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Abstract: 

   In this paper we explore the effect of bounded rationality on the convergence of individual 

behavior toward equilibrium. In the context of a Cournot game with a unique and symmetric Nash 

equilibrium, firms are modelled as adaptive economic agents through a genetic algorithm. 

Computational experiments show that (1) there is remarkable heterogeneity across identical but 

boundedly rational agents; (2) such individual heterogeneity is not simply a consequence of the 

random elements contained in the genetic algorithm; (3) the more rational agents are in terms of 

memory abilities and  pre-play evaluation of strategies, the less heterogeneous they are in their 

actions. At the limit case of full rationality, the outcome converges to the standard result of uniform 

individual behavior. 
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DOES BOUNDED RATIONALITY LEAD TO INDIVIDUAL HETEROGENEITY? 

THE IMPACT OF THE EXPERIMENTATION PROCESS  

AND OF MEMORY CONSTRAINTS 

 

1   INTRODUCTION 

  Common assumptions in economics are that decision makers have unlimited time, information 

processing capabilities, and that they can be conceptualized as Bayesian maximizers. In this paper 

we restrict some of these assumptions within a genetic algorithm framework and focus the attention 

on individual convergence to equilibrium. We show that where identical and fully rational agents 

behave in a uniform manner, identical - but boundedly rational - agents can each behave differently.  

   In the context of a Cournot game, we tackle the issues of the impact of limited information 

processing capabilities on individual firms’ heterogeneity. The firms are modeled as adaptive 

economic agents with limited knowledge of the task and limited memory. They start with different 

strategies, which have been assigned to them randomly, they experiment with new strategies, and 

they learn from experience. In order to implement an evolutionary approach focused on the 

individual firm, we employ a genetic algorithm framework, where each agent is endowed with a 

separate set of strategies. This class of genetic algorithms is called multi-population or individual 

learning because the agents learn from their own experience, in contrast with the other class, known 

as single-population or social learning, where agents learn from other agents’ experiences (Dawid, 

1999; Holland and Miller, 1991; Vriend, 2000; Chen and Yeh, 2001). The social learning 

architecture has been successfully employed in the agent-based computational literature in 

economics to study aggregate behavior (Bullard and Duffy, 1998; Miller, 1996; Arifovic, 1996; 

Nowak and Sigmund, 1998) but we argue that the individual learning architecture is better suited 

for this study because it focuses on the individual behavior of the agents (Andrews and Prager, 

1994; Arifovic, 1994; Chen and Yeh, 1998). 



 

   Simulation results show that boundedly rational agents exhibit a remarkable heterogeneity in 

behavior. Contrary to what one might expect, this result is not simply a consequence of the random 

elements contained in the genetic algorithm. For instance, consider agents that randomly draw the 

strategy they play from a uniform distribution  every period. We show that the resulting individual 

heterogeneity of such agents that play completely at random is lower than from the interaction of 

genetic algorithm agents. Moreover, with a rise in the memory capabilities and the ability to explore 

unavailable strategies, individual differences decline and the results suggest that, in the limit case of 

full rationality, we obtain the standard result of uniform individual behavior. 

   The paper is organized as follows. In Section 2 we outline the Cournot model and the parameter 

values used in the simulations. Then, the procedures followed by agents in making decisions are 

explained in Section 3, where we illustrate the design of the genetic algorithm and state some of its 

properties. The main result about individual heterogeneity is in Section 4, along with the discussion 

about whether it is simply due to excessive noise. Our findings suggest that it is not.  Moreover, the 

higher the rationality level of the decision-makers, the lower the level of individual heterogeneity. 

Changes in rationality levels are generated by adjusting pre-play evaluation of new strategies 

through a weaker and a stronger filter (trembling hand and election, in Section 5) and by varying 

working memory size (Section 6). Conclusions are in Section 7. 

 

2   THE COURNOT EXAMPLE 

   The playground for the boundedly rational agents is a standard Cournot oligopoly game, Γ(N, 

(Si)i∈N, (πi)i∈N). In the game, there are N identical firms who all compete in the same market and 

produce the same homogeneous commodity. The decision variable for firm i is the quantity xi to be 

produced, which lies in [0, ϑ]. All firms simultaneously choose a production level, and then a 

market price p is determined through the clearing of market demand and supply. Let us assume that 

the inverse demand function is p(X)=d-bX, where X= ∑
=

N

i
ix

1
 and d, b>0; and the cost function is 

c(xi)=α xi, which is linear and identical for all firms. Hence the profit function is 
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has a continuous strategy space and a unique, symmetric, and evolutionary stable Nash equilibrium. 

In other words, this game provides ideal conditions to facilitate convergence toward the Nash 

equilibrium outcome both at the aggregate and individual levels. The parameter values adopted are 

N= 8, ϑ=50, α = 5/2, d = 23/2, b=1/16, which yields Nash equilibrium values of X*=128, xi*=16 

∀i, and p*=7.5.2 At the Nash equilibrium, industry profits are less than monopoly profits; in 

particular, earnings  are 39.5% of monopoly profits. As will be explained in the next Section, the 

precise numerical values of the parameters are not crucial for these analyses. More precisely, any 

positive monotonic transformation of the payoff function will not alter the results in this paper 

(Proposition 2). The Cobweb model is a very common playground in the computational economics 

literature and different specifications for price expectations have been put forward (Hommes, 1998; 

Jensen and Urban, 1984; Arifovic, 1994). In his seminal work, Ezekiel (1938) employs naïve 

expectations where current price expectations are simply the last period price, 1
e
t tp p −= . In the 

Cournot setting adopted here, price expectations for the current period are equal to the price in the 

last period adjusted by variations due to changes in the quantity that the firm itself is going to 

produce, ( )1 , , 1
e
t t i t i tp p b x x− −= − − . 

 

3   DESCRIPTION OF THE GENETIC ALGORITHM AGENTS 

  Genetic algorithm agents will play the Cournot game described in the previous Section. A full 

description of the working of a genetic algorithm (GA) is given in the textbooks of Holland (1975), 

Goldberg(1989), and Mitchell (1996). For issues specific to Economics see the excellent study of 

Dawid (1996). This section introduces the GA decision makers along with the parameter values 
                                                 
2 Notice that the Nash Equilibrium outcome is not positioned in the center of the action space (i.e. at 200) so that it 
would not be reached through pure chance by zero intelligence agents. 



 

used in the simulations. In order to analyze individual behavior, the simulations employ an 

individual learning (multi-population) genetic algorithm. Three interesting aspects of this 

framework are discussed in more detail: the memory set, the choice rule, and the ordinal nature of 

the GA. 

   The genetic algorithm decision maker can be described as follow. The strategy which agents have 

to choose is identified by a single real number. It is encoded as a binary string, a so-called 

chromosome, and has associated with it a score (measure of fitness) that derives from the actual or 

potential payoff from this strategy. In a social learning (single-population) basic GA, each agent has 

just one strategy (chromosome) available, which may change from one period to the next. The 

changes are governed by three probabilistic operators: a reinforcement rule (selection), which tends 

to eliminate strategies with lower score and replicate more copies of the better performing ones; 

crossover, which combines new strategies from the existing ones; and mutation, which may 

randomly modify strategies.3 In a basic GA, the strategies (chromosomes) created by crossover and 

mutation are directly included in the next period’s set of strategies (population). 

   The three operators are stylized devices that are meant to capture the following elements involved 

in human learning when agents interact. The reinforcement rule (selection) represents evolutionary 

pressure that induces agents to discard bad strategies and imitate good strategies; crossover 

represent the creation of new strategies and the exchange of information; mutation can bring new 

strategies into a range that has not been considered by the agents. 

   Simulations are run with an individual learning GA (Figure 1), which is discussed in the 

remainder of this section. When agents do not consider just one strategy at each period in time, but 

have a finite collection of strategies from which one is chosen in every period (memory set), the 

process is called a multi-population GA. A strategy is a real number aikt∈[0,50] that represent the 

production level of firm i in period t. Each agent is endowed with an individual memory set 

Ait={ai1t ,…, aiKt} composed of a number of strategies K that is constant over time and exogenously 
                                                 
3 The crossover operator first, randomly selects two strategies out of a population; second, selects at random an integer 
number w from [1, L-1]. Two new strategies are formed by swapping the portion of the binary string to the right of the 
position w.  



 

given. If a strategy aikt is in the memory set, i.e. it is available, agent i can choose it for play at time 

t. When there exist more than K strategies in the game, there are always strategies that are not 

currently available in the memory set. Notice that an available strategy has no impact on the 

outcome unless it is chosen for play. 

  The size of the memory set, K, is a measure of the level of sophistication of an agent since it 

determines how many strategies an agent can simultaneously evaluate and remember. The 

Psychology literature has pointed out that the working memory has severe limitations in the 

quantity of information that it can store and process. According to these findings, the memory 

limitation is not just imperfect recall from one round to the next, but rather an inability to maintain 

an unlimited amount of information in memory during cognitive processing (Miller, 1956; Daily et 

al., 2001). By setting K=6 we assume that decision-makers have a hardwired limitation in 

processing information at 6 strategies at a time. The classic article by Miller(1956) stresses the 

“magic number seven” as the typical number of units in people’s working memory.4 

   As each agent is endowed with a memory set, in the multi-population GA there is an additional 

issue of how to choose a strategy to play out of the K available. The choice rule, C: A(K) → A, is a 

stochastic operator that works as a one-time pairwise tournament, where (1) two strategies, aikt and 

aiqt, are randomly drawn with replacement from the memory set Ait and (2) the strategy with the 

highest score in the pair is chosen to be played: a*it=argmax{s(aikt), s(aiqt)}.  A pairwise tournament 

is different from deterministic maximization, because the best strategy in the memory set is picked 

with a probability less than one.5 The choice rule, however, is characterized by a probabilistic 

response that favors high-score over low-score available strategies. In particular, the probability of 

choosing a strategy is strictly increasing in its ranking within the memory set (Proposition 1). The 

                                                 
4 The memory set size K needs to be even, so it could have been set to 8. There is debate in the psycological literature 
about what constitutes an unit when counting to 7. In this specific application it seems reasonable to identify a single 
strategy as a unit. 
5 In general, an M-tournament choice rule is weaker than a deterministic maximization (“choose the available strategy 
with the highest score”) in two ways.  First, the number of available strategies involved in the tournament is generally 
lower that the size of the memory set, M<K, and so only a subset of available strategies is actually compared (with a 
pairwise tournament, M=2).  Second, even when M=K, the choice rule is different from deterministic maximization 
because the M available strategies are drawn with replacement. More precisely, there is a [(K-1)/K]K chance of 
choosing a strategy different from the best one in the set. 



 

stochastic element in the choice captures the imperfect ability to find an optimum, where the 

probability of a mistake is related to its cost. 

   Proposition 1: The probability that an available strategy x is chosen for play, x*=x, by a pairwise 

tournament choice rule out of a set A of K available strategies is { } 2

12
*

K
r

xxP x −== , where rx is the 

ranking of the available strategy x within the set A (the worst available strategy ranks 1, rx=1, and 

there is an assumption that there are no ties). ♦ Proofs to propositions are in the Appendix. 

   The most common choice rules in the literature are pairwise tournament and biased roulette 

wheel. We have adopted a pairwise tournament because it is ordinal, in the sense that the 

probabilities are based only on “greater than” comparisons among strategies. While in a biased 

roulette wheel the score needs to be positive and its absolute magnitude is important to compute the 

probability of being replicated, none of these matter for an ordinal operator like pairwise 

tournament.  An ordinal operator does not rely on a “biological” interpretation of the score as a 

perfect measure of the relative advantage of one strategy over another (Proposition 2). 

    Proposition 2: The results of the GA agent interactions  are unaffected  by any strictly increasing 

transformation v:R→R of the score function. ♦ 

   The score is the index of performance for a strategy aikt and is a function of the monetary payoff 

π, s(aikt)= v[π(aikt, a -it)]. The score of a strategy can be interpreted as the utility of the outcome 

associated with that strategy. Given the ordinality of pairwise tournaments adopted for 

reinforcement and choice rule, this GA is based only on the ordinal information of the score, like 

the utility function of the consumer. As a consequence, the simulation results are robust to any 

strictly increasing payoff transformation v. 

    A score is assigned to every strategy in the memory set, whether the strategy was chosen to be 

played or not. The distinction between the two cases is conceptually rather important. Assigning a 

score to a strategy that was actually employed (actual score) is an instance of reinforcement 

learning. Assigning a score to all the other available strategies, which were not actually used 

(potential score), always relies on a model, however subjective and imperfect, of the behavior of the 



 

other agents (Kreps, 1998). As already explained in Section 2, the model assumes that the price 

expectation in the current period is equal to the price in the last period adjusted by variations due to 

changes in the quantity that the firm itself is going to produce: ( )1 , , 1
e
t t i t i tp p b x x− −= − − .6 

 

4   INDIVIDUAL HETEROGENEITY 

   Before proceeding to outline the simulation results, an example is presented to introduce the 

precise definition of individual heterogeneity adopted throughout the paper. After stating the main 

conclusion (Result 1), some benchmark cases are provided to show that noise, which is built into a 

GA, is not responsible for the claim of individual heterogeneity across agents (Result 2). 

   The same level of aggregate variability can hide widely different patterns of individual variability. 

The following example illustrates which is the individual dimension that matters for our analyses. 

Consider scenarios A and B in Table 2 with two players and four periods. 

   The two scenarios are identical when considering both aggregate production Xt=Σi xit and overall 

indexes of variability of individual actions, such as the mean of the difference, period by period, 

between the maximum and minimum individual productions, D1= { } { }
1

1 max min
T

it itiit
x x

T =

−∑ , or the 

standard deviation of individual actions xit (SD1). The differences in the patterns of individual 

variability between scenario A and B can be captured by splitting the overall individual variability 

into variability across agents (D2 and SD2) and over time (SD3). In order to calculate agent-specific 

variability, first we compute the average individual production over time
1

1 T

i it
t

x x
T =

= ∑  and, using  

those data, compute the difference D2= { } { }max mini i
ii

x x−  and the standard deviation for ix  (SD2) 

                                                 
6    From the previous discussion it is apparent that the knowledge and computational abilities assumed for a GA agent 
are very limited. An agent should be able to (1) count from 1 to K, (2) flip coins, (3) make ordinal comparisons between 
two real numbers, (4) evaluate the score of an outcome, and (5) remember K strategies. The toughest requirement 
comes for the assignment of the potential score, where an agent needs also (6) to understand how the outcome of the 
last period changes when he adopts a different strategy while everybody else does not. Agent i must know his payoff 
function, πi, and others' aggregate actions from the previous period, a-it. He does not need to know the payoff function 
of other agents, πj with j≠i, their individual past strategies, a*jt,  whether they are fully or boundedly rational players, 
nor how many agents N there are. 



 

(Table 2). Scenario A rates highly in terms of variability across agents, and that is referred to here 

as high individual heterogeneity, while scenario B rates highly in terms of variability over time but 

exhibits no individual heterogeneity.  

When the same statistics developed for the example in Table 2 are applied to the simulation results 

(Table 3),  a remarkable level of  heterogeneity emerges from the interaction of ex-ante identical 

genetic algorithm agents (Result 1). 

Simulation result 1 (Individual heterogeneity) 

In a game with a unique Nash equilibrium, boundedly rational agents (multi-population genetic 

algorithms) with identical preferences and identical rationality levels generate individual behavior 

that is heterogeneous across agents. ♦ 

   The interaction of GA agents generates a difference between minimum and maximum of 

D2=11.08, which constitutes 69% of the individual symmetric Nash equilibrium outcome of xi*=16 

and 22% of the range [0,50] of the individual strategy space. The standard deviations of individual 

production averages is SD2=3.68 (column (2) in Table 3). All of the results in Table 3 are averages 

over 100 runs with different random seeds. A single run consists of 400 iterations among the agents 

and the results reported are relative to the last 100 iterations (from 301 to 400). 

   Although bounded, the agents are endowed with identical levels of rationality. Yet they generate 

individually distinct behavior. Had they been designed with differentiated goals or variable skills, 

the heterogeneity of behavior would have not been surprising. When in experimental data identical 

incentives are given and heterogeneous behavior is observed (Ledyard, 1995, p.170-173; Casari and 

Plott, forthcoming), the explanation generally put forward is an individual-specific utility function. 

   The only built-in diversity in the genetic algorithm agents is the random initialization of the 

strategies. In other words, agents do not have common priors. Besides random initialization, there 

are four other stochastic operators (reinforcement rule, choice rule, crossover, mutation) that might 

introduce variability in the data. In order to have a benchmark to evalutate the influence of 



 

randomness and the magnitude of individual heterogeneity,  the GA outcome can be compared with 

the result of interactions among zero intelligence agents ((2) vs. (8) in Table 3).  

   Zero intelligence agents are designed in the spirit of Gode and Sunder (1993) and are essentially 

pure noise,7 as the individual strategy for each firm is drawn from a uniform distribution on the 

strategy space [0,50] and then aggregated to compute market production and price. Individual 

heterogeneity of zero intelligence agents is remarkably lower than in the case of genetic algorithm 

agents. While scoring much higher in terms of overall variability (D1ZI=39.09 vs. D1GA=15.06), 

zero-intelligence agents are characterized by half as much individual heterogeneity as genetic 

algorithm agents (D2ZI=4.17 vs. D2GA=11.08, SD2ZI=1.41 vs. SD2GA=3.68). In other words, Result 

1 is not a consequence of the noise built into the GA. 

   In interpreting the results, it might be helpful to illustrate individual heterogeneity in outcomes 

with the following example. Suppose that every day you parachute a person from an airplane into 

the same unfamiliar region with the goal of reaching a specific point by foot. You give to the person 

a detailed area map. If all agents can read a map and have good orienteering skills, they will 

converge to the agreed upon spot at the end of the day. Now, suppose that you don’t give the map 

but just show it before take off. Even under the restrictive assumptions that everybody can 

remember the same quantity of information from the map, one might wonder whether everybody 

will be at the same spot at the end of the day. It may depend on the specific features that each of 

them have memorized and on the way in which they assess the success of a new path. 

   Among the stochastic operators of a GA, consider the innovation process, and in particular the 

mutation rate, which is the prime source of noise. The composition of the memory set changes, 

among other reasons, because of active, random experimentation.  In this study the strategy space is 

divided into a grid and strategies expressed in real numbers in the decimal system are translated into 

equivalent binary strings of 0s and 1s. This paper follows the uniform binary mutation process at 

the rate pm, which is common in the GA literature.  Under this innovation process, there is a 

                                                 
7 In Gode and Sunder(1993) they are subject to a budget constraint as well. 



 

probability pm∈(0,1) that each digit ‘0’ flips to ‘1’ or vice versa, with  pm held constant for all the 

digits irrespective of their high or low cardinality of the string.  Hence, the transitions from 111 to 

101 and from 111 to 011 happen with the same probability.  

   Given a mutation rate pm, for ease of interpretation we can translate it into an innovation level p – 

which measures the expected percentage of strategies that will change because of the innovation 

process (mutation) – using the formula p=1-(1-pm)L, where L is the number of digits of the binary 

string. A value of pm=0.02 such as the one adopted in the baseline GA corresponds to an expected 

number of new strategies  due to innovation of 14.92% of the total in the memory set.8 

   A comparative static analysis is performed to evaluate the impact of a different innovation level. 

Two cases of special interest are when the innovation level moves toward zero and when it moves 

toward one. 

   Before presenting the impact of the innovation rate on individual heterogeneity, a clarification is 

necessary regarding the reinforcement operator (selection). The level of variability in the outcome is 

the result of two opposite tendencies at work within the genetic algorithm. One is the generation of 

new strategies because of  the innovation operator and the other is the elimination of bad strategies 

due to the reinforcement operator. Hence, an excessive variability might be due more to a high 

innovation rate than to a weak reinforcement operator. As it will be explained, in this GA design the 

opposite is true because a pairwise tournament implements a stronger selection than a biased 

roulette wheel. 

   The reinforcement rule (selection) is a pairwise tournament repeated K times, R: A(K) → A(K), 

which is applied separately to each agent’s memory set: (1) at time t two strategies, aikt and aiqt, are 

randomly drawn with replacement from the memory set Ait and (2) the strategy with the highest 

score in the pair is placed in the new set: ai•t+1=argmax{s(aikt), s(aiqt)}; (3) the previous two 

                                                 
8 The innovation rates used in four  other studies are the following:  Arifovic (1996) uses L=30 and pm=0.0033 or 
pm=0.033, which translates into p=0.0944 or p=0.6346; Andreoni and Miller (1995) L=10, pm=0.08 with exponential 
decay and half-life of 250 generations: p=0.5656 for t=1 and 0.0489 for t=1000; Bullard and Duffy (1998), L=21, 
pm=0.048: p=0.6441; Nowak and Sigmund (1998), p=0.001. 



 

operations are performed K times in order to generate a complete memory set for agent i at time 

t+1, Ai,t+1. 

   Agents are adaptive learners in the sense that successful strategies are reinforced. Strategies that 

perform well – or that would have performed well if employed – over time gradually replace poor-

performing ones. With experience, the composition of the memory set becomes the distilled 

wisdom of past decisions and past outcomes. 

A key characteristic of a reinforcement rule is how quickly a successful strategy displaces the others 

in the memory set.  One measure of this is the expected takeover time (TOT), which indicates how 

many iterations of the reinforcement rule it takes (in expectation) for a new strategy that has the 

highest score in the set to replace all other strategies in the set (Bäck, 1996).  At the end of the 

process, when no other new strategy is introduced, all strategies are copies of the successful new 

one.9 The takeover time of the pairwise tournament rule is TOT=(ln K + ln(ln K))/ ln 2, which 

equals 3.43 iterations for a memory set of size 6 (Bäck, 1996).  

   According to Bäck(1996), the expected takeover time with biased roulette wheel reinforcement 

when the score function is exponential, f(x)=exp(cx), is approximately (1/c) K ln K, which is of 

order o(K ln K). Given that pairwise tournament TOT is of order o(ln K), for large memory sizes 

tournament rules discard bad strategies faster than biased roulette wheel rules.10-11 

   After this clarification, let us turn to the effect of the innovation rate on the individual 

heterogeneity stated in Result 1. The results of varying p from 0.025 to 0.992  (pm=0.005-0.45) on 

the variability indexes D1, D2, SD2, SD3, X, SD(X) are shown in Figure 2 The data shows four 

                                                 
9 A shorter takeover time is not necessarily better, though, because keeping the knowledge of old available strategies 
can be useful when the “environment” changes. Suppose for instance that there is an exogenous 6-period-long cycle in 
the environment and that there are only two possible strategies: x, best for the first 3 periods, and y, best for the last 3 
periods. If TOT=2 the agent will lose memory of one strategy and needs to learn it all over again by experimentation at 
every cycle. An agent with TOT=4 will perform better. 
10 The same inequality holds for small numbers under mild conditions. For instance, for every K>2 when c<2. 
11 Two additional comments on the comparison between reinforcement rules in a genetic algorithm and in a replicator 
dynamic: first, in evolutionary game theory the replicator dynamic works in a context similar to the single-population 
genetic algorithm environment (social learning), while here the architecture is of multi-population GA (individual 
learning). In our design, there is no imitation of strategy from one agent to another (i.e., across different sets).  Second, 
replicator dynamics generally work in continuous time while a genetic algorithm works in discrete time. It is shown in 
Weibull (1995) that in discrete time strictly dominated strategies need not to get wiped out as they are in continuous 
time. 



 

major results. First, GA agents are no less individually heterogeneous  than zero-intelligence agent 

for all innovation rates. Second, as the innovation rate approaches zero, individual heterogeneity 

does not disappear, on the contrary, it is at its highest peak ((3) in Table 3). Third, as the innovation 

rate grows, individual heterogeneity declines toward the level of zero-intelligence agents and, at the 

same time, variability over time steadily grows. Fourth, for higher levels of noise, especially beyond 

p=0.30, the aggregate outcomes moves away from the aggregate Nash equilibrium outcome. These 

considerations leads us to state Result 2. 

Simulation result 2 (Heterogeneity and randomness)The high level of innovation of the agents is 

not responsible for the individual heterogeneity result. ♦ 

 
 
5   EFFECTS OF THE ELECTION OPERATOR 
 
   Identical bounded rationality agents produce individually heterogenous outcomes (Result 1). Does 

this result depend on the modality of evaluation of new strategies? Or on the memory constraints? 

This section and the next one look at what aspects of bounded rationality are responsible for the 

main result by exploring two dimensions of the rationality of GA agents, the process of pre-play 

evaluation of new strategies and working memory constraints. We begin with the former dimension. 

   A GA agent is characterized not only by its level of innovation but also by the filters that exist 

between the creation of a new strategy and the decision to choose it for play. In the baseline agent 

design, all new strategies are assigned a potential score before one strategy is chosen from the 

memory set (Fresh score).12 Two other new strategy evaluation designs are now discussed: a weaker 

filter (trembling hand) and a stronger filter (election operator). 

   In the trembling hand design a new strategy keeps the score of its parent strategy. The “parent” 

strategy is the original strategy before the mutation happened or, in case of crossover, the strategy 

that has determined the highest bits in the binary string of the new one. The behavioral 

interpretation of trembling hand is of an agent that does not realize that a new strategy is different 

                                                 
12 The score is only potential because the new strategy was not used for play (see discussion in Section 2). 



 

from the parent strategy until the following periods. As a consequence he could play it, with the 

intention of playing the parent strategy and assigning to it a new score afterwards. 

  The election operator screens each new strategy before it is permitted to become an available 

strategy for play. This operator has become more and more common in social science applications 

(Arifovic, 1994;  Bullard and Duffy, 1998). The new strategy replaces its parent strategy in the 

memory set only if its potential score improves its parent’s (potential or real) score. If the score of 

the new strategy is lower than its parent strategy’s score, the parent strategy remains in the memory 

set. This version of the election operator is weaker than that of Arifovic (1994) and similar to 

Franke (1997). 

   One could think of the three designs as implementing three sequential levels of reasoning. A 

trembling hand agent does not filter new strategies before putting them into practice. A Fresh score 

agent is a more thoughtful type and assigns a potential score to new strategies based on what would 

have been the outcome in the last period, so as to assess its potential performance this period. In 

addition to this evaluation, an agent endowed with the election operator compares the performance 

of old and new strategies to avoid discarding old strategies that are better than the new one.  

      In a social learning environment, there is no difference between the trembling hand and Fresh 

score design, because the effect of the Fresh score works through the choice rule (Figure 1. To 

understand the functioning of the Fresh score design in an individual learning GA, assume that there 

is no crossover but just mutation. Then in expectation, there are pK new strategies available in the 

memory set of each agent each period. What is the probability that a new strategy is actually 

played? In general, the probability is less than p (Propositions 3 and 4, below). Consider a situation 

with a continuous payoff function when all the strategies in the memory set are in a neighborhood 

of the equilibrium. A random new strategy is likely to rank lower here than in the memory set at 

period zero, which is randomly generated. In other words, the actual innovation rate, i.e. in terms of 

new strategies played, is going to change over time and become smaller when the GA agent is near 

equilibrium. 



 

Proposition 3: Let X be the memory set, X=XA∪XB, and XA be the subset of old strategies and XB 

be the subset of new strategies currently introduced by the innovation process..  If all available 

strategies have the same score, the probability that the chosen strategy x* is a new strategy, 

P{x*∈XB},  

a) is equivalent to the innovation level, p= P{x*∈XB} 

b) is independentof the size of the memory set ♦ 

Proposition 4: If the sum of rankings of new available strategies within a memory set, ∑
∈ BXx

xr , 

declines, the probability that a new available strategy becomes the action, P{x*∈XB}, declines as 

well. ♦ 

Simulation result 3 (Election operator) 

When the agents are endowed with an election operator, the individual heterogeneity level is lower 

than the level inthe basic GA agents’ simulation only when the level of innovation is higher than 

44%.♦ 

The results of the simulations under the trembling hand and election operator design are shown in 

columns (4) and (5), respectively, of Table 3. Not surprisingly, the trembling hand agents are more 

noisy at the aggregate and overall individual level than the Fresh score agents (SD(X)TH=14.84 vs. 

SD(X)FS=9.89 and D1TH=18.80 vs. D1FS=15.06). Trembling hand individuals are also slightly less 

heterogeneous (D2TH=10.47 vs. D2FS=11.08), due to a similar effect of the higher amount of noise 

in the Fresh score design, as explained in the discussion of Figure 2 Although it produces aggregate 

results closer to the Nash equilibrium outcome and with a dramatically reduced variance 

(SD(X)EL=0.11 vs. SD(X)FS=9.89), the election operator – surprisingly –  does not decrease the 

amount of individual heterogeneity compared to the Fresh score design (D2EL=11.91 vs. 

D2FS=11.08). The surprise comes from the general view that the election operator characterizes 

agents with a higher level of rationality. 



 

   The election operator has a dramatic impact on the behavior of GA agents but does not lower 

individual heterogeneity. At the aggregate level, the result is similar to the work of Arifovic (1994) 

for the cobweb model. Without the election operator, there is a higher variability in the market’s 

production (Figure 2B, which almost completely disappears with the election operator (Figure 3B). 

Yet, some other results are counterintuitive, as one would conjecture that a higher level of 

rationality, as the election operator is generally intended to induce, would lead to behavior that is 

closer to the symmetric Nash equilibrium at the individual level. To better investigate the 

functioning of the election operator, simulations were run varying the innovation rate as has been 

done with the baseline Fresh score GA design (Figure 2). The effect of the election operator on 

individual heterogeneity is not the same for all innovation rates. In comparison with the Fresh score 

design, a higher individual heterogeneity, according to both D2 and SD2 indexes, is detected for 

innovation rates between p=0.11 (pm=0.015) and p=0.44 (pm=0.070). For innovation rates above 

p=0.44, individual heterogeneity quickly declines below the level of the zero-intelligence agent 

(p=0.57, pm=0.1) and then toward zero; moreover, both individual heterogeneity and aggregate 

outcomes are closer to Nash equilibrium. Beyond p=0.81 (pm=0.185), the election operator seem to 

lose control of the inflow of new strategies from the high innovation rate, and the variance of 

aggregate outcome has a spike. 

   The innovation process is the counterbalance to the tendency to reinforce good strategies over 

time. In the Fresh score design, if the rate of innovation is too high there is a danger of corrupting 

the hard-learnt good strategies. With the election operator there is no such danger: when a new 

strategy does not promise to be better than its parent it does not get a chance of being played. As a 

matter of fact, it is immediately forgotten. In this context, the innovation rate needs a different 

interpretation than in the Fresh score design. One might think of it as an index of computational 

speed, i.e. of how many strategies the agent can create, evaluate, and compare in one period. The 

election operator with a high innovation rate induces a superior ability to explore currently 

unavailable options. 



 

   In a social learning GA all new strategies are automatically played and the election operator is the 

only way to filter out disruptive behavior (Figure 1). In an individual learning GA, instead, there is 

an additional filter between innovation and play, which is the choice rule. A new strategy with a 

low potential score has a low chance of being selected for play (Proposition 1) but will be kept in 

memory for future periods. 

 

6   EFFECTS OF MEMORY CONSTRAINTS 

Stronger memory capabilities make for a smarter decision maker. An agent with a larger memory 

size K has a longer historical memory (TOT) and abandons an available strategy only after a longer 

sequence of trials. Moreover, the decision maker has some advantages (either an advantage or some 

advantages) in the ability to choose a better strategy (Corollary 1). 

Corollary 1: (i) The median ranking available strategy is chosen with probability 1/K. 

(ii) The odds that the best versus the worst available strategy is chosen are increasing in the 

memory set size, (2K-1) (inverse of error odds). 

(iii) Consider K even.  The probability that the chosen strategy ranks above the median ranking 

available strategy is ¾, irrespective of the size of the memory set. ♦ 

While keeping the innovation level at p=0.15 (pm=0.02), we can study the effect of different 

memory sizes, letting K range from 2 to 100 (Figure 3). While augmenting noise (p) fades 

individual heterogeneity by generating overall variability (SD(X)), relaxing memory constraints 

makes for a better decision-maker with both lower individual heterogeneity (D2, SD2) and lower 

variance over time of individual actions (SD3). Numerical values for K=2 and K=90 can be found 

in columns (6) and (7) of Table 3. This result is also in line with the findings of the psychological 

literature: “differences in working memory capacity predict performance on a variety of tasks” 

(Daily et al., 2001). 

   A larger memory set systematically reduces individual heterogeneity. Initially the reduction in 

individual heterogeneity is fast and then it slows without stopping its decline. For K≥50 the genetic 



 

algorithm agents are always less individually heterogeneous than zero-intelligence agents and with 

a memory set as large as K=100 the individual heterogeneity is almost half that (D2=2.38 and 

SD2=0.80).13 In conclusion, memory size matters (Result 4).  

Simulation result 4 (Memory constraints) 

When the rationality level of the agents is enhanced by enlarging memory capabilities, the 

individual heterogeneity level decreases toward zero. ♦ 

 

7   DISCUSSION AND CONCLUSIONS 

   In this paper we explore the effect of bounded rationality on the convergence of individual 

behavior to a given equilibrium. We show that constraints in terms of information processing 

capabilities and working memory can lead, in a game with a symmetric Nash equilibrium, to 

individually heterogeneous behavior. Moreover, as the rationality level increases, agents converge 

to uniform behavior. 

    Several experimental studies in economics report that under identical incentives people behave in 

a different fashion (Palfrey and Prisbrey, 1997; Saijo and Nakamura, 1995; Ledyard, 1995; Casari 

and Plott, forthcoming). One way to rationalize this evidence is to assume individual-specific utility 

functions. Alternatively, agents can have identical goals but differentiated skills. This study offers a 

third explanation: agents with identical goals and identical, although limited, levels of rationality. 

   Individual behavior is studied in the context of a Cournot game. In this game, fully rational agents 

should choose identical strategies. This paper presents simulated interactions of identical agents at 

several different levels of bounded rationality. The tool employed for agent-based modeling is an 

individual learning genetic algorithm (Holland and Miller, 1991; Vriend, 1998; Chen and Yeh, 

2001). While allowing each agents to evolve based on its own experience, an individual learning 

genetic algorithm can be designed to fit many levels of agent rationality. Four analytical results 

regarding properties of genetic algorithm are presented in order to link the choice of the algorithm 

                                                 
13 Consider that there are 256 possible strategy in the bynary coding. 



 

design to behavioral assumptions (Propositions 1-4). In particular, the propositions concern the 

experimentation process, the effect of memory constraints, and invariance to payoff 

transformations. 

   In the baseline simulation, each agent can remember and process six strategies at a time, a number 

close to what is suggested about the working memory in the Psychology literature (Miller, 1956; 

Daily et al., 2001). Over time the best strategies gain a higher probability of being played. For each 

agent, new strategies are randomly generated (crossover and innovation) and introduced into her set 

of available strategies.  

   The simulations lead to four main results regarding the effect of bounded rationality on individual 

behavior. First, with limited information processing abilities and constrained working memory, 

individual actions are remarkably heterogeneous (Result 1). Second, even though one might suspect 

that the outcome is the result of the stochastic nature of some genetic algorithm operators (and 

hence it is built-in by construction), we show that this is not the case. Evidence from simulations 

indicates that genetic algorithm agents exhibit more individual heterogeneity than zero-intelligence 

agents (Gode and Sunder, 1993), who are essentially pure noise. In addition, lowering the 

innovation rate does not lead to homogeneous behavior. In other words, the heterogeneity result 

holds up besides the added noise (Result 2). 

   The other two results support the interpretation that individual heterogeneity is caused by bounded 

rationality. They indicate that as the level of agent rationality increases, individual heterogeneity 

fades away, yielding the standard prediction that fully rational agents have uniform behavior. 

Within the class of individual learning genetic algorithms, two dimensions of the bounds on 

rationality are explored: the innovation process and memory constraints. Relaxing memory 

constraints lowers individual heterogeneity, and the data suggest that it goes to zero for infinite 

memory capabilities (Result 4). This outcome of the computation model is in line with finding of 

the Psychology literature (Daily et al., 2001). In a separate set of simulations, the baseline model is 

adjusted by adding a more sophisticated evaluation of pre-play strategies in the form of an election 



 

operator. The individual heterogeneity does not disappear unless a high innovation rate is set 

(Result 3). In this context, innovation is interpreted as an index of computational speed of the agent. 

   To summarize, the contributions of this paper go into two directions: individual convergence to 

equilibrium and genetic algorithm design. First, it reports the existence of an inverse correlation 

between levels of rationality and levels of individual heterogeneity. In the limit, the simulations 

suggest that uniform behavior would  result from full rationality. Second, it sheds light on the 

design of multi-population genetic algorithms. In particular, we explore the interaction of the 

election operator with the innovation rate and the working of the memory set in conjunction with a 

choice rule. 

   Interestingly, the simulation results also suggest that the Nash equilibrium is a more robust 

predictor of aggregate behavior than of individual behavior.  It is as if a maximum range of 

individual diversity is compatible within a bound of agent capabilities. When there is a wide space 

of unexploited opportunities, even agents with heavy cognitive limits can find them and reap the 

gains but when the space is narrow they are not capable of doing so. As the search abilities rise 

along with rationality levels, the opportunities for gains disappear. For instance, if a firm grossly 

under-produces in a Cournot setting, there is an opportunity for another firm to “overproduce” and, 

as a result, market production could still be rather close to the aggregate Nash equilibrium outcome.  

However, more work is needed in this regard. 

   Other changes in the rationality level of the decision maker could be explored, such as the effect 

of a different rule to choose a strategy out of each of the individual sets of available strategies as 

well as an innovation process different from uniform binary mutation. They are all legitimate, and 

not mutually exclusive, possibilities to model the agents. This work is not a statement that any form 

of bounded rationality will lead to individual heterogeneity in behavior. In fact, in the context that 

we have analyzed only heavy bounds to rationality have produced it. The open issue is then how to 

calibrate these models to the actual cognitive limitations of people in order to understand if and how 

much of the individual heterogeneity observed in experimental data is due to bounded rationality. 



 

APPENDIX: PROOF OF PROPOSITIONS 

Proof of Proposition 1: Consider the ranking of available strategies x in A, {1,2, …, rx, …, K} and a choice rule which 

operates by (1) drawing with replacement two available strategies out of A, and (2) taking the one with the highest score 

between the two. Let px= pa· pb=P{x is drawn out of A}·P{x is chosen after it has been drawn}. There are three possible 

cases in which the available strategy x can be drawn, so the total probability is  pa=P{(x,y)}+ P{(y,x)}+ 

P{(x,x)}=
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Proof of Corollary 1: (i) The median ranking is defined as ry=(K+1)/2, hence py=1/K. (ii) P{rx=1}=1/K2, P{rz=K}=(2K-

1)/K2, odds=pz/px=(2K-1). (iii) Suppose K is an even number, 3
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Proof of Proposition 2: When the score s(aik) is replaced by v(s(aik)), where v is a real function such that ∂v/∂·>0, the 

results of the decision process are not changed by the operations performed through the reinforcement rule, the 

innovation process, and the choice rule. The innovation process does not depend at all on the score.  Both reinforcement 

and choice rules are based on a pairwise tournament, which operates on the ranking of the available strategies.  As v 

does not change rankings, the results are unchanged. ♦ 

Proof of Proposition 3: Given an innovation level p (probability that an old available strategy is replaced by a new one), 

the expected number of new available strategies in a memory set of size K is E[|XB|]=pK.  When all available strategies 

have the same score, the probability that one of those new available strategies becomes an action is P{x*∈XB}=(1/K) 

E[|XB|]=p. ♦ 

 

Proof of Proposition 4: Consider the probability of an available strategy from the set XB becoming an action, 

P{x*∈XB}= ( )∑
∈

−=
−

BXx
B

x pKR
KK

r 2112
22 , where RB= ∑

∈ BXx
xr , and |XB|=pK.               

The proposition follows from ∂ P{x*∈XB}/∂RB>0. ♦ 

    When new strategies are freshly evaluated, the expected number of new strategies that will be chosen is likely to 

decline as agents approach equilibrium.  The actual ranking of a new available strategy aikt depends on how much 

learning has already taken place and on the nature of the innovation process itself. 
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Figure 1: INDIVIDUAL AND SOCIAL LEARNING GENETIC ALGORITHMS 
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Figure 2: HETEROGENEITY AND INNOVATION RATE (FRESH SCORE) 

A: Differences between maximum and minimum individual actions 
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B: Market behavior 
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Notes: GA v.7.5, see Table 1; innovation rate p=1-(1-pm)L, pm=mutation rate,  
L=string length; pm from 0.005 to 0.450; average of periods from 301 to 400 of 100 runs.
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Figure 3: HETEROGENEITY AND INNOVATION RATE (ELECTION OPERATOR) 
 
A: Differences between maximum and minimum individual actions 
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Figure 4: HETEROGENEITY AND MEMORY CONSTRAINTS 
 
A: Differences between maximum and minimum individual actions 
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B: Market behavior 
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Notes: GA v.7.5 (Fresh score), see Table 1; K from 2 to 100 at interval 
of 2; average of periods from 301 to 400 of 100 runs. 

Memory set size, K 

Memory set size, K 



 

Table 1: THE DESIGN OF THE GENETIC ALGORITHM 
 
_____________________________________________________ 

 

Number of agents, N    8 

Number of strategies for each agent, K  6 

Length of binary string, L   8  

Range in decimal values   0-255 

Probability of mutation, pm   0.02 

Probability of crossover, pc   0.30 

Crossover type    Single cut 

Reinforcement rule (selection)  Pairwise tournament 

Choice rule      Pairwise tournament 

Initialization of strategies   Random from uniform distribution 

Number of runs    100 different random seeds 

_____________________________________________________ 
Note: The GA agents were programmed and the simulations run on a PC using Turbo Pascal. 

 
 
 

Table 2: EXAMPLES OF TWO PATTERNS OF INDIVIDUAL VARIABILITY 

Scenario Agent Period Indexes of variability of individual actions 
  1 2 3 4 

Agent average 
 ix  Overall 

D1 
Overall 

SD1 
Across 
agents 

D2 

Across 
agents 
SD2 

Over 
time 
SD3 

x1 12 12 12 12 12 A x2 22 22 22 22 22 10 5.35 10 7.07 0 

x1 12 22 12 22 17 B x2 22 12 22 12 17 10 5.35 0 0 5.77 

Note: D=difference between maximum and minimum, SD=standard deviation 
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Table 3: SIMULATION RESULTS 

 (1) 
 

Nash 
equilibrium 

 

(2) 
Fresh 
score 
K=6 

p=0.15 

(3) 
Fresh score 

K=6 
p=0.01 

(4) 
Trembling 

hand 
K=6 

p=0.15 

(5) 
Election 

K=6 
p=0.15 

(6) 
Fresh score 

K=2 
p=0.15 

(7) 
Fresh score 

K=90 
p=0.15 

(8) 
Zero 

Intelligence 
agents 

MARKET RESULTS        
Production 128 129.18 129.25 130.54 128.55 135.49 127.92 199.58 
Standard deviation of  production 0 9.89 1.79 14.84 0.11 16.30 4.43 41.23 
Price 3.5 3.41 3.42 3.34 3.47 3.01 3.48 -0.98 
Standard deviation of price 0 0.65 0.13 0.93 0.01 1.03 0.37 2.56 
Profits (% of monopoly profits) 39.5% 34.97% 36.60% 29.59% 38.29% 16.48% 39.27% -246.95% 
INDIVIDUAL AGENT RESULTS 
(1 obs= production decision for one agent at time t) 

      

MIN1 –  Minimum production across agents  
(average across runs and periods) 

16 9.93 10.40 8.18 12.33 3.68 13.93 5.44 

MAX1 – Maximum production across agents 16 24.99 24.63 26.98 24.24 34.52 17.65 44.53 
D1 –   Difference 0 15.06 14.24 18.80 11.91 30.84 3.72 39.09 
INDEXES OF INDIVIDUAL HETEROGENEITY  
 (1 obs= average production for the same agent over  τ periods)  

     

MIN2 –  Minimum production across agents  
(average across runs) 

16 11.73 10.31 11.85 12.33 8.66 14.51 22.82 

MAX2 –  Maximum production across 
agents  

16 22.81 24.71 22.31 24.24 27.23 16.85 26.99 

D2 –  Difference 0 11.08 14.40 10.47 11.91 18.57 2.35 4.17 
SD2 – Standard deviations of individual 
production 

0 3.68 5.28 3.48 4.43 6.57 0.78 1.41 

INDEX OF INDIVIDUAL VARIABILITY 
OVER TIME  
(1 obs = sd for one agent over  τ periods) 
SD3 –  Standard deviations of individual 
production 0 3.51 0.38 5.46 0.04 8.16 1.31 14.51 

Notes: The statistics are computed on periods 301-400 and are averages over 100 runs with different random seeds 0.005-0.995. (2) Genetic  
Algorithm  v.7.5 (Fresh Score),  N=8, L=8, T=400, τ=100, K=6, pc=0.30, pm=0.02; (3) same as (2) with pm=0.001256; (4) Genetic Algorithm  v.7.6  
(Trembling hand),  N=8, L=8, T=400, τ=100, K=6, pc=0.30, pm=0.02; (5) Genetic Algorithm  v.7.7 (Election),  N=8, L=8, T=400, τ=100, K=6,  
pc=0.30, pm=0.02; (6) same as (2) with K=2;  (7) same as (2) with K=90; (8) Genetic Algorithm  v.7.5.1 (zero intelligence),  N=8, L=8, individual  
actions are drawn with replacement from an uniform distribution on [0,50]. 




