods. Comparing to the traditional methods such as
VHSIC HDL (VHDL) and Verilog-HDL, the OpenCL has better portability and is easily able
to realize parallel programming, hence it features the characteristics of high productive and
high-performance processing, moreover, it can increase the interoperability between different
platforms as well. Before to detail the design, the next section is introducing basic background

and approach.

RF Transceiver AD/DA Transform

Radio Frequency (RF) »| Analog to Digital (AD) |»

1

Digital Signal

Radio Frequency (RF) <}j Digital to Analog (DA) SRy

Figure 1.1 Architecture of wireless communication system

1.2 Background and Approach

1.2 Background and Approach

A hands-free mobile headset was the first Bluetooth product to be made available to consumers,
and it was not until 2001 that the first Bluetooth-enabled mobile phone entered the market.
Meanwhile, the first notebook with integrated Bluetooth was introduced by IBM in the same
year as well [1]. On the other hand, with the rapidly development of portable or mobile devices,
within the limit power of battery, the power-efficiency performance and transmission rate have
been taken more and more attentions by consumers and developers. Therefore, in the foundation
of classical Bluetooth, it was extended to the novel version 4.0 as calling BLE by Nokia in 2006,
which has more great performances such as low power consumption, less cost and so forth [2].
Since then, it became one of fundamental technology in each mobile machine which consist of
mobile phones, headset, computers and even automobile and so forth, it gave us more and more
convenient in everyday life, and we can see and use it all around us during the short-range
transmission. With the benefits of BLE, it was shipped approximately four billion Bluetooth
devices by 2019, and even if due to the pandemic, in 2020 the shipped was almost same as the
last year. Obviously, there is no doubt the Bluetooth is already widespread adoption for the

short-rang communication applications [2, 3].

Nowadays, more and more designers or developers are taking focuses on the capabilities of
programmability, re-use (re-programmability and component recycling) for the electronic
circuits and systems, which allow them to design systems with a relative short time. For the
digital systems design, there are a lot of compliant approaches and devices for these features.
For example, the complementation with software programs written, we can base on
Microprocessor (uP), Microcontroller (uC), Digital Signal Processors (DSPs). Or the
realization with a hardware-configuring, we can through Programmable Logic Device (PLD),
which includes the Simple (SPLD), Complex (CPLD), and the FPGA. All of these options for
designing a digital system is given by Figure 1.2 [4]. For this project, because the performances
of energy efficiency and high computing are taken more attentions by us, and comparing all of
processors and accelerators, in most cases, the FPGA is more suitable for these essential
requirements. Where one important technical specification of FPGA is that the number of gates,
which is associating with the capability of computing and processing. And this index was
increasing from the 10 thousand level in 1980s, up to 50 million level in 2010s [5], hence we
can see that the complex-computing ability of FPGA was becoming stronger step by step.
Moreover, there are more than 40 companies have been engaging to this industry so far, such

-2-

1 Introduction

as Xilinx, Altera (now it belongs to Intel), Lattice and so on. Besides, with the rapid
development of internet and communication in recent decade, and considering the cost and
convenience for program developing, testing and debugging, the vendor Intel launched a
platform called DevCloud, which bases on the idea of edge inference solutions for learning,
prototyping, testing, and running the workload by using the latest hardware or software sets of
Intel. In this platform, it includes a serial of hardware such as Central Processing Units (CPUs),
GPUs, FPGAs. Specially, there is an environment we desired in this remote platform, that is
OpenCL for FPGA development.

- |
Microprocessor ‘ !
i

i
,_I Processor Microcontroller ‘ !
i

i
Digital signal Processor ‘:
i

Digital System
Requirements

Simple PLD I

\‘I PLD Complex PLD ‘E

Figure 1.2 The options for digital system design
About the OpenCL, different from others language, but it has non-overlook relationship with
others as well. Because it bases on C99, C++14 and C++17, but can write program for executing
the across heterogeneous platforms that combination of CPUs, GPUs, FPGAs, DSPs and other
processor or accelerators. OpenCL is an Open standard source by the non-profit technology
consortium Khronos Group, which promoter members consist of AMD, Nvidia, ARM, Intel,
Qualcomm, Apple, Huawei and so forth, so, there are many development sources we can utilize
easily and conveniently, the perspective is very bright in the future. In this case, in 2008, the
initial iteration of OpenCL instructions was released, which was considering the developers of
program don’t have to learn exclusive or multiple languages when work with different devices.
In other words, make a common interface, in order to apply a same program to the cross
platforms. Besides the advantage of portability, there is a very powerful and attractive
characteristic difference with others languages as well, that is offering us the model of parallel
programming [6], which can make the program processing more efficient. Now the latest

version was released in 2020 and has an instruction called OpenCL Specification version 3.0.

1.3 Dissertation Outline

Among this design, we accept a signal architecture named In-Phase/Quadrature-Phase (1/Q),
which accomplished by the pulse shaping technology of Gaussian Frequency-Shift Keying
(GFSK) modulation. The approach of GFSK has many advantages, such as power spectrum,
constant amplitude envelope, narrow spectrum, great performance in anti-interference, low-
cost and so forth, most of these are very desirable in the wireless communication systems [7,
8]. As a result, the approach of GFSK is very appropriate for processing the signal between the
transmission of BLE PHY, even said exclusive method. Besides, take the processing efficiency
into account, here invokes the method OpenCL which can deal well with the parallel
programming and then improve the operational rate of hardware in the aspect of software. As
for the FPGA platform, the Intel DevCloud was accepted, where there are several types of
FPGA and support to run the OpenCL program, so that we can select one and control online.
Obviously, it absolutely is a lowest-cost and minimum-time approach for us to verify and debug

the programs what we designed.

1.3 Dissertation Outline
During this project, we would work around the objective, so this thesis is briefly structured as

following:

The second chapter will explain the primary theories about the BLE PHY, GFSK modulation
and demodulation, FPGA, the remote platform Intel DevCloud and the OpenCL. Where it will
depict these via a several of aspects such as architectures, algorithms, common usages and so
forth.

About the chapter 3, according to the previous chapter, it will illustrate and shortly analyze the
simulating processes, and graphically show the results of GFSK modulation and demodulation
via software Simulink, let’s clearly perceive what GFSK actually modulates and demodulates.

The chapter 4 dedicates to show how to realize the GFSK modulation and demodulation in
OpenCL, which composes of host part and kernel part. It will construct a whole project relying
on the C standard libraries and assembling the specific usages from OpenCL. Besides, it will
illustrate the methods and results of compiling, executing and debugging with FPGA in Intel
DevCloud. Then we will accomplish the comparison and analysis between the results of
Simulink simulated and FPGA executed, and the verification with real BLE data stream from

theories to practice, all of these are interpreted in here.
The final chapter, it will make a conclusion for this work, and look forward some perspectives.

-4 -

2 Theories

2 THEORIES

The preceding chapter has explicated the objective, and if we want to reach this destination, we
need to figure out the essential theories what we will utilize. In this case, here includes some
architectures, concepts, algorithms, methods and so forth. Therefore, in this chapter, we will
explain the knowledge of BLE PHY, the modulation and demodulation of GFSK, and the
algorithms among these designs. Besides, there are FPGA principles, the primary design
concepts of OpenCL and some usages of remote platform as well.

2.1 BLE

Nowadays, the application of Bluetooth is pervasive, especially after the launched of BLE. In
this case, this section will interpret the protocol architecture of BLE and the principle of BLE
PHY. The first thing, let’s see what is the most attractive characteristic of BLE.

2.1.1 Why BLE

BLE is one of short-rang wireless communication protocol, besides, there are others well
performance of wireless protocols such as Wi-Fi and Zigbee. Even if BLE can be a fundamental
function or part in a large amount of mobile or portable devices, the Wi-Fi is also enjoyed by
us almost in daily life and everywhere. Meanwhile, the Wi-Fi and Zigbee are working in the
free-licence band of ISM as well, why we select the BLE rather than Wi-Fi or Zighee?

Table 2.1 Characteristics comparing of BLE, Zigbee and Wi-Fi

Class
— BLE Zigbee Wi-Fi
Characteristics
IEEE Specification 802.15.1 802.15.4 802.11a/b/g
Frequency Band 2.4GHz 2.4GHz, 868/915MHz 2.4GHz/5GHz

Modulation GFSK DSSS OFDM, DSSS, CCK
Range <100m 10~100m 50m

Network Topologies Il?/(l);g; to Point, Start, Star, Mesh Star

Data Rate 1Mb/s, 2Mbl/s 250Kb/s LIMb’s, 54Mbfs, 150Mbfs

+

Peak Current Consumption

<15mA, ~5.5mAin
latest devices

19mA RX, 35mA Tx

60mA RXx, 200mA Tx

Standby Current

<2UA

~5 uA

<100uA

2.1 BLE

The answer is among in the Table 2.1, which is about the characteristic comparison of BLE,
Zigbee and Wi-Fi [9-11]. Obviously, we can see the Peak Current Consumption and Standby
Current of BLE, that is lowest among these three protocols. In this case, it is a critical factor
we selected BLE, and can be more prospective in industrial communication or other short-rang
wireless communication fields because of the lower consumption. At the same time, that is why
it can be a fundamental part in all of mobile or portable devices as well, though people not
always use it in the day life comparing with Wi-Fi.

2.1.2 BLE PHY

However, there are many protocol stacks among the BLE, mainly consists of Application, Host
and Controller. The Figure 2.1 shows the exactly position of BLE PHY [12], we can see that
the physical layer is in the Controller, which in the lowest layer of the stack. Besides, the PYH

is able to transmission the data over the air via radio waves, that is also itself responsibility.

Application Layer (APP)

Generic Access Profile Generic Attribute Protocol
(GAP) (GATT)

Security Manage (SMP) Attribute Protocol (ATT)
Logical Link Control & Adaptation Protocol (L2CAP)

Link Layer (LL)
Physical Layer (PHY)

Figure 2.1 Protocol stacks of BLE

As mention previous, BLE PHY will transmission the data through the 2.4GHz frequency band
via the radio wave. Meanwhile, the frequency band is separated into 40 channels basing on
2MHz interval from 2400.0MHz to 2483.5MHz, which starting at 2402MHz, and it is shown
in the Figure 2.2 [9, 12]. We can see that there are two modes of channel called Data and
Advertising respectively, where the 37, 38, 39 are referred to the advertising channels for
broadcasting, connection establishing and device discovering. On the other hand, the rest
channels are data channels and can be used for bidirectional communication and adaptive
Frequency Hopping (FH).

2 Theories

37 01 23 4 5 6 7 8 9103811 1213 14 15 1617 18 19 20 21 22 23 2425 26 27 28 2930 31 32 3334 35 36 39

2402 2410 2420 2430 2440 2450 2460 2470 2480

Frequency (MHZ) Data: l:l
Advertising: |

Figure 2.2 BLE PHY frequency bands
In 2.4GHz band, it can transfer information by Bluetooth, Wi-Fi, Zighee, NFC and so forth,
then the overcrowding, congestion are common problems, even will cause the signal
interference and fading. In this case, BLE uses the method FH to suppress these issues.
According to a pseudorandom sequence of the channel index, the RF signals are quickly shifted
to different channels in a system, and that is the principle of FH. [13], incidentally, it is applied

in data channels.

! 8 symbols 32 symbols 16 - 312 symbols 24 symbol.
i ‘ Preamble | Access Address I PUD CRC
' 16 symbols 0- 296 symbols '
(1) advertising channel | Header | Payload |
: R
[oo | [oo | |
\ | Preamble | Access Address | Protocol Data Unit (PUD) [CRC
| 1 t
H vink] - 2040 symbo
(2) data channel | Header | Payload |
[0 | [0 | |

Figure 2.3 BLE packet format (1) advertising channel (2) data channel
But what kinds of information it will send and receive? Therefore, there is the BLE PHY packet
format, as showing in the Figure 2.3. Where mainly consists of the preamble, access address,
Protocol Data Unit (PDU) and Cyclic Redundancy Check (CRC) [14]. Clearly, they are all

symbols which means 1 bit per symbol.

Where the preamble and access address have special sequence format separately, and the detail
is described in Table 2.2 [15]. We can see that the preamble depends on the access address so
that both of them together can be used for distinguishing a data packet whether belongs to BLE.

Besides, the capability of transferring symbols via data channel is larger than the advertising

-7-

2.2 Gaussian Frequency-Shift Keying

channel. For some applications such as the Bluetooth Beacon, it can broadcast information via
the advertising channel, and the advantage is that the FH method is not to be necessary for it.
Incidentally, there are iBeacon, Eddystones Beacon, and AltBeacon in real life normally.

Table 2.2 The preamble and access address format in advertising channel.

Preamble ‘10101010’ - if LSB of access address is 0

‘01010101” - if LSB of access address is 1

Access Address | ‘OX8EB9BEDG’ in hex

‘1000 1110 1000 1001 1011 1110 1101 0110’ in binary

However, if we want to transfer a large data through beacon, it can be accepted the method of
two-time sending for transmitting extension data. That is the first time through the advertising
channel to broadcast a message which it will send a big data, when the receiver responded, the
transmitter will do the second sending with big data via the data channel, but all of above

perhaps can be accomplished in the 5.0 version of Bluetooth.

The data can be enveloped into radio transmissions through a lot of methods, such as the values
of amplitude, phase, or frequency of a wave. For BLE, it’s a special scheme calls GFSK, which
is refined from the Frequency Shift Keying (FSK) where information is formed by shifting the
frequency according to the deviation, and the critical part is adopted a Gaussian filter. Therefore,
the symbols are presenting as zero ‘0’ and one ‘1’ in binary, where ‘0’ is coded to negative
frequency deviation, in contrast, the symbol of ‘1’ is coded to positive deviation. Finally, we
will get the 1/Q basebands and through the modulation scheme of BLE. So, the next is going to
describe it in detail, including the demodulation as well.

2.2 Gaussian Frequency-Shift Keying

In general, there are two signal modes of transmission which are passband and baseband, the
difference is that the passband transmission will add a carrier frequency basing on the 1/Q
basebands. For example, there is a waveform with carrier frequency f, and then associates with
the deviation of basebands which implies ‘0’ and ‘1°, it will generate two new waveforms with
frequencies f; and f, which also imply the symbol ‘0’ and “1°, the waveform is shown in Figure
2.4. This operation could be realized by the hardware called Software Define Radio (SDR).
Hence, we should get the baseband signal firstly, which refers to the deviation of symbols in

frequency.

2 Theories

Figure 2.4 The example of passband represented
About the frequency modulation/demodulation, the FSK is widely used because it has better
noise suppression in comparing with the others modes such as amplitude and phase, and the
demodulation is less complicated for it. Therefore, GFSK is the extension of FSK which is
applying a gaussian filter before the frequency modulation procedure. Actually, as one of low-
pass filters, the gaussian filter can avoid the high frequencies because of the switching, so that
it can make the signal spectral bandwidth to be narrow, which is able to decrease the adjacent
channels’ interference. Here, it will begin from the modulation to deeply explain the

architecture and algorithm of GFSK.
2.2.1 Modulation

As mentioned earlier, the BLE will sent the symbols with ‘0” and “1” in binary, but it’s necessary
to envelop these into 1Q phases instead of sending directly, because it can strength the capability
of anti-interference when the system is working at relatively low data rate. The Figure 2.5 is

showing the block diagram of the GFSK modulation, which mainly includes 6 steps.

Argument

aln] b[n] c[n] g(®| d(t) () In-Phase cos(p (L))

Binary None . Gaussian
[Symbols H Zero (BNZ) H Up-Sampling]—’[Filter h(t)]»@D[Integrator

Quadrature-Phase @&(f)(t))

Figure 2.5 Architecture of GFSK modulation

2.2 Gaussian Frequency-Shift Keying

2.2.1.1 Binary None Zero (BNZ)

In the BLE PHY, it supports 1M PHY and 2M PHY, where 1M PHY means the 1-megabit
PHY, and the 2M PHY is 2-megabit PHY which introduced in Bluetooth 5.0 as an optional
scheme. Normally, both of them refer to the bit rate which this PHY is capable of, and it’s a
trade-off scheme that the higher bit rate means potentially higher Bit Error Rate (BER).

Commonly, the BLE PHY will select the bit rate of 2 Megabit per second, and the symbol is
the return-zero sequence, thus the first step is converting symbols to Non-Return Zero (NRZ)
binary signal, where the new symbol ‘-1’ instead of the original symbol ‘0’, and symbol ‘+1°
instead of ‘1°. The meaning of this data transformation is that it will be able to construct the
deviation sequence based on each symbol afterward, and the algorithm as following the
equation (2-1) [7]. We assume the original sequence as a[n], the result as b[n] after processed,

and the letter k is representing the index of symbol.

b(k) =2xa(k) —1 (2-1)
2.2.1.2 Up-Sampling

Because BNZ sequence still is integer, and gaussian filter will transform these into float so that
can realize the pulse shaping. However, it can’t be computed for getting a correct consequence
due to just a single symbol. In this case, we have to enlarge the single symbol so that can be
processed with Gaussian method, that is the meaning of Up-sampling. Therefore, for this
project, the output-data rate can reach 13 MHz if the input-data rate is 1 MHz because it must
generate 13 samples of output per each input data period [1, 7], the reason will be indicated
later, and the example we can see the Figure 2.6: the example of Up Sampling. So, the formula

as showing in equation (2-2), which we assume the output sequence as c[n].

elnl = b | 5] (2-2)

Figure 2.6 The example of Up Sampling
-10 -

2 Theories

2.2.1.3 Gaussian Filter

As for the Gaussian filter, it’s about the low-pass filter and mainly aims two goals [16]. Firstly,
it can pre-filter the baseband waveform via smoothing the edge of input data, thus it can narrow
the data spectrum of transmitting. Secondly, it can eliminate the glitches brought on by the data-

level converter circuit.

To the beginning, we need to initiate the Gaussian pulse-shaping filter [17]. Then the transfer

function of Gaussian low-pass filter which is shown in equation (2-3).

H(f) = e—(@f)? (2-3)

Where the argument of « is associating with B, which is -3 dB bandwidth of the baseband. And
it is commonly expressed as a normalized product (BTs) of -3 dB bandwidth and symbol time,

Tsis representing the period, so the expression can be given by equation (2-4).

In(2) T
@=——
V2 BT

With the a increases, the spectral occupancy of the Gaussian filter is reducing, and the impulse

(2-4)

response spreads over adjacent symbols, then it leads to increase the Inter Symbol Interference
(ISI) at the receiver. Therefore, in the continuous-time domain, the impulse response of
Gaussian filter is represented in equation (2-5). In order to fit with standard deviation g}, =
a/(v2m), which is the canonical form of a zero-mean Gaussian random variable, And then

rearranged it and got the equation (2-6).

h(t) = g e~ @’ (2-5)
R
1 & 2
ht) = ————e 2R (2-6)
Ve
\V2m

On the other hand, in the discrete-time domain, assume the Oversample Rate as OSR, then let
to = Ts/ OSR be an integer oversample of the symbol duration and t = kto. As mentioned before,
k refers to the sample index. As a result, the expression of discrete-time impulse response is
depicted in equation (2-7). And the equation (2-8) is describing the result that dropping the

dependence on to after invoked the equation (2-4) into (2-7).

-11 -

2.2 Gaussian Frequency-Shift Keying

h(kt,) = g e~ @kto)? (2-7)

(2-8)

oy 21 k
h[k _ 277: BTS e_(mBTSﬁ)z
Jn @) Ts

Moreover, the peak of the impulse frequency response can explicit as equation (2-9) according

to the first argument of equation (2-8).

VI v2m BT,
hmax = = > (2'9)
a In2) Ts

For Bluetooth, when assume BTs = 0.5, Ts = 1us, and OSR = 8, we can get the value of hmax =
1.5054 MHz, and the case of BTs = 0.5 is also called Gaussian Minimum Shift Keying (GMSK)
[19, 20], which is a special scheme of GFSK.

Besides, the Gaussian filter is a 39 tabs FIR filter with the 39 coefficients generated by using
the Marcum’s function [1, 18], that is the length of sample. However, here we accept 28 tabs
because it’s more appropriate in this project than 39 tabs according to the Up-Sampling. The
28 tabs are stored as a Look-Up Table (LUT), and the shape is shown in Figure 2.7, which after

the calculation of above formulas.

1.2

1
0.2
0.6
0.4
0.2

o
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Figure 2.7 The shape of the Gaussian Filter initialization
When the initialization of Gaussian Filter is accomplished, the next is to do the convolution
between the initial value of Gaussian filter and the input data, finally output the signal with time
domain. The expression as showing equation (2-10) [20], where ‘*’ refers to the convolution
operator. However, in order to describe it clearly, and facilitate to realize, we can transform the

expression from time domain to discrete domain which is resulted as the equation (2-11).

9(0) = c(®) * h(®) (2-10)
13
glkl =~ cli+il gl @-11)

-12-

2 Theories

2.2.1.4 Argument

This part is mainly adjusting some arguments between gaussian filter and integrator, and the
constant value was determined as ((Gaussian Length / 5) x) finally, where the Gaussian

length is depended on the tabs of Gaussian filter we accepted.
2.2.1.5 Integrator

After the signal go through the gaussian filter, the output indicates the instantaneous frequency
deviation Af (n), and then it will be integrated as the instantaneous phase shift Ap(n) by using
an Infinite Impulse Response (IIR) digital integrator, which has a transfer function as equation
(2-12) [1].

(2-12)

H(z) = 1—2z71

For GFSK modulation, we can get the equation (2-13) of the relationship between input and

output according to the transfer function, which is in discrete domain. And the flow graph is

shown in Figure 2.8.

plk] = o[k — 1] + d[k] (2-13)
| ol —1] — |
: z < i
- d[k] T > o[k]

Figure 2.8 Implementation of the integrator in discrete domain
2.2.1.6 1/Q Basebands

Now, we have got the instantaneous phase deviation, and then call it to the sine and cosine wave

generator respectively, hence to get the baseband signals of 1/Q.

Moreover, the extensional step is that the 1/Q signals can be associated with a carrier frequency
separately, thus to get the passband signals, and sent it over air via radio wave. However, the
passbands created will be dealt well with the hardware such as the radio frequency transmitter.
Figure 2.9 is showing the architecture of passband transforming, where £, is a carrier frequency.

And the computing procedure is given by the equation (2-14), so the finally signal will send out

-13-

2.2 Gaussian Frequency-Shift Keying

by transmitter that is described in equation (2-15). Of course, before sending, there maybe also

go through a filter which depends on the requirements.

Sersk(t) = cos(@(D)) cos(w,t) — sin(@(t)) sin(w,t) (2-14)

Sersk(t) = cos(wct + <p(t)) (2-15)

i [In-Phase]Mz(@i i

cos(w,t) |
i + |GFSK signal
1 fc >

- SGFSK(t)

I 3

sin(w,t)

[Quadrature-Phase]M(@i ;

Figure 2.9 Architecture of GFSK modulation passband
2.2.2 Demodulation

Now we have seen what information format transmitted after the modulation in DSP, that is the
waveforms which associated with the cosine and sine, and also called the In-phase and
quadrature-phase separately. Both of these waveforms are basing on the phase deviation which
computed by integrator block. However, all of above steps are the scope of transmitter, and also
about the construction procedure of baseband signal in DSP by GFSK modulation, hence, the
hardware of radio frequency transmitter can send the passband signal according to the baseband

signal.

In the further, when radio frequency receiver gets the passband signal of GFSK modulation
from the air, the first thing is compositing the waveforms of corresponding carrier frequency
respectively, for recovering the signal from the passband to the baseband. And then go through
a low-pass filter to smooth the waveform, the processing flow of this part is described in Figure
2.10. However, all of above can process in the hardware, for this thesis, we just need to discuss
the later part that has been got the smooth baseband waveforms. Thus, about the architecture of
GFSK demodulation is illustrated in the Figure 2.11.

We can see that there are 5 computing blocks which comprises of Arctangent, Unwrap,
Derivative, Coder and Down-sampling, these seem to be a little simple than the block steps of

modulation.

-14 -

2 Theories

cos'(¢(D) i COS”(fﬂ(f))[
@ » Lo;\;ltzfss In-Phase]

! cos (w,t) !
i GFSK signal] | i
i — fe i
H SGFSK(t) - !
' sin(w,t)

in’ (p(t . sin” (¢(1))
®51n ((D; Lo;\;ltzfss H Quadrature-Phase]

! "

i I R 20 bin .
i Arctangent]—D[Unwrap]—P[Derivative]—D[Coder]—D[Down-Sampling H Symbols]:
E Quadrature-Phase — :

__

Figure 2.11 Architecture of GFSK demodulation
2.2.2.1 Arctangent

The first step of demodulation in DSP we need to do the computation between the sine and

cosine by the function arctangent. The expression is given by the equation (2-16).

sin” (¢())
cos" (¢(t))

Whereas, because of the limitation of arctangent function, the values are limited in [—m, 7], or

@'(t) = arctan () (2-16)

[—g,g], which depend on the arctangent function in the real program, anyway, the next step

called unwrapping is necessary.
2.2.2.2 Unwrap

The meaning of unwrapping is releasing the limitation because of arctangent, and then the
results is corresponding with the output of integrator in modulation. We can realize it by judging
several conditions we set when we do the program, and the detail will be indicated later.

2.2.2.3 Derivative

As mentioned early, the integrator is responsible for transforming the deviation from the
frequency aspect to the phase aspect in the modulation. So, it’s clearly for this part that is
recovering the frequency deviation from the phase aspect. we can express the procedure of

derivative in discrete domain as the equation (2-17).

d'[k] = ¢"[k] = ¢"[k - 1] (2-17)

-15-

2.3 FPGA

2.2.2.4 Coder

We’ve got the frequency deviations, then, in this part, is coding the values of frequency
deviation to the symbols in binary. We can set two conditions to judge these and output the

result, the detail will be described in later chapter.
2.2.2.5 Down-Sampling

As so far, the information is still in the up-sampling range, and that is not our expectation of
demodulation. Besides, we knew the BLE packet has a relative fixed pattern as Figure 2.3,
particularly the preamble and access address in Table 2.2, they are able to realize the signal
synchronization between the transmitter and receiver of BLE in time domain. In the case of the
down sampling, the better scheme is to sample the symbols from the preamble of a BLE data
packet, because it can make the processing of down sampling to be more effective. However,
here we firstly discuss how to accomplish the process of down sampling, as for the preamble
and the access address detecting will be realized in the further work. In this case, assuming we
got an exact BLE data packet which has went through the preamble detected, and in order to
recover it to the original sequence, we need the down-sampling processing, which the basic
concept is sampling one symbol per 13 symbols. On the other hand, during this procedure, we
could select the mean value within a sequence of a serial of sequential and same symbols. This
method can reduce the possibility of the bit error sampled, because the symbols would be more
stable which is around the middle of this sequence, in contrast, it’s easily occurring some bits
error in the near of the both sides.

2.3 FPGA

During the parts of above, we’ve relatively understood the primary structure of BLE PHY and
the principles of GFSK modulation/demodulation, then, according to these concepts we will
realize all the function blocks of DSP in the FPGA platform. Before the practice, we need to

learn the basic knowledge about the FPGA as well.

The FPGA belongs to the programmable logic device, and as a type of PLD, compares with the
other class PLD such as CPLD and SPLD, they all are programmed by using HDLs such as
Verilog HDL or VHDL, but in the aspect of logic gate arrays, a CPLD consists of a few
thousand logic gates, whereas a FPGA can reach million level. Which means FPGAs can deal

well with more complex computing or threads processing than CPLDs and SPLDs. The higher

-16 -

2 Theories

complexity will be increasing the cost, therefore, according to the design of requirement,

CPLDs are more appropriate for the less complex applications, and the FPGAs are in contrast.

Besides, for the complex application, there are CPUs and GPUs as well, why we select the
FPGA as a realization platform? Among the several advantages of FPGA, such as flexibility,
energy efficiency, custom instructions, rich 1/0 and so forth, the most we heed to is the energy
efficiency because of the characteristic low energy of BLE. In CMOS era, there is a formula
for trading off the performance of energy efficiency that is indicated in equation (2-18) [21].

G = w (2-18)
Where the OPC means Operations Per Cycle, f.;x is the operational frequency, and P is the
power. In this case, at a same cycle, we can implement many parallel blocks to increase OPC,
thus improve the performance of energy efficiency. Besides, about the P, in FPGA, it can
communicate data through register or (small) on-chip memories in a same chip between the
different devices so that it could reduce P. In contrast, for CPUs and GPUs, they tend to use
external Dynamic Random Access Memory (DRAM), which has a higher power demand [22].

As a result, it’s better scheme to utilize the platform FPGA for this project.

There are a lot of vendors for the FPGA industrial files, nevertheless, among these various
FPGAs, the basic structure, the design flow and the hardware algorithm are almost same, so

this part primary indicates the concepts of FPGA through above aspects.
2.3.1 FPGA Architecture

Normally, programmable logic element, programmable 1/O element, and programmable
interconnect element are the three fundamental parts of an FPGA. A programmable 1/O element
can increase the peripheral devices where a programmable logic element indicates a logic
function, and a programmable interconnect element can connect various blocks [5]. In the
modern heterogeneous FPGA structure, there are also embedded memories such as Random-
Access Memories (RAMs), DSP units and other hard blocks, which can improve the
performance of computing capability. All of these blocks are interconnected by using bit-level
programmable routing [5], that is the programmable interconnect element. Figure 2.12 shows
the structure of an island-style FPGA [23, 24, 25]. Among academic and industrial FPGAs, this

architecture is the one that is most frequently used. Since the logic blocks in this form resemble

-17 -

2.3 FPGA

islands in a sea of programmable routing connection elements, it is obvious why this structure

is called island style.

3 Programmable Switch Horizontal 1/0 Block)"_’Jl:l D I:I I:l D D l:l l:l I:‘ i
ECDrmer:tiun Switch Block routing channel ¥D [D 3
) |

JJ‘LE Ds |

% — 4IL:1 Block| [T+ Ol

~ | | | e—Tvertical |

i Logic r?‘uli"gl D ol l:] i
'| Block | channef |
O Oy

a1 W S 11 O o)

o — - |

i — T eammation = Einy Oy

Block / 3

O / O

RAM 3

— F(Blogk Oy

ll 1‘77} ll JI"__ O O

TTT O of
DooooDoooo |

Figure 2.12 The island-style structure of FPGA
In this architecture, the programmable logic element is corresponding to the logic block.
However, logic block is named differently among various FPGA venders. For example, it’s
called Configurable Logic Block (CLB) in Xilinx FPGA, otherwise it’s Logic Array Block
(LAB) in Altera [5]. The connection block contains the programmable connection switch, the
vertical routing channel, and the horizontal routing channel, while the switch block contains
the programmable interconnect element. Finally, the 1/O blocks are connected to the

programmable 1/O element.

2.3.2 FPGA Design Flow and Design tools

The traditional design flow of FPGA is based on the HDL such as the Verilog-HDL and VHDL,
it’s universal and typical method for the most FPGA development companies. In other word,
no matter what HDL method we selected, take consider of the given specifications and
constraints, then describe source codes, draw the circuit diagrams, and set the parameters. The
Figure 2.13 is indicating the traditional method for FPGA design in HDL [5, 25].

So, obviously, in the traditional method with HDL, the first thing is describing the source code
in Register Transfer Level (RTL) description, then go through the logic synthesis, technology
mapping, place and route, generating a bitstream and configuration data, finally, programmed
and executed on an FPGA.. Besides of design procedure, there are also the verification in order
to check whether the design corresponding to the requirements or constrains, which roughly
include the RTL verification, timing analysing, and prototyping.

-18 -

2 Theories

———

Verification Design

RTL RTL HDL Software
simulation description

development
environment

Logic synthesis

| Software
synthesis program
Netlist

(Technology mapping)

Bitstream

generation

Timing
verification

Layout
Configuration data :<
Devices

Figure 2.13 Design flow of FPGA in HDL
2.3.3 Hardware Algorithms

To achieve a high performance, it’s not enough just to complete with hardware, especially, for
the computing capability of FPGA, it’s determined by utilizing efficient hardware algorithm
for the target application. There are two common and useful schemes of hardware algorithms,
that is pipelining and parallel processing.

2.3.3.1 Pipelining

The pipeline is a method for streamlining numerous processing iterations, and the processing
principle is presented as the Figure 2.14 [5]. In the non-pipelined situation of (1), the processing
iteration 2 is done sequentially after the accomplishment of iteration 1. In contrast, the (2) is
illustrating the pipeline processing, where we separate a unit processing iteration into n stages
with uniform proportion. In this case, here n = 5, and the second processing iteration will start
with done the first stage of the first iteration, the third will start with done the first stage of the
second processing iteration, and so on. Finally, it can be accomplished 6 processing iterations
with pipelining method during the time of 2 processing iterations in the non-pipeline situation.

Obviously, the speed of calculation in FPGA is skyrocketing through the pipeline scheme.

-19-

2.3 FPGA

Processing iteration 1 Processing iteration 2
[
Length (L)
(1) Non-pipelined scheme
Time E
.
»
L/5
—

i
E Proc.1| Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Proc.2 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Proc.3 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Proc.4

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Proc.5

Proc.6

|
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 ‘ i
I

(2) Pipelining Scheme

Figure 2.14 The comparison of schemes between (1) non-pipelined and (2) pipelining

2.3.3.2 Parallel Processing

The difference between the parallel processing and pipeline scheme is that the principle. For
the pipelining case in Figure 2.14, it’s considered as parallel processing of five processing
iteration when the 5" stage of processing iteration 1 is started. However, the processing
structure of parallelism mainly have three schemes, which are Single Instruction Stream
Multiple Data Stream (SIMD), Multiple Instruction Stream Single Data Stream (MISD),
Multiple Instruction Stream Multiple Data Stream (MIMD). The corresponding architectures
of above are presented in the Figure 2.15. In addition, the structure of Single Instruction Stream
Single Data Stream (SISD) is just displaying the basic components what it’s comprised of, it
does not have the behaviours of parallel processing. Moreover, there all are divided into two
parts which are control unit and processing unit. For the SIMD, it’s an architecture making
realize the data parallelism, and is applicable the situation of processing numerous data
synchronously with a single sequence of instructions. Nevertheless, in the MISD, each CU
provides different function for the PU even if they are sequential executed, so that it’s also
called functional parallelism. Compare with the SIMD and MISD, the MIMD is combination
of the both different characteristics that has the performances of data parallelism and functional

parallelism.

Besides, there are others schemes of hardware algorithms for increasing the computing or
processing capability as well, such as systolic algorithm, stream processing and so forth. Here

would not to extend these details, because the methods of pipeline and parallel processing are

-20 -

2 Theories

more typical and pervasive among all the hardware algorithms, specially, for this thesis we will

mostly apply the parallel architecture.

__

i bl > i
[SRy - STy :
\ Q] 1
i IS !
I E= A 4 - A 4 !
| 2 PU | E PU PU | - [PU]!
| E £ |
: A A A A :
i | Data Memory | | Data Memory | H
: (1) SISD (2) SIMD i
1N o] |, J{c] |
, 2 ————cu : ———fcu .
2 = i
! =] o 1
H = v v = v v 1
| g o] | 2| PR o] - o]
|2 g :
: ' _ L4
E | Data Memory | | Data Memory | !
i (3) MISD (4) MIMD |

(CU: Control Unit, PU: Processing Unit)

Figure 2.15 The structures of parallel processing

2.3.4 The Platform of Intel DevCloud

As so far, we have introduced some primary basic knowledge about FPGA and OpenCL, it’s
clear that we need to combinate the hardware and software to realize the object. On the one
hand, when we are just developing about the program by OpenCL, we can build the hardware
via the FPGA development board to verify the program, but it would cost a lot of money for it.
Besides, in order to verify and debug the program, we perhaps need to follow again and over
again the rest traditional design method except the construction of RTL description in HDL.
On the other hand, if we just want to verify and debug the program, for a deep-learning
programmer, it’s better that not need to construct any hardware in real and then complete them,

so that some remote platforms of FPGA were appearing these years.

The main FPGA vendor such as Xilinx, Altera, have been launched its cloud platform
respectively. For the Xilinx, it was launched the relevant remote devices in the Amazon Web
Services (AWS), which cooperating with the enterprise Amazon. In the AWS, the Amazon
Elastic Compute Cloud (Amazon EC2) F1 instances features FPGAs of Xilinx that can be

-21 -

2.4 OpenCL

programmed to build hardware accelerations for applications. Additionally, for the Altera, the
correlative devices have launched in the cloud platform called Intel DevCloud. This platform
has several series of FPGAs supporting the OpenCL, and perhaps it’s benefited from the mother
enterprise Intel, there are not only FPGAs, but also others computing devices such as CPUs,
GPUs, and others accelerators. Besides, as mentioned before, the DevCloud supports the
OpenCL development for FPGAs. Thus, as a result, we selected the latter platform as a primary
scheme to verify and debug our program in OpenCL, and the environment configuring we can
check in [33, 34, 35].

2.4 OpenCL

After via the learning with basic architecture of FPGA, the typical design flow in HDL, and
some hardware algorithms of thread processing, we would have roughly understood the
correlative knowledge in traditional design of FPGA from hardware to the software. On the
other hand, along with the complexity of system design increasing, the capabilities of
computing, productivity, efficiency and so forth, which are taken more and more attentions by
developers and vendors nowadays. Additionally, it can reach higher performance by using
manual optimization in the traditional design methods such as Verilog-HDL or VHDL, but this
method would be time consuming and might produce human errors. In these cases, a novel

method calls High-Level Synthesis (HLS) or behavioural synthesis was appeared [4, 26].

An algorithm is used as input in the automated design process known as HLS to generate the
digital hardware necessary to carry out the required function. [27]. In general, A high-level
programming language is used to create the control algorithms, such as C/C++ or variants
(System C, OpenCL framework, etc.), additionally, the automated tool offers a description of
the RTL hardware. For the most programmer whom is used to high-level language, to design a
whole regular DSP will be felt a little bit complex by using the HDL method. In addition, the
high-level language is a well-known tool. Therefore, the HLS method gradually become an

alternative scheme to implement an DSP design in FPGA.

Normally, a C/C++ code just associates with software program, this might result in the
synthesized hardware module performing poorly. The worst scenario is also that it might not
succeed in being synthesized into hardware. Considering the hardware produced by HLS, we
need carefully characterize the source code. In general, we can use variables, operators,

substitutions, control statements (if, for, while, etc.), and function calls in C/C++ code to signal

-22-

2 Theories

the target's behaviour. In this instance, an HLS situation can make an array into a memory, a
function into a hardware module, and a variable into a register, all of which are connected to
HDL. Additionally, a state machine would be implemented for the control, which consists of
sequential executions, branches, loops, and function cells. While the majority of HLS tools have
some common limitations, such as disabling recursive calls and disabling dynamic pointer [5].
Where the both of restrictions are because that would correspond to the dynamically instantiated
at run time in hardware module, that is exceeding the scope of concept within present digital
circuits. As a whole, a source code would be created using a high-level language like C or C++,
and from there, an RTL description would be produced using HLS or behaviour synthesis,
finally, the rest steps will almost follow the traditional method which starts from RTL
description as mentioned proceeding.

Bases on above thoughts, for this project we invoke OpenCL to construct a source code. For
the portability in OpenCL, means that we can build by C/C++, Java, Python, and then can apply
the program for the FPGAs, CPUs, GPUs, thus it resembles a common interface for the most
popular program languages and the target devices. Besides, the parallel programming which
can obviously increase the computing capability as explained in the section 2.3.3 hardware
algorithm before. In this case, the next will introduce the OpenCL via the aspects of itself

architecture, primary elements in detail.
2.4.1 Structure of OpenCL

For the parallel programming, there are two parts we need to distinguish that is host application
and the kernel. In other word, where the host application is associating with the control unit,
and the kernel corresponds to the processing unit. So, the source code will be normally divided

into two parts, host code and kernel code.
2.4.2 Host code

The good news is that we can use high-level language to generate source code in the host code
section, the bad news is that we need to comprehend the six peculiar elements, which composes
platform, device, context, program, kernel, command queue. Except the platform, the others’

relationship can be described in the graph as Figure 2.16 [6].

-23-

2.4 OpenCL

Program

E Context |
i v sym() b bnz() upsa() gauss() !
| Device 0 Device 1 Device 2 Device 3 i

Figure 2.16 The relationship of the main elements in host code
We assume there are several functions, sym(), bnz(), upsa(), gauss() and so forth, each
function can be explained by a kernel independently, thus the kernel is container of functions.
Furthermore, all of these functions are contained in the program, so we can say that program is
the container of kernels. On the other hand, the devices, command queues are included in the
context, thus the context is responsible for identifying a set of devices, and making it possible
to create command queues. Where for the former, it can receive task or function from the host.
And when identify by context, it not means all possible devices, but only the devices which are
selected to work together. However, for the latter, the command queues can transmission
information between host code and kernel code, which is similar as a bridge between the both.
While the program is configured in host code, at the same time all the necessary kernels are set
as well. On the other hand, we define the command queues and in order to generate it in the
context. Therefore, when the host code is executed, the context identifies a serial of devices,
then the host sends the task or functions that as kernels to the devices through the command

gueues within the context according the program configuration.
2.4.2.1 Platform

It’s a little pity there is no any description of platform in the relationship of the main elements

in host code as showing in Figure 2.16, but here will compensate this part as detail as possible.

Because OpenCL can apply for the different platforms, such as FPGA, CPU, GPU, and each

platform have many vendors and different classes. In this case, we need to distinguish what

=24 -

2 Theories

platform the code will be applied for. For example, it’s one situation we have known the
information of platform so we can directly configure it to the host code. But if we have not any
information about the platform yet, such as the seller, who want to sell the OpenCL application.
Thus, in order to make it possible no matter what situations, the data structure of
cl platform_id by providing from OpenCL specification guide can deal well with it [6, 28,
29].

There are usually three steps to finish a platform configuration in code, that is firstly allocating
memory for one or more c1_platform_id structures, and then utilizing the function called

clGetPlatformIDs () to initialize these structures. The entire arguments are shown below.

cl int clGetPlatformIDs (cl_unit num_entries,
cl platform_id* platform,
cl unit* num_platform)

num_platform)
Finally, if we want to discover the version of OpenCL a platform supports or who made it, we

can use the second function called clGetPlatformInfo(), and the overall arguments are

given below.
cl int clGetPlatformInfo (cl platform_id platform,
cl _platform_info para_name,
size_t param_value_size,
void* param_value,
size t * param_value size ret)

Where the second argument is para_name can be used one of the values within the Table 2.3,
besides, all of them return the char-type array. However, in the version 3.0 has added some new
parameters, such as CL_PLATFORM_NUMERIC_VERSION and so forth [30], here will not to
extend the detail. And the third parameter is param_value_size which indicates how many bytes

we want to store.

Table 2.3 OpenCL Platform Information Parameters

Parament name Description

CL_PLATFORM_NAME Return the platform-corresponding name

CL_PLATFORM_VENDOR Return the vendor that matches the platform.

CL_PLATFORM_VERSION Return the highest OpenCL version that the platform will support.

CL_PLATFORM_PROFILE Identify if the platform supports the complete OpenCL standard
(FULL_PROFILE) or the embedded standard (EMBEDDED_PROFILE)

CL_PLATFORM_EXTENSIONS | Return a list of the platform's supported extensions.

-25-

2.4 OpenCL

2.4.2.2 Device

About the others part we have roughly understood during the preceding explanation, so the next
is about how to realize these in code. Now we start from the device function. Similarly, devices
are designated by the data structure c1_device_id in code. Comparing with the platform
configuration, it also will experience two steps in the device aspect, which corresponds two

functions we will utilize.

The first function is about creating device structures and that is the c1GetDeviceIDs(). It
populating a c1_device_id array with structure corresponding to OpenCL devices, and the

whole arguments in this function are represented as below.

cl int clGetDeviceIDs (cl platform id platform,
cl device_type device_type,
cl uint num_entries,
cl device_id* devices,
cl uint * num_devices)

Where the first argument indicates the c1_platform_id structure representing the platform
we want. The second indicates a device type, which can be set by using the values which is
given by the Table 2.4.

Table 2.4 OpenCL Device Types

Device type Description

CL_DEVICE_TYPE_ALL Means every piece of device could connect to the platform

CL_DEVICE_TYPE_CUSTOM Specialized devices that don’t support all required OpenCL
functionality

CL_DEVICE_TYPE_DEFAULT Means that they are not special devices but rather those connected
to the platform's default kind.

CL_DEVICE TYPE _CPU Means the host processor

CL_DEVICE TYPE_GPU Means a device containing a graphics processor unit (GPU)

CL_DEVICE TYPE _ACCELERATOR | Means an external device used to accelerate computation

As for the second function, it can access devices and obtain device information, that is

clGetDeviceInfo(), and the full arguments are represented as below.

cl_int clGetDeviceInfo (cl_device_id device,
cl device _info param_name,
size t param_value size,
void* param_value,
size t* param_value size ret)

Obviously, these arguments are very similar with platform’s, and the difference is transforming

the first two data structure to the c1_device_idand cl_device_info respectively.

-26 -

2 Theories

2.4.2.3 Context

Meanwhile, the data structure of c1_context is indicating the OpenCL context, we can utilize
the functions of c1CreateContext() or clCreateContextFromType () to create it. Their

whole arguments are shown below respectively.

cl _context clCreateContext (const cl_context_properties* properties,

cl uint num_devices,
const ¢l _device_id* device,

void (CL_CALLBACK* notify_func) (..)
void* user_data,

cl int* error)

cl context clCreateContextFromType (const cl context_properties* properties,

cl _device_type device_type,
void (CL_CALLBACK* notify_func) (..)
void* user_data,

cl int* error)

The first function will establish a context by explicitly identifying devices, which is the primary
distinction between the two. The second function, in comparison, creates a context that includes
the devices of a specific type which available within the Table 2.4. On the other hand, we also
need to distinguish the cl_context_properties pointer and void pointer which are both
included. The properties pointer must designate an array of names and values which is
terminated with 0. However, the void pointer can point to any data we want. Besides, both
arguments can be set as NULL. About the callback function as an argument within both

functions, this may be used if an error happens while the context is in working.

Moreover, after create contexts by using the one of above functions, we could get context
information through the function c1GetContextInfo, which is similar with the function of
clGetPlatformInfo and clGetDevicelInfo in the platform and devices separately, and

here will not elaborate it.
2.4.2.4 Program

The devices can receive the tasks and functions from the host, and then the program is
responsible for storing the tasks and functions what will be sent by the host. Thus, in a word,
the program is a container of all functions. In OpenCL, the data structure of c1_program is
representing a program. This section will be divided into three steps to explain the program
how to be configurated in code, that is creating a program, building a program and obtaining

the information of program.

-7 -

2.4 OpenCL

For the first step, OpenCL provides two methods to create a new program, their functions are
represented as c1CreateProgramWithSource() and c1CreateProgramWithBinary().
Both them can transform the code into a c1_program, but neither accepts filenames or file
handles. Therefore, before calling one of the functions, we must read the content of the file into
a buffer when the kernel code is contained in a file. However, there are some differences
between the both functions, and the primary is the method of reading data. For the
clCreateProgramWithSource(), it expects the buffers to hold text-based code, and all the

arguments are given below.

clCreateProgramWithSource (cl_context context,
cl uint src_num,
const char** src_strings,
const size t* src_sizes,
cl int* err_code)

The function of c1CreateProgramwWithBinary () is similar with the previous, but it reads
bytes from binary file rather than reading strings from text file. Then, all the arguments of itself

are shown below.

clCreateProgramWithBinary (cl_context context,
cl uint num_devices,
const cl_device_id* devices,
const size_t* bin_sizes,
const unsigned char** bins,
cl int* bin_status,
cl int* err_code)

we need to note that in the third argument these devices must be contained within the

cl context which provided by the first argument.

As for the second step to build a program, we would use the function like c1BuildProgram().
Although there are different types of compiler for different vendors, one crucial common
provision is that every compiler must be accessible through c1BuilProgram(). So, this
function is responsible for compiling and linking a c1_program for devices associated with

the platform. The full arguments are represented bellow.

clBuilProgram (cl_program program,
cl uint num_devices,
const cl_device_id* devices,
const char* options,
void (CL_CALLBACK* notify func) (..),
void* user_data)

-28-

2 Theories

Finally, by using the function of c1GetProgramInfo() or clGetProgramBuildInfo()
to access information related to program when it has created and compiled. The first function
gives details about the program'’s data structures, including its context and target devices, so it’s
similar with the preceding functions of clGetContextInfo() and clGetDeviceInfo().
The second function includes instructions on how to create a program, which is crucial because
it's the only method to learn what occurred during the creation of the program. As a result, the
first is easier to test the return value of c1BuildProgram, however, if we want to find out the
reason when it built fail, we need to call the second function, that is c1GetProgramBuild-
Info().

2.4.2.5 Kernel

As mentioned early, the kernel is a container of function, so this part is describing how to
package the function in kernels. Each kernel can be represented by the data structure of
cl kernel, so, then the first thing is to create kernels by using the function clCreate-

Kernel() or clCreateKernelsInProgram().

For the former function it’s to construct a single kernel, which requires the name known of
function from which the kernel is to be create. So, the arguments what are contained in this

function just like below.

clCreateKernel (cl_program program,
const char* kernel_name,
cl int* error)

If there are multiple kernels, we just need to duplicate the function of c1CreateKernel().

However, it’s easier to using the latter function c1CreateKernelsInProgram() to work
on it, because it can produce a kernel for each function in the program. In this case, the entire

arguments are represented below.

clCreateKernelsInProgram (cl_program program,
cl uint num_kernels,
cl _kernel* kernels,
cl uint* num_kernel_ret)

where the new c1_kernels are placed in the kernels array, and the num_kernel_ret identifies
the number of available kernels. Via invoking this function twice we can determine the capacity

of memory has been allocated, and after that, put the kernels in memory.

-29.-

2.4 OpenCL

The second step is obtaining the kernel information and just like the step of program, context,
and device. Therefore we can utilize the function clGetKernelInfo() to getthe information

about which function it represents and which program it belongs to.
2.4.2.6 Command queue

As same as the briefly explained at the beginning, the command queue resembles a bridge
between the host and device. In this case, we don’t need to identify a target device when we
create a kernel, whereas within the procedure of creating command queue. That means when
we dispatch kernels to the queue, they will be sent to the devices automatically according to the
queues. Normally, besides the work mode of kernel execution which can dispatch the kernel to
a command queue, there are also three modes for the data transmission between the host and
devices, that is writing data from host to a device, reading data from a device to host, and
copying data between devices. Among these data-transfer modes, only one direction can be
realized at the same time, that means when the command moves from the host to device, the

device couldn’t send any command to the host.

According to the proceeding experience, we can easily derive the function of creating a
command queue, which would start with the data structure c1Enqueue, and that is representing
the command queue. Therefore, there is the function called c1CreateCommandQueue()

which is only one way to create a new queue, the entire arguments are following below.

clCreateCommandQueue (cl context context,
cl device_id device,
cl_command_queue_properties properties,
scl int* error)

Where the third arguments must be selected one enumerated type from the Table 2.5.

Table 2.5 OpenCl command queue properties

Parameter Description

CL_QUEUE_PROFILING_ENABLE Enables event profiling

CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE | Enables out-of-order execution of queue
commands

When the queue executes a command, the former argument lets us know that we might get
timing events. The latter parameter relates to how the device handles queue items. Generally,
command queues follow the First-In, First-Out (FIFO) principle by default, which means the

first kernel to be executed will be the one that is displayed to a command queue.

-30 -

2 Theories

Comparing with the above subsections, in the command queue part there is not the step of
obtaining information, instead, the second step is generating the enqueues of kernel execution
commands. So, the function called cl1EnqueueTask() is utilized which sends a kernel

execution command to a device via a command queue. The entire arguments are following

below.

clEnqueueTask (cl_command_queue queue,
cl_kernel kernel,
cl uint num_events,
const cl_event* wait_1list,s
cl event* event)

When we call this function, the device would carry out the kernel function while it processed
the command, so we didn't need to invoke any additional routines to do so. In other word, the

kernel execution command is sent to the command queue when we call this function.

As for now, the primary six elements of host code have been introduced, and there are others
elements are contained in the host codes, such as the memory allocating, buffer objects, others
command queues (buffer reading and buffer writing), the resource allocated releasing (kernel,
program, context, queue) and so forth, these will be explained with real codes in the later
chapters, so here not deploys these so detail any more. Therefore, we can clearly find that is for
constructing a serial of conditions about the data transmission in host code, and the goal is to
communicate with the kernel code. Obviously, about the computing part is described in the

kernel code.
2.4.3 Kernel code

During the host code, we can utilize the standard C libraries to construct it, the difference is
that it would be associated with some special expressions of OpenCL in some cases. However,
within the kernel code, there are more constrains than the host code when we program in the
standard C language, particularly some data structures. For instance, the global variable must
be a pointer, and the constant value can’t be defined within a function. Meanwhile, some

difference concepts and structures are applied for this part, which are given below.
® Each kernel declaration must begin with the string __kernel
® Every kernel function must return void.

® Some platforms won’t allow kernel compilation without arguments or attributions.

-31-

2.4 OpenCL

® |t can enable some extensions such as channel, and so forth.
2.4.3.1 Architecture of kernel cost

Because the kernel machine will communicate with the host machine, it must comprise of
reading data from and writing data to the host separately. Of course, the data processing or
computing must be contained in here. So above three parts are the primary components in kernel
code, and the detail of associating with this project would be discussed later. However, there
are others crucial principles we would to have a basic understanding, that is extension concept
such as the channel, the kernel attribution such as autorun, and the method of parallel program
such as the pragma of unrolling. All of above will explain roughly here, because it will be

explained more clearly when associating with the practice description.
2.4.3.2 Extension of channel

There are many extensions we can utilized for the OpenCL kernel code, such as some function
about the math, geometric, image processing and so forth, we can reference the OpenCL
extension specifications [31]. However, in the kernel code it has a normal format to invoke the

extension what we want, that is

#pragma OPENCL EXTENSION extension_name: behaviour
#pragma OPENCL EXTENSION all: behaviour

Obviously, the former is invoking a specified extension and the latter can invoke all the
extensions together. Where the #pragma OPENCL EXTENSION directly controls the
behaviour of the OpenCL compiler with respect to extensions, and the behaviour contains
enable and disable. In general, the extension name can be described as the
cl_<vendor_name>_<name>. In this case, for this project, here we would use the extension of

channel, which can be described as below.

#pragma OPENCL EXTENSION cl intel channels: enable

Where “intel” is indicating a vendor, “channel” is a specified extension.

The basic concept of channel extension just likes that provides temporary memory or buffer for
storing the data or information, so that kernel can read data from and write data to these
temporary memories or buffers separately, and realized the data transmission between the
kernels. In some cases, we need to process data through a serial of steps, and there will be

several kernels to realize the computing part, therefore the extensional structure channel would

-32-

2 Theories

be a simple method to deal well with the communication between kernels. In a word, it can

synchronize kernels and transmit data between them with great efficiency and low latency.
2.4.3.3 Autorun attribution

Similarly, there are a lot of attributions we can define from the correlative specifications of
OpenCL kernel [31], and the structure can be represented as __attribution__ ((quali-
fier_name)). For this project, we would utilize the autorun attribution, so the command line
can be described as __attribution__ ((autorun)), which will be in the position before

the kernel function.

The basic concept of autorun is that the kernel function will be launched before main()
function beginning, this is an idea for realizing the parallel programming. In this case, within
the function of kernel autorun, it will be used a while loop which has an infinite execution

cycle.
2.4.3.4 Unrolling pragma

As mentioned at last section, In the autorun kernels, there will be a while loop. If there are
some simple computing processes in while loop, such as addition, subtraction, multiplication,
division and so forth, it doesn’t matter. But if it is about iteration such as for loop within the
while loop in the autorun kernel, and we also want to make it parallel, then we maybe need to
take a consider of the unrolling pragma, which is a crucial concept in the OpenCL kernel code.
The command line can be represented as #pragma unroll, and in the position before the for
loop. By the way, it’s worth to note that the unrolling pragma just for the for loop, can’t apply

for while loop.

On the other hand, loop unrolling entails duplicating a loop body and lowering a loop's number
of trips. In other words, it can decrease or completely do away with the FPGA's loop control
overhead. Additionally, if there are no loop-carried dependencies and the offline compiler is

able to run loop iterations in parallel, it can also minimize latency [32].

-33-

3.1 GFSK modulation with Simulink

3 SIMULATION

Relying on the above concepts and methods, this chapter will explain some simulations in
MATLAB Simulink. Here we would separate two primary parts to illustrate the GFSK

modulation and demodulation.

3.1 GFSK modulation with Simulink

About the GFSK modulation with Simulink, there are mainly six steps, which includes
generating symbols in binary, transforming the symbols to the non-return zero, going through
gaussian filter, multiplying argument, integrating, and finally acquiring the 1Q basebands by
invoking the waveform shaper of cosine and sine respectively. Therefore, the block flow with
Simulink is represented in Figure 3.1. Comparing with the architecture of GFSK modulation in
Figure 2.5, we notice here the up-sampling block is missing. Actually, this function has been
comprised within the Gaussian filter processing.

| cos i
! . Unipolar to :
i Bgirr?gulll > Bipolar) num(z) >) o |
: ry Converter 1 X L 5 :
i Bernoulli Binary Unipolar to Discrete FIR Filter Product | = sin D i
1 Generator Bipolar 9 i
E Converter , 5
: 28*pi/5 Sin
o Agument |

Figure 3.1 GFSK modulation in Simulink
3.1.1 Bernoulli Binary Generator

The first step is generating the symbols in binary, we can call the block Bernoulli Binary
Generator in Simulink, which can generate random binary numbers using a Bernoulli
distribution. The detail of parameter configurated is represented in Figure 3.2. Where the
argument of sample time means how many symbols will be generated per second, here we want
to graph it clearly so that setting this argument as 1/5, and it will generate 5 symbols per second,
there will be 10 second shown in the analyser blocks, so total 50 symbols will be processing.

The result is graphed in Figure 3.3, where one point refers one symbol.

-34 -

3 Simulation

:EI Block Parameters: Bernoulli Binary Generator X :
1 |
: Bernoulli Binary Generator !
; Generate random Bernoulli distributed binary numbers. |
| =
1 Source code :
1 |
1
i Parameters |
1 |
| Probability of zero: 0.5 !
1 |
:Sourco of initial seed: Auto *Ji!
1 ; - |
:bamplo time: 1/5 I
|
(.) 1
1 Samples per frame: 1 I
1 |
1 |
1 Output data type: boolean vl
1 |
1 |
Simulate using: Code generation -
1 |
1 |
1 - . 1
| 0K Cancel Help I

D e e e T e e e L LR e P e
1 | Symbols] NRZ GaussianFilter Multiplication Integral I_Baseband Q_Baseband)
T \ \ \ T T T |

1 ¢ . H

|

i

0.8— ol
|

0.6/ — i
|

|

0.4 — 1
|

0.2[— e
|

|

of— ¢ -q !

1 1 1 | 1 1 1 I | !

0 1 2 3 4 5 6 7 8 9 10 |

1

Ready Sample based | T=10.000 J

Figure 3.3 Output of Bernoulli Binary Generator (Simulink)
3.1.2 Unipolar to Bipolar Converter

This part is responsibility for transforming the symbols from binary to the sequence of NRZ,
it’s easy understand and then we invoke the block called Unipolar to Bipolar Converter,

which maps the unipolar input signal to bipolar output signal. The result is representing in

----------- B
i Symbols NRZ GaussianFilter Multiplication Integral |_Baseband Q_Baseband !
T T T I T T I I
1 o
05— —
o -
-0.5— —
1 4
| 1 | 1 1 | | 1 |
0 1 2 3 4 5 6 7 8 9 10
Ready Sample based T=10.000

Figure 3.4 Output of Unipolar to Bipolar Converter (Simulink)

-35-

3.1 GFSK modulation with Simulink

3.1.3 Gaussian filter in Simulink

How to construct a Gaussian Filter is a most crucial section in the GFSK modulation. In the
Simulink, it has a readied block called GMSK Modulation Baseband, which can help us to
get the baseband directly through setting several parameters, obviously, it is a shortcut to realize
a communication system. However, for this project, one main objective is to understand how
to construct a Gaussian Filter and others computing parts within the GFSK modulation, thus
we turned down such shortcut temporarily. Because the Gaussian filter is one of low-pass filters,
we can invoke a block called Finite Impulse Response (FIR) filter to build a low-pass filter.

And then configure the parameters in FIR filter to realize a Gaussian filter, the detail is shown

st
1 [*&l Block Parameters: Discrete FIR Filter X 3
I

i Discrete FIR Filter

i

i Independently filter each channel of the input over time using an FIR filter. You can specify filter coefficients

! using either tunable dialog parameters or separate input ports, which are useful for time-varying coefficients.

i

' A DSP System Toolbox license is required to use a filter structure other than Direct Form.

1

i Main Data Types

i

Coefficient source: Dialog parameters - 3
i

i]‘:,'rl structure Direct form

i Coefficients: gaussdesign (0. 5, 1, 28)

1

i

! Input processing: Columns as channels (frame based) .
1

i Initial states: 0

|

'~ Control

i [J Show enable port

I

i External reset: None

1

' . -

'Sample time (-1 for inherited): 1/(13%5

1

I

i

|

i

7 | 0K | Cancel Hel

,,

Figure 3.5 Parameter configured of FIR filter (Simulink)
Where there are two primary parameters that we have to set well in order to realize the function
of Gaussian Filter. The first one is coefficients, we need to invoke a function called
gaussdesign(bt, span, sps) [36], thisequals the initialization of Gaussian filter. Among
the three parameters, bt is corresponding to the BTs which is the product of -3dB bandwidth and
period as mentioned in equation (2-4). Besides, the parameter span indicates the number of
symbols, and the sps refers to Sample per Symbol. Here the gaussdesign (0.5,1,28)
means that BTs=0.5, and 1 symbol was sampled 28 times. The number 28 is also associating
with the argument of Gaussian Length as mentioned in 2.2.1.4, then the result is corresponding
the Figure 2.7. On the other hand, the parameter sample time refers the up-sampling procedure.

Because there were generating 5 symbols per second that we’ve set in the generator, here we

-36 -

3 Simulation

need to multiply the number 5 within the denominator in addition. In these cases, we can obtain
the result as Figure 3.6. We can see that points are increased, which implies it has been went
through the up-sampling procedure successfully.

Figure 3.6 Output of gaussian filter (Simulink)
3.1.4 Argument Multiplying

This step just processes a multiplication with a constant ((Gaussian Length / 5) x), in order

to calibrate the later 1/Q waveform. The result is illustrated in Figure 3.7.

: Symbols NRZ GaussianFilter | Multiplication \ Integral |_Baseband Q_Baseband

Figure 3.7 Output of argument multiplying (Simulink)
3.1.5 Integrator in Simulink

Because the output of Gaussian filter refers to a frequency deviation, and the 1/Q basebands are
associating with the phase deviation. In this case, we need an Integrator to transform the signal

from frequency deviation to the phase deviation, then the output is displayed in Figure 3.8.

NRZ GaussianFilter Multiplication ‘ Integral |_Baseband Q_Baseband

I I I

1 2 3 4 5 6 7 8 9 1

=

Ready Sample based T=10.000 1

Figure 3.8 Output of integrator (Simulink)

-37-

3.2 GFSK demodulation in Simulink

3.1.6 1/Q Basebands in Simulink

After we got the phase deviations from the integrator, the next is sending the signal to the
waveform generator of cosine and sine, finally obtain the 1/Q basebands. The waveforms are
shown in Figure 3.9 and Figure 3.10 respectively. We can see the difference of both waveforms

is 90-degrees phase, and that is the meaning of I/Q modulation as well.

Symbols NRZ GaussianfFilter Multiplication Integral | | Baseband | Q_Baseband

1 | symbols NRZ GaussianFilter Multiplication Integral | Baseband | QBaseband |

Figure 3.10 Waveform of Quadrature-phase baseband (Simulink)

3.2 GFSK demodulation in Simulink

| think we’ve almost understood the procedures of GFSK modulation, sequentially, the

demodulation is converting the procedures of modulation in contrast. During Simulink, there
are several blocks we can invoke and to realize the symbols recovering. The Figure 3.11 is
associating with the GFSK demodulation with Simulink, where comprises of the algorithm of
arctangent, the waveform unwrapping, derivative, coder and finally converting the symbols
from bipolar to unipolar.

S

i > K (2-1 Bipolar to :
|>atan2 - > z —» [—» Unipolar D!
! ~ Tsz Converter !
i _fs’ia_n_2_ ______Unwrap Discrete Derivative __ Coder |

Figure 3.11 GFSK demodulation in Simulink
When we got the 1/Q basebands from modulation, we need to utilize a trigonometric function
to convert the signal from 1/Q baseband to the phase deviation, that is arctangent, and the
-38 -

3 Simulation

corresponding block in Simulink is Atan2, therefore we can acquire the output as representing

in Figure 3.12.

L e e e '
i | Arctangent 3 | unwrap Derivative coder SymbolsRecoved]
]
T T T T T T 1
3 } Q -) @ R & !
e fo § \ @ ol b
ey e 1 o - R ¥
i oy . < i Hlo

2~ o g e i o] 3
) i & q 1) 0] O 1
] @ y) 1] | o) 1
— o 1) g 1)) [1] |

1 5 & o] 1) R o]

& v & % % o i
s o a0 % o) Jov 1
o i ; g | p % 3 8 F
o] (o 3 4 W ol !
& is] o 0 a e |
|- v]] % ¥ 4 1
ol g) Lo} D 3 1
& o y ® o ® '
) g ¥ o o % Hou
2 2 o W o "
& 1 3 o o o
3 S & & S & ® O & 7o e & ® o
]
| 1 | 1 ! 1 | | 1
0 1 2 3 5 6 7 8 9 0}
i
Ready Sample based | T=10.000 §
__

Figure 3.12 Result of Arctangent (Simulink)
Obviously, there is a limitation around [—m, r], and resembles to cut the waveform when it
reaches the boundary. In this case, we could eliminate the limitation by the block Unwrap, here

we can see the results in Figure 3.13.

Y

| unwrap | Derivative coder SymbolsRecoved '
]

I T T T]
]

]

]

0

1

i

i

]

]

]

]

1

1

=1

]

]

]

b

]

]

1 | | 1 1 | | | [i
1 2 3 4 5 6 7 8 9 10
i

Sample based | T=10.000 |
__

Figure 3.13 Result of Unwarp (Simulink)
We are definitely not strange with this waveform, because it almost same as the Figure 3.8 in
previous subsection. Exactly, here the start and end points are difference with preceding, but
the whole shape is almost same, perhaps the reason is due to a little delay and then appearing a

little bit error, for now, it’s still acceptable.

Sequentially, the next is to convert the phase deviation to the frequency deviation, here we can
utilize the Discrete Derivative block, then Figure 3.14 illustrates the outcome.

Figure 3.14 Result of discrete derivative (Simulink)

-39 -

3.2 GFSK demodulation in Simulink

The beginning bit is error due to a little delay, consequently, the waveform is not looking very
good. However, the rest shape is almost similar with Figure 3.7, so, we can use a quantizer to
code the deviations, then the result is illustrated in Figure 3.15.

T T T T

1
1
Ready Sample based T=10.000)

__

Figure 3.15 Result of Coder (Simulink)
Distinctly, it’s NRZ sequence, so the next is turning it to the format of binary through the block
of Bipolar to Unipolar Converter. Thus, the Figure 3.16 is describing the consequence.

Arctangent unwrap Derivative coder SymbolsRecoved
| I I T T T
1 : ‘ p EE
0.8 —
0.6 —
0.4 —
0.2[— -
op- d -
| 1 | | 1 | 1 | |
0 1 2 3 5 6 7 8 9 10
Ready Sample based | T=10.000

,,

Figure 3.16 Output of Bipolar to Unipolar converter (Simulink)
Comparing with the Figure 3.3 which refers to original symbol sequence, the shape is almost
recovered. But for now, the waveform still in the up-sampling scope. In this case, for recovering
the symbol sequence totally, we also need to finish the last step called down sampling. It will
be explained in the next chapter with OpenCL.

-40 -

4 Realization with OpenCL in FPGA

4 REALIZATION WITH OPENCL IN FPGA

During the chapter 2, we’ve already explained the architecture and the basic elements for
constructing an OpenCL frame. Where it is separated as two parts, host code and kernel code,
and it mainly has six elements within host code, that is platform, device, context, program,
kernel, command queue. Moreover, as well as there are memory object and releasing resource
allocated etc., which are just briefly mentioned during the theorical chapter. In addition, within
the kernel code, we’ve illustrated some characteristics and novel concepts we are not met in the

standard C libraries.

Along the objective, basing on the knowledge of OpenCL and GFSK, in this chapter we will
explain the procedures of application from the theory of GFSK to the practice of OpenCL, and
associate with the real codes for elaborating the architectures in host part and kernel part for
this project. Besides, we will compile, execute and debug this program in the remote platform

called Intel DevCloud, that would be interesting.

4.1 Host Part

As mentioned previously, the host code can program by C/C++, thus the suffix of file can be
(.cpp), and the grammar or syntax of programming almost can inherit from the standard C/C++.
Therefore, in general we need to invoke a serial of head files at the beginning. As showing

below, there lists some head files what we need to associate with.

#include <stdio.h»>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <fstream>
#include <string.h>
#include "CL/opencl.h"
#include "aocl utils.h"

Where the first six head files belong to standard C/C++ libraries, they have defined a lot of
function prototypes and macros such as the description of input and output, file streaming, etc.,
so that compiler is able to understand what their parameters are, and the meaning of return
values, computing actions, and so forth. The final two are associated with the OpenCL, which
also indicate a number of functions and macros. But they are the specifying elements and
interfaces of OpenCL, such as the basic combination about platform, device, etc., we can invoke

these within the host code when we need.

-4] -

4.1 Host Part

The next we need to declare platform by c1_platform_id, define device by c1_device_id,

and so forth, the total six basic elements and a status are described below.

static cl_platform_id platform = NULL;
static cl_device_id device = NULL;
static cl_context context = NULL;
static cl_program program = NULL;

static

cl_kernel in_kernel = NULL;

static cl_kernel out_kernel = NULL;
static cl_command_queue fpga_to_host_queue = NULL;
static cl_command_queue host_to_fpga_queue = NULL;

static

cl_int status = 0;

Where the specifier “static” indicates to declare a variable or parameter in global address, and
we also can see that there define two different kernels and two different command queues
separately. As the syntax said, these are associating with the kernel part, which can realize the
communication between the host code and kernel code. Moreover, except the final one, all of
these are given an initial value called NULL, which equals to zero actually, because it’s

depended on the data structure.

Then, we are going to create the six basic elements, which are contained in a function call bool
init (). We’ve noticed that this function is declared by boo1l data structure, which means the
return value would be in Boolean. Because during this function, we need to judge whether all
the elements were created successfully, and then return a Boolean value indicates yes or no.

For creating the structure of platform, we can describe it in OpenCL as showing below.

cl _uint num_platforms;
status = clGetPlatformIDs(1, &platform, &num_platforms);
if (platform == NULL)

{
printf("ERROR: Unable to find Intel(R) FPGA OpenCL platform.\n");

return false;

}

Where the syntax c1GetPlatformIDs is corresponding with explained in the section 2.4.2.1.
Besides, the subfunction “if” refers to make a condition to know whether this structure is
created successfully, and return a Boolean value, that is why we declared the function init()
in the data structure bool. As for the rest elements, the code architecture for creating
themselves structure are similar with the platform, here will not display these one by one, but
we still need to take a notice about the kernel and command queue which are going to be created

two different structures for associating with the kernel part.

-42 -

4 Realization with OpenCL in FPGA

Moreover, because we created the structure of context, program, kernel and command queue,
these will be allocated to buffers. And considering the finite resource in FPGA, another function
about resource releasing that we need to create for these elements, that is void cleanup (). and

the code lines are shown below.

if(in_kernel) clReleaseKernel(in_kernel);
if(out_kernel) clReleaseKernel(out_kernel);
if(host_to_fpga_queue) clReleaseCommandQueue(host_to_fpga_queue);
if(fpga_to_host_queue) clReleaseCommandQueue(fpga_to_host_queue);

if(program) clReleaseProgram(program);
if(context) clReleaseContext(context);
if(input_buf) clReleaseMemObject(input_buf);
if(output_buf) clReleaseMemObject (output_buf);

Where the last two lines are about freeing the buffers of input and output, which can

communicate data with kernel part.

There are also some functions we need to create, for example, it can read data from and write
data to an external file separately, which are able to be described by normal C code, thus here

will not explain too much.

Elements Processing Flow
Input | -
| Allocate Data Capacity |
Output 7
Load Data |
Input buffer [!
« | Create Buffers |
Output buffer 7
[
|

Write event Create Events |

]
| Write-Buffer Enqueue |

Input kernel event

Output kernel event

| Kernel Argument Setting |

| Task Enqueue |

| Read-Buffer Enqueue |

| Terminate Waiting Event |

| Display Data |
]

| Releasing all of Events and Resources |

! Finish event | Start Waiting Event | i

Figure 4.1 The processing flow of main() function in host part
Eventually, we turn to the main() function after finished the configuration of initialization

functions. During the main() function, the procedure is illustrated in Figure 4.1.

-43 -

4.1 Host Part

We can see that it’s beginning from the data capacity allocating, we can invoke a syntax called
malloc to realize it. In addition, notice that it is necessary to allocate two different data address
space, named input and output for storing data which preparing to send to and receive from

kernel part respectively. The exact code is shown below.

unsigned int *input = (unsigned int *)malloc(dat_size*sizeof(int));
unsigned int *output = (unsigned int *)malloc(dat_size_out*sizeof(int));

Where the dat_size and dat_size_out refer to the size of sending data and receiving data

separately.

After we finished the allocations of data space, the second step is loading the data what we want
to send to kernel part. Here it accepts an approach that reading from a file, the prerequisite is
that before the main() function we’ve declared the function of reading data from an external
file. Then transferring the data to the data space named input, which allocated in the first step,
and the code is shown below.

for (int i =0; i < dat_size; ++i)
{
Readfile(input_ch);
input[i] = input_ch.read();
}

The next step is allocating the buffer object which can involve any data type but not image.
And this also need to create two different buffer objects by command c1CreatBuffer(). The

code is represented below.

input_buf = clCreateBuffer(context, CL_MEM_READ ONLY, dat_size *size-
of(unsigned int), NULL, &status);

output_buf = clCreateBuffer(context, CL_MEM_WRITE_ONLY, dat_size_out * size-
of(unsigned int), NULL, &status);

Obviously, the difference of argument setting is only the second parameter, the input_buf is

specified to read only, and the output_buf is in contrast.

When we finish the buffer object created, some events and enqueues would be created for
executing, communicating with kernel part. So, there are the events called write_event,
finish_event,in_kernel_event,and out_kernel event. Wherethe finish_event
will judge when the kernel part starting and finishing. Then, to create an enqueue for writing
data to buffer object and the code is displayed below.

status = clEnqueueWriteBuffer(host_to_fpga_queue, input_buf, CL_FALSE, 9O,
dat_size * sizeof(unsigned int), input, ©, NULL, &write event);
if(status!=CL_SUCCESS) printf("Failed to transfer input\n");

-44 -

4 Realization with OpenCL in FPGA

we can see that arguments are associating with command queue of from host to fpga, and the
input_buffer object, data size, data space, and the write_event, which have been defined before.

And then judge whether make it enqueue successfully through setting a condition by “if”.

Now the data will turn to the kernel part. At the beginning, here we call a function named
clWaitForEvents() to interpret the work of kernel part is starting, we need to wait it

accomplished. Therefore, the finish_event is invoked for this function as shown below.

clWaitForEvents(0@, &finish_event);

Where the argument 0 indicates the event of kernel part is starting.

However, we don’t know which kernel of kernel part will receive the data from host or write
result to host, so we need to set some arguments for kernels in host part to recognize the
corresponding kernels of kernel part. In this case, the function cl1SetKernlArg() isinvoked
here. Moreover, we need to configure the data size and buffers in input kernel and output kernel
respectively, so there are 4 command lines for these, which are shown as below.

status = clSetKernelArg(in_kernel, argi++, sizeof(cl_mem), &input_buf);
status = clSetKernelArg(in_kernel, argi++, sizeof(cl_int), (void *)

&dat_size)
status = clSetKernelArg(out_kernel, argi++, sizeof(cl_mem), &output_buf);
status = clSetKernelArg(out_kernel, argi++, sizeof(cl _int), (void *)

&dat_size_out);
wherethe in_kernel and out_kernel are separately corresponding to the kernels in kernel
part for receiving data from host and writing data to host, that is we need to declare both during

the host part.

Once we know which kernels in kernel part are docking with the kernels of host part, then the
host part can arrange the tasks for kernel part, and the function c1EnqueueTask () would be

invoked. The code lines are represented just like below.
status = clEnqueueTask(host_to_fpga queue, in_kernel, 1, &write_event,
&in_kernel event);
status = clEnqueueTask(fpga_to_host_queue, out_kernel, 0, NULL,
&out_kernel_event);

where there are also two parts according to the command queue. The former indicates the
specified kernel of kernel part receives the data from the kernel of host part, and the latter refers

to write.

While the kernel part finishes computing, and then returns the consequence to the host part, the

data will be stored in the buffer called out_buf in host part. Therefore, if we want to display

-45 -

4.2 Kernel Part

it, we need to transfer the data from buffer to the data space, that is why we called the function
named clEnqueueReadBuffer(), which creates an enqueue for reading data from a buffer.

The correlative code is represented as below.

status = clEnqueueReadBuffer(fpga_to_host_queue, output_buf, CL_FALSE, 0,
dat_size_out*sizeof(unsigned int), output, 1, &out_kernel_event,
&finish_event);

Obviously, it’s in contrast with the enqueue called c1EnqueueWriteBuffer(). And then we
enable the event called finish_event to indicate that the waiting event is terminal, the code

as showing below.

clWaitForEvents(1l, &finish_event);
Ultimately, we call a for loop to display the result from kernel part, and then release all of events

and resources.

4.2 Kernel Part

As explained in the last section, while the data has been sent to the input buffer object in host
part, the corresponding kernel in kernel part will read the data from host, then, the work of
kernel part is beginning, until returning the results to the host by a specific kernel. Besides,
through the analysis before, the host part mainly was constructed a serial of conditions for
communicating with kernel part, as for the data computing and processing, they are almost
within kernel part. Therefore, the GFSK modulation and demodulation will be realized in kernel
part, and here will explain how to construct them via associating with relevant theories and

simulation.

Firstly, for this project, the procedure of GFSK modulation and demodulation is illustrated in
Figure 4.2. Clearly, there are mainly 4 parts within this processing flow, which comprises of
the host, global memory, processing units, and channels extension. Where the host refers to the
host part, the rest belong to kernel part. Moreover, during the processing units, it’s both
containing the modulation and demodulation, because here we want to verify the feasibility and
validity of algorithms and concepts, and shrink the time cost by the way. In addition, notice that
only the processing units of Symbols and Output can communicate with the host, obviously,
they are docking with the kernels of host part, and corresponding to the in_kernel and

out_kernel as mention in the last section.

- 46 -

4 Realization with OpenCL in FPGA

Symbols Read
Binary None Zero \ Write

TR 0 Up-Sampling B 5
{—Channei“Upsan” 8 Gaussian i
Multiply Argument |
Integrator
| Channel || (;-%aassee%aanncti:l B
il Chain Arctangent i
Unwrap |
| Deviation Read
| Coder : |
IR Down-Sampling /
e Dowmsar Output ' i

Figure 4.2 Processing Flow of GFSK Modulation and Demodulation in Kernel Part
Now, let’s turning to the construction of kernel code. For this project, the basic architecture in

program as showing below.

attribute__ ((max_global work_dim(@)))
kernel void Symbols (__global memory)

{
}

attribute__ ((max_global work_dim(@)))
attribute_ ((autorun))
kernel void BinaryNoneZero()

for () {Read data from host machine and write to the channel}

{
while() { Read data from the last channel.
Computing, which almost similar to C/C++.
Write data to the next channel. }

attribute_ ((max_global work dim(@)))
kernel void Output (__global memory)

for () {read data from the last channel and write to the host machine}

}

For the first kernel and the final kernel, they are both invoking the for loop. The former one is
for reading data from global memory and writing to a new channel, the latter one is for reading
data from the last channel and writing to the global memory.

-47 -

4.2 Kernel Part

Except the above two kernels, the others are invoking the while loop, which has an infinite
feature. The difference is that these kernels are specifically declared an autorun attribution,
which means they don’t need to receive the orders from host machine and then are able to
process data automatically. In other word, they can be initialized before executing the main()
function in host part, so that realized the concept of parallel programming. Additionally, they
transfer the data through the channels, which is an extension of OpenCL, and the invoking

method has already represented before.

Besides, all of the kernels are given an attribution called max_global_work_dim(®@). On the
one hand, it can instruct the compiler to ignore logic which generates and dispatches global,
local, and group IDs into the compiled kernel [32]. On the other hand, it’s because we have

invoked the autorun attribution, we have to call it as well.

During simulation by Simulink, we’ve almost realized a whole modulation and demodulation,
and there are many modules what we can call for the design in simulation, even if we need to
configure some parameters within the blocks. However, that is not our primary purpose in this
project, we aim to understand the algorithms each block, and realize them via a serial of
computing processes with OpenCL. Therefore, here we dedicate to the construction of
algorithms in Kernel Part. So far, we have already had a clearly conception about a whole
structure of kernel part, in this case, the next we will separate two subsections to respectively
illustrate the GFSK modulation and demodulation in OpenCL, especially the realization of
Gaussian filter.

4.2.1 GFSK modulation in OpenCL

At the beginning, we need to call the pragma of channels, and declare a lot of corresponding
channels [37], a part of code is illustrated as below.
#pragma OPENCL EXTENSION cl _intel channels : enable

channel int Source_ch;
channel float Gaussian_ch;

Here, the first line indicates enabling the channel extension, then the last two lines declare the
corresponding channels for storing data temporally, they have different data structure that
depend on the type of transferring data. Similarly, the rest channels are declared by following

these formats.

-48 -

4 Realization with OpenCL in FPGA

After finished the declaration of channels, we can call these channels within kernels. According
to the architecture of kernel part, firstly, it should read data from host part, then write to channel.
The relevant code is given by below.

attribute__ ((max_global_work_dim(@)))
kernel void Symbols(__global unsigned int* inputdata, unsigned int dat_size)

{
for (int i=0; i < dat_size; i++)
write channel_intel(Source_ch, inputdata[i]);

}

We can see that it defines a pointer in global type, that means the kernel will read data from a
global memory through a pointer. Following the declaration in the host part before, the host
will send data to the global memory of kernel part, thus here the kernel can read data from
global memory directly as long as configured the correlative arguments. Then, during the kernel
function, it calls a for loop and writes data to the first channel. By the way, the Symbols
kernel is corresponding to the block of Symbols in Theories chapter, the block of Bernoulli
Binary Generator in Simulink, and the kernel named in_kernel in host part. Successively,

it is going to experience a number of autorunning kernels, which are emphases for this section.

Be associated with the preceding basic architecture of program, we need to configure the
attribution of autorun and (max_global_work_dim(0)) for each kernels during the processes of
autorunning, besides, call while loop as well. Therefore, for the first autorunning kernel named
BinaryNoneZero, is correspond to the block of Binary None Zero (BNZ) in Theories chapter,
and the block of Unipolar to Bipolar Converter in Simulink. Clearly, the function is to

transform the symbol type from binary to NRZ, the code within while loop is illustrated below.

int v = read_channel_intel(Source_ch);
if (v == 09) v = -1;
write_channel_intel(BinaryNoneZero_ch, v);

It’s easily understood. First line depicts to define a variable (actually it refers to an array) which
reading data from the first channel. Then the second line indicates to process the variable, that
is setting a condition by invoking “if” syntax, to transform the symbols from “0” to “-1”. The

final line depicts to write the result to a new channel.

According to the Figure 2.5, the next is up sampling, so, the code in the while loop of the
kernel Upsample is shown below.
int v = read_channel_intel(BinaryNoneZero_ch);

for (int i=0; i<13; i++)
write channel intel(Upsample ch, v);

- 49 -

4.2 Kernel Part

Similarly, the first thing is declaring a variable which reading data from the last channel.
However, here is some differences, for the for loop, it doesn’t call the pragma unrolling, and
arrange the behaviour of writing data to channel within here. The reason is because we need to
interpolate the symbols basing on the original data structure, that is duplicating 13 times for

each symbol, and then write to channel by the way.

Eventually, we are going to the most crucial part during a whole GFSK modulation and
demodulation, that is construction of Gaussian filter. The relevant algorithms and processes are
explained explicitly during the equations from (2-3) to (2-11), hence we can associate with
these equations to build a Gaussian filter in OpenCL. There are two steps, the first is initializing
a gaussian filter, the second is done the convolution according to the initial values of Gaussian
and the input value. Incidentally, the initialization of gaussian filter must be prior to the while
loop invoked, because we just need to execute it once. Then, let’s check the code of Gaussian

initialization as below.

1 float gaussian_values[GAUSSIAN_LEN];

2 float hmax = 1.5E6;

3 float ts = 1E-6;

4 float OSR = 8;

5 float acum = 9;

6 for (int i=@; i < GAUSSIAN_LEN; i++)

7 {

8 int k = i - GAUSSIAN_LEN/2;

9 float v = (hmax*ts*k/0SR);

10 gaussian_values[i]= exp(-(v*v));
11 acum += gaussian_values[i];

12 }

13 for (int i=0; i < GAUSSIAN_LEN; i++)
14 gaussian_values[i] = gaussian_values[i] / acum;

15 float samples[GAUSSIAN_LEN]J;

To the beginning, it defines an array space for gaussian value at the first line, and the length is
associating with the the number of sampling per symbol, which corresponding to the parameter
sps in FIR filter of Simulink, and here is equal to 28 as well. And then the lines between 2"
and 4™ are declaring the values of hmax, Ts, OSR, which are according to the description part
that locating after the equation (2-9), in conclusion, these parameters are suitable for Bluetooth.
Sequentially, it calls for loop twice. During the first loop, a half of gaussian length is a
reference value, in order to obtain the discrete sequence k. In this case, this structure will be
symmetrical about Y orientation in the coordinate system. Then according to the equation (2-8),
substituting the values of hmax, Ts, OSR to this equation and acquiring the array of initial

-50 -

4 Realization with OpenCL in FPGA

gaussian values, as illustrating within the 8" to 10" line, and the structure resembles the Figure
2.7. Finally, the 11" line in the first for loop indicates to accumulate all the values, which is
for the computing in the second for loop. Therefore, within the second for loop, we need to
divide each initial gaussian value by the result of accumulation, and that’s the consequence of
gaussian initialization what we want. The last line declares an array named samples for storing
the data which reading from channel. Then we turn to the computing part in the while loop,

as showing below.

#pragma unroll
for (int i=0; i < GAUSSIAN_LEN-1; i++)
samples[i] = samples[i+1];
samples[GAUSSIAN_LEN-1] = (float) read_channel_intel(Upsample ch);

float acum_ga = 0;
#pragma unroll
for (int i=0; i< GAUSSIAN LEN; i++)
acum_ga += samples[i] * gaussian_values[i];

write channel _intel(Gaussian_ch, acum_ga);

Here it calls the for loop twice as well, but the deference is they need to invoke the pragma
unrolling, because they are both in while loop. Besides, different with previous behaviour of
reading data from the last channel, it needs to shift one bit to left firstly by a for loop, because
the data type needs to show as an array. For the second for loop, that is the convolution
computing step, according to the equation (2-11) we can realize it in here. Finally, to write the

results to a new channel.

As so far, we’ve finished the construction of Gaussian filter and output the result to the channel.
And then the rest computing units in modulation is along to the architecture of autorun kernel.

Hence, the computing segment codes are depicted respectively as below.

Multiple Kernel: float v = read_channel_intel(Gaussian_ch);
float cv = v*(GAUSSIAN_LEN/5)*pi;
write channel intel(Multiple ch, cv);
Integrator Kernel: cv += read_channel _intel(Multiple ch);
write channel intel(Integral I ch, cv/(GAUSSIAN LEN-1));
write_channel_intel(Integral_Q_ch, cv/(GAUSSIAN_LEN-1));
I Baseband Kernel: float v = read_channel_intel(Integral I ch);
float c_i = cos(v);
write channel intel(I_Baseband ch, c _i);
Q_Baseband Kernel: float v = read_channel_intel(Integral_Q_ ch);
float c_q = sin(v);
write_channel_intel(Q_Baseband_ch, c_q);

-51-

4.2 Kernel Part

Notice that when we finished the integral processing, we need to send the same result to
difference channels so that the kernels of I_Baseband and Q_Baseband can separately read
it successfully. Otherwise it will report an error by compiler, that it’s not allowed to read data

from a same channel by different kernels.
4.2.2 GFSK demodulation in OpenCL

As for the kernel part of GFSK demodulation, it is similar to the modulation. Now we are going
to follow the sequential steps according to the Figure 2.11 and Figure 4.2, hence there are
Arctangent kernel, Unwrap kernel, Derivative kernel, Coder kernel, DownSamples
kernel and Output kernel here. Therefore, according to the architecture of autorunning kernel
and the algorithm of arctangent, the computing part in while loop of Arctangent kernel is

shown in below.

float vl = read_channel_intel(I_Baseband ch);
float v2 = read_channel_intel(Q_Baseband_ch);
float cv = atan(v2/vl);

write_channel _intel(Arctangent_ch, cv);

we can see that here can read data from different channels separately within a kernel, but

different kernels cannot read from a same channel.

Then the Unwrap kernel will deal with data in array mode, so it need a similar structure which
in the Gaussian filter kernel, for reading data from channel. In this case, the code in the while
loop is shown below.

1 #pragma unroll

2 for (int i=@; i < GAUSSIAN LEN-1; i++)

3 samples[i] = samples[i+1];

4 samples[GAUSSIAN_LEN-1] = read_channel_intel(Arctangent_ch);

5 float acum = 9;

6 #pragma unroll

7 for (int i=@; i< GAUSSIAN_LEN; i++)

8 {

9 if (((samples[i] - samples[i-1])<pi/2) && ((samples[i] -

samples[i-1])>-pi/2))

10 acum = samples[i];

11

12 for (int j=1; j< GAUSSIAN_LEN; j++)

13 {

14 if (((samples[i] - samples[i-1]) <-(2*j-1)*pi/2) &&
((samples[i] - samples[i-1]) >-(2*j+1)*pi/2))

15 {

16 samples[i] += j*pi;

17 acum = samples[i];

-52-

4 Realization with OpenCL in FPGA

18 }

19 else if (((samples[i] - samples[i-1]) >(2*j-1)*pi/2) &&
((samples[i] - samples[i-1]) <(2*j+1)*pi/2))

20 {

21 samples[i] -= j*pi;

22 acum = samples[i];

23 }

24 }

25 }

The crucial part is second for loop, which are the processing of unwrapping, the basic concept
is divided two parts. The first is that it doesn’t need to do the processing of unwrapping before
the first time of reached limitation. And the second step is starting to unwrap when the data
over the first limitations due to the function arctangent. During the third for loop, there are two
conditions to solve the wrapping data. The first is for the process when data more than 0, and

the second is for the data less than 0. As showing in Figure 3.11, the split point is = and —m in

Simulink, however, during OpenCL, the result is limited between [—g,g], so, the +(2j —

1)m/2 and +(2j + 1)m/2 are selected.

In the same way, the Derivative kernel will process data in array type, and according to the

equation (2-17) we can write the code within while loop as showing below.

#pragma unroll
for (int i=@; i < GAUSSIAN LEN-1; i++)
samples[i] = samples[i+1];
samples[GAUSSIAN_LEN-1] = read_channel_intel(Unwrap_ch);
float acum = 9;
#pragma unroll
for (int i=@; i<GAUSSIAN_LEN; i++)
acum=samples[i]-samples[i-1];
write_channel_intel(Derivative_ch, acum);

By the way, the bold part is about the computing process.

Regarding with the Coder kernel and Down-sampling kernel, because they are processing
the data in a variable type, then they call the normal method of reading data from channel, and

the segment code of them are respectively represented below.

Coder kernel: float v = read_channel _intel(Derivative ch);
unsigned int acum=0;
if (v>0) acum=1;
if (v<0) acum=0;
write channel intel(Coder_ch, acum);
Down-sampling kernel: unsigned int v = read_channel_intel(Coder_ch);

for (int i=7; i< 1; i+=13)
write channel intel(dsam ch, v);

-53-

4.3 Compiling, Executing and Debugging with FPGA in Intel DevCloud Plaform

similarly, the computing pieces are in bold separately.

Finally, the last kernel is named Output kernel, which is responsible for writing the final result
of kernel part to the global memory, so that the host can read this data directly. And the code is

shown below.

attribute_ ((max_global work _dim(@)))
kernel void Output(__global unsigned int* outputdata, unsigned int dat_size)

{
for (int i=0; i<dat_size; i++)
outputdata[i] = read_channel_intel(dsam_ch);

}

4.3 Compiling, Executing and Debugging with FPGA in
Intel DevCloud Plaform

Because the program of OpenCL can be built with C/C++, we can compile and execute this file
by the gcc/g++ tool in a program environment. Moreover, for more convenient during
debugging, | built a compiling file called MakeFile. It can compile the main(.cpp) file with a
single word “make” in the host part, instead of a normal method. About the kernel part, there
are a serial of exclusive usages for operating. Especially, for compiling, we can call the usage
“aoc <file name.cl>” [39], where the file suffix (.cl) means this file is OpenCL kernel
code.

§ v BLE

v cpu
- <+— Output object of
aocl_utils.h Head file for Host Code

ble.cpp

M Makefile = o +——— Output object of opencl.cop

opencl.cpp
- openclh Head file for Host Code +— Output objec
options.cpp
C options.h
- scoped_ptrs.h
= source.txt
v fpga

= ble.cl

Figure 4.3 The constructures of host part and kernel part before and after compiled
As a whole, the architecture of total files in host part and kernel part are shown the Figure 4.3
(1). Where it divides two folders named cpu and fpga and they are corresponding to the host

part and kernel part respectively. During the directory cpu, it comprises of main (.cpp) file,

-54 -

4 Realization with OpenCL in FPGA

compiling files or making file, the data source file, a number of head files, and some (.cpp) files
for corresponding to the head files. On the other hand, within the fpga folder, it only contains a
(.cl) file for kernel code.

4.3.1 Compiling and executing the codes

Therefore, basing on the knowledge in the section of 2.3.4 about the environment configuration
within Intel DevCloud, we create a new folder called BLE in this remote platform, and then
paste the folders cpu and fpga to there from the folder BLE in local directory. After that, we
need to access some scripts to login the compute node for compiling and executing the relevant

programs, the detail is explained in Table 4.1.

Table 4.1 Some usages for programs compiling and executing in Devcloud

Step Detail

1 ssh devcloud
Login to the platform of Intel DevCloud

, | source /data/intel fpga/devcloudlLoginToolSetup.sh
Source the script of FPGA

3 devcloud_login or devcloud_login -I <device_name>
Select a FPGA device

4 | source /data/intel fpga/devcloudLoginToolSetup.sh
Source the script of FPGA again

5 tools_setup
Select a corresponding tools and setup.

6 |aoc <file _name>.cl
Compile the specified OpenCL kernel file (.cl).

7 make
Compile the specified host main file (.cpp) and generate an execution file.

8 ./<execution_file>
Execute the execution file.

9 gstatus
Check the status of current computing node or job

10 gdel <job_name>
Halt a specified computing node or job

1 aocl diagnose
Query a list of installed devices on our machine

12 aocl program <device name> <kernel file name.aocx>
Program an FPGA device offline or without a host

Where the steps from the 1 to the 8™ are the normal verifying procedure for the program project
of OpenCL in Devcloud. Noticed that we have to source the script of FPGA for twice, the 2"
and 3" step are for selecting an FPGA, which is shown in Figure 4.4 (1), and the console of
terminal will enter a compute node of FPGA. Then the 4" and 5™ step are the way to speed up
user engagement when they want to source the environment variable settings for a tool and

when they are interactively logged into a compute node [35]. Besides, the selection must be

-55-

4.3 Compiling, Executing and Debugging with FPGA in Intel DevCloud Plaform

corresponded with the FPGA what we’ve selected in the last step, which is shown in Figure 4.4
(2). Obviously, we made the option of FPGA called Stratix 10 in DevCloud. In contrast to Arria
10, which balances performance with low power requirements, it focuses on high performance
solutions. Successively, the 6" step is executed in the directory of fpga, then generated several
files and a folder named ble, which are shown in Figure 4.3 (3). Within the folder ble, we can
find a lot of compiled reports, especially the synthesis result of this OpenCL design, which is
shown in Figure 4.5. Regarding with this flow, firstly it tells us the synthesis was done
successfully. Then it reveals some information about the device, Adaptive Logic Modules
(ALMs) , Registers, DSPs, and Memories which have been used by this design, and these
messages can also reflect the data-processing capability of FPGA. And the 7" and 8" step are
executed within the folder of cpu, then all the output documents are illustrated in Figure 4.3 (2).

Moreover, the rest of steps are the auxiliary usages for the platform-environment debugging.

I
1
Quartus Prime Lite !
Quartus Prime Standard H
Quartus Prime Pro 1
HLS i
Arria 10 PAC Compilation and Programming - RTL AFU, OpenCL 1
) Arria 10 - OneAPI, OpenVINO :
1
1
1
1
1
1
1

1) Arria 10 PAC Compilation and Programming - RTL AFU, OpenCL

1

1

1

|

: 2) Arria 10 - OneAPI, OpenVINO

: 3) Stratix 10 PAC Compilation and Programming - RTL AFU, OpenCL
l 4) Stratix 10 - OneAPI, OpenVINO

il 5) Compilation (Command Line) Only

l 6) Enter Specific Node Number

1
1
1
1
1

WONOU B WN =

Stratix 10 PAC Compilation and Programming - RTL AFU, OpenCL
Stratix 10 - OneAPI, OpenVINO

Number: 3 Number: 7

oo ____Q)FPCAselecting _________________________________@Toolsandsetup _________________

Figure 4.4 Configuration of FPGA environment in DevCloud

; Flow Summary

e o o o o i S O o oo

; Flow Status ; Successful - Tue Jun 28 18:35:33 2022 :
19.2.0 Build 57 ©6/24/2019 Patches 0.01dc SJ Pro Edition ;
afu_default

dcp_top

Stratix 10

1SX280HN2F43E2VG

Final

229,173 / 933,120 (25 %)

509794

653 / 912 (72 %)

3,597,016 / 240,046,080 (1 %)

281 / 5,760 (5 %)

/75 (0%)

24 / 48 (50 %)

24 / 48 (50 %)

45 / 104 (43 %)
__ +

Figure 4.5 Synthesis result of OpenCL design

; Quartus Prime Version

; Revision Name

; Top-level Entity Name

; Family

; Device

; Timing Models

; Logic utilization (in ALMs)
; Total dedicated logic registers
; Total pins

; Total block memory bits

; Total DSP Blocks

; Total DIB Channels

; Total HSSI RX channels

; Total HSSI TX channels

4 M Me Me Me Me W Me b Me W M M Me e Wl W

-56 -

4 Realization with OpenCL in FPGA

1010111101101010001000
100100101101010101000
111101100110100010010

000100
(2) Source data

Figure 4.6 Result of execution with down sampling in kernel part
Finally, after went through the 8" step in Table 4.1, we can check the results in Figure 4.6 (1).
Where the Input data refers to the result of Symbols kernel, and comparing with the random
source data, which is given in the Figure 4.6 (2), this sequence has shifted 1 bit to left in a whole.
Besides, the Output data corresponds to Output kernel, which is transferring the final
processed result from the Down-sampling kernel. We can see that the input and output are

totally different, this result is not our expected, in this case, we turn to debug the codes.
4.3.2 Debugging the codes

In order to show where problem is locating, we specified the original symbols as same as the
sequences that shown in Figure 3.3, and then go through the compiling and executing. Therefore,
we got the outputs of each computing kernel, and then display them in graph through Python
programming. Moreover, we compare these graphic outputs with the waveforms what we’ve

got in the chapter 3, and the results of comparison are shown in Table 4.2.

-57-

4.3 Compiling, Executing and Debugging with FPGA in Intel DevCloud Plaform

Table 4.2 The result of comparison between Simulink and OpenCL

Simulink

OpenCL

e B
| mios &z

Cassinfter | Mitilcaion % Wisgel X | | Baseband ¥ | (Besebend 1.0 1

0.8 1

0.0 A

|

HininE

LU UL

St 00 Y °

10

20 30 40 50

Bernoulli Binary Generator block (left), Symbols kernel (right)

[}
L Symias | N2

7
Cousianfitr X | Mhitiglation X gl X | | Baedied X | (L Bseband 1 1.00 -

—0.25 A

—0.50 -

—0.75 4

—1.00 -

|

]

i

R

UL

]
St LY

o

10

20 30 40 50

Unipolar to Bipolar Converter block (left), BinaryNoneZero kernel (right)

—0.25 1

—0.50 1

—0.75 A

—1.00 A

1]

—rn

—

= T AT

—0.25

—0.50 -

—0.75 -

—1.00 A

I

FIR Filter block (left), Gaussian kernel (right)

- 58 -

4 Realization with OpenCL in FPGA

A Y e [

wELAL/RERLTLT

o 100 200 300 400 500 600

Argument Multiplying block (left), Multiplication kernel (right)

__

1

h 1 70 4
W T T J1
1

| 1 60 -
| 1

1 50
[1
1

L | 40
1 1

1 30
L 1
1

- 1 207
1

1 10
1
] H § T 1

= 1 °
L = o 100 200 300 400 500 600

1.00 1
0.75 1 ‘W q
0.50 1
0.25 4
0.00 1
—0.25 -
—0.50 A
—0.75 1
—=1.004
100

o

200 300 400 500 600

aseband kernel (right)

=
i

R e Fi
T - T

1.00 A
0.75 A1
0.50 1
0.25 A1
0.00 -1
—0.25
—0.50 A
—0,75
—1.00 A
o 100 200 300

400 500 600

B

Sine block (left), Q_Baseband kernel (right)

-59 -

4.3 Compiling, Executing and Debugging with FPGA in Intel DevCloud Plaform

:4 Rocempent ¥ | ki

Deelie X | roder X | Symbokfiacowd

Atan2 block (left), Arctangent kernel (right)

Deelie ¥ | roder X | Smbokfeced

70 1

60 -

50 1

30

20

10

Unwrap kernel (right)

Desvelie | ceder | Symhotsenmed

0.6 1

AT

o2

—0.6 A

Coder block (left), — (right)

- 60 -

4 Realization with OpenCL in FPGA

$./test_channels
Starting the GFSK process
data_size: 5@

Input data:
1118 e 1 e 1
111118 1e e @
1 6 e @ 1 1 1 @
Using AOCX: ../fpga/ble.aocx

1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
[write event status = @ :
: after arg set for in_kernel 1
W after arg set for out_kernel !
|l after kernels queued! :
! .
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1

Read event status = @

after wait

Output data:

11161101086 1111 110110011101101001111

1 e 1 1 @
%] 1 11 e e 1 @ 8 8 & 1 1 8 1 @ @ ©
1 2 0 0 1 1 ° 011111010100001101000
------Work is done!! 11000111
(1) The result of down-sampling process (2) Corresponding to the Source
in host part data of Simulink

Figure 4.7 The result of down-sampling process in Host part
From these results, except the down-sampling process not appeared in the Simulink, the rest
are almost same. In this case, we found the problem is in the processing of Down-sampling
kernel, it does not work through this algorithm. Finally, we removed the Down-sampling
kernel in kernel part, and configured it within the host part. The position is locating at the second
for loop which is reading data from kernel part withinmain () function, the detail is illustrated
in the Appendix 1 Host Code, where just modified the conditioni =0to i =7, and i++ to i+=13
in the for loop, and the result as showing Figure 4.7 (1). Besides, associating with the Figure

4.7 (2), we can see that the output data are same as the source data.

Furthermore, take considering into the synchronization of signal transmission in a real situation,

we need to create a function to recognize the preamble code as well, for Bluetooth, it has

-61-

4.4 Verification with real BLE data stream

explained in the Table 2.2. According to preamble format of adverting channel, the code of the
computing unit in kernel preamble is shown below.
if ((samples[i] ==1 && samples[i+25] ==1 && samples[i+51] ==1 && samples[i+77]

==1 && samples[i+103] ==1) && (samples[i+12] ==0 && samples[i+38] ==0 &&
samples[i+64] ==0 && samples[i+90] ==0))

for (int j=0; j<GAUSSIAN_LEN*13*5; j++)
acum=samples[j];

u134305@s005-n006 : $./test_channels
Starting the GFSK process

data_size: 70

1
1
(%]
1
/

2]
(2]
1
2]
4

../fpga/ble.aocx

write event status = @

after arg set for in_kernel
after arg set for out_kernel
after kernels queued!

Read event status = @

after wait

Figure 4.8 The final result of adding preamble kernel
Where we set a condition by if syntax to recognize the preamble sequence. Finally, after
compiled and executed, the result is represented in Figure 4.8. We can see that the symbols
have been eliminated before the preamble symbols, and even itself, which within the blue
rectangle in this Figure. So, there is still a little not perfect, but except it, the all of functions in
GFSK modulation and demodulation are almost realized. And finally, the whole kernel code

we can check in Appendix 2 Kernel Code.

4.4 Verification with real BLE data stream

After finished the DSP design with OpenCL, the next we would verify it with the real BLE data
stream. The first we need to capture some BLE data stream from air through the SDR device,
so we build a capturing system to get this. And the architecture of this system should consist of
the transmitter, receiver, and the data capturing tool, which are corresponding to the (3), (1), (2)

respectively in Figure 4.8. We can see that here adopted the Beacon transmission method,

-62 -

4 Realization with OpenCL in FPGA

exactly it is Eddystone-UID, and the packet format can see [39], obviously, we need to capture
some BLE signal packets through the advertising channel. Regarding the PlutoSDR, it has
transmitting and receiving channel, here we just utilize the latter one. As for the tool gnuradio-
companion, remember the sample rate should be 13 MHz, because the GFSK modulated output

is still in the up-sampling scope.

@ BeaconScope
Configured Transmitters

., iBeacon sample
Tx 2F234454-CF6D-4A0F-ADF2-F4911BAIFFAG
Major: 1 Minor: 1 (iBeacon)

AltBeacon sample
2F234454-CF6D-4A0F-ADF2-F4911BAIFFAG
I pi5i0r: 1 Minor: 2 Data: O (AltBeacon)

Eddystone-UID sample
0102030405060708090a

Instance 1D: 000000000001 (Eddystone-UID)

h Eddystone-EID (static value) sample

|

|

1

1

1

|

|

|

1

1

1

1

I

|

1

1

1

|

|

|

0102030405060708 '
(Eddystone-EID) |
Eddystone-URL sample :
h http://davidgyoungtech.com '
(Eddystone-URL) 1
1

1

1

1

|

|

1

1

1

|

I

|

|

1

1

1

1

|

|

1

1

1

Ca pt urin g g Exposure Notification sample
0506-0708-090: 10
(Exposure Notification)
,,, Transmitter 7
2F234454-CF6D-4A0F-ADF2-F4911BAIFFA6
B \ii0r: 1 Minor: 1 (iBeacon)

e @
(1) PlutoSDR (2) Gnuradio- (3) Application of Beacon
companion simulator in Android OS

Figure 4.9 The system structure of BLE data packet capturing
When accomplished the configuration of the capturing system, we can get some data stream
from the air, then we unpack one of data stream via a tool called Jupyter Notebook, which based
on the python kernel, and illustrated the result in Figure 4.10. We can see that there is a regular
segment, and marked some column lines as the number 1 to 10 in this segment, because they

perhaps are the available packet what we exactly want.

Figure 4.10 The stream of BLE data

-63 -

4.4 Verification with real BLE data stream

2. 1/Q waveforms i 3. 1/Q waveforms
Before down sample Before down sample
‘ =
5. 1/Qwaveforms T i 4. Qwaveforms
Before down sample ‘ Before down sample
'I ‘ ||
‘\

Figure 4.11 The Parts about the Preamble and Access address of BLE packet
Obviously, the signal segment before the number 1 might be the noise by the interference, in
this case, we unpacked the packets of number 2, 3, 4, 5 from the whole data stream separately,
then roughly located on the part of preamble and access address, the result we can see the Figure
4.11, where include the waveforms of 1/Q and before the down sample. In the other word, we
can preliminarily sure they are 1/Q waveforms that is because we have had a clear perception
about the GFSK modulation result from the subsection 4.3.2. On the other hand, these real data
waveforms also can proof that they are almost correct about the GFSK modulation part of our
theories, simulations and OpenCL programs. Then we made these packets go through the
processes of demodulation with OpenCL in FPGA platform of Intel DevCloud, and they are
same as the format in Figure 4.11. Hence we are sure in deep that these are the regular data

stream instead of noise.

0 10 20 0 40 50

Figure 4.12 After down sample

To judge a packet if it exactly belongs to BLE, the importan thing is we need to check the
preamble and access address at the beginning of a data packet, so we pick up one of them to
finish the down sampling process. From the Figure 4.12, the sequence is ‘000101010101101011
01111101100100010111000111111010’, then we can easily to located the preamble according

-64 -

4 Realization with OpenCL in FPGA

to the Table 2.2. Regarding with the access address for advertising mode, it has a fixed pattern
as ‘Ox8E89BEDSG’ in hexadecimal, or ‘1000 1110 1000 1001 1011 1110 1101 0110’ in binary.
But during the sequence which finished the down-sampling process, we didn’t yet find any
corresponding structure of access address. Finally, we found the problem [41] is we need one
more process to deal with the structure of access address which based on the normal format,
that is flipping over the sequence from left to right, we can work the processes as below in the
Matlab.

>> dec2bin(hex2dec('8E89BED6'),32)
ans =
'10001110100010011011111011010110"
>> fliplr(dec2bin(hex2dec('8E89BED6"'),32))
ans =
'01101011011111011001000101110001 "

Clearly, we can find the structure ‘01101011011111011001000101110001" is existing in the
sequence we captured, that is the access address of BLE packet. So, in the sequence what we’ve
got in Figure 4.13, the preamble is referring to the ‘Sequencel’, and the access address is
corresponding to ‘Sequence2’. Moreover, it also corresponds the relationship between the

preamble and access address which shown in Table 2.2.

‘0001010101 01101011011111011001000101110001 11111010«

Seqencel«< Seqence2<

Figure 4.13 Captured sequence
Eventually, through unpacked and analyzed the data stream, we could definitely sure they are
the available signals which transmission via the BLE. Meanwhile, put these data packet to go
through our programs of OpenCL in FPGA platform of Intel DevCloud, it also worked out the

same results after the modulation and demodulation.

- 65 -

Conclusion

CONCLUSION

From this project, we have an integral understanding about the BLE PHY, FPGA and OpenCL,
we were adopting the methods which more efficiency, high productive, High-Performance
Computing (HPC) and powerful portability in the development of digital signal processing.
And these characteristics are the developing trends of communication system for now and
afterward. Especially, the concept of parallel programming has shown an excellent capability
for the data processing. As the complexity increasing rapidly of data computing unit, it can be
a crucial factor for computing processing to improve the computing performance nowadays,
and it’s more accommodative for the communicating technology development in the future.
For the program verifying and debugging, to compare with the traditional design method, the
remote platform is becoming an alternative option for the developers of FPGA programming,
because it’s more economic and convenient. However, we have noticed that it will take a long
time to compile the OpenCL kernel code by DevCloud, and for this project, it costs around two
hours normally. Admittedly, it’s a drawback of OpenCL and DevCloud. Nevertheless,
comparing with the above advantages, these shortages look like small and they are acceptable
for a whole design as well, it’s no doubt they have a state-of-the-art attribution of technologic

and concept.

Besides, according to the final verification, we could also sure the program of OpenCL about
the GFSK modulation and demodulation for BLE signal transmission can be realized in FPGA
platform of Intel DevCloud, and these processes are exactly the functions of BLE PHY. In a
word, we have done the primary objective of this project. Even if there are some insufficiencies
what we need to perfect, such as the preamble detecting, and moreover, maybe we also need to
verify these in real FPGA platform instead of the remote method, so, the last but not the least,

the work is still going on.

- 606 -

Appendix 1 Host Code

APPENDIX 1 HOST CODE

#include <stdio.h>
#tinclude <stdlib.h>
#include <math.h>
#include <iostream>
#include <fstream>
#include "CL/opencl.h"
#include <string.h>
#include "aocl utils.h"

static const char* kernel_name = "ble";
using namespace std;
using namespace aocl_utils;

static cl platform_id platform = NULL;
static cl _device _id device = NULL;

static cl_context context = NULL;

static cl_program program = NULL;

static cl_kernel in_kernel = NULL;

static cl_kernel out_kernel = NULL;

static cl_command_queue fpga_to_host_queue
static cl_command_queue host_to_fpga_ queue
static cl_int status = ©;

NULL;
NULL;

cl _mem input_buf;
cl _mem output_buf;

int data_size = 0;

bool init()
{
if(!setCwdToExeDir()) {
printf("init error\n");
return false;

cl _uint num_platforms;

// Get the OpenCL platform.

status = clGetPlatformIDs(1, &platform, &num_platforms);

if(platform == NULL) {
printf("ERROR: Unable to find Intel(R) FPGA OpenCL platform.\n");
return false;

}

// Query the available OpenCL devices.
cl uint num_devices;

status = clGetDevicelIDs(platform, CL_DEVICE_TYPE_ALL, 1, &device,
&num_devices);
if(status != CL_SUCCESS) {

-67 -

Appendix 1 Host Code

}

printf("Failed clGetDeviceIDs.\n");
return false;

}

// Create the context.
context = clCreateContext(NULL, 1, &device, NULL, NULL, &status);
if(status != CL_SUCCESS) printf("Failed to create context");

// Create the command queue.

host_to_fpga_queue = clCreateCommandQueue(context, device,
CL_QUEUE_PROFILING _ENABLE, &status);

if(status != CL_SUCCESS) printf("Failed to create command queue 1\n");

fpga_to_host_queue = clCreateCommandQueue(context, device,
CL_QUEUE_PROFILING ENABLE, &status);
if(status != CL_SUCCESS) printf("Failed to create command queue for
crc\n");

std::string binary_file = getBoardBinaryFile("ble", device);

static const char* ble_kernel name = "../fpga/ble.aocx";

printf("\n Using AOCX: %s\n\n", ble_kernel name);

program = createProgramFromBinary(context, ble_kernel_name, &device,

1);

if(status != CL_SUCCESS) {

printf("Failed clCreateProgramWithBinary.\n");

return false;
}

// Build the program that was just created.

status = clBuildProgram(program, ©, NULL, "", NULL, NULL);
if(status != CL_SUCCESS) printf("Failed to build program\n");
const char *kernel name_input = "Symbols"; // Kernel name, as defined

in the CL file
in_kernel = clCreateKernel(program, kernel_name_input, &status);
if(status != CL_SUCCESS) printf("Failed to create kernel 1\n");
const char *kernel_name_output = "Output";
out_kernel = clCreateKernel(program, kernel _name_output, &status);
if(status != CL_SUCCESS) printf("Failed to create kernel 2\n");
return true;

// Free the resources allocated during initialization
void cleanup()

{

//free kernel/queue/program/context

if(in_kernel) clReleaseKernel(in_kernel);
if(out_kernel) clReleaseKernel(out_kernel);
if(host_to_fpga_queue)
clReleaseCommandQueue(host_to_fpga_ queue);
if(fpga_to _host queue)
clReleaseCommandQueue(fpga_to_host_queue);

- 68 -

Appendix 1 Host Code

if(program) clReleaseProgram(program);
if(context) clReleaseContext(context);

//free in/out buffers

if(input_buf) clReleaseMemObject (input_buf);

if(output_buf) clReleaseMemObject (output_buf);
}

// The channel in case for creating the files to store the data
template <class TYPE>
class Channel

{
TYPE* m_data;
int m_rd;
int m_wr;
int m_size;
public:
/**
* Constructor
*/
Channel(int size)
{
m rd = 0;
m_wr = 0,
m_size = size;
m_data = new TYPE[m_size];
}
virtual ~Channel()
{
delete [] m_data;
}
void write(TYPE v)
{
m_data[m_wr] = v;
m_wr = (m_wr+l) % m_size;
}
TYPE read()
{
TYPE r = m_data[m_rd];
m_rd = (m_rd+1) % m_size;
return r;
}
}s5
void filedump int(char* f, Channel<int>& c)
{

FILE* fp = fopen(f, "a");
fprintf(fp, "%d\n", c.read());
fclose(fp);

- 69 -

Appendix 1 Host Code

}

int dat_size = 0;
int dat_size_out = 0;

void Readfile(Channel<int>& c)

{
int datalen=0;

int data[65535];
ifstream file("source.txt");
while(! file.eof())

file>>data[datalen++];
dat_size = datalen;

static int idx = 0;

c.write(data[idx]);

idx = (idx+1) % (sizeof(data)/sizeof(int));
file.close();

}

int main()

{
printf("\nStarting the GFSK process\n\n");

Channel<int> input_ch=Channel<int>(1);
Channel<int> output_ch=Channel<int>(1);

Readfile(input_ch);
dat_size_out=13*dat_size;

printf("data_size: %d\n", dat_size);
unsigned int *input = (unsigned int *)malloc(dat_size*sizeof(int));
unsigned int *output = (unsigned int *)malloc(dat_size out*sizeof(int));
if (!input) printf("error in allocating input\n");
if (loutput) printf("error in allocating output\n");

printf(" \nInput data: \n");
for (int i =0; i < dat_size; ++i)

{
Readfile(input_ch);
input[i] = input_ch.read();
printf("%d ", input[i]);
filedump_int("input.txt",input_ch);
}

if (!init()) return false;

-70 -

Appendix 1 Host Code

input_buf = clCreateBuffer(context, CL_MEM_READ ONLY, dat size *
sizeof(unsigned int), NULL, &status);
if(status != CL_SUCCESS) printf("Failed to create input buffer\n");

output_buf = clCreateBuffer(context, CL_MEM_WRITE_ONLY, dat_size_out *
sizeof(unsigned int), NULL, &status);
if(status != CL_SUCCESS) printf("Failed to create output buf\n");

cl_event write_event;
cl _event finish_event;

status = clEnqueueWriteBuffer(host to_fpga queue, input_buf, CL_FALSE,
0, dat_size * sizeof(unsigned int), input, @, NULL, &write_event);
if(status!=CL_SUCCESS) printf("Failed to transfer input\n");

clWaitForEvents(@, &finish_event);
printf("\n write event status = %d ",status);

unsigned argi = 0;
cl event in_kernel_event;
cl _event out_kernel event;

status = clSetKernelArg(in_kernel, argi++, sizeof(cl_mem), &input_buf);
if(status!=CL_SUCCESS) printf("Failed to set argument %d on in_kernel\n",
argi - 1);
status = clSetKernelArg(in_kernel, argi++, sizeof(cl_int), (void *)
&dat_size);
if(status!=CL_SUCCESS) printf("Failed to set argument %d on
in_kernel\n", argi - 1);
printf("\n after arg set for in_kernel ");
argi = 0;
status = clSetKernelArg(out_kernel, argi++, sizeof(cl_mem), &output_buf);
if(status!=CL_SUCCESS) printf("Failed to set argument %d on
out_kernel\n", argi - 1);
status = clSetKernelArg(out_kernel, argi++, sizeof(cl_int), (void *)
&dat_size out);
if(status!=CL_SUCCESS) printf("Failed to set argument %d on
out_kernel\n", argi - 1);
printf("\n after arg set for out kernel");

status = clEnqueueTask(host_to_fpga_queue, in_kernel, 1, &write_event,
&in_kernel event);

if(status!=CL_SUCCESS) printf("Failed to launch in_kernel\n");

status = clEnqueueTask(fpga_to_host_queue, out_kernel, 0, NULL,
&out_kernel event);

if(status!=CL_SUCCESS) printf("Failed to launch out_kernel\n");

printf("\n after kernels queued! ");

status = clEnqueueReadBuffer(fpga_to_host_queue, output_ buf, CL_FALSE,

0, dat_size out*sizeof(unsigned int), output, 1, &out_kernel_event,
&finish_event);

-71-

Appendix 1 Host Code

printf("\n\n Read event status = %d \n ",status);
if (status != CL_SUCCESS) printf("read error\n");
//printf("\n status %d: CL_SUCCESS \n", status);
clWaitForEvents(1l, &finish_event);
printf("\n after wait \n\n");
printf(" Output data: \n");

for (int i = 7; i< dat_size out; i+=13)

{
// store the data to the external files
output_ch.write(output[i]);
filedump_int("output.txt",output_ch);
//printf directly
printf("%d ", output[i]);

}

printf("\n\n------- Work is done!!-------- \n\n");

clReleaseEvent(in_kernel event);
clReleaseEvent(out_kernel event);
clReleaseEvent(finish_event);
cleanup();

return 9;

-72-

Appendix 2 Kernel Code

APPENDIX 2 KERNEL CODE

#pragma OPENCL EXTENSION cl_intel _channels : enable

channel int Source_ch;

channel int BinaryNoneZero_ch;
channel int Upsample_ch;
channel float Gaussian_ch;
channel float Multiple_ch;
channel float Integral I ch;
channel float Integral_Q ch;
channel float I_Baseband_ch;
channel float Q Baseband ch;

channel float Arctangent_ch;
channel float Unwrap_ch;
channel float Derivative_ch;
channel int Coder_ch;
channel int Preamble_ch;

/*Instructs the compiler to omit logic that generates and dispatches
global, local, and group IDs into the compiled kernel*/
__attribute_ ((max_global work _dim(@)))
__kernel void Symbols(__global unsigned int* inputdata, unsigned int
dat_size)
{

for (int i=0; i < dat_size; i++)

write_channel_intel(Source_ch, inputdata[i]);

}

__attribute__ ((max_global_work_dim(@)))
__attribute__ ((autorun))
__kernel void BinaryNoneZero()

{
while(1)
{
int v = read_channel_intel(Source_ch);
if (v == 9)
v = -1;
write channel intel(BinaryNoneZero ch, v);
}
}

__attribute_ ((max_global work dim(®)))
__attribute__ ((autorun))
__kernel void UpSample()

{
while(1)

{

int v = read_channel_intel(BinaryNoneZero ch);

-73-

Appendix 2 Kernel Code

for (int i=@; i<13; i++)
write_channel_intel(Upsample_ch, v);

}

#define GAUSSIAN LEN 28
constant float pi = M_PI_F;

__attribute__((max_global_work_dim(@)))
__attribute__((autorun))

__kernel void Gaussian()

{

float gaussian_values[GAUSSIAN_LEN];
float hmax = 1.5E6;

float ts = 1E-6;

float OSR = 8;

float acum = 0;

for (int i=@; i < GAUSSIAN_LEN; i++)

{
int k = 1 - GAUSSIAN LEN/2;
float v = (hmax*ts*k/OSR);
gaussian_values[i]= exp(-(v*v));
acum += gaussian_values[i];
}

for (int i=0; i < GAUSSIAN_LEN; i++)
gaussian_values[i] = gaussian_values[i] / acum;

float samples[GAUSSIAN_LENTJ;

while(1)
{
#pragma unroll
for (int i=@; i < GAUSSIAN_LEN-1; i++)
samples[i] = samples[i+1]

samples[GAUSSIAN_LEN-1] = (float)
read _channel intel(Upsample_ch);

float acum_ga = 0;
#pragma unroll
for (int i=@; i< GAUSSIAN_LEN; i++)

acum_ga += samples[i] * gaussian_values[i];
write_channel_intel(Gaussian_ch, acum_ga);

-74 -

Appendix 2 Kernel Code

__attribute ((max_global work dim(@)))
__attribute__((autorun))
__kernel void Multiple()

{
while(1)
{
float v = read_channel_intel(Gaussian_ch);
float cv = Vv*(GAUSSIAN_LEN/5)*pi;
write _channel_intel(Multiple_ch, cv);
}
}

__attribute__((max_global_work_dim(@)))
__attribute__((autorun))
__kernel void Integrator()

{
float cv = 0;
while(1)
{
cv += read_channel_intel(Multiple ch);
write_channel _intel(Integral I ch, cv/(GAUSSIAN LEN-1));
write_channel_intel(Integral_Q ch, cv/(GAUSSIAN_LEN-1));
}
¥

__attribute__((max_global_work_dim(0)))
__attribute_ ((autorun))
__kernel void I_Baseband()

{
while(1)
{
float v = read_channel_intel(Integral_ I ch);
float c_i = cos(v);
write_channel_intel(I_Baseband_ch, c_i);
}
}

__attribute__ ((max_global_work_dim(@)))
__attribute_ ((autorun))
__kernel void Q_Baseband()

{
while(1)
{
float v = read_channel_intel(Integral_Q ch);
float ¢ _q = sin(v);
write_channel_intel(Q_Baseband_ch, c_q);
}
}

__attribute__ ((max_global_work_dim(@)))
__attribute_ ((autorun))
__kernel void Arctangent()

-75-

Appendix 2 Kernel Code

{
while(1)
{
float vl = read_channel_intel(I_Baseband_ch);
float v2 = read_channel_intel(Q_Baseband_ch);
float cv = atan(v2/vl);
write_channel_intel(Arctangent_ch, cv);
}
}

__attribute__((max_global_work_dim(@)))
__attribute__ ((autorun))
__kernel void Unwrap()
{
float samples[GAUSSIAN_LENTJ;
while(1)
{
#pragma unroll
for (int i=0; i < GAUSSIAN_LEN-1; i++)
samples[i] = samples[i+1];

samples[GAUSSIAN_LEN-1] = read_channel_intel(Arctangent_ch);
float acum = 9;

#pragma unroll
for (int i=0; i< GAUSSIAN_LEN; i++)

if (((samples[i] - samples[i-1])<pi/2) && ((samples[i] -
samples[i-1])>-pi/2))
acum = samples[i];

for (int j=1; j< GAUSSIAN_LEN+1; j++)
{
if (((samples[i] - samples[i-1]) <-(2*j-1)*pi/2) &&
((samples[i] - samples[i-1]) >-(2*j+1)*pi/2))
{

samples[i] += j*pi;
acum = samples[i];
¥
else if (((samples[i] - samples[i-1]) >(2*j-1)*pi/2)
&& ((samples[i] - samples[i-1]) <(2*j+1)*pi/2))
{

samples[i] -= j*pi;
acum = samples[i];

}
}

write_channel_intel(Unwrap_ch, acum);

-76 -

Appendix 2 Kernel Code

__attribute ((max_global work dim(@)))
__attribute__((autorun))
__kernel void Derivative()

{
float samples[GAUSSIAN_LEN];

while(1)
{
#pragma unroll
for (int i=0; i < GAUSSIAN_LEN-1; i++)
samples[i] = samples[i+1];

samples[GAUSSIAN LEN-1] = read_channel_intel(Unwrap_ch);
float acum = 0;

#pragma unroll
for (int i=@; i<GAUSSIAN_LEN; i++)
acum=samples[i]-samples[i-1];

write_channel_intel(Derivative_ch, acum);

}

__attribute_ ((max_global work_dim(@)))
__attribute__ ((autorun))
__kernel void Coder()

{
while(1)

{

float v = read_channel _intel(Derivative ch);
unsigned int acum=0;

if (v>0)

acum=1;
if (v<0)

acum=0;
write_channel_intel(Coder_ch, acum);

}

__attribute_ ((max_global work dim(®)))
__attribute__ ((autorun))
__kernel void Preamble()

{
int samples[GAUSSIAN_LEN*13*5];

while(1)
{

#pragma unroll
for (int i=0; i < GAUSSIAN_ LEN*13*5-1; i++)
samples[i] = samples[i+1];

-77 -

Appendix 2 Kernel Code

samples[GAUSSIAN_LEN*13*5-1] = read_channel_intel(Coder_ch);

int acum = 0;

#pragma unroll
for (int i=@; i<GAUSSIAN_LEN*13*5; i++)

{
if ((samples[i] ==1 && samples[i+25] ==1 && samples[i+51]
==1 && samples[i+77] ==1 && samples[i+103] ==1)
&& (samples[i+12] ==0 && samples[i+38] ==0 && samples[i+64]
==0 && samples[i+90] ==0))
{
for (int j=0; j<GAUSSIAN_LEN*13*5; j++)
acum=samples[j];
}
}

write_channel _intel(Preamble_ch, acum);

}

__attribute__ ((max_global_work_dim(@)))

__kernel void Output(__global unsigned int* outputdata, unsigned

dat_size)
{
for (int i=@; i<dat_size; i++)
{
outputdata[i] = read_channel_intel(Preamble_ch);
}

-78 -

int

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

BIBLIOGRAPHY

Fangyan Li. "Multi-engine multi-level simulation for system specification validation and
power consumption optimization,” Electronics. Universit’e Nice Sophia Antipolis, 2016.

J. Marcel, "New Trends and Forecasts in the 2021 Bluetooth Market Update | Bluetooth®
Technology Website", Bluetooth® Technology Website, 2021. [Online]. Available:
https://www.bluetooth.com/blog/new-trends-and-forecasts-in-the-2021-bluetooth-market-
update/. [Accessed: 02- May- 2022].

J. Losaw, "The Importance of Bluetooth in Product Development"”, Enventys Partners,
2020. [Online]. Available: https://enventyspartners.com/blog/bluetooth-product-
development-importance/. [Accessed: 04- May- 2022].

I. Grout, Digital systems design with FPGAs and CPLDs. Amsterdam: Newnes, 2008.
H. Amano, Principles and Structures of FPGAs. Yokohama, Japan: Springer, 2018.
M. Scarpino, OpenCL in action. Shelter Island, N.Y: Manning, 2013.

J. Liu and M. Cai, "GFSK modulation for BLE baseband IC design,” 2017 International
Conference on Electron Devices and Solid-State Circuits (EDSSC), 2017, pp. 1-2, doi:
10.1109/EDSSC.2017.8126464.

X. Long et al., "Design of novel digital GFSK modulation and demodulation system for
short-range wireless communication application,” 2016 IEEE International Conference on
Electron Devices and Solid-State Circuits (EDSSC), 2016, pp. 299-302, doi:
10.1109/EDSSC.2016.7785267.

"Introduction to Bluetooth Low Energy (BLE)", Argenox. [Online]. Available:
https://www.argenox.com/library/bluetooth-low-energy/introduction-to-bluetooth-low-
energy-v4-0/. [Accessed: 05- May- 2022].

J. Lee, Y. Suand C. Shen, "A Comparative Study of Wireless Protocols: Bluetooth, UWB,
ZigBee, and Wi-Fi," IECON 2007 - 33rd Annual Conference of the IEEE Industrial
Electronics Society, 2007, pp. 46-51, doi: 10.1109/IECON.2007.4460126.

C. Del-Valle-Soto, L. Valdivia, R. Velazquez, L. Rizo-Dominguez and J. Lopez-Pimentel,
"Smart Campus: An Experimental Performance Comparison of Collaborative and
Cooperative Schemes for Wireless Sensor Network", Energies, vol. 12, no. 16, p. 3135,
2019. Available: 10.3390/en12163135 [Accessed 6 May 2022].

"Bluetooth® Low Energy (BLE) Physical Layer - Developer Help",
Microchipdeveloper.com. [Online]. Available: https://microchipdeveloper.com/wireless:ble-
phy-layer. [Accessed: 07- May- 2022].

A. Ebrahimzadeh and A. Falahati, "Frequency Hopping Spread Spectrum Security
Improvement with Encrypted Spreading Codes in a Partial Band Noise Jamming

-79 -

https://www.bluetooth.com/blog/new-trends-and-forecasts-in-the-2021-bluetooth-market-update/
https://www.bluetooth.com/blog/new-trends-and-forecasts-in-the-2021-bluetooth-market-update/
https://enventyspartners.com/blog/bluetooth-product-development-importance/
https://enventyspartners.com/blog/bluetooth-product-development-importance/
https://www.argenox.com/library/bluetooth-low-energy/introduction-to-bluetooth-low-energy-v4-0/
https://www.argenox.com/library/bluetooth-low-energy/introduction-to-bluetooth-low-energy-v4-0/
https://microchipdeveloper.com/wireless:ble-phy-layer
https://microchipdeveloper.com/wireless:ble-phy-layer

Bibliography

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Environment,” Journal of Information Security, Vol. 4 No. 1, 2013, pp. 1-6. doi:
10.4236/}is.2013.41001.

"BLE Advertising packet format | BLE Data packet format", Rfwireless-world.com.
[Online]. Available: https://www.rfwireless-world.com/Terminology/BLE-Advertising-and-
Data-Packet-Format.html. [Accessed: 10- May- 2022].

Bluetooth core specification v5.0, Specification of the Bluetooth System, Bluetooth®, 2016

H. Shuguang, C. Baoyong and W. Zhihua, "A Mixed-Loop CMOS Analog GFSK
Modulator with Tunable Modulation Index,” in IEEE Transactions on Circuits and Systems
I1: Express Briefs, vol. 54, no. 6, pp. 547-551, June 2007, doi: 10.1109/TCSI1.2007.891755.

G R. Staszewski and P. Balasara, All-digital frequency synthesizer in deep-submicron
CMOS. Hoboken, NJ: Wiley-Interscience, 2006, p. APPENDIX B.

J. Proakis and M. Salehi, Digital communications, 5th ed. Boston: McGraw Hill, 2008.

T. Turletti, "GMSK in a nutshell”, ResearchGate, 2013. [Online]. Available:
https://www.researchgate.net/publication/2575678 GMSK in_a_nutshell. [Accessed: 06-
May- 2022].

T. SVEDEK, M. HERCEG, T. MATIC, "A Simple Signal Shaper for GMSK/GFSK and
MSK Modulator Based on Sigma-Delta Look-up Table," in Radioengineering, vol.18, no.2,
pp.230-237, June 2009.

David Castells Rufas. "Scalable parallel architectures on reconfigurable platforms,” PhD
thesis, Universitat Autonoma de Barcelona (UAB), Spain, 2016.

D. Castells Rufas, "RE: The preparing for interview at next Wednesday (11th May)",
ganyong.mo@e-campus.uab.cat (May 9, 2022).

A. Boutros and V. Betz, "FPGA Architecture: Principles and Progression,” in IEEE Circuits
and Systems Magazine, vol. 21, no. 2, pp. 4-29, Secondquarter 2021, doi:
10.1109/MCAS.2021.3071607.

S. D. Pable and M. Hasan, "Performance analysis of FPGA interconnect fabric for ultra-low
power applications,” in Proceedings of the 2011 International Conference on
Communication, Computing & Security (ICCCS '11), association for Computing
Machinery, New York, NY, USA, 210-214, 2011,
https://doi.org/10.1145/1947940.1947985.

F. Umer, Z. Marrakchi and H. Mehrez, Tree-based Heterogeneous FPGA Architectures:
Application Specific Exploration and Optimization, Springer New York, NY, 2012.

G. Krishna and S. Roy, "Fundamentals of FPGA Architecture,” Advanced Engineering
Technical and Scientific Publisher, Ch. 2, pp. 12-30, 2017.

R. Oshana, DSP for Embedded and Real-Time Systems. Newnes, 2012.

- 80 -

https://www.rfwireless-world.com/Terminology/BLE-Advertising-and-Data-Packet-Format.html
https://www.rfwireless-world.com/Terminology/BLE-Advertising-and-Data-Packet-Format.html
https://www.researchgate.net/publication/2575678_GMSK_in_a_nutshell
mailto:ganyong.mo@e-campus.uab.cat
https://doi.org/10.1145/1947940.1947985

Bibliography

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

F. Blaabjerg, Control of Power Electronic Converters and Systems. Academic Press, 2018.

A. Munshi, “The OpenCL Specification Version: 1.2,” Khronos OpenCL Working Group,
Nov.14, 2012. [Online]. Available: https://www.khronos.org/registry/OpenCL/specs/opencl-
1.2.pdf. [Accessed Apr.26, 2022].

“The OpenCL Specification Version:3.0.11,” Khronos OpenCL Working Group, 2022.
[Online]. Available: https://www.khronos.org/registry/OpenCL/specs/3.0-
unified/html/OpenCL_APIl.html. [Accessed Apr.26, 2022].

L. Howes and A. Munshi, “The OpenCL Extension Specification Version 2.0,” Khronos
OpenCL working Group, Feb.13, 2018. [Online]. Available:
https://www.khronos.org/registry/OpenCL /specs/opencl-2.0-extensions.pdf. [Accessed
Apr.30, 2022].

"Migrating OpenCL™ FPGA Designs to SYCL*", Intel, Apr.14, 2022. [Online]. Available:
https://www.intel.com/content/www/us/en/develop/documentation/migrate-opencl-fpga-
designs-to-dpcpp/top.html. [Accessed: 01- May- 2022].

“Intel® FPGA SDK for OpenCL™ Standard Edition Getting Started Guide”, Intel, Sept.24,
2018. [Online]. Available:
https://www.intel.com/content/www/us/en/docs/programmable/683678/18-1/standard-
edition-getting-started-guide.html. [Accessed: 05- May- 2022].

“Intel® DevCloud", Intel, 2022. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html.
[Accessed: 17- Mar- 2022].

“FPGA-Devcloud/main/Devcloud_Access_Instructions at master - intel/FPGA-Devcloud”,
GitHub, 2022. [Online]. Available: https://github.com/intel/FPGA-
Devcloud/tree/master/main/Devcloud Access_Instructions#devcloud-access-instructions.
[Accessed: 05- Apr- 2022].

“gaussdesign (Gaussian FIR pulse-shaping filter design)”, Mathworks, 2022. [Online].
Available: https://uk.mathworks.com/help/signal/ref/gaussdesign.html. [Accessed: 08- Apr-
2022].

“Practice Using Channels with OpenCL™ on Intel® FPGAs Exercise Manual”, Intel.com,
2022. [Online]. Available:
https://www.intel.com/content/www/us/en/programmable/customertraining/OLT/OpenCLC
hannels/lab.pdf. [Accessed: 10- May- 2022].

Ana_R_intell, "OpenCL kernel autorun feature", intel.com, 2019. [Online]. Available:
https://community.intel.com/t5/FPGA-Wiki/OpenCL -kernel-autorun-feature/ta-p/735763.
[Accessed: 03- Apr- 2022].

“Altera SDK for OpenCL Programming Guide”, Intel.com, Dec.13, 2013. [Online].
Available: https://www.intel.com/content/dam/support/jp/ja/programmable/support-
resources/bulk-container/pdfs/literature/hb/opencl-sdk/aocl-programming-quide.pdf.
[Accessed: 10- May- 2022].

-81-

https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_API.html
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_API.html
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-extensions.pdf
https://www.intel.com/content/www/us/en/develop/documentation/migrate-opencl-fpga-designs-to-dpcpp/top.html
https://www.intel.com/content/www/us/en/develop/documentation/migrate-opencl-fpga-designs-to-dpcpp/top.html
https://www.intel.com/content/www/us/en/docs/programmable/683678/18-1/standard-edition-getting-started-guide.html
https://www.intel.com/content/www/us/en/docs/programmable/683678/18-1/standard-edition-getting-started-guide.html
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://github.com/intel/FPGA-Devcloud/tree/master/main/Devcloud_Access_Instructions#devcloud-access-instructions
https://github.com/intel/FPGA-Devcloud/tree/master/main/Devcloud_Access_Instructions#devcloud-access-instructions
https://uk.mathworks.com/help/signal/ref/gaussdesign.html
https://www.intel.com/content/www/us/en/programmable/customertraining/OLT/OpenCLChannels/lab.pdf
https://www.intel.com/content/www/us/en/programmable/customertraining/OLT/OpenCLChannels/lab.pdf
https://community.intel.com/t5/FPGA-Wiki/OpenCL-kernel-autorun-feature/ta-p/735763
https://www.intel.com/content/dam/support/jp/ja/programmable/support-resources/bulk-container/pdfs/literature/hb/opencl-sdk/aocl-programming-guide.pdf
https://www.intel.com/content/dam/support/jp/ja/programmable/support-resources/bulk-container/pdfs/literature/hb/opencl-sdk/aocl-programming-guide.pdf

Bibliography

[40] H.Chen, P. Linand C. Lin, "A Smart Roadside Parking System Using Bluetooth Low
Energy Beacons", in Web, Artificial Intelligence and Network Applications, L. Barolli, M.
Takizawa, F. Xhafa and T. Enokido, Ed. Cham: Springer International Publishing, 2019, pp.

471-480.
[41] D. Burnett, "All BLE guides are wrong (including this one)", UC Berkeley, 2018.

-82-

