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Abstract 
 
 
Ulcerative colitis is a relapsing inflammatory bowel disease affecting the gut’s mucosa. The 

disease is characterized by rectal bleeding, abdominal pain, and diarrhea, among others, due to 

the damaged caused in the epithelial barrier. Its etiology remains unknown, but there are several 

factors that might trigger it, like the environment, genetics, and the immune system. Moreover, 

treatment response among patients is highly variable; even in those classified with the same 

severity of the disease. For this reason, a new way of classifying patients that understands patient’s 

variability at the molecular level is needed. In this way, single-cell RNA-seq arise as a technique 

that can provide insights on the transcriptome of cells and help understand the way the different 

cell types found in the gut mucosa act in the disease.  

 

In this dissertation we provide a proof-of-concept on the use of scRNA-seq in an unsupervised 

manner to stratify patients without pre-established markers. To do so, we analyzed 111000 cells 

from 42 samples of 28 patients, using Hierarchical k-means and Partitioning around medoids 

algorithms on the cellular proportions and on the pathway expression level. Validation performed 

through Random Forest supervised clustering algorithm showed that the hierarchical k-means 

algorithm performs better at both transcriptomic profiles, especially when the cell types studied 

were more specific. Moreover, we found out that both the cellular composition and the pathway 

expression are necessary for better stratification of the patients. We also found that at the cellular 

level, the variables that contributed the most to the clustering were those related to the gut 

structure, whereas at the expression level were the myeloid and stromal subsets. Finally, a Shiny 

web app was developed so other people in the lab could use it for their research. 

 

 

 

 

 

 

Keywords: Ulcerative colitis, Single-cell RNA-seq, Unsupervised clustering, patient 

stratification, transcriptomic profile. 
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1. Introduction 
1.1 Ulcerative colitis 

Ulcerative Colitis (UC) is a chronic inflammatory bowel disease (IBD) characterized by the 

continuous and diffuse inflammation of the colonic and rectum mucosa (Feuerstein, M.D. et al, 

2019). It is a relapsing disease, meaning that patients alter periods of no clinical or endoscopic 

manifestations (remission) with periods of active inflammation (relapse) (Raine, T. et al, 

2021). This colonic inflammation can manifest as erythema, loss of vascular pattern, erosions, 

and the development of ulcers. Depending on the area affected, UC is further classified into the 

following categories (Fig. 1) (Satsangi, J. et al., 2006): 

- Ulcerative proctitis: the involvement of the disease is limited to the rectum 

- Left-sided UC: the involvement ranges from the rectum to the splenic flexure 

- Pancolitis: the involvement extends to the splenic flexure 

The classical symptoms associated with this disease are tenesmus, rectal bleeding, weight loss, 

and abdominal pain. Around 20% of the patients present extra-intestinal manifestations, such as 

anemia, arthropathy, and erythema (Magro, F. et al., 2017); negatively impacting their overall 

wellness. In all, this disease makes a strong burden on society (health-care costs, costly 

treatments, work absenteeism, etc.) (Kaplan, G.G. et al. 2015).  

 
Fig 1. Classification of Ulcerative colitis according to its extension. The area affected can help the 

assessment of the disease and the patient’s treatment. Image taken from (Kayal, M. et al., 2019),  

 

1.1.1 Epidemiology 

 
Although this disease develops at any age, it is commonly diagnosed between 15-35 years, having 

similar incidence among sexes. Worldwide, Ulcerative Colitis affects more than two million 

people in Europe and around one million in North America, but the incidence in these countries 

has stabilized along the years. Remarkably, the incidence increases in Asian and Latin-American 

countries, which could be explained by the fact that IBD has a higher incidence in industrialized 

areas. Environmental factors, such as changes in lifestyle, may play a relevant role in the 



 
   
 

   
 

2 
 

development of IBD. However, solely these factors cannot explain the disease’s pathogenesis 

(Du, L. et al., 2020) 

 

1.1.2 Etiology and pathogenesis 

 
UC is an idiopathic disease; this means its etiology has not been elucidated. However,  

there are several factors that have been proposed to be the drivers of the disease. There is evidence 

that the environment has caused changes in the incidence of the disease worldwide, but also that 

genetics appear to be important in the disease development (Kayal, M. et al., 2019). At the same 

time, the immune system is critical in UC, which explains why many treatments are currently 

focusing on it. 

 

1.1.2.1 Genetic factors 

 
Having relatives diagnosed with UC highly increases the risk of developing the disease. This risk 

is increased by four for first-degree relatives and by eight for siblings (Stittrich, A.B. et al., 2016). 

Nevertheless, studies on twins show that this risk ranges from 4% if they are dizygotic to 16% if 

they are monozygotic (Ungaro, R. et al., 2017). 

 

In this sense, genetic studies have aimed to find heritable elements that would correlate to 

developing the disease. Genome-wide association studies (GWASs) have shed light on the 

genetics of UC by identifying around 163 susceptibility loci associated with IBD (Porter, R.J. et 

al., 2020). However, 70% of the genes are also related to other immune-mediated diseases, such 

as psoriasis. On the other hand, UC-specific loci are related to the human leukocyte antigen 

(HLA), mostly class II, in chromosome 6. Also, a new missense variant in the adenylate cyclase 

7 gene (adcy7) is found to double the risk of UC. Moreover, a study using ChIP-seq technology 

has found an enrichment related to H3K27Ac in intestinal enteroids, indicating that in the disease 

there is an imbalance in the epithelial function at the genetic level (Mokry, M. et al., 2014)  

 

Despite all the above, many patients do not present any genetic susceptibility to the disease, and 

it is estimated that around 19% of the disease heritability of the disease is explained by genetics 

(Chen G.B., et al., 2014). 

 

1.1.2.2  Environmental factors 
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As explained before, UC’s incidence has been highly impacted by the increment of 

industrialization areas, as well as by westernization (Kaplan, G.G. et al., 2016). Therefore, 

changes in lifestyle, better hygiene, diet, sedentarism, fewer infections, and stress have been 

linked to UC. Nonetheless, other elements have been associated with UC for a long time, like the 

protective effect of smoking or getting an appendectomy before 20 years of age.  

 

1.1.2.3 Gut microbiota 

 
The gut microbiome consists of a diverse myriad of microorganisms found in the human digestive 

tract and plays a major role in the organism. Thousands of bacteria species in the gut are thought 

to be involved in metabolic, physiological, nutritional, and immunological functions (Guinane, 

C.M. et al., 2013).   

 

It is known that alterations in the microbiota may occur due to exposure to environmental factors, 

like diet and drugs, and to genetic factors that module it. When these alterations happen, it can 

end up in an imbalance of the microorganisms found in the microbiota called dysbiosis, where 

there is a depletion of protective bacteria that causes an expansion of the pro-inflammatory ones. 

Normally, the innate and adaptative immunity prevent harmful microorganisms from 

proliferating. However, in a dysbiosis state, the immune response is overstimulated and 

eventually could cause a pathogenic condition in the host. Moreover, harmful bacteria release 

toxins that produce changes in the intestinal mucosa permeability, damaging it. If the epithelial 

function is compromised, more external agents could further worsen the injury and the 

inflammatory response. Still, whether gut microbiota is the triggering player of UC or not remains 

unclear. What is more, studies have not found any pattern that could correlate the transcriptional 

activity of UC to the microbiome (Moen, A.E. et al., 2018). 

 

1.1.2.4 Epithelial dysfunction 

 
The epithelium is the first protective barrier found in the gut. This physical barrier is composed 

of different cell types, including enterocytes, goblet cells, and enteroendocrine cells. These cells 

regulate the barrier’s permeability, which is known to be augmented in UC patients. This fact is 

probably due to the decrement of the mucus layer found between the epithelial cells (Turner J.R., 

et al., 2009). This dysfunction at the epithelial barrier can happen on account of impaired 

secretions produced or physical defects. Moreover, epithelial cells present receptors recognized 

by the immune system (like toll-like receptors or nod-like receptors). Then, when there is active 
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inflammation, as in UC relapse, the integrity of the epithelium seems compromised because of 

the immune system.  

 

Besides, knock-out model of muc2 (mucine 2 gene, that produces the mucus layer in the epithelial 

cell) produces colitis in mice and is one of the model organisms used to study the disease (Van 

der Sluis, M. et al., 2006). Because of all the stated, some drugs have been developed to prevent 

this damage to the epithelium, like mesalamine.  

 

1.1.2.5 Immune response 

 
The immunological response can be classified as innate and adaptative. The innate immune 

system recognizes pathogens and produces an unspecific response, where the main cells involved 

are the natural killers (NK), eosinophils, basophils, monocytes, macrophages, and dendritic cells. 

Out of them, NK, macrophages, and dendritic cells are the ones that initiate the immune response 

against pathogens by the pattern-recognition receptors (PRRs), which are capable to recognize 

specific molecular patterns (Ordás, I et al., 2012). Once recognition happens, there is an activation 

of cytokines and chemokines, that modulate the immune cells. Then, macrophages and dendritic 

cells display antigens to the adaptative immune system, making them known as antigen-

presenting cells (APCs). 

 

On the other hand, the adaptative immune response main players are the lymphocytes T, which 

release modulator cytokines, and lymphocytes B, which produce antibodies. This response is 

characterized by being antigen-specific and by inducing immunological memory.  

 

In UC, it has been demonstrated that there is an infiltration of neutrophils in the colonic 

epithelium, provoking the changes in the epithelial barrier’s permeability mentioned (Brazil, J.C., 

et al., 2013, Porter, R.J. et al., 2020). This alteration promotes inflammation in the epithelium, 

enhancing neutrophils’ survival and tissue damage due to the release of pro-inflammatory 

molecules. In fact, this increment in the number of neutrophils produces higher levels of the 

heterodimer S100A8/S100A9, denominated calprotectin, which is used as a clinical parameter to 

determine the level of inflammation in patients. These neutrophiles’ infiltration in combination 

with monocytes, create a pro-inflammatory environment that induces a pathological state of the 

adaptative immune response, by releasing cytokines like IL-1 and TNF-α. Moreover, this 

environment influences the function, phenotype, and survival of new monocytes, diminishing the 

possibility of restoring the gut’s architecture and homeostasis. 
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Since some UC-specific susceptibility loci are related to the HLA class II, this could also explain 

the pathogenic phenotype. The human leukocyte antigen of class II is a cell-surface protein 

complex that presents antigens to the lymphocytes T, mainly found in APCs. If there is an aberrant 

presentation of commensal bacteria or self-antigens, it would produce a T-cell activation that 

would lead to a pathogenic state (Graham D.B. et al., 2018).  

 
1.1.3 Disease severity assessment 

 
Activeness of the disease is defined by different indexes depending on the clinical assessment 

performed. One of the most used ones is the Mayo index (Schroeder, K.W. et al., 1987), which 

combines clinical and endoscopic parameters. Clinically, it evaluates frequency of stools, rectal 

bleeding, and abdominal discomfort, among others. Endoscopically, findings like erythema, 

vascular pattern and friability are explored. Then, the overall assessment by the clinician is 

considered. This index helps to evaluate the severity of the disease. Besides being a useful tool 

for clinical track of the disease, this score can help evaluating the responsiveness of a patient to a 

treatment. 

 

However, this activity score does not consider the extent of the inflammation, which can change 

during the development of the disease. Since the goal in treating UC is the mucosal healing, the 

Modified Mayo Endoscopic Score (Lobatón, T. et al., 2015) has been developed, which does not 

only consider the extent of the disease but the level of inflammation. This index ranges 0-3 points, 

being a score of 0 defined as a segment of normal or inactive disease, a score of 1 when there is 

a decreased vascular pattern and erythema, a score of 2 when these sings worsen; and a score of 

3 if ulcerations and bleeding appear. 

 
 

1.1.4 Bowel architecture structure 

 
Histologically, the bowel is composed of four layers: mucosa, submucosa, muscularis propria, 

and adventitia. In UC, only the innermost layer, mucosa, is affected. The mucosa is made from 

three parts: epithelium, lamina propria and muscularis mucosae.  

 

Transcriptomic analysis of the mucosa in UC has classified the subsets of cells found on this layer 

to be wired differently, according to the health of the individual. Healthy mucosa is characterized 

by interactions between epithelial, fibroblasts (stromal cells) and T cells, that maintain the bowel’s 

homeostasis. On the opposite, inflamed mucosa shifts the interactions towards macrophages, B 

cells and T cells, which are the principal players in adaptive immunity (Smillie C.S., et al., 2019).  



 
   
 

   
 

6 
 

 

It has been elucidated that cell profiles are different when comparing inflamed, non-inflamed, and 

healthy controls. Cell types found in the mucosa can be then classified into five subsets of cells: 

 

- The epithelial cells have an important role in the absorption of nutrients and protection 

of the gut as the first immune barrier. Differentially expressed genes demonstrate that 

during inflammation epithelial cells activate downstream pathways related to restoring 

homeostasis in the gut.  

- Stromal cells: give support and structure to the epithelium. During inflammation, these 

cells induce tissue vascularization as well as they interact with local immune cells. 

- Immune cells: myeloid, T and B cells. These cells are involved in the innate and adaptive 

immune response explained before. 

 

1.1.5 Treatment 

 

Treatment options in UC classically have aimed at clinical remission and the amelioration of the 

symptomatology. However, new strategies focus on getting endoscopic remission, mucosal 

healing, and a better quality of life for the patients, with reduced adverse effects. Until biological 

agents were developed, physicians would opt for a step-up process of amino salicylates, steroids, 

and immunosuppressors; due to their effect in controlling the inflammation (Ungaro, R.et 

al.,2017).  

 

Aminosalicylates, also known as mesalamine, reduce inflammation by targeting prostaglandins. 

They can either be taken topically or orally, and it has shown double anti-inflammatory effect 

than placebo and rectal steroids (Kucharzik, T. et al. 2020). Normally, if it fails to induce 

remission, it is combined with topically administered steroids. In addition to 5-ASA, steroids are 

the primary option for patients with a severe acute relapse. Since they present strong adverse 

effects that include hormonal and kidney failures, they are not used as maintenance therapy. 

Thiopurines are immune suppressants that inhibit cell growth of lymphocytes T and have shown 

better success rate than steroids and can be used in long-term therapy (Chande, N. et al., 2015).  

 

As stated, the discovery of biological agents has inverted the treatment pyramid due to their 

success in getting patients into remission, and now they are becoming the primary treatment 

option. Anti-TNF monoclonal antibodies (Infliximab and Adalimumab) prevent TNF molecules 

from binding to the cells’ receptors, reducing inflammation and granuloma formation. However, 
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around 30% of patients have a primary failure to this treatment and do not get into remission. 

Also, another 30-40% fail to respond after a year.  

 

Other biological agents are: Vedolizumab, which targets integrinα4β7, especially relevant in T 

cell activation; Ustekinumab which targets IL-12 and IL-23 cytokines that share the p40 unit 

making it possible to target different JAK-STAT pathways at once; and Tofacitinib, a JAK 

inhibitor used for patients that are refractory to anti-TNF therapies (Teng, M. W. et al., 2015). 

These biological therapies have helped reduce flare-ups, hospitalization, and surgical 

interventions.  

 

Clinical parameters and signs are used to classify patients according to the severity of the disease. 

This classification is also used for treatment selection. However, the patient’s response to them is 

highly variable, and this variability increases if we consider the different manifestations of the 

disease. Due to the heterogeneous course of the disease, new classification strategies are needed 

that can predict treatment’s response and, eventually, improve patient’s quality of life (Lai, L. et 

al., 2022).  

 

1.2. Single-cell RNA-sequencing 

 

Classical techniques like immunostaining, flow cytometry or mass cytometry (CyTOF) have 

identified and characterized the different cell types found on the gut. However, these techniques 

lack in resolution as they rely on the use of characterized well-established cell markers limiting 

our ability to identify new subsets or to understand each subset’s contribution to the disease. 

Indeed, despite major advances in our knowledge and treatment of UC, we still have a very limited 

understanding on how each specific cell subset is individually contributing to disease and how it 

is regulated by different treatment strategies.  

 

On the other hand, “omics” techniques have revolutionized biology and medicine but are 

commonly applied to heterogeneous tissues or bulk sorted cells, providing a low-resolution 

blended picture of what is going on. Moreover, whole tissue transcriptomics cannot reliably 

identify markers of disease progression/phenotype or predictors of response, as evidenced by the 

fact that none of the studies reporting such markers have translated into the clinics. 

In an attempt to extract cell type-specific information from gene expression data obtained from 

heterogeneous tissue samples, deconvolution tools have been developed, where an estimation of 

the relative cellular abundance within a specific tissue can be estimated. Nonetheless, these tools 
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are limited by the fact that they work on information obtained from cell lines or non-tissue specific 

cell types. Thus, current deconvolution tools cannot provide gut cell specific transcriptional 

techniques. Given all the stated above, techniques with higher resolution that understand tissue 

composition and behavior could help understand the underlying mechanisms of the disease.  

In this way, Single-cell RNA-sequencing examines transcriptomes of cells at the individual level, 

providing new layers of information that help understand the heterogeneity of cells within a 

population. For instance, it is useful to identify new cell populations that otherwise would be 

undetected as well as elucidate the relationships among these populations in different conditions. 

For this reason, scRNA-sequencing can provide new insights into the pathogenesis of complex 

diseases (Haque, A. et al., 2017). 

 

To perform scRNA-seq, first cells from the tissue need to be isolated and lysed to capture RNA 

molecules. To analyze mRNA molecules, specific primers are used, and then, mRNA is converted 

to complementary DNA by reverse transcription, and unique molecular identifiers are added to 

create cDNA libraries. There are numerous scRNA-seq methods, being Smart-seq 2 and 10X 

Genomics Chromium (10X; 10X Genomics, Pleasanton, CA) two of the most used ones. The 

main difference between them is how the cells are separated and processed. Smart-seq 2 

(Switching Mechanism at 5’ End of RNA template) is a cell cultured-based approach (Baran-

Gale, J. et al., 2018), where cells are separated using fluorescence-activated cell sorting (FACS) 

and then, placed on well plates filled with Triton-X100 and ribonuclease inhibitor to stabilize 

RNA. On the other hand, 10X Genomics Chromium is microfluidics-based approach that captures 

single cells and combines them with all the needed reagents to perform reverse transcription and 

build barcoded libraries using a microchip. This process encapsulates single cells in oil droplets 

together with single gel beads containing barcoded oligonucleotides on addition to the rest of 

reagents needed. The result is cDNA libraries in which all molecules will contain the same 

barcode, thus making possible to track back the cell of origin of each of the reads after sequencing. 

Smart-seq-2 protocol allows to analyze more genes per cell, however, the number of cells on each 

experiment can vary depending on the well’s size. With 10X Genomics the number of cells is not 

limited by the well’s size and multiplexing of the samples can be performed to maximize the 

insights from a single experiment.  
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2. Hypothesis and objectives 
 

Ulcerative colitis traditional approaches classify patients according to clinical and endoscopic 

parameters to asset their treatments. However, their response to the available treatments is highly 

variable, even in patients classified within the same category. For this reason, a more accurate 

patient stratification method that considers a molecular basis in this multifactorial disease is 

needed (Selink, K. et al., 2021). Doing so would improve patients’ lives and avoid unnecessary 

adverse effects, even surgery.  

 

Since the molecular heterogeneity of the disease remains unknown, approaches that consider this 

variability can help patients’ stratification, predict treatment outcomes, and find new drug targets. 

In this way, scRNA-seq emerges as a technique that can provide the full transcriptome of the cells 

found in the gut mucosa with higher resolution than classical technologies. Previous approaches 

have tried to classify patients and get new insights into UC. However, we still have very limited 

knowledge of how the cells involved are contributing to the disease. Using this new level of 

granularity of scRNA-seq, new players of the disease could be identified that could explain the 

differences among patients (Corridoni, D. et al.,2020).  

 

On the other hand, unsupervised clustering techniques can help the unsupervised stratification of 

patients without focusing on the previously established markers. In this way, these techniques 

could uncover new players in the disease in an unbiased manner. However, since this has not been 

proven yet, the objectives of the project are: 

 

- Providing a proof-of-concept of unsupervised clustering techniques in Single-cell RNA-

seq sequencing from UC and healthy patients. 

- Determine the best approach to assess the samples’ heterogeneity using Single-cell RNA-

seq transcriptomics 

- Compare different unsupervised clustering methodologies and validate which one 

represents the known variability of the Single-cell RNA-seq dataset. 

- Develop a Shiny app of the results obtained that can be used by other team members for 

their research purposes  
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3. Materials and methods 
 

 

3.1 Sample collection and intestinal cell isolation  
 
42 samples from 28 patients have been gathered for this dissertation. They come of different 

studies who had signed informed consent for research purposes. Out of 28 patients, 6 samples are 

from healthy subjects who underwent a colonoscopy for gastrointestinal symptoms, not related to 

IBD nor they presented any mucosal lesions, or from routine screening. On the other hand, 22 

patients that suffered from UC, needed an established diagnosis of at least three months of 

duration. Then, follow-up biopsies from these patients were collected at different weeks for 

endoscopic assessment. More information on each sample can be found in Table 1 and in Table 

1 of the Apex. 
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Healthy controls Active UC Inactive UC 

N samples 6 31 5 

Age*  62 (51-66) years 36 (22-55) years 34 (22-47) years 

Gender 2/2/2 19/9/3 2/3/0 

Segment 6/0/0/0/0/0 15/10/1/1/1/3 4/1/0/0/0/0 

Mayo index NA 0/0/1/30/0 2/1/0/0/2 

Treatment NA 7/5/7/20 0/0/0/3 

Disease location NA 7/8/12/4 0/0/2/3 

Age at diagnosis  NA 4/17/5/5 0/2/1/2 

 

Table 1. Samples clinical information. N samples: number of samples used in this dissertation. The 

following categories were added including the information provided when possible. * Age: Range values 

of age and the mean. Gender: Male/Female/Pending confirmation. Segment: Sigma/Rectum/Transverse/ 

Rectum-sigma/Descendent colon/Pending confirmation. Mayo index: 0/1/2/3/ Pending confirmation 

Treatment: Mesalamine/Steroids/Azathioprine/Monoclonal antibody, more than category is possible per 

each patient.  Disease location: Left-sided colitis/Proctitis/Pancolitis/Pending confirmation.  Age at 

diagnosis: <= 16 years/17-40 years/ >40 years/ Pending confirmation. 

 

Once the sample was collected, it was immediately placed in cold Hank’s Balanced Salt Solution 

(HBSS) (Gibco, MA, USA) and kept at 4ºC until processing. Then, they were washed in HBSS 

with 5mM DTT (Roche, Spain) for fifteen minutes, and then washed in complete medium (RPMI 

1650 medium. Lonza, MD, USA) supplemented with 10% heat-inactivated bovine serum 

(Biosera, France), 100U/ml penicillin, 100 U/ml streptomycin and 250 ng/ml amphotericin B 

(Lonza), 10µg/ml gentamicin sulfate (Lonza) and 1,5mM Hepes (Lonza). Biopsies then were 

chopped and placed into 1.5 mL tubes containing 500 μl of digestion solution (CM + Liberase 

TM (0.5 Wünsch units/ml) (Roche, Spain) + DNase I (10 μg/mL) (Roche)) and incubated on an 

orbital shaking platform for 1h at 250 RPM at 37ºC.  After digestion, the content of the tube was 

filtered through a 50 μm cell strainer (CellTrics, Sysmex, USA), washed with Dulbecco’s 

Phosphate Buffered Saline (PBS; Gibco), and resuspended in FACS buffer (PBS containing 2% 

FBS) (Veny et al, JCC 2020).  

 
3.2 Single-cell RNA-seq  
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3.2.1 10x library preparation and sequencing 
 
Following digestion, 10x Genomics 3′ mRNA single-cell method was used. approximately 7,000 

cells were loaded onto the Chromium10x Genomics platform to capture single cells, as described 

in the manufacturer’s protocol. Generation of gel beads in emulsion (GEMs) and barcoding and 

GEM-reverse transcription was performed using the Chromium Single Cell 3′ and Chromium 

Single Cell V(D)J Reagent Kits from 10x Genomics (user guide, no. CG000086) according to 

manufacturer’s guidance. Full-length, barcoded cDNA was amplified by PCR to generate enough 

mass for library construction (Nextera® PCR primers). Sequencing of the libraries was performed 

on HiSeq2500 (Illumina). Once sequencing is done, 10x single cell reads are processed using 

CellRanger software, whose outcome are feature-barcoded matrices. 

 

3.2.2 Data processing and quality controls 
 

Once obtained the dataset processed by CellRanger, we can follow a pipeline that allows us to get 

the features (gene information), cell counts, and barcodes associated with each cell of the samples. 

Then, together with patient’s clinical information, all the samples are merged using the 

SeuratObject R package (version 4.0.2). After that, duplicates are removed, and low-quality cells 

are filtered based on their mitochondrial RNA levels. Data is normalized, and principal 

component analysis (PCA), as well as dimensionality reduction (UMAP), are performed. 

Clustering analysis is performed using the Leuven grouping algorithm, and thanks to the 

FindVariableFeatures() function we could identify the five major subset of cells in the gut’s 

mucosa: epithelial, stromal, myeloid, T and B cells. Also, the cycling subet, a type of cells only 

found on patients recently in the literature using scRNA-seq (Smillie C.S., et al., 2019). Then, 

each subset was processed individually. 

 

Inflammation and cell isolation are stressful events for the cells that can challenge their viability. 

For this reason, each subset underwent different quality control to preserve a sufficient cell 

number to perform the analysis. All cells from the subsets that had less than 200 unique features 

were removed. Also stromal, myeloid, and cycling cells that had more than 25% mitochondrial 

genes were filtered, as high mitochondrial percentage is found on low quality and dying cells. At 

the same time the epithelial cells that had more than 65% mitochondrial content were filtered out 

too . Then, subset-specific markers are used to filter cells that do not belong to it. Subsets are 

normalized, and the 2000 most variable features are selected. With them, k-nearest neighbor graph 

is calculated based on the Euclidean distance in PCA space, allowing the clustering of the cells 

using the Leuven algorithm (Blondel, V. et al., 2008).  
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3.2.3 Batch correction 
 
Single-cell results can be influenced by the way each sample is processed, and it can concur into 

a batch effect in data integration. For this reason, we used Harmony package (version 0.1.0) 

(Korsunsky, I. et al., 2019) for sample integration. Harmony performs PCA for dimensionality 

reduction where it iteratively removes the batch effect selected, in our case the samples.  

 

3.2.4 Celltype annotation 
 
As mentioned, each subset was annotated (epithelial, stromal, cycling, myeloid, B and T cells), 

then, each subset is individually annotated in what is called ‘annotation refined' which is a type 

of annotation where cell types are gathered under known markers in as many biologically relevant 

categories as possible. From there, a second annotation called ‘annotation group’ is carried out, 

with less granularity because there are fewer categories but with more cell types in them (Fig. 2). 

This kind of annotation is useful for some statistical tests.  

 

From these two annotations we can asset which kind of annotation is more useful to perform the 

patient’s stratification and identify if this granularity provides more insights into the disease. 

Finally, the different subsets were merged into a Seurat Object, PCA and UMAP were calculated, 

obtaining a clustering of the combination of the samples. 

 

  
Fig. 2 Annotation levels according to their granularity. The outer classification is each one of the six 

subsets. Within each of them we find the annotation group, that covers multiples annotation refined 

categories, which are the ones with most granularity. 

 

3.3 Ulcerative Colitis stratification  
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3.3.1 Clustering methods 
 
Since we want to classify patients in an unsupervised manner, partitioning clustering is used to 

classify the observations of our dataset based on their similarities. In our model, we compare the 

outcome of two different clustering algorithms to check differences between them at classifying 

patients, or if there are batch effects in the data that we should consider. The clustering 

methodologies used are Hierarchical k-means and Partition around medoids (PAM).  

 

Hierarchical k-means is a hybrid method that combines k-means and hierarchical clustering. As 

k-means is highly sensitive to the initial selection of clusters, this approach avoids that by using 

hierarchical clustering. It works by computing hierarchical clustering on the dataset and cutting 

the tree into k-clusters. Then, it computes the mean of each cluster and solves it by computing k-

means using the set of cluster centers as the initial cluster center.  

 

To define the k to use, we used the NbClust package (version 3.0.1) which determines the best 

number of clusters to perform the analysis. It uses around 30 statistical indices and proposes the 

best k based on the quality of the clustering. 

 

On the other hand, PAM is not sensitive to outliers like k-means and can be a robust alternative 

clustering approach. PAM works by looking for representative objects or medoids in the dataset. 

Then, it assigns each observation to the nearest medoid. After that, it searches if any object of the 

cluster decreases the average dissimilarity coefficient, and the highest is selected as the medoid 

of the cluster. It keeps repeating until the medoids do not change. The number of clusters was 

selected in the same way.   

 

For both, the final clustering was visualized using the Factoextra package (version 1.0.7) 

 
3.3.2 Stratification by cell proportion 
 

To understand the variability between patients and healthy individuals, a cell type composition 

analysis was performed. In this way, we could identify what cells are most important to classify 

patients and compare the result obtained with the clustering done by the gene expression and 

check if the depth of the annotations is important for the stratification. 

 

To do so, we calculated the proportion of cells per patient. In this way, data is standardized, and 

we obtain a matrix where rows are the individuals and columns are the variables where no missing 

values are found.  
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3.3.3 Stratification by gene expression 
 

Single-cell technologies provide further insights into transcriptomics that could help understand 

the heterogeneity of the pathology. The normalized data from our Seurat object is a matrix of 

transcriptomic expression whose columns are the cells, and the rows are the genes. From this, 

AverageExpression() function from Seurat calculates the average gene expression on each cell 

type per patient. In this way, the matrix would have cell types per patient as columns and genes 

as rows.  

 

Gene Set Variation Analysis (GSVA) is a non-parametric, unsupervised gene set enrichment 

method that calculates gene set expression from the gene expression matrix. By doing so, 

information on pathway enrichment can be obtained. To perform this method, we used the GSVA 

package (version 3.15), using the previous matrix as input. At the same time, gene sets to perform 

the analysis were obtained from the Molecular Signatures Database (MSigDB, v7.5.1). 

Specifically, the gene sets used were the biological processes from the ontology gene sets, and 

the ones from the canonical pathways. Previous papers in the literature state that pathway database 

choice is extremely relevant for the resulting output (Mubeen, S. et al., 2019, Zhang, C. et al., 

2021). For this reason, this integrative database is chosen (Emert-Streib, F. et al., 2011). Also, it 

is known that equivalent pathways that come from different databases can provide divergent 

results. To prevent this and an over-dimensionality of cell functions, gene sets that were similar 

in 90% of the genes were filtered out. 

 

After performing GSVA, we obtained a matrix where columns are the cell type per patient and 

the rows are the pathways. Next, we created individual matrixes per each cell type (1:N cell type). 

From here, we performed the unsupervised clustering (both hierarchical k-means and PAM) per 

each cell type. Then, we created a matrix where columns belonged to cell types and rows to 

patients. Finally, we performed the unsupervised classification on this matrix that gave us the 

final stratification per patient.  

 

3.3.4 Contribution variables 
 
Principal Component Analysis is a dimensionality-reduction method that is used to transform a 

large set of variables into a smaller one that still holds most of the information in the large set. 

The function fviz_contrib() from the Factoextra package allows to visualize the contribution of 

the columns (cell types) to the result of a PCA analysis. In this way, we can check the variables 
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that are taking more variability in the dataset and, hence, are affecting more to the final clustering 

result.  

 
3.3.5 Model validation process 
 
Supervised machine learning classificatory algorithms use training sets to assign test data into 

specific categories. From this training set it recognizes patterns and try to understand how the data 

tested can fit in them and label the data according to it. One of the most used is Random Forest 

(RF), a non-parametric model that builds decision trees on different samples and counts the 

majority vote to classify the data tested (Saric, A. et al., 2017). To perform this analysis the 

RandomForest package was used (version 4.7-1.1). 

 

The way RF works is by randomly dividing the data set in two, 30% of the samples go to the test 

set and 70% to the training set. RF training algorithm applies bootstrapping technique to construct 

the tree and decide the classification. Since the dataset is relatively small and the samples do not 

overlap, the error rate of the classification is obtained from the out-of-bag error (OOB error). To 

keep the OOB error low, the strength of each tree needs to be increased. For this reason, the 

number of random variables used on each tree (mtry) and the number of trees used in the forest 

(ntry) need to be adjusted to be optimal. After optimizing the values, the RF is run and the OOB 

is observed to find the rate at which it stabilizes and reaches its minimum.  

 

Then, RF allows to calculate which variables help a better prediction of the classification, this can 

be asset in two ways. First, by the Mean Decrease Accuracy, which is how much the model 

accuracy decreases if that variable is removed. Second, by the Mean Decrease Gini, which 

measures the variable importance according to the Gini impurity index.  

 

3.4 Data accessibility  
 
The analysis code is available on GitHub (https://github.com/ibd-bcn/ibd-bcn_all_colitis). Also, 

an applicative Shiny has been developed for this project, as it helps display the results obtained. 

However, the code associated with the Shiny app cannot be shared due to internal protocols.  
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4. Results  
 

ScRNA-seq analysis of colonic biopsies from healthy controls (HC) and active Ulcerative Colitis 

(UC) patients identified 112 cell types in 111000 cells.  As described in table 2, the analysis of 

the samples resulted in the differentiation of six subsets: Epithelial, Cycling, Myeloid, Plasma, 

Stroma and T cells (Fig. 3). Within these subsets, 112 cell types could be identified due to known 

markers, and then, a second annotation with les granularity, called ‘group’ is identified.  

 

Subset N cells Annotation refined Annotation group 

Cycling 3110 12 5 

Epithelial 20199 21 13 

Myeloid 14333 22 11 

Plasma 38072 14 3 

Stroma 9284 21 14 

T cells 26002 22 7 

 

Table 2. Final subset annotated. Different subsets that were identified during the quality control of the 

samples, as well as the number of cell types found on each annotation. 
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Fig. 3. Single-cell object dimensional reduction plot. UMAP result of the samples after the quality control 

and integration pipeline, where each dot represents a cell.  

 
4.1 Stratification by cell proportions 

 
Cell type proportions showed differences among the patients. We grouped cell types in a larger 

annotation (annotation group) to help us understand different patterns between health status. For 

instance, inflammation damages epithelial cells, which is reflected in the annotation group 

category (Fig 4 a), where we see that samples from healthy individuals happen to have more 

colonocytes and other cell types implicated in the gut’s epithelial barrier than the patients that 

present an active state of the disease. Moreover, the patients that are in an inactive state recover 

the proportion of epithelial cells, meaning that there is a recovering of the mucosa of these 

patients. 

 

 
 
Fig 4. A.  Proportions per annotation group. Barplot of the proportion of each cell type by this annotation 

per patient. B. Proportions per annotation refined. Barplot of the proportion of each cell type by this 

annotation per patient. 

 

 

4.1.1 Clustering on annotation group 
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NbClust() function determined that 3 was the appropriate number k to perform the Hierarchical 

k-means by the rule of the majority. When plotted, neither of the three clusters was clearly defined 

by health status. Most healthy controls would be in cluster 3. However, 5 samples from active 

colitis are present there too. 

 

PAM clustering algorithm also selected three as the optimal k. However, this approach also failed 

to classify patients according to health status. Although it improved how healthy and inactive 

patients were clustered, samples were mixed in clusters two and three, which did not explain the 

inter-patient variability 
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Fig. 5. Patient stratification by cell proportions in annotation group. A. Hierarchical k-means 

algorithm. Each cluster is presented with a different color. Inside them, each dot represents a sample that 

is colored according to their health, green for healthy controls (HC), orange for the active UC samples, and 

purple for inactive ones. B. PAM algorithm. Each cluster is presented with a different color. Inside them, 

each dot represents a sample that is colored according to their health, green for healthy controls (HC), 

orange for active state, and purple for the inactive ones. 

 

After PCA analysis, we checked the contribution of each cell type to the dataset's variability (Fig 

6). As a result, we obtained that Principal Component 1 is mainly affected by the Colonocytes 

proportion, a part of the epithelial cells that are highly damaged when the disease is in an active 

state. Moreover, other important variables are the cell types of the plasma subset that infiltrate the 

gut mucosa of UC patients.  
 

 

 
 
Fig. 6. Variable contributions on annotation group. Result of the PCA analysis performed on the samples 

according to the annotation that groups the cell types in major categories. PC1 is mainly explained by the 

Colonocytes and plasma cells, so does the PC2. The red line indicates the expected average contribution. 

 

We performed a RF classification analysis to validate the results obtained. As a result, the 

Hierarchical k-means clustering at different mtry values (3, 7, and 14) had an OOB error of 

12.5%, indicating that the 87.5% of the samples were classified correctly in the assay. Moreover, 

we assessed algorithm performance by conducting a confusion matrix of the train and test sets. 
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As expected, the accuracy of the train set was 1, whereas in the test set was 0.9. Also, the test set 

had an accuracy of 0.9, p-value of 0.011 and kappa value of 0.8462, indicating that the samples’ 

classification is considered accurate. Then, the PAM algorithm, obtained similar values; 12.9 

OOB error, an accuracy of 0.9, a p-value of 0.046 and kappa of 0.8077. A summary on the 

statistics variables obtained of the test set can be found on table 3 

 

Algorithm OOB error Accuracy p-

value 

Kappa 

Hierarchical k-means 12.5% 0.9 0.011 0.846 

PAM 12.9% 0.9 0.046 0.8077 

Table 3. Annotation group Random Forest. Random forest statistics outcomes of the test set on 

the classification of the cell proportions group annotation. 

 

Then, the Mean Decrease Gini allows to plot the variables of importance that explain the model 

produced by RF, in the case of the clustering performed using Hierarchical k-means, the variables 

that explain the clustering performed, considering the top 10, are the epithelial cell types (5/10), 

the plasma ones (2/10), the T cells (2/10) and the cycling (1/10) (Fig 7 A). On the other hand, in 

the clustering performed by the PAM algorithm, the variables that contribute most to the model 

are the epithelial (5/10) cell types, the plasma ones (3/10) and the T cells (2/10) (Fig 7 B)  
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Fig. 7.  Top ten variable of importance of the RandomForest model on the annotation group A. 

Hierarchical k-means algorithm. This index explains the earlier classification by the epithelial and plasma 

subsets. B. PAM algorithm. This index explains the earlier classification by the epithelial and plasma 

subsets. 

 

4.1.2 Clustering on annotation refined 
 
This annotation relies on a more specific approach to the cell types found in each subset. The 

number of k chosen for the hierarchical k-means clustering analysis is 2. As a result, we obtained 

that most patients with an active UC were gathered in cluster 2, whereas healthy and inactive 

patients were in cluster 1. Interestingly, one UC inactive sample was inside cluster 2. This sample 

has higher levels of cycling cells than the other inactive ones.  (Fig. 8).  
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Fig. 8 Patient stratification by cell proportions in annotation refined. A Hierarchical k-means 

algorithm. Each cluster is presented by a different color. Inside them, each dot represents a sample that is 

colored according to their health, green for healthy controls (HC), orange for active state, and purple for 

the inactive ones. B. PAM algorithm. Each cluster is presented by a different color. Inside them, each dot 
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represents a sample that is colored according to their health, green for healthy controls (HC), orange for 

active state, and purple for the inactive ones. 

 

 

In the same way, clustering analysis using PAM on this annotation also concurred in k =2. The 

outcome was highly similar to the Hierarchical k-means algorithm outcome, although in the PAM 

clustering method more samples that are in an active state are found in the same cluster as the 

healthy ones. In this way, Hierarchical k-means is a better model to represent the differences in 

disease status using this annotation. Both clustering algorithms aimed for two clusters, one of 

them almost entirely composed of all the active samples. For this reason, this annotation could be 

considered a better approach than the annotation group to cluster patients in an unsupervised 

manner. 

 

Following the pipeline, we used PCA analysis to understand the variability in the dataset and the 

variables that contribute the most to this classification. Even though the cell types that contribute 

to each principal component are different from the annotation group, the subtypes that contribute 

the most are the epithelial and plasma cells.  
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Fig. 9. Variable contributions on annotation refined. Result of the PCA analysis performed on the 

samples according to the annotation refined. PC1 is mainly explained by the epithelial es and plasma cells. 

PC2 is explained by the plasma cells. 
 
 
By performing the RF algorithm with the clustering resulting from the Hierarchical k-means, the 

classification of the test set had an accuracy of 0.9, a p-value of 0.05, and a kappa value of 0.7925. 

Moreover, the OOB estimate error was 3.23%, meaning that samples were well classified in a 

96.77%. The variables that were more important for the model according to the Mean Decrease 

Gini were related to the epithelial (5/10), myeloid (2/10), stromal (1/10), and plasma (1/10) 

subsets.(Fig 10). Then, the validation process on the PAM algorithm resulted in an accuracy of 

0.9, p-value of 0.05, and kappa had a value of 0.8. However, this clustering increased the OOB 

error to 12.9%. Interestingly, the variables of importance that were highly ranked belonged to the 

epithelial subset (6/10), T (2/10), myeloid (1/10) and stromal (1/10) cells.  

 

 As it can be seen on both clustering methodologies, the colonocytes were the cell type with higher 

relevance, probably due to the damage these cells suffer during the disease activity. 
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Algorithm OOB error Accuracy p-value Kappa 

Hierarchical k-

means 

3.23% 0.9 0.05 0.7925 

PAM 12.9% 0.9 0.05 0.8 

Table 4. Annotation refined Random Forest. Random forest statistics outcomes of the test set 

on the classification of the cell proportions annotation refined. 
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Fig. 10. Top ten variable of importance of the Random Forest on the annotation refined. A. 

Hierarchical k-means algorithm. This index explains that the earlier classification mainly relies on the 

epithelial and plasma subsets on this algorithm. B. PAM algorithm. This index explains that the earlier 

classification mainly relies on the epithelial, T cell and myeloid subsets on this algorithm 
 

To measure the performance of the RF model, we created an Area under the curve – receiver 

operating characteristic (AUC-ROC) curve, which can help evaluate the RF performance. As it 

can be seen, both RF models show a good performance of the classification (Fig 10). 

Nevertheless, our number of samples should be increased to obtain a smoother curve. 
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Fig. 11. ROC curve for Random Forest A. Hierarchical k-means on annotation refined. B. PAM on 

annotation refined 

 
 

4.2 Stratification by gene expression 
 
Given the previous results summarized on table 3 and 4, when samples are labeled under a refined 

annotation, we obtain better results at clustering, and the parameters associated to the validation 

of RF show lower OOB error on the classification. For this reason, for the following analysis, this 

annotation is the one used to perform the clustering. 

 

Briefly, as further detailed in the Material and Methods section, we obtained a summarized 

expression per cell type and sample using the GSVA R package. Using this method, we obtained 

a matrix where rows are pathways and columns are cell types per sample. We performed 

unsupervised sample stratification per each cell type using Hierarchical k-means and PAM 

clustering techniques. After that, for each method, we generated a matrix containing the 

stratification results per cell type, where the rows were the patients, and the columns were the cell 

types. Unsupervised clustering algorithms in these resulting matrixes were carried out using k = 

2 for both methodologies, according to the results of the statistical indexes provided by NbClust.  

 

 

 
Fig. 12. Patient stratification by gene expression using Hierarchical k-means algorithm. Each cluster 

is presented with a different color. Inside them, each dot represents a sample that is colored according to 
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their health, green for healthy controls (HC), orange for the active UC samples, and purple for inactive 

ones.  

 

Hierarchical k-means clustering performed considering pathway expression provides a good 

classification method (Fig 12), similar to the one done by cell proportions. However, this method 

provides better insights into the molecular granularity of the samples, as we are considering the 

molecular basis of the disease to classify patients.  As it can be seen, cluster one is formed by the 

healthy and inactive samples, except for the samples UC_1, UC_13, UC_14 and UC_15. 

However, samples UC_13 and UC_14 come from patients that present a mild disease activity. In 

the same way as in the clustering carried out on the annotation refined of the cell proportions, 

IC_4 is found on cluster two. 

 

Moreover, the clustering performed using PAM showed a similar classification to the one 

performed using the Hierarchical k-means algorithm. However, as it can be seen in the PCA of 

the PAM outcome, the two clusters are more distanced in the first dimension. 

 
Fig. 13 Patient stratification by gene expression using PAM algorithm. Each cluster is presented by a 

different color. Inside them, each dot represents a sample that is colored according to their health, green for 

healthy controls (HC), orange for active state, and purple for the inactive ones. 
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Moreover, the variables that showed higher contribution to the principal components in both 

stratification methods belonged to clusters found in the myeloid and stromal subsets. However, 

the cell types involved are different within these subsets.  
 

 
Fig. 14. Variable contributions on gene expression using Hierarchical k-means approach. Result of 

the PCA analysis performed on the samples according to their gene expression using the Hierarchical k-

means algorithm. PC1 is mainly explained by myeloid cells. PC2 is explained by stromal cells. 
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Fig. 15. Variable contributions on gene expression using PAM approach. Result of the PCA analysis 

performed on the samples according to their gene expression using the PAM algorithm. PC1 is mainly 

explained by myeloid cells. PC2 is explained by stromal cells. 
 

Remarkably, the different cell types clustering algorithms individually could not correctly classify 

the patients according to their health. Only by obtaining the bigger picture we can focus on how 

the patients are classified.  

 

4.2.1. Validation process 
 
 
As mentioned, the RF algorithm was used to validate the classification provided by the 

unsupervised clustering algorithms. Considering sample clusterization as the variable of study, 

the RF algorithm was performed, obtaining on the Hierarchical k-means clustering technique an 

OOB estimate error of 6.45%. This OOB is low enough to accept that the classification has been 

done correctly. After adjusting the tree, the variables of importance considered by the Gini index 

to explain the model mostly rely on the myeloid (5/10) but also on the stromal (1/10), cycling 

(2/10), and plasma (2/10) ones.  

 

The PAM clustering method resulted in an RF classification with a 3.23% OOB error. The 

accuracy decreased to 0.81, the p-value to 0.175 and the kappa value of 0.6071, making it the 

worst model in classifying the patients. The variables of importance mainly rely on the myeloid 
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subset (7/10), but we can also find cycling (1/10), stromal (1/10) and plasma (1/10) variables on 

top.  

 

Algorithm OOB error Accuracy p-value Kappa 

Hierarchical k-means 6.45% 1 0.006 1 

PAM 3.23% 0.9 0.175 0.6071 

 

Table 5. Gene expression Random Forest. Random forest statistics outcomes of the test set on 

the classification by gene expression on both algorithms. 
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Fig. 16. Mean decrease Gini top 10 variable of the stratification by gene expression. A Hierarchical 

k-means algorithm. Result of the variable of importance of the RF analysis. Remarkably, the cell types 

found in the myeloid subset are the ones found to be more important in the classification. B PAM 

algorithm. Result of the variable of importance of the RF analysis. The myeloid subset mainly explains 

the classification by this partitioning method. 

 

 



 
   
 

   
 

34 
 

 

 
 

 
 

Fig. 17. ROC curve for Random Forest on gene expression approach. A Hierarchical k-means 

algorithm. B. PAM algorithm. The curve represents the how well the model can classify the patients.  
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Given the outcome the AUROC model, we can conclude that both models model has a good 

performance on the patients’ classification. However, if we check the other parameters mentioned 

on table 5. 

 

4.3 Results display 
 
Since the code will not be available for this part of the dissertation, the following images are a 

way to portray the outcome of the shiny app developed. There are different panels, the plots 

related to the samples and gene expression and those to the results of the clustering. Different plot 

dimension were added as a tool bar so any one can easily select what they want to check and 

customize size, legend, labels, and plot size among others. To access the web app, a security panel 

has also been added.  

 

 
Fig. 18. Shiny app gene expression on epithelial cells 
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Fig. 19. Shiny app annotation group on epithelial cells 

 

 
Fig. 20. Shiny app annotation refined clustering by cell proportions using Hierarchical k-means algorithm 
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Fig. 21. Shiny app annotation group clustering by cell proportions using PAM algorithm 
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5. Discussion 
 
Ulcerative colitis is a complex relapsing disease characterized by the inflammation of the gut 

mucosa. scRNA-seq provides a valuable tool to understand the molecular scheme that comprises 

this disease and could help shed light on its underlying mechanisms. In this dissertation, we have 

analyzed 111000 cells from a dataset of 42 samples previously collected in the lab from 28 

patients using scRNA-seq technology to provide a proof-of-concept of the patients’ stratification 

using unsupervised clustering methods. These samples already had already been clinically 

characterized, and then categorized by their disease status (UC, IC, and HC).   

 

To acknowledge the patient’s heterogeneity, first, cell proportions were analyzed. From there, we 

encountered that cell type annotation is of the highest relevance to the result obtained. If we only 

consider global categories under each subset, probably we are missing information on the key 

players of the disease, and that is why a more refined annotation achieved a better clustering result 

of samples according to their disease status. 

 

Partitioning clustering methods classify data based on their clusters’ similarities and have been 

recently used to understand variability among patient samples (Zhun, X. et al., 2021). For this 

reason, we used and compared Hierarchical k-means and Partitioning Around Medoids 

techniques, and then performed a supervised approach to classify patients by their health category 

(Random Forest) to validate the clustering. Since the Hierarchical k-means approach can be 

sensitive to outliers, PAM algorithm can solve this by its dissimilarity score, which can help 

understand more our dataset. 

 

When only considering the cell proportions, the predominant variables that explained the 

heterogeneity of the disease were cell types associated with the gut mucosa structure. During 

inflammation, epithelial cells found on the gut surface go through massive destruction due to 

ulceration that leads to the ultimate collapse of the gut cell barrier during the disease. This makes 

them highly variable between healthy controls and UC patients. For this reason, as expected, 

colonocytes, among other epithelial cells, are found to be more variable between the patient 

stratification clusters.   

 

On the other hand, a remarkable number of immune cells infiltrate colonic mucosa during the 

disease, including plasma cells. Compared to HC, UC patients have a higher amount of IgG 

producing plasma ells, which are known to be related with inflammatory response (Boland, B.S. 

et al., 2020).  As expected, immune cells, and especially plasma cells, have also a presence in the 

top variable features explaining the samples’ variability when considering cell proportions. 
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ScRNA-seq provides valuable insight not only into the cell type proportions but also 

transcriptomic cell profiles at magnitudes that other traditional techniques cannot. This new level 

of transcriptomic information can help elucidate a better stratification of the patients.  

 

Moreover, to classify patients by their gene expression, we used the MSigDB database, but only 

the pathways that were canonical or belonged to the biological processes categories. In future 

approaches, we could use a more extensive dataset to provide new insights into the patient’s 

pathway expression. However, some genes are still not well characterized in the literature. Hence, 

we will not be able to understand their possible role in the pathogenesis of UC. Still, using 

pathways to understand heterogeneity proves to be a powerful tool that helps explain the 

differences between phenotypes. This way, changes in a set of genes coordinated in a cell function 

could explain the mechanisms underlying UC complexity.  

 

The classification obtained from the pathway expression helped uncover new possible key players 

in the disease. As it can be seen on figure X, myeloid cells, specifically M1 macrophages, have 

high relevance in the clustering using hierarchical k-means algorithm. This methodology was 

statistically significant and was the one that presented the best OOB. Some studies have associated 

these macrophages to the inflammatory chronic state. (Zhu, W. et al., 2014) At the same time, we 

have seen that stromal cells are also relevant to the health status of the disease. Studies on enriched 

genes on these two subsets (especially in inflammatory monocytes and DCs) have associated them 

to resistance to Anti-TNF therapy (Steinbach, E.C. et al., 2015). In this sense, our model reflects 

the rewiring that takes place during inflammation of the gut mucosa that promotes chronicity, like 

monocytes, fibroblasts, and the immunoglobin-mediated response (Smillie C.S., et al., 2019).  

 

Moreover, this methodology could be validated using Random Forest classification with more 

than 90% accuracy in classifying the samples (table 5). However, future protocols would require 

a higher number of samples to be able to generalize the results obtained. Besides, future 

approaches should aim to classify only patients with active disease to find patterns that can help 

elucidate the underlying molecular mechanisms and predict their response to treatment. 

Interestingly, the classification achieved using gene expression highly resembles the achieved by 

the one done using cell proportions. Even though the main variables that contributed to the 

classification are different in each case, in the cell proportions the ones related to the gut structure 

had more relevance, whereas in the pathway expression the myeloid and stromal subsets were the 

most important ones. Overall, both approaches provide valuable insights that are needed to stratify 

the samples and need to be considered in future studies. 



 
   
 

   
 

40 
 

To conclude, this dissertation provides a proof-of-concept of the use of unsupervised clustering 

methodologies to classify patients. scRNA-seq techniques provided new levels of granularity that 

support stromal and myeloid cells as key players in the disease. Finally, by portraying the results 

obtained from this work in an interactive web applicative made with the Shiny R package, we aim 

for a collaborative environment between experimental and bioinformatic teams to pave the way 

for better scientific research, which ultimately improves patients' quality of life.  

 

6. Conclusions 
 

• Unsupervised clustering techniques in Single-cell RNA-seq sequencing are useful to 

stratify UC and healthy patients. 

• Both cell proportions and gene expression protocols are necessary to assess samples’ 

heterogeneity.  

• Hierarchical k-means performed better in stratification protocols.  

• Delivering results by an interactive web application has led to better communication 

between researchers in the lab. 
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APEX 
 
 

Patient Health activity Mayo index (0-3) N cells 

UC_1 Active 3 1386 

UC_2 Active 3 2537 

UC_3 Active 3 2045 

UC_4 Active 3 1562 

UC_5 Active 3 2877 

UC_6 Active 3 2751 

UC_7 Active 3 2269 

UC_8 Active 3 2752 

UC_9 Active 3 4028 

UC_10 Active 3 3552 

UC_11 Active 3 2915 

UC_12 Active 3 1359 

UC_13 Active 3 1788 

UC_14 Active 3 1456 

UC_15 Active 3 2279 

UC_16 Active 2 5312 

UC_17 Active 3 2789 

UC_18 Active 3 2731 

UC_19 Active 3 760 

UC_20 Active 3 3007 

UC_21 Active 3 2368 

UC_22 Active 3 1215 

UC_23 Active 3 2866 

UC_24 Active 3 4373 

UC_25 Active 3 5045 

UC_26 Active 3 2214 

UC_27 Active 3 2316 

UC_28 Active 3 2157 

UC_29 Active 3 3731 

UC_30 Active 3 3335 

UC_31 Active 3 5337 
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HC_1 Healthy Control NA 1498 

HC_2 Healthy Control NA 2483 

HC_3 Healthy Control NA 3463 

HC_4 Healthy Control NA 2256 

HC_5 Healthy Control NA 3305 

HC_6 Healthy Control NA 1888 

IC_1 Inactive NA 1041 

IC_2 Inactive NA 921 

IC_3 Inactive 0 1677 

IC_4 Inactive 1 2845 

IC_5 Inactive 0 4511 

 
Table 1. Patient information. Samples used for this dissertation and their associated health activity, Mayo 

score and number of cells. Patient code used comes from the projects where the samples were obtained.  
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