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Desarrollo y evaluación de modelos de 
Inteligencia Artificial para la estimación de la 

edad ósea en pacientes pediátricos
Germán Casabó Vallés

Resumen — Tradicionalmente, los métodos más comunes para la estimación de la edad ósea son el método de Greulich y Pyle y 
el método de Tanner y Whitehouse; sin embargo, ambos métodos presentan limitaciones como la variabilidad interobservador 
debido a la subjetividad de estos. En los últimos años, han surgido diferentes aproximaciones para el cálculo automático de la  
edad ósea mediante el uso de algoritmos de Inteligencia Artificial (IA). En el presente trabajo, hemos desarrollado y evaluado 
diferentes modelos de IA basados en redes neuronales convolucionales (CNNs) para el cálculo automático de la edad ósea y 
hemos comparado sus rendimientos entre sí y respecto a los métodos tradicionales y automáticos publicados. Para ello, se ha 
utilizado un conjunto de datos formado por 12.611 radiografías de la mano izquierda de pacientes pediátricos anotadas con su 
edad ósea y el sexo del paciente y se han explorado diferentes arquitecturas y técnicas de optimización. Las CNNs que mejores 
resultados han obtenido están basadas en la arquitectura ResNet50 y presentan errores medios absolutos (MAEs) de 12,15 y de 
12,49 meses para imágenes de varones y hembras, respectivamente. Finalmente, se ha entrenado una CNN con imágenes 
únicamente de varones de entre 10 y 15 años, obteniendo un MAE de 9,09 meses. Estos resultados están en línea con la 
variabilidad descrita en la práctica clínica (entre 5,4 y 9,96 meses) y en otros modelos de IA (entre 4,2 y 9,96 meses). 

Palabras clave —edad ósea, inteligencia artificial, redes neuronales convolucionales, MAE 

Abstract— Traditionally, the most common methods for bone age estimation are the Greulich and Pyle method and the Tanner and 
Whitehouse method; however, both methods have limitations such as interobserver variability due to the subjectivity of them. In 
recent years, different approaches have emerged for the automatic calculation of bone age using Artificial Intelligence (AI) 
algorithms. In the present work, we have developed and evaluated different AI models based on convolutional neural networks 
(CNNs) for the automatic calculation of bone age and have compared their performances with each other and with respect to  
traditional and automatic published methods. For this purpose, a dataset consisting of 12,611 left hand radiographs of pediatric  
patients annotated with their bone age and patient sex has been used and different architectures and optimization techniques have 
been explored. The best performing CNNs are based on the ResNet50 architecture and present mean absolute errors (MAEs) of 
12.15 and 12.49 months for male and female images, respectively. Finally, a CNN has been trained with images only of males  
between 10 and 15 years old, obtaining a MAE of 9.09 months. These results are in line with the variability described in clinical  
practice (between 5.4 and 9.96 months) and in other AI models (between 4.2 and 9.96 months).

Index Terms— bone age, artificial intelligence, convolutional neural networks, MAE

——————————      ——————————

1 INTRODUCCIÓN
1.1 Edad ósea

La edad ósea es un indicador clínico que permite eva-
luar el estado de maduración esquelética de un individuo, 
comúnmente a partir de los cambios de los centros de osifi
cación a lo largo del tiempo. [1].

La determinación de la edad ósea ha sido útil en una 
variedad de contextos clínicos durante más de 75 años, 
destacando en el ámbito pediátrico, en el que la estimación 
de la edad ósea ayuda a detectar y tratar desórdenes de 
crecimiento, predecir la potencial altura futura, problemas 
endocrinológicos, etc. [1].

En este sentido, la edad ósea es el único indicador de 
madurez biológica, independiente del tamaño, que se usa 
de forma rutinaria desde el nacimiento hasta la adultez [2].

Además de en el entorno clínico, la determinación de la 
edad ósea es útil en el campo del deporte de élite para la 
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selección de  atletas,  en  contextos  forenses,  e  incluso  en 
programas de inmigración internacionales para estimar la 
edad de menores solicitantes de asilo [1].

1.2 Métodos tradicionales para la estimación de la 
edad ósea

Tradicionalmente,  los  métodos  más  comunes  para  la 
estimación de la edad ósea son el método de Greulich y Pile 
[3] y el método de Tanner y Whitehouse [4], ambos basados 
en el análisis de radiografías de la mano izquierda de pacien
tes pediátricos.

El método de Greulich y Pyle se basa en la comparación 
visual de las radiografías a analizar frente a un atlas con 
radiografías de referencia, mientras que el método de Tanner 
y Whitehouse se basa en asignar una puntuación en función 
de los diferentes estados que pueden presentar los centros 
de osificación y combinar dichas puntuaciones para obtener 
una estimación de la edad ósea.

Un estudio de 2016 [5] identificó que el método de Greuli-
ch y Pyle [3] era el más utilizado por los especialistas pediá-
tricos americanos para el cálculo de la edad ósea, llegando a 
alcanzar un 97,4% de uso en niños mayores de 3 años. Otro 
estudió identificó, en cambio, que el método de Tanner y 
Whitehouse es el preferido entre especialistas endocrinólo-
gos europeos [6].

No obstante, a pesar de su amplio uso entre los profesio-
nales clínicos, ambos métodos presentan varias limitaciones, 
como por ejemplo una inherente variación inter e intraobser
vador debida a la subjetividad de los métodos [6]. Diversos 
estudios  [7], [8], [9], [10] se han centrado en abordar esta 
variabilidad y han demostrado que la desviación estándar 
sobre una determinación en estudios interobservador varía 
entre 0,45 y 0,83 años, es decir, entre 5,4 y 9,96 meses, aproxi
madamente [6].

1.3 Desafío de la Sociedad Radiológica de América 
del Norte

En los últimos años, el aumento de la capacidad compu-
tacional y los avances en los algoritmos de inteligencia artifi-
cial (IA) han revolucionado el campo de las imágenes médi-
cas con la aparición de un tipo específico de aprendizaje 

profundo conocido como redes neuronales convolucionales 
(CNNs, por sus siglas en inglés) [11].

Las CNNs son especialmente efectivas en la detección de 
patrones complejos dentro de imágenes, y su capacidad para 
aprender de grandes volúmenes de datos las convierte en 
una herramienta prometedora para superar las limitaciones 
de los métodos tradicionales de análisis de las imágenes 
médicas [12].

En 2017, como parte de sus esfuerzos para impulsar el uso 
de herramientas basadas en IA para radiología, la Sociedad 
Radiológica de América del Norte (RSNA, por sus siglas en 
inglés) organizó un desafío para evaluar el rendimiento que 
presentaban los algoritmos de IA ejecutando una actividad 
de lo más común para muchos radiólogos pediátricos: esti-
mar la edad ósea de pacientes pediátricos a partir de radio-
grafías de sus manos [13], [14].

Los resultados del desafío mostraron el enorme potencial 
de las CNNs para el cálculo de la edad ósea, reduciendo la 
variabilidad entre observadores y mejorando la precisión y 
consistencia de las mediciones [13], [14].

2 OBJETIVOS

El objetivo principal de este trabajo es desarrollar mode-
los basados en redes neuronales convolucionales (CNNs) 
para calcular la edad ósea de manera automática a partir de 
radiografías de mano de pacientes pediátricos.

Los objetivos específicos incluyen:

 Revisar  el  estado del  arte  relativo  a  métodos 
basados en IA para la estimación de la edad 
ósea.

 Explorar  y aplicar  diferentes  arquitecturas de 
CNNs para el análisis de las radiografías.

 Comparar el rendimiento de los modelos desa-
rrollados entre sí y respecto a los métodos tradi-
cionales y automáticos para la evaluación de la 
edad ósea.

3 ESTADO DEL ARTE

En los últimos años, se han publicado diferentes trabajos 
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originales  [15],  [16],  [17],  [18] y revisiones bibliográficas 
[19], [20] sobre la aplicación de CNNs para la estimación 
automática de la edad ósea.En uno de estos trabajos, publi-
cado en el año 2.019, Dallora y colaboradores realizan un 
análisis comparativo de diferentes modelos de IA para la 
estimación de la edad ósea y obtuvieron un error promedio 
absoluto (MAE, por sus siglas en inglés) de 9,96 meses [20]. 

Sin embargo, muy pocas de estas herramientas basadas 
en IA han sido comercializadas [19]. En la actualidad, Bo-
neXpert (Visiana, Dinamarca) es el único sistema con mar-
cado CE, es decir, es la única herramienta basada en IA que 
se puede utilizar en un entorno clínico real en la Unión 
Europea para la estimación automatizada de la edad ósea. 
Su uso está indicado para niños de 2,5 a 17 años y niñas de 
2 a 15 años independientemente de su etnia y presenta una 
desviación estándar de 0,63 años (7,56 meses) cuando se 
compara con el método de Greulich y Pyle [10], [21]. 

Por último, tal y como hemos comentado en la introduc
ción, el presente trabajo se basa en el reto que propuso la 
RSNA en el año 2.017 [13], [14] que, a su vez, se basa en los 
datos publicados por Larson y colaboradores [12]. El equi-
po de Larson consiguió un MAE de 0,52 años (6,24 meses) 
[12], mientras que los 5 primeros equipos clasificados en el 
reto de la RSNA consiguieron MAEs de entre 4,2 y 4,5 me-
ses [14].

4 MATERIAL Y MÉTODOS 
4.1 Conjunto de datos

El conjunto de datos utilizado consta de 12.611 radiogra
fías de la mano izquierda de pacientes pediátricos (10,8 ± 
3,5 años de edad cronológica y 10,6 ± 3,4 años de edad ósea 
estimada)  procedentes  de  dos  hospitales  americanos:  el 
Lucile Packard Children’s Hospital de Stanford (California, 
Estados Unidos) y el Children’s Hospital Colorado de Au-
rora (Colorado, Estados Unidos). En la Figura 1 se muestra 
una  radiografía  incluida  en  el  conjunto  de  datos  como 
ejemplo.

Fig. 1. Ejemplo de radiografía de mano.

Cada una de las imágenes está etiquetada con la edad 
ósea (en meses) y el sexo del paciente (el conjunto de datos 
consta de 6.833 varones y 5.778 hembras).

Las  imágenes  fueron  inicialmente  utilizadas,  previa 
aprobación por los Comités de Ética (Institutional Review 
Boards) de ambas instituciones, por Larson y colaboradores 
[12] para comparar el rendimiento en la estimación de la 
edad ósea de un modelo de aprendizaje profundo respecto 
a las estimaciones de radiólogos expertos y de los modelos 
automatizados existentes.

Posteriormente, los Comités de Ética aprobaron la cura-
ción y el uso de las radiografías por parte de la Sociedad 
Norteamericana  de  Radiología  para  su  competición  de 
inteligencia artificial [14] en la plataforma Kaggle (Califor-
nia, Estados Unidos), siempre y cuando se utilicen para 
propósitos  académicos  o  educacionales  y  se  atribuya el 
origen de los datos adecuadamente. 

En este sentido, debemos destacar que las imágenes se 
encuentran  accesibles  en  la  dirección 
https://www.rsna.org/rsnai/ai-image-challenge/rsna-
pediatric-bone-age-challenge-2017 y también como dataset 



de  Kaggle  en  la  dirección 
https://www.kaggle.com/datasets/kmader/rsna-bone-
age.

4.2 Selección de un subconjunto de datos

Por motivos computacionales, durante la fase inicial del 
desarrollo de modelos de inteligencia artificial, se seleccio-
naron 2.018 imágenes (un 16% del total de las 12.611) para 
evaluar el mayor número posible de CNNs diferentes y 
explorar cuál era la arquitectura con un mayor potencial 
para entregar un buen rendimiento.

Para la selección de las 2.018 imágenes, se categorizaron 
las imágenes a partir de su edad esquelética en 15 grupos 
etarios (el número de bins se obtuvo mediante el método de 
Sturges  [22]) y se realizó una partición estratificada del 
conjunto de datos para asegurar que la distribución de los 
valores de edad ósea de las 2.018 imágenes seleccionadas 
era representativa de la distribución de los valores de edad 
ósea del conjunto de datos.

4.3 Software y hardware

Para la realización de este trabajo, se ha utilizado la pla-
taforma de Kaggle, ya que proporciona acceso a entornos 
de alto rendimiento con unidades de procesamiento gráfi-
co (GPU, por sus siglas en inglés) y unidades de procesa-
miento central (CPU, por sus siglas en inglés) optimizadas 
para el entrenamiento de modelos de redes neuronales.

El desarrollo y entrenamiento de los modelos se ha reali
zado utilizando notebooks de Kaggle y el lenguaje de pro-
gramación Python (versión 3.10.14).

Respecto al software, se han utilizado librerías especiali-
zadas de aprendizaje automático y aprendizaje profundo 
como scikit-learn [23], Keras [24], y TensorFlow [25]. Ade-
más,  también se han utilizado las librerías Pandas  [26], 
Numpy  [27],  Matplotlib  [28], os,  scipy  [29],  pickle, tqdm 
[30] y PIL [31] para funciones relacionadas con el manejo, la 
transformación, y la visualización de las imágenes y los 
datos.

Respecto al  hardware, se ha utilizado la GPU P100 (in-
cluida en las opciones de Kaggle) para acelerar los tiempos 

de entrenamiento de las CNNs y un ordenador personal 
con conexión a internet para acceder a los recursos de Ka-
ggle.

4.4 Desarrollo de los modelos de CNNs

Durante el desarrollo del presente trabajo, se desarrolla-
ron diferentes modelos de redes neuronales para el cálculo 
de la edad ósea, partiendo de redes neuronales sencillas y 
poco profundas hasta la utilización de redes neuronales 
complejas, como VGG16 [32], ResNet50 [33], InceptionV3 
[34], EfficientNetB0 [35], Xception [36], MobileNetV2 [37], 
DenseNet121 [38] y NASNetMobile [39].

Se han desarrollado modelos con un subconjunto de los 
datos formado por 2.018 imágenes escogidas de manera 
que fuesen representativas del total del conjunto de datos, 
con el  conjunto total  de  los  datos  (separando pacientes 
masculinos y femeninas), y con un subconjunto de pacien-
tes masculinos de entre 10 y 15 años de edad ósea. En todos 
los casos, se ha realizado una partición estratificada 80/20 
del conjunto de datos entre el subconjunto de entrenamien
to y el subconjunto de validación.

Se han implementado diferentes técnicas para la optimi-
zación de los modelos, como la inclusión de pasos de Dro-
pout [40] y Batch Normalization [41], la reducción del Lear-
ning Rate, la configuración de Early Stopping, y el uso téc-
nicas  avanzadas  como  aprendizaje  por  transferencia  o 
transfer learning, ajuste fino o fine-tuning, y aumentación de 
datos o data augmentation.

Todos los modelos generados han utilizado el algoritmo 
Adam [42] y el error cuadrático medio (MSE, por sus siglas 
en inglés) como función de pérdida para la optimización de 
los modelos. La métrica escogida para la evaluación del 
rendimiento de los modelos ha sido el error absoluto me-
dio (MAE, por sus siglas en inglés).

4.5 Manejo de la variable sexo

Las  imágenes  venían  etiquetadas  únicamente  con  la 
edad ósea (variable objetivo) y el sexo (variable predictora). 
Se han utilizado 3 aproximaciones diferentes para tratar la 
variable sexo:

 No inclusión en los modelos.
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 Concatenación de la entrada de la variable sexo 
a la salida de la rama convolucional de la red 
neuronal.

 Creación de redes neuronales independientes 
para varones y para hembras.

5 RESULTADOS Y DISCUSIÓN
5.1 Desarrollo de CNNs preliminares con un 

subconjunto de los datos

En primer lugar, se desarrollaron diferentes CNNs utili-
zando un subconjunto representativo de las imágenes dis-
ponibles con el objetivo de observar el comportamiento de 
diferentes arquitecturas y técnicas de optimización y de 
escoger la mejor aproximación con la que analizar todas las 
imágenes.

Este subconjunto, formado por 2.018 de las 12.611 imá-
genes, fue seleccionado de manera que se garantizase una 
distribución equilibrada y representativa de la población 
completa. 

Para validar esta selección, se realizó una prueba de la t 
para comparar la distribución de los valores de edad ósea 
del conjunto de datos original y del conjunto de datos selec
cionado, y se obtuvo un valor p de 0,98, lo que indicó la alta 
similaridad entre ambas distribuciones de datos.

Todos los modelos se entrenaron con la misma partición 
80/20 entre el subconjunto de entrenamiento y el subcon-
junto de validación de las 2.018 imágenes, durante un má-
ximo de 300 épocas, un tamaño de lote de 16 imágenes por 
iteración, y con early stopping para detener el entrenamiento 
si no se observaba una disminución del MSE en el conjunto 
de validación durante 10 épocas (paciencia).

5.1.1 Redes neuronales poco profundas

En primer lugar, se utilizó una red neuronal poco pro-
funda consistente en 2 capas de convolución con 32 y 64 
filtros, activación ReLU, y tamaño de kernel de 3x3, segui-
das de capas de MaxPooling, un aplanamiento de la salida 
de la parte convolucional, y una capa densa de 128 neuro-
nas antes de la capa de salida para la predicción final de la 
edad ósea (Modelo 1). Además, se desarrolló otro modelo 
igual a este, pero concatenando la entrada de la variable 

sexo a la salida de la parte convolucional (Modelo 2).

En segundo lugar, se añadieron sobre estas redes técni-
cas de regularización mediante la inclusión de capas de 
Batch Normalization y de Dropout después de cada capa 
convolucional y densa (Modelos 3 y 4).

En la Tabla 1 se presentan los resultados de la época con 
menor MSE en el conjunto de validación de cada uno de los 
modelos  desarrollados en este  apartado.  Tal  y  como se 
puede observar, la adición de las técnicas de regularización 
mejoró  los  resultados;  sin  embargo,  las  redes  siguieron 
sobreajustándose a los datos de entrenamiento (se aprecia 
un MAE mucho menor en el conjunto de entrenamiento 
(train) que en el conjunto de validación (val)).

TABLA 1

Resultados de las CNNs poco profundas

Mod-
elo

Époc
a

MAE 
(train)

MAE 
(val)

1 4 27,46 34,93

2 14 8,59 32,96

3 14 17,08 29,63

4 19 15,46 27,65

Modelo 1:  CNN poco profunda sin regularización ni 
información sobre sexo; Modelo 2: CNN poco profunda sin 
regularización, pero con la variable sexo; Modelo 3: CNN 
poco profunda con regularización,  sin  la  variable  sexo; 
Modelo 4: CNN poco profunda con regularización y varia-
ble sexo.

En la Figura 2 se muestra el gráfico de entrenamiento de 
la CNN que mejor rendimiento entregó en este apartado 
(Modelo 4), en el que puede observarse como el modelo 
sufrió sobreajuste desde antes de la época 10.



Fig.  2.  Gráfico del  entrenamiento de una CNN poco 
profunda  con  técnicas  de  regularización  e  información 
sobre la variable sexo.

5.1.2 Redes neuronales con arquitectura VGG16

Los resultados del apartado anterior evidenciaron que 
las redes neuronales simples y poco profundas no eran 
capaces de conseguir extraer los patrones necesarios de las 
imágenes para el cálculo de la edad ósea, así como de gene
ralizar a datos no vistos y presentar buenos resultados en el 
conjunto de validación, por lo que se optó por evaluar ar-
quitecturas más complejas como la VGG16, que consta de 
16 capas de profundidad [32].

En primer lugar, se implementó una red neuronal con 
arquitectura VGG16 desde 0 (Modelo 5). Además, se desa-
rrolló otro modelo igual a este, pero concatenando la entra-
da de la variable sexo a la salida de la parte convolucional 
(Modelo 6). Para el entrenamiento de ambos modelos se 
redujo el learning rate a 0,00001.

A continuación, se optó por incorporar técnicas avanza-
das de aprendizaje profundo como transfer learning, fine-tu-
ning, y data augmentation.

Respecto al transfer learning, se cargó el modelo VGG16 

preentrenado con los pesos de ImageNet [11], [43] disponi-
ble en Keras con las capas convolucionales congeladas y sin 
añadir las capas superiores,  ya que se añadió una capa 
densa de 512 neuronas seguida de una capa de Dropout 
(Modelo 7) después de aplanar la parte convolucional de la 
red y antes de la capa de salida. Además, se desarrolló otro 
modelo igual a este, pero concatenando la entrada de la 
variable sexo a la salida de la parte convolucional (Modelo 
8). Para el entrenamiento de ambos modelos se redujo el 
learning rate a 0,00001.

Posteriormente, se implementó la técnica de fine-tuning 
cargando la red VGG16 con los pesos de ImageNet, como 
en el Modelo 7, pero descongelando las últimas 4 capas 
para ajustar mejor la CNN al conjunto de datos (Modelo 9). 
Se redujo el learning rate a 0,000001 para garantizar la esta-
bilidad del entrenamiento.

Finalmente, se desarrolló otro modelo consiste en añadir 
sobre el Modelo 9 un paso de Data Augmentation para au-
mentar la diversidad de las imágenes de entrenamiento y, 
por tanto, reducir el riesgo de sobreajuste de la CNN (Mo-
delo 10). El learning rate se mantuvo en 0,000001.

En la Tabla 2 se muestran los resultados de la época con 
menor MSE en el conjunto de validación obtenidos con las 
diferentes aproximaciones de VGG16. 

TABLA 2

Resultados de las CNNs basadas en VGG16

Mod-
elo

Époc
a

MAE 
(train)

MAE 
(val)

5 69 10,57 21,91

6 65 11,50 23,40

7 42 10,75 18,33

8 53 10,48 18,12

9 73 11,19 17,50

10 29 24,01 24,77
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Modelo 5: VGG16 desde 0; Modelo 6: VGG16 desde 0 + 
variable de sexo; Modelo 7: VGG16 preentrenada; Modelo 
8:  VGG16  preentrenada  +  variable  de  sexo;  Modelo  9: 
VGG16  preentrenada  +  fine  tuning;  Modelo  10:  VGG16 
preentrenada + fine tuning + data augmentation

En primer lugar, se observa claramente como los dos 
modelos  basados  en  VGG16  que  peor  funcionaron  son 
aquellos en los que la red neuronal se entrenó desde 0 (Mo
delos 5 y 6). Esto podría ser debido a que el número de 
imágenes (2.018)  era demasiado bajo como para ajustar 
adecuadamente todos los parámetros de la red.

En este sentido, los modelos que utilizaron transfer lear-
ning se manifestaron como aquellos con los mejores rendi-
mientos, con MAEs en el conjunto de validación de alrede-
dor de 18 meses, aunque continuaron presentando un so-
breajuste a los datos de entrenamiento.  

El modelo que mejores resultados presentó, el Modelo 9, 
que incluyó  tranfer learning y  fine-tuning en las últimas 4 
capas convolucionales, alcanzó un MAE de 17,50 meses en 
el conjunto de validación. Estos resultados indicaron que la 
técnica de transfer learning utilizando los pesos de Image-
Net era útil para mejorar los resultados en nuestro conjunto 
de datos.

Por último, el modelo que incorporó la técnica de data 
augmentation consiguió evitar el sobreajuste, ya que el MAE 
tanto en el conjunto de entrenamiento como en el de valida
ción fue muy similar; sin embargo, presentó un rendimien-
to notablemente en el conjunto de validación inferior a su 
equivalente sin data augmentation (24,77 vs. 17,50).

En la Figura 3 se muestra el gráfico del entrenamiento 
del Modelo 9, ya que fue el que mejores resultados presen-
tó. Se observa cómo, aunque el rendimiento es el mejor 
hasta el momento, se produjo un sobreajuste a partir de la 
época 20.

Fig. 
3. Gráfico de entrenamiento de una CNN con arquitectura 
VGG16 con pesos preentrenados y  fine-tuning en las últi-
mas 4 capas.

5.1.3 Redes neuronales con otras arquitecturas

Los resultados del apartado anterior indicaron que el 
uso de la técnica de  transfer learning,  es decir, cargar las 
redes con pesos preentrenados con el conjunto de imágenes 
de ImageNet, era la estrategia que mejores resultados pre-
sentaba, por lo que a continuación se optó por evaluar dife
rentes arquitecturas preentrenadas para evaluar cuál era la 
arquitectura con mayor potencial de  rendimiento.

En particular, se evaluaron las arquitecturas ResNet50 
[33], InceptionV3  [34], EfficientNetB0  [35],  Xception  [36], 
MobileNetV2  [37],  DenseNet121  [38] y  NASNetMobile 
[39]. 

La estrategia adoptada fue la misma en todos los casos 
(Modelos 11-17): se concatenó la entrada de la variable sexo 
a la salida de la base preentrenada de cada una de las redes 
(todas las capas convolucionales se mantuvieron congela-
das), y se añadió una capa densa de 128 neuronas y una 
capa de Dropout antes de generar la salida de la red. Se 
utilizó un learning rate de 0,00001.



En la Tabla 3 se presentan los resultados obtenidos en la 
época con menor MSE en el conjunto de validación de cada 
uno de los modelos.

TABLA 3

Resultados de las CNNs basadas en otras arquitecturas

Mod-
elo

Época MAE 
(train)

MAE 
(val)

11 32 15,18 16,00

12 48 21,20 27,41

13 77 18,31 16,76

14 62 19,36 27,17

15 111 19,76 24,26

16 63 19,43 22,26

17 103 25,09 30,07

Modelo 11: ResNet50; Modelo 12: Inception V3; Modelo 
13: EfficientNetB0; Modelo 14: Xception; Modelo 15: Mobi-
leNetV2; Modelo 16: DenseNet121; Modelo 17: NASNet-
Mobile

Tal  y  como puede observarse,  el  rendimiento  de  los 
modelos fue muy desigual en función de la arquitectura 
utilizada. De hecho, únicamente las CNNs con arquitectura 
ResNet50 (MAE en conjunto de validación de 16,00 meses) 
y EfficientNetB0 (MAE en conjunto de validación de 16,76 
meses) mejoraron el rendimiento obtenido con la arquitec-
tura VGG16.

En la Figura 4 se muestra el gráfico del entrenamiento 
del Modelo 13, es decir, de la CNN con arquitectura Res-
Net50 que mejores resultados presentó en este apartado. 
Puede observarse como durante las 30 primeras épocas no 
se aprecia sobreajuste del modelo.

Fig. 4. Gráfico de entrenamiento de una CNN con arqui-
tectura ResNet50 con pesos preentrenados.

5.2 Desarrollo de CNNs con todos los datos y 
específicas de sexo

Llegados a este punto, se concluyó que la arquitectura 
que más potencial tenía para entregar un mejor rendimien-
to en nuestro conjunto de datos era ResNet50, arquitectura 
que cuenta con 50 capas de profundidad [33], por lo que se 
decidió utilizar todos los datos disponibles para desarro-
llar los modelos definitivos.

Respecto a la inclusión o no de la variable sexo, se obser
vó que, aunque si bien era cierto que los modelos que in-
cluían esta información presentaban un rendimiento lige-
ramente mejor que sus homólogos que no tenían en cuenta 
esta información, la mejora en el rendimiento tampoco era 
sustancial. Por este motivo, y también para aligerar la carga 
computacional de entrenar las CNNs con todos los datos, 
se optó por desarrollar CNNs independientes y específicas 
para cada sexo.

Por tanto, para cada conjunto de datos (6.833 radiogra-
fías procedentes de pacientes masculinos, y 5.788 radiogra-
fías procedentes de pacientes femeninas) se desarrollaron 
CNNs utilizando 4 aproximaciones distintas, todas ellas 
basadas en transfer learning con los pesos preentrenados en 
ImageNet:

- Transfer learning (Modelos 18 y 22)
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- Transfer learning + data augmentation (Modelos 19 y 
23)

- Transfer learning + fine-tuning (Modelos 20 y 24)

- Transfer  learning  +  fine-tuning +  data  augmentation 
(Modelos 21 y 25)

De forma parecida a la dispuesta en el apartado anterior, 
todos los modelos se entrenaron con la misma partición 
80/20 entre el subconjunto de entrenamiento y el subcon-
junto de validación, con un tamaño de lote de 32 imágenes 
por iteración, un máximo de 300 épocas con parada prema
tura a las 10 épocas de no mejorar el MSE en el conjunto de 
validación, y con  learning rates variables entre 0,00001 y 
0,000001 en función de las necesidades de estabilizar los 
resultados del entrenamiento.

En la Tablas 4 y 5 se presentan los resultados obtenidos 
en las CNNs desarrolladas con las imágenes procedentes 
de pacientes masculinos y femeninas, respectivamente.

TABLA 4

Resultados de las CNNs basadas en ResNet50 con 
datos de pacientes masculinos

Mod-
elo

Époc
a

MAE 
(train)

MAE 
(val)

18 39 9,12 12,15

19 30 16,69 13,71

20 17 9,72 12,32

21 42 16,68 14,53

Modelo 18: ResNet50 con  transfer learning; Modelo 19: 
ResNet50 con transfer learning y data augmentation; Modelo 
20: ResNet50 con transfer learning y fine-tuning; Modelo 21: 
ResNet50 con transfer learning, fine-tuning, y data-augmenta-
tion.

TABLA 5

Resultados de las CNNs basadas en ResNet50 con 
datos de pacientes femeninos

Mod-
elo

Époc
a

MAE 
(train)

MAE 
(val)

22 31 9,23 13,00

23 50 15,31 13,48

24 86 6,71 12,49

25 97 14,52 13,00

Modelo 22: ResNet50 con  transfer learning; Modelo 23: 
ResNet50 con transfer learning y data augmentation; Modelo 
24: ResNet50 con transfer learning y fine-tuning; Modelo 25: 
ResNet50 con transfer learning, fine-tuning, y data-augmenta-
tion.

Tal y como puede observarse, esta estrategia produjo 
una mejora significativa del MAE en el conjunto de valida-
ción, situándose alrededor de 12 meses en las CNNs entre-
nadas con imágenes de cada uno de los sexos.

Interesantemente, se observó un comportamiento simi-
lar  al  observado durante  el  entrenamiento de las  redes 
neuronales basadas en la arquitectura VGG16 con un sub-
conjunto de los datos (Tabla 2). Tanto en el caso de la CNN 
entrenada con radiografías de pacientes masculinos como 
en la CNN entrenada con radiografías de pacientes femeni
nas, los mejores resultados en el conjunto de validación se 
obtuvieron en los modelos que no incluyen un paso de data 
augmentation.

Si bien es cierto que la inclusión de esta técnica provocó 
que desapareciese el ligero sobreajuste que presentaban las 
CNN sin data augmentation (véase resultados de los mode-
los 19 y 21 en la Tabla 4 y de los modelos 23 y 25 en la Tabla 
5, en los que el MAE en el conjunto de validación es incluso 
menor que el MAE en el conjunto de entrenamiento), esta 
inclusión provocó también un aumento absoluto del MAE 
en el conjunto de validación respecto a los modelos sin data 
augmentation.

 

Así pues, la CNN con mejores resultados (MAE de 12,15 
meses en el conjunto de validación) en las imágenes de 
pacientes masculinos es aquella que incluyó únicamente 
transfer learning, sin descongelación de ninguna capa con-
volucional. En la Figura 5 se muestra el gráfico de entrena-
miento de esta CNN.



Fig. 5. Gráfico de entrenamiento de la CNN con arqui-
tectura ResNet50 con pesos preentrenados (transfer  lear-
ning) y datos de pacientes masculinos.

Por su parte, en el caso de las pacientes femeninas, el 
modelo con mejores resultados es aquel que utilizó tanto el 
transfer learning como el fine-tuning mediante la descongela-
ción de las últimas capas convolucionales. En la Figura 6 se 
muestra el gráfico de entrenamiento de esta CNN.

Fig. 6. Gráfico de entrenamiento de la CNN con arqui-
tectura ResNet50 con pesos preentrenados (transfer  lear-
ning),  fine-tuning y  data augmentation y datos de pacientes 
femeninos.

5.3 Exploración de estratificación por grupo etario

Por último,  se  realizó un experimento consistente en 
seleccionar  únicamente  las  radiografías  procedentes  de 
pacientes masculinos de entre 120 y 180 meses de edad 
ósea estimada para evaluar si una posible estratificación 
por grupo etario ayudaba a conseguir mejores resultados. 
Se seleccionaron 4.424 imágenes, lo que suponían un 64,74 
% del total de imágenes correspondientes a hombres.

Se utilizó la misma estrategia descrita anteriormente, es 
decir, sobre la base de una CNN con arquitectura ResNet50 
preentrenada con los pesos de ImageNet, se aplicó:

- Transfer learning (Modelo 26)

- Transfer learning + data augmentation (Modelo 27)

- Transfer learning + fine-tuning (Modelo 28)

- Transfer  learning  +  fine-tuning +  data  augmentation 
(Modelo 29)

En la Tabla 6 se presentan los resultados obtenidos. De 
igual modo que en los apartados anteriores, se realizó una 
partición 80/20 entre el subconjunto de entrenamiento y el 
de  validación,  y  se  entrenaron los  modelos  durante  un 
máximo de 300 épocas (parada prematura a las 10 épocas 
sin mejorar el MSE en el conjunto de validación) con un 
tamaño de lote de 32 imágenes por iteración y learning rates 
variables entre 0,00001 y 0,000001.

TABLA 6

Resultados de las CNNs basadas en ResNet50 con 
datos de hombres de entre 120 y 180 meses de edad ósea

Mod-
elo

Époc
a

MAE 
(train)

MAE 
(val)

26 20 8,47 9,09

27 33 12,77 9,46

28 12 9,92 9,15

29 57 11,79 10,62

Modelo 26: ResNet50 con  transfer learning; Modelo 27: 
ResNet50 con transfer learning y data augmentation; Modelo 
28: ResNet50 con transfer learning y fine-tuning; Modelo 29: 
ResNet50 con transfer learning, fine-tuning, y data-augmenta-
tion.
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Interesantemente, el mejor resultado lo obtuvo la CNN 
que utilizó únicamente la técnica de transfer learning con un 
MAE en el conjunto de validación de 9,09 meses. En la Fi-
gura 7 se muestra el gráfico del entrenamiento de esta red.

Fig. 7. Gráfico de entrenamiento de la CNN con arqui-
tectura ResNet50 con pesos preentrenados (transfer  lear-
ning)  y datos de pacientes masculinos de entre 120 y 180 
meses de edad ósea.

Como se puede observar, este resultado mejoró sustan-
cialmente (de 12,15 a 9,09 meses de MAE) cualquier resul-
tado obtenido previamente, lo que indicó que restringir el 
modelo a un grupo de sexo y edad específico mejoró la 
capacidad de los modelos para predecir la edad ósea.

5.4 Comparación de los resultados de los modelos 
de IA desarrollados frente al estado del arte y a 
la práctica clínica

Durante los apartados anteriores, hemos ido observan-
do como el desarrollo sucesivo de CNNs fue mejorando el 
rendimiento de estas, entendiendo como mejora del rendi-
miento una disminución del MAE en el conjunto de valida
ción. 

Así pues, las primeras CNNs sencillas y poco profundas 
entrenadas sobre un subconjunto de los datos consiguieron 
MAEs de entre 27,65 y 34,93 meses.  Posteriormente,  las 
CNNs basadas en la arquitectura VGG16 mejoraron estas 
cifras a MAEs de entre 17,50 y 24,77 meses. En ese momen-
to, se probaron diferentes arquitecturas de CNNs, con ren-
dimientos variables que fueron desde los 16,00 meses de 

MAE en el caso de la ResNet50 hasta 30,07 en el caso de 
NASNet.Mobile.

Estos resultados han mejorado notablemente cuando se 
han entrenado CNNs basadas en ResNet50 específicas de 
sexo con todos los datos disponibles para ello, pasando de 
un MAE de 16,00 meses a MAEs de 12,15 y 12,49 meses 
para pacientes masculinos y femeninos, respectivamente. 
Finalmente, la CNN entrenada únicamente con radiogra-
fías de pacientes masculinos de entre 10 y 15 años ha conse
guido un MAE de 9,09 meses, lo que supone una mejora 
sustancial del rendimiento de los modelos previos.

Tal y como hemos comentado en los apartados de Intro-
ducción y de Estado del arte, los resultados obtenidos están 
en línea con lo descrito en la bibliografía respecto a la varia
bilidad existente en los métodos tradicionales y en algunos 
métodos basados en IA.

Por un lado, algunos autores han cifrado la variabilidad 
interobservador existente en la práctica clínica entre 5,4 y 
9,96 meses  [6]. Por otro lado,  los modelos basados en IA 
para el cálculo automático de la edad ósea presentan rendi
mientos de entre 4,2 [14] y 9,96 meses [20]. 

Si bien es cierto que algunos modelos de IA, como los 5 
primeros clasificados del reto de la RSNA, obtienen rendi-
mientos muy buenos y muy por encima de los encontrados 
en la práctica clínica habitual, podemos concluir que nues-
tro modelo de CNN para niños de entre 10 y 15 años obtie-
ne resultados equivalentes a los encontrados en la práctica 
clínica.

6 CONCLUSIONES Y LÍNEAS ABIERTAS

En el presente trabajo hemos desarrollado y evaluado 
diferentes modelos de IA basados en CNNs para el cálculo 
automático de la edad ósea en pacientes pediátricos y he-
mos comparado sus rendimientos entre sí,  y frente a la 
variabilidad  asociada  tanto  a  los  métodos  tradicionales 
utilizados en la práctica clínica como a otros modelos de 
IA.

Se han evaluado innumerables CNNs (los 29 modelos 
presentados en el trabajo son solo una muestra representa-



tiva de ellas), desde redes neuronales sencillas y poco pro-
fundas que no eran capaces de aprender la complejidad de 
los datos, hasta redes neuronales muy profundas y comple
jas que han permitido mejorar sustancialmente el rendi-
miento de los modelos hasta alcanzar un MAE de 9,09 
meses en el conjunto de validación, rendimiento equipara-
ble al encontrado en la práctica clínica [6] y a otros modelos 
de IA publicados [20].

El aprendizaje por transferencia, o transfer learning, se ha 
revelado como una técnica necesaria para obtener el máxi-
mo aprovechamiento de los datos. También se ha observa-
do, en línea con lo publicado por Larson y colaboradores 
[12], que, aunque desarrollar CNNs con un subconjunto de 
las imágenes no permite obtener los mejores resultados, sí 
que puede ser una herramienta útil en contextos dónde la 
capacidad computacional es limitada para explorar dife-
rentes arquitecturas antes de desarrollar los modelos fina-
les con todos los datos.

Por último, respecto a futuras líneas de investigación, 
creemos  que  es  especialmente  interesante  la  sustancial 
mejora  de rendimiento observada al  acotar  el  rango de 
edad ósea de los pacientes utilizados en el entrenamiento 
de la red neuronal.

En nuestra opinión, este resultado abriría las puertas al 
desarrollo de un pipeline basada en IA que conste de 2 pasos 
para la estimación de la edad ósea. En primer lugar, se utili
zaría una CNN (específica de sexo) para clasificar la radio-
grafía en un grupo etario concreto. En segundo lugar, se 
utilizaría una CNN previamente entrenada con imágenes 
del sexo y grupo etario correspondiente para afinar en la 
estimación de la edad ósea. Creemos que la aplicación de 
estos dos modelos de IA permitiría mejorar los resultados 
en la estimación automática de la edad ósea, tal y como 
hemos visto en la prueba piloto realizada con una CNN 
entrenada con imágenes de pacientes masculinos de entre 
10 y 15 años de edad ósea.
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