

01/07/2022

The chemistry of Hg (I): a structural study

Mercury (Hg) is a metal capable of forming various polycations with various geometries. In this work of the Area of Inorganic Chemistry, the synthesis and characterization of $Hg_2(Pip)_2$, a Hg (I) compound with aromatic ligands and carboxylate groups, is presented. Its characterization has been carried out by elemental analysis, spectroscopic techniques, single crystal X-ray diffraction and DFT calculations.

Crystal structure and interaction energies of the Hg(I) dimer - Josefina Pons

Hg is a metal that has the particularity of being capable of forming a variety of divalent, trivalent, or tetravalent polycations arranged either into linear, dimeric $[Hg_2]^{2^+}$, trimeric $[Hg_3]^{2^+}$, tetrameric $[Hg_4]^{2^+}$, and chains $[Hg]_n$ or triangles $[Hg_3]^{4^+}$. All of them present differences in the formation conditions, connectivity, geometry, and Hg-Hg bond lengths.

The formation of the $[Hg_2]^{2^+}$ is stabilized by the lower solubility compared to those of their Hg(II) analogues. This preferred linear arrangement facilitates the formation of $Hg\cdots\pi$ interactions.

The coordination chemistry and structural arrangement of Hg(I) with aromatic carboxylates have not been extensively explore. In this paper, we provide a compound of Hg(I) with an aromatic carboxylate $[Hg_2(Pip)_2]$ (Pip = piperonylic acid). The obtention of the compounds is due to decomposition of the $[Hg(Pip)_2(4,4'-bipy)]_n$ (4,4'-bipy = 4,4'-bipyridine) to give Hg(0) that have driven the formation of the $[Hg_2]^{2^+}$ cation. This reaction depends on the solvent, temperature, and time (in this case, dimethylformamide, 105 °C and 1h).

The compound obtained ([Hg₂(Pip)₂]), has been characterized by elemental analysis, spectroscopic techniques (IR, 1 H NMR), single crystal X-ray diffraction, and DFT calculations have been performed. The compound is dimeric and the [Hg₂(Pip)₂] units are joined together in tetrameric [Hg₄(Pip)₄] assemblies by Pip ligands. The structure is expanded into a 2D supramolecular structure by C-H···O and Hg··· π interactions. DFT calculations have been performed to analyze the interactions between [Hg₂(Pip)₂] dimers.

Josefina Pons

Department of Chemistry
Universitat Autònoma de Barcelona
josefina.pons@uab.cat

References

"A Hg(I) Corrugated sheet assembled by auxiliary dioxole groups and Hg···π interactions" Francisco Sánchez-Férez, Xavier Solans-Monfort, Teresa Calvet, Mercè Font-Bardia, Josefina Pons, CrystEngComm, 2022, 24, 4351-4355

View low-bandwidth version