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Abstract

We accomplish two goals. First, we provide a non-cooperative foundation for

the use of the Nash bargaining solution in search markets. This ¯nding should

help to close the rift between the search and the matching-and-bargaining liter-

ature. Second, we establish that the diversity of quality o®ered (at an increasing

price-quality ratio) in a decentralized market is an equilibrium phenomenon {

even in the limit as search frictions disappear.
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1 Introduction

It is a ubiquitous observation in our society that not only the best professionals can

make a living. There are plenty of mediocre lawyers, dentists and economists(!) who

are clearly outclassed by their peers but still ¯nd employment. Of course, there are

a number of straightforward explanations of why this should be the case. First, it is

likely that the demand for the services of these professionals is heterogenous: some

people are willing (and able) to pay more for better service, so if price discrimination

is not possible we must have quality diversity. A second argument relates to the

scarcity of high quality in the market. If a lower quality is instantaneously available,

while for the high quality one must queue, again there is room for lemons to enter

the market. A third argument is based on asymmetric information: if at the time of

contracting the quality is not observable by the customer, it actually may be the high

quality services that are driven out of the market.

While all the above arguments are convincing in their own right, we contend that

\quality dispersion" is a natural phenomenon in a decentralized market even if the

consumers are identical, the market is frictionless, and the consumers can tell the

quality of service before they purchase it.

We show our result in the context of a search/matching market in its steady state.

The literature on the analysis of such markets was begun by Diamond (1971), and has

evolved a great deal since. There have developed two main strands: search theory em-

phasizes the endogenous nature of the e®ort put into search activity, (over)simplifying

the exact nature of negotiation between a seller and a buyer { generally, by using the
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Nash bargaining solution {; matching-and-bargaining theory does the opposite, it

(over)simpli¯es search behavior { by assuming that it is governed by an exogenous

matching process { while it concerns itself more with the details of bargaining. We

start out in the spirit of the latter approach, but { rather reassuringly { end up with

a model that supports the reduced form approach of search theory.

The original argument against using the Nash bargaining solution in a non-

cooperative model of market interaction (mainly due to Rubinstein and Wolinsky

(1985), Gale (1986) and Wolinsky (1987)) was simply based on the desire for a fully

non-cooperative treatment. A more devastating blow was the discovery of the \Out-

side Option Principle" (by Ken Binmore, Avner Shaked and John Sutton1), which

has established that the outside options should only have a direct e®ect on the out-

come of bargaining if they exceed the equilibrium payo® in the absence of an option.

It was Bester (1988) who incorporated the \full-°edged" non-cooperative bargaining

model into a matching market. Thus, in Bester's world when a buyer and a seller are

matched, they engage in alternating-o®er bargaining, where the buyer { but only the

buyer { has the option of breaking up the negotiations, following his rejection of any

o®er by the seller.

While in the original set-up of Diamond (1971) { where the sellers post prices and

the buyers visit the stores { this seems to be the appropriate model, in the context of

pairwise matching and bargaining of, say, professionals and their clients, it is not. It

1See Binmore (1985), Binmore, Shaked and Sutton (1989), Shaked and Sutton (1984) and Sutton

(1986).
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is not, because it lacks symmetry. There is no reason whatsoever to rule out that a

lawyer refuses to work with a client who does not accept to pay the fee she demands.

Consequently, we need to incorporate into the bargaining model the option that both

players can leave the negotiating table. There are two obvious ways this can be done.

The ¯rst one is to allow only the responder to opt out in every period. While, by the

alternating structure of the bargaining procedure, this would ensure that both players

enjoy the option of quitting, one of them would be forced to su®er some (delay) cost

before being able to do so. This does not seem quite reasonable. Thus, we opt for

the alternative speci¯cation, where both players can leave following the rejection of

an o®er.2

As we argue it in detail in Section 3, the above modeling choice leads us to

a non-cooperative solution, which coincides with the (generalized) Nash bargaining

solution.3 Thus, we arrive at the paradoxical(?) conclusion that taking the strategic

approach \all the way", brings us back to the cooperative solution. (A ¯tting way

to culminate the Nash Program { the quest for a non-cooperative foundation of the

Nash bargaining solution.)

In addition to the conceptual breakthrough discussed above, we also arrive at

2Actually, the issue is not this simple. The crucial question is whether is it feasible that the pro-

poser can leave the negotiation following the rejection of his o®er without listening to the responder's

counter-o®er (c.f. Shaked 1994). If (and only if) the answer is yes, our set-up is the appropriate

model.
3It has been shown (see Binmore, Rubinstein and Wolinsky (1986)) that the limit of the Ru-

binstein solution as the players become increasingly patient is the Nash solution. Our equivalence

result does not depend on taking any limit.
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practical predictions about the market equilibrium, in the presence of a (potentially)

disperse distribution of quality.4 Our main ¯ndings are two-fold. First, { and contrary

to Bester (1988) { we establish that the equilibrium price distribution is such that

the mark-up of the seller is always increasing with the quality of the service sold.

This is in clear accordance with the stylized fact that in general the pro¯t margin

is higher for higher valued goods/services. Second, we show that while it is true

that as search frictions diminish the average provision of quality increases { just as

predicted by Bester (1988) { , in the limit as these frictions disappear the equilibrium

does not converge to the degenerate case, where only the highest quality sellers can

stay in the market { as predicted by Bester (1988) {, rather we are left with a

very signi¯cant proportion of mediocre sellers in business. That is, we support our

contention mentioned at the beginning of this Introduction that quality dispersion is

an \innate" characteristic of decentralized markets.

The rest of this article continues as follows. In Section 2, we lay out the details of

our model. In Section 3, we develop our bargaining solution. Section 4 contains the

analysis of the market equilibrium and its dependence on the level of search frictions.

Section 5 concludes.

4Surprisingly { to the best of our knowledge { no search model using the Nash solution has

analyzed this question. An exception is Bester (1993), but he only allows for two levels of quality

(while makes the frims' choice of quality endogenous).
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2 The model

We consider a market for a single commodity of heterogeneous quality, composed of

a set of producers (sellers) and a set of consumers (buyers). 5 Both sets of agents are

assumed to be a continuum and their measure is normalized to one. Correspondingly,

each seller can be uniquely indexed by a type, µ 2 [0; 1]. Seller µ can produce the good

of quality q(µ), where q(:) : [0;1] 7! [0;1] is { without loss of generality { assumed

to be non-decreasing. For simplicity, we also assume that q(:) is continuous and we

normalize 6 q(1) at 1.

Each producer can sell a single unit in each period. The cost of production is

independent of the quality7 and, for simplicity, it is normalized to zero. The buyers

are all identical. Each of them wishes to purchase a single unit of the good. Their

valuation of a good of quality q(µ) is equal to the quality measure.

The market opens at t = 0 and it operates over time. The agents maximize their

expected utility, which they discount by the common discount factor, ± 2 (0; 1); per

unit of time. Players only receive utility if they consummate a transaction. The

utility of a consumer who purchases the product of seller µ for a price of p(µ) at time

t is given by [q(µ)¡ p(µ)] ±t, while seller µ's utility gain from the same transaction is
5While our principal application is professional services, we will stick to the standard terminology

of producers and consumers (of goods).
6Since we are not concerned with costs (they are sunk), if the highest quality produced were not

1, we could just shift up the quality distribution, without any real consequence.
7Since our main point is that mediocre quality is produced in equilibrium, by not giving mediocre

producers a cost advantage, we actually strengthen our result.
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p(µ) ±t.

The consumers only know the distribution of quality in the market. The game

starts by the buyers' search for producers. Each buyer chooses a seller at random

and learns the quality of her product upon entering the store. Search is costly. The

expected delay cost of ¯nding an empty store is represented by a discount of ±b. As

we will see, the value of this friction is endogenously determined, since it depends on

the ratio of active sellers to buyers. Once a consumer ¯nds himself in a store he starts

bargaining over the price with the seller.

The bargaining procedure is an enriched version of the standard model of alter-

nating o®ers. The added feature is that after a rejection, both players are allowed

to unilaterally terminate negotiations and return to the market. More speci¯cally,

bargaining between matched sellers and buyers proceeds as follows. First, one of the

parties is randomly selected to make the ¯rst proposal. The probability that the

buyer (the seller) is selected is ¸ (1¡ ¸). If the responder accepts the proposed price

the transaction is consummated, the agents collect their payo®s, the seller returns8

to the market and the buyer is replaced by a new, but unmatched, buyer. On the

other hand, if the responder rejects then either of the two bargainers has the option

to break up negotiations. In case of a break-up, it \costs" ±b and ±s for the buyer and

the seller, respectively, to ¯nd a new match. If neither player opts out, the responder

makes a counter-proposal after a delay of one time unit. The seller and the buyer al-

8We assume that the sellers are myopic, in the sense that they do not consider their future °ow

of income when negotiating with a buyer. Equivalently, they could be replaced by a new seller of

the same quality.
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ternate in making proposals until either a proposal is accepted or one of them breaks

up negotiations. If they continue to bargain forever, they both earn 0.

Note that our market is stationary, since both the measure and the type distribu-

tion of the agents are unaltered over time. Thus, in equilibrium, the expected gain of

a consumer upon entering the market, v, is constant. Since this value is also the con-

tinuation value of a buyer upon leaving a store empty-handed, when it is larger than

the minimum quality produced, there are producers who are unable to sell in equilib-

rium. We denote the marginal producer by µ¤ and we assume that in equilibrium all

producers with lower quality are absent from the market.9 Thus, an equilibrium of

this market can be described by µ¤ and the expected price10 at each producing seller's

store: p(µ) for µ ¸ µ¤.

Let us return to the search frictions. To capture the dependence of these on µ¤,

we assume that for each buyer the probability of a match with a seller is 1 ¡ µ¤ {

the number of sellers per buyer { in each period11 of (memoryless) matching. Let

us denote the (common) discount factor corresponding to one matching period by

±¢: The e®ective discount factors of a seller and a buyer are then determined by the

9Alternatively, we could assume that the non-trading sellers are still hanging around and thus it

is possible to be matched to them. The resulting search frictions would be identical (as long as the

buyers remain the long side of the market).

10As we will see, in equilibrium every match ends with immediate agreement.
11Think of a matching period as the time it takes for a seller (on the short side of the market) to

¯nd a buyer.
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following equations12

±s = ±
¢ and ±b = ±

¢ (1¡ µ¤ + µ¤±b) : (1)

Resolving the equations, we obtain

±s = ±
¢ and ±b =

±¢(1¡ µ¤)
1¡ ±¢µ¤ : (2)

3 The bargaining solution

We start our analysis by considering the negotiation between a buyer-seller pair in

isolation. To this e®ect, in this section, we assume that the outside options are ex-

ogenously given. Let xs and xb denote the seller's and the buyer's outside option

respectively. First, we characterize the set of subgame-perfect equilibria of the sub-

games where one of the parties has already been chosen to be the ¯rst proposer. Let

us denote the equilibrium price of the subgame where the buyer (the seller) is the

¯rst proposer by p¤b(µ) (p
¤
s(µ)).

Proposition 1 i) If xs+ xb > q(µ), then the unique equilibrium outcome is an in-

stant break-up of negotiations in both subgames.

ii) Otherwise, immediate agreement at the prices p¤b(µ) = xs and p¤s(µ) = q(µ)¡ xb

can be supported by subgame-perfect equilibria independently of the values of the

outside options and of the players' time preferences.

12For readers more familiar with the continuous time formulation (Bellman equations), we provide

the equivalent treatment in the Appendix.
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iii) Finally, if xi � ±(± q(µ) ¡ x¡i) for i = s; b, then there exist a continuum of

equilibrium outcomes. First, immediate agreements at p¤b(µ) 2 [xs; ± q(µ)¡ xb]

and p¤s(µ) 2 [q(µ)(1¡ ±) + xs; q(µ)¡ xb], respectively. In addition, there exist

delayed agreements at a subset of these same prices.

Proof: It is a straightforward adaptation of Lemma 1 and the Theorem of Pon-

sat¶³ and S¶akovics (1998) to the present model. ²

When the aggregate value of the outside options exceeds the gains from trade, it is

evident that at least one of the traders will prefer not to trade. There is one equilib-

rium which always exists, whenever it is socially optimal to trade. This equilibrium,

henceforth the equilibrium in ultimatum strategies, is sustained by a credible threat of

the proposer to leave the bargaining table in case his o®er is rejected. The credibility

of this threat comes from the similar threat that the current responder makes in the

following period when she will be the proposer. To see this, imagine for a second

that the outside options are valueless. In this case, the equilibrium in ultimatum

strategies would give the entire surplus to the ¯rst proposer. Note that the threats

are sustaining each other: given that the proposer expects no gains tomorrow, his

threat of leaving today is credible. When the outside options are of positive value,

this argument is modi¯ed to the extent that the responder will have to be given at

least her outside option to be willing to trade.13

13Note that a positive outside option for the ¯rst proposer does not a®ect the argument, since his

payo® upon quitting rises together { in fact, even faster, because of discounting { with his expected
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As in any version of strategic bargaining models, in equilibrium the responder

has to be indi®erent between accepting or not, since otherwise the proposer could

increase his share. In the equilibrium in ultimatum strategies, this indi®erence is

between accepting and opting out. This leaves open another possibility to construct

equilibria: one where the responder is indi®erent between accepting and continuing to

the next period (and prefers both to opting out, of course). Since both of these values

are determined endogenously, it is not surprising that there is a continuum of ways

that this indi®erence can be achieved. Note also, that for this type of equilibrium to

exist, we also need that the proposer be willing to continue in case his o®er is rejected.

Finally, as it is standard in bargaining games which have multiple e±cient equilibria,

a threat to switch to an extreme equilibrium can support delayed agreements at some

intermediate prices.

The equilibrium in ultimatum strategies is salient, because it has a number of

attractive features.

i) As it is apparent from the statement of the result, this is the only equilibrium

which always exists when there are gains from trade.

ii) By the same token, when the outside options are su±ciently large compared to

the discount factor (if max(xs
±
+ xb

±2
; xs
±2
+ xb

±
) > q(µ)) this equilibrium is unique.

iii) Also, this is the only equilibrium in which strategies are independent of the

players' time preference.14 As a consequence, our equilibrium is valid even

payo® if he continues to bargain.
14This result generalizes to the case when the players have di®erent discount factors.
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when the players are uncertain about each others' discount factor.

iv) Finally, it is easy to see that this equilibrium outcome is the unique equilibrium

outcome for any ¯nite horizon truncation of the bargaining game. As a con-

sequence, our equilibrium is valid (and unique) even when there is a deadline,

before which agreement must be reached.

In view of the remarkable robustness of the equilibrium in ultimatum strategies, we

propose that it be considered as the \predicted behavior" in the bargaining problem.

That is, we assume that

Assumption A. 1 The negotiation between a buyer and seller µ results in immediate

agreement, with the expected price given by

p(µ) = ¸ xs + (1¡ ¸) (q(µ)¡ xb); (3)

whenever there exist gains from trade (xs+ xb � q(µ)).

It is remarkable that this bargaining solution coincides with the asymmetric Nash

solution (see, Hars¶anyi and Selten (1972)), where the outside options are interpreted

as the disagreement outcome, while ¸ and 1 ¡ ¸ are the bargaining weights of the

seller and the buyer, respectively.

Some readers may doubt the attractiveness of this feature in a model with impatient players. Note,

however, that in the full model of the decentralized market the e®ects of the players' impatience

while searching does ¯lter in through the (endogenous) outside options.
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4 The market equilibrium

In order to characterize our market equilibrium we need to do two things (simul-

taneously). Adapt the bargaining solution de¯ned in the preceding section to the

endogenous outside options of our search market and determine the marginal quality

produced.

Except for the cost of waiting, a seller's outside option does not vary from her

current expected value, which is given by the expected price:

xs(µ) = ±s p(µ) (4)

From (3) and (4) we obtain

xs(µ) =
(1¡ ¸)±s
1¡ ¸±s

¢ (q(µ)¡ xb) : (5)

Since the coe±cient is less than unity, (5) implies that the necessary and su±cient

condition for the existence of gains from trade { and, therefore, trade { is q(µ) ¸ xb.

Of course, the buyers' outside option depends on the distribution of quality o®ered.

Consequently, the lowest quality producer, µ¤, is de¯ned by q(µ¤) = xb(µ¤) { or by

zero when q(0) ¸ xb(0). 15

In order to determine the marginal quality, we need to calculate the buyers' outside

option. This is equal to the discounted expected pro¯ts from a future match. Note
15This de¯nition applies for any marginal producer satisfying the (in)equality, since { once µ¤tis

¯xed { the outside option is constant, while the quality produced is increasing in µ: Consequently,

potentially there could be multiple solutions.
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that, since the matching technology is memoryless, this expected value is independent

of the quality of the good they are currently bargaining for. Instead, it is a function

of the distribution of quality produced. Namely,

xb =
±b

1¡ µ¤ ¢
1Z

µ¤

[q(µ)¡ p(µ)] dµ (6)

Using (4), (5) and (6), we obtain

xb =
¸±b(1 ¡ ±s)

1¡ ¸±s ¡ ±b(1¡ ¸) ¢ AQ(µ¤) = ¸±¢

1 ¡ ¸±¢µ¤
1Z

µ¤

q(µ) dµ; (7)

where AQ(µ¤) =
R 1
µ¤

q(µ)
1¡µ¤dµ denotes the average quality produced in equilibrium.

Theorem 2 If and only if

q(0) ¸ ¸±¢
1Z

0

q(µ) dµ; (8)

all the sellers will produce. In this case the equilibrium prices are given by

p(µ) =
1 ¡ ¸
1 ¡ ¸±¢ ¢

0
@q(µ)¡ ¸±¢

1Z

0

q(µ) dµ

1
A : (9)

When (8) is not satis¯ed, the marginal seller is uniquely determined by the solution

to
R 1
µ q(x) dx

q(µ)
=

1

¸±¢
¡ µ; (10)

while the corresponding prices are given by

p(µ) =
1 ¡ ¸
1 ¡ ¸±¢ ¢ [q(µ)¡ q(µ¤)] :

Proof: By the above argument, we will have µ¤ = 0, when q(0) ¸ xb; or (8). In

this case, all the sellers will produce and the equilibrium price function follows from

(4), (5) and (7) evaluated at µ¤ = 0:
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If (8) is not satis¯ed, then xb = q(µ¤): Substituting into equation (7) and simpli-

fying we obtain the equilibrium condition

H (µ¤) =
1

¸±¢
¡ µ¤; (11)

where H (µ) =
R 1

µ
q(x)dx

q(µ)
. Observe that, in the interval [0;1],H (µ) is continuous and it

is monotonically decreasing, from
R 1

0
q(x) dx

q(0)
¸ 1 to 0. In addition, H 0 (1) = ¡1. On the

other hand, the RHS of (11) is larger than H(0) at µ = 0 { by the fact that (8) is not

satis¯ed {, but it is positive (and therefore larger than H(1)) at µ = 1. Consequently,

there always exists an interior solution. Thus, the existence of a market equilibrium

is guaranteed.

To see uniqueness (for both cases), just note that the slope of H(µ) is ¡1¡ q0
q
H(µ);

which is strictly less than ¡1, for µ < 1: ²

insert Figure1

Corollary 3 In equilibrium in every match there are always strictly positive gains to

trade:q(µ¤) > 0.

Proof: When q(0) > 0, the result is obvious. Otherwise, H(µ) = 1; for all µ

such that q(µ) = 0; so q(µ¤) must be positive. ²

The fact that the minimum quality provided is strictly above the buyers' threshold
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level has an important e®ect on the equilibrium \price-quality ratio". Note that

p(µ)

q(µ)
=

1¡ ¸
1¡ ¸±¢ ¢

2
66664
1¡

max

(
q(µ¤); ¸±¢

1R
0
q(µ) dµ

)

q(µ)

3
77775
; (12)

which is strictly increasing in q(µ). That is, the proportion of the gains from trade

appropriated by the sellers is increasing with the quality of their good. In other words,

the mark-up is increasing with the quality, a commonly observed fact of everyday life.

We can now determine how the marginal level of quality produced varies as the

common search frictions change. Note that the LHS of (10) is independent of ±¢,

while the RHS is (uniformly) decreasing in it . Consequently, µ¤ is increasing in

±¢. That is, we con¯rm that even in the case when the sellers (as well as the

buyers) can terminate negotiations, increasing the common search frictions decreases

the average quality sold in the market. On the other hand, in the limit as search

frictions disappear,16 we have

R 1
µ¤ q(x)dx

q(µ¤)
=
1

¸
¡ µ¤; (13)

which yields µ¤ < 1;whenever ¸ < 1:Thus, we have shown that

Corollary 4 In the (asymptotically) frictionless market, a signi¯cant range of quali-

ties is provided. The level of quality dispersion is increasing in the sellers' bargaining

power.
16In fact, given that the application we have in mind is in the service sector, it is plausible that

the provision of the (private) service takes time. That is, even as search frictions disappear, there is

still inherent delay in the market. It would be easy to model this explictly but there is no point in

doing it, since it would only bias the marginal quality (close to the limit) further downward.
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This is the main result of this analysis. Note that the level of quality dispersion is

signi¯cant. For example, under the assumption that quality is uniformly distributed

between zero and one, it is easy to show that

µ¤ =
1¡

p
1¡ ¸2
¸

:

As we can see in Figure 2 below - plotting µ¤ as a function of ¸ - unless the buyers

have almost all the bargaining power, the quality dispersion in the market will be

very signi¯cant.

insert F igure 2

5 Conclusions

In this paper, we have provided non-cooperative foundations for the (generalized)

Nash Bargaining Solution, which are speci¯cally applicable to market models of de-

centralized negotiation. The strategic form that we propose for the process of bilateral

bargaining witnesses the large amount of °exibility the parties have while negotiat-

ing. In particular, we assume that each party can voluntarily and credibly leave the

negotiation (for good) following the rejection of any o®er.

When we incorporate the Nash Bargaining Solution into a decentralized market

with asymmetric information about quality, we obtain that { in equilibrium { the

share of the gains from trade that accrues to the sellers is increasing with the quality

of the sellers' product. This result does not obtain using the alternative strategic
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bargaining models, whose solutions are not directly related to the outside options.

Additionally, we also overturn the result of Bester (1988), where he obtains that

as search frictions disappear only the highest quality seller will produce. The result

that in our model there is quality dispersion { even in the limit { is a consequence

of carefully modelling the sellers' option of refusing to sell to a given customer. In

particular, we have taken account of the fact that the search cost facing a buyer

is closely related to the number of sellers in the market. That is, as we decrease

the length of a matching period, the ratio of the buyers' to sellers' search costs is

increasing. Since the marginal quality is determined by the buyers' continuation

value this provides a force, which countervails the buyers' increased willingness to

wait for a better match, which balances out at an intermediate quality level.

The question that begs to be asked is how e±cient the equilibrium provision of

quality is. There is not a straightforward answer to this question, for two reasons.

First, it is unclear what should the benchmark be. A naive view could say that we

should maximize the amount of surplus generated per period, so the optimal solution

is for all sellers to produce. However, this solution does not take into account that a

buyer may prefer to wait rather than trade with a low quality seller. Second, since

by varying the bargaining weights the value of the marginal quality spans the entire

range, no matter what the benchmark is, by adjusting the relative bargaining power

we can always match the outcome. Thus, unless we want to calibrate the model

and thus hypothesize a true distribution of bargaining power, a welfare analysis is of

limited interest.
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Appendix

Here we provide the derivation of the buyers' Bellman equation, for the equivalent

speci¯cation in continuous time. Denote by V and H a buyer's continuation value

when unmatched and matched, respectively. Denote the common interest rate by r

and the \arrival rate" of sellers by s: For this treatment is advantageous to assume

that this arrival rate is of any seller, and thus matches with seller index below µ¤are

unsuccessful. We then have (c.f. equation (1))

V = e¡r¢ (s¢(1¡ µ¤)H + (1¡ s¢(1 ¡ µ¤))V ) :

Solving for V; and approximating e¡r¢ by 1 ¡ r¢ (and ignoring terms including

¢2); we obtain (c.f. equation (2))

V = H
s(1¡ µ¤)

r + s(1¡ µ¤) :

If we take into account that V = q(µ¤) {as argued in the paper{ we can rewrite

the above as

rV = s(1¡ µ¤)(H ¡ q(µ¤));

which may look more familiar.
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Figure 1: A typical layout of the curves determining the marginal producer
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