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Abstract

We present a model of learning in which agents learn from errors. If an
action turns out to be an error, the agent rejects not only that action but also
neighboring actions. We find that, keepng memory of his errors, under mild
assumptions an acceptable solution is asymptotically reached. Moreover, one
can take advantage of big errors for a faster learning.

Key words: Learning, errors, fixed points, normal form games, best reply
functions.
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1 Introduction: A Generalized Tatonnement (or
Fictitious Play) Process

In his excellent survey on Learning; Sobel [20] raises the question: “What is
a sensible starting point for a learning model?” First of all, let us adopt the
following model of ”Learning”: A learning process takes as given that active
agents, while doing actions, cannot fully escape to make errors, even if they
know that they will make errors, and, period after period, they try to correct
their errors. The central points are: first, to define what is an error, and then
to be more precise on how agents correct them.

To define errors, models necessarily must specify what agents initially know
and how they build on this knowledge. We must explain why agents make
bad decisions. Some of them are, for example, because they are inexperienced,
ignorant, or face difficult problems.

To model the process of elimination of errors, models must specify what
agents learn at each period, how experience accumulates over time and how ex-
perience is used to correct errors and make better decisions. The major problem
is to know when learning leads to good, acceptable results, in a realistic amount
of time.

Our answer comes from smart businessmen with whom we have the oppor-
tunity to discuss on their working life experience, asking them why they have
succeeded so well. One major question was: Do they optimize?.Most of them
say that they experience a succession of successes and failures but that, in their
own case, successes where more numerous than failures. None of them thinks
that failures where unnecessary. On the contrary, they tell us that failures help
them very much not to make a lot of other mistakes! They learn by essays and
errors, because they do not fail to correct their errors! One of the most famous
French businessmen (Mr. Bellon, Vice President of the “Patronat Frangais” at
the time, 1998), and one of his colleagues from Marseille said this in a very
nice form, at the occasion of a conference that one of us organized in Marseille,
where reputed businessmen and smart researchers got together to discuss their
respective experiences about the roots of success. Mr. Bellon, speaking to the
audience, declared: “At the beginning of my working life, I experienced several
bosses who where very bad....”. The audience laughed a lot. But Mr. Bellon
reacted: “Please, it is not a joke, it was my chance, because, very soon in my
working life, I learned what I must not do!”. The problem for him was not to
know what to do exactly (this is too difficult in a short time) but to know, as
quickly as possible, what kind of big errors to eliminate. We name this the “So-
lutions Cannot Be There” principle of learning, because it tells us that what is
important is to know, as soon as possible, what kind of solutions one must avoid
to use for solving some problems (errors that should not be repeated). This is
a cumulative process of learning from past errors, based on the well known say-
ing: “Errare humanum est, perseverare diabolicum”. The expression “Solutions
Cannot Be There” represents a geometric description of the process of learning.
If an agent (or a group of players) tries a solution z in a given space and if, after



inspection, it appears that this point is not acceptable (is not a good solution),
he (or they) will learn that all points around z (or in a more general “rejected
set” linked to x) are not acceptable. Then the “Solutions Cannot Be There”
principle defines a process of elimination of non acceptable points.

Our paper poses the question: Does a process of essays and errors, with
feedbacks to experience, help to reach an acceptable point (a solution) in a
reasonable amount of time? This seems to be the favorite approach that the
French ANVAR Institution (2000) promotes to help the emergence and the final
success of start-ups.

The problem is to know how much we must learn at each step to get enough
information for reaching an acceptable point. But what do we learn? Most
often, by doing some actions, we learn that these actions and related ones are
not satisfactory (they are mistakes).

Agents with no information on their environment only satisfy. All they
can observe is their own and all other agents’ actions, immediately after these
actions have been done. We model satisfying by defining an acceptable set A;
for example, the set of fixed points of the best reply mapping of a normal form
game.

In this paper we analyze Learning as a process of essays and errors of one
agent or several interacting agents, who do not know a priori what is the best
for the others (they do not know the objective functions of other players). Then
they experiment by essays and errors to gain information. At each step they
learn that what they have done just before (one step before) was not the best
answer to their environment (meaning, for example, what others players have
done just before). Having done something (one action ), given the daily envi-
ronment, reveals that this action and some other neighboring ones are mistakes.
Learning means that, step by step, the agent takes into account this new in-
formation (feedback from experiment) to never repeat these errors, which are
deleted from the feasible action set. Then at each step the agent learns either
that he has done some acceptable action (satisfying) or else how to do better,
but, more often, what errors he should never repeat (unsatisfying actions). He
deletes dominated actions (mistakes) from the feasible action set. At each pe-
riod he learns that the best he wants to achieve (his goal, or an acceptable
outcome) cannot be in some set, now and forever. When he has done a feasible
action, he learns either that it is acceptable (even, less often, optimal) or, if not,
that a neighborhood of it is also unacceptable (resp., not optimal). Then, at
each period, given the action he has chosen either he learns that this action is
acceptable (or optimal), or else he can define a “not to be there” set of points
(a rejected set of actions, including the one just chosen), which can be rejected
immediately at this step as not acceptable solutions, now and in the future.
This is the way the agent acquires information on the successive errors, which
he should not repeat, each time he makes a wrong choice. Step by step, he
narrows the feasible action set until he does something acceptable or optimal.

There are two main messages in this paper. The first one is that learning
step by step some actions that have to be avoided, even if there is no clear vision
of the acceptable solutions of a problem, may be fruitful for achieving one of



them. The second one is that big errors may be more useful than smaller ones,
because they allow us to learn more in the case of continuous learning processes;
in this case, we can exhibit a linking mechanism between the size of errors and
the amount of learning,.

2 A Learning Process by Local Elimination
Around Unsuccessful Essays

In this section we build a model for the first message this paper conveys. We
consider a very simple framework for decision processes and propose an iterative
algorithm that produces a sequence of actions, after making each of which one
learns, in case it is not acceptable, that a whole set of other neighboring actions
is unacceptable, too. An agent who has the capability of learning will keep
memory of these rejectable actions throughout the whole process; under mild
assumptions, an acceptable solution will asymptotically be reached.

We consider an agent facing a simple decision process ((X,d), A), which
consists of a nonempty metric space of possible actions (X, d) and a closed set
of acceptable solutions A C X, which the agent does not know until he reaches
a point in it.

To each unacceptable action z € X\ A that the agent takes, let us associate
an open set N(x). We interpret this set as consisting of those points that the
agent is certain not to be acceptable after realizing that action x was not a
good decision. If z € A we set N(z) = (). Once the agent reaches a point z, two
cases can happen. The first case occurs when he learns that x is acceptable:
r € A.and N(2) = (). We will impose to the mapping N : X — 2% the condition
that N(z) = 0 implies « € A (otherwise we would not be able to reject a point
x, that is, to decide that = ¢ A, just by knowing that N(z) = @)). The second
case occurs when the agent learns that point x is not acceptable, one then has
x € N(z), so that he also learns that a neighborhood of z is not acceptable.
Thus, if he makes a mistake, he learns a lot. In future periods he will never
come back to such a rejected subset N(z) for choosing the next action. This
is the exact transcription of the sentences “Errare humanum est, perseverare
diabolicum”, and “try to never repeat the same error”. This means that if at
period t, F; C X is the subset of “not yet rejected points”, at period ¢ + 1 the
subset of not yet rejected points will be Fyy; = FAN(z). At the beginning of the
learning process, to reach an acceptable point, the set of not yet rejected points is
Fy = X. Then we have the successive inclusions Fy D .... D F; D Fi1q4 D A, with
xy € F; for each t = 0,1,2,...t. We see very clearly that this learning process
contracts more and more the not rejected set F; O A, hoping to reach one point
of the acceptable set of points A. But we do not know whether the process
does not stop, becomes almost stationary,and remains always at a distance of
A greater than some strictly positive constant d, > 0. We will show that this is
not the case, under the very mild assumption that whenever the agent reaches
a non acceptable point x ¢ A then he learns that a ball of a strictly positive



radius of neighboring points is also not acceptable. The striking result will be
that this radius can be as small as one can imagine. In fact there is no size
condition on it, except that the radius depend in a lower semicontinuous way
on the point. So, in case of indefinite successive errors, the agent needs to learn
very little at each period to succeed at the end. A lot of errors gives a lot of
information.

Definition 1 Let (X, d) be a nonempty metric space and A C X. A learning
mapping of rejection for the decision problem ((X,d), A) is any mapping
N : X — 2% with open images satisfying

yzeA= N(z)=0.

i)z ¢g A=z e N(z) C X\A

We assume that the agent has an available learning mapping of rejection

N : X — 2% such that, after taking an action x € X, he can easily compute
N(z). In this way he learns that either x is acceptable (N(z) = ) or else that
there is an open neighborhood N(z) of z that does not contain any acceptable so-
lution. We shall use the function 7y : X — R4 given by ry (2) = d (z, X\N (x))
to measure the degree of undesirability of points in X. Notice that ry (z) =0 if
and only if z € A. In fact, rn (z) is the distance to the closest point to x that is
not rejected at . In the special case when the rejected sets are balls, ry () is
greater than or equal to the radius of N(z). We shall assume that the function
ry satisfies the following mild continuity condition:

If 7 is a limit point of X and lim ry (2) =0 then ry (T) = 0. (1)
Tr—xT

One can easily prove that this condition is equivalent to the existence of a
nonnegative lower semicontinuous minorant of r that vanishes only on A. Ob-
viously, this condition holds if and only if the lower semicontinuous hull of
(that is, the largest lower semicontinuous minorant of r) vanishes only on A;
in particular, it holds if rx is lower semicontinuous. Thus, by [2, Chapter 4,
Section 8, Theorem 4], one has

Proposition 2 Let (X,d) be a nonempty metric space, A C X and
N : X — 2X be a learning mapping of rejection for the decision problem

((X,d),A). If X is compact and the mapping X — 2% is upper semi-
z+— X\N (2)
continuous then ry is lower semicontinuous and therefore condition (1) holds.

Relative to a learning mapping of rejection N : X — 2% we define the
following local learning process by successive essays and errors:

(LLP)N

Step 0. Sett =0 and F; = X

Step 1. If F; = (), then A = (). Stop.
Step 2. If F; # (), choose x; € Fj.



Step 3. If N(z;) = (), then z; € A. Stop.
Step 4. If N(z;) # 0, define F;1 = FAN(z).. Increase t by 1 and go
to Step 1.

We have the inclusions Fy O ... D F; D Fiy1 D A, with 2, € F; for
each t = 0,1,2, ... Indeed, the inclusion F;; D A follows from the fact that
N (z;) € X\A for all z € X. This inclusion guarantees that if (LLP)y stops at
Step 1 then A = (). Since N is also assumed to satisfy N(z) = () only for = € A,
we are also certain that (LLP)y yields an acceptable solution if it stops at Step
3. The case when (LLP)y does not stop is considered next:

Theorem 3 Let (X,d) be a nonempty metric space, A C X and N : X — 2%
be a learning mapping of rejection for the decision problem ((X,d), A) such that
rn satisfies (1).

If (LLP) N does not stop then every limit point of the sequence {z;} generated
by (LLP)y belongs to A; if, in addition, X is compact then rn(z¢) — 0.

Proof. Suppose that T is a limit point of {z;}, so that T = lim x;, for some
subsequence {z, } . Notice that T # x;, for each k (since x4, € F;, C F}, =
X\N (zy,) for I > k), so that T is a limit point of X, too. For every k one
has x4, , € Fy,,, C Fy41 = Fy,\N (x,) C X\N (24,) , whence d(y,, 2, ) >
d(zy,,, X\N (24,)) = r~ (24,) > 0. Therefore, given that d(zy,,z;,,,) tends to
0 (as {z,} converges), it follows that rx (2¢,) tends to 0, too, which, by (1),
implies that rn(ZT) =0, i.e. T € A.

If X is compact then r, being nonnegative and majorized by the continuous
function  — d(z, A), is bounded and hence, to prove that ry(z;) tends to
0, it suffices to prove that any convergent subsequence 7y (zy,) tends to 0. But
{z,, } has a convergent subsequence {mtkl } , which tends toward some = € A. We
thus have 0 < limg— oo " (2r,) = lmp— 00 TN(.%'tkl) < limp_ 00 d(a:tkl,A) =
d(Z,A)=0. m

According to the preceding theorem, three cases can occur. One of them is
that at some iteration ¢ we learn that the feasible set F} is empty, which implies
that the acceptable set A is empty, too. This reveals that our aspirations are
unrealistic, and so we should revise them to make them less demanding. The
most fortunate possibility corresponds to the case when at some iteration we
obtain an acceptable solution. If none of these two cases occur, the process
does not stop and then we can always hope to improve our current solution.
Indeed, in this case, in spite of the fact that convergence is not guaranteed
even if the space is compact, we know that every convergent subsequence has
its limit point in the acceptable set; in other words, we are not following a
wrong path. The need to consider a subsequence to get convergence means that
one might have to disregard infinitely many actions (unsuccessful trials) taken
during the process. Compactness of the space of actions is a sufficient condition
for the existence of such a convergent subsequence to an acceptable solution;
the role of compactness here has the intuitive interpretation that the ”size” (or
the diameter) of the non rejected set F; = X\ Ufc_:t N(z;) decreases at each



iteration (notice, for instance, that when X is unbounded all the rejected sets
may also be unbounded even if the acceptable set is very small). Surprisingly,
convergence does not require large rejected sets N(z;), as our theorem does not
contain any assumption on their size; thus we get convergence of a subsequence
(under compactness) even if we reject a very small set at each iteration. This
is in the spirit of bounded rationality, as it says that it is enough to get just a
little local information at each iteration. Moreover, compactness also ensures
that the degree of undesirability tends to zero, so that a sufficiently advanced
iterate has a degree of undesirability as little as we are ready to tolerate.

Corollary 4 Under the assumptions of Theorem 3, if (LLP)y does not stop
and X is nonempty and compact then A is nonempty.

Proof. We have Fy = X # (). Thus either (LLP)x stops at some z; € A
or else it generates a sequence {z;}, which, X being compact, must have some
limit point T € X. According to Theorem 3,7 € A. &

Corollary 5 Under the assumptions of Theorem 8, if (LLP)n does not stop,
X is compact and A is a singleton, A = {a}, then the sequence {x.} generated
by (LLP)N converges to a.

Proof. It suffices to observe that, according to Theorem 3, a is the unique
limit point of {z;}. =

3 Linking the Amount of Learning to the Size
of Errors: Continuous Learning Processes

The aim of this and the following sections is to propose a more precise model for
the second message of this paper. We consider the case, frequent in economic
models, when the acceptable solutions of a decision process are the fixed points
of a continuous mapping from a metric space into itself. In this case we can
relate the amount of learning at each possible action to the size of the error
made when taking it. We propose a method to reject a neighborhood of a
wrong action that gives rise to rejected sets with sizes that depend on the sizes
of errors in a nondecreasing way.

Let (X,d) and (X’,d’) be metric spaces and f : X — X’ be a mapping.
We recall that 1 : X x (0,400) — (0,400] is called a modulus of continuity
for f if for every ¢ > 0 and z,y € X such that d(z,y) < n(z,e) one has
d' (f (z), f(y)) < e. Clearly, the existence of a modulus of continuity for f is
equivalent to the continuity of f. Indeed, if f is continuous then one can define
a modulus of continuity 7 by

7 (z,e) =inf{d(z,y) /yeX, d(f(x),f () =¢};

continuity of f at x € X guarantees that 77 (z,e) > 0 for all £ > 0. One can
easily check that 77 is nondecreasing in ¢ and is the (pointwise) largest modulus



of continuity of f. In fact, it is not hard to prove that 1 : X x (0, +00) — (0, +00]
is a modulus of continuity for f if and only if n < 7. The following result and
its surprisingly simple proof, which we reproduce here with a slightly different
presentation, can be found in [7]:

Proposition 6 Let (X,d) and (X’,d’) be metric spaces and f : X — X’ be a
continuous mapping. There is a modulus of continuity
7n: X x (0,400) — (0,+00) for f that satisfies the following conditions:
i) m 4s Lipschitzian' with constant 1, the space X x (0,+0c0) being endowed
with the box metric d” defined by d” ((x,€),(2',¢’)) = max{d(z,2’),|e — &'|}.
ii) n is nondecreasing in its second argument.

Proof. Define 1 by

: U
N(e)= _inf max{d(e,u),d(@0),e—d (f (), f )}

Let us first observe that 7 is well defined, that is, it takes only strictly positive
values. Let (z,e) € X x (0,400) and take § > 0 such that &’ (f (z), f (v)) < §
for every y € X satisfying d(z,y) < 6. Then if u € X and v € X are such
that d(z,u) < 6 and d(z,v) < §, one has d' (f (u), f(v)) < d (f(x), f(w)+
d (f (z), f(v)) < %, whencee—d (f (u), f (v)) > £. This proves that, for every
u € X and v € X, max{d(z,u),d(z,v),e —d (f (u), f(v))} > min{6,5};
therefore 7 (z,¢) > min {6,5} > 0.

To prove ), observe that, for any u,v € X, the functions (z,¢) — d(z,u),
(z,e) — d(z,v) and (z,e) — e—d' (f (u), f (v)) are Lipschitzian with constant
1 on X x(0,400), and recall that the class of Lipschitzian functions with a given
constant is closed under pointwise suprema and infima.

Condition 4i) is obvious. m

There is no loss of generality in assuming that a modulus of continuity,
besides being Lipschitzian with constant 1 and nondecreasing in its second ar-
gument, satisfies 7j(z,¢) < ¢ for every 2 € X and £ > 0, since one can define
72 X x (0,400) — (0, +50) by 7 (2,£) = min {n(z,), e}, 7 : X x (0,+00) —
(0, 4+00) being as in the statement of the preceding proposition. The next theo-
rem will require the modulus of continuity to have this additional property, but
will use only continuity in the first argument (rather than the joint Lipschitz
condition).

Theorem 7 Let (X,d) be a metric space, f : X — X be a continuous mapping,
e >0, and suppose that the set

F(f) ={z e X / d(f(z),z) < ¢}

is nonempty. Ifn: X x (0,+00) — (0,+00) is a modulus of continuity for f
that is continuous in its first argument and satisfies (x,€) < ¢ for every x € X

1See the beginning of the next section for the definition of the notion of Lipschitzian
mapping.



and € > 0 then
1
ﬂ%ﬂUﬁ>n(L§M@J@Dd>fmﬂﬂw€X @)

(here and in the sequel we use the convention n(z,t) =0 if t <0).
Therefore, if the set A of acceptable solutions consists of the fixed points of
f, A= Fo(f), the mapping N : X — 2% defined by

_J0 ifreA
N(“’)—{ B(z,r(z) ifzdA

B (z,r(x)) denoting the open ball with center x and radius

r(@) = (. 3o S@)). Q

is a learning mapping of rejection for the decision problem ((X,d), A) ; moreover,
the function rn satisfies condition (1). Hence, if n is nondecreasing in its second
argument and (LLP),, does not stop then every limit point of the sequence {x,}
generated by (LLP)y is a fived point of f; if, in addition, X is compact then
A1, f(21)) — 0.

Proof. Let © € X\F.(f). By definition,
d(z, F (f)) = inf {d(z,y) / y € F.(f)}.

Let y € X be such that d(x,y) <7 (z, 5 (d(z, f(z)) —€)) . We have

d(z, f(z)) < d(z,y) +d(y, f(y)) +d(f(y), f(z))
< 0o e @) =€) ) + dly. S0) + 5 (e, f @) =)

< % (d(z, f(2)) —¢) +d(y, f(y)) + % (d(z, f(z)) —¢)
= d(z, f(z)) —e+d(y, f(y)),

whence d(y, f(y)) > ¢, i.e. y & F:(f). This proves (2).

We shall now show that, if  is nondecreasing in its second argument, ry
satisfies (1). Assume that T is a limit point of X such that lim, zry (z) =0,
and let € > 0. One has T = limxy for some sequence {z,} C X\{z}. If
some subsequence of {z} is contained in A then, as A is closed, T € A, that
is, v () = 0. So we can assume that z ¢ A for every sufficiently large k.
Since lim (rN (zk) — 7 (xk, %a)) = -7 (E, %5) < 0, for k large enough one has
7 (21 3 (@r, f (24))) = 7 (20) < v (@x) < 7 (25, L) , whence, as 7 is non-
decreasing in its second argument, d(zy, f (zx)) < e. Therefore, by continu-
ity, d(Z, f (Z)) < e. Since ¢ is an arbitrary positive number, it follows that
d(z, f(T)) =0, i.e.,, T € A or, equivalently, ry () = 0. We have thus proved

10



the claim that ry satisfies (1). Therefore, by Theorem 3, every limit point of
the sequence {x;} generated by (LLP)y belongs to A.

To finish the proof assume, towards a contradiction, that d(x, f(x;)) does
not converge to 0, that is, that there is a positive number ¢ and a subsequence
{z4, } of {z:} such that d(zy,, f(zs,)) > 2e for every k. Since 7 is nondecreas-
ing in its second argument and strictly positive, using again Theorem 3 we
get 0< 77(3375;“5) <n (xtkv %d(xtk%f(xtk‘))) = r(l.tk:) < TN(mtk) - 07 whence
1 (2¢,,€) — 0. But, since X is compact, {z4, } has a further subsequence {mtkl }
that converges to some point T € A. Given that 7 is continuous in its first
argument, this yields the contradiction 0 = limn(x,, ,e) = limy (a:tkl,s) =
n(T,e) >0. m

The assumption that the modulus of continuity 7 (z, ¢) is nondecreasing in ¢,
required in the proof of the convergence part of the preceding theorem, admits
the following interpretation. If we regard d(z, f(z)) as the error at = (indeed, it
measures the extent to which z fails to be a fixed point) then, by (3), the radius
of the rejected ball at = depends on the error at z in a nondecreasing way. Put
in other words, the bigger the mistake is the more one learns. So we have a clear
link between the size of errors and the amount of learning, which illustrates our
second message in this paper that big errors are fruitful because one learns a
lot.from them. On the other hand our convergence result indicates that, under
compactness and continuity, the sequence of errors converges to zero, so that
learning is efficient in this case.

Corollary 8 Let (X,d), f, n and N be as in Thm. 7. If n is nondecreasing in
its second argument, (LLP) does not stop, X is compact and f has a unique
fized point a then the sequence {x;} generated by (LLP)n converges to a.

We want to emphasize that in the case the preceding results deal with, that
is, when the acceptable solutions are the fixed points of a continuous mapping
f, our algorithm (LLP)y is different from the typical iteration process z;11 =
f (z¢) . Notice that, in case of existence, our algorithm always converges to a
fixed point of f while the iteration process need not converge. The inefficiency
of the iteration process in case of non convergence lies therefore in the fact that
at some iteration it visits some point which was known to be non acceptable at
some previous iteration. The inefficiency of the iteration process in the search
of fixed points and the need to modify it to get convergence is known since long
time ago (see, e.g., [14]).

Recall that a mapping f : X — X’ between two metric spaces is uniformly
continuous when it has a modulus of continuity 7 : X x (0, +00) — (0, +00] that
does not depend on its first argument, that is, n (z, ) depends only on ¢. In this
case the function w : (0,4+00) — (0, +oc] defined by w (&) = n(z,¢) is said to
be a modulus of uniform continuity for f. The (pointwise) largest modulus of
uniform continuity @ of f is given by

T(e) =inf {d(z,) / d (f (@), 1 (1)) >}

11



Clearly, @ is nondecrasing; moreover, w : (0,400) — (0,4+00] is a modulus
of uniform continuity for f if and only if w < @. Notice that any modulus of
uniform continuity, when regarded as a function of both 2 and &, obviously
satisfies the continuity assumption required in Theorem 7. The same argument
used above shows that there is no loss of generality in assuming that a modulus
of continuity w is nondecreasing and satisfies w (g) < e for every e. Thus, in
the case when f : X — X is uniformly continuous, Theorem 7 and Corollary
8 remain valid and meaningful if they are restated in terms of a modulus of
uniform continuity in place of a modulus of continuity.

4 Lipschitzian Learning Processes

The aplicability of the results of the preceding section requires knowing a mod-
ulus of continuity of f satisfying suitable properties, as the construction of
rejected balls uses this information. Though this might be difficult in general,
one often deals with Lipschitzian mappings with a known Lipschitz constant.
In this case a simple appropriate modulus of continuity is at hand. We recall
that a mapping f : X — X’ between two metric spaces (X,d) and (X', d’) is
said to be Lipschitzian with constant C' > 0 if &' (f (x), f (y)) < Cd(z,y) for
every z,y € X. Clearly, this is equivalent to saying that the function

@ : (0,400) — (0,+00) given by & (¢) = & is a modulus of uniform continuity
for f. Thus, in this case we can apply Theorem 7 with the modulus of continuity
7 defined by 7 (z,¢) = m By doing so, (2) can be written as

1
d(z, F.(f)) > Fmax [C.1] (d(z, f(z)) —¢) forall z € X,

and we can define a learning mapping of rejection N : X — 2X by N(z) =

U fzeA . .
{ B(z,r (z)) ifrgA B (z,r (x)) denoting the open ball with center =
and radius r(z) = ml{c,l}d(x, f(2)). In the case when C' > 1, the following
theorem gives a sharper lower bound for the distance function to the set of

approximate fixed points of f and provides a larger rejection mapping:

Theorem 9 Let (X, d) be a metric space, f : X — X be a Lipschitzian mapping
with constant C, and suppose that the set

F(f) ={z e X / d(f(z),z) < ¢}

is nonempty. Then

d(z, F.(f)) > (z, f(z)) —¢) forallz € X. 4)

1
—(d
14+C (

Therefore, if the set A of acceptable solutions consists of the fized points of
f, A= Fy(f), the mapping N : X — 2% defined by

_J0 ifre A
N(l’)—{ B(z,r(z)) ifzdA
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B (z,r(x)) denoting the open ball with center x and radius

1
(@) = gl (@),

is a learning mapping of rejection for the decision problem ((X, d), A) ; moreover,
the function ry satisfies condition (1). Hence, if (LLP), does not stop then
every limit point of the sequence {x.;} generated by (LLP), is a fized point of
f; if, in addition, X is compact then d(x, f(z¢)) — 0.

Proof. Let © € X\F.(f). By definition,
d(z, F (f)) = inf {d(z,y) / y € F.(f)}.

For every y € F.(f) we have

d(z, f(z)) < d(z,y)+dy, fy) +d(f(y), f(2)) < d(z,y) + e+ Cd(y,z)
e+d(1+C)d(z,y),

whence d(z,y) > H—;C (d(z, f(z)) — €) ; therefore (4) holds.

To prove that rxy satisfies condition (1), let T be a limit point of X such
that lim,_zrnx (z) = 0. As in the proof of Thm 7, we can assume that T =
lim 2, for some sequence {2} C X\A. As 0 < d(zk, f(zr)) = 1+ C)r (zx) <
(14 C)ry (zx) — 0, one has d(ZT, f(T)) = limg_o0 d(xk, f(xx)) = 0, so that
T € A, that is, ry (T) = 0. Using Thm. 3 and the inequalities 0 < d(zy, f(z)) <
(14 C)ry (), the last assertion of the statement follows. ®

Corollary 10 Let (X,d) and f be as in Thm. 9. If (LLP)y does not stop, X
is compact and f has a unique fized point a then the sequence {x.} generated by
(LLP)N converges to a.

5 Contracting Learning Processes

Contractions are a very important class of Lipschitzian mappings. We recall
that a mapping f : X — X from a metric space (X,d) into itself is said to
be a contraction if it is Lipschitzian with constant 0 < a < 1. The Cournot
model “with usual assumptions” has a contracting best reply function, as Long
and Soubeyran [13] have shown recently. This demonstrates the importance of
contractions for dynamic processes of convergence towards equilibrium.

The next theorem shows that, when the acceptable set consists of the fixed
points of a contraction, we can make a more powerful rejection process than in
the general Lipschitzian case, since then we are able to reject not only a ball
centered at x but also the complement of another larger ball, so that the feasible
set at each iteration is obtained from that at the previous one by making the
intersection with an annulus.

13



Theorem 11 Let (X,d) be a complete metric space, f : X — X be a contrac-
tion,with constant «, and T be the fized point of f. For each x € X, let

1

C)={v e X / {T5de ) < dtwy) < 2

o f@) }.

Then, for every x € X, one has:
i) fi(z) € C(z),for all t > 1;
ii) T € C(z);
iii) the following statements are equivalent:
a) r =T,
b) C() = {a},
c) z € C(z).

Proof. i) d(z, f'(x)) < Y4 od(f*(z), f*1(2)) < Shlgafd(z, f(z)) =
%d(wf(:v)) < +d(z, f(z)). Hence d(z,%) < 12=d(z, f(z)). For the same
reason, since ¥ is the fixed point of f¢, which is a contraction of constant af,
one has

1
1—at

1
l—«

d(z,T) < d(z, f'(2)) < d(, f'(2)),

whence d(z, f(x)) > (1 — a) d(x,T). On the other hand,
d(z, f(z)) — d(z,7) < d(Z, f(2)) = d(f(T), f(2)) < d(T, ),

so that d(z, f(z)) < (1 + «) d(z,T), i.e. d(z,T) > 1j+ad(x, f(z)). Thus we obtain
d(z, f'(x)) > 1Fad(z, f(2)).

i1) It is an immediate consequence of 7).

i11) Implications a) = b) = ¢) = a) are obvious. ®

Corollary 12 Let (X,d), f and a be as in Theorem 11. If the set A of accept-
able solutions is the singleton of the fized point of f, the mapping N : X — 2%
defined by N () = X\C () is a learning mapping of rejection for the decision
problem ((X,d), A); moreover, the function ry satisfies condition (1). Hence,
if (LLP), does not stop then every limit point of the sequence {x;} gener-
ated by (LLP), is the fized point of f; if, in addition, X is compact then
(a1, §(22)) — 0.

Proof. The proof is similar to that of Thm. 9, using Thm. 3 and the
inequality 7y (x) > }_T_—zd(m, f(z). m

In the case when, as the preceding corollary suggests, we set N (z) =
X\C (z), Theorem 11.4) shows that a possible choice in Step 2 of (LLP)y,
for t > 0, is z; = f(24—1) . In fact, under this choice the well known Banach
contraction principle tells us that the sequence {z;} itself converges to the fixed
point of f.
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6 A Generalized “Tatonnement Process’” for

Best Reply Functions of Normal Form Games

In this paragraph we want to show that our learning process based on the
principle of “Solutions Cannot Be There” is a generalized Cournot tatonnement
(fictitious play) process for best replies functions of normal form games.
Consider a normal form game G; : (z1, T2, ..., Tn) — Gi(21, 22, ...,2,) € R,
i € I ={1,2,...,n}, where each player ¢ chooses action z; € X; and gets
the reward G;(x1, 22, ...,2,). The set X; is a complete metric space. Let z =
(z1,22,...,2,) € X = II"_, X; denote the profile of the actions of all players.
The best reply correspondence of this game is (assuming that it is well-defined)

X - X, where
z— Qz) = (O (2), ..., 2 (2))

Qi(z) = arg max Gi(®1, T2, ey i1, Tiy Tig 1y ooy ).
If agents have common conjectures, or beliefs, over the actions of all other agents,
which make vector Z, then each of them realizes an action z; € ;(Z) and makes
the errors of anticipation, or of conjecture, e;(Z) = d(Q;(),z;), j € I\{i}.

A tatonement process or fictitious play (see Cournot [4], Moulin [17], Mon-
derer and Shapley [16] and Foster and Young ([9]) works as follows: At period
t = 0, the conjectures of the agents about their actions are Z(0). Their best
replies generate their effective actions z;(0) = ,;(Z(0)), ¢ € I. Agents realize
that they have made errors of conjecture e;(Z(0)) = d(Q:(Z(0)),z;(0)), ¢ € I.

At period ¢t = 1, all agents make naive conjectures Z;(1) = z;(0) = Q,(Z(0)),
i € I. Then the process repeats. It generates the new realized actions z;(1) =
Q:(Z(1)) = 952) (Z(0)), @ € I. The errors of conjecture are

e;(@i(1)) = d((2(1)), T:(1)) = d(QF(2(0)), 2:(2(0))).
More generally,
ei(Z(t)) = (1 (2(0)), 24(2(0))).

This process of conjectures due to Cournot [4] is curious, because it supposes
that all agents do not take care of previous errors of conjecture to make their new
conjectures! This is realistic enough only if the process of errors itself is strictly
decreasing: e;(Z;(t+1)) < e;(Z4(t)), t = 0,1,2....; or d(QT2(2(0)), QLT(2(0))) <
d(Q1(2(0)),Q4(2(0))). This hypothesis is a bounded rationality assumption,
based on the fact that agents realize perfectly that they make errors and deal
with this reality to make less and less important errors.

Example 13 Suppose that the best reply mappings s, i € I, are contractions,
i.e. d(Q(x),y)) < ad(z,y) for all z,y € X, 0 < a < 1. Then the process of
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errors of conjectures is such that d (Qu(Z), Q3 (Z)) < ad (2, U(T)) for all initial
conjectures T € X. The repetition of the process gives d(Qf(a’ﬁ)QfH(fc\)) <
old (z,9Q;(2)) . Then the inequalities e;(QL(T)) < a’e;(T), i € I, show that the
process of errors of contracting best reply functions go to zero,for all initial
conjectures T.

The question is to know if the best reply mapping of a normal form game can
define a “solutions cannot be there” dynamic process of learning that generalizes
the tatonnement process (fictitious play dynamics) and converges towards the
equilibrium. In this context, let A = {x € X / Q;(x) =x; Vi € I} denote the
set of fixed points of the best reply mapping. We can say “yes” in the case of
Lipschitzian best replies, because in this case we can exhibit a rejected set at
each x € X, as shown above. The “solutions cannot be there” process works as
follows:

-Step 0. Set t =0 and F; = X.

-Step 1. If F;, =), then A = (. Stop.

-Step 2. If F; # (), choose x; = (x41, T2, ..., Tin) € Fy.

-Step 3. If x4 is a fixed point of 2, then x; € A. Stop.

-Step 4. If z; is not a fixed point of Q, i.e. Q; (z;) # 24 for some i € I,
construct a rejected ball B (x4, 7 (24)) , with 7§* (z4) > 0.

-Step 5. Define Ft+1 = F)\R;, where R; = Hje[Rtj, Rtj = XJ‘ if j ;é i,
R, =B (a:ti, 7S (xtz)) . Increase t by 1 and go to Step 1.

The major improvement of our process (if we compare it with the taton-
nement, or fictitious play, process) is that we are not obliged to choose the
naive conjectures €2;(z;) as the new conjectures. Lipschitzian best replies do
not belong to the rejected balls, i.e. Q(z) ¢ B (x,r(z)). This shows that the
best reply Q(z) at point x is an acceptable conjecture. But, if Q(z) is injec-
tive, this new conjecture Q(x) cannot be a fixed point unless z itself is a fixed
point. This shows the weakness of the naive (“a priori wrong”) conjectures
of the Cournot tatonnement (or fictitious play) process. Our process is more
general and is not contradictory.

In the usual tatonnement process, agents learn nothing except the fact that,
if Q(zo) # o, x¢ is not a fixed point of the best reply function and, if  is
injective, all successors Q¢(zq) of zo cannot be fixed points. So they learn that
their conjectures will be wrong at each stage! They do not learn some local
information about the localization of the fixed points (balls where they cannot
be), as in our process.

Adaptive models include fictitious play and other models. Monderer and
Shapley [16], Gul [11] and Milgrom and Roberts [15] study partial or complete
fictitious play, where only one player or all players, respectively, give their best
replies at each period against the previous actions of all the other players. This
poses different information problems.
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7 Related Literature

What are the properties of the “Solutions Cannot Be There” process of learning,
i.e. the process of successive elimination, period after period, of solutions not
too far from non satisfactory present solutions? We are interested in contexts
in which to repeat near an action that proved to be an error is an error, too.
This is the case for normal form games on metric spaces, with Lipschitzian (in
particular, contracting) best replies.This is also the case, but in a very different
way, for increasing best replies and for best replies f such that f(z) > z.We
will not examine this point here. Let us just say that if one knows that best
replies satisfy the inequality f(z) > z for all x € X, where X is a CPO (an
ordered set with a bottom element such that every nonempty chain in X has a
supremun) and f is a mapping from X into itself then a fixed point of f cannot
be located near = (more precisely, in the interval between z and f(z)). In this
case, Davey and Priestly [6] show that f has a fixed point; this is ageneralization
of Tarski fixed point theorem, which says that if X is a complete lattice and f
is an order-preserving map then f has a fixed point. But in these cases we know
much more: we can identify a fixed point, namely, the supremum of the subset
of points x such that f(x) > z, in the case of Tarski theorem, or the limit point
of a chain f!(x),t=1,2,3,...., in the more general case.

Elimination of dominated strategies can also be interpreted as a very strong
form of our “Solutions Cannot Be There” principle.

Following Sobel [20], learning models can be classified in three ways, depend-
ing on how agents collect information, the strategic aspect of their environment
and their degree of rationality. Our paper assumes that agents collect informa-
tions by doing actions. This is yet the essence of the two armed bandit model
[18], where information is costly because the only way to know that the good
choice has been made is choosing some action. “An agent will not necessarily
learn the optimal decision when the cost of acquiring additional information
exceeds the benefit” [20]. So the agent can be locked into a particular bad strat-
egy. The Bandit Problem assumes, as we do, that the environment is stationary.
But we do not get this unpleasant locking aspect, which is wrong in a changing
environment. Two concepts appear to be very important: how agents make
errors and how rapidly they correct them.(the rapidity of learning).

Errors come into the picture because agents lack information, do not know
the payoffs of other players and have limited understanding of the problems
they try to solve. Agents make bad decisions because they are inexperienced,
ignorant or face difficult problems Models must necessarily specify what agents
initially know and how they build this knowledge. In the case of herding, Smith
and Sorensen? model situations in which agents can make bad decisions and,
after a finite number of periods, agents repeatedly make the same choice. The
main process consists in essays, errors and corrections of errors. Agents can also
make goods decisions when they have experienced making similar decisions.

2 “Informational Herding and Optimal Experimentation”, Department of Economics Work-
ing Paper 97/22, MIT, 1997.
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Secondly, the rapidity of learning, i.e. how fast agents learn, is very impor-
tant for practical reasons. The Engineering literature emphasizes much more
the shape of the learning curve [5]. The great problem is to know when does
learning lead to good results in a realistic amount of time. Agents learn by using
past experiences to obtain a better understanding of their current and future
problems and to improve their decisions, identifying circumstances under which
learning leads to optimal decisions. Learning can be complete in finite time only
if the environment is stationary. We agree with Aghion, Bolton, Harris and Jul-
lien [1], which show, on the contrary, that complete learning requires strong
assumptions. They identify situations where agents learn the correct decision
asymptotically.

The strategic aspect of learning can emerge when there are several agents.
We deal with this aspect when the acceptable set is the set of equilibria of a
normal form game. Agents must observe the actions done by others and must
be sure that, if an equilibrium is not attained, the equilibrium cannot be very
close to the profile of actions just taken.

The degree of rationality we attribute to agents is very low. We agree with
the observation of Sobel [20] that “the more complicated the strategic environ-
ment, the simpler the information technology and the simpler the behaviour
followed by the agents”. In our model agents do not necessarily optimize. They
can follow behavioural rules. We can suppose bounded rationality and satis-
fying:agents who do not know where the set of acceptable solutions is located.
Our model is a kind of search model of acceptable points. Satisfying is a process
by which agents approach some acceptable solutions (like equilibrium); it works
by elimination, like the brain does (connectionist models). Information comes,
each period, from the actions taken by all players just before; the only way an
agent can find out how well a choice works is by making the choice.

More generally, we can relate our learning process to the existing literature
on Learning following Sobel [20], who makes clear that three approaches emerge
as a good starting point for learning models:

i) Individual learning models, like the celebrated two armed bandit problem
[18], and “models of experiments” of Aghion, Bolton, Harris and Jullien [1].

ii) Social learning models, which include observational learning models with
the possibility of inefficient herding [?]. Models of word-of-mouth transmission
of information between boundedly rational agents examine how agents learn.
The most prominent model of this kind is that of A.V. Banerjee and D. Fu-
denberg?, followed by Ellison and Fudenberg [8], which makes the asymptotic
behaviour of agents precise. Smallwood and Conslik [19] demonstrate that the
rationality of agents change the qualitative results of the model.

iii) Evolutionary and learning models in games include learning models that
examine fictitious play and tatonnement (adaptive) dynamic processes, where
learning may be slow [10], [16], and evolutionary game models, close to models of
social learning, which describe non strategic agents that can mutate with some
probability and change actions infrequently. Recently, Kandori, Mailath and

3 “Word-of-Mouth Learning”, mimeo, MIT and Harvard University, 1995.
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Rob [12] and Foster and Young [9] have examined strategic adaptive processes
where agents adjust their strategies by playing best responses to the previous
population distribution with a positive probability of a random change in their
strategies.

8 Conclusions and Future Work

In this paper we have proposed a new principle of learning, the “Solutions
Cannot Be There” principle. We have presented a model in which agents learn
from errors and we have proved that, under mild assumptions, their actions
converge to acceptable solutions of their decision problems. In the specific case
when these acceptable solutions are the fixed points of a continuous mapping
from a metric space into itself, we have proposed a way to link positively the
amount of learning to the size of errors. As possible topics for further research,
one could consider extending our model to nonstationary environments and to
introduce decision costs [3] for measuring the difficulty of making decisions,
linking these costs to the sizes of the rejected sets.
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