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I. Research group 
This research project was conducted within the LIVENlab research line, which is part of the 

Sostenipra Research Group at the Institute of Environmental Science and Technology, 

Autonomous University of Barcelona (ICTA-UAB). The primary objective of the LIVENlab is to 

develop an environmental assessment tool that enhances decision-making in selecting the energy 

technological mix that will return a more sustainable scenario than the current energy plan. 

More specifically, this study aligns with the ongoing efforts of the SEEDS project, where we aim 

to incorporate human elements into the design of energy transition scenarios. This involves the 

modelling of technical, economic, and environmental parameters, with Portugal as the primary 

case study. The project consists of a consortium of four European institutions; Centre for Ecology, 

Evolution and Environmental Changes at FCiências.ID / Universidade de Lisboa; The HCI group 

at Tallinna Ülikool (Tallinn University); and the Climate Policy research group at ETH Zürich in 

cooperation with the Department of Engineering Systems and Services at TU Delft. This project 

has been funded by the European Coordinated Research on Long-term Challenges in Information 

and Communication Sciences & Technology CHIST-ERA grant CHIST-ERA-19-CES-004, the 

Swiss National Science Foundation grant number 195537, the Fundação para a Ciência e 

Tecnologia (FCT) grant number CHIST-ERA/0005/2019, the Spanish Agencia Estatal de 

Investigación with grant PCI2020-120710-2, and the Estonian Research Council grant number 4-

8/20/26.  
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II. Cover Letter 
Dear Editorial Board, 

Herewith, we would like to submit our innovative article on the relevance of the environmental 

assessment of energy system models entitled “Sustainable by design energy systems for the 

energy transition”. 

Significance of this article: This study contributes to closing the gap of the lack of sustainability 

parameters in energy system optimization models. Unlike previous studies that predominantly 

focus on analyzing singular optimal solutions, our research endeavours to bridge this gap by 

exploring a comprehensive option space encompassing multiple suboptimal energy transition 

pathways. Limiting the scope to a few configurations neglects the potential alternatives that may 

yield lower environmental impacts and higher social acceptance.  

We present the environmental evaluation of 261 energy transition configurations for the year 2050 

in Portugal by combining Life Cycle Assessment (LCA) and Multi-Scale Integrated Analysis of 

Societal and Ecosystem Metabolism (MuSIASEM) frameworks. We go beyond the mere 

quantification, differentiating the attributes that render a configuration either low-impact or high-

impact in comparison with others. By doing so, our research not only enhances our understanding 

of the environmental impacts but also sheds light on the specific characteristics that contribute to 

the relative sustainability of energy system configurations.  

Moreover, our study enables the identification of lower-impact alternatives, providing a decision-

making option space for stakeholders based on their preferences. Conducted within the SEEDS 

project, this research recognizes the diversity of energy transition pathways and their 

environmental impacts, offering decision-makers valuable insights to navigate toward sustainable 

solutions that harmonize environmental preservation with societal needs. 

Our findings are particularly relevant for energy modelers, academics in the field of industrial 

ecology and energy modelling, NGOs, consulters, and policymakers. 

The novelty of this work lies in the environmental analysis of a wide range of suboptimal energy 

transition configurations. It is the first work that compares traditional energy system methods with 

modelling to generate alternatives approaches in terms of environmental impacts.  

This work is important as it addresses the deficiency in current sustainability parameters within 

energy system optimization models. By exploring a diverse range of energy transition pathways, 

including suboptimal options, it unveils alternatives often overlooked in previous studies focused 

on singular optimal solutions. This approach not only enhances our understanding of 

environmental impacts but also provides decision-makers with valuable insights to navigate 

toward sustainable solutions that balance environmental preservation and societal needs, a key 

consideration for future energy planning and policy development. 

We believe that Applied Energy is a good match for this research due to its focus on 

interdisciplinary research in energy applications. The journal’s commitment to innovative 

approaches aligns with our exploration of diverse energy transition pathways. 

The manuscript has been spelled-checked by the author and the supervisor.  We are available to 

review at least three new submissions for Applied Energy within the next year. 

Thank you for considering our submission, 

Kind regards, 

Alexander de Tomás Pascual and Cristina Madrid López  
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III. Highlights 

• Research highlights 1: We combined Energy System Optimization Models with 

Life Cycle Assessment (LCA) and Multi-Scale Integrated Analysis of Societal and 

Ecosystem Metabolism (MuSIASEM) frameworks generating 261 energy transition 

configurations for the year 2050 in Portugal. 

• Research highlights 2: Conventional energy system optimization techniques are 

able to produce low environmental impact configurations compared to other 

alternatives. 

• Research highlights 3: Configurations emphasizing higher thermal storage and 

thermal generation tend to pose greater environmental harm.  

• Research highlights 4: We find no apparent trade-offs in environmental impacts 

when viewed from the broad lens of an energy system perspective, whereas we 

can observe them at disaggregated levels.  
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1 Introduction 
Policymakers recognized the need for long-term energy planning during the ‘70s oil crisis, which 

led to the development of energy policy as a field [1]. The development of linear programming 

following the end of World War II allowed for the deployment of the first energy system models 

(ESM) [2] which were concerned with several purposes, such as better energy supply system 

design given a level of demand forecast, better understanding of the present and future demand-

supply interactions, among many others [3].  

While energy systems models were initially focused on energy security and costs, climate change 

policy has emerged as a powerful factor driving many studies, with a focus on pathways to achieve 

significant reductions in greenhouse gas emissions [4,5]. According to the Intergovernmental 

Panel on Climate Change (IPCC) [6], renewable energy must supply 70-85% of the world’s 

electricity by 2050 to limit global warming to 1.5ºC. The swift to a low-carbon energy system is 

necessary in order to reduce the impacts of climate change on energy systems. However, this 

transition is far more complex than replacing fossil energy with renewable energy [7]; it is defined 

as a wicked problem because the achievement of these objectives may result in a cascade of new, 

unforeseen, and unwanted challenges [8]. This is so, in part, because the definition of energy 

policy objectives highly relies on energy modelling with energy models which usually obviate 

social and environmental parameters. Not only this omission risks the suitability of the models, 

but it may also result in erratic or impractical energy transition strategies [9]. 

The combination of Life Cycle Assessment (LCA) and ESM can provide solutions to handle trans-

disciplinary issues such as energy transition [10]. Previous research has attempted to combine 

models of energy systems with life cycle assessments. However, as noted by Junne et al. [11] 

most of these studies have covered a limited number of technologies or have narrow sectoral 

boundaries. Only a few have broken down environmental impacts into operation and 

construction[12–14], and none, except for the authors mentioned, have adjusted the global 

background electricity mix. To the best of our knowledge, all these previous studies have relied 

on non-open-source frameworks, either the energy or the environmental models, and none of them 

include uncertainty analysis.  

Additionally, it is important to note that current research tends to only examine a limited range of 

scenarios. This could obscure other solutions that could satisfy the needs of multiple stakeholders 

involved in transitioning to renewable energy systems [15]. The application of energy models that 

generate multiple feasible alternatives allows energy modelers to better support decision-making 

processes [16]. Moreover, the open examination of a wide range of alternatives along with a 

holistic approach to the environmental consequences beyond carbon emissions could improve 

decision-making and social acceptance of decarbonisation policies.  



8 
 

Meanwhile, the scientific community has been experiencing an atmosphere of declining trust in 

the public sphere. These dangers for science become most evident when models are used as policy 

tools [17] (e.g., consider, for instance, the criticism and skepticism towards climate change or 

epidemiological models). Black box models do not perform well in this context; they cannot be 

verified, discussed, or challenged [18]. Hence, transparency criteria must be adopted to allow 

third parties to replicate the results. In this context, open-source, sensitivity auditing, uncertainty 

analysis, and communication play a distinguishing role. 

This study contributes to closing the gap of the lack of sustainability parameters in energy system 

optimization models based on the Modeling to Generate Alternatives (MGA) approach. We do so 

by calculating and assessing an option space of suboptimal energy transition pathways instead of 

a unique optimal solution. Besides, we acknowledge the challenge of choosing “the best” scenario 

in an option space for a decision with high stakes and high uncertainty. We combine two open-

source tools (Calliope and ENBIOS) to analyze the environmental impact of 261 energy transition 

configurations for the 2050 energy transition scenario in Portugal.  

Thus, we provide a better comprehension of the multiple trade-offs for near-optimal energy 

transition configurations that will translate into higher social acceptance and lower environmental 

damage. Most notably, we address the absence of prior research that analyses a substantial number 

of alternative scenarios and the methodological challenges inherent to the high-dimensional 

option space of alternatives.  

With this work, we answer the following research questions: i) How do the environmental impacts 

of the unique energy pathway of singular-solution optimization models compare to the impacts 

of an array of alternatives from a multi-solution optimization model?; ii) What are the defining 

attributes that classify an energy pathway from an option space as sustainable? And iii) What are 

the trade-offs between different environmental impacts? 
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2 Materials & Methods  

2.1 Energy System Model for Scenarios Development 

Energy systems are defined as the process chain (or a subset of it) from the extraction of primary 

energy to the use of final energy to supply services and goods [19,20]. We refer to energy systems 

models as the mathematical representation of the behavior of energy systems and are used to study 

possible various energy-related problems[21].  

Calliope is an open-source tool that allows building energy system models while keeping user-

friendly characteristics [22]. It is based on linear programming algorithms while also accepting 

mixed-integer optimization, helping to develop energy systems in which renewable energy plays 

a distinct role. Calliope’s key features include the ability to handle high spatial and temporal 

resolution and easily run on high-performance computing systems[22]. 

Energy system optimization models identify the system configuration to reach a target with the 

minimum cost [19]. Nevertheless, focusing on a single optimal solution may hide feasible but 

perhaps radically different alternatives [15]. This fact becomes notable when considering the 

different stakeholders involved in the energy transition. In that regard, SPORES [23] appears as 

an extension of the modelling to generate alternatives (MGA) method. This approach generates 

multiple energy system configurations with high shares of renewable generation using high spatial 

and temporal resolution.  

The SPORES approach has been applied for Portugal as a case-study, generating over 261 

different energy transition configurations by the year 2050. In this work, we use the output of this 

modelling carried out in the SEEDS project [24] .  

2.2 Environmental modeling with ENBIOS 

We used ENBIOS (Environmental and Bioeconomic System Analysis) [25] version 2.1.12 to 

analyze the environmental impacts of over 261 energy transition configurations in Portugal. 

ENBIOS is a Python-based tool that integrates both Life Cycle Assessment (LCA) and Multi-

Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) methodologies. 

A general description of the methodology is shown in Fig [1]. 
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Figure 1: Methodology summary 

 

2.3  LCA settings 

This study has been conducted following the ISO standards 14040/14044 [26] for LCA studies.  

2.3.1  Goal and scope  

The objective of this study is to evaluate the environmental impacts across various categories 

associated with different energy transition configurations as outlined by Calliope. The functional 

unit for this analysis is specified as the energy production for each technology identified within 

every scenario, a similar approach such as Blanco et al. [27]. In other words, rather than 

calculating the environmental impacts of a product, it is defined as the satisfaction of the energy 

demand (composition) of every different pathway included in the energy modelling. 

In terms of the scope, the energy modeling divides Portugal into two regions: North and South. 

Each region is further divided into multiple subregions. Because of the lack of regionalized data, 

we kept the analysis at the national level. Therefore, the results are presented at a national level 

rather than at a regional level. We have a yearly resolution, and the time scope is year 2050. 

The foreground system comprises the technologies present in the energy modeling data, including 

electricity and thermal generation technologies, storage, electricity imports, and processes that 

convert energy carriers (such as biofuel to methanol). To link the energy data with the LCA data, 

a "technology mapping" was carried out. This involved connecting each technology to an LCI 

dataset using a soft-link approach. An external module, specific for the soft-linking between 

Calliope and ENBIOS has been developed [28] . 

The energy modeling framework generated several output files, containing information about the 

energy production mix, installed capacity, and import dependencies, among others. The data used 

in this study was sourced from the “flow out sum” file, which contains information on the energy 

mix of each spore. The file corresponds to the net energy requirements (NER), and it’s expressed 
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in TWh. To connect with the inventory data, unit conversions were required. For more information 

regarding the conversions, check out the supplementary materials 8.2. 

2.3.2  Life cycle inventory 

The Life Cycle Inventory (LCI) data used in this study was obtained from the ecoinvent 3.9.1 

cutoff database [29]. The region of Portugal was selected as activity location wherever possible 

for the activities. In cases where that was not available, the closest region was chosen as a proxy. 

Inventories for green hydrogen production were extracted from the literature because they were 

either not available on ecoinvent or did not represent the technology under study accurately. 

Finally, for the case of hydrogen turbines, where no inventories were available, a normal natural 

gas turbine from ecoinvent was selected and modified as a proxy. A list of the mapping, sources 

and modifications can be found in the supplementary materials. 

The sectors and technologies included range from electricity and thermal generation technologies, 

electricity and thermal storage, carrier conversion technologies, and imports of electricity. 

2.3.3 Prospective inventory modification 

The global markets for electricity were adapted using 2050 projections in order to consider future 

background changes in the electricity markets. The background processes were modified by 

changing the market for electricity activities. The data for this modification is based on a 2ºC 

increase scenario in 2050, provided by Teske et al. [30]  and processed by Junne et al [11]. This 

data defines an electricity mix for different world regions. To summarize, we have identified all 

the countries that have one or multiple markets for electricity and matched each of them with the 

different regions set in the projection. Then, we updated every market with the values defined in 

the corresponding region and made some corrections to match different ecoinvent versions. The 

code is available in our GitHub repository (https://github.com/LIVENlab/Sparks.git) to ensure 

transparency and replicability. This modification is applied only once to the entire database. 

2.3.4 Life cycle impact assessment (LCIA) 

As for the life cycle impact assessment, we use ReCiPe midpoint indicators 2016 v1.03 [31], 

covering different impact categories: climate change (global warming potential), ecotoxicity 

(freshwater ecotoxicity potential and marine ecotoxicity potential), land use (agricultural land 

occupation), water use (water consumption potential), particulate matter formation (particulate 

matter formation potential) and material resources (surplus ore potential). Additionally, we 

incorporate natural resources (biotic resources) from Ecological Scarcity 2021 [32]. The ReCiPe 

methods were applied from a hierarchical perspective, which is situated between the short-term 

focus of individualism and the more cautious, egalitarian approach. 
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2.4 Upscaling with MuSIASEM 

The soft-linking approach was complemented by a bottom-up characterization of the energy 

system coming from the MuSIASEM framework. Fig [2] shows the dendrogram, a hierarchical 

representation of the energy system that can be useful for the comparison of different scenarios at 

different levels. This information is softlinked to the LCA modelling. The energy system is 

divided into generation, storage, conversions, and imports. The first two categories are further 

divided into electricity (mechanical energy) and thermal technologies.  

Figure 2: Integrating the representations of MuSIASEM and LCA 

 

2.5 Analysis of model, results, and uncertainty  

In this work, we analyzed the uncertainty propagation by using the most common approach: the 

Monte Carlo method [33].  While this method is effective, it requires a significant amount of 

computational effort. Typically, the method needs between 1,000-10,000 iterations to achieve 

convergence [33] and it is difficult to calculate the precise number of iterations required. Still, we 
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opted for Monte Carlo simulations as it is a well-accepted and robust method. We performed 500 

iterations in one spore selected randomly from the set of results. The results are presented in a 

distribution plot in Fig [10].  

We also conducted a study to analyze the relationship between inputs (energy data) and outputs 

(environmental impacts). Specifically, we examined the technologies that are associated with a 

particular environmental impact by observing the correlation between the input (amount of a 

particular technology) and the output (environmental impact). We used linear regression 

coefficients and Spearman correlations. These analyses were conducted using the NumPy[34] and 

SciPy[35] packages in Python. 

All the impacts are presented in ranges between 0 and 1, with 0 being the lowest value of the array 

and 1 being the highest to allow the comparison between different indicators with different units. 

This approach provides a consistent framework for evaluating different statistics, while keeping 

numbers interpretable, which is practical for policymakers.  

Additionally, we applied K-Means to cluster the different spores [36] and was examined through 

the Silhouette coefficient. Then, a Random Forest Regressor algorithm [36]  was applied to the 

input dataset and the clusters obtained, with the goal of predicting to which group of impact 

belongs based on the energy composition. It was trained by partitioning the dataset into 70% 

training and 30% testing. Finaly, feature importance values were extracted to provide insights into 

the contribution of various inputs to observed environmental impacts.   
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3 Results 

3.1 General distribution of results 

We calculated the environmental impacts of 261 different energy transition configurations in 

Portugal for the year 2050. Firstly, at the first level (n, Energy system) and as shown in Fig [3] we 

can observe a tendence of accumulation of pathways in the lower sections of the distribution (area 

between 0 and 0.4) except for biotic resources. This fact, also remarked by the median lines on 

the violins, indicates that most configurations tend to a lower impact. On the other hand, Fig [3] 

also indicates the position of the spore “0” within the distribution. This spore is the initial result 

generated by Calliope and all subsequent spores are produced based on this output. Essentially, it 

is the minimum cost solution, and it matches the outcome that a conventional cost-optimization 

modelling would produce. It can be observed that this “cost-optimized” spore is one of the 

configurations with the lowest overall environmental impact in the set of results, except, again, 

for the biotic resources indicator. Excluding the uncertainties and epistemological limitations 

discussed in further sections, our findings suggest that configurations relying solely on monetary 

and demand parameters are able to align with environmental parameters, at least when compared 

to other configurations based on cost relaxation (spores). 

Figure 3: Distribution of the Environmental impacts of 261 pathways. Normalized between 0-1 

by the smallest and highest value. 

 

The different spores were clustered according to the relative impact in the different categories 

using K-means. The biotic resources indicator was excluded from this analysis due to its different 

distribution, as shown in Fig [3], which would eventually result in a disturbance in the clustering 

process. As a result, the spores were successfully clustered into two different groups, which can 

be regarded as “low-impact spores” (group 0) or “high-impact spores” (group 1) and resulting in 
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171 and 90 spores respectively. The clusters obtained a global Silhouette coefficient of 0.71, 

indicating a good differentiation between the groups. An example of the grouping is shown in Fig 

[4]. 

Figure 4: Example of clustering. Water consumption results for the whole energy system (n) 

 

We investigated the factors in the input (energy data) that may be responsible for the 

differentiation between high-impact spores and low-impact. Initially, we found no significant 

differences in the energy composition between groups 0 and 1 when looking at the n-1 level 

(generation, storage, conversions, and imports). However, significant differences emerged when 

analyzing the n-2 level. According to the p-values of the mean differences as depicted in Fig [5], 

high-impact spores tend to have a larger amount of thermal storage and produce more heat, while 

lower-impact spores tend to have more electricity storage.  

Figure 5: Mean differences between energy input clusters. p-values: 0.03, 0.67, <0.01, 0.58, 

<0.01, <0.01 respectively 
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Upon closer inspection of the system, we conducted an analysis at the n-3 level. This involved 

employing a random forest regressor to predict the assignment of spores to either cluster 0 or 1 

based on their mix configuration. The dataset was partitioned into 70% training and 30% testing 

set, resulting in a 100% accuracy score in predictive performance. Then, we computed the feature 

importance, and the result is presented in Fig [6]. Heat storage technologies have a high influence 

on the predictive capabilities of the model, followed by combined heat and power technologies.  

Figure 6: Feature importance of Random Forest Regressor 

 

These results align with the observation made on level 2: thermal technologies play a decisive 

role on the overall impact of the configuration. This idea is further supported by the Spearman 

correlation values between energy inputs (n-3 level) and the general impacts in each category, 

which is shown in Fig [7]. Additionally, Fig [7] indicate a strong correlation between biofuel 

supply and the biotic resources indicator. This result explains the almost “discrete” distribution 

observed in Fig [3], which may follow the demand of biofuel supply defined in the spores. 

However, it is important to approach the negative values presented in the analysis with caution. 

The strength of Spearman correlation lies in its ability to handle non-linear relations. This attribute 

proves valuable in our context, where we are linking individual inputs to the overall impact 

generated by the collection of technologies. Consequently, a negative relationship becomes 

implausible from a Life Cycle Assessment standpoint. It should be noted that the Spearman 

correlation may not fully capture the dynamics of other components when assessing individual 

technologies. Global Sensitivity Analysis techniques would provide a more nuanced perspective, 

offering insights into the interplay of factors influencing the outcomes.  
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Figure 7: Spearman correlation values between impact categories (n) and input technology (TWh) 

 

3.2 Trade-offs and selection of spores 

We then examined whether there are trade-offs between the different environmental impacts. The 

findings indicate a strong correlation between most impact categories, apart from the biotic 

resources category (Fig [8, a]). This suggests that if one energy configuration has a significant 

impact on certain categories, it is highly probable that all other categories will have the same level 

of impact as well. Thus, the results reject the notion of multiple trade-offs between environmental 

impacts when examining multiple alternatives, at least when viewed from an energy system 

perspective (n). 
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Figure 8: Correlation coefficients (r) between impact categories at the energy system (n) (a) and n-1 levels (b). 

 

 

Nevertheless, as we delve into deeper layers of the system, this notion becomes less clear. It is the 

case for generation and conversions categories, where this correlation diminishes, and potentially 

allowing for trade-offs in the design and selection of this levels (Fig [7 b]). The observed absolute 

 a) 

 b) 
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correlation for the imports can be attributed to the fact that the level comprises only one activity, 

as illustrated in Fig [2]. 

Despite the strong correlation between outputs, there is still some room for trade-offs to appear, 

especially since the energy mix may differ. Table [1] displays the top four configurations with the 

lowest impact for each category. Although these configurations are likely very similar, we 

observed that a small percentual difference in the energy mix may result in a significant difference 

in the onsite impacts, and consequently on social acceptance. This amplified effect results from 

the bigger size of the energy system, which we can better understand due to the upscaling in the 

analysis. A small percentual change can be traduced a large number new installations for 

technologies like wind and solar.  Table [1] illustrates that various SPORES alternatives are viable 

based on the specific indicator to minimize. To provide a better understanding of the spores’ 

composition, Fig [10] shows a comparison of three selected spores from Table [1] at the n-2 level, 

while Fig [12] presents the relative input of the entire set of spores at level n-1. 

Table 1: Top 4 spores with the lowest impact for each indicator  

Global 

Warming 

Potential 

Freshwater 

Ecotoxicity 

Potential 

Agricultural 

Land 

Occupation 

Surplus 

Ore 

Potential 

Water 

Consumption 

Potential 

Marine 

Ecotoxicity 

Potential 

Particulate 

Matter 

formation 

Biotic 

Resources 

83 83 191 83 83 83 83 51 

152 155 192 152 152 155 152 111 

155 152 182 155 161 152 155 131 

162 0 183 162 153 0 153 221 

 

Even though a few spores signify themselves by the repeated appearance in the top 4, it will be 

dangerous to say that these are the best spores. Defining the best energy configuration will also 

depend on the valuation that different groups would give to the different impacts. For example, 

Table [2] exemplifies that the spore that would be selected for each of the personas based on the 

possible preferences of imaginary stakeholders. Suppose a farmer, Persona 1, who is worried 

about water use and land occupation. In that case, the best configuration for him would be the 

spore 83. However, for Persona 2, an ecologist worried about water use and the impact on biotic 

resources, configuration 54 would be more appropriate. Moreover, those who focus on monetary 

values would choose spore 0, the cost-optimized configuration. 

Table 2: Chosen spore based on different preferences. Persona 1: Agricultural Land Occupation 

and Water Consumption Potential. Persona 2: Water Consumption Potential and Biotic 

Resources. Persona 3: Freshwater and Marine Ecotoxicity Potential and Biotic resources.  

 

Persona 1 Persona 2 Persona 3 Best Best without 

biotic resources 

83 54 191 83 191 
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Figure 9: Relative input in n-2 categories. Comparison between spores 83,152 and 0 

 

 

3.3 Uncertainty calculations 

We performed Monte Carlo simulations to analyse the uncertainty of results. The random spore 

chosen was number 0, for which 500 iterations were performed. It can be observed that, while 

some indicators such as marine ecotoxicity potential or surplus ore potential reached convergence, 

500 iterations were insufficient for the agricultural land occupation or biotic resources. It is 

notable that the impact on the water consumption potential has been overestimated. However, the 

results for the other indicators fall within the range of expectation. 

Figure 10: Monte Carlo simulations. In red, the static value obtained from the single simulation. 

 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Conversions

Electricity_generation

Electricity_storage

Imports

Thermal_generation

Thermal_storage

83

152

0



Figure 11: Relative input values for n-1 levels

 



Finally, the high sensitivity of environmental impacts coming from heat storage on the overall 

can have a second explanation from an uncertainty perspective. Those two technologies are 

precisely one of the technologies with the lowest technological representativeness between the 

energy data and the inventory data. This fact combines two types of uncertainty described by Igos 

et al. [33]: quantity, due to the inherent uncertainty on the input data, and context, due to the 

decision of the LCA practitioner to select this inventory. As shown in the supplementary materials, 

thermal storage tanks inventories for thermal storage are hot water storage tanks of 600L and 

2000L. Although the structure of the inventory follows a similar approximation to what it’s 

described on [37], the large-scale hot water tanks have a capacity between 500-5000m3. Thus, as 

pointed out by Pizzol et al. [38], the effect of economies of scale might reduce considerably the 

environmental impacts of certain technologies. 

4 Discussion 

4.1 Data Quality 

As discussed by several authors (e.g. [11,39]), ecoinvent provides inventory data on various 

technologies, but it does not cover all sectors and services, making it partial scope. This can have 

a significant impact on the model, especially for heat storage technologies, where the difference 

between the inventory data and the expected technology is the largest. Nevertheless, this effect 

can be reduced through the study of parametric inventories, which could help in transitioning 

from small-scale inventories to large-scale technologies based on parametric data.  

In addition, there are other uncertainties underlying the inventory data. Despite assuming a 

“business as usual” approach, there is a discrepancy between the modelled technology and the 

technology that would be used in the future. This effect is notable for the foreground processes, 

where efficiencies can improve, and in the background, where industrial processes for 

manufacturing can enhance overall efficiency. 

The energy data used as input is subject to several limitations. In short, although the SPORES 

approach helps to reduce uncertainty related to the model structure [40], it is restricted to the input 

data used in the model, such as weather, technological data, and narratives. This leads to a form 

of uncertainty generally known as parametric uncertainty. As a result, the overall uncertainty 

along the chain of models, which includes Calliope-Enbios is not addressed.  

Finally, the linearised approach of LCA cannot catch scale implications of environmental impacts, 

as the impact scale linearly with the demand of the technology. Therefore, natural variations such 

as saturation of secondary interactions are not considered in this methodology.  
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4.2 Methodological limitations 

This study does not separate the inventory data into operation and construction. Thus, the amount 

of impact related to the different life cycle phases remains unknown in our study.  

On the other hand, double accounting is a common issue affecting (especially) energy LCA, and 

it has been discussed by several authors [11,39,41–45]. Although we are aware of this matter, 

addressing it is not within the scope of this study.  

Some technologies and sectors have been excluded due to several reasons. Technologies falling 

under transmission or demand categories were excluded due to methodological limitations. 

Besides, some technologies were excluded due to the lack of life cycle inventories: hydrogen to 

liquids, hydrogen to methane, hydrogen to methanol and DAC (Direct Air Capture). Therefore, 

the scope of the study does not cover all the information coming from Calliope. 

As for the results, this study suffers from epistemological limitations. The option space created 

by the impact of 261 spores divides energy configurations into “low-impact” and “high-impact”. 

However, it is important to note that this is only in reference to the option space generated, and to 

truly determine whether the impact is high or low, it should be compared to an external value 

outside of the option space. This could be the 2024 data, other countries, or other scenarios. We 

are only seeing a photo of 261 configurations for the year 2050, so it is necessary to think outside 

the box to fully understand the context. Moreover, the lack of similar studies analysing a wide 

option space of alternatives limits the comparison and external validation of our results. 

Nevertheless, the way in which these results are presented are valuable. 

Enhancing the sensitivity analysis could be achieved by incorporating Global Sensitivity Analysis 

techniques. This approach would enable a more comprehensive understanding of the behaviours 

exhibited by the technologies yielding negative values in the Spearman correlation results. This 

refinement would contribute to a more insightful interpretation of the model’s intricacies and 

provide valuable insights into the complex interplay of factors influencing the technologies under 

study.  

Finally, the outcomes are influenced by a cluster of uncertainties inherent in the LCA 

methodology. Particularly, when confronted with substantial demands (TWh), these uncertainties 

are magnified, leading to pronounced standard deviations in each outcome. Consequently, the 

significance of these finding lies in the comparison between alternatives rather than the mere 

presentation of individual results. According to Hamming et al.[46], the aim of computation is to 

gain insights rather than just numbers. Therefore, simply stating that the global warming potential 

for configuration 32 is 1.3e8 tons is not valuable as uncertainties may affect this result. Stochastic 

methodologies, such as Monte Carlo, can prove these results to be inaccurate. 
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5 Conclusions 
In this study, we conducted an analysis of the environmental impacts associated with 261 energy 

transition configurations in Portugal for the year 2050. The option-space derived from these 

results suggest that energy transition configurations developed under “as usual” modeling, 

considering economic and energy demand values, are able to exhibit low environmental impacts 

in comparison with other spores. 

Through clustering, we categorized the configurations into “low-impact” and “high-impact”, 

revealing a notable trend: configurations featuring higher thermal storage and generation tend to 

pose a greater environmental harm compared to those emphasizing electricity production. 

However, it is crucial to recognize the epistemological limitations of our study, as it confines the 

scope to a specific option-space, rendering us “blind” to scenarios and comparisons beyond its 

boundaries.  

Our data strongly indicates that there are no possible trade-offs in environmental impacts from an 

energy system perspective; a configuration is either harmful or less harmful. Nonetheless, slight 

variations within the option-space can yield diverse energy configurations, each potentially 

influencing specific sites of the country differently. The exception lies in the case of “biotic 

resources”, where the environmental impact depends on the defined amount of “biofuel 

extraction” in each configuration.  

To advance our understanding, future research should address the limitations discussed in this 

work. Key areas for improvement include the separation of life cycle stages, mitigating double 

accounting issues, and incorporating external comparisons beyond the confines of the option-

space. 
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8 Supplementary Materials 

8.1 Summary of technologies and inventories 

Technologies Activity code Location Time-

Period 

Uni

t 

Calliope 

Unit 

Conversio

n 

wind_onshore electricity production, wind, 1-3MW turbine, onshore PT 2000-2021 kW
h 

TWh 1.00E+09 

wind_offshore electricity production, wind, 1-3MW turbine, offshore PT 2000-2021 kW
h 

TWh 1.00E+09 

hydro_run_of_river electricity production, hydro, run-of-river PT 1945 - 
2021 

kW
h 

TWh 1.00E+09 

hydro_reservoir electricity production, hydro, reservoir, non-alpine region PT 1945-2021 kW
h 

TWh 1.00E+09 

ccgt electricity production, natural gas, combined cycle power plant PT 2000 - 
2021 

kW
h 

TWh 1.00E+09 

chp_biofuel_extraction heat and power co-generation, wood chips, 6667 kW, state-of-the-art 2014 PT 2010-2021 kW
h 

TWh 1.00E+09 

open_field_pv electricity production, photovoltaic, 570kWp open ground installation, multi-Si PT 2008-2021 kW
h 

TWh 1.00E+09 

existing_wind electricity production, wind, 1-3MW turbine, onshore PT 2000-2021 kW
h 

TWh 1.00E+09 

existing_pv electricity production, photovoltaic, 570kWp open ground installation, multi-Si PT 
 

kW
h 

TWh 1.00E+09 

roof_mounted_pv electricity production, photovoltaic, 3kWp slanted-roof installation, multi-Si, panel, 
mounted 

PT 2005-2021 kW
h 

TWh 1.00E+09 

chp_wte_back_pressur
e 

electricity, from municipal waste incineration to generic market for electricity, 
medium voltage 

PT 2012-2021 kW
h 

TWh 1.00E+09 

chp_methane_extracti
on 

heat and power co-generation, natural gas, combined cycle power plant, 400MW 
electrical 

PT 2000-2021 kW
h 

TWh 1.00E+09 

waste_supply electricity, from municipal waste incineration to generic market for electricity, 
medium voltage 

PT 2012-2021 kW
h 

TWh 1.00E+09 

biofuel_supply market for ethanol, without water, in 99.7% solution state, from fermentation, 
vehicle grade 

CH 2000-2021 kW
h 

TWh 1.14E+08 
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Technologies Activity code Location Time-

Period 

Uni

t 

Calliope 

Unit 

Conversio

n 

chp_biofuel_extraction heat and power co-generation, wood chips, 6667 kW, state-of-the-art 2014 PT 2010-2021 MJ TWh 3.60E+09 

chp_wte_back_pressur
e 

heat, from municipal waste incineration to generic market for heat district or 
industrial, other than natural gas 

PT 2008-2021 MJ TWh 3.60E+09 

chp_methane_extracti
on 

heat and power co-generation, natural gas, combined cycle power plant, 400MW 
electrical 

PT 2000-2021 MJ TWh 3.60E+09 

biofuel_boiler heat and power co-generation, wood chips, 6667 kW, state-of-the-art 2014 PT 2010-2021 MJ TWh 3.60E+09 

methane_boiler heat and power co-generation, natural gas, combined cycle power plant, 400MW 
electrical 

PT 2000-2021 MJ TWh 3.60E+09 

battery market for battery cell, Li-ion GLO 2011-2021 kg TWh 62893000
00 

Heat_storage_big market for heat storage, 2000l GLO 2011-2021 unit TWh 6120000 

heat_storage_small market for hot water tank, 600l GLO 2011-2021 unit TWh 20400000 

Methane_storage compressed air energy storage plant construction, 200 MW electrical RER 2015-2021 unit TWh 500 

pumped_hydro electricity production, hydro, pumped storage PT 1945-2021 kW
h 

TWh 10000000
00 

el_import market for electricity, high voltage ES 2014-2021 kW
h 

TWh 10000000
00 

biofuel_to_diesel market for fatty acid methyl ester RoW 2011-2021 kg TWh 13300000
0 

biofuel_to_methane market for biomethane, high pressure CH 2000-2021 m3 TWh 23600000 

biofuel_to_methanol market for methanol, from biomass CH 1995-2021 KG TWh 15900000
0 

electrolysis Market for hydrogen production GLO 2030 kg TWh 30084235 

Chp hydrogen Chp hydrogen GLO NA kw
h 

TWh 10000000
00 

 

 

 



8.2 Unit conversions 

8.2.1 Electricity generation  

To connect the various technologies and inventories of the dendrogram's “electricity 

generation” level, a conversion between two energy magnitudes is required: Calliope 

magnitudes, expressed in TWh, and the functional of the system, which is in kWh. The 

conversion can be directly expressed as follows: 

 

1 𝑇𝑊ℎ = 109𝑘𝑊ℎ 

8.2.1.1 Chp hydrogen 

The inventory for chp hydrogen plant was adapted from a conventional chp plant in 

Portugal. We adapted the input of hydrogen based on the difference in the energy density 

between natural gas and hydrogen, resulting in 0.649m3 of hydrogen per kWh of 

production assuming normal conditions. Since the functional unit of hydrogen production 

activities is in kg and we assumed a 5bar pressure input, it results in 0.054kg of hydrogen 

referenced to the functional unit of the inventory (1kWh of electricity production). 

Finally, the biosphere flows were also adapted. We removed all the biosphere flows 

except NOx emissions, and water vapor, which was adapted according to stoichiometry 

relations.  

All the code to produce this inventory is open at https://github.com/LIVENlab/Sparks.git 

8.2.2 Thermal generation  

As of the thermal generation technologies, different conversions have been carried out 

for those activities expressed in MJ, and it can be presented as follows: 

𝑇𝑊ℎ = 3.6 · 109 𝑀𝐽 

The technologies that are under this conversion are the following: 

• Chp biofuel extraction 

• Chp wte back pressure  

• Chp methane extraction 

• Biofuel boiler 

• Methane boiler 

8.2.3 Storage 

The storage technologies are modelled from a capacity perspective. Then, we have used 

the “storage_capacity.csv” data. Only pumped hydro has been modelled using the 

“flow_out_sum” data. Then, the conversions required are different and case dependent. 
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8.2.3.1 Batteries 

An assumption has been made on top of the inventory used. In ecoinvent, the inventory 

is referenced to the functional unit of 1kg of lithium battery. Thus, a mean energy 

density of the battery has been assumed to be 240 Wh/kg. Then the conversion used can 

be expressed as follows: 

1 𝑇𝑊ℎ ∙
1012𝑊

1𝑇𝑊ℎ
∙

1𝑘𝑔 𝑏𝑎𝑡𝑡𝑒𝑟𝑦

240𝑊
 = 𝟒. 𝟓 · 𝟏𝟎𝟗𝒌𝒈 

 

 

8.2.3.2 Heat storage big 

 

In Calliope this technology is described as a “hot water tank 3000L”. In the selected 

inventory from ecoinvent, the reference unit is a 2m3 hot water tank (unit) and no 

further description of the capacity of the system is included. 

We calculated the storage capacity of the system using energy balances and data from 

the Danish Energy Agency [47][37] . 

Since the energy or capacity of a system can be described as: 

𝐸(𝑘𝐽) = 𝐶𝑝 · 𝑚 · ∆𝑇 

Where Cp corresponds to the calorific capacity of water at constant pressure (4.2 

kJ/kg·ºC), m is the mass of water and ∆𝑇 is the difference of temperature between the 

water and the surroundings, where 90ºC of water and 20ºC of the surroundings have been 

assumed for the calculations. Then, the capacity of the system is 163.33 kWh per tank. 

Finally, to fulfil the requirement of supplying 1TWh with this technology: 

 1 𝑇𝑊ℎ = 6.12 · 106 𝑡𝑎𝑛𝑘𝑠 

As the data from the inventories are regarded as the impacts of the tank’s manufacture 

and distribution, it has been modelled as the minimum number of tanks needed to satisfy 

the requirements of a specific scenario.  

 

8.2.3.3  Heat storage small 

In this case, the inventory used is “hot water tank 600L”. The same calculations as 

before can be done, obtaining the following result: 
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1 𝑇𝑊ℎ = 2.04 · 107 𝑡𝑎𝑛𝑘𝑠 

8.2.3.4  Methane storage 

 

The selected process from ecoinvent is “compressed air energy storage plant 

construction, 200MW, electrical”, and a unit plant as a reference. Then, to convert it to a 

Calliope-ENBIOS readable unit, a conversion between the power and the capacity of 

the system is required. Based on data from the Danish Energy Agency[48] [37], a plant 

of 200MW might be referred as a 2000 MWh plant capacity. Thus    

1 𝑇𝑊ℎ =   500 𝑝𝑙𝑎𝑛𝑡𝑠 

 

8.2.3.5  Pumped hydro 

 

The data used for pumped hydro was sourced from the “flow_out_sum” file. Since the 

reference unit of the inventory is in kWh, the conversion can be therefore expressed as 

the electricity generation case, where: 

1 𝑇𝑊ℎ = 109𝑘𝑊ℎ 

8.2.4 Carrier conversions 

This category groups all the technologies which transform or produce energy carriers 

within the energy system (check figure 3 of the source document) to be used in other 

processes to produce electricity or heat.  

8.2.4.1  Biofuel Supply 

The process chosen from ecoinvent is the production of biofuel by means of first-

generation stocks; “market for ethanol, without water, in 99.7% solution state, from 

fermentation”. The reference unit is in kg, and consequently a conversion from the 

reference unit to TWh (energy data) has been applied. In the supplementary materials of 

ecoinvent include the calorific density of the biofuel, being 31.58 MJ/kg. Hence: 

1𝑇𝑊ℎ
3.6 · 109𝑀𝐽

1𝑇𝑊ℎ

1𝑘𝑔 𝐵𝑖𝑜𝑒𝑡ℎ𝑎𝑛𝑜𝑙

31.58 𝑀𝐽
= 113,9 · 106𝑘𝑔 

 

8.2.4.2 Biofuel to diesel 

The conversion of biofuel to diesel is usually modified by a transesterification process. 

In ecoinvent, the inventory “market for fatty acids methyl ester” is referenced as 1kg of 
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product. Based on data from Eurostat [47] (Energy Data — 2020 Edition - Products 

Statistical Books - Eurostat.) , the conversion can be expressed as follows: 

1𝑇𝑊ℎ
3.6 · 109𝑀𝐽

1𝑇𝑊ℎ

1𝑘𝑔 𝐵𝑖𝑜𝑒𝑡ℎ𝑎𝑛𝑜𝑙

27𝑀𝐽
= 113,3 · 106𝑘𝑔 

8.2.4.3 Biofuel to methane 

The inventory “market for biomethane, high pressure” is referenced as 1m3 of product, 

which is compressed at 5bar. Using the law of ideal gases, and assuming a temperature 

of 298K, the density of the gas is assumed to be 3.31kg /m3. In the supplementary data 

from ecoinvent, it is reported that the energy density of the gas is 46MJ/kg. Therefore: 

 

1𝑇𝑊ℎ
3.6 · 109𝑀𝐽

1𝑇𝑊ℎ

1𝑘𝑔 𝐶𝐻4

46𝑀𝐽

1𝑚3

3.31𝑘𝑔
= 2.64 · 106𝑚3 

 

8.2.4.4 Biofuel to methanol 

 The methanol is produced through the gasification of biomass, and the inventory 

“market for methanol, from biomass” is reported as 1kg of pure methanol. Considering 

the calorific power of methanol (22.7MJ/kg) [48]: 

 

1𝑇𝑊ℎ
3.6 · 109𝑀𝐽

1𝑇𝑊ℎ

1𝑘𝑔 𝐵𝑖𝑜𝑒𝑡ℎ𝑎𝑛𝑜𝑙

22.7𝑀𝐽
= 158.59 · 106 

8.2.4.5 Market for hydrogen production 

The hydrogen production inventories were extracted from [49,50]. We combined the three 

main technologies (AWE, SOEC and PEM) into one single activity with 1kg of hydrogen 

as a functional unit. It receives 0.33kg of each activity mentioned.  

Finally, assuming a power density of 120MJ/kg, the final conversion factor results in 

30084235 kg/TWh. 

 

 


