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Desarrollo y evaluacion de modelos de
Inteligencia Artificial para la estimacion de la
edad O0sea en pacientes pediatricos

German Casab6 Vallés

Resumen — Tradicionalmente, los métodos mas comunes para la estimacion de la edad ésea son el método de Greulich y Pyle y
el método de Tanner y Whitehouse; sin embargo, ambos métodos presentan limitaciones como la variabilidad interobservador
debido a la subjetividad de estos. En los Ultimos afios, han surgido diferentes aproximaciones para el calculo automatico de la
edad 6sea mediante el uso de algoritmos de Inteligencia Artificial (IA). En el presente trabajo, hemos desarrollado y evaluado
diferentes modelos de IA basados en redes neuronales convolucionales (CNNs) para el calculo automatico de la edad ésea y
hemos comparado sus rendimientos entre si y respecto a los métodos tradicionales y automaticos publicados. Para ello, se ha
utilizado un conjunto de datos formado por 12.611 radiografias de la mano izquierda de pacientes pediatricos anotadas con su
edad 6sea y el sexo del paciente y se han explorado diferentes arquitecturas y técnicas de optimizacién. Las CNNs que mejores
resultados han obtenido estan basadas en la arquitectura ResNet50 y presentan errores medios absolutos (MAEs) de 12,15y de
12,49 meses para imagenes de varones y hembras, respectivamente. Finalmente, se ha entrenado una CNN con imagenes
Unicamente de varones de entre 10 y 15 afos, obteniendo un MAE de 9,09 meses. Estos resultados estan en linea con la
variabilidad descrita en la practica clinica (entre 5,4 y 9,96 meses) y en otros modelos de IA (entre 4,2 y 9,96 meses).

Palabras clave —edad 6sea, inteligencia artificial, redes neuronales convolucionales, MAE

Abstract— Traditionally, the most common methods for bone age estimation are the Greulich and Pyle method and the Tanner and
Whitehouse method; however, both methods have limitations such as interobserver variability due to the subjectivity of them. In
recent years, different approaches have emerged for the automatic calculation of bone age using Artificial Intelligence (Al)
algorithms. In the present work, we have developed and evaluated different Al models based on convolutional neural networks
(CNNs) for the automatic calculation of bone age and have compared their performances with each other and with respect to
traditional and automatic published methods. For this purpose, a dataset consisting of 12,611 left hand radiographs of pediatric
patients annotated with their bone age and patient sex has been used and different architectures and optimization techniques have
been explored. The best performing CNNs are based on the ResNet50 architecture and present mean absolute errors (MAEs) of
12.15 and 12.49 months for male and female images, respectively. Finally, a CNN has been trained with images only of males
between 10 and 15 years old, obtaining a MAE of 9.09 months. These results are in line with the variability described in clinical
practice (between 5.4 and 9.96 months) and in other Al models (between 4.2 and 9.96 months).

Index Terms— bone age, artificial intelligence, convolutional neural networks, MAE
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INTRODUCCION

1.1 Edad o6sea

La edad ésea es un indicador clinico que permite eva-
luar el estado de maduracién esquelética de un individuo,
comunmente a partir de los cambios de los centros de osifi
cacién a lo largo del tiempo. [1].

e E-mail de contacto: gcasabovalles@gmail.com
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La determinacion de la edad 6sea ha sido ttil en una
variedad de contextos clinicos durante méas de 75 afos,
destacando en el &mbito pediatrico, en el que la estimacién
de la edad 6sea ayuda a detectar y tratar desérdenes de
crecimiento, predecir la potencial altura futura, problemas
endocrinolégicos, etc. [1].

En este sentido, la edad dsea es el tinico indicador de
madurez biolégica, independiente del tamafio, que se usa
de forma rutinaria desde el nacimiento hasta la adultez [2].

Ademas de en el entorno clinico, la determinacién de la
edad 6sea es tutil en el campo del deporte de élite para la
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seleccién de atletas, en contextos forenses, e incluso en
programas de inmigracion internacionales para estimar la
edad de menores solicitantes de asilo [1].

1.2 Métodos tradicionales para la estimacion de la
edad 6sea

Tradicionalmente, los métodos mds comunes para la
estimacion de la edad 6sea son el método de Greulich y Pile
[3] y el método de Tanner y Whitehouse [4], ambos basados
en el andlisis de radiografias de la mano izquierda de pacien
tes pediétricos.

El método de Greulich y Pyle se basa en la comparacién
visual de las radiografias a analizar frente a un atlas con
radiografias de referencia, mientras que el método de Tanner
y Whitehouse se basa en asignar una puntuacién en funcién
de los diferentes estados que pueden presentar los centros
de osificacién y combinar dichas puntuaciones para obtener
una estimacién de la edad 6sea.

Un estudio de 2016 [5] identific6 que el método de Greuli-
ch y Pyle [3] era el més utilizado por los especialistas pedié-
tricos americanos para el célculo de la edad 6sea, llegando a
alcanzar un 97,4% de uso en nifios mayores de 3 afios. Otro
estudi6é identific, en cambio, que el método de Tanner y
Whitehouse es el preferido entre especialistas endocrinélo-
gos europeos [6].

No obstante, a pesar de su amplio uso entre los profesio-
nales clinicos, ambos métodos presentan varias limitaciones,
como por ejemplo una inherente variacién inter e intraobser
vador debida a la subjetividad de los métodos [6]. Diversos
estudios [7], [8], [9], [10] se han centrado en abordar esta
variabilidad y han demostrado que la desviaciéon estdndar
sobre una determinacién en estudios interobservador varia
entre 0,45 y 0,83 afios, es decir, entre 5,4 y 9,96 meses, aproxi
madamente [6].

1.3 Desafio de la Sociedad Radiol6gica de América
del Norte

En los dltimos afios, el aumento de la capacidad compu-
tacional y los avances en los algoritmos de inteligencia artifi-
cial (IA) han revolucionado el campo de las imagenes médi-
cas con la aparicién de un tipo especifico de aprendizaje

profundo conocido como redes neuronales convolucionales
(CNNS, por sus siglas en inglés) [11].

Las CNNs son especialmente efectivas en la deteccién de
patrones complejos dentro de imégenes, y su capacidad para
aprender de grandes voltiimenes de datos las convierte en
una herramienta prometedora para superar las limitaciones
de los métodos tradicionales de andlisis de las imdgenes
médicas [12].

En 2017, como parte de sus esfuerzos para impulsar el uso
de herramientas basadas en IA para radiologia, la Sociedad
Radiolégica de América del Norte (RSNA, por sus siglas en
inglés) organiz6 un desafio para evaluar el rendimiento que
presentaban los algoritmos de IA ejecutando una actividad
de lo més comun para muchos radiélogos pediatricos: esti-
mar la edad 6sea de pacientes pediatricos a partir de radio-
graffas de sus manos [13], [14].

Los resultados del desafio mostraron el enorme potencial
de las CNNs para el célculo de la edad 6sea, reduciendo la
variabilidad entre observadores y mejorando la precision y
consistencia de las mediciones [13], [14].

2 OBJETIVOS

El objetivo principal de este trabajo es desarrollar mode-
los basados en redes neuronales convolucionales (CNNs)
para calcular la edad 6sea de manera automatica a partir de
radiografias de mano de pacientes pediatricos.

Los objetivos especificos incluyen:

e Revisar el estado del arte relativo a métodos
basados en IA para la estimacién de la edad
osea.

¢ Explorar y aplicar diferentes arquitecturas de
CNNs para el anélisis de las radiografias.

e  Comparar el rendimiento de los modelos desa-
rrollados entre si y respecto a los métodos tradi-
cionales y automaticos para la evaluacién de la
edad 6sea.

3 ESTADO DEL ARTE

En los tltimos afios, se han publicado diferentes trabajos
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originales [15], [16], [17], [18] y revisiones bibliograficas
[19], [20] sobre la aplicaciéon de CNNs para la estimacién
automadtica de la edad 6sea.En uno de estos trabajos, publi-
cado en el afio 2.019, Dallora y colaboradores realizan un
andlisis comparativo de diferentes modelos de IA para la
estimacion de la edad 6sea y obtuvieron un error promedio
absoluto (MAE, por sus siglas en inglés) de 9,96 meses [20].

Sin embargo, muy pocas de estas herramientas basadas
en IA han sido comercializadas [19]. En la actualidad, Bo-
neXpert (Visiana, Dinamarca) es el tinico sistema con mar-
cado CE, es decir, es la tinica herramienta basada en IA que
se puede utilizar en un entorno clinico real en la Unién
Europea para la estimacién automatizada de la edad 6sea.
Su uso estd indicado para nifios de 2,5 a 17 afios y nifias de
2 a 15 afios independientemente de su etnia y presenta una
desviacion estandar de 0,63 afios (7,56 meses) cuando se
compara con el método de Greulich y Pyle [10], [21].

Por tdltimo, tal y como hemos comentado en la introduc
cién, el presente trabajo se basa en el reto que propuso la
RSNA en el afio 2.017 [13], [14] que, a su vez, se basa en los
datos publicados por Larson y colaboradores [12]. El equi-
po de Larson consiguié un MAE de 0,52 afios (6,24 meses)
[12], mientras que los 5 primeros equipos clasificados en el
reto de la RSNA consiguieron MAEs de entre 4,2 y 4,5 me-
ses [14].

4 MATERIAL Y METODOS
4.1 Conjunto de datos

El conjunto de datos utilizado consta de 12.611 radiogra
fias de la mano izquierda de pacientes pedidtricos (10,8 +
3,5 afios de edad cronolégica y 10,6 + 3,4 afios de edad 6sea
estimada) procedentes de dos hospitales americanos: el
Lucile Packard Children’s Hospital de Stanford (California,
Estados Unidos) y el Children’s Hospital Colorado de Au-
rora (Colorado, Estados Unidos). En la Figura 1 se muestra
una radiograffa incluida en el conjunto de datos como
ejemplo.

Fig. 1. Ejemplo de radiografia de mano.

Cada una de las imédgenes estd etiquetada con la edad
Osea (en meses) y el sexo del paciente (el conjunto de datos
consta de 6.833 varones y 5.778 hembras).

Las imdgenes fueron inicialmente utilizadas, previa
aprobacién por los Comités de Etica (Institutional Review
Boards) de ambas instituciones, por Larson y colaboradores
[12] para comparar el rendimiento en la estimacién de la
edad 6sea de un modelo de aprendizaje profundo respecto
a las estimaciones de radi6logos expertos y de los modelos
automatizados existentes.

Posteriormente, los Comités de Etica aprobaron la cura-
cién y el uso de las radiografias por parte de la Sociedad
Norteamericana de Radiologia para su competicion de
inteligencia artificial [14] en la plataforma Kaggle (Califor-
nia, Estados Unidos), siempre y cuando se utilicen para
propositos académicos o educacionales y se atribuya el
origen de los datos adecuadamente.

En este sentido, debemos destacar que las imédgenes se
encuentran accesibles en la direccion
https://www.rsna.org/rsnai/ai-image-challenge /rsna-
pediatric-bone-age-challenge-2017 y también como dataset



de Kaggle en la direccién
https://www.kaggle.com/datasets /kmader/rsna-bone-
age.

4.2 Seleccion de un subconjunto de datos

Por motivos computacionales, durante la fase inicial del
desarrollo de modelos de inteligencia artificial, se seleccio-
naron 2.018 imagenes (un 16% del total de las 12.611) para
evaluar el mayor nimero posible de CNNs diferentes y
explorar cudl era la arquitectura con un mayor potencial
para entregar un buen rendimiento.

Para la seleccion de las 2.018 imdagenes, se categorizaron
las imégenes a partir de su edad esquelética en 15 grupos
etarios (el namero de bins se obtuvo mediante el método de
Sturges [22]) y se realizé una particién estratificada del
conjunto de datos para asegurar que la distribucién de los
valores de edad ésea de las 2.018 imdgenes seleccionadas
era representativa de la distribucién de los valores de edad
6sea del conjunto de datos.

4.3 Softwarey hardware

Para la realizacion de este trabajo, se ha utilizado la pla-
taforma de Kaggle, ya que proporciona acceso a entornos
de alto rendimiento con unidades de procesamiento grafi-
co (GPU, por sus siglas en inglés) y unidades de procesa-
miento central (CPU, por sus siglas en inglés) optimizadas
para el entrenamiento de modelos de redes neuronales.

El desarrollo y entrenamiento de los modelos se ha reali
zado utilizando notebooks de Kaggle y el lenguaje de pro-
gramacion Python (versién 3.10.14).

Respecto al software, se han utilizado librerfas especiali-
zadas de aprendizaje automético y aprendizaje profundo
como scikit-learn [23], Keras [24], y TensorFlow [25]. Ade-
mas, también se han utilizado las librerias Pandas [26],
Numpy [27], Matplotlib [28], os, scipy [29], pickle, tqgdm
[30] y PIL [31] para funciones relacionadas con el manejo, la
transformacion, y la visualizacién de las imdgenes y los
datos.

Respecto al hardware, se ha utilizado la GPU P100 (in-
cluida en las opciones de Kaggle) para acelerar los tiempos

de entrenamiento de las CNNs y un ordenador personal
con conexién a internet para acceder a los recursos de Ka-

ggle.

4.4 Desarrollo de los modelos de CNNs

Durante el desarrollo del presente trabajo, se desarrolla-
ron diferentes modelos de redes neuronales para el cdlculo
de la edad 6sea, partiendo de redes neuronales sencillas y
poco profundas hasta la utilizacién de redes neuronales
complejas, como VGG16 [32], ResNet50 [33], InceptionV3
[34], EfficientNetB0 [35], Xception [36], MobileNetV2 [37],
DenseNet121 [38] y NASNetMobile [39].

Se han desarrollado modelos con un subconjunto de los
datos formado por 2.018 imagenes escogidas de manera
que fuesen representativas del total del conjunto de datos,
con el conjunto total de los datos (separando pacientes
masculinos y femeninas), y con un subconjunto de pacien-
tes masculinos de entre 10 y 15 afios de edad 6sea. En todos
los casos, se ha realizado una particién estratificada 80/20
del conjunto de datos entre el subconjunto de entrenamien
to y el subconjunto de validacion.

Se han implementado diferentes técnicas para la optimi-
zacion de los modelos, como la inclusién de pasos de Dro-
pout [40] y Batch Normalization [41], la reduccién del Lear-
ning Rate, la configuracién de Early Stopping, y el uso téc-
nicas avanzadas como aprendizaje por transferencia o
transfer learning, ajuste fino o fine-tuning, y aumentacién de
datos o data augmentation.

Todos los modelos generados han utilizado el algoritmo
Adam [42] y el error cuadratico medio (MSE, por sus siglas
en inglés) como funcién de pérdida para la optimizacién de
los modelos. La métrica escogida para la evaluacién del
rendimiento de los modelos ha sido el error absoluto me-
dio (MAE, por sus siglas en inglés).

4.5 Manejo de la variable sexo

Las imdgenes venian etiquetadas tinicamente con la
edad 6sea (variable objetivo) y el sexo (variable predictora).
Se han utilizado 3 aproximaciones diferentes para tratar la
variable sexo:

¢ No inclusién en los modelos.



GERMAN CASABO VALLES

e Concatenacién de la entrada de la variable sexo
a la salida de la rama convolucional de la red
neuronal.

¢ Creacién de redes neuronales independientes
para varones y para hembras.

5 RESULTADOS Y DISCUSION

5.1 Desarrollo de CNNs preliminares con un
subconjunto de los datos

En primer lugar, se desarrollaron diferentes CNNs utili-
zando un subconjunto representativo de las imédgenes dis-
ponibles con el objetivo de observar el comportamiento de
diferentes arquitecturas y técnicas de optimizacién y de
escoger la mejor aproximacion con la que analizar todas las
imégenes.

Este subconjunto, formado por 2.018 de las 12.611 ima-
genes, fue seleccionado de manera que se garantizase una
distribucién equilibrada y representativa de la poblacién
completa.

Para validar esta seleccion, se realiz6 una prueba de la t
para comparar la distribucién de los valores de edad 6sea
del conjunto de datos original y del conjunto de datos selec
cionado, y se obtuvo un valor p de 0,98, lo que indicé la alta
similaridad entre ambas distribuciones de datos.

Todos los modelos se entrenaron con la misma particiéon
80/20 entre el subconjunto de entrenamiento y el subcon-
junto de validacién de las 2.018 imédgenes, durante un ma-
ximo de 300 épocas, un tamario de lote de 16 imagenes por
iteracién, y con early stopping para detener el entrenamiento
si no se observaba una disminucién del MSE en el conjunto
de validacién durante 10 épocas (paciencia).

5.1.1 Redes neuronales poco profundas

En primer lugar, se utiliz6 una red neuronal poco pro-
funda consistente en 2 capas de convolucién con 32 y 64
filtros, activacién ReLU, y tamario de kernel de 3x3, segui-
das de capas de MaxPooling, un aplanamiento de la salida
de la parte convolucional, y una capa densa de 128 neuro-
nas antes de la capa de salida para la prediccién final de la
edad 6sea (Modelo 1). Ademads, se desarroll6 otro modelo
igual a este, pero concatenando la entrada de la variable

sexo a la salida de la parte convolucional (Modelo 2).

En segundo lugar, se anadieron sobre estas redes técni-
cas de regularizacién mediante la inclusién de capas de
Batch Normalization y de Dropout después de cada capa
convolucional y densa (Modelos 3 y 4).

En la Tabla 1 se presentan los resultados de la época con
menor MSE en el conjunto de validacién de cada uno de los
modelos desarrollados en este apartado. Tal y como se
puede observar, la adicion de las técnicas de regularizacién
mejord los resultados; sin embargo, las redes siguieron
sobreajustandose a los datos de entrenamiento (se aprecia
un MAE mucho menor en el conjunto de entrenamiento
(train) que en el conjunto de validacion (val)).

TABLA 1

Resultados de las CNNs poco profundas

Mod-  Epoc  MAE MAE
elo a (train) (val)
1 4 27,46 34,93
2 14 8,59 32,96
3 14 17,08 29,63
4 19 15,46 27,65

Modelo 1: CNN poco profunda sin regularizaciéon ni
informacién sobre sexo; Modelo 2: CNN poco profunda sin
regularizacién, pero con la variable sexo; Modelo 3: CNN
poco profunda con regularizacién, sin la variable sexo;
Modelo 4: CNN poco profunda con regularizacién y varia-
ble sexo.

En la Figura 2 se muestra el grafico de entrenamiento de
la CNN que mejor rendimiento entreg6 en este apartado
(Modelo 4), en el que puede observarse como el modelo
sufri6 sobreajuste desde antes de la época 10.
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Fig. 2. Grafico del entrenamiento de una CNN poco
profunda con técnicas de regularizacién e informacién
sobre la variable sexo.

5.1.2 Redes neuronales con arquitectura VGG16

Los resultados del apartado anterior evidenciaron que
las redes neuronales simples y poco profundas no eran
capaces de conseguir extraer los patrones necesarios de las
imdagenes para el cdlculo de la edad 6sea, asi como de gene
ralizar a datos no vistos y presentar buenos resultados en el
conjunto de validacién, por lo que se opt6 por evaluar ar-
quitecturas mas complejas como la VGG16, que consta de
16 capas de profundidad [32].

En primer lugar, se implementé una red neuronal con
arquitectura VGG16 desde 0 (Modelo 5). Ademas, se desa-
rroll6 otro modelo igual a este, pero concatenando la entra-
da de la variable sexo a la salida de la parte convolucional
(Modelo 6). Para el entrenamiento de ambos modelos se
redujo el learning rate a 0,00001.

A continuacién, se opt6 por incorporar técnicas avanza-
das de aprendizaje profundo como transfer learning, fine-tu-
ning, y data augmentation.

Respecto al transfer learning, se cargd el modelo VGG16

preentrenado con los pesos de ImageNet [11], [43] disponi-
ble en Keras con las capas convolucionales congeladas y sin
afiadir las capas superiores, ya que se afiadié una capa
densa de 512 neuronas seguida de una capa de Dropout
(Modelo 7) después de aplanar la parte convolucional de la
red y antes de la capa de salida. Ademads, se desarroll6 otro
modelo igual a este, pero concatenando la entrada de la
variable sexo a la salida de la parte convolucional (Modelo
8). Para el entrenamiento de ambos modelos se redujo el
learning rate a 0,00001.

Posteriormente, se implement? la técnica de fine-tuning
cargando la red VGG16 con los pesos de ImageNet, como
en el Modelo 7, pero descongelando las tltimas 4 capas
para ajustar mejor la CNN al conjunto de datos (Modelo 9).
Se redujo el learning rate a 0,000001 para garantizar la esta-
bilidad del entrenamiento.

Finalmente, se desarroll6 otro modelo consiste en afiadir
sobre el Modelo 9 un paso de Data Augmentation para au-
mentar la diversidad de las imagenes de entrenamiento y,
por tanto, reducir el riesgo de sobreajuste de la CNN (Mo-
delo 10). El learning rate se mantuvo en 0,000001.

En la Tabla 2 se muestran los resultados de la época con
menor MSE en el conjunto de validacién obtenidos con las
diferentes aproximaciones de VGG16.

TABLA 2

Resultados de las CNNs basadas en VGG16

Mod-  Epoc  MAE MAE

elo a (train) (val)
5 69 10,57 21,91
6 65 11,50 23,40
7 42 10,75 18,33
8 53 10,48 18,12
9 73 11,19 17,50
10 29 24,01 24,77
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Modelo 5: VGG16 desde 0; Modelo 6: VGG16 desde 0 +
variable de sexo; Modelo 7: VGG16 preentrenada; Modelo
8: VGGI16 preentrenada + variable de sexo; Modelo 9:
VGG16 preentrenada + fine tuning; Modelo 10: VGG16
preentrenada + fine tuning + data augmentation

En primer lugar, se observa claramente como los dos
modelos basados en VGG16 que peor funcionaron son
aquellos en los que la red neuronal se entrené desde 0 (Mo
delos 5 y 6). Esto podria ser debido a que el ntiimero de
imagenes (2.018) era demasiado bajo como para ajustar
adecuadamente todos los pardmetros de la red.

En este sentido, los modelos que utilizaron transfer lear-
ning se manifestaron como aquellos con los mejores rendi-
mientos, con MAEs en el conjunto de validacién de alrede-
dor de 18 meses, aunque continuaron presentando un so-
breajuste a los datos de entrenamiento.

El modelo que mejores resultados present, el Modelo 9,
que incluy6 tranfer learning y fine-tuning en las tltimas 4
capas convolucionales, alcanzé un MAE de 17,50 meses en
el conjunto de validacién. Estos resultados indicaron que la
técnica de transfer learning utilizando los pesos de Image-
Net era ttil para mejorar los resultados en nuestro conjunto
de datos.

Por dltimo, el modelo que incorpor6 la técnica de data
augmentation consigui6 evitar el sobreajuste, ya que el MAE
tanto en el conjunto de entrenamiento como en el de valida
cién fue muy similar; sin embargo, presenté un rendimien-
to notablemente en el conjunto de validacién inferior a su
equivalente sin data augmentation (24,77 vs. 17,50).

En la Figura 3 se muestra el gréfico del entrenamiento
del Modelo 9, ya que fue el que mejores resultados presen-
t6. Se observa cémo, aunque el rendimiento es el mejor
hasta el momento, se produjo un sobreajuste a partir de la
época 20.
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Fig.
3. Gréfico de entrenamiento de una CNN con arquitectura
VGG16 con pesos preentrenados y fine-tuning en las alti-

mas 4 capas.

5.1.3 Redes neuronales con otras arquitecturas

Los resultados del apartado anterior indicaron que el
uso de la técnica de transfer learning, es decir, cargar las
redes con pesos preentrenados con el conjunto de imédgenes
de ImageNet, era la estrategia que mejores resultados pre-
sentaba, por lo que a continuacién se opté por evaluar dife
rentes arquitecturas preentrenadas para evaluar cudl era la
arquitectura con mayor potencial de rendimiento.

En particular, se evaluaron las arquitecturas ResNet50
[33], InceptionV3 [34], EfficientNetBO [35], Xception [36],
MobileNetV2 [37], DenseNet121 [38] y NASNetMobile
[39].

La estrategia adoptada fue la misma en todos los casos
(Modelos 11-17): se concaten la entrada de la variable sexo
ala salida de la base preentrenada de cada una de las redes
(todas las capas convolucionales se mantuvieron congela-
das), y se afiadié una capa densa de 128 neuronas y una
capa de Dropout antes de generar la salida de la red. Se
utiliz6 un learning rate de 0,00001.



En la Tabla 3 se presentan los resultados obtenidos en la
época con menor MSE en el conjunto de validacién de cada
uno de los modelos.

TABLA 3

Resultados de las CNNs basadas en otras arquitecturas

Mod-  Epoca MAE MAE

elo (train) (val)
11 32 15,18 16,00
12 48 21,20 27 A1
13 77 18,31 16,76
14 62 19,36 27,17
15 111 19,76 24,26
16 63 19,43 22,26
17 103 25,09 30,07

Modelo 11: ResNet50; Modelo 12: Inception V3; Modelo
13: EfficientNetB0; Modelo 14: Xception; Modelo 15: Mobi-
leNetV2; Modelo 16: DenseNet121; Modelo 17: NASNet-
Mobile

Tal y como puede observarse, el rendimiento de los
modelos fue muy desigual en funciéon de la arquitectura
utilizada. De hecho, tinicamente las CNNs con arquitectura
ResNet50 (MAE en conjunto de validacién de 16,00 meses)
y EfficientNetBO (MAE en conjunto de validaciéon de 16,76
meses) mejoraron el rendimiento obtenido con la arquitec-
tura VGGIleé.

En la Figura 4 se muestra el grafico del entrenamiento
del Modelo 13, es decir, de la CNN con arquitectura Res-
Net50 que mejores resultados present6 en este apartado.
Puede observarse como durante las 30 primeras épocas no
se aprecia sobreajuste del modelo.
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Fig. 4. Gréfico de entrenamiento de una CNN con arqui-
tectura ResNet50 con pesos preentrenados.

5.2 Desarrollo de CNNs con todos los datos y
especificas de sexo

Llegados a este punto, se concluyé que la arquitectura
que mds potencial tenia para entregar un mejor rendimien-
to en nuestro conjunto de datos era ResNet50, arquitectura
que cuenta con 50 capas de profundidad [33], por lo que se
decidi6 utilizar todos los datos disponibles para desarro-
llar los modelos definitivos.

Respecto a la inclusién o no de la variable sexo, se obser
v6 que, aunque si bien era cierto que los modelos que in-
clufan esta informacién presentaban un rendimiento lige-
ramente mejor que sus homoélogos que no tenian en cuenta
esta informacioén, la mejora en el rendimiento tampoco era
sustancial. Por este motivo, y también para aligerar la carga
computacional de entrenar las CNNs con todos los datos,
se opt6 por desarrollar CNNs independientes y especificas
para cada sexo.

Por tanto, para cada conjunto de datos (6.833 radiogra-
fias procedentes de pacientes masculinos, y 5.788 radiogra-
fias procedentes de pacientes femeninas) se desarrollaron
CNNs utilizando 4 aproximaciones distintas, todas ellas
basadas en transfer learning con los pesos preentrenados en
ImageNet:

- Transfer learning (Modelos 18 y 22)
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- Transfer learning + data augmentation (Modelos 19 y
23)

- Transfer learning + fine-tuning (Modelos 20 y 24)

- Transfer learning + fine-tuning + data augmentation
(Modelos 21 y 25)

De forma parecida a la dispuesta en el apartado anterior,
todos los modelos se entrenaron con la misma particién
80/20 entre el subconjunto de entrenamiento y el subcon-
junto de validacién, con un tamarfio de lote de 32 imagenes
por iteracion, un maximo de 300 épocas con parada prema
tura a las 10 épocas de no mejorar el MSE en el conjunto de
validacién, y con learning rates variables entre 0,00001 y
0,000001 en funcién de las necesidades de estabilizar los
resultados del entrenamiento.

En la Tablas 4 y 5 se presentan los resultados obtenidos
en las CNNs desarrolladas con las imagenes procedentes
de pacientes masculinos y femeninas, respectivamente.

TABLA 4

Resultados de las CNNs basadas en ResNet50 con
datos de pacientes masculinos

Mod-  Epoc MAE MAE
elo a (train) (val)
18 39 9,12 12,15
19 30 16,69 13,71
20 17 9,72 12,32
21 42 16,68 14,53

Modelo 18: ResNet50 con transfer learning; Modelo 19:
ResNet50 con transfer learning y data augmentation; Modelo
20: ResNet50 con transfer learning y fine-tuning; Modelo 21:
ResNet50 con transfer learning, fine-tuning, y data-augmenta-
tion.

TABLA 5

Resultados de las CNNs basadas en ResNet50 con
datos de pacientes femeninos

Mod-  Epoc
elo a

MAE
(train)

MAE
(val)

22 31 9,23 13,00
23 50 15,31 13,48
24 86 6,71 12,49
25 97 14,52 13,00

Modelo 22: ResNet50 con transfer learning; Modelo 23:
ResNet50 con transfer learning y data augmentation; Modelo
24: ResNet50 con transfer learning y fine-tuning; Modelo 25:
ResNet50 con transfer learning, fine-tuning, y data-augmenta-
tion.

Tal y como puede observarse, esta estrategia produjo
una mejora significativa del MAE en el conjunto de valida-
cidén, situdndose alrededor de 12 meses en las CNNs entre-
nadas con imégenes de cada uno de los sexos.

Interesantemente, se observé un comportamiento simi-
lar al observado durante el entrenamiento de las redes
neuronales basadas en la arquitectura VGG16 con un sub-
conjunto de los datos (Tabla 2). Tanto en el caso de la CNN
entrenada con radiografias de pacientes masculinos como
en la CNN entrenada con radiografias de pacientes femeni
nas, los mejores resultados en el conjunto de validacién se
obtuvieron en los modelos que no incluyen un paso de data
augmentation.

Si bien es cierto que la inclusion de esta técnica provocé
que desapareciese el ligero sobreajuste que presentaban las
CNN sin data augmentation (véase resultados de los mode-
los 19y 21 en la Tabla 4 y de los modelos 23 y 25 en la Tabla
5, en los que el MAE en el conjunto de validacién es incluso
menor que el MAE en el conjunto de entrenamiento), esta
inclusién provoc también un aumento absoluto del MAE
en el conjunto de validacién respecto a los modelos sin data
augmentation.

Asi pues, la CNN con mejores resultados (MAE de 12,15
meses en el conjunto de validaciéon) en las imdgenes de
pacientes masculinos es aquella que incluy6 tinicamente
transfer learning, sin descongelacién de ninguna capa con-
volucional. En la Figura 5 se muestra el gréfico de entrena-
miento de esta CNN.
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Fig. 5. Gréfico de entrenamiento de la CNN con arqui-
tectura ResNet50 con pesos preentrenados (transfer lear-
ning) y datos de pacientes masculinos.

Por su parte, en el caso de las pacientes femeninas, el
modelo con mejores resultados es aquel que utiliz6 tanto el
transfer learning como el fine-tuning mediante la descongela-
cién de las dltimas capas convolucionales. En la Figura 6 se
muestra el gréfico de entrenamiento de esta CNN.
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Fig. 6. Grafico de entrenamiento de la CNN con arqui-
tectura ResNet50 con pesos preentrenados (transfer lear-
ning), fine-tuning y data augmentation y datos de pacientes
femeninos.

5.3 Exploracion de estratificacion por grupo etario

Por ultimo, se realiz6 un experimento consistente en
seleccionar tnicamente las radiografias procedentes de
pacientes masculinos de entre 120 y 180 meses de edad
6sea estimada para evaluar si una posible estratificacién
por grupo etario ayudaba a conseguir mejores resultados.
Se seleccionaron 4.424 imégenes, lo que suponfan un 64,74
% del total de imdgenes correspondientes a hombres.

Se utiliz6 la misma estrategia descrita anteriormente, es
decir, sobre la base de una CNN con arquitectura ResNet50
preentrenada con los pesos de ImageNet, se aplico:

- Transfer learning (Modelo 26)
- Transfer learning + data augmentation (Modelo 27)
- Transfer learning + fine-tuning (Modelo 28)

- Transfer learning + fine-tuning + data augmentation
(Modelo 29)

En la Tabla 6 se presentan los resultados obtenidos. De
igual modo que en los apartados anteriores, se realiz6 una
particién 80/20 entre el subconjunto de entrenamiento y el
de validacién, y se entrenaron los modelos durante un
maximo de 300 épocas (parada prematura a las 10 épocas
sin mejorar el MSE en el conjunto de validacién) con un
tamarfio de lote de 32 imdgenes por iteracion y learning rates
variables entre 0,00001 y 0,000001.

TABLA 6

Resultados de las CNNs basadas en ResNet50 con
datos de hombres de entre 120 y 180 meses de edad 6sea

Mod-  Epoc  MAE MAE
elo a (train) (val)
26 20 8,47 9,09
27 33 12,77 9,46
28 12 9,92 9,15
29 57 11,79 10,62

Modelo 26: ResNet50 con transfer learning; Modelo 27:
ResNet50 con transfer learning y data augmentation; Modelo
28: ResNet50 con transfer learning y fine-tuning; Modelo 29:
ResNet50 con transfer learning, fine-tuning, y data-augmenta-
tion.
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Interesantemente, el mejor resultado lo obtuvo la CNN
que utilizé tinicamente la técnica de transfer learning con un
MAE en el conjunto de validacién de 9,09 meses. En la Fi-
gura 7 se muestra el grafico del entrenamiento de esta red.
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Fig. 7. Grafico de entrenamiento de la CNN con arqui-
tectura ResNet50 con pesos preentrenados (transfer lear-
ning) y datos de pacientes masculinos de entre 120 y 180
meses de edad 6sea.

Como se puede observar, este resultado mejoré sustan-
cialmente (de 12,15 a 9,09 meses de MAE) cualquier resul-
tado obtenido previamente, lo que indicé que restringir el
modelo a un grupo de sexo y edad especifico mejor6 la
capacidad de los modelos para predecir la edad 6sea.

5.4 Comparacion de los resultados de los modelos
de IA desarrollados frente al estado del artey a
la practica clinica

Durante los apartados anteriores, hemos ido observan-
do como el desarrollo sucesivo de CNNs fue mejorando el
rendimiento de estas, entendiendo como mejora del rendi-
miento una disminucién del MAE en el conjunto de valida
cion.

Asi pues, las primeras CNNs sencillas y poco profundas
entrenadas sobre un subconjunto de los datos consiguieron
MAEs de entre 27,65 y 34,93 meses. Posteriormente, las
CNNs basadas en la arquitectura VGG16 mejoraron estas
cifras a MAEs de entre 17,50 y 24,77 meses. En ese momen-
to, se probaron diferentes arquitecturas de CNNs, con ren-
dimientos variables que fueron desde los 16,00 meses de

MAE en el caso de la ResNet50 hasta 30,07 en el caso de
NASNet.Mobile.

Estos resultados han mejorado notablemente cuando se
han entrenado CNN5s basadas en ResNet50 especificas de
sexo con todos los datos disponibles para ello, pasando de
un MAE de 16,00 meses a MAEs de 12,15 y 12,49 meses
para pacientes masculinos y femeninos, respectivamente.
Finalmente, la CNN entrenada tinicamente con radiogra-
ffas de pacientes masculinos de entre 10 y 15 afios ha conse
guido un MAE de 9,09 meses, lo que supone una mejora
sustancial del rendimiento de los modelos previos.

Tal y como hemos comentado en los apartados de Intro-
duccién y de Estado del arte, los resultados obtenidos estdn
en linea con lo descrito en la bibliografia respecto a la varia
bilidad existente en los métodos tradicionales y en algunos
métodos basados en IA.

Por un lado, algunos autores han cifrado la variabilidad
interobservador existente en la préctica clinica entre 5,4 y
9,96 meses [6]. Por otro lado, los modelos basados en TA
para el calculo automatico de la edad 6sea presentan rendi
mientos de entre 4,2 [14] y 9,96 meses [20].

Si bien es cierto que algunos modelos de IA, como los 5
primeros clasificados del reto de la RSNA, obtienen rendi-
mientos muy buenos y muy por encima de los encontrados
en la préctica clinica habitual, podemos concluir que nues-
tro modelo de CNN para nifios de entre 10 y 15 afios obtie-
ne resultados equivalentes a los encontrados en la préactica
clinica.

6 CONCLUSIONES Y LINEAS ABIERTAS

En el presente trabajo hemos desarrollado y evaluado
diferentes modelos de IA basados en CNNs para el calculo
automadtico de la edad 6sea en pacientes pediatricos y he-
mos comparado sus rendimientos entre si, y frente a la
variabilidad asociada tanto a los métodos tradicionales
utilizados en la practica clinica como a otros modelos de
IA.

Se han evaluado innumerables CNNs (los 29 modelos
presentados en el trabajo son solo una muestra representa-
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tiva de ellas), desde redes neuronales sencillas y poco pro-
fundas que no eran capaces de aprender la complejidad de
los datos, hasta redes neuronales muy profundas y comple
jas que han permitido mejorar sustancialmente el rendi-
miento de los modelos hasta alcanzar un MAE de 9,09
meses en el conjunto de validacién, rendimiento equipara-
ble al encontrado en la préctica clinica [6] y a otros modelos
de IA publicados [20].

El aprendizaje por transferencia, o transfer learning, se ha
revelado como una técnica necesaria para obtener el méxi-
mo aprovechamiento de los datos. También se ha observa-
do, en linea con lo publicado por Larson y colaboradores
[12], que, aunque desarrollar CNNs con un subconjunto de
las imagenes no permite obtener los mejores resultados, si
que puede ser una herramienta ttil en contextos dénde la
capacidad computacional es limitada para explorar dife-
rentes arquitecturas antes de desarrollar los modelos fina-
les con todos los datos.

Por dltimo, respecto a futuras lineas de investigacion,
creemos que es especialmente interesante la sustancial
mejora de rendimiento observada al acotar el rango de
edad dsea de los pacientes utilizados en el entrenamiento
de la red neuronal.

En nuestra opinion, este resultado abriria las puertas al
desarrollo de un pipeline basada en IA que conste de 2 pasos
para la estimacién de la edad 6sea. En primer lugar, se utili
zarfa una CNN (especifica de sexo) para clasificar la radio-
graffa en un grupo etario concreto. En segundo lugar, se
utilizarfa una CNN previamente entrenada con imégenes
del sexo y grupo etario correspondiente para afinar en la
estimacion de la edad 6sea. Creemos que la aplicacién de
estos dos modelos de IA permitiria mejorar los resultados
en la estimacién automaética de la edad 6sea, tal y como
hemos visto en la prueba piloto realizada con una CNN
entrenada con imagenes de pacientes masculinos de entre
10y 15 afios de edad 6sea.
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