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Resum: 

Aquesta dissertació presenta principalment el disseny de processament digital de senyals 

(DSP) entre la transmissió en Capa Física de Bluetooth de Baixa Energia (BLE PHY), i la 

seva implementació en dispositius Field Programmable Gate Array (FPGA) utilitzant Open 

Computing Language (OpenCL).  

Durant el disseny de DSP, es basa en l'arquitectura en fase / quadratura-fase (IQ) per construir 

els processos de modulació i demodulació del senyal mitjançant l'ús d'un esquema de 

modelador de senyal anomenat Gaussian Frequency-Shift Keying (GFSK), en la 

comunicació de curt abast que presenta un fort rendiment anti-interferència. Pel que fa a 

l'OpenCL, és un dels mètodes de síntesi d'alt nivell (HLS) per al disseny de FPGA. No només 

compta amb una alta productivitat, sinó que també pot realitzar una alta eficiència operativa 

per FPGA mitjançant l'ús d'arquitectura de programació paral·lela. A més, aquí invoca una 

plataforma remota anomenada Intel DevCloud per controlar el FPGA per verificar el 

programa, faria que el disseny fos més còmode i econòmic. 

Paraules clau: BLE PHY, GFSK, FPGA, OpenCL, Intel DevCloud, etc. 

 Resumen: 

Esta disertación presenta principalmente el diseño de Procesamiento Digital de Señales 

(DSP) entre la transmisión en Bluetooth Low Energy Physical Layer (BLE PHY), y su 

implementación en Field Programmable Gate Array (FPGA) con Open Computing Language 

(OpenCL).   

Durante el diseño de DSP, se basa en la arquitectura In-Phase/Quadrature-Phase (IQ) para 

construir los procesos de modulación y demodulación de la señal mediante la utilización de 

un esquema de modelador de señal llamado Gaussian Frequency-Shift Keying (GFSK), en 

la comunicación de corto alcance presenta un fuerte rendimiento anti-interferencia. Con 

respecto al OpenCL, es uno de los métodos de síntesis de alto nivel (HLS) para el diseño de 

FPGA. No solo presenta una alta productividad, sino que también puede lograr una alta 

eficiencia operativa para FPGA mediante el uso de la arquitectura de programación paralela. 

Además, aquí invoca una plataforma remota llamada Intel DevCloud para controlar la FPGA 

para verificar el programa, lo que haría que el diseño fuera más conveniente y económico.  

Palabras clave: BLE PHY, GFSK, FPGA, OpenCL, Intel DevCloud, etc. 

 Summary: 

This dissertation is primarily presenting the design of Digital Signal Processing (DSP) 

between the transmission in Bluetooth Low Energy Physical Layer (BLE PHY), and its 

implementation in a Field Programmable Gate Array (FPGA) device with Open Computing 

Language (OpenCL).  

During the design of DSP, it bases on the In-Phase/Quadrature-Phase (IQ) architecture to 

construct the modulation and demodulation processes of signal by utilizing a signal shaper 

scheme called Gaussian Frequency-Shift Keying (GFSK), in the short-rang communication 

it features strong anti-interference performance. Regarding with the OpenCL, it’s one of 

High-Level Synthesis (HLS) methods for FPGAs design. It not only features high productive, 

but also can realize high operational efficiency for FPGA by using parallel programming 

architecture. Moreover, here invokes a remote platform called Intel DevCloud to control the 

FPGA for verifying the program, it would make the design more convenient and economic. 

Key words: BLE PHY, GFSK, FPGA, OpenCL, Intel DevCloud, etc. 
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1 INTRODUCTION  

The communication between the Bluetooth Low Energy (BLE) is working on the 2.4GHz radio 

wave band, which is licence-free and mainly provide for the fields of Industrial, Scientific, 

Medical (ISM), so that we can utilize this band for the data transmission easily. Regards with 

this project, the first we will describe the short-range wireless communication architecture in 

order to figure out what we mainly need to do. 

1.1 Communication Construction 

The Figure 1.1 is showing the basic architecture of signal communication, there are three parts, 

which consists of the Radio Frequency (RF) Transceiver for receiving and transmitting data, 

Analog to Digital (AD) / Digital to Analog (DA) Transform for changing signals, and the part 

of Digital Signal Processing (DSP) [1]. However, for this thesis, here is mainly presenting how 

to design an DSP, where the signal is received from the BLE Physical Layer (BLE PHY), and 

complete it in Field Programmable Gate Array (FPGA) by using Open Computing Language 

(OpenCL). Where OpenCL is a framework that includes a method to describe the accelerator 

(FPGAs, Graphic Processing Units (GPUs)) behaviour by using C/C++, and in the case of 

FPGA, the C/C++ kernels can be converted into Hardware Description Language (HDL) via a 

process of High-Level Synthesis (HLS) methods. Comparing to the traditional methods such as 

VHSIC HDL (VHDL) and Verilog-HDL, the OpenCL has better portability and  is  easily able 

to realize parallel programming, hence it features the characteristics of high productive and 

high-performance processing, moreover, it can increase the interoperability between different 

platforms as well. Before to detail the design, the next section is introducing basic background 

and approach.  

 

Figure 1.1 Architecture of wireless communication system 
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1.2 Background and Approach 

A hands-free mobile headset was the first Bluetooth product to be made available to consumers, 

and it was not until 2001 that the first Bluetooth-enabled mobile phone entered the market. 

Meanwhile, the first notebook with integrated Bluetooth was introduced by IBM in the same 

year as well [1]. On the other hand, with the rapidly development of portable or mobile devices, 

within the limit power of battery, the power-efficiency performance and transmission rate have 

been taken more and more attentions by consumers and developers. Therefore, in the foundation 

of classical Bluetooth, it was extended to the novel version 4.0 as calling BLE by Nokia in 2006, 

which has more great performances such as low power consumption, less cost and so forth [2]. 

Since then, it became one of fundamental technology in each mobile machine which consist of 

mobile phones, headset, computers and even automobile and so forth, it gave us more and more 

convenient in everyday life, and we can see and use it all around us during the short-range 

transmission. With the benefits of BLE, it was shipped approximately four billion Bluetooth 

devices by 2019, and even if due to the pandemic, in 2020 the shipped was almost same as the 

last year. Obviously, there is no doubt the Bluetooth is already widespread adoption for the 

short-rang communication applications [2, 3]. 

Nowadays, more and more designers or developers are taking focuses on the capabilities of 

programmability, re-use (re-programmability and component recycling) for the electronic 

circuits and systems, which allow them to design systems with a relative short time. For the 

digital systems design, there are a lot of compliant approaches and devices for these features. 

For example, the complementation with software programs written, we can base on 

Microprocessor (uP), Microcontroller (uC), Digital Signal Processors (DSPs). Or the 

realization with a hardware-configuring, we can through Programmable Logic Device (PLD), 

which includes the Simple (SPLD), Complex (CPLD), and the FPGA. All of these options for 

designing a digital system is given by Figure 1.2 [4]. For this project, because the performances 

of energy efficiency and high computing are taken more attentions by us, and comparing all of 

processors and accelerators, in most cases, the FPGA is more suitable for these essential 

requirements. Where one important technical specification of FPGA is that the number of gates, 

which is associating with the capability of computing and processing. And this index was 

increasing from the 10 thousand level in 1980s, up to 50 million level in 2010s [5], hence we 

can see that the complex-computing ability of FPGA was becoming stronger step by step. 

Moreover, there are more than 40 companies have been engaging to this industry so far, such 
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as Xilinx, Altera (now it belongs to Intel), Lattice and so on. Besides, with the rapid 

development of internet and communication in recent decade, and considering the cost and 

convenience for program developing, testing and debugging, the vendor Intel launched a 

platform called DevCloud, which bases on the idea of edge inference solutions for learning, 

prototyping, testing, and running the workload by using the latest hardware or software sets of 

Intel. In this platform, it includes a serial of hardware such as Central Processing Units (CPUs), 

GPUs, FPGAs. Specially, there is an environment we desired in this remote platform, that is 

OpenCL for FPGA development.  

 

Figure 1.2 The options for digital system design 

About the OpenCL, different from others language, but it has non-overlook relationship with 

others as well. Because it bases on C99, C++14 and C++17, but can write program for executing 

the across heterogeneous platforms that combination of CPUs, GPUs, FPGAs, DSPs and other 

processor or accelerators. OpenCL is an Open standard source by the non-profit technology 

consortium Khronos Group, which promoter members consist of AMD, Nvidia, ARM, Intel, 

Qualcomm, Apple, Huawei and so forth, so, there are many development sources we can utilize 

easily and conveniently, the perspective is very bright in the future. In this case, in 2008, the 

initial iteration of OpenCL instructions was released, which was considering the developers of 

program don’t have to learn exclusive or multiple languages when work with different devices. 

In other words, make a common interface, in order to apply a same program to the cross 

platforms. Besides the advantage of portability, there is a very powerful and attractive 

characteristic difference with others languages as well, that is offering us the model of parallel 

programming [6], which can make the program processing more efficient. Now the latest 

version was released in 2020 and has an instruction called OpenCL Specification version 3.0.  
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Among this design, we accept a signal architecture named In-Phase/Quadrature-Phase (I/Q), 

which accomplished by the pulse shaping technology of Gaussian Frequency-Shift Keying 

(GFSK) modulation. The approach of GFSK has many advantages, such as power spectrum, 

constant amplitude envelope, narrow spectrum, great performance in anti-interference, low-

cost and so forth, most of these are very desirable in the wireless communication systems [7, 

8]. As a result, the approach of GFSK is very appropriate for processing the signal between the 

transmission of BLE PHY, even said exclusive method. Besides, take the processing efficiency 

into account, here invokes the method OpenCL which can deal well with the parallel 

programming and then improve the operational rate of hardware in the aspect of software. As 

for the FPGA platform, the Intel DevCloud was accepted, where there are several types of 

FPGA and support to run the OpenCL program, so that we can select one and control online. 

Obviously, it absolutely is a lowest-cost and minimum-time approach for us to verify and debug 

the programs what we designed. 

1.3 Dissertation Outline 

During this project, we would work around the objective, so this thesis is briefly structured as 

following: 

The second chapter will explain the primary theories about the BLE PHY, GFSK modulation 

and demodulation, FPGA, the remote platform Intel DevCloud and the OpenCL. Where it will 

depict these via a several of aspects such as architectures, algorithms, common usages and so 

forth.  

About the chapter 3, according to the previous chapter, it will illustrate and shortly analyze the 

simulating processes, and graphically show the results of GFSK modulation and demodulation 

via software Simulink, let’s clearly perceive what GFSK actually modulates and demodulates. 

The chapter 4 dedicates to show how to realize the GFSK modulation and demodulation in 

OpenCL, which composes of host part and kernel part. It will construct a whole project relying 

on the C standard libraries and assembling the specific usages from OpenCL. Besides, it will 

illustrate the methods and results of compiling, executing and debugging with FPGA in Intel 

DevCloud. Then we will accomplish the comparison and analysis between the results of 

Simulink simulated and FPGA executed, and the verification with real BLE data stream from 

theories to practice, all of these are interpreted in here. 

The final chapter, it will make a conclusion for this work, and look forward some perspectives.  
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2 THEORIES 

The preceding chapter has explicated the objective, and if we want to reach this destination, we 

need to figure out the essential theories what we will utilize. In this case, here includes some 

architectures, concepts, algorithms, methods and so forth. Therefore, in this chapter, we will 

explain the knowledge of BLE PHY, the modulation and demodulation of GFSK, and the 

algorithms among these designs. Besides, there are FPGA principles, the primary design 

concepts of OpenCL and some usages of remote platform as well.  

2.1 BLE 

Nowadays, the application of Bluetooth is pervasive, especially after the launched of BLE. In 

this case, this section will interpret the protocol architecture of BLE and the principle of BLE 

PHY. The first thing, let’s see what is the most attractive characteristic of BLE. 

2.1.1 Why BLE 

BLE is one of short-rang wireless communication protocol, besides, there are others well 

performance of wireless protocols such as Wi-Fi and Zigbee. Even if BLE can be a fundamental 

function or part in a large amount of mobile or portable devices, the Wi-Fi is also enjoyed by 

us almost in daily life and everywhere. Meanwhile, the Wi-Fi and Zigbee are working in the 

free-licence band of ISM as well, why we select the BLE rather than Wi-Fi or Zigbee?  

Table 2.1 Characteristics comparing of BLE, Zigbee and Wi-Fi 

               Class  

Characteristics  
BLE Zigbee Wi-Fi 

IEEE Specification 802.15.1 802.15.4 802.11a/b/g 

Frequency Band 2.4GHz 2.4GHz, 868/915MHz 2.4GHz/5GHz 

Modulation GFSK  DSSS OFDM, DSSS, CCK 

Range < 100m 10~100m 50m 

Network Topologies 
Point to Point, Start, 

Mesh 
Star, Mesh Star 

Data Rate 1Mb/s, 2Mb/s 250Kb/s 
11Mb/s, 54Mb/s, 150Mb/s 

+  

Peak Current Consumption 
<15mA, ~5.5 mA in 

latest devices 
19mA Rx, 35mA Tx 60mA Rx, 200mA Tx 

Standby Current < 2 uA ~5 uA <100uA 
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The answer is among in the Table 2.1, which is about the characteristic comparison of BLE, 

Zigbee and Wi-Fi [9-11]. Obviously, we can see the Peak Current Consumption and Standby 

Current of BLE, that is lowest among these three protocols. In this case, it is a critical factor 

we selected BLE, and can be more prospective in industrial communication or other short-rang 

wireless communication fields because of the lower consumption. At the same time, that is why 

it can be a fundamental part in all of mobile or portable devices as well, though people not 

always use it in the day life comparing with Wi-Fi. 

2.1.2 BLE PHY 

However, there are many protocol stacks among the BLE, mainly consists of Application, Host 

and Controller. The Figure 2.1 shows the exactly position of BLE PHY [12], we can see that 

the physical layer is in the Controller, which in the lowest layer of the stack.  Besides, the PYH 

is able to transmission the data over the air via radio waves, that is also itself responsibility.  

 

Figure 2.1 Protocol stacks of BLE 

As mention previous, BLE PHY will transmission the data through the 2.4GHz frequency band 

via the radio wave. Meanwhile, the frequency band is separated into 40 channels basing on 

2MHz interval from 2400.0MHz to 2483.5MHz, which starting at 2402MHz, and it is shown 

in the Figure 2.2 [9, 12]. We can see that there are two modes of channel called Data and 

Advertising respectively, where the 37, 38, 39 are referred to the advertising channels for 

broadcasting, connection establishing and device discovering. On the other hand, the rest 

channels are data channels and can be used for bidirectional communication and adaptive 

Frequency Hopping (FH). 
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Figure 2.2 BLE PHY frequency bands 

In 2.4GHz band, it can transfer information by Bluetooth, Wi-Fi, Zigbee, NFC and so forth, 

then the overcrowding, congestion are common problems, even will cause the signal 

interference and fading. In this case, BLE uses the method FH to suppress these issues. 

According to a pseudorandom sequence of the channel index, the RF signals are quickly shifted 

to different channels in a system, and that is the principle of FH.  [13], incidentally, it is applied 

in data channels. 

 

Figure 2.3 BLE packet format (1) advertising channel (2) data channel 

But what kinds of information it will send and receive? Therefore, there is the BLE PHY packet 

format, as showing in the Figure 2.3. Where mainly consists of the preamble, access address, 

Protocol Data Unit (PDU) and Cyclic Redundancy Check (CRC) [14]. Clearly, they are all 

symbols which means 1 bit per symbol. 

Where the preamble and access address have special sequence format separately, and the detail 

is described in Table 2.2 [15]. We can see that the preamble depends on the access address so 

that both of them together can be used for distinguishing a data packet whether belongs to BLE. 

Besides, the capability of transferring symbols via data channel is larger than the advertising 
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channel. For some applications such as the Bluetooth Beacon, it can broadcast information via 

the advertising channel, and the advantage is that the FH method is not to be necessary for it. 

Incidentally, there are iBeacon, Eddystones Beacon, and AltBeacon in real life normally.  

Table 2.2 The preamble and access address format in advertising channel. 

Preamble ‘10101010’ - if LSB of access address is 0 

‘01010101’ - if LSB of access address is 1 

Access Address ‘0x8E89BED6’ in hex 

‘1000 1110 1000 1001 1011 1110 1101 0110’ in binary 

However, if we want to transfer a large data through beacon, it can be accepted the method of 

two-time sending for transmitting extension data. That is the first time through the advertising 

channel to broadcast a message which it will send a big data, when the receiver responded, the 

transmitter will do the second sending with big data via the data channel, but all of above 

perhaps can be accomplished in the 5.0 version of Bluetooth. 

The data can be enveloped into radio transmissions through a lot of methods, such as the values 

of amplitude, phase, or frequency of a wave. For BLE, it’s a special scheme calls GFSK, which 

is refined from the Frequency Shift Keying (FSK) where information is formed by shifting the 

frequency according to the deviation, and the critical part is adopted a Gaussian filter. Therefore, 

the symbols are presenting as zero ‘0’ and one ‘1’ in binary, where ‘0’ is coded to negative 

frequency deviation, in contrast, the symbol of ‘1’ is coded to positive deviation. Finally, we 

will get the I/Q basebands and through the modulation scheme of BLE. So, the next is going to 

describe it in detail, including the demodulation as well. 

2.2 Gaussian Frequency-Shift Keying 

In general, there are two signal modes of transmission which are passband and baseband, the 

difference is that the passband transmission will add a carrier frequency basing on the I/Q 

basebands. For example, there is a waveform with carrier frequency f, and then associates with 

the deviation of basebands which implies ‘0’ and ‘1’, it will generate two new waveforms with 

frequencies 𝑓1 and 𝑓2 which also imply the symbol ‘0’ and ‘1’, the waveform is shown in Figure 

2.4. This operation could be realized by the hardware called Software Define Radio (SDR). 

Hence, we should get the baseband signal firstly, which refers to the deviation of symbols in 

frequency. 
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Figure 2.4 The example of passband represented 

About the frequency modulation/demodulation, the FSK is widely used because it has better 

noise suppression in comparing with the others modes such as amplitude and phase, and the 

demodulation is less complicated for it. Therefore, GFSK is the extension of FSK which is 

applying a gaussian filter before the frequency modulation procedure. Actually, as one of low-

pass filters, the gaussian filter can avoid the high frequencies because of the switching, so that 

it can make the signal spectral bandwidth to be narrow, which is able to decrease the adjacent 

channels’ interference. Here, it will begin from the modulation to deeply explain the 

architecture and algorithm of GFSK. 

2.2.1 Modulation 

As mentioned earlier, the BLE will sent the symbols with ‘0’ and ‘1’ in binary, but it’s necessary 

to envelop these into IQ phases instead of sending directly, because it can strength the capability 

of anti-interference when the system is working at relatively low data rate. The Figure 2.5 is 

showing the block diagram of the GFSK modulation, which mainly includes 6 steps. 

 

Figure 2.5 Architecture of GFSK modulation 
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2.2.1.1 Binary None Zero (BNZ) 

In the BLE PHY, it supports 1M PHY and 2M PHY, where 1M PHY means the 1-megabit 

PHY, and the 2M PHY is 2-megabit PHY which introduced in Bluetooth 5.0 as an optional 

scheme. Normally, both of them refer to the bit rate which this PHY is capable of, and it’s a 

trade-off scheme that the higher bit rate means potentially higher Bit Error Rate (BER). 

Commonly, the BLE PHY will select the bit rate of 2 Megabit per second, and the symbol is 

the return-zero sequence, thus the first step is converting symbols to Non-Return Zero (NRZ) 

binary signal, where the new symbol ‘-1’ instead of the original symbol ‘0’, and symbol ‘+1’ 

instead of ‘1’. The meaning of this data transformation is that it will be able to construct the 

deviation sequence based on each symbol afterward, and the algorithm as following the 

equation (2-1) [7]. We assume the original sequence as a[n], the result as b[n] after processed, 

and the letter k is representing the index of symbol.                                  

𝑏(𝑘) = 2 × 𝑎(𝑘) − 1 (2-1) 

2.2.1.2 Up-Sampling 

Because BNZ sequence still is integer, and gaussian filter will transform these into float so that 

can realize the pulse shaping. However, it can’t be computed for getting a correct consequence 

due to just a single symbol. In this case, we have to enlarge the single symbol so that can be 

processed with Gaussian method, that is the meaning of Up-sampling. Therefore, for this 

project, the output-data rate can reach 13 MHz if the input-data rate is 1 MHz because it must 

generate 13 samples of output per each input data period [1, 7], the reason will be indicated 

later, and the example we can see the Figure 2.6: the example of Up Sampling. So, the formula 

as showing in equation (2-2), which we assume the output sequence as c[n].  

𝑐[𝑛] = 𝑏 [⌊
𝑛

13
⌋] (2-2) 

 

Figure 2.6 The example of Up Sampling 
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2.2.1.3 Gaussian Filter 

As for the Gaussian filter, it’s about the low-pass filter and mainly aims two goals [16]. Firstly, 

it can pre-filter the baseband waveform via smoothing the edge of input data, thus it can narrow 

the data spectrum of transmitting. Secondly, it can eliminate the glitches brought on by the data-

level converter circuit.  

To the beginning, we need to initiate the Gaussian pulse-shaping filter [17]. Then the transfer 

function of Gaussian low-pass filter which is shown in equation (2-3). 

𝐻(𝑓) = 𝑒−(𝛼𝑓)
2
 (2-3) 

Where the argument of 𝛼 is associating with B, which is -3 dB bandwidth of the baseband. And 

it is commonly expressed as a normalized product (BTs) of -3 dB bandwidth and symbol time, 

Ts is representing the period, so the expression can be given by equation (2-4). 

𝛼 =
√𝑙𝑛⁡(2)

√2

𝑇𝑠
𝐵𝑇𝑠

⁡ (2-4) 

With the 𝛼 increases, the spectral occupancy of the Gaussian filter is reducing, and the impulse 

response spreads over adjacent symbols, then it leads to increase the Inter Symbol Interference 

(ISI) at the receiver. Therefore, in the continuous-time domain, the impulse response of 

Gaussian filter is represented in equation (2-5). In order to fit with standard deviation 𝜎ℎ =

𝛼/(√2𝜋), which is the canonical form of a zero-mean Gaussian random variable, And then 

rearranged it and got the equation (2-6). 

ℎ(𝑡) =
√𝜋

𝛼
𝑒−(

𝜋
𝛼
𝑡)2  (2-5) 

ℎ(𝑡) =
1

√2𝜋(
𝛼

√2𝜋
)
𝑒

−⁡
𝑡2

2×(
𝛼

√2𝜋
)2)

 (2-6) 

On the other hand, in the discrete-time domain, assume the Oversample Rate as OSR, then let 

t0 = Ts / OSR be an integer oversample of the symbol duration and t = kt0. As mentioned before, 

k refers to the sample index. As a result, the expression of discrete-time impulse response is 

depicted in equation (2-7). And the equation (2-8) is describing the result that dropping the 

dependence on t0 after invoked the equation (2-4) into (2-7). 
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ℎ(𝑘𝑡0) =
√𝜋

𝛼
𝑒−(

𝜋
𝛼
𝑘𝑡0)

2

 (2-7) 

ℎ[𝑘] =
√2𝜋

√𝑙𝑛⁡(2)

𝐵𝑇𝑠
𝑇𝑠

𝑒
−(

√2𝜋

√𝑙𝑛⁡(2)
𝐵𝑇𝑠

𝑘
𝑂𝑆𝑅

)2

 (2-8) 

Moreover, the peak of the impulse frequency response can explicit as equation (2-9) according 

to the first argument of equation (2-8).  

ℎ𝑚𝑎𝑥 =
√𝜋

𝛼
= ⁡

√2𝜋

√𝑙𝑛⁡(2)

𝐵𝑇𝑠
𝑇𝑠

 (2-9) 

For Bluetooth, when assume BTs = 0.5, Ts = 1us, and OSR = 8, we can get the value of hmax = 

1.5054 MHz, and the case of BTs = 0.5 is also called Gaussian Minimum Shift Keying (GMSK) 

[19, 20], which is a special scheme of GFSK. 

Besides, the Gaussian filter is a 39 tabs FIR filter with the 39 coefficients generated by using 

the Marcum’s function [1, 18], that is the length of sample. However, here we accept 28 tabs 

because it’s more appropriate in this project than 39 tabs according to the Up-Sampling. The 

28 tabs are stored as a Look-Up Table (LUT), and the shape is shown in Figure 2.7, which after 

the calculation of above formulas.  

 

Figure 2.7 The shape of the Gaussian Filter initialization 

When the initialization of Gaussian Filter is accomplished, the next is to do the convolution 

between the initial value of Gaussian filter and the input data, finally output the signal with time 

domain. The expression as showing equation (2-10) [20], where ‘∗’ refers to the convolution 

operator. However, in order to describe it clearly, and facilitate to realize, we can transform the 

expression from time domain to discrete domain which is resulted as the equation (2-11). 

𝑔(𝑡) = 𝑐(𝑡) ∗ ℎ(𝑡) (2-10) 

𝑔[𝑘] =∑ 𝑐[𝑘 + 𝑖] ∙ 𝑔[𝑖]
13

𝑖=−13
 (2-11) 
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2.2.1.4 Argument 

This part is mainly adjusting some arguments between gaussian filter and integrator, and the 

constant value was determined as ((Gaussian Length / 5) × 𝜋 ) finally, where the Gaussian 

length is depended on the tabs of Gaussian filter we accepted. 

2.2.1.5 Integrator 

After the signal go through the gaussian filter, the output indicates the instantaneous frequency 

deviation ∆𝑓(𝑛), and then it will be integrated as the instantaneous phase shift ∆𝜑(𝑛) by using 

an Infinite Impulse Response (IIR) digital integrator, which has a transfer function as equation 

(2-12) [1]. 

𝐻(𝑧) = ⁡
1

1 − 𝑧−1
 (2-12) 

For GFSK modulation, we can get the equation (2-13) of the relationship between input and 

output according to the transfer function, which is in discrete domain. And the flow graph is 

shown in Figure 2.8. 

𝜑[𝑘] = 𝜑[𝑘 − 1] + 𝑑[𝑘] (2-13) 

 

Figure 2.8 Implementation of the integrator in discrete domain 

2.2.1.6 I/Q Basebands 

Now, we have got the instantaneous phase deviation, and then call it to the sine and cosine wave 

generator respectively, hence to get the baseband signals of I/Q.  

Moreover, the extensional step is that the I/Q signals can be associated with a carrier frequency 

separately, thus to get the passband signals, and sent it over air via radio wave. However, the 

passbands created will be dealt well with the hardware such as the radio frequency transmitter. 

Figure 2.9 is showing the architecture of passband transforming, where 𝑓𝑐 is a carrier frequency. 

And the computing procedure is given by the equation (2-14), so the finally signal will send out 
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by transmitter that is described in equation (2-15). Of course, before sending, there maybe also 

go through a filter which depends on the requirements. 

𝑆𝐺𝐹𝑆𝐾(𝑡) = 𝑐𝑜𝑠(𝜑(𝑡)) 𝑐𝑜𝑠(𝑤𝑐𝑡) − 𝑠𝑖𝑛(𝜑(𝑡)) 𝑠𝑖𝑛(𝑤𝑐𝑡) (2-14) 

𝑆𝐺𝐹𝑆𝐾(𝑡) = 𝑐𝑜𝑠(𝑤𝑐𝑡 + 𝜑(𝑡)) (2-15) 

 

Figure 2.9 Architecture of GFSK modulation passband 

2.2.2 Demodulation 

Now we have seen what information format transmitted after the modulation in DSP, that is the 

waveforms which associated with the cosine and sine, and also called the In-phase and 

quadrature-phase separately. Both of these waveforms are basing on the phase deviation which 

computed by integrator block. However, all of above steps are the scope of transmitter, and also 

about the construction procedure of baseband signal in DSP by GFSK modulation, hence, the 

hardware of radio frequency transmitter can send the passband signal according to the baseband 

signal. 

In the further, when radio frequency receiver gets the passband signal of GFSK modulation 

from the air, the first thing is compositing the waveforms of corresponding carrier frequency 

respectively, for recovering the signal from the passband to the baseband. And then go through 

a low-pass filter to smooth the waveform, the processing flow of this part is described in Figure 

2.10. However, all of above can process in the hardware, for this thesis, we just need to discuss 

the later part that has been got the smooth baseband waveforms. Thus, about the architecture of 

GFSK demodulation is illustrated in the Figure 2.11. 

We can see that there are 5 computing blocks which comprises of Arctangent, Unwrap, 

Derivative, Coder and Down-sampling, these seem to be a little simple than the block steps of 

modulation.  
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Figure 2.10 Architecture of GFSK modulation passband 

 

Figure 2.11 Architecture of GFSK demodulation 

2.2.2.1 Arctangent 

The first step of demodulation in DSP we need to do the computation between the sine and 

cosine by the function arctangent. The expression is given by the equation (2-16). 

𝜑′(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛⁡(
𝑠𝑖𝑛′′(𝜑(𝑡))

𝑐𝑜𝑠′′(𝜑(𝑡))
) (2-16) 

Whereas, because of the limitation of arctangent function, the values are limited in [−𝜋, 𝜋], or  

[−
𝜋

2
,
𝜋

2
], which depend on the arctangent function in the real program, anyway, the next step 

called unwrapping is necessary. 

2.2.2.2 Unwrap 

The meaning of unwrapping is releasing the limitation because of arctangent, and then the 

results is corresponding with the output of integrator in modulation. We can realize it by judging 

several conditions we set when we do the program, and the detail will be indicated later. 

2.2.2.3 Derivative 

As mentioned early, the integrator is responsible for transforming the deviation from the 

frequency aspect to the phase aspect in the modulation. So, it’s clearly for this part that is 

recovering the frequency deviation from the phase aspect. we can express the procedure of 

derivative in discrete domain as the equation (2-17). 

𝑑′[𝑘] = 𝜑′′[𝑘] − 𝜑′′[𝑘 − 1] (2-17) 
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2.2.2.4 Coder 

We’ve got the frequency deviations, then, in this part, is coding the values of frequency 

deviation to the symbols in binary. We can set two conditions to judge these and output the 

result, the detail will be described in later chapter. 

2.2.2.5 Down-Sampling  

As so far, the information is still in the up-sampling range, and that is not our expectation of 

demodulation. Besides, we knew the BLE packet has a relative fixed pattern as Figure 2.3, 

particularly the preamble and access address in Table 2.2, they are able to realize the signal 

synchronization between the transmitter and receiver of BLE in time domain. In the case of the 

down sampling, the better scheme is to sample the symbols from the preamble of a BLE data 

packet, because it can make the processing of down sampling to be more effective. However, 

here we firstly discuss how to accomplish the process of down sampling, as for the preamble 

and the access address detecting will be realized in the further work. In this case, assuming we 

got an exact BLE data packet which has went through the preamble detected, and in order to 

recover it to the original sequence, we need the down-sampling processing, which the basic 

concept is sampling one symbol per 13 symbols. On the other hand, during this procedure, we 

could select the mean value within a sequence of a serial of sequential and same symbols. This 

method can reduce the possibility of the bit error sampled, because the symbols would be more 

stable which is around the middle of this sequence, in contrast, it’s easily occurring some bits 

error in the near of the both sides. 

2.3 FPGA  

During the parts of above, we’ve relatively understood the primary structure of BLE PHY and 

the principles of GFSK modulation/demodulation, then, according to these concepts we will 

realize all the function blocks of DSP in the FPGA platform. Before the practice, we need to 

learn the basic knowledge about the FPGA as well. 

The FPGA belongs to the programmable logic device, and as a type of PLD, compares with the 

other class PLD such as CPLD and SPLD, they all are programmed by using HDLs such as 

Verilog HDL or VHDL, but in the aspect of logic gate arrays, a CPLD consists of a few 

thousand logic gates, whereas a FPGA can reach million level. Which means FPGAs can deal 

well with more complex computing or threads processing than CPLDs and SPLDs. The higher 
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complexity will be increasing the cost, therefore, according to the design of requirement, 

CPLDs are more appropriate for the less complex applications, and the FPGAs are in contrast. 

Besides, for the complex application, there are CPUs and GPUs as well, why we select the 

FPGA as a realization platform? Among the several advantages of FPGA, such as flexibility, 

energy efficiency, custom instructions, rich I/O and so forth, the most we heed to is the energy 

efficiency because of the characteristic low energy of BLE. In CMOS era, there is a formula 

for trading off the performance of energy efficiency that is indicated in equation (2-18) [21]. 

𝐺 =
𝑂𝑃𝐶 ×  𝑓𝑐𝑙𝑘

𝑃
 (2-18) 

Where the OPC means Operations Per Cycle, 𝑓𝑐𝑙𝑘 is the operational frequency, and P is the 

power. In this case, at a same cycle, we can implement many parallel blocks to increase OPC, 

thus improve the performance of energy efficiency. Besides, about the P, in FPGA, it can 

communicate data through register or (small) on-chip memories in a same chip between the 

different devices so that it could reduce P. In contrast, for CPUs and GPUs, they tend to use 

external Dynamic Random Access Memory (DRAM), which has a higher power demand [22]. 

As a result, it’s better scheme to utilize the platform FPGA for this project. 

There are a lot of vendors for the FPGA industrial files, nevertheless, among these various 

FPGAs, the basic structure, the design flow and the hardware algorithm are almost same, so 

this part primary indicates the concepts of FPGA through above aspects. 

2.3.1 FPGA Architecture 

Normally, programmable logic element, programmable I/O element, and programmable 

interconnect element are the three fundamental parts of an FPGA. A programmable I/O element 

can increase the peripheral devices where a programmable logic element indicates a logic 

function, and a programmable interconnect element can connect various blocks [5]. In the 

modern heterogeneous FPGA structure, there are also embedded memories such as Random-

Access Memories (RAMs), DSP units and other hard blocks, which can improve the 

performance of computing capability. All of these blocks are interconnected by using bit-level 

programmable routing [5], that is the programmable interconnect element. Figure 2.12 shows 

the structure of an island-style FPGA [23, 24, 25]. Among academic and industrial FPGAs, this 

architecture is the one that is most frequently used. Since the logic blocks in this form resemble 
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islands in a sea of programmable routing connection elements, it is obvious why this structure 

is called island style.  

 

Figure 2.12 The island-style structure of FPGA 

In this architecture, the programmable logic element is corresponding to the logic block. 

However, logic block is named differently among various FPGA venders. For example, it’s 

called Configurable Logic Block (CLB) in Xilinx FPGA, otherwise it’s Logic Array Block 

(LAB) in Altera [5]. The connection block contains the programmable connection switch, the 

vertical routing channel, and the horizontal routing channel, while the switch block contains 

the programmable interconnect element. Finally, the I/O blocks are connected to the 

programmable I/O element. 

2.3.2 FPGA Design Flow and Design tools  

The traditional design flow of FPGA is based on the HDL such as the Verilog-HDL and VHDL, 

it’s universal and typical method for the most FPGA development companies. In other word, 

no matter what HDL method we selected, take consider of the given specifications and 

constraints, then describe source codes, draw the circuit diagrams, and set the parameters. The 

Figure 2.13 is indicating the traditional method for FPGA design in HDL [5, 25]. 

So, obviously, in the traditional method with HDL, the first thing is describing the source code 

in Register Transfer Level (RTL) description, then go through the logic synthesis, technology 

mapping, place and route, generating a bitstream and configuration data, finally, programmed 

and executed on an FPGA. Besides of design procedure, there are also the verification in order 

to check whether the design corresponding to the requirements or constrains, which roughly 

include the RTL verification, timing analysing, and prototyping. 
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Figure 2.13 Design flow of FPGA in HDL 

2.3.3 Hardware Algorithms 

To achieve a high performance, it’s not enough just to complete with hardware, especially, for 

the computing capability of FPGA, it’s determined by utilizing efficient hardware algorithm 

for the target application. There are two common and useful schemes of hardware algorithms, 

that is pipelining and parallel processing. 

2.3.3.1 Pipelining 

The pipeline is a method for streamlining numerous processing iterations, and the processing 

principle is presented as the Figure 2.14 [5]. In the non-pipelined situation of (1), the processing 

iteration 2 is done sequentially after the accomplishment of iteration 1.  In contrast, the (2) is 

illustrating the pipeline processing, where we separate a unit processing iteration into n stages 

with uniform proportion. In this case, here n = 5, and the second processing iteration will start 

with done the first stage of the first iteration, the third will start with done the first stage of the 

second processing iteration, and so on. Finally, it can be accomplished 6 processing iterations 

with pipelining method during the time of 2 processing iterations in the non-pipeline situation. 

Obviously, the speed of calculation in FPGA is skyrocketing through the pipeline scheme.   
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Figure 2.14 The comparison of schemes between (1) non-pipelined and (2) pipelining 

2.3.3.2 Parallel Processing 

The difference between the parallel processing and pipeline scheme is that the principle. For 

the pipelining case in Figure 2.14, it’s considered as parallel processing of five processing 

iteration when the 5th stage of processing iteration 1 is started. However, the processing 

structure of parallelism mainly have three schemes, which are Single Instruction Stream 

Multiple Data Stream (SIMD), Multiple Instruction Stream Single Data Stream (MISD), 

Multiple Instruction Stream Multiple Data Stream (MIMD). The corresponding architectures 

of above are presented in the Figure 2.15. In addition, the structure of Single Instruction Stream 

Single Data Stream (SISD) is just displaying the basic components what it’s comprised of, it 

does not have the behaviours of parallel processing. Moreover, there all are divided into two 

parts which are control unit and processing unit. For the SIMD, it’s an architecture making 

realize the data parallelism, and is applicable the situation of processing numerous data 

synchronously with a single sequence of instructions. Nevertheless, in the MISD, each CU 

provides different function for the PU even if they are sequential executed, so that it’s also 

called functional parallelism. Compare with the SIMD and MISD, the MIMD is combination 

of the both different characteristics that has the performances of data parallelism and functional 

parallelism. 

Besides, there are others schemes of hardware algorithms for increasing the computing or 

processing capability as well, such as systolic algorithm, stream processing and so forth. Here 

would not to extend these details, because the methods of pipeline and parallel processing are 
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more typical and pervasive among all the hardware algorithms, specially, for this thesis we will 

mostly apply the parallel architecture. 

 

Figure 2.15 The structures of parallel processing 

2.3.4 The Platform of Intel DevCloud 

As so far, we have introduced some primary basic knowledge about FPGA and OpenCL, it’s 

clear that we need to combinate the hardware and software to realize the object. On the one 

hand, when we are just developing about the program by OpenCL, we can build the hardware 

via the FPGA development board to verify the program, but it would cost a lot of money for it. 

Besides, in order to verify and debug the program, we perhaps need to follow again and over 

again the rest traditional design method except the construction of RTL description in HDL. 

On the other hand, if we just want to verify and debug the program, for a deep-learning 

programmer, it’s better that not need to construct any hardware in real and then complete them, 

so that some remote platforms of FPGA were appearing these years.  

The main FPGA vendor such as Xilinx, Altera, have been launched its cloud platform 

respectively. For the Xilinx, it was launched the relevant remote devices in the Amazon Web 

Services (AWS), which cooperating with the enterprise Amazon. In the AWS, the Amazon 

Elastic Compute Cloud (Amazon EC2) F1 instances features FPGAs of Xilinx that can be 
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programmed to build hardware accelerations for applications. Additionally, for the Altera, the 

correlative devices have launched in the cloud platform called Intel DevCloud. This platform 

has several series of FPGAs supporting the OpenCL, and perhaps it’s benefited from the mother 

enterprise Intel, there are not only FPGAs, but also others computing devices such as CPUs, 

GPUs, and others accelerators. Besides, as mentioned before, the DevCloud supports the 

OpenCL development for FPGAs. Thus, as a result, we selected the latter platform as a primary 

scheme to verify and debug our program in OpenCL, and the environment configuring we can 

check in [33, 34, 35]. 

2.4 OpenCL 

After via the learning with basic architecture of FPGA, the typical design flow in HDL, and 

some hardware algorithms of thread processing, we would have roughly understood the 

correlative knowledge in traditional design of FPGA from hardware to the software. On the 

other hand, along with the complexity of system design increasing, the capabilities of 

computing, productivity, efficiency and so forth, which are taken more and more attentions by 

developers and vendors nowadays. Additionally, it can reach higher performance by using 

manual optimization in the traditional design methods such as Verilog-HDL or VHDL, but this 

method would be time consuming and might produce human errors. In these cases, a novel 

method calls High-Level Synthesis (HLS) or behavioural synthesis was appeared [4, 26].  

An algorithm is used as input in the automated design process known as HLS to generate the 

digital hardware necessary to carry out the required function. [27]. In general, A high-level 

programming language is used to create the control algorithms, such as C/C++ or variants 

(System C, OpenCL framework, etc.), additionally, the automated tool offers a description of 

the RTL hardware. For the most programmer whom is used to high-level language, to design a 

whole regular DSP will be felt a little bit complex by using the HDL method. In addition, the 

high-level language is a well-known tool. Therefore, the HLS method gradually become an 

alternative scheme to implement an DSP design in FPGA.  

Normally, a C/C++ code just associates with software program, this might result in the 

synthesized hardware module performing poorly. The worst scenario is also that it might not 

succeed in being synthesized into hardware. Considering the hardware produced by HLS, we 

need carefully characterize the source code. In general, we can use variables, operators, 

substitutions, control statements (if, for, while, etc.), and function calls in C/C++ code to signal 
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the target's behaviour. In this instance, an HLS situation can make an array into a memory, a 

function into a hardware module, and a variable into a register, all of which are connected to 

HDL. Additionally, a state machine would be implemented for the control, which consists of 

sequential executions, branches, loops, and function cells. While the majority of HLS tools have 

some common limitations, such as disabling recursive calls and disabling dynamic pointer [5]. 

Where the both of restrictions are because that would correspond to the dynamically instantiated 

at run time in hardware module, that is exceeding the scope of concept within present digital 

circuits. As a whole, a source code would be created using a high-level language like C or C++, 

and from there, an RTL description would be produced using HLS or behaviour synthesis, 

finally, the rest steps will almost follow the traditional method which starts from RTL 

description as mentioned proceeding. 

Bases on above thoughts, for this project we invoke OpenCL to construct a source code. For 

the portability in OpenCL, means that we can build by C/C++, Java, Python, and then can apply 

the program for the FPGAs, CPUs, GPUs, thus it resembles a common interface for the most 

popular program languages and the target devices. Besides, the parallel programming which 

can obviously increase the computing capability as explained in the section 2.3.3 hardware 

algorithm before. In this case, the next will introduce the OpenCL via the aspects of itself 

architecture, primary elements in detail. 

2.4.1 Structure of OpenCL 

For the parallel programming, there are two parts we need to distinguish that is host application 

and the kernel. In other word, where the host application is associating with the control unit, 

and the kernel corresponds to the processing unit. So, the source code will be normally divided 

into two parts, host code and kernel code.  

2.4.2 Host code 

The good news is that we can use high-level language to generate source code in the host code 

section, the bad news is that we need to comprehend the six peculiar elements, which composes 

platform, device, context, program, kernel, command queue. Except the platform, the others’ 

relationship can be described in the graph as Figure 2.16 [6]. 
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Figure 2.16 The relationship of the main elements in host code 

We assume there are several functions, sym(), bnz(), upsa(), gauss() and so forth, each 

function can be explained by a kernel independently, thus the kernel is container of functions. 

Furthermore, all of these functions are contained in the program, so we can say that program is 

the container of kernels. On the other hand, the devices, command queues are included in the 

context, thus the context is responsible for identifying a set of devices, and making it possible 

to create command queues. Where for the former, it can receive task or function from the host. 

And when identify by context, it not means all possible devices, but only the devices which are 

selected to work together. However, for the latter, the command queues can transmission 

information between host code and kernel code, which is similar as a bridge between the both. 

While the program is configured in host code, at the same time all the necessary kernels are set 

as well. On the other hand, we define the command queues and in order to generate it in the 

context. Therefore, when the host code is executed, the context identifies a serial of devices, 

then the host sends the task or functions that as kernels to the devices through the command 

queues within the context according the program configuration. 

2.4.2.1 Platform 

It’s a little pity there is no any description of platform in the relationship of the main elements 

in host code as showing in Figure 2.16, but here will compensate this part as detail as possible. 

Because OpenCL can apply for the different platforms, such as FPGA, CPU, GPU, and each 

platform have many vendors and different classes. In this case, we need to distinguish what 
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platform the code will be applied for. For example, it’s one situation we have known the 

information of platform so we can directly configure it to the host code. But if we have not any 

information about the platform yet, such as the seller, who want to sell the OpenCL application. 

Thus, in order to make it possible no matter what situations, the data structure of 

cl_platform_id by providing from OpenCL specification guide can deal well with it [6, 28, 

29]. 

There are usually three steps to finish a platform configuration in code, that is firstly allocating 

memory for one or more cl_platform_id structures, and then utilizing the function called 

clGetPlatformIDs() to initialize these structures. The entire arguments are shown below. 

cl_int  clGetPlatformIDs (cl_unit   num_entries, 
cl_platform_id*  platform, 
cl_unit*   num_platform) 
num_platform)  

Finally, if we want to discover the version of OpenCL a platform supports or who made it, we 

can use the second function called clGetPlatformInfo(), and the overall arguments are 

given below.  

cl_int  clGetPlatformInfo (cl_platform_id  platform, 
cl_platform_info  para_name, 
size_t    param_value_size, 
void*   param_value, 
size_t *   param_value_size_ret) 

Where the second argument is para_name can be used one of the values within the Table 2.3, 

besides, all of them return the char-type array. However, in the version 3.0 has added some new 

parameters, such as CL_PLATFORM_NUMERIC_VERSION and so forth [30], here will not to 

extend the detail. And the third parameter is param_value_size which indicates how many bytes 

we want to store.  

Table 2.3 OpenCL Platform Information Parameters 

Parament name Description 

CL_PLATFORM_NAME Return the platform-corresponding name 

CL_PLATFORM_VENDOR Return the vendor that matches the platform. 

CL_PLATFORM_VERSION Return the highest OpenCL version that the platform will support. 

CL_PLATFORM_PROFILE Identify if the platform supports the complete OpenCL standard 

(FULL_PROFILE) or the embedded standard (EMBEDDED_PROFILE)  

CL_PLATFORM_EXTENSIONS Return a list of the platform's supported extensions. 
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2.4.2.2 Device 

About the others part we have roughly understood during the preceding explanation, so the next 

is about how to realize these in code. Now we start from the device function. Similarly, devices 

are designated by the data structure cl_device_id in code. Comparing with the platform 

configuration, it also will experience two steps in the device aspect, which corresponds two 

functions we will utilize. 

The first function is about creating device structures and that is the clGetDeviceIDs(). It 

populating a cl_device_id array with structure corresponding to OpenCL devices, and the 

whole arguments in this function are represented as below. 

cl_int clGetDeviceIDs (cl_platform_id  platform, 
cl_device_type device_type, 
cl_uint   num_entries, 
cl_device_id*  devices, 
cl_uint *  num_devices) 

Where the first argument indicates the cl_platform_id structure representing the platform 

we want. The second indicates a device type, which can be set by using the values which is 

given by the Table 2.4.  

Table 2.4 OpenCL Device Types 

Device type Description 

CL_DEVICE_TYPE_ALL Means every piece of device could connect to the platform 

CL_DEVICE_TYPE_CUSTOM Specialized devices that don’t support all required OpenCL 

functionality 

CL_DEVICE_TYPE_DEFAULT Means that they are not special devices but rather those connected 

to the platform's default kind. 

CL_DEVICE_TYPE_CPU Means the host processor 

CL_DEVICE_TYPE_GPU Means a device containing a graphics processor unit (GPU) 

CL_DEVICE_TYPE_ACCELERATOR Means an external device used to accelerate computation 

As for the second function, it can access devices and obtain device information, that is 

clGetDeviceInfo(), and the full arguments are represented as below. 

cl_int clGetDeviceInfo (cl_device_id  device, 
cl_device_info   param_name, 
size_t    param_value_size, 
void*    param_value, 
size_t*    param_value_size_ret) 

Obviously, these arguments are very similar with platform’s, and the difference is transforming 

the first two data structure to the cl_device_id and cl_device_info respectively.  
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2.4.2.3 Context 

Meanwhile, the data structure of cl_context is indicating the OpenCL context, we can utilize 

the functions of clCreateContext() or clCreateContextFromType() to create it. Their 

whole arguments are shown below respectively. 

cl_context clCreateContext (const cl_context_properties* properties, 
cl_uint      num_devices, 
const  cl_device_id*    device, 
void (CL_CALLBACK*    notify_func) (…) 
void*      user_data,  
cl_int*     error) 
 

cl_context clCreateContextFromType (const cl_context_properties*  properties, 
cl_device_type      device_type, 
void (CL_CALLBACK*  notify_func) (…) 

void*    user_data,  
cl_int*    error) 

The first function will establish a context by explicitly identifying devices, which is the primary 

distinction between the two. The second function, in comparison, creates a context that includes 

the devices of a specific type which available within the Table 2.4. On the other hand, we also 

need to distinguish the cl_context_properties pointer and void pointer which are both 

included. The properties pointer must designate an array of names and values which is 

terminated with 0. However, the void pointer can point to any data we want. Besides, both 

arguments can be set as NULL. About the callback function as an argument within both 

functions, this may be used if an error happens while the context is in working. 

Moreover, after create contexts by using the one of above functions, we could get context 

information through the function clGetContextInfo, which is similar with the function of 

clGetPlatformInfo and clGetDeviceInfo in the platform and devices separately, and 

here will not elaborate it. 

2.4.2.4 Program  

The devices can receive the tasks and functions from the host, and then the program is 

responsible for storing the tasks and functions what will be sent by the host. Thus, in a word, 

the program is a container of all functions. In OpenCL, the data structure of cl_program is 

representing a program. This section will be divided into three steps to explain the program 

how to be configurated in code, that is creating a program, building a program and obtaining 

the information of program. 
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For the first step, OpenCL provides two methods to create a new program, their functions are 

represented as clCreateProgramWithSource() and clCreateProgramWithBinary(). 

Both them can transform the code into a cl_program, but neither accepts filenames or file 

handles. Therefore, before calling one of the functions, we must read the content of the file into 

a buffer when the kernel code is contained in a file. However, there are some differences 

between the both functions, and the primary is the method of reading data. For the 

clCreateProgramWithSource(), it expects the buffers to hold text-based code, and all the 

arguments are given below. 

clCreateProgramWithSource (cl_context  context, 
cl_uint   src_num, 
const  char**  src_strings, 
const  size_t*  src_sizes, 
cl_int*   err_code) 

The function of clCreateProgramWithBinary() is similar with the previous, but it reads 

bytes from binary file rather than reading strings from text file. Then, all the arguments of itself 

are shown below. 

clCreateProgramWithBinary (cl_context    context, 
cl_uint    num_devices, 
const cl_device_id*  devices, 
const size_t*   bin_sizes, 
const unsigned char**  bins, 
cl_int*    bin_status, 
cl_int*    err_code)  

we need to note that in the third argument these devices must be contained within the 

cl_context which provided by the first argument. 

As for the second step to build a program, we would use the function like clBuildProgram(). 

Although there are different types of compiler for different vendors, one crucial common 

provision is that every compiler must be accessible through clBuilProgram(). So, this 

function is responsible for compiling and linking a cl_program for devices associated with 

the platform. The full arguments are represented bellow. 

clBuilProgram (cl_program   program, 
cl_uint    num_devices, 
const cl_device_id* devices, 
const char*  options, 
void (CL_CALLBACK*   notify_func) (…), 
void*   user_data) 
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Finally, by using the function of clGetProgramInfo() or clGetProgramBuildInfo() 

to access information related to program when it has created and compiled. The first function 

gives details about the program's data structures, including its context and target devices, so it’s 

similar with the preceding functions of clGetContextInfo() and clGetDeviceInfo(). 

The second function includes instructions on how to create a program, which is crucial because 

it's the only method to learn what occurred during the creation of the program. As a result, the 

first is easier to test the return value of clBuildProgram, however, if we want to find out the 

reason when it built fail, we need to call the second function, that is clGetProgramBuild-

Info(). 

2.4.2.5 Kernel  

As mentioned early, the kernel is a container of function, so this part is describing how to 

package the function in kernels. Each kernel can be represented by the data structure of 

cl_kernel, so, then the first thing is to create kernels by using the function clCreate-

Kernel() or  clCreateKernelsInProgram(). 

For the former function it’s to construct a single kernel, which requires the name known of 

function from which the kernel is to be create. So, the arguments what are contained in this 

function just like below. 

clCreateKernel (cl_program   program, 
const char*   kernel_name, 
cl_int*   error) 

If there are multiple kernels, we just need to duplicate the function of clCreateKernel(). 

However, it’s easier to using the latter function clCreateKernelsInProgram() to work 

on it, because it can produce a kernel for each function in the program. In this case, the entire 

arguments are represented below. 

clCreateKernelsInProgram (cl_program  program, 
cl_uint  num_kernels, 
cl_kernel*  kernels, 
cl_uint*  num_kernel_ret) 

where the new cl_kernels are placed in the kernels array, and the num_kernel_ret identifies 

the number of available kernels. Via invoking this function twice we can determine the capacity 

of memory has been allocated, and after that, put the kernels in memory. 
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The second step is obtaining the kernel information and just like the step of program, context, 

and device. Therefore we can utilize the function clGetKernelInfo() to get the information 

about which function it represents and which program it belongs to.  

2.4.2.6 Command queue 

As same as the briefly explained at the beginning, the command queue resembles a bridge 

between the host and device. In this case, we don’t need to identify a target device when we 

create a kernel, whereas within the procedure of creating command queue. That means when 

we dispatch kernels to the queue, they will be sent to the devices automatically according to the 

queues. Normally, besides the work mode of kernel execution which can dispatch the kernel to 

a command queue, there are also three modes for the data transmission between the host and 

devices, that is writing data from host to a device, reading data from a device to host, and 

copying data between devices. Among these data-transfer modes, only one direction can be 

realized at the same time, that means when the command moves from the host to device, the 

device couldn’t send any command to the host. 

According to the proceeding experience, we can easily derive the function of creating a 

command queue, which would start with the data structure clEnqueue, and that is representing 

the command queue. Therefore, there is the function called clCreateCommandQueue() 

which is only one way to create a new queue, the entire arguments are following below. 

clCreateCommandQueue (cl_context     context, 
cl_device_id    device, 
cl_command_queue_properties properties, 
scl_int*     error) 

Where the third arguments must be selected one enumerated type from the Table 2.5. 

Table 2.5 OpenCl command queue properties 

Parameter  Description  

CL_QUEUE_PROFILING_ENABLE Enables event profiling 

CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE Enables out-of-order execution of queue 

commands 

When the queue executes a command, the former argument lets us know that we might get 

timing events. The latter parameter relates to how the device handles queue items. Generally, 

command queues follow the First-In, First-Out (FIFO) principle by default, which means the 

first kernel to be executed will be the one that is displayed to a command queue. 
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Comparing with the above subsections, in the command queue part there is not the step of 

obtaining information, instead, the second step is generating the enqueues of kernel execution 

commands. So, the function called clEnqueueTask() is utilized which sends a kernel 

execution command to a device via a command queue. The entire arguments are following 

below. 

clEnqueueTask (cl_command_queue  queue, 
cl_kernel   kernel, 
cl_uint    num_events, 
const  cl_event* wait_list,s 
cl_event*   event) 

When we call this function, the device would carry out the kernel function while it processed 

the command, so we didn't need to invoke any additional routines to do so. In other word, the 

kernel execution command is sent to the command queue when we call this function. 

As for now, the primary six elements of host code have been introduced, and there are others 

elements are contained in the host codes, such as the memory allocating, buffer objects, others 

command queues (buffer reading and buffer writing), the resource allocated releasing (kernel, 

program, context, queue) and so forth, these will be explained with real codes in the later 

chapters, so here not deploys these so detail any more. Therefore, we can clearly find that is for 

constructing a serial of conditions about the data transmission in host code, and the goal is to 

communicate with the kernel code. Obviously, about the computing part is described in the 

kernel code.  

2.4.3 Kernel code   

During the host code, we can utilize the standard C libraries to construct it, the difference is 

that it would be associated with some special expressions of OpenCL in some cases. However, 

within the kernel code, there are more constrains than the host code when we program in the 

standard C language, particularly some data structures. For instance, the global variable must 

be a pointer, and the constant value can’t be defined within a function. Meanwhile, some 

difference concepts and structures are applied for this part, which are given below. 

⚫ Each kernel declaration must begin with the string __kernel 

⚫ Every kernel function must return void. 

⚫ Some platforms won’t allow kernel compilation without arguments or attributions. 
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⚫ It can enable some extensions such as channel, and so forth. 

2.4.3.1 Architecture of kernel cost 

Because the kernel machine will communicate with the host machine, it must comprise of 

reading data from and writing data to the host separately. Of course, the data processing or 

computing must be contained in here. So above three parts are the primary components in kernel 

code, and the detail of associating with this project would be discussed later. However, there 

are others crucial principles we would to have a basic understanding, that is extension concept 

such as the channel, the kernel attribution such as autorun, and the method of parallel program 

such as the pragma of unrolling. All of above will explain roughly here, because it will be 

explained more clearly when associating with the practice description. 

2.4.3.2 Extension of channel  

There are many extensions we can utilized for the OpenCL kernel code, such as some function 

about the math, geometric, image processing and so forth, we can reference the OpenCL 

extension specifications [31]. However, in the kernel code it has a normal format to invoke the 

extension what we want, that is 

#pragma OPENCL EXTENSION extension_name: behaviour  
#pragma OPENCL EXTENSION all: behaviour  

Obviously, the former is invoking a specified extension and the latter can invoke all the 

extensions together. Where the #pragma OPENCL EXTENSION directly controls the 

behaviour of the OpenCL compiler with respect to extensions, and the behaviour contains 

enable and disable. In general, the extension_name can be described as the 

cl_<vendor_name>_<name>. In this case, for this project, here we would use the extension of 

channel, which can be described as below.   

#pragma OPENCL EXTENSION cl_intel_channels: enable 

Where “intel” is indicating a vendor, “channel” is a specified extension. 

The basic concept of channel extension just likes that provides temporary memory or buffer for 

storing the data or information, so that kernel can read data from and write data to these 

temporary memories or buffers separately, and realized the data transmission between the 

kernels. In some cases, we need to process data through a serial of steps, and there will be 

several kernels to realize the computing part, therefore the extensional structure channel would 
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be a simple method to deal well with the communication between kernels. In a word, it can 

synchronize kernels and transmit data between them with great efficiency and low latency. 

2.4.3.3 Autorun attribution  

Similarly, there are a lot of attributions we can define from the correlative specifications of 

OpenCL kernel [31], and the structure can be represented as __attribution__((quali-

fier_name)). For this project, we would utilize the autorun attribution, so the command line 

can be described as __attribution__((autorun)), which will be in the position before 

the kernel function. 

The basic concept of autorun is that the kernel function will be launched before main() 

function beginning, this is an idea for realizing the parallel programming. In this case, within 

the function of kernel autorun, it will be used a while loop which has an infinite execution 

cycle.  

2.4.3.4 Unrolling pragma 

As mentioned at last section, In the autorun kernels, there will be a while loop. If there are 

some simple computing processes in while loop, such as addition, subtraction, multiplication, 

division and so forth, it doesn’t matter. But if it is about iteration such as for loop within the 

while loop in the autorun kernel, and we also want to make it parallel, then we maybe need to 

take a consider of the unrolling pragma, which is a crucial concept in the OpenCL kernel code. 

The command line can be represented as #pragma unroll, and in the position before the for 

loop. By the way, it’s worth to note that the unrolling pragma just for the for loop, can’t apply 

for while loop.  

On the other hand, loop unrolling entails duplicating a loop body and lowering a loop's number 

of trips. In other words, it can decrease or completely do away with the FPGA's loop control 

overhead. Additionally, if there are no loop-carried dependencies and the offline compiler is 

able to run loop iterations in parallel, it can also minimize latency [32]. 
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3 SIMULATION 

Relying on the above concepts and methods, this chapter will explain some simulations in 

MATLAB Simulink. Here we would separate two primary parts to illustrate the GFSK 

modulation and demodulation. 

3.1 GFSK modulation with Simulink  

About the GFSK modulation with Simulink, there are mainly six steps, which includes 

generating symbols in binary, transforming the symbols to the non-return zero, going through 

gaussian filter, multiplying argument, integrating, and finally acquiring the IQ basebands by 

invoking the waveform shaper of cosine and sine respectively. Therefore, the block flow with 

Simulink is represented in Figure 3.1. Comparing with the architecture of GFSK modulation in 

Figure 2.5, we notice here the up-sampling block is missing. Actually, this function has been 

comprised within the Gaussian filter processing. 

 

Figure 3.1 GFSK modulation in Simulink 

3.1.1 Bernoulli Binary Generator 

The first step is generating the symbols in binary, we can call the block Bernoulli Binary 

Generator in Simulink, which can generate random binary numbers using a Bernoulli 

distribution. The detail of parameter configurated is represented in Figure 3.2. Where the 

argument of sample time means how many symbols will be generated per second, here we want 

to graph it clearly so that setting this argument as 1/5, and it will generate 5 symbols per second, 

there will be 10 second shown in the analyser blocks, so total 50 symbols will be processing. 

The result is graphed in Figure 3.3, where one point refers one symbol. 
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Figure 3.2 Parameter configured of Bernoulli Binary Generator (Simulink) 

 

Figure 3.3 Output of Bernoulli Binary Generator (Simulink) 

3.1.2 Unipolar to Bipolar Converter 

This part is responsibility for transforming the symbols from binary to the sequence of NRZ, 

it’s easy understand and then we invoke the block called Unipolar to Bipolar Converter, 

which maps the unipolar input signal to bipolar output signal. The result is representing in 

Figure 3.4. 

 

Figure 3.4 Output of Unipolar to Bipolar Converter (Simulink) 
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3.1.3 Gaussian filter in Simulink 

How to construct a Gaussian Filter is a most crucial section in the GFSK modulation. In the 

Simulink, it has a readied block called GMSK Modulation Baseband, which can help us to 

get the baseband directly through setting several parameters, obviously, it is a shortcut to realize 

a communication system. However, for this project, one main objective is to understand how 

to construct a Gaussian Filter and others computing parts within the GFSK modulation, thus 

we turned down such shortcut temporarily. Because the Gaussian filter is one of low-pass filters, 

we can invoke a block called Finite Impulse Response (FIR) filter to build a low-pass filter. 

And then configure the parameters in FIR filter to realize a Gaussian filter, the detail is shown 

in the Figure 3.5.  

 

Figure 3.5 Parameter configured of FIR filter (Simulink) 

Where there are two primary parameters that we have to set well in order to realize the function 

of Gaussian Filter. The first one is coefficients, we need to invoke a function called 

gaussdesign(bt, span, sps) [36], this equals the initialization of Gaussian filter. Among 

the three parameters, bt is corresponding to the BTs which is the product of -3dB bandwidth and 

period as mentioned in equation (2-4). Besides, the parameter span indicates the number of 

symbols, and the sps refers to Sample per Symbol. Here the gaussdesign (0.5,1,28) 

means that BTs=0.5, and 1 symbol was sampled 28 times. The number 28 is also associating 

with the argument of Gaussian Length as mentioned in 2.2.1.4, then the result is corresponding 

the Figure 2.7. On the other hand, the parameter sample time refers the up-sampling procedure. 

Because there were generating 5 symbols per second that we’ve set in the generator, here we 
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need to multiply the number 5 within the denominator in addition. In these cases, we can obtain 

the result as Figure 3.6. We can see that points are increased, which implies it has been went 

through the up-sampling procedure successfully. 

 

Figure 3.6 Output of gaussian filter (Simulink) 

3.1.4 Argument Multiplying 

This step just processes a multiplication with a constant ((Gaussian Length / 5) × 𝜋), in order 

to calibrate the later I/Q waveform. The result is illustrated in Figure 3.7. 

 

Figure 3.7 Output of argument multiplying (Simulink) 

3.1.5 Integrator in Simulink 

Because the output of Gaussian filter refers to a frequency deviation, and the I/Q basebands are 

associating with the phase deviation. In this case, we need an Integrator to transform the signal 

from frequency deviation to the phase deviation, then the output is displayed in Figure 3.8. 

 

Figure 3.8 Output of integrator (Simulink) 
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3.1.6 I/Q Basebands in Simulink 

After we got the phase deviations from the integrator, the next is sending the signal to the 

waveform generator of cosine and sine, finally obtain the I/Q basebands. The waveforms are 

shown in Figure 3.9 and Figure 3.10 respectively. We can see the difference of both waveforms 

is 90-degrees phase, and that is the meaning of I/Q modulation as well. 

 

Figure 3.9 Waveform of In-phase baseband (Simulink) 

 

Figure 3.10 Waveform of Quadrature-phase baseband (Simulink) 

3.2 GFSK demodulation in Simulink 

I think we’ve almost understood the procedures of GFSK modulation, sequentially, the 

demodulation is converting the procedures of modulation in contrast. During Simulink, there 

are several blocks we can invoke and to realize the symbols recovering. The Figure 3.11 is 

associating with the GFSK demodulation with Simulink, where comprises of the algorithm of 

arctangent, the waveform unwrapping, derivative, coder and finally converting the symbols 

from bipolar to unipolar. 

 

Figure 3.11 GFSK demodulation in Simulink 

When we got the I/Q basebands from modulation, we need to utilize a trigonometric function 

to convert the signal from I/Q baseband to the phase deviation, that is arctangent, and the 
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corresponding block in Simulink is Atan2, therefore we can acquire the output as representing 

in Figure 3.12.  

 

Figure 3.12 Result of Arctangent (Simulink) 

Obviously, there is a limitation around [−𝜋,⁡𝜋], and resembles to cut the waveform when it 

reaches the boundary. In this case, we could eliminate the limitation by the block Unwrap, here 

we can see the results in Figure 3.13. 

 

Figure 3.13 Result of Unwarp (Simulink) 

We are definitely not strange with this waveform, because it almost same as the Figure 3.8 in 

previous subsection. Exactly, here the start and end points are difference with preceding, but 

the whole shape is almost same, perhaps the reason is due to a little delay and then appearing a 

little bit error, for now, it’s still acceptable.   

Sequentially, the next is to convert the phase deviation to the frequency deviation, here we can 

utilize the Discrete Derivative block, then Figure 3.14 illustrates the outcome. 

 

Figure 3.14 Result of discrete derivative (Simulink) 
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The beginning bit is error due to a little delay, consequently, the waveform is not looking very 

good. However, the rest shape is almost similar with Figure 3.7, so, we can use a quantizer to 

code the deviations, then the result is illustrated in Figure 3.15.  

 

Figure 3.15 Result of Coder (Simulink) 

Distinctly, it’s NRZ sequence, so the next is turning it to the format of binary through the block 

of Bipolar to Unipolar Converter. Thus, the Figure 3.16 is describing the consequence. 

 

Figure 3.16 Output of Bipolar to Unipolar converter (Simulink) 

Comparing with the Figure 3.3 which refers to original symbol sequence, the shape is almost 

recovered. But for now, the waveform still in the up-sampling scope. In this case, for recovering 

the symbol sequence totally, we also need to finish the last step called down sampling. It will 

be explained in the next chapter with OpenCL.   
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4 REALIZATION WITH OPENCL IN FPGA  

During the chapter 2, we’ve already explained the architecture and the basic elements for 

constructing an OpenCL frame. Where it is separated as two parts, host code and kernel code, 

and it mainly has six elements within host code, that is platform, device, context, program, 

kernel, command queue. Moreover, as well as there are memory object and releasing resource 

allocated etc., which are just briefly mentioned during the theorical chapter. In addition, within 

the kernel code, we’ve illustrated some characteristics and novel concepts we are not met in the 

standard C libraries. 

Along the objective, basing on the knowledge of OpenCL and GFSK, in this chapter we will 

explain the procedures of application from the theory of GFSK to the practice of OpenCL, and 

associate with the real codes for elaborating the architectures in host part and kernel part for 

this project. Besides, we will compile, execute and debug this program in the remote platform 

called Intel DevCloud, that would be interesting. 

4.1 Host Part 

As mentioned previously, the host code can program by C/C++, thus the suffix of file can be 

(.cpp), and the grammar or syntax of programming almost can inherit from the standard C/C++. 

Therefore, in general we need to invoke a serial of head files at the beginning. As showing 

below, there lists some head files what we need to associate with. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <iostream> 
#include <fstream> 
#include <string.h> 
#include "CL/opencl.h" 
#include "aocl_utils.h" 

Where the first six head files belong to standard C/C++ libraries, they have defined a lot of 

function prototypes and macros such as the description of input and output, file streaming, etc., 

so that compiler is able to understand what their parameters are, and the meaning of return 

values, computing actions, and so forth. The final two are associated with the OpenCL, which 

also indicate a number of functions and macros. But they are the specifying elements and 

interfaces of OpenCL, such as the basic combination about platform, device, etc., we can invoke 

these within the host code when we need. 
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The next we need to declare platform by cl_platform_id, define device by cl_device_id, 

and so forth, the total six basic elements and a status are described below. 

static cl_platform_id platform = NULL; 
static cl_device_id device = NULL; 
static cl_context context = NULL; 
static cl_program program = NULL; 
static cl_kernel in_kernel = NULL; 
static cl_kernel out_kernel = NULL; 
static cl_command_queue fpga_to_host_queue = NULL; 
static cl_command_queue host_to_fpga_queue = NULL; 
static cl_int status = 0; 

Where the specifier “static” indicates to declare a variable or parameter in global address, and 

we also can see that there define two different kernels and two different command queues 

separately. As the syntax said, these are associating with the kernel part, which can realize the 

communication between the host code and kernel code. Moreover, except the final one, all of 

these are given an initial value called NULL, which equals to zero actually, because it’s 

depended on the data structure.  

Then, we are going to create the six basic elements, which are contained in a function call bool 

init(). We’ve noticed that this function is declared by bool data structure, which means the 

return value would be in Boolean. Because during this function, we need to judge whether all 

the elements were created successfully, and then return a Boolean value indicates yes or no.  

For creating the structure of platform, we can describe it in OpenCL as showing below. 

cl_uint num_platforms; 
status = clGetPlatformIDs(1, &platform, &num_platforms); 
if (platform == NULL)  
{ 

printf("ERROR: Unable to find Intel(R) FPGA OpenCL platform.\n"); 
return false; 

} 

Where the syntax clGetPlatformIDs is corresponding with explained in the section 2.4.2.1. 

Besides, the subfunction “if” refers to make a condition to know whether this structure is 

created successfully, and return a Boolean value, that is why we declared the function init() 

in the data structure bool. As for the rest elements, the code architecture for creating 

themselves structure are similar with the platform, here will not display these one by one, but 

we still need to take a notice about the kernel and command queue which are going to be created 

two different structures for associating with the kernel part.  
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Moreover, because we created the structure of context, program, kernel and command queue, 

these will be allocated to buffers. And considering the finite resource in FPGA, another function 

about resource releasing that we need to create for these elements, that is void cleanup(). and 

the code lines are shown below. 

if(in_kernel)   clReleaseKernel(in_kernel); 
if(out_kernel)  clReleaseKernel(out_kernel); 
if(host_to_fpga_queue) clReleaseCommandQueue(host_to_fpga_queue); 
if(fpga_to_host_queue) clReleaseCommandQueue(fpga_to_host_queue);  
if(program)   clReleaseProgram(program); 
if(context)   clReleaseContext(context);  
if(input_buf)  clReleaseMemObject(input_buf); 
if(output_buf)  clReleaseMemObject(output_buf); 

Where the last two lines are about freeing the buffers of input and output, which can 

communicate data with kernel part. 

There are also some functions we need to create, for example, it can read data from and write 

data to an external file separately, which are able to be described by normal C code, thus here 

will not explain too much.  

 

Figure 4.1 The processing flow of main() function in host part 

Eventually, we turn to the main() function after finished the configuration of  initialization 

functions. During the main() function, the procedure is illustrated in Figure 4.1. 
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We can see that it’s beginning from the data capacity allocating, we can invoke a syntax called 

malloc to realize it. In addition, notice that it is necessary to allocate two different data address 

space, named input and output for storing data which preparing to send to and receive from 

kernel part respectively. The exact code is shown below. 

unsigned int *input = (unsigned int *)malloc(dat_size*sizeof(int)); 
unsigned int *output = (unsigned int *)malloc(dat_size_out*sizeof(int)); 

Where the dat_size and dat_size_out refer to the size of sending data and receiving data 

separately. 

After we finished the allocations of data space, the second step is loading the data what we want 

to send to kernel part. Here it accepts an approach that reading from a file, the prerequisite is 

that before the main() function we’ve declared the function of reading data from an external 

file. Then transferring the data to the data space named input, which allocated in the first step, 

and the code is shown below. 

for (int i =0; i < dat_size; ++i) 
{ 

Readfile(input_ch); 
input[i] = input_ch.read(); 

} 

The next step is allocating the buffer object which can involve any data type but not image. 

And this also need to create two different buffer objects by command clCreatBuffer(). The 

code is represented below. 

input_buf = clCreateBuffer(context, CL_MEM_READ_ONLY, dat_size *size- 
of(unsigned int), NULL, &status); 

output_buf = clCreateBuffer(context, CL_MEM_WRITE_ONLY, dat_size_out * size- 
of(unsigned int), NULL, &status); 

Obviously, the difference of argument setting is only the second parameter, the input_buf is 

specified to read only, and the output_buf is in contrast. 

When we finish the buffer object created, some events and enqueues would be created for 

executing, communicating with kernel part. So, there are the events called write_event, 

finish_event, in_kernel_event, and out_kernel_event. Where the finish_event 

will judge when the kernel part starting and finishing. Then, to create an enqueue for writing 

data to buffer object and the code is displayed below. 

status = clEnqueueWriteBuffer(host_to_fpga_queue, input_buf, CL_FALSE, 0,  
dat_size * sizeof(unsigned int), input, 0, NULL, &write_event); 

if(status!=CL_SUCCESS) printf("Failed to transfer input\n"); 
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we can see that arguments are associating with command queue of from host to fpga, and the 

input_buffer object, data size, data space, and the write_event, which have been defined before. 

And then judge whether make it enqueue successfully through setting a condition by “if”. 

Now the data will turn to the kernel part. At the beginning, here we call a function named 

clWaitForEvents() to interpret the work of kernel part is starting, we need to wait it 

accomplished. Therefore, the finish_event is invoked for this function as shown below.  

clWaitForEvents(0, &finish_event); 

Where the argument 0 indicates the event of kernel part is starting. 

However, we don’t know which kernel of kernel part will receive the data from host or write 

result to host, so we need to set some arguments for kernels in host part to recognize the 

corresponding kernels of kernel part. In this case, the function clSetKernlArg() is invoked 

here. Moreover, we need to configure the data size and buffers in input kernel and output kernel 

respectively, so there are 4 command lines for these, which are shown as below. 

status = clSetKernelArg(in_kernel, argi++, sizeof(cl_mem), &input_buf); 
status = clSetKernelArg(in_kernel, argi++, sizeof(cl_int), (void *)  

&dat_size) 
status = clSetKernelArg(out_kernel, argi++, sizeof(cl_mem), &output_buf); 
status = clSetKernelArg(out_kernel, argi++, sizeof(cl_int), (void *) 
            &dat_size_out); 

where the in_kernel and out_kernel are separately corresponding to the kernels in kernel 

part for receiving data from host and writing data to host, that is we need to declare both during 

the host part. 

Once we know which kernels in kernel part are docking with the kernels of host part, then the 

host part can arrange the tasks for kernel part, and the function clEnqueueTask() would be 

invoked. The code lines are represented just like below. 

status = clEnqueueTask(host_to_fpga_queue, in_kernel, 1, &write_event,  
&in_kernel_event);  

status = clEnqueueTask(fpga_to_host_queue, out_kernel, 0, NULL,  
&out_kernel_event); 

where there are also two parts according to the command queue. The former indicates the 

specified kernel of kernel part receives the data from the kernel of host part, and the latter refers 

to write. 

While the kernel part finishes computing, and then returns the consequence to the host part, the 

data will be stored in the buffer called out_buf in host part.  Therefore, if we want to display 
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it, we need to transfer the data from buffer to the data space, that is why we called the function 

named clEnqueueReadBuffer(), which creates an enqueue for reading data from a buffer. 

The correlative code is represented as below. 

status = clEnqueueReadBuffer(fpga_to_host_queue, output_buf, CL_FALSE, 0,  
dat_size_out*sizeof(unsigned int), output, 1, &out_kernel_event,  

&finish_event); 

Obviously, it’s in contrast with the enqueue called clEnqueueWriteBuffer(). And then we 

enable the event called finish_event to indicate that the waiting event is terminal, the code 

as showing below. 

clWaitForEvents(1, &finish_event); 

Ultimately, we call a for loop to display the result from kernel part, and then release all of events 

and resources. 

4.2 Kernel Part 

As explained in the last section, while the data has been sent to the input buffer object in host 

part, the corresponding kernel in kernel part will read the data from host, then, the work of 

kernel part is beginning, until returning the results to the host by a specific kernel. Besides, 

through the analysis before, the host part mainly was constructed a serial of conditions for 

communicating with kernel part, as for the data computing and processing, they are almost 

within kernel part. Therefore, the GFSK modulation and demodulation will be realized in kernel 

part, and here will explain how to construct them via associating with relevant theories and 

simulation.  

Firstly, for this project, the procedure of GFSK modulation and demodulation is illustrated in 

Figure 4.2. Clearly, there are mainly 4 parts within this processing flow, which comprises of 

the host, global memory, processing units, and channels extension. Where the host refers to the 

host part, the rest belong to kernel part. Moreover, during the processing units, it’s both 

containing the modulation and demodulation, because here we want to verify the feasibility and 

validity of algorithms and concepts, and shrink the time cost by the way. In addition, notice that 

only the processing units of Symbols and Output can communicate with the host, obviously, 

they are docking with the kernels of host part, and corresponding to the in_kernel and 

out_kernel as mention in the last section.  
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Figure 4.2 Processing Flow of GFSK Modulation and Demodulation in Kernel Part 

Now, let’s turning to the construction of kernel code. For this project, the basic architecture in 

program as showing below. 

attribute__((max_global_work_dim(0))) 
kernel void Symbols (__global memory) 
{ 

for () {Read data from host machine and write to the channel} 
} 
 
attribute__((max_global_work_dim(0))) 
attribute__((autorun)) 
kernel void BinaryNoneZero() 
{ 

while() {  Read data from the last channel. 
Computing, which almost similar to C/C++.  
Write data to the next channel. } 

} 
… 
… 
attribute__((max_global_work_dim(0))) 
kernel void Output (__global memory) 
{ 

for () {read data from the last channel and write to the host machine} 
} 

For the first kernel and the final kernel, they are both invoking the for loop. The former one is 

for reading data from global memory and writing to a new channel, the latter one is for reading 

data from the last channel and writing to the global memory.  
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Except the above two kernels, the others are invoking the while loop, which has an infinite 

feature. The difference is that these kernels are specifically declared an autorun attribution, 

which means they don’t need to receive the orders from host machine and then are able to 

process data automatically. In other word, they can be initialized before executing the main() 

function in host part, so that realized the concept of parallel programming. Additionally, they 

transfer the data through the channels, which is an extension of OpenCL, and the invoking 

method has already represented before. 

Besides, all of the kernels are given an attribution called max_global_work_dim(0). On the 

one hand, it can instruct the compiler to ignore logic which generates and dispatches global, 

local, and group IDs into the compiled kernel [32]. On the other hand, it’s because we have 

invoked the autorun attribution, we have to call it as well. 

During simulation by Simulink, we’ve almost realized a whole modulation and demodulation, 

and there are many modules what we can call for the design in simulation, even if we need to 

configure some parameters within the blocks. However, that is not our primary purpose in this 

project, we aim to understand the algorithms each block, and realize them via a serial of 

computing processes with OpenCL. Therefore, here we dedicate to the construction of 

algorithms in Kernel Part. So far, we have already had a clearly conception about a whole 

structure of kernel part, in this case, the next we will separate two subsections to respectively 

illustrate the GFSK modulation and demodulation in OpenCL, especially the realization of 

Gaussian filter. 

4.2.1 GFSK modulation in OpenCL 

At the beginning, we need to call the pragma of channels, and declare a lot of corresponding 

channels [37], a part of code is illustrated as below. 

#pragma OPENCL EXTENSION cl_intel_channels : enable 
channel int Source_ch; 
channel float Gaussian_ch; 

Here, the first line indicates enabling the channel extension, then the last two lines declare the 

corresponding channels for storing data temporally, they have different data structure that 

depend on the type of transferring data. Similarly, the rest channels are declared by following 

these formats. 
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After finished the declaration of channels, we can call these channels within kernels. According 

to the architecture of kernel part, firstly, it should read data from host part, then write to channel. 

The relevant code is given by below. 

attribute__((max_global_work_dim(0))) 
kernel void Symbols(__global unsigned int* inputdata, unsigned int dat_size) 
{ 

for (int i=0; i < dat_size; i++) 
write_channel_intel(Source_ch, inputdata[i]); 

} 

We can see that it defines a pointer in global type, that means the kernel will read data from a 

global memory through a pointer. Following the declaration in the host part before, the host 

will send data to the global memory of kernel part, thus here the kernel can read data from 

global memory directly as long as configured the correlative arguments. Then, during the kernel 

function, it calls a for loop and writes data to the first channel. By the way, the Symbols 

kernel is corresponding to the block of Symbols in Theories chapter, the block of Bernoulli 

Binary Generator in Simulink, and the kernel named in_kernel in host part. Successively, 

it is going to experience a number of autorunning kernels, which are emphases for this section. 

Be associated with the preceding basic architecture of program, we need to configure the 

attribution of autorun and (max_global_work_dim(0)) for each kernels during the processes of 

autorunning, besides, call while loop as well. Therefore, for the first autorunning kernel named 

BinaryNoneZero, is correspond to the block of Binary None Zero (BNZ) in Theories chapter, 

and the block of Unipolar to Bipolar Converter in Simulink. Clearly, the function is to 

transform the symbol type from binary to NRZ, the code within while loop is illustrated below. 

int v = read_channel_intel(Source_ch); 
if (v == 0)  v = -1; 
write_channel_intel(BinaryNoneZero_ch, v); 

It’s easily understood. First line depicts to define a variable (actually it refers to an array) which 

reading data from the first channel. Then the second line indicates to process the variable, that 

is setting a condition by invoking “if” syntax, to transform the symbols from “0” to “-1”. The 

final line depicts to write the result to a new channel. 

According to the Figure 2.5, the next is up sampling, so, the code in the while loop of the 

kernel Upsample is shown below. 

int v = read_channel_intel(BinaryNoneZero_ch); 
for (int i=0; i<13; i++) 

write_channel_intel(Upsample_ch, v); 
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Similarly, the first thing is declaring a variable which reading data from the last channel. 

However, here is some differences, for the for loop, it doesn’t call the pragma unrolling, and 

arrange the behaviour of writing data to channel within here. The reason is because we need to 

interpolate the symbols basing on the original data structure, that is duplicating 13 times for 

each symbol, and then write to channel by the way. 

Eventually, we are going to the most crucial part during a whole GFSK modulation and 

demodulation, that is construction of Gaussian filter. The relevant algorithms and processes are 

explained explicitly during the equations from (2-3) to (2-11), hence we can associate with 

these equations to build a Gaussian filter in OpenCL. There are two steps, the first is initializing 

a gaussian filter, the second is done the convolution according to the initial values of Gaussian 

and the input value. Incidentally, the initialization of gaussian filter must be prior to the while 

loop invoked, because we just need to execute it once. Then, let’s check the code of Gaussian 

initialization as below. 

1 float gaussian_values[GAUSSIAN_LEN]; 
2 float hmax = 1.5E6; 
3 float ts = 1E-6; 
4 float OSR = 8; 
5 float acum = 0; 
6 for (int i=0; i < GAUSSIAN_LEN; i++) 
7 { 
8   int k = i - GAUSSIAN_LEN/2; 
9  float v = (hmax*ts*k/OSR); 
10  gaussian_values[i]=  exp(-(v*v)); 
11     acum += gaussian_values[i]; 
12 } 
13 for ( int i=0; i < GAUSSIAN_LEN; i++)  
14  gaussian_values[i] = gaussian_values[i] / acum;  
15 float samples[GAUSSIAN_LEN]; 

To the beginning, it defines an array space for gaussian value at the first line, and the length is 

associating with the the number of sampling per symbol, which corresponding to the parameter 

sps in FIR filter of Simulink, and here is equal to 28 as well. And then the lines between 2nd 

and 4th are declaring the values of hmax, Ts, OSR, which are according to the description part 

that locating after the equation (2-9), in conclusion, these parameters are suitable for Bluetooth. 

Sequentially, it calls for loop twice. During the first loop, a half of gaussian length is a 

reference value, in order to obtain the discrete sequence k. In this case, this structure will be 

symmetrical about Y orientation in the coordinate system. Then according to the equation (2-8), 

substituting the values of hmax, Ts, OSR to this equation and acquiring the array of initial 
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gaussian values, as illustrating within the 8th to 10th line, and the structure resembles the Figure 

2.7. Finally, the 11th line in the first for loop indicates to accumulate all the values, which is 

for the computing in the second for loop. Therefore, within the second for loop, we need to 

divide each initial gaussian value by the result of accumulation, and that’s the consequence of 

gaussian initialization what we want. The last line declares an array named samples for storing 

the data which reading from channel. Then we turn to the computing part in the while loop, 

as showing below. 

#pragma unroll 
for (int i=0; i < GAUSSIAN_LEN-1; i++) 

samples[i] = samples[i+1]; 
samples[GAUSSIAN_LEN-1] = (float) read_channel_intel(Upsample_ch); 
 
float acum_ga = 0; 
#pragma unroll  
for (int i=0; i< GAUSSIAN_LEN; i++) 

acum_ga += samples[i] * gaussian_values[i];  
 
write_channel_intel(Gaussian_ch, acum_ga); 

Here it calls the for loop twice as well, but the deference is they need to invoke the pragma 

unrolling, because they are both in while loop. Besides, different with previous behaviour of 

reading data from the last channel, it needs to shift one bit to left firstly by a for loop, because 

the data type needs to show as an array. For the second for loop, that is the convolution 

computing step, according to the equation (2-11) we can realize it in here. Finally, to write the 

results to a new channel.  

As so far, we’ve finished the construction of Gaussian filter and output the result to the channel. 

And then the rest computing units in modulation is along to the architecture of autorun kernel. 

Hence, the computing segment codes are depicted respectively as below. 

Multiple Kernel:   float v = read_channel_intel(Gaussian_ch); 
float cv = v*(GAUSSIAN_LEN/5)*pi; 
write_channel_intel(Multiple_ch, cv); 

Integrator Kernel: cv +=  read_channel_intel(Multiple_ch);  
write_channel_intel(Integral_I_ch, cv/(GAUSSIAN_LEN-1)); 
write_channel_intel(Integral_Q_ch, cv/(GAUSSIAN_LEN-1)); 

I_Baseband Kernel: float v = read_channel_intel(Integral_I_ch); 
float c_i = cos(v);  
write_channel_intel(I_Baseband_ch, c_i); 

Q_Baseband Kernel: float v = read_channel_intel(Integral_Q_ch); 
float c_q = sin(v); 
write_channel_intel(Q_Baseband_ch, c_q); 
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Notice that when we finished the integral processing, we need to send the same result to 

difference channels so that the kernels of I_Baseband and Q_Baseband can separately read 

it successfully. Otherwise it will report an error by compiler, that it’s not allowed to read data 

from a same channel by different kernels. 

4.2.2 GFSK demodulation in OpenCL 

As for the kernel part of GFSK demodulation, it is similar to the modulation. Now we are going 

to follow the sequential steps according to the Figure 2.11 and Figure 4.2, hence there are 

Arctangent kernel, Unwrap kernel, Derivative kernel, Coder kernel, DownSamples 

kernel and Output kernel here. Therefore, according to the architecture of autorunning kernel 

and the algorithm of arctangent, the computing part in while loop of Arctangent kernel is 

shown in below. 

float v1 = read_channel_intel(I_Baseband_ch); 
float v2 = read_channel_intel(Q_Baseband_ch); 
float cv = atan(v2/v1); 
write_channel_intel(Arctangent_ch, cv); 

we can see that here can read data from different channels separately within a kernel, but 

different kernels cannot read from a same channel. 

Then the Unwrap kernel will deal with data in array mode, so it need a similar structure which 

in the Gaussian filter kernel, for reading data from channel. In this case, the code in the while 

loop is shown below. 

1 #pragma unroll 
2 for (int i=0; i < GAUSSIAN_LEN-1; i++) 
3  samples[i] = samples[i+1];  
4 samples[GAUSSIAN_LEN-1] = read_channel_intel(Arctangent_ch); 
5 float acum = 0; 
6 #pragma unroll 
7 for (int i=0; i< GAUSSIAN_LEN; i++) 
8 { 
9  if (((samples[i] - samples[i-1])<pi/2) && ((samples[i] –  

samples[i-1])>-pi/2)) 
10   acum = samples[i]; 
11 
12  for (int j=1; j< GAUSSIAN_LEN; j++) 
13  { 
14    if (((samples[i] - samples[i-1]) <-(2*j-1)*pi/2) &&  

((samples[i] – samples[i-1]) >-(2*j+1)*pi/2)) 
15   { 
16    samples[i] += j*pi; 
17    acum = samples[i]; 
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18   } 
19   else if (((samples[i] - samples[i-1]) >(2*j-1)*pi/2) &&  

((samples[i] - samples[i-1]) <(2*j+1)*pi/2)) 
20   { 
21    samples[i] -= j*pi; 
22    acum = samples[i]; 
23   } 
24  } 
25 } 

The crucial part is second for loop, which are the processing of unwrapping, the basic concept 

is divided two parts. The first is that it doesn’t need to do the processing of unwrapping before 

the first time of reached limitation. And the second step is starting to unwrap when the data 

over the first limitations due to the function arctangent. During the third for loop, there are two 

conditions to solve the wrapping data. The first is for the process when data more than 0, and 

the second is for the data less than 0. As showing in Figure 3.11, the split point is 𝜋 and −𝜋 in 

Simulink, however, during OpenCL, the result is limited between [−
𝜋

2
,
𝜋

2
], so, the⁡±(2𝑗 −

1)𝜋/2 and ±(2𝑗 + 1)𝜋/2 are selected.  

In the same way, the Derivative kernel will process data in array type, and according to the 

equation (2-17) we can write the code within while loop as showing below.  

#pragma unroll 
for (int i=0; i < GAUSSIAN_LEN-1; i++) 

samples[i] = samples[i+1]; 
samples[GAUSSIAN_LEN-1] = read_channel_intel(Unwrap_ch); 
float acum = 0; 
#pragma unroll 
for (int i=0; i<GAUSSIAN_LEN; i++) 

acum=samples[i]-samples[i-1]; 
write_channel_intel(Derivative_ch, acum); 

By the way, the bold part is about the computing process. 

Regarding with the Coder kernel and Down-sampling kernel, because they are processing 

the data in a variable type, then they call the normal method of reading data from channel, and 

the segment code of them are respectively represented below. 

Coder kernel: float v = read_channel_intel(Derivative_ch); 
unsigned int acum=0; 
if (v>0) acum=1; 
if (v<0) acum=0; 
write_channel_intel(Coder_ch, acum); 

Down-sampling kernel： unsigned int v = read_channel_intel(Coder_ch); 
for (int i=7; i< 1; i+=13) 

     write_channel_intel(dsam_ch, v); 
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similarly, the computing pieces are in bold separately. 

Finally, the last kernel is named Output kernel, which is responsible for writing the final result 

of kernel part to the global memory, so that the host can read this data directly. And the code is 

shown below. 

attribute__((max_global_work_dim(0)))  
kernel void Output(__global unsigned int* outputdata, unsigned int dat_size) 
{ 

for (int i=0; i<dat_size; i++) 
outputdata[i] = read_channel_intel(dsam_ch);  

} 

4.3 Compiling, Executing and Debugging with FPGA in 

Intel DevCloud Plaform  

Because the program of OpenCL can be built with C/C++, we can compile and execute this file 

by the gcc/g++ tool in a program environment. Moreover, for more convenient during 

debugging, I built a compiling file called MakeFile. It can compile the main(.cpp) file with a 

single word “make” in the host part, instead of a normal method. About the kernel part, there 

are a serial of exclusive usages for operating. Especially, for compiling, we can call the usage 

“aoc <file_name.cl>” [39], where the file suffix (.cl) means this file is OpenCL kernel 

code.  

 

Figure 4.3 The constructures of host part and kernel part before and after compiled 

As a whole, the architecture of total files in host part and kernel part are shown the Figure 4.3 

(1). Where it divides two folders named cpu and fpga and they are corresponding to the host 

part and kernel part respectively. During the directory cpu, it comprises of main (.cpp) file, 
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compiling files or making file, the data source file, a number of head files, and some (.cpp) files 

for corresponding to the head files. On the other hand, within the fpga folder, it only contains a 

(.cl) file for kernel code. 

4.3.1 Compiling and executing the codes 

Therefore, basing on the knowledge in the section of 2.3.4 about the environment configuration 

within Intel DevCloud, we create a new folder called BLE in this remote platform, and then 

paste the folders cpu and fpga to there from the folder BLE in local directory. After that, we 

need to access some scripts to login the compute node for compiling and executing the relevant 

programs, the detail is explained in Table 4.1. 

Table 4.1 Some usages for programs compiling and executing in Devcloud 

Step Detail 

1 
ssh devcloud 
   Login to the platform of Intel DevCloud  

2 
source /data/intel_fpga/devcloudLoginToolSetup.sh 
   Source the script of FPGA 

3 
devcloud_login or devcloud_login -I <device_name> 
   Select a FPGA device 

4 
source /data/intel_fpga/devcloudLoginToolSetup.sh 
   Source the script of FPGA again 

5 
tools_setup 
   Select a corresponding tools and setup. 

6 
aoc <file_name>.cl 
   Compile the specified OpenCL kernel file (.cl). 

7 
make 
   Compile the specified host main file (.cpp) and generate an execution file. 

8 
./<execution_file> 
   Execute the execution file. 

9 
qstatus 
   Check the status of current computing node or job 

10 
qdel <job_name> 
   Halt a specified computing node or job  

11 
aocl diagnose 
   Query a list of installed devices on our machine 

12 
aocl program <device_name> <kernel_file_name.aocx> 
   Program an FPGA device offline or without a host 

Where the steps from the 1st to the 8th are the normal verifying procedure for the program project 

of OpenCL in Devcloud. Noticed that we have to source the script of FPGA for twice, the 2nd 

and 3rd step are for selecting an FPGA, which is shown in Figure 4.4 (1), and the console of 

terminal will enter a compute node of FPGA. Then the 4th and 5th step are the way to speed up 

user engagement when they want to source the environment variable settings for a tool and 

when they are interactively logged into a compute node [35]. Besides, the selection must be 
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corresponded with the FPGA what we’ve selected in the last step, which is shown in Figure 4.4 

(2). Obviously, we made the option of FPGA called Stratix 10 in DevCloud. In contrast to Arria 

10, which balances performance with low power requirements, it focuses on high performance 

solutions. Successively, the 6th step is executed in the directory of fpga, then generated several 

files and a folder named ble, which are shown in Figure 4.3 (3). Within the folder ble, we can 

find a lot of compiled reports, especially the synthesis result of this OpenCL design, which is 

shown in Figure 4.5. Regarding with this flow, firstly it tells us the synthesis was done 

successfully. Then it reveals some information about the device, Adaptive Logic Modules 

(ALMs) , Registers, DSPs, and Memories which have been used by this design, and these 

messages can also reflect the data-processing capability of FPGA. And the 7th and 8th step are 

executed within the folder of cpu, then all the output documents are illustrated in Figure 4.3 (2). 

Moreover, the rest of steps are the auxiliary usages for the platform-environment debugging. 

 

Figure 4.4 Configuration of FPGA environment in DevCloud 

 

Figure 4.5 Synthesis result of OpenCL design  
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Figure 4.6 Result of execution with down sampling in kernel part 

Finally, after went through the 8th step in Table 4.1, we can check the results in Figure 4.6 (1). 

Where the Input data refers to the result of Symbols kernel, and comparing with the random 

source data, which is given in the Figure 4.6 (2), this sequence has shifted 1 bit to left in a whole. 

Besides, the Output data corresponds to Output kernel, which is transferring the final 

processed result from the Down-sampling kernel. We can see that the input and output are 

totally different, this result is not our expected, in this case, we turn to debug the codes. 

4.3.2 Debugging the codes 

In order to show where problem is locating, we specified the original symbols as same as the 

sequences that shown in Figure 3.3, and then go through the compiling and executing. Therefore, 

we got the outputs of each computing kernel, and then display them in graph through Python 

programming. Moreover, we compare these graphic outputs with the waveforms what we’ve 

got in the chapter 3, and the results of comparison are shown in Table 4.2.  
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Table 4.2 The result of comparison between Simulink and OpenCL  

Simulink OpenCL 

  

Bernoulli Binary Generator block (left), Symbols kernel (right) 

  

Unipolar to Bipolar Converter block (left), BinaryNoneZero kernel (right) 

- 

 

- (left), UpSample kernel (right) 

  

FIR Filter block (left), Gaussian kernel (right) 
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Argument Multiplying block (left), Multiplication kernel (right) 

  

Integrator block (left), Integrator kernel (right) 

  

Cosin block (left), I_Baseband kernel (right) 

  

Sine block (left), Q_Baseband kernel (right) 
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Atan2 block (left), Arctangent kernel (right) 

  

Unwrap block (left), Unwrap kernel (right) 

  

Discrete Derivative block (left), Derivative kernel (right) 

 

- 

Coder block (left), - (right) 
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Bipolar to Unipolar Converter block (left), Coder kernel (right) 

 

Figure 4.7 The result of down-sampling process in Host part 

From these results, except the down-sampling process not appeared in the Simulink, the rest 

are almost same. In this case, we found the problem is in the processing of Down-sampling 

kernel, it does not work through this algorithm. Finally, we removed the Down-sampling 

kernel in kernel part, and configured it within the host part. The position is locating at the second 

for loop which is reading data from kernel part within main() function, the detail is illustrated 

in the Appendix 1 Host Code, where just modified the condition i = 0 to i =7, and i++ to i+=13 

in the for loop, and the result as showing Figure 4.7 (1). Besides, associating with the Figure 

4.7 (2), we can see that the output data are same as the source data. 

Furthermore, take considering into the synchronization of signal transmission in a real situation, 

we need to create a function to recognize the preamble code as well, for Bluetooth, it has 
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explained in the Table 2.2. According to preamble format of adverting channel, the code of the 

computing unit in kernel preamble is shown below.  

if ((samples[i] ==1 && samples[i+25] ==1 && samples[i+51] ==1 && samples[i+77]  
==1 && samples[i+103] ==1 ) && (samples[i+12] ==0 && samples[i+38] ==0 &&  

samples[i+64] ==0 && samples[i+90] ==0 )) 
{ 

for (int j=0; j<GAUSSIAN_LEN*13*5; j++) 
acum=samples[j]; 

} 

 

Figure 4.8 The final result of adding preamble kernel 

Where we set a condition by if syntax to recognize the preamble sequence. Finally, after 

compiled and executed, the result is represented in Figure 4.8. We can see that the symbols 

have been eliminated before the preamble symbols, and even itself, which within the blue 

rectangle in this Figure. So, there is still a little not perfect, but except it, the all of functions in 

GFSK modulation and demodulation are almost realized. And finally, the whole kernel code 

we can check in Appendix 2 Kernel Code. 

4.4 Verification with real BLE data stream 

After finished the DSP design with OpenCL, the next we would verify it with the real BLE data 

stream. The first we need to capture some BLE data stream from air through the SDR device, 

so we build a capturing system to get this. And the architecture of this system should consist of 

the transmitter, receiver, and the data capturing tool, which are corresponding to the (3), (1), (2) 

respectively in Figure 4.8. We can see that here adopted the Beacon transmission method, 



4 Realization with OpenCL in FPGA 

- 63 - 

 

exactly it is Eddystone-UID, and the packet format can see [39], obviously, we need to capture 

some BLE signal packets through the advertising channel. Regarding the PlutoSDR, it has 

transmitting and receiving channel, here we just utilize the latter one. As for the tool gnuradio-

companion, remember the sample rate should be 13 MHz, because the GFSK modulated output 

is still in the up-sampling scope. 

 

Figure 4.9 The system structure of BLE data packet capturing 

When accomplished the configuration of the capturing system, we can get some data stream 

from the air, then we unpack one of data stream via a tool called Jupyter Notebook, which based 

on the python kernel, and illustrated the result in Figure 4.10. We can see that there is a regular 

segment, and marked some column lines as the number 1 to 10 in this segment, because they 

perhaps are the available packet what we exactly want.  

 

Figure 4.10 The stream of BLE data 



4.4 Verification with real BLE data stream 

- 64 - 

 

 

Figure 4.11 The Parts about the Preamble and Access address of BLE packet 

Obviously, the signal segment before the number 1 might be the noise by the interference, in 

this case, we unpacked the packets of number 2, 3, 4, 5 from the whole data stream separately, 

then roughly located on the part of preamble and access address, the result we can see the Figure 

4.11, where include the waveforms of I/Q and before the down sample. In the other word, we 

can preliminarily sure they are I/Q waveforms that is because we have had a clear perception 

about the GFSK modulation result from the subsection 4.3.2. On the other hand, these real data 

waveforms also can proof that they are almost correct about the GFSK modulation part of our 

theories, simulations and OpenCL programs. Then we made these packets go through the 

processes of demodulation with OpenCL in FPGA platform of Intel DevCloud, and they are 

same as the format in Figure 4.11. Hence we are sure in deep that these are the regular data 

stream instead of noise.  

 

Figure 4.12 After down sample 

To judge a packet if it exactly belongs to BLE, the importan thing is we need to check the 

preamble and access address at the beginning of a data packet, so we pick up one of them to 

finish the down sampling process. From the Figure 4.12, the sequence is ‘000101010101101011 

01111101100100010111000111111010’, then we can easily to located the preamble according 
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to the Table 2.2. Regarding with the access address for advertising mode, it has a fixed pattern 

as ‘0x8E89BED6’ in hexadecimal, or ‘1000 1110 1000 1001 1011 1110 1101 0110’ in binary. 

But during the sequence which finished the down-sampling process, we didn’t yet find any 

corresponding structure of access address. Finally, we found the problem [41] is we need one 

more process to deal with the structure of access address which based on the normal format, 

that is flipping over the sequence from left to right, we can work the processes as below in the 

Matlab.   

>> dec2bin(hex2dec('8E89BED6'),32) 
ans = 

'10001110100010011011111011010110' 
>> fliplr(dec2bin(hex2dec('8E89BED6'),32)) 

ans = 
'01101011011111011001000101110001' 

Clearly, we can find the structure ‘01101011011111011001000101110001’ is existing in the 

sequence we captured, that is the access address of BLE packet. So, in the sequence what we’ve 

got in Figure 4.13, the preamble is referring to the ‘Sequence1’, and the access address is 

corresponding to ‘Sequence2’. Moreover, it also corresponds the relationship between the 

preamble and access address which shown in Table 2.2. 

 

Figure 4.13 Captured sequence 

Eventually, through unpacked and analyzed the data stream, we could definitely sure they are 

the available signals which transmission via the BLE. Meanwhile, put these data packet to go 

through our programs of OpenCL in FPGA platform of Intel DevCloud, it also worked out the 

same results after the modulation and demodulation. 
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CONCLUSION 

From this project, we have an integral understanding about the BLE PHY, FPGA and OpenCL, 

we were adopting the methods which more efficiency, high productive, High-Performance 

Computing (HPC) and powerful portability in the development of digital signal processing. 

And these characteristics are the developing trends of communication system for now and 

afterward. Especially, the concept of parallel programming has shown an excellent capability 

for the data processing. As the complexity increasing rapidly of data computing unit, it can be 

a crucial factor for computing processing to improve the computing performance nowadays, 

and it’s more accommodative for the communicating technology development in the future. 

For the program verifying and debugging, to compare with the traditional design method, the 

remote platform is becoming an alternative option for the developers of FPGA programming, 

because it’s more economic and convenient. However, we have noticed that it will take a long 

time to compile the OpenCL kernel code by DevCloud, and for this project, it costs around two 

hours normally. Admittedly, it’s a drawback of OpenCL and DevCloud. Nevertheless, 

comparing with the above advantages, these shortages look like small and they are acceptable 

for a whole design as well, it’s no doubt they have a state-of-the-art attribution of technologic 

and concept. 

Besides, according to the final verification, we could also sure the program of OpenCL about 

the GFSK modulation and demodulation for BLE signal transmission can be realized in FPGA 

platform of Intel DevCloud, and these processes are exactly the functions of BLE PHY. In a 

word, we have done the primary objective of this project. Even if there are some insufficiencies 

what we need to perfect, such as the preamble detecting, and moreover, maybe we also need to 

verify these in real FPGA platform instead of the remote method, so, the last but not the least, 

the work is still going on.    
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APPENDIX 1 HOST CODE 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <iostream> 
#include <fstream> 
#include "CL/opencl.h" 
#include <string.h> 
#include "aocl_utils.h" 
 
static const char* kernel_name = "ble"; 
using namespace std; 
using namespace aocl_utils; 
 
static cl_platform_id platform = NULL; 
static cl_device_id device = NULL; 
static cl_context context = NULL; 
static cl_program program = NULL; 
static cl_kernel in_kernel = NULL; 
static cl_kernel out_kernel = NULL; 
static cl_command_queue fpga_to_host_queue = NULL; 
static cl_command_queue host_to_fpga_queue = NULL; 
static cl_int status = 0; 
 
cl_mem input_buf; 
cl_mem output_buf; 
 
int data_size = 0;  
 
bool init()  
{ 
 if(!setCwdToExeDir()) { 
  printf("init error\n"); 
  return false; 
    } 
   
 cl_uint num_platforms; 
 // Get the OpenCL platform. 
 status = clGetPlatformIDs(1, &platform, &num_platforms); 
 if(platform == NULL) { 
  printf("ERROR: Unable to find Intel(R) FPGA OpenCL platform.\n"); 
      return false; 
 } 
 
 // Query the available OpenCL devices. 
 cl_uint num_devices; 
    
 status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 1, &device,  

&num_devices); 
 if(status != CL_SUCCESS) { 
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  printf("Failed clGetDeviceIDs.\n"); 
  return false; 
 } 
 
 // Create the context. 
 context = clCreateContext(NULL, 1, &device, NULL, NULL, &status); 
 if(status != CL_SUCCESS) printf("Failed to create context"); 
  
 // Create the command queue. 
 host_to_fpga_queue = clCreateCommandQueue(context, device,  

CL_QUEUE_PROFILING_ENABLE, &status); 
 if(status != CL_SUCCESS) printf("Failed to create command queue 1\n"); 
   
 fpga_to_host_queue = clCreateCommandQueue(context, device,  

CL_QUEUE_PROFILING_ENABLE, &status); 
 if(status != CL_SUCCESS) printf("Failed to create command queue for  

crc\n"); 
   
 std::string binary_file = getBoardBinaryFile("ble", device); 
 static const char* ble_kernel_name = "../fpga/ble.aocx"; 
 printf("\n Using AOCX: %s\n\n", ble_kernel_name); 
 program = createProgramFromBinary(context, ble_kernel_name, &device,  

1); 
 if(status != CL_SUCCESS) { 
  printf("Failed clCreateProgramWithBinary.\n"); 
  return false; 
 } 
 
    // Build the program that was just created. 
 status = clBuildProgram(program, 0, NULL, "", NULL, NULL); 
 if(status != CL_SUCCESS) printf("Failed to build program\n"); 
   
 const char *kernel_name_input = "Symbols";  // Kernel name, as defined  

in the CL file 
 in_kernel = clCreateKernel(program, kernel_name_input, &status); 
 if(status != CL_SUCCESS) printf("Failed to create kernel 1\n"); 
 const char *kernel_name_output = "Output";   
 out_kernel = clCreateKernel(program, kernel_name_output, &status); 
 if(status != CL_SUCCESS) printf("Failed to create kernel 2\n"); 
 return true; 
} 
 
// Free the resources allocated during initialization 
void cleanup()  
{  
 //free kernel/queue/program/context 
 if(in_kernel)    clReleaseKernel(in_kernel); 
 if(out_kernel)   clReleaseKernel(out_kernel); 
 if(host_to_fpga_queue) 
 clReleaseCommandQueue(host_to_fpga_queue); 
 if(fpga_to_host_queue) 
 clReleaseCommandQueue(fpga_to_host_queue);  
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 if(program)   clReleaseProgram(program); 
 if(context)   clReleaseContext(context);  
  
 //free in/out buffers 
 if(input_buf)   clReleaseMemObject(input_buf); 
 if(output_buf)   clReleaseMemObject(output_buf); 
} 
 
// The channel in case for creating the files to store the data 
template <class TYPE> 
class Channel 
{ 
 TYPE* m_data; 
 int m_rd; 
 int m_wr; 
 int m_size; 
  
public: 
 /** 
 * Constructor 
 */ 
 Channel(int size) 
 { 
  m_rd = 0; 
  m_wr = 0; 
  m_size = size; 
  m_data = new TYPE[m_size]; 
 } 
  
 virtual ~Channel() 
 { 
  delete [] m_data; 
 } 
  
 void write(TYPE v) 
 { 
      m_data[m_wr] = v; 
      m_wr = (m_wr+1) % m_size; 
 } 
 
 TYPE read() 
 { 
      TYPE r = m_data[m_rd]; 
      m_rd = (m_rd+1) % m_size; 
      return r; 
 } 
}; 
void filedump_int(char* f, Channel<int>& c) 
{ 
 FILE* fp = fopen(f, "a"); 
 fprintf(fp, "%d\n", c.read()); 
 fclose(fp); 
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} 
   
int dat_size = 0;  
int dat_size_out = 0; 
 
void Readfile(Channel<int>& c) 
{  
  int datalen=0; 
  int data[65535]; 
  
 ifstream file("source.txt"); 
 
 while( ! file.eof() ) 
  
  file>>data[datalen++]; 
 dat_size = datalen; 
 
 static int idx = 0; 
 c.write(data[idx]); 
 idx = (idx+1) % (sizeof(data)/sizeof(int)); 
 file.close(); 
} 
int main() 
{ 
    printf("\nStarting the GFSK process\n\n"); 
 
 Channel<int> input_ch=Channel<int>(1); 
 Channel<int> output_ch=Channel<int>(1); 
 
 Readfile(input_ch); 
 dat_size_out=13*dat_size; 
 
 printf("data_size: %d\n", dat_size); 
 
    unsigned int *input = (unsigned int *)malloc(dat_size*sizeof(int));  
    unsigned int *output = (unsigned int *)malloc(dat_size_out*sizeof(int));  
 
 
    if (!input) printf("error in allocating input\n"); 
    if (!output) printf("error in allocating output\n"); 
 
    printf(" \nInput data: \n"); 
    for (int i =0; i < dat_size; ++i) 
 { 
  Readfile(input_ch); 
  input[i] = input_ch.read(); 
  printf("%d  ", input[i]); 
  filedump_int("input.txt",input_ch); 
 } 
 
    if (!init()) return false; 
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input_buf = clCreateBuffer(context, CL_MEM_READ_ONLY, dat_size *  
sizeof(unsigned int), NULL, &status); 

    if(status != CL_SUCCESS) printf( "Failed to create input buffer\n"); 
 

output_buf = clCreateBuffer(context, CL_MEM_WRITE_ONLY, dat_size_out *  
sizeof(unsigned int), NULL, &status); 

    if(status != CL_SUCCESS) printf( "Failed to create output_buf\n"); 
 
    cl_event write_event; 
 cl_event finish_event; 
 

status = clEnqueueWriteBuffer(host_to_fpga_queue, input_buf, CL_FALSE,  
0, dat_size * sizeof(unsigned int), input, 0, NULL, &write_event); 

    if(status!=CL_SUCCESS) printf("Failed to transfer input\n"); 
 
    clWaitForEvents(0, &finish_event); 
    printf("\n write event status = %d ",status ); 
 
    unsigned argi = 0; 
 cl_event in_kernel_event; 
 cl_event out_kernel_event; 
 
    status = clSetKernelArg(in_kernel, argi++, sizeof(cl_mem), &input_buf); 

if(status!=CL_SUCCESS) printf("Failed to set argument %d on in_kernel\n",  
argi - 1); 

status = clSetKernelArg(in_kernel, argi++, sizeof(cl_int), (void *)  
&dat_size); 

 if(status!=CL_SUCCESS) printf("Failed to set argument %d on  
in_kernel\n", argi - 1); 

 printf("\n after arg set for in_kernel "); 
    argi = 0; 
    status = clSetKernelArg(out_kernel, argi++, sizeof(cl_mem), &output_buf); 

if(status!=CL_SUCCESS) printf("Failed to set argument %d on  
out_kernel\n", argi - 1); 

 status = clSetKernelArg(out_kernel, argi++, sizeof(cl_int), (void *)  
&dat_size_out); 

 if(status!=CL_SUCCESS) printf("Failed to set argument %d on  
out_kernel\n", argi - 1); 

 printf("\n after arg set for out_kernel"); 
 
 status = clEnqueueTask(host_to_fpga_queue, in_kernel, 1, &write_event,  

&in_kernel_event); 
 if(status!=CL_SUCCESS) printf("Failed to launch in_kernel\n"); 
  status = clEnqueueTask(fpga_to_host_queue, out_kernel, 0, NULL,  

&out_kernel_event); 
 if(status!=CL_SUCCESS) printf("Failed to launch out_kernel\n"); 
 printf("\n after kernels queued! "); 
 
 status = clEnqueueReadBuffer(fpga_to_host_queue, output_buf, CL_FALSE,  

0, dat_size_out*sizeof(unsigned int), output, 1, &out_kernel_event,  
&finish_event); 
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    printf("\n\n Read event status = %d \n ",status ); 
    if (status != CL_SUCCESS) printf("read error\n"); 
 //printf("\n status %d: CL_SUCCESS \n", status); 
 
    clWaitForEvents(1, &finish_event); 
 
    printf("\n after wait \n\n"); 
 printf(" Output data: \n"); 
 
  
    for (int i = 7; i< dat_size_out; i+=13) 
 { 
  // store the data to the external files 
  output_ch.write(output[i]); 
  filedump_int("output.txt",output_ch); 
  
  //printf directly 
  printf("%d  ", output[i]); 
 } 
   
 printf("\n\n-------Work is done!!--------\n\n"); 
 
 clReleaseEvent(in_kernel_event); 
 clReleaseEvent(out_kernel_event); 
 clReleaseEvent(finish_event); 
 cleanup(); 
 return 0; 
}    
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APPENDIX 2 KERNEL CODE 

#pragma OPENCL EXTENSION cl_intel_channels : enable 
 
channel int Source_ch; 
channel int BinaryNoneZero_ch; 
channel int Upsample_ch; 
channel float Gaussian_ch; 
channel float Multiple_ch; 
channel float Integral_I_ch; 
channel float Integral_Q_ch; 
channel float I_Baseband_ch; 
channel float Q_Baseband_ch; 
 
channel float Arctangent_ch; 
channel float Unwrap_ch; 
channel float Derivative_ch; 
channel int Coder_ch; 
channel int Preamble_ch; 
 
/*Instructs the compiler to omit logic that generates and dispatches  
global, local, and group IDs into the compiled kernel*/ 
__attribute__((max_global_work_dim(0))) 
__kernel void Symbols(__global unsigned int* inputdata, unsigned int 
dat_size) 
{ 
 for (int i=0; i < dat_size; i++) 
  write_channel_intel(Source_ch, inputdata[i]); 
} 
 
__attribute__((max_global_work_dim(0))) 
__attribute__((autorun)) 
__kernel void BinaryNoneZero() 
{ 
 while(1) 
 { 
  int v = read_channel_intel(Source_ch); 
 
  if (v == 0) 
   v = -1; 
  write_channel_intel(BinaryNoneZero_ch, v); 
 } 
} 
 
__attribute__((max_global_work_dim(0))) 
__attribute__((autorun)) 
__kernel void UpSample() 
{ 
 while(1) 
 { 
  int v = read_channel_intel(BinaryNoneZero_ch); 
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  for (int i=0; i<13; i++) 
   write_channel_intel(Upsample_ch, v); 
 } 
} 
 
#define GAUSSIAN_LEN 28 
constant float pi = M_PI_F; 
   
__attribute__((max_global_work_dim(0))) 
__attribute__((autorun)) 
__kernel void Gaussian() 
{ 
float gaussian_values[GAUSSIAN_LEN]; 
float hmax = 1.5E6; 
float ts = 1E-6; 
float OSR = 8; 
 
float acum = 0; 
   
for (int i=0; i < GAUSSIAN_LEN; i++) 
     { 
        int k = i - GAUSSIAN_LEN/2; 
  
          float v = (hmax*ts*k/OSR); 
         gaussian_values[i]=  exp(-(v*v)); 
         acum += gaussian_values[i]; 
   } 
  
for ( int i=0; i < GAUSSIAN_LEN; i++)  
  gaussian_values[i] = gaussian_values[i] / acum;  
 
float samples[GAUSSIAN_LEN]; 
  
while(1) 
 {  
  #pragma unroll 
  for (int i=0; i < GAUSSIAN_LEN-1; i++) 
   samples[i] = samples[i+1] 
 
  samples[GAUSSIAN_LEN-1] = (float) 
read_channel_intel(Upsample_ch); 
 
  float acum_ga = 0; 
 
  #pragma unroll  
  for (int i=0; i< GAUSSIAN_LEN; i++) 
   acum_ga += samples[i] * gaussian_values[i]; 
  write_channel_intel(Gaussian_ch, acum_ga); 
 } 
}  
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__attribute__((max_global_work_dim(0))) 
__attribute__((autorun)) 
__kernel void Multiple() 
{ 
 while(1) 
 { 
  float v = read_channel_intel(Gaussian_ch); 
  float cv = v*(GAUSSIAN_LEN/5)*pi; 
  write_channel_intel(Multiple_ch, cv); 
 } 
} 
 
__attribute__((max_global_work_dim(0))) 
__attribute__((autorun)) 
__kernel void Integrator() 
{ 
 float cv = 0; 
 while(1) 
 { 
  cv += read_channel_intel(Multiple_ch);  
  write_channel_intel(Integral_I_ch, cv/(GAUSSIAN_LEN-1)); 
  write_channel_intel(Integral_Q_ch, cv/(GAUSSIAN_LEN-1)); 
 } 
} 
 
__attribute__((max_global_work_dim(0))) 
__attribute__((autorun)) 
__kernel void I_Baseband() 
{ 
 while(1) 
 { 
  float v = read_channel_intel(Integral_I_ch); 
  float c_i = cos(v); 
  write_channel_intel(I_Baseband_ch, c_i); 
 } 
} 
 
__attribute__((max_global_work_dim(0))) 
__attribute__((autorun)) 
__kernel void Q_Baseband() 
{ 
 while(1) 
 { 
  float v = read_channel_intel(Integral_Q_ch); 
  float c_q = sin(v); 
  write_channel_intel(Q_Baseband_ch, c_q); 
 } 
} 
 
__attribute__((max_global_work_dim(0))) 
__attribute__((autorun)) 
__kernel void Arctangent() 
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{ 
 while(1) 
 { 
  float v1 = read_channel_intel(I_Baseband_ch); 
  float v2 = read_channel_intel(Q_Baseband_ch); 
  float cv = atan(v2/v1); 
  write_channel_intel(Arctangent_ch, cv); 
 } 
} 
 
__attribute__((max_global_work_dim(0))) 
__attribute__((autorun)) 
__kernel void Unwrap() 
{ 
 float samples[GAUSSIAN_LEN]; 
 while(1) 
 { 
  #pragma unroll 
  for (int i=0; i < GAUSSIAN_LEN-1; i++) 
    samples[i] = samples[i+1]; 
  
  samples[GAUSSIAN_LEN-1] = read_channel_intel(Arctangent_ch); 
  
  float acum = 0; 
   
  #pragma unroll 
  for (int i=0; i< GAUSSIAN_LEN; i++) 
  { 
   if (((samples[i] - samples[i-1])<pi/2) && ((samples[i] –  

samples[i-1])>-pi/2)) 
    acum = samples[i]; 
 
   for (int j=1; j< GAUSSIAN_LEN+1; j++) 
   { 
    if (((samples[i] - samples[i-1]) <-(2*j-1)*pi/2) &&  

((samples[i] - samples[i-1]) >-(2*j+1)*pi/2)) 
    { 
     samples[i] += j*pi; 
     acum = samples[i]; 
    } 
    else if (((samples[i] - samples[i-1]) >(2*j-1)*pi/2)  

&& ((samples[i] - samples[i-1]) <(2*j+1)*pi/2)) 
    { 
     samples[i] -= j*pi; 
     acum = samples[i]; 
    } 
   } 
  } 
  write_channel_intel(Unwrap_ch, acum); 
 } 
} 
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__attribute__((max_global_work_dim(0))) 
__attribute__((autorun)) 
__kernel void Derivative() 
{ 
 float samples[GAUSSIAN_LEN]; 
 while(1) 
 { 
  #pragma unroll 
  for (int i=0; i < GAUSSIAN_LEN-1; i++) 
   samples[i] = samples[i+1]; 
 
  samples[GAUSSIAN_LEN-1] = read_channel_intel(Unwrap_ch); 
 
  float acum = 0; 
 
  #pragma unroll 
  for (int i=0; i<GAUSSIAN_LEN; i++) 
   acum=samples[i]-samples[i-1]; 
 
  write_channel_intel(Derivative_ch, acum); 
 } 
} 
 
__attribute__((max_global_work_dim(0))) 
__attribute__((autorun)) 
__kernel void Coder() 
{ 
 while(1) 
 { 
  float v = read_channel_intel(Derivative_ch); 
 
  unsigned int acum=0; 
 
  if (v>0) 
   acum=1; 
  if (v<0) 
   acum=0; 
  write_channel_intel(Coder_ch, acum); 
 } 
} 
 
__attribute__((max_global_work_dim(0))) 
__attribute__((autorun)) 
__kernel void Preamble() 
{ 
 int samples[GAUSSIAN_LEN*13*5]; 
 
 while(1) 
 { 
  #pragma unroll 
  for (int i=0; i < GAUSSIAN_LEN*13*5-1; i++) 
   samples[i] = samples[i+1]; 
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  samples[GAUSSIAN_LEN*13*5-1] = read_channel_intel(Coder_ch); 
 
  int acum = 0; 
 
  #pragma unroll 
  for (int i=0; i<GAUSSIAN_LEN*13*5; i++) 
  { 
   if ((samples[i] ==1 && samples[i+25] ==1 && samples[i+51]  

==1 && samples[i+77] ==1 && samples[i+103] ==1 )  
      && (samples[i+12] ==0 && samples[i+38] ==0 && samples[i+64]  

==0 && samples[i+90] ==0 )) 
   { 
    for (int j=0; j<GAUSSIAN_LEN*13*5; j++) 
     acum=samples[j]; 
   } 
  } 
  write_channel_intel(Preamble_ch, acum); 
 } 
} 
 
__attribute__((max_global_work_dim(0))) 
__kernel void Output(__global unsigned int* outputdata, unsigned int 
dat_size) 
{ 
 for (int i=0; i<dat_size; i++) 
 { 
  outputdata[i] = read_channel_intel(Preamble_ch); 
 } 
} 
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