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Abstract / Resumen del TFM

Abstract....

The Japanese language presents numerous peculiarities that make it an intriguing and

challenging subject for Natural Language Processing (NLP). These include the use of

three different writing systems, the absence of spaces between words, and its nature as
an agglutinative language.

Combined with a lack of non-Japanese bibliography on the subject, these characteristics
offer a unique opportunity for deeper exploration into the NLP field. This project aims
to address these challenges through the development of a Python-based application
designed to grade Japanese written texts within the JLPT framework by analysing

various textual features.
Resumen...

El idioma japonés presenta numerosas peculiaridades que lo convierten en un sujeto
intrigante y desafiante para el procesamiento del lenguaje natural (PLN). Estas incluyen
el uso de tres sistemas de escritura diferentes, la ausencia de espacios entre las palabras

y su naturaleza como lengua aglutinante.

Combinadas con la escasez de literatura en otros idiomas que no sea en japonés, estas
caracteristicas ofrecen una oportunidad Unica para una exploracién mas profunda en el
campo del PLN. Este proyecto tiene como objetivo abordar estos desafios mediante el
desarrollo de una aplicacién basada en Python disefiada para calificar textos escritos en

japonés dentro del marco JLPT mediante el analisis de varias caracteristicas textuales.
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1. Introduction

This master’s dissertation will focus on the development of an application capable of
analysing written texts in Japanese within the framework of the Japanese Language Proficiency
Test (JLPT) using various Python libraries for Natural Language Processing. To achieve this,
different existing texts classified by proficiency level and specifically created for Japanese
language learning will be processed, along with vocabulary lists, grammatical structures, and
kanji characters. The textual features analysed are sentence length in characters, syntactical
units per sentence, proficiency level of the vocabulary, kanji-kana ratio of the characters present
in the text, and kanji-kana ratio of the words present in the text.

1.1 Motivation

Understanding how Natural Language Processing works is one of my main goals when
studying this master’s degree. I am really interested in it, and I believe it is a great opportunity
for applying all the theoretical concepts learned about this topic. Additionally, | am passionate
about Japanese language and, in comparison to other languages (especially European
languages), the progress made in NLP for Japanese is not as advanced.

Developing an application for analysing and classifying textual complexity will allow me to
work directly with tools used in the computational linguistics field, improve my coding skills,
and gaining a deep understanding of NLP. It will also allow me to create a potentially useful
tool that can be of great value for future Japanese learners. This is a project in | which | would
like to keep working on in the future, improving it as | learn more and hopefully publishing it
online so others can benefit from it.

1.2 Objectives

The main objective of this project is to develop an application that is useful and accessible
for Japanese students who may not have resources or enough proficiency level in Japanese to
determine themselves whether the texts they are dealing with are appropriate for their level or
not.

A good and easy to understand example of this is kanji knowledge. One of the biggest
barriers (if not the biggest) for Japanese learners is their inability to recognize kanjis. In
opposition to graded readings, everyday language does not separate easy or common kanjis
from complex and rarely used ones, and not understanding one of these may lead the reader to a
complete misunderstanding of what is written. One of the most basic features of this application
will be to let the user know how many vocabulary words present in the text are unknown to
them, based on the user’s level within the JLPT reference framework. Additional features of the
application are length sentence, syntactical units per sentence, and vocabulary classification by
level of JLPT proficiency.

The textual features used for this analysis are length in syntactical units, length in
characters, number of kanji characters in the text, number of kana characters in the text,
proficiency level of words and grammatical category of words, among others.
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Texts may be easy sentences, paragraphs, news articles, novels, or subtitles. Whatever the
learners are interested consuming, this application will give them detailed textual information
that may prevent them from wasting their time with contents that are way above their
proficiency level.
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2. Literature Review

2.1 General Overview of Natural Language Processing

Natural language processing, often shortened as NLP, is an interdisciplinary field of
linguistics which revolves around the relationship between human language and computers.
Manris (1999) defines it as:

NLP could be defined as the discipline that studies the linguistics aspects of human-
human and human-machine communication, develops models of linguistic
competence and performance, employs computational frameworks to implement
process incorporation such models, identifies methodologies for iterative refinement
of such processes/models, and investigates techniques for evaluating the results.

Feng (2023) divides the processing of the natural language by computers in four aspects,
which are formalization, algorithmzation, programming, and practicalization. Feng (2023) states
that linguistic problems should be formalized in a mathematical form, then this regular
mathematical form should be expressed in terms of an algorithm. Following this, a computer
program based on this algorithm should be written to formulate different NLP systems, and
finally, the established NLP system should be continuously evaluated in order to improve its
quality and performance.

The establishment of NLP models require nine specifications of linguistic knowledge,
which are: acoustics, phonology, morphology, lexicology, syntax, semantics, discourse,
pragmatics, and common-sense encyclopaedia knowledge (Feng, 2023). Based on these nine
specifications, Feng (2023) addresses that NLP as a linguistic problem, however, he states that
NLP might also involve other knowledge from areas such as: computer science, mathematics,
psychology, philosophy, statistics, electronic engineering, and biology.

The process of NLP has been traditionally divided into stages which aim to mirror the
theoretical linguistics distinctions between syntax, semantics, and pragmatics (Dale, 2009).
Based on this distinction, the NLP general process would appear as:

Surface text — Tokenization P Syntactic analysis »| Semantic analysis |[—»

— > Pragmatic analysis —» Speaker’s intended meaning

Figure 1: Natural Language Process

Tokenization is the first step in this NLP, and it involves splitting text into basic units that
hold meaning. These units are called tokens and, depending on the approach, they can be words,
sentences, characters, or complete phrases.

Word-based tokenization is the most common approach, splitting text at whitespace to
create individual word tokens. This approach is used for Indo-European languages as the
existence of whitespaces as word delimiters facilitates the task of tokenization. In languages
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where the delimitators between words are not explicitly displayed and lack the usage of
whitespaces, such as Chinese, Japanese, or Thai, this approach is not valid.

Sentence-based tokenization approach relies on punctuation marks to determine the
existence of sentences within a text stream. This approach is useful for sentiment analysis and
summarization. Successful sentence segmentation for a given language requires a deep
understanding of the punctuation characters in that language. Written languages that do not
make strict use of punctuation marks present a problem for this kind of tokenization (Palmer,
2009). Additionally, texts with poor punctuation, or situations in which a punctuation character
might have different functions, present a problem for delimiting sentence boundaries.

Character-based tokenization approach breaks the text stream down to individual characters,
often used for machine translation and named entity recognition (NER).

N-gram tokenization approach creates sequences of n consecutive words to capture word
co-occurrence patterns.

Lexical analysis examines each token to determine its lexical properties. This process
provides a deeper understanding of the individual words within a sentence and enables tasks
like sentiment analysis (positive vs. negative words) or dependency parsing, understanding
relationships between words. Its components are:

- Lexicon (Dictionary): Stores information about words, including part-of-speech tags,
synonyms, and definitions.

- Morphology analysers: Break down complex words into their root forms (stems) or
base words (lemmas). This helps identify variations of the same words (e.g., “wark”,
“walking”, “walked”).

- Part-of-speech (POS) taggers: Assign a grammatical category (noun, verb, adjective,
etc.) to each token.

Syntactical analysis is the process of analysing the grammatical structure of a sentence by
examining the relationships between tokens. This analysis enables tasks like machine
translation or question answering, as understanding of sentence structure is necessary for
accurate translation and for identifying key elements in a question. To do so two main
techniques exist:

- Phrase structure grammar: Representation of sentences through hierarchical tree
structures, providing visual representation of how phrases combine to form sentences.

- Dependency parsing: Identifies the grammatical dependencies between words,
indicating how each word relates to another (e.qg., subject-verb, verb-object).

Pragmatic analysis is the final step in this process, and it goes beyond grammar to
understand the speaker’s or writer’s intent and the context surrounding the utterance.

2.2 Challenges in Natural Language Processing for Japanese

When compared with other languages such as English, the development of NLP Japanese is
not only less advanced but faces different kind of technical problems. The first and most
obvious is tokenization and segmentation. Japanese language does not have spaces between
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words, making tokenization and segmentation more complex. Traditional approaches, such as
using whitespaces or punctuation as token boundaries are less effective. The lack of spaces
between words necessitates a more informed approach than simple lexical analysis, which will
vary depending on the language (Palmer, 2009). In the case of Japanese, morphological analysis
and dictionary-based tokenization are approaches commonly used to segment text into
meaningful units, such as morphemes or characters.

The Japanese writing system combines alphabetic, syllabic, and logographic symbols, and
modern Japanese texts make use of kanji (Chinese hanzi symbols), hiragana (syllabary for
grammatical particles and words of Japanese origin), katakana (syllabary for words of foreign
origin), romaji words (words written in the Roman alphabet), Arabic humerals, and punctuation
marks. This abundance in character sets makes it easier to tokenize Japanese, but still does not
make it for the lack of segmentation between words. Additionally, the change of writing system
does not always mean the end and beginning of a new word, as it is very common for words to
combine multiple of these characters sets, such as inflected verbs, which often combine kanji for
the root and hiragana for the inflectional ending.

Additionally, Japanese is classified as an agglutinative language, meaning that it forms
words and grammatical constructions by adding affixes to a base or root form. This becomes an
extra challenge to the aforementioned and omnipresent problem of not having explicit word
segmentation. As an agglutinative language, Japanese word formation is heavily based on the
addition of suffixes, and this makes is hard for NLP systems to accurately segment words and
identify their constituent morphemes. This agglutinative nature gets furtherly complicated by
the fact that single morphemes may have multiple meanings or functions depending on its
context and the affixes attached to it, leading to ambiguity in word segmentation and
morphological analysis. A Japanese search engine must be capable of segmenting the search
term into meaningful semantic units while being capable of ignoring morphological variants
like the conjugations (Halpern, 2007).

This is achieved through the use of conflation, which refers to merging multiple forms of a
word into on representation. In Japanese, conflation involves treating different forms of words
as equivalents. For example, merging £ -< % 7~ (tabemasu, polite present tense), £ %
(taberu, present tense), and £-X7= (tabeta, past tense) into a single representation for analysis
or processing, recognizing them all as variations of the verb “to eat”. Within this kind of NLP
techniques exists the process of stemming and lemmatization. On one hand, stemming removes
the suffixes from words to reduce them to their root form. This is not always valid approach as
the resulting stem might not always be a valid word. On the other hand, lemmatization reduces
words to their base dictionary form, known as a lemma.

In the introduction of its publication “The Complexities of Japanese Homophones”, Jack
Halpern used the following words to define Japanese orthography:

Japanese orthography is so highly irregular that it can be considered, without the
slightest fear of being accused of hyperbole, to be a couple of orders of magnitude
more complex and more irregular than any other major language, Chinese
included. A major source of complexity in processing Japanese texts is the presence
of an extremely large number of homophones.

Within the introduction of this publication, Halpern sheds some light in this topic with an
eye-opening example that can help those who are not knowledgeable enough of the
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complexities of Japanese language. He provides us with the sentence Hi no sasanai yashiki (A
Mansion with no Sunshine), which he describes as the potential name of a novel or a film.
Halpern gives us twelve different and legitimate ways of writing that sentence.

oo NGO~ WdE

HDZE S 72V R
HOF S 72V R
HDX X7 2
H D5 S 700 Kf
H D72 S 720 Kf
HDX X720 B
b5 D S 7=
b5 D75 S 720 B
. Bos sV ER

10. D5 S 72 Ef

1

1 D7 S 720 ER

12. (5D & 720K

With this simple example, it is possible to see the difficulties that homophones present for
NLP, as text will not always be presented in the most standard form, or in its most “correct”
way of writing, because there is not such. The following table contains the complex semantic
interrelations between the homophones for sasu, lemma for sasanai in the previous example
sentence: Hi no sasanai yashiki.

Homophones for sasu

No. English “Standard” Form | Sometimesalso | Often also
1 to offer FET =7

2 to hold up F=g X4

3 to pour into &9 ET =7

4 to color 7= E =7

5 to shine on 4 F4 X

6 to aim at ¥4 F=g

7 to point to ¥4 X

8 to stab 4 X4

9 to leave unfinished | X-4- 1k

Figure 2: Homophones for sasu. Jack Halpern, The CJK Dictionary Institute, Inc.

Halpern (2007) considers that retrieving or identifying Japanese homophones is not, in
itself, more complicated than doing it for English, for example write and right. Halpern
summarizes in three the characteristics present in Japanese homophones that present difficulties
in Japanese text processing:

Homophones are nearly synonymous or even identical in meaning. There is no way to

predict which particular homophone will appear in a text.

The distinction between some homophones is so subtle that many authors just decide to
sidestep the problem of selecting the appropriate kanji and resort to hiragana.
Japanese language has a small stock of phonemes, hence, the number of homophones is
very large.

10
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Halpern argues that merely retrieving all homophones in processing technology does more
harm than good since it matches numerous irrelevant homophones, such as J7 % kaeru “to
return” and £ % % kaeru “to change” and gives an insight into the fact that homophone
processing techniques require comprehensive database of semantically and etymologically
classified homophones.

In the same vein of homophones processing, homographs disambiguation presents a real
challenge for Japanese NLP. According to the CIKI (Chinese, Japanese, Korean Institute), over
20.000 homographs are present within their databases, and it is self-evident that, since
homographs are written the same way, it’s a complicated task to retrieve the semantical relevant
one during a search. Halpern gives us some of the most typical examples on the multiple
readings of kaniji:

Japanese Homographs
No. Homograph Reading English
1 — ichiji one o’clock;
temporarily
—f hitotoki a while
— ittoki a moment; 12" part
of day
2 —= isshoo one chapter
— kazuaki a first name
3 44 kana kana syllabary
K4 kamei fictious name,
pseudonym
K4 karina alias, assumed name
K4, kemyoo fictious name,
pseudonym
4 b5 kagaku chemistry
=z bakegaku chemistry

Figure 3: Japanese Homographs Jack Halpern, The CJK Dictionary Institute, Inc.

2.3 Progress in Natural Language Processing for Japanese

Within the NLP field, the emerging LLM (Large Language Models) have meant a change in
how NLP is conceived. LLM are neural network-based models designed to understand and
generate human-like text. These models are trained on large amount of text data and can be fine-
tuned for specific tasks such as language translation, text summarization, or question answering,
among others. The two most know models are GPT (Generative-Pre trained Transformer) and
BERT (Bidirectional Encoder Representations from Transformers).

In the case of Japanese LLM, most of the existing LLM are built upon some of the variants
of the GPT or Llama architectures or built off some of theirs existing models. The most relevant
LLMs focused on Japanese language are:

- OpenCALM, a GPT-NeoX architecture LLM developed by CyberAgent
- Stormy, a GPT-NeoX architecture LLM developed by the University of Tokyo

11
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- rinnaGPT, a GPT-NeoX architecture LLM developed by rinna

The performance of these LLM was judged based on LLM Judge model developed by
Lianmin Zheng, Wei-Lin Chiang and Ying Sheng (2023). A Japanese fine-tuned version of this
model called Rakuda benchmark was used to compare the performance of these three Japanese
LLM and GPT-3, and then compared against the results of GPT-4 to act as judge and asses the
quality of the models’ responses.

Win rates among Japanese Al Assistants
As measured against each other on the Rakuda benchmark

1
|
|
1
|
|
|
I
I
I
|
I
I
|
|
|

Sam Passaglia / YuzuAl

Figure 4: Win rates among Japanese Al Assistants.Lianmin Zheng, Wei-Lin Chiang and Ying
Sheng (2023)

In comparison with English language, the existing number of LLM is considerably small.
Additionally, the availability of training data for Japanese is very limited. The following graph,
taken from the LLM-jp project’s GitHub, carried out by Kaito Sugimito (2023), compares the
number of parameters used by GPT of Japanese and English since May 2020 until today.

12
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Figure 5: Evolution of parameter sizes for Japanese LLMs and English LLMs. LLM-jp.

Japanese Text Generation Models used for general purpose have been trained from the same
training data, both the models created from scratch and the models built off English LLMs. The
most common pre-training sets often are Japanese Wikipedia, Japanese mC4, Japanese CC-100,

and Japanese OSCAR.

For more detailed information of parameters, base models, training data, developers, or

licenses, check the LLM-jp GitHub repository.
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3. Theoretical Framework
3.1 Key Concepts of Japanese Linguistics
3.1.1 Japanese as an Agglutinative Language

Japanese is an agglutinative language, which means it forms words and expresses
grammatical relationships through the addition of affixes to a base or root word. This
characteristic is evident in its use of particles, verb conjugations, and the incorporation of
various suffixes to indicate tense, mood, politeness, and other grammatical nuances. Unlike
inflectional languages, where a single morpheme might convey multiple pieces of grammatical
information, or isolating languages, where words remain unchanged, Japanese builds complex
meanings by sequentially attaching morphemes. This structure allows for a high degree of
precision and subtlety in communication.

3.1.2 Bunsetsu: Phrasal Units

Bunsetsu (3 i) are fundamental syntactic units in Japanese language, typically consisting
of a content word such as a noun, verb or adjective followed by zero or more function words
such as particles or auxiliary verbs. They serve building blocks for sentence, each representing a
basic phrase that can stand alone in term of meaning and grammatical function.

Zhang and Ozeki (1998) argued that the fact that there are no spaces to indicate bunsetsu
boundaries in the orthographic writing of Japanese, therefore, a sentence must be segmented
into busetsus somehow prior to dependency structure analysis, and that these segmentations
have been traditionally performed by using hand-crafted rules.

Bunsetsu has been a complex scope of study in the field of NLP, with current studies on
parsing applications, algorithms and statistical-based learning methods to support bunsetsu-
based dependency parsing (Butler et. al, 2012). For further information, the paper “Problems for
successful bunsetsu-based parsing and some solutions” by Butler et. al 2012 shed some light on
the basics of this field. Establishing efficient NLP methods capable of distinguishing and
learning the dependency relations between content words and function words through
dependency parsing is essential. These methods should understand grammatical patterns and
capture dependency structures, relying on techniques such as POS tagging to perform bunsetsu
parsing.

For the purposes of this dissertation, it is needed to simply understand the concept of
bunsetsu and how, parsing a given text into these syntactic units, can help a student to break
long and complex sentences into simpler chunks that can be easily processed and understood.

3.2 Japanese Writing Systems
One of the uniqueness of Japanese language is the simultaneous use of three different native

writing systems, which are hiragana, katakana, and kanji. All three systems can be used
together in a single sentence, providing a visually complex but information-rich text. As

14
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Japanese language does not make use of whitespaces or any other kind of explicit delimitator
between words, the coexistence of these three writing systems aids creating a natural way of
differentiating words, but it is not always a reliable solution.

3.2.1 Hiragana and Katakana

Hiragana and katakana are two phonetic syllabaries, meaning each character represents a

single sound (consonant-vowel combination).

Hiragana is primarily used for:

- Grammatical elements like particles (> (no) for "of")

- Auxiliary verbs (T ™% (teiru) for "being™)
- Verb and adjective conjugations (e.g., &% (taberu) "to eat," &< F 7 (tabemasu)

"eatS")

Javier Sanchez Jiménez

- Native Japanese words that don't have corresponding kanji (e.g., = AT H1E

(konnichiwa) "hello™)

The syllabary consists of 46 basic characters, with additional combinations not directly
represented (voiced consonants and vowel length). Visually speaking, hiragana characters
are known for their rounded, flowing strokes, often described as more cursive.

FiE - VDohiF

H

1= | %k

(X

X5

=

)

B0 S| F|FE|P o)L
Ve ks |08 Y
2182|822 TR %4
AT RIT RIS &
Bl |EcIPE|2|$2]%

Figure 6: Hiragana chart

Similar to hiragana, katakana is also a phonetic syllabary with 46 characters. It is primarily

uses are:

- Foreign words (e.g., 77 A U 77 (amerika) for “America)

15
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- Loanwords from other languages and adapted to Japanese (e.g., = > &= — & —

(konpyiita) for "computer™)

- Names. Specially for people and places not originally written in kanji (e.g., 7 > 7"

(anna) for the name "Anna")

Javier Sanchez Jiménez

- Onomatopoeia. Words that imitate sounds (e.g., /3% >~ (batan) for "slam")
- Scientific terms, often written in katakana for clarity (e.g., 7 1 — -

en-e) for “DNA”)
- Emphasis of words or phrases

Katakana characters are angular, with blocky strokes, and a stricter appearance than

hiragana.

Fik% - h&hr

TX + T (di-

PRV 2T MZ2Y 7Y
11 F 27|z 5 Y
717127278 |2VY
7 T|®02] |V
737\ Z1FEDRRT

Figure 7: Katakana chart

3.2.2 Kanji

Kanji characters have their origin in Chinese characters, hanzi, adopted around the 5%

century AD. They are ideograms and represent words or concepts, often with multiple readings

and meanings depending on context. Their readings are divided into two differentiated
categories: semantic reading and phonetic reading.

- Semantic reading or meaning-based reading are those in which the character conveys
the meaning directly (eg., 7K (mizu) for “water”).

- Phonetic reading or sound-based reading are those in which the character is used for its
sound, often corresponding to a related Chinese word (e.g., 7K (mizu) in “7K¥K (suiei)”

for “swimming”).

Kanji are primarily used for nouns, verbs, and adjectives, taking the core position of words,
and in some situations, they can also be used for adverbs and conjunctions.
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There are thousands of kanji characters, with some estimates reaching over 50,000.
However, a working knowledge of a few thousand is sufficient for basic literacy. Since the end
of World War II, the Japanese Ministry of Education has been working on a list of kanji which
are considered a literacy baseline. The latest update of this list is called “regular-use kanji” (%
FHiE5), and it was published in 2010. It consists of 2,136 kanji: 1,026 kanji taught in primary
school and 1,110 kanji taught in secondary school. All official government documents are
restricted to the usage of these kanjis.

3.3 Japanese Language Proficiency Test (JLPT) as a Reference Framework

Natural language differs from language imposed in classrooms by the mere fact that the
latter seeks to categorize language into distinct difficulty stages for easier learning. Traditional
methods aim to dissect language into discrete elements like grammar rules, vocabulary lists, and
pre-defined "easy" or "advanced" patterns. However, these constructed frameworks are absent
in natural language use. Everyday speech interweaves elements traditionally categorized as
easy, intermediate, and advanced by language instruction. Tenses, grammatical cases,
conditional structures, and diverse topics co-exist in natural conversations, regardless of their
perceived complexity by standardized learning methods.

Despite language being in constant change, evolution, and adaptation, we need to artificially
dissect it into a defined framework in order to study it, and this has been traditionally considered
the best and only approach to human language learning. Krashen (1989) defied this approach in
his book Principles and Practice in Second Language Acquisition, arguing that we humans learn
our second language through comprehensible input, by focusing on content and not in grammar,
and highlighting that input needs to be engaging for the learner. He advocates for an immersion
approach where understanding language takes priority over formal learning, grammar
understanding, and vocabulary memorization.

These principles do align with the way humans learn and understand language, however, in
the field of NLP, computers need complex language models with predefined patterns,
exhaustively defined grammar rules, and extensive list of vocabulary for understanding
language. It is due to this reason, that the development of this application needed of a solid
foundation and a predefined framework on Japanese language.

The JLPT, which stands for Japanese-Language Proficiency Test, is a standardized test
designed to assess the Japanese ability of non-native speakers. It evaluates the student’s
knowledge of the language, along with its reading and listening comprehension skills. The JLPT
consists of five levels, N5 being the most basic and N1 being the most advanced. Based on the
official JLPT website, a brief summary of the linguistic competences of each level would be as
it follows:

- N5 (Beginner): Understand and use basic Japanese for everyday situations. Can
recognize hiragana and katakana characters, along with basic kanji.

- N4 (Elementary): Comprehend frequently encountered Japanese in everyday settings.
Able to read short, simple texts and understand conversations on familiar topics.

- N3 (Intermediate): Grasp the main ideas of everyday Japanese on both familiar and
unfamiliar topics. Can read newspapers and articles with moderate complexity.

17



Towards Automated Complexity Grading: A Python-based
NLP Application for Textual Analysis of Japanese Javier Sanchez Jiménez

- N2 (Upper Intermediate): Understand the essential points of complex information on
both concrete and abstract topics. Able to read a variety of written materials, including
technical documents.

- N1 (Advanced): Comprehend a wide range of demanding, longer texts, and grasp
implicit meaning. Can express oneself fluently and spontaneously in complex
situations.

In addition to these competencies, it is mentioned that language knowledge, such as
vocabulary and grammar is also required for successful execution of the activities.

Based on this framework and supported by extensive kanji and vocabulary lists for each
level, it was possible to create a solid foundation of data to determine the degree of complexity
of a given text.
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4. Methodology

4.1 Data Collection

4.1.1 Selection of Texts

Javier Sanchez Jiménez

The texts were extracted from the Japanese Non-Profit Organization Tadoku. These texts

were handmade crafted with the aim of create graded reading materials for Japanese language
learners, and they are classified into six different levels of difficulty. This dissertation makes
use of 848 pages of level 0 texts, 325 pages of level 1 texts, 252 pages of level 2 texts, 216
pages of level 3 texts, and 155 pages of level 1 texts. A total of 1796 pages of graded texts in
Japanese.

According to their official data, these levels were designed taking into consideration the

following:
L5 Upper-
. L2 Upper- L3 Lower- L4 -
LO Starter L1 Beginner Beginner | Intermediate | Intermediate Inter;r;)%cil/l:te or
Starter level. Level 5 of Level 4 of Level 3 of Levels3and?2 | Levels 2 and 1 of
Printed from Japanese JLPT. JLPT. of JLPT. JLPT. More abstract
left to right for | Language Grammar Grammar less | Grammar even | vocabulary and
starting Proficiency Test | less controlled than | less controlled | idiomatic
beginners (JLPT). Same controlled Level 2. than Level 3. expressions and
instead of top to | vocabulary and | than Level 1. | Contents are Katakana have | longer stories than
Summary | bottom. Look grammar as in more varied no reading Level 4. No reading
carefully at the | Level 0 but with fewer printed next to | hints for Kanji that
pictures and stories are pictures. them. Stories Year 2 Japanese
illustrations and | longer. The are longer with | children should have
the story will lines are even fewer learned.
become self- perpendicular in pictures.
evident. levels 1 to 5.
Vocabulary 350 350 500 800 1,300 2,000
range
Word 1,500 ~ 5,000 ~
count/book 0~400 400 ~ 1,500 3,000 2,500 ~ 6,000 15,000 8,000 ~ 25,000
present form, present form, dictionary potential form, | causative Function words,
past form, past form, form, T- imperative form, compound words,
interrogative, interrogative, ~ | form, 7z | form, ~ & &, | causative idiomatic
~72uN,  etc. 72\, etc. form, ~ 5 e E passivE-z form, expres_s_ions,
% T4 and X | xT9dand £ | nominal Chh, ~ | T honorific
New 7" endings in 9~ endings. modification | =z 5 (information), eng;'f“?ist"i;a%
- ~~ ~ : R
grammar | the main. ik (appearance), 5 Lib\’ _
iti - ~IETP, ~ | W/ ~Eon T/l
elements (conditional) | ~ 1 5 ) 2L L
’ /\/73)) 6 (ConjecturE, %’)O), ~ J: D Eﬁ4<,/ = L/ 2
(cause), ~ | metaphor), 5129 5/7 | B/,
2%, ~@ | compound A, ~Z &
72, etc. | Verb et o5/
, etc.

Figure 8: NPO Tadoku levels
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4.1.2 Kanji Lists

Kanjis are compared against a simplified version of the KANJIDICT Project KANJIDIC2
list. This is a project carried out by the Electronic Dictionary Research and Development Group
(EDRDG), which aims to compile comprehensive information on kanji used in Japanese text
processing.

For the purpose of this dissertation, the list was delimited to only 2200 kanjis sorted out by
frequency. Kanjis appearing at the beginning of the list are far more common that the ones in
the middle to the end of the list, hence, a text with multiple uncommon kanjis would be
inevitably harder for a learner to understand.

4.1.3 Vocabulary Lists

Vocabulary is divided into five different lists, each of them corresponding to a JLPT level.
N5 has 669 words, N4 has 634 words, N3 has 1834 words, N2 has 1834 words and N1 has 3476
words. This makes a total of 8447 vocabulary words which tokenized input text will be
compared against.

These lists are CSV files that consist of three values, which are the kanji writing of the word
(if existing), the kana writing of the word, and the English equivalent or equivalents. It is worth
mentioning the importance that the kanji and kana fields have, because depending of the topic,
target audience, or complexity of the text, the same word could be written in kanji or in kana,
This is a relevant aspect to keep in mind and was considered when developing the application,
as the tokenized input text’s lemmas are compared against both the kanji and the kana field to
make sure no word is omitted due to their graphic representation.

4.1.4 Dictionaries

The dictionary intended to use is a simplified version of the Electronic Dictionary Research
and Development Group (EDRDG) JMdict dictionary. This simplified version was intended to
be used instead of the original due to multiple reasons. First, it uses a simpler JSON format
rather than the advanced original XML format. Secondly, it has a fixed structure for every entry
and every value is explicitly pointed. Finally, the field names are comprehensive for human
reading, as it does not use complex abbreviations without explanations.

In this simplified version, each entry represents a word or a phrase, and each entry contains
necessary fields that are: ID, kanji representation, kana representation, English equivalent, part-
of-speech, and its level of commonness. It also contains other fields that give additional
information such as: related, field, dialect, or language source.

Here is an example of an entry for the word i~ = which is a colloquial way to say

“hungry””:

{
"id": "2080610",
"kanji": [
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{
"common": false,
"text": "fE=t,
"tags": []
}J
{
"common": false,
“text": "E~Z",
"tags": []
¥
]J
"kana": [
{
"common": false,
"text": "I HR=t,
"tags": [],
"appliesToKanji": ["E~2="]
Ts
{
"common": false,
"text": "I HAZ",
"tags": []J
"appliesToKanji": ["JE-<Z"]
}J
{
"common": false,
"text": "NT Nz,
"tags": [],
"appliesToKanji": []
}
1,
"sense": [
{

"partOfSpeech”: ["adj-no", "adj-na"],
"appliesToKanji": ["*"],
"appliesToKana": ["*"],
"related": [["~Z~Z", 1]],
"antonym": [],
"field": [],
"dialect": [],
"misc": [],
"info": [],
"languageSource": [],
"gloss": [
{

"lang": "eng",

"gender": null,

"type": null,

Javier Sanchez Jiménez
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"text": "hungry"

}J

{
"lang": "eng",
"gender": null,
"type": null,
"text": "starving"

¥

]
¥
]
¥

This simplified version is further simplified including only essential information. Removing
several fields from the “sense” section and merging all the entries within the “gloss” section into
a single array containing all the translations. The resulting simplified structure would look like
this:

{
"id": "2080610",
"kanji": [
{

||teth|: "HE‘/\O:I II,
"common": false,

"tags": []

}s

{
"text": "fEZ",
"common": false,
"tags": []

¥

1,
"kana": [

{
"text": "{IHN=at,
"common": false,
"tags": []

}J

{
"text": "IIHRZ",
"common": false,
"tags": []

Ts

{
"text": "NTo~a,
"common": false,
"tags": []

}

22



Towards Automated Complexity Grading: A Python-based

NLP Application for Textual Analysis of Japanese Javier Sanchez Jiménez
1,
"sense": [

{

"partOfSpeech”: ["adj-no", "adj-na"],
"related": [["~Z~Z", 1]],
"gloss": [
"hungry",
"starving"
]
}
]

Originally, the intention was to include this simplified dictionary into the application,
allowing the user to consult essential information about the words in the text that are unknown.
However, this feature was not implemented as it was soon realized that the English equivalent
of the words were already implemented in the CSV files for the Vocabulary lists. This meant a
lack of information in the output given to the user, especially the Part-of-speech information.
The main reasoning behind this decision has been the fact that CSV Vocabulary lists are sorted
by JLPT level, which for the purposes of this application is essential. Meanwhile, despite giving
a more extensive list of words and information, the dictionaries lack a proficiency level-based
categorization of the word.

It is planned to implement this in an effective way into the application, potentially adding
another field to the CSV Vocabulary lists that include POS information without the need of
reading a whole dictionary only for that.

4.2 Python Libraries

The development of this dissertation required the usage of NLP tools that allowed to
process large amounts of text and had the ability to understand language.

4.2.1 spaCy

spaCy is an open-source library for advanced natural language processing written in Python.
It can be used for information extraction, natural language understanding, and preprocessing of
deep learning texts. Its functions are:

- Tokenization: Split text into words and punctuation.

- Part-of-speech (POS) tagging: Assign word types (verbs, nouns, etc.) to tokens.

- Dependency parsing: Assign syntax dependency (relationships between individual
tokens) labels to tokens.

- Lemma: Assignment of basic forms of words.

- Sentence Boundary Detection (SBD): Detects sentence boundaries.

- Named Entity Recognition (NER): Labels named entities (real objects) such as people,
companies, and locations.
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- Entity Linking (EL): Converts an entity into a unique knowledge base identifier.

- Similarity: Word, text span, text comparison, and similarity calculation.

- Text classification: Assign a category (or label) to all or part of the text.

- Rule-based matching: Search for sequences of tokens based on text and language
annotations, similar to regular expressions.

- Training: Update and improve predictions in statistical models.

- Serialization: Save the object to a file (or byte string).

In the development of this application, SpaCy is used to load GINZA’s language model
“ja_ginza_electra”

422 GINZA

GiNZA is an open-source Japanese natural language processing library. It is built based
on SpaCy’s framework and uses the open-source morphological analyser SudachiPy for the
tokenization process. Its main functions are sentence boundary analysis, morphological
analysis, dependency analysis, named entity extraction and phrase extraction.

GiNZA currently has two main language models available which are ja_ginza and
ja_ginza_electra.

- ja_ginzais a language model based on SpaCy’s architecture and includes pre-trained
word vectors for Japanese. It is designed to achieve an overall good performance on
general-purpose NLP tasks such as text segmentation, part-of-speech tagging, named
entity recognition and dependency parsing.

- ja_ginza_electra language model incorporates ELECTRA (Efficiently Learning an
Encoder that Classifies Token Replacements Accurately) architecture, a more recent
and powerful language model developed by Google. It achieves a higher accuracy and
better performance, specially in complex NLP tasks.

ELECTRA language model architecture training involves replacing some input tokens
with incorrect ones and training the model to distinguish between original and replaced
ones.

For the development of this application, “ja_ginza electra” language model, and two of
the GINZA’s main functions were used: tokenization and bunsetsu parsing. The
tokenization process is a simple process of parsing the given text into smaller units called
“tokens”. Each of these tokens is saved into a JSON file in which different information can
be stored. The basic information entries and the one used in this application are text,
normalized form, part-of-speech and lemmatized form. GINZA makes use of morphological
analysis to properly parse tokens.

This example shows the entry from a JSON file
for the word yukata, which is a traditional
Japanese summer garment. “Text” field is how
the word appears in the input text, “norm” is
the normalized form of the word, which in this
case would be written in kanji, “pos” is Part-
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of-Speech, or grammatical category, which in this case is noun, and finally “lemma” is the
lemmatized form of the word.

Lemmas are of special interest, as this field was the one used as reference when comparing
tokens against vocabulary list and other tokens. POS was also used as further reference when
same words had different grammatical categories, using POS field as an aid to remove
repetitions in the data frames.

Busetsu parsing function was used to offer the user a way to split sentences into smaller and
more comprehensive chunks.

The following example, taken directly from GiNZA’s blog, clearly shows the difference
between tokenization and bunsetsu parsing:

The sentence “JRVNHL A FF > TUN %7 is directly translated as “I have a red car”. On the
left, the sentence is tokenized into six tokens, the smallest unit of meaning possible, while on
the right, the sentence is split into three bunsetsus. A token is the smallest unit of meaning or
syntax in language processing, while a bunsetsu is a syntactic unit in Japanese consisting of a
content word and its associated function words.

This differentiation can be directly translated to the purposes of this application. Tokens are
useful for NLP dependencies to parse the text, while bunsetsus are useful to the user to properly
parse the meaning present in the sentences.

{aux)

f/ (obj) (aux} N [ {obj) N ( (aux) \
I‘ case ' Inar \ ac case mark

[—u-\\ I/‘D\' k ‘L ’f—-— \ J \, \Il |~(mark} \\' l
AR HL 7z T W3 FRL [ ES 7" ] 5o T W3
ADJ NOUN ADP VERB SCONJ AUX ADJJ INOUN ADP) |VERB SCONJ AUX
Universal Dependencies &% (d8H5E(~—2 2% GINZAT (XEAFEOZED TR & 12D EEADIKR
B &I 2EREFERGRIRDZNZER LTS, FREFEEXER L TEBI RS TYEZEMET

DIMFBEZIRADCENTE D,

Figure 9: Word-based tokenization vs. Busetsu-based tokenization

Translation:

Left graph: The Universal Dependencies system defines dependencies (affiliation) on the
basis of words (tokens).

Right graph: GINZA can distinguish and learn the dependency relationships of Japanese
phrases (bunsetsu) to head words, thereby capturing dependency structures that treat phrases
as units.

All the documentation and resources related to GiNZA can be found in its GitHub page and its
blog, however most of it is only available in Japanese. Documentation about the functions and
usage of the library was translated for the purpose of this dissertation.
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4.2.3 bunkoOCR

BunkoOCR is a transformer model-based OCR tool that extracts Japanese text present
in images and exports it in plain text, HTML, JSON, or AozoraBunko format using GPU
resources. Several parameters can be adjusted to improve its performance. These
adjustments allow for fine-tuning the recognition process for specific types of documents or
image quality.

- Character Thinning:

e blank_cutoff: Controls the threshold for ignoring thin lines during
processing. Higher values (default 35) focus on darker, more confident
characters.

- Furigana Recognition:

e ruby_cutoff: (0.0 - 1.0) Sets the confidence level for identifying small
characters (furigana) above kanji. Lower values (default 0.5) may capture faint
furigana, while higher values reduce false positives.

e rubybase_cutoff: (0.0 - 1.0) Similar to ruby_cutoff, but determines the
confidence level for the main character (base character) associated with the
furigana. A lower value (default 0.4) might recognize faint base characters.

- Text Layout:

e space_cutoff: (0.0 - 1.0) Threshold for detecting spaces between characters.
A lower value (default 0.75) improves separation but might miss spaces in
English words.

e line_valueth: (0.0 - 1.0) Confidence level for connecting characters into
lines. Lowering the value (default 0.5) might recognize distant characters as
part of a line.

- Character Detection:

o detect_cut_off: (0.0 - 1.0) Threshold for identifying individual characters.
Lower values (default 0.5) might recognize faint or unclear characters but
increase misidentification.

- Image Preprocessing:

e resize: Scales the input image for processing by the model. Useful for
adjusting character size within the model's optimal range (roughly 15-256
pixels).

- Performance:

e sleep_wait: Introduces a delay (in seconds) between processing images.

Useful for managing processing load on the system.

By adjusting these parameters, users can optimize the OCR tool for specific use cases,
such as handling faint text, complex layouts, or specific character types like furigana, which
were present in the files to work with, and no other OCR tool could properly deal with.

The original the resources, as well as the above summarized features are only available
in Japanese and were translated for the purpose of this dissertation.
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4.2.4 Pandas

Pandas is an open-source data analysis and manipulation library for Python. It provides data
structures and functions needed to work with structured data. For the development of this
application, Pandas offered an easy way to read and navigate through tokens JSON files and
vocabulary CSV files in order to access the pre-processed databases.

Additionally, a handy display functionality was used to properly show the user the list of
potentially unknown vocabulary list when they choose their proficiency level, by setting the
maximum number of display rows from the output to none and then printing the whole list of
matching vocabulary words.

4.3 Data Preprocessing

Data preprocessing was the initial part of the development of this project, done before the
architecture of the application or its functions were defined. A good foundation of data was
needed to generate relevant data and output from the input text given by the user. However,
once the data was collected, it had to be formatted and presented in a way it could be processed
properly by NLP application and libraries. Multiple challenges arose during this process, some
of them being easier than others to solve.

4.3.1 Cleaning Texts

Graded reading texts from Tadoku were presented in PDF format, and depending on the
text, they would be written horizontally from left to right or vertically from right to left. The
files also contained images, page numbers, and furigana readings.

Different approaches were tried on how to homogenize the cleanse of the PDF files, such as
multiple OCR tools, creating a script to convert PDF files into TXT files, converting the PDF
files into other formats such as HTML. Ultimately, the most effective way to do so was to
convert each PDF page to JPG image using a Python script, and then using an OCR tool called
BunkoOCR to extract the text in the images. Despite it being a simple and straight forward task,
it was not easy to find an OCR tool capable of dealing with furigana reading notations in an
effective way. Most OCR tools tried were unable to differentiate between kanji and furigana,
duplicating words when extracting the text from the images and causing a duplication of most of
the words present in the text. Others, which were supposedly trained to deal with Japanese
language, would often come up with text that was not present in the original files, adding
hallucinations to the original texts and modifying it considerably.

It is worth mentioning that BunkoOCR was the only tool found capable of dealing with this
problem. Furigana is a reading aid used in Japanese to display the reading of complex and
uncommon kanji. It places hiragana readings above the kanjis:
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% B i 4 B = Every OCR tool used to pe'rform this task failed, except .
% T G'D*L_g; B ;é “ BunkoOCR. Based on a pretrained LLM model to perform this

Uz < . . .
- g 1y 1 F ¢ task, the tool managed to offset the position of the furigana
T 9 LB A B LA ithi i i i
2 h L VWEAD R W|th|nthe_actual te'zxtglvmg asaresgltaplaln text without
DS kR EL /% #  these readings. This problem was quite relevant for the
% 3 < % E f)“ a :J: development of the application, as a text with furigana would
ROL ES&E & T T have extra tokens that are not needed and irrelevant, and it was
z 7 f;'é”‘ . . . ’ )
A % 4ff— not realistic to remove these furigana notations manually in
E ’ &/ ;§ 2%: 1796 pages.
W 78 E A
° % b & Figure 10: Furigana text marked by red boxes

Once BunkoOCR was used, the 1769 TXT files were merged, creating 5 different TXT files
each of them corresponding to one of the levels of complexity. These texts were further
cleansed by removing the extra unnecessary white spaces and line breaks and adding a line
break at the end of each sentence, this was done just to improve the human readability of the
texts files. Additionally, RegEx scripts were used to remove all the present ASCII error
characters after the OCR, and all non-Japanese characters such as alphabet letters and numbers,
which would be of no use when comparing the future tokens against Japanese vocabulary lists.
The used code snippet was the following:

for line in in_file:
text2 = re.sub(r'[\ufffd\ufffb\ufffo9\u3000\ueeas]’, '', line)
text3 = re.sub(r'[a-zA-Z0-9 ]', '', text2)
out file.write(text3)

With this process, a total of 1796 PDF pages were converted into images and the text in
them was extracted into TXT files which were later merged together, prepared for human
readability, and cleansed of non-Japanese, numerical, and error characters.

4.3.2 Tokenization

The tokenization process began by developing a script capable of utilizing GiNZA library to
tokenize the cleansed texts and produce a JSON file containing for each of the tokens produced,
the token text, the normalized form, the lemmatized form, and it’s part of speech. As mentioned
before, GINZA offers much more sophisticated functions, but these were not needed, and any
extra data would slow the script and unnecessary increase the size of the files.

In that regard, the script had to be adjusted because GiNZA 5.1 library makes use of
SudachiPy to tokenize the text, and SudachiPy cannot process texts over 49149 bytes.
According to sudachi.rs’s code, the maximum text length in bytes is defined
asule::MAX / 4 * 3, which equals to 49149. Therefore, if any given text is bigger that this size
in bytes, GINZA would raise and input error. According to Sudachi’s developers, this number
was chosen based on performance. This problem was solved by adding the following snippet to
the script:
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def tokenize_ text(text, max_length=49149):
# Divide the text into segments of a maximum length. Ginza cannot
process texts over 49149 bytes
segments = []
segment = "'
for word in text.split():
if len((segment + word).encode('utf-8')) > max_length:
segments.append(segment)
segment = word + ' '
else:
segment += word +
segments.append(segment)

These tokens would be saved in a JSON file, and the same code would be used to later
tokenize the input text given by the user. It is important to mention that this code takes into
consideration token repetitions. Before solving this problem, JSON files would contain almost
triple the number of tokens. This was because common words, proper names, conjunctions,
punctuation and other tokens would repeat with a text thousands of times. To achieve so, the
items were saved into a set, avoiding duplications. This problem was not only being inefficient
in terms of file size and processing time, but also adulterated considerably the metrics.

These tokens, both the graded reading ones and the input text ones would be saved and
compared against each other, giving us the percentage of matching lemmas from the input text
present in the graded reading texts, and allowing us to give an estimation of the level of the
input text.

Once the tokens were created, the JSON file looked like this:
1} Wl2Tokensjson X

data > tokens > {} Ivl2Tokensjson > ...

And having a total of:

- 2439 tokens from the graded reading beginner level
- 2436 tokens from the graded reading starter level (JLPT 5)
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- 2383 tokens from the graded reading upper-beginner level (JLPT 4)
- 1769 tokens from the graded reading lower-intermediate level (JLPT 3)
- 2442 tokens from the graded reading intermediate level (JLPT 2)

4.4 Kanji Statistics

The number of kanjis present in the input text was calculated with a RegEx expression that
identifies every unique kanji. A very kanji-dense text can be interpreted as a high-level text for
different reasons, such as a very specialized (medicine, engineering, etc.) or a text with a usage
of eloquent speech (novels, science fiction).

The output consists of a print of how many of the total characters in the input text are kanjis,
and how many unique kanjis are in this text.

count_kanji(text):
text_length = len(text)

kanji_pattern = re.compile(r'[ 1")

kanji_characters = kanji_pattern.findall(text)
kanji_characters_len = len(kanji_characters)
kanji_characters_percentage = (kanji_characters_len / text_length) * 100

The same was done with kana characters:

count_hiragana(text):
text_length = len(text)

hiragana_pattern = re.compile(r'[ 1)

hiragana_characters = hiragana_pattern.findall(text)
hiragana_characters_len = len(hiragana_characters)
hiragana_characters_percentage = (hiragana_characters_len / text_length) * 1ee

4.5 Vocabulary Extraction

Vocabulary extraction from the text can be considered the most attractive function to the
user in terms of learning possibilities. Being able to extract the terms that are potentially
unknown by the user offers a great way to quickly filter the text into known and unknown
words.

Using the tokens generated after tokenizing the input text and comparing them against the
vocabulary list that are organized into JLPT level, the user can get a detailed list of the words
that are present in the text, classified into JLPT levels, with their kanji form, their kana form,
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and their English equivalent. Additionally, the user received a percentage of how many of these
words are in each list, a percentage of how many are kanji and a percentage of how many are

kana.

These vocabulary list had to be cleaned in to contain the essential information for this
application, which are kanji reading, kana reading, and English meaning, looking like this:

B n3vocab.csvy X

data > vocabulary > B n3vocab.cs

Kanji,

> [ data
English

, "Ah!,Oh!"

213,
&M,
]
i,
>

>

BB,
=
B5H,
FDB,
=3,
=
B,
BT,

3

love
"greeting,salutation”
"love,affection”
"sign,signal”
ice cream
to love
"companion,partner,company”
"unfortunately,Sorry, but...."™
(electric) iron
out
"lamplight,light (in general),brightness"”
"room,time to spare,emptiness"”
"obvious,evident,clear"
"to give up,to abandon”
"to get tired of,to lose interest in,to have enough™
handshake
"devil,demon,evil spirit"
"to dawn,to become daylight"
tomorrow

As it can be seen in lines 2, 7 and 10, among others, some words lack kanji pronunciations and
only have kana. This was important to keep in mind with iterating through these CSV
vocabulary lists to get matching percentages, as each lemma had to be compared against both
the kanji field and the kana field to ensure its presence in the lists and get accurate matching

percentages.
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5. Application Architecture

5.1 Overview of the Application

This application is an easy-to-use and effective tool that allows Japanese learners to quickly
obtain some useful metrics and data that helps them estimate how complex a given text is. The
interactive interface from the terminal looks like this.

Welcome to the Text Processing Tool!

This tool will clean and tokenize your text files.

Please provide the input file with the text to process: ../data/news/news.txt

Input file: ../data/news/news.txt

Do you want to save the tokenized text to a JSON file? (y/n): n

Completed: 100.00%

What is your Japanese knowleged level? If you don't provide it, it will default to N5.
Please provide your Japanese level (N5, N4, N3, N2, N1): N3

Your Japanese level is: N3

You can choose one of the following options:
. Compare the tokenized text with a list of tokens.
. Compare the tokenized text with a list of vocabulary.
. Count the number of bunsetsu in the text.
. Get the number of Kanjis and Hiragana characters in the text.
5. Exit the program.
Please choose an option:

The four different options are:

1. Compare the text against Tadoku graded readings for learners: this option compares the
lemmas of the input text against the lemmas of the graded readings, giving percentages
of coincidences.

You can choose one of the following options:
. Compare the tokenized text with a list of tokens.
. Compare the tokenized text with a list of vocabulary.
. Count the number of bunsetsu in the text.
. Get the number of Kanjis and Hiragana characters in the text.
. Exit the program.
Please choose an option: 1

1vleTokens.json

Total matching: 94
1v11Tokens.json

Total matching: 19
1v12Tokens.json

Total matching: 13
1v13Tokens.json

Total matching: 11
1v14Tokens.json

Total matching: 20 -
Total matching: 157 - 71.84%

2. Compare the text against JLPT vocabulary lists: this option compares the lemmas of the
input text against JLPT vocabulary lists divided by level, from N5 (lower) to N1
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(higher). Once the comparison is done, the user is asked if they want the list of
vocabulary above their level to be printed and exported.

Please choose an option: 2

nlvocab.csv

Total matching Kanji: 15 - 6.52%

Total matching Hiragana: 33 - 14.35%

Total cumulative matching in this file:
n2vocab.csv

Total matching Kanji: 8 - 3.48%

Total matching Hiragana: 16 - 6.96%

Total cumulative matching in this file: 10.43%
n3vocab.csv

Total matching Kanji: 36 - 15.65%

Total matching Hiragana: 34 - 14.78%

Total cumulative matching in this file:
n4vocab.csv

Total matching Kanji: 19 - 8.26%

Total matching Hiragana: 17 - 7.39%

Total cumulative matching in this file:
n5vocab.csv

Total matching Kanji: 39 - 16.96%

Total matching Hiragana: 33 - 14.35%

Total cumulative matching in this file:
Total unique matching Kanji: 182 - 44.35%
Total unique matching Hiragana: - 29.13%

Do you want to get the vocabulary higher that the level you provided?

And a sample of the vocabulary:

N1 vocabulary:

Kanji Hiragana English
ih :2) A ) I (fem)
=y () 2 to flood, to overflow, to brim over
27 % a certain..., some...
to come, to orgasm

always, usually, every time, never (with neg. verb)

as yet, hitherto, not yet (neg)
to get in, to go in, to come in, to flow into, to set, to set in

to raise, to cause, to wake someone
I (ego) (boastful first-person pronoun)
tentative, provisional
department, section
article counter

once, ever
~street, ~quarters
to adhere to, to keep close to
< B8 to be engulfed in, to be enveloped by, to wrap up, to tuck in, to pack, to do up, to cover with, to dress i
FLy time, about, toward, approximately (time)
[ child, the young of animals
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(AR NaN
N mosquito
MaED examination of tickets
s shell,husk,hull, chaff
<22>2K to adhere to,to keep close to
<D to ask,to request
ZDED upper
it Koto (Japanese harp)
ZENS to overflow,to spill
L&3 to be wet,to become wet,to be damp
7K FLNTE drop of water
i s EECE:S crevice,crack,gap,opening
Rl 2 ERS) to print
HE) DOFA commuting to work
By oMLY dear,desired,missed
43 ES) to bear fruit
(> [CH> to be fragrant,to smell,to stink
#;D (D3 to appear (in print),to be recorded
NaN N3 large apartment,apartment house
#h < KDL gradually, finally,hardly

3. Count the number of bunsetsus (syntactic units) present in the text: this option is really
useful, as it breaks the text down into sentences, and each sentence is then divided into
bunsetsus. A bunsetsu is a syntactic unit that can be composed of multiple words. As
explained over this dissertation, Japanese language lack of spaces makes it unclear
where to divided words, and in terms of syntactic analysis, it is complicated for learners
to identify where a word begins and ends.

The output would look like the following:

Sentence: BHOLWVWELEL, BB LN ERE.
List of Bunsetsu: [BALLY, &, AL\, , ESLL, X&, BE. ]
Bunsetsu count: 6

Sentence: hEATIRIENICEERBR <TG IEDEL3DNTVS.
List of Bunsetsu: [fAld, AbIRR, b &, BREL, Uoithe, <2DLWTWLB. ]
Bunsetsu count: 6

Sentence: SO EHC {ETFDLVTLNA

List of Bunsetsu: [hEHTC L, U
Bunsetsu count: 2

Sentence: FAEICIBNMNIZALEEDHBOEDLDIC. AEPRUSRATNIS G,
List of Bunsetsu: [FE(C, @hiic, AEEOH, VO, BD, £DIC, , A&, HULTRAT, NFS5E, 2L, ]

Bunsetsu count: 1@

Sentence: K> HBPEF>RVELZVEDERL,. ETHHPMIRFLEN., CAUAEKICHELE TS,
List of Bunsetsu: [>Tz, EDOE, K, LWFEEZ, OEDB, 1., &TH, dvhig, fiF5H. , CALAE, &, 5T\ 3.

Bunsetsu count: 12

This would allow the user to properly know how to properly parse and interpret each
part of the sentence, helping them identify syntactic elements such as subjects, verbs,
direct objects, or indirect objects.

4. Get the number of kanji and kana characters in the input text: this is a simple function
that tells the user the number of kanji and kana characters respectively in the input text.
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Please choose an option: 4

The text length is: 896 characters and the number of hiragana characters is: 514 - 57.37% of the text
The text length is: 896 characters and the number of kanji characters is: 213 - 23.77% of the text

5.2 Desing and Implementation

The application is written in Python and designed around the use of functions.

A main (main.py) is implemented to execute the program and an init method (__init__.py) was
created to initialize all the functions implemented in the program.

A source folder (src) is implemented, which contains the main and all the functions withing the
folder “utils”. The “utils” folders contains Python script files for each of the functions
developed and used in this application. These functions are:

v src BatchCleanTokenize.py is a script that combines both
v utils the tokenization.py and the cleanText.py. It is
> pvcache designed to perform both tasks at the same time. The
' script removes Unicode error characters, removes
alphanumeric characters and extra white spaces,
removes line feeds, inserts line feeds after the
occurrence of “, 7, and saves it to an output directory.

_init__.py
batchCleanTokenize.py

bunsetsu.py

cleanText.py

countTokens.py Then, it is tokenized with tokenization.py using

mergeTxtFiles.py GiNZA'’s language model “ja_ginza_electra”, and
processFile.py tokenizing the text passing four of GiINZA’s preexisting
SICHEEREEEEES AN variables as arguments, which are “token.text_”,
tokenization.py “token.norm_”, “token.pos_”, and “token.lemma_".
main.py The text is divided into segments smaller than 49149
bytes (previously explained), tokenized with GiINZA, the tokens are added to a set to avoid
duplicates, and then converted again to a dictionary to be exported in JSON format.

MergeTxTFiles.py was used to combine the result of BunkoOCR, as each PDF page from
Tadoku graded readings was converted into JPG, and then OCRed into TXT files. These TXT
were merged together with this script.

ProcessFile.py is a script that has two reading functions: one for JSON files and another one for
CSV files. These functions make use of Pandas to get the data frames from the JSON and the
CSV databases.

TokenCoincidences.py is one of the main scripts which is in charge of comparing the input
tokenized text lemmas against the lemmas from the tokenized Tadoku graded readings, and
against the JLPT (N5-N1) vocabulary lists. This script has three functions, which are the
following:

- Function 1: ‘match_tokens (input_dataframe, token_dataframes)’
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This function matches tokens (concatenations of lemma and part-of-speech tags) between
the ‘input_dataframe’ and a dictionary of ‘token_dataframes’. This function was needed to
solve a problem regarding repetitions. Because of the nature of Japanese language and
GiNZA tokenizer, some words would be tokenized multiple times having different POS
tags, and this affected the metrics when comparing input lemmas against the database.

For example, the word “72\\” which literally means “no” and it is used to negate, was
considered to be up to 10 different tokens (words) in a single JSON file. The reason was the
fact that it was being saved as different due to its different writing (kanji and kana), and
most importantly because of its different POS. Depending on the usage and depending on
the tokenizer interpretation, a word can have multiple POS, hence the multiple tokens. The
agglutinative nature of Japanese also impacted heavily on this type of tokens, as suffixed are
added to words, in this case the negation, and depending on the context, it can be considered
different POS.

Concatenating both the lemmas and the POS and converting them into a set, allowed to
iterate through the input data frame avoiding repetitions and resulting in a much more exact
percentages of matching lemmas.

- Function 2: ‘match_lemmas(input_dataframe, vocabulary dataframes)’

This function matches lemmas from the ‘input _dataframe’ against two specific colums in
the ‘vocabulary dataframes’, which are the previously explained columns from the CSV
‘Kanji’ and ‘Kana’.

Comparing against both columns is key as some words ofter have kana representation but
lack kanji representation. Additionally, a text that aims for simplicity might use kana
versions of words that are often written in kanji, hence, the importance of iterating over both
columns until a match is found.

- Function 3: ‘match_vocabulary(input_dataframe, vocabulary dataframe, language
level)’

This function matches lemmas from the ‘input_dataframe’ against vocabulary data of
different JLPT levels (N5-N1). This function makes use of the user’s JLPT level inputted in
main.py, passing it as an argument and creating a list of matching vocabulary which
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contains words present in the text that are above the user’s level, displaying the matching
vocabulary entries.

Bunsetsu.py script contains a function that divides the text into sentences and counts the
number of bunsetsus in each sentence. As explained before, bunsetsus are syntactical units
present in Japanese that could be defined as phrases. These phrases have meaning by themselves
and are consist of a content word and zero or more function words.

The script contains a function capable of counting the amount of bunsetsu per sentence, printing
them to the user and allowing them to break down potentially complex sentences into easier to
understand chucks. GINZA’s language model “ja_ginza_electra” is imported with SpaCy to
perform this task, and GiNZA’s function “bunsetsu_spans” is used to parse the bunsetsu.
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6. Evaluation

6.1 Testing Data

Two different texts were used for testing the application, a news article, and a fragment
from a chapter of a novel. These two texts could be considered high-level Japanese texts aimed
for native speakers and represent material that could potentially be object of interest of a
Japanese learner.

The first one is a news article from the newspaper Asahi Shimbun titled: Asian Security
Conference: dialogue and long-term stability (7 ¥ 7 ZfR =ik stafEQREMOLEN).
The news despite being short in terms of length, it is full of specialized terms and deals with the
celebration of a conference in Singapore, where the ministers of defence of most East-Asian and
Pacific countries attended to deal with the situation of the growing tensions between China and
the US in Taiwan and surrounding areas and aiming for peace and respectful relations between
the countries in the area in order to achieve long term stability. The text has not furigana, which
means that the reader has no way to read uncommon and rare words that they don’t know prior
to the reading.

A Japanese learner should be at least intermediate-advanced to grasp the general idea of
what is being said in this article and have an advanced kanji foundation to fully understand the
idea presented, and probably many terms would have to be consulted in the dictionary to make
sure the text is being understood. An intermediate Japanese learner would have serious
problems understanding this text, and a native Japanese speaker might have some difficulties
reading certain kanjis depending on their literacy level and their educational background.

The second text used for this project is an extract from the novel Your Name (£ D4 13, )
written by Makoto Shinkai (#1##7). This novel is extremely popular in Japan mainly within
younger audiences and its author is considered to be one of the revelation authors of this era.
The novel deals with young romance. The language used in this novel is easy to understand and
very alike to everyday language, however, the author occasionally makes use of non-common
kanji characters to express subtle nuances that differentiate from common kanjis. These
characters can present a difficulty for readers and often times are accompanied by furigana
readings so the reader can understand the meaning of the word even if they don’t know the
kanji.

These are the few difficulties that a Japanese learner could confront dealing with this text,
and overall, an intermediate Japanese learner could read through it at a moderate pace without
many difficulties and some dictionaries look ups. An advanced Japanese learner would have no
problems understanding this novel with minimum dictionary look ups and for a Japanese native
speaker it would present zero difficulties.
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6.2 Evaluation Results

The results obtained from analysing both texts are the following:

Token coincidences:

Level O Level 1 Level 2 Level 3 Level 4 Total
News article 70 tokens 14 tokens 7 tokens 6 tokens 12 tokens | 109 tokens
25.36 % 5.07% 2.54 % 217 % 4.35 % 39.49 %
Novel 94 tokens 19 tokens 13 tokens 11 tokens | 20 tokens | 157 tokens

fragment 42.53 % 8.60 % 5.33% 4.98 % 9.05 % 71.04 %

Figure 11: Token coincidences between input texts and Tadoku graded readings

Vocabulary coincidences:

JLPT N5 JLPT N4 JLPT N3 JLPT N2 JLPT N1 Total
17 kaniji 13 kaniji 49 kanji 11 kanji 43 kanji 133 kaniji
5.76 % 4.41 % 16.61 % 3.73% 14.58 % 45.09 %
News article 23 kana 11 kana 29 kana 22 kana 22 kana 107 kana
7.80 % 3.73% 9.83 % 7.46 % 7.46 % 36.25 %
40 total 24 total 78 total 33 total 65 total 240 total
13.56 % 8.14 % 26.44 % 11.19 % 22.03 % 81.36 %
39 kanji 19 kanji 36 kanji 8 kanji 15 kanji 117 kanji
16.96 % 8.26 % 15.65 % 3.48 % 6.52 % 50.87 %
Novel 33 kana 17 kana 34 kana 16 kana 33 kana 133 kana
fragment 14.34 % 7.39 % 14.78 % 6.96 % 14.35 % 57.82 %
72 total 36 total 70 total 24 total 48 total 250 total
31.30 % 15.65 % 30.43 % 10.43 % 20.87 % 108.69 %

Figure 12: Coincidences between input texts and vocabulary lists by JLPT level
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You can choose one of the following options:
1. Compare the tokenized text with a list of tokens.
2. Compare the tokenized text with a list of vocabulary.
3. Count the number of bunsetsu in the text.
. Get the number of Kanjis and Hiragana characters in the text.

5. Exit the program.
Please choose an option: 4

The text length is: 1023 characters and the number of hiragana characters is: 424 - 41.45% of the text
The text length is: 1823 characters and the number of kanji characters is: 45@ - % of the text

Figure 13: News article number of characters in kanji and kana

You can choose one of the following options:
1. Compare the tokenized text with a list of tokens.
2. Compare the tokenized text with a list of vocabulary.
. Count the number of bunsetsu in the text.
. Get the number of Kanjis and Hiragana characters in the text.
5. Exit the program.
Please choose an option: 4

The text length is: 896 characters and the number of hiragana characters is:
The text length is: haracters and the number of kanji characters is: % of the text

Figure 14: Novel fragment number of characters in kanji and kana
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7. Results and Discussion
7.1 Overview of Results

Overall, the results obtained from the two texts align with what was expected in terms of
difficulty and both tokens and vocabulary matches.

In the first text, the news article, the number of matching tokens was a 39.49 %, paying
special attention to a 25.36 % of tokens from the Level O graded readings (the lowest level). The
nature of the graded readings, as explained in previous sections, is one of “artificially crafted”
texts aimed to Japanese language learners. This text contain meticulously chosen words which
are of high frequency, specially in the lowest levels, to help learners build a good foundation of
the language. This news article is a complex text with highly specialised vocabulary which is
not present in these graded readings, hence, the less than 40 % matching coincidence with most
of them being high frequency words.

In terms of vocabulary, an 81.36 % of the words are present in the vocabulary data set, from
which 45.09 % are kanji words and 36.25 % are kana words. This gives a great insight on how
highly specialised and formal text like a news article tend to use a high number of kanji words.
Furthermore, a 26.44 % of the words are from the N3 level (intermediate), the summatory of the
N3, N2, and N1 words make up 59.66 % of the words in the text, and only a 13.56 % of the
words are from the N5 level (beginner). This data furtherly clarifies how the nature of the text in
not one that would be suitable for a beginner, but rather a text for a intermediate-high student
that would be around N2 level.

Lastly, when comparing the ratio of kanji and kana number of characters, the results
obtained indicate that a 43.99 % of the characters were kanji while a 41.45 % of the characters
were kana. These results indicate once again that the number of kanji characters is high enough
for this text to be considered high-difficulty level and for a learner to have a solid language
foundation and a high level of kanji knowledge to be able to understand the idea behind the text,
and a deep understanding of Japanese language to be able to fully grasp the overall meaning of
this article.

On the other hand, the second text results are quite different. The number of matching
tokens was a 71.04 %, which is surprising due to the previously mentioned fact of these grading
texts being carefully crafted to contain only common words, characters, and structures. This first
result already gives a hint of the overall complexity of the text not being extremely high.

Vocabulary wise, a 108.69 % of the words present in the text are part of the vocabulary
lists. The reason for this result being over a 100 % will be discussed in the next section as is a
problem that has been identified and partially fixed but not yet completely. However, this high
number of coincidences is still a valuable result and shows that all words present in the text
were found in the vocabulary list, hence no complex or extremely specialised words from
outside the lists were present in the fragment extracted from this novel. As explained
previously, this is a novel aimed at teenagers and is written in a very casual style, therefore its
low level of complexity. In this novel fragment, a 57.82 % of the words were written in kana,
and a 50.87 % in kaniji, this ratio shows that kanji words are not used as much as the news
article, but still the ratio is close to fifty-fifty. Additionally, a 31.30 % of the words present in
the text correspond to the N5 level (beginner), and a 77.38 % of the words form a solid base
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from the N5, N4, and N3 levels, with only a 31.30 % being part of the N2 and N1 levels
(advanced).

Finally, in terms of kanji and kana characters, this novel fragment had a 57.37 % of
individual kana characters and only a 23.77 % individual of kanji characters. These results
provide a clear indication that the level of complexity of this text is not as high as the news
article. A Japanese language student with a solid foundation on the language and a wide
knowledge of kanji characters would have close to zero problems reading this text (N2 and N1),
it would be an appropriate reading for an intermediate student (N3), and it would be challenging
for lower proficiency students and beginners (N4 and N5).

7.2 Discussion of Findings

Overall, the results are very straightforward and provide clear insights of the complexity of
the input texts. Simply by taking a close look at the kanji-kana word ratio, the kanji-kana
character ratio, and the distribution of words through the different JLPT vocabulary lists a good
estimation of the level can be guessed. However, and as observed in the novel fragment, the
percentages of matching vocabulary words are not exactly accurate and are higher than they
should be.

This problem was identified early in the development of the application, as when comparing
the tokenized input text tokens lemmas against the vocabulary list entries, homophones (same
pronunciation and same kana writing) would be flagged multiple times, give up to 20 and more
coincidences in some cases and resulting in 250 % matching words in some tested texts.
Additionally, repeated words, such as proper names, were being counted multiple times. This
was solved by saving the coincidences in a set, avoiding repetitions, and taking into
consideration the POS of the lemmas as another comparing factor to avoid repetitions as much
as possible.

This, however, was not enough to solve the problem. When it comes to vocabulary lists,
lemmas would be iterated though both kanji and kana columns of all the 5 lists of vocabulary
(N5 to N1), first the kanji and stopping of a coincidence is found, and then the kana. However,
it was soon realised that multiple homophones were being triggered across all the vocabulary
lists. When a word is written in kana and the lemma iterates though the kana column, it stopped
on the first result, and that one was not always the needed one. As a result, it was decided to
include in the results all the matching homophones for a kana word, resulting in a higher % of
results. This would happen with all the five lists, so for example, the word % 5 sou is present
multiple times in the results because of it being a basic and highly used affix word with multiple
meanings, being present in all the vocabulary lists with multiple meanings and usages.

This problem was solved in the token lists by taking into consideration the POS of the
lemmas. However, the vocabulary lists are in CSV format and only contain three fields: kanji,
kana, and English equivalent. For this reason, a dictionary in JSON format was considered to be
implemented somehow as reference to further compare the input tokenized text lemmas and
have more context, but this idea was soon dismissed at it required a huge amount of work which
is out of the scope of this project at the moment. Additionally, it would be of high interest to use
some kind of NLP tool or library capable of identify patterns and contextualise words through
the understanding of the previous and following tokens, assessing the possibilities and only
choosing the homophone with the highest confidence interval.
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7.3 Limitations and Challenges

During the development of this project multiple limitations were found and a lot of
challenges had to be overcome. Some of them could not be solved and it is planned to
implement solutions in future versions of the application. Some examples were mentioned
throughout this dissertation such as the need to combine CSV Vocabulary list with Dictionaries
to increase the amount of information given to the user, such as Part-of-speech. Other intended
improvement of the application is to implement a graphic interface where the user can simply
paste the text that wants to analyse and have different buttons that allow them to use the
different functions present in the application. Finally, an automatic translation could be
implemented to the application. A simple API could be implemented, but also a corpus could be
downloaded, then aligned, and with this a small automatic translation that works for Japanese-
English language combination could be trained.

Regarding problems that were solved, all the relevant ones were already described. First one
was extracting text from PDF files in an efficient way. Dealing with furigana readings was a
real drawback and at some point, it seemed impossible to overcome, but thanks to proper
research (in Japanese language) BunkoOCR was found and implemented, solving the problem
in the blink of an eye.

Another problem was processing extremely long texts with the GINZA tokenizer, as the
Python has limitations in terms of size, but this was also solved by splitting the text in smaller
chunks before processing it, however, thanks to a comment in GitHub by another user it could
be solved.

The third main challenge was to notice that tokens were being repeated thousands of times
within the same texts. It is something that makes sense, but at that time it was not easy to realize
that elements such as proper names, common words, connectors, conjunctions, or punctuation
symbols were being repeated over thousands of times. That meant JSON files with over 70.000
tokens. This was fixed by simply modifying the code, so it skips tokens that have already been
added to the list of tokens. It was a real improvement not only in speed but also in accuracy.
Before fixing this issue, the metrics were not accurate as each of these repeated tokens would
trigger positive when comparing, resulting in adulterated results with higher matching
percentages, at some point close to 95% and 99%.

Finally, and as explained before, this project still needs some tool or NLP technology
capable of contextualising lemmas in a way homophones are properly addressed giving the user
the exact word they are looking for.
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8. Conclusion

After this project, the conclusions taken from this dissertation was indeed reassuming the
existing problems that Japanese Natural Language Processing faces when compared with most
languages.

First of all, the nature of Japanese language makes it extremely difficult to begin to work
with a Japanese text. The presence of three different writing systems, the lack of white spaces
that work as natural delimiters, the agglutinative aspects of the language, or the multiple ways
of writing the same word. All these combined together meant that multiple solutions had to be
developed to solve possible problems that could arise.

In second place, preprocessing all the data needed to create a size-acceptable and high-
quality database was surprisingly unexpected. Despite the high quality of the raw data collected,
numerous problems arose during the cleaning and preprocessing of these files. File formats,
dictionaries structures, optical recognition of characters, or repetitions in datasets where the
problems described in previous sections. These problems were solved to a certain degree as they
have a direct impact on the quality of the metrics and information given to the user, but to
achieve a complete and efficient fix a better approach and understanding of programming would
be needed.

Finally, and probably the biggest barrier to understand the complex topic presented in this
project, is the lack of research and bibliography and resources in any language that is not
Japanese. Most of the resources used in this dissertation were taken directly from Japanese
forums, GitHub repositories, or other websites that specialize in NLP. Some of them were
poorly translated into English, but most of them were only in Japanese. Furthermore, the
information about Japanese NLP in English was very limited and outdated, and it was almost
non-existent in Spanish. This, however, makes perfect sense with what was stated in this
dissertation: the majority of the problems presented during the development of this application
are not present in NLP for other languages (with very few exceptions). English and other
European languages NLP researchers do not have the necessity to investigate about these
problems, hence, there is no bibliography about it but only the one written by Japanese NLP
researchers.
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10. Appendices

News article used:

Asian Security Conference: dialogue and long-term stability (Automatic Translation)

The Korean Peninsula, the Taiwan Strait and the waters surrounding the Philippines.
Confidence-building through dialogue and exchange is essential in the Asia-Pacific region
because of the numerous crises that lie beneath the surface. Further efforts must also be made to
link this to the realisation of a stable order in the long term.

The Asian Security Conference was held in Singapore, where defence ministers and experts
from the region gathered to exchange views.

In conjunction with the conference, the defence ministers of the US and China met face-to-face
for the first time in 18 months. The two countries' growing military tensions in Taiwan and the
South China Sea led to heated exchanges, but it was a step forward that they agreed to set up a
working group to discuss mutual contacts in times of crisis.

In the US, in particular, the ruling and opposition parties are increasingly competing in their
hard-line stance towards China in the run-up to the elections. We hope that the military
authorities on both sides will not only prevent unforeseen situations, but also take a calm
response, keeping their distance from such political developments.

However, this should be a minimum goal. What is essentially required of the US and China,
which have a heavy responsibility for the world order as well as Asia, is to improve the security
environment over the medium to long term.

Of concern is the rapid build-up of nuclear forces and missile development in the region.
Negotiations between the US and China over nuclear weapons have not been reported since
November last year. At a time when Russia is making irresponsible nuclear threats, the US and
China should work together to reduce the nuclear threat.

In his speech at the conference, Chinese Defence Minister Dong Jun criticised the tensions in
the Taiwan Strait and South China Sea, saying that there is collusion and support by external
forces. Although he avoided naming names, he probably wanted to say that US involvement
was a problem.

However, it is an indisputable fact that the Chinese military has strengthened its presence in the
South China Sea, including by turning reefs into military bases, and that this has caused tensions
in the region. China must take seriously the fact that the participants in the conference pointed
out the inconsistency of their words and deeds one after another.

The US, on the other hand, is also keen to build a deterrence network against China with its
allies and friends, including Japan. Japan is also increasing its involvement in the South China
Sea through its support for the Philippines.

The situation has led Indonesian President-elect Prabowo Indonesia to complain that the Global
South (emerging and developing countries) is disillusioned by the rising geopolitical tensions.
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We should listen sincerely to the voices of countries that wish to realise stability through
diplomacy rather than competing for military power.

The agreement between Japan and South Korea on measures to prevent recurrence and the
resumption of defence exchanges over the radar irradiation issue is a welcome move. A calm
response that does not politicise the issue again and does not turn Japan-South Korea relations
into a new source of instability in Asia is essential.
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Novel used:

Your Name by Makoto Shinkai (Automatic Translation)
Published by Kadokawa Bunko
Nostalgic voices and smells, lovely light and temperature.
I am perfectly attached to someone | care about, with no gaps.
I am inseparably bound to them.
Just like when | was a baby in the arms of my breast, there is no trace of anxiety or loneliness.
I have not lost a single thing yet, and a very sweet feeling fills my body.
Suddenly, my eyes open.
The ceiling.
Room, morning.
Alone.
Tokyo.
-1 see.
| was dreaming.
I raise myself from the bed.

In those mere two seconds, the warm sense of togetherness that had enveloped me a moment
ago is gone.

There is no trace, no aftertaste.

So abruptly, almost before I can think of anything else, tears begin to fall.
When | wake up in the morning, for some reason | am crying.

This happens to me from time to time.

And | can't always remember the dream | should have had.

| stare at my right hand, which has been wiped clean of tears.
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A small drop of water on my index finger.

The dreams | had just a few moments ago, the tears that moistened the corners of my eyes for a
moment, have already dried up.

Something very precious was once in my hand.

In my hand.

| don't know.

| give up, get off the bed, leave the room and head for the bathroom.

While washing my face, | stare in the mirror, feeling as if | had once been surprised by the
lukewarmness and taste of this water.

A somewhat disgruntled face is looking back at me.

I tie my hair up as | stare in the mirror.

I slip my sleeves into my spring suit.

| finally put on the tie I've grown accustomed to tying and put on the suit.

| open the door to my flat and I close it.

In front of me, the landscape of Tokyo, finally familiar to me, spreads out before me.

Just as | once naturally learnt the names of the peaks of the mountains, | can now name some of
the skyscrapers.

| pass through the crowded station gates, down the escalator, onto the commuter train, I board.
I lean against the door and watch the scenery flow by.

The windows of the buildings, the cars, the footbridges, the streets are full of people.

The sky is white with a hazy, flowery overcast.

Cars with a hundred people in them, trains carrying a thousand people, and the city through
which those thousand trains flow.

I find myself, as usual, looking at that city, looking for someone, and only one person.

Me,
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