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Abstract

We present a new domain of preferences under which the majority
relation is always quasi-transitive and thus Condorcet winners always
exist. We model situations where a set of individuals must choose
one individual in the group. Agents are connected through some re-
lationship that can be interpreted as expressing neighborhood, and
which is formalized by a graph. Our restriction on preferences is as
follows: each agent can freely rank his immediate neighbors, but then
he is indifferent between each neighbor and all other agents that this
neighbor ”leads to”. Hence, agents can be highly perceptive regard-
ing their neighbors, while being insensitive to the differences between
these and other agents which are further removed from them. We show
quasi-transitivity of the majority relation when the graph expressing
the neighborhood relation is a tree. We also discuss a further restric-
tion allowing to extend the result for more general graphs. Finally,
we compare the proposed restriction with others in the literature, to
conclude that it is independent of any previously discussed domain
restriction.
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1 Introduction

We present a new domain of preferences for which majority rule is always
quasi-transitive, and hence Condorcet winners always exist. This new do-
main contains preferences which are clearly excluded by standard domain
restrictions like single-peakedness, value restriction, and intermediateness.
Our preferences arise naturally in certain voting contexts where agents may
freely rank some alternatives, but then cannot clearly discriminate among
many others. We hope that the new ideas underlying the proposed domains
can play a role in proving the existence of voting equilibria within contexts
where traditional restrictions on preferences do not hold.

To fix ideas, consider the following example. Assume that agents can be
linearly ordered. Each agent has then one neighbor to his left, and one to his
right (except for those at the extremes, who only have one neighbor). We
allow each agent to freely order himself and its immediate neighbors. Some
agent may prefer to be elected rather than seeing his neighbors elected. Oth-
ers may prefer their neighbor to the right (or left) to be the winner. Likewise,
second and third positions in the ranking are free. Hence, our preferences
allow for free triples of alternatives. Yet, we also assume that agents cannot
clearly distinguish between a victory by their neighbor in the right and the
victory of any other candidate in the same direction (this may be due to
myopia, or else result from rational calculations). He is indifferent among
all candidates to his right, and also among all candidates to his left. In this
example, then, each agent has (at most) three indifference classes: all people
to the left of the voter form a class, all people to the right of the voter form
a second class, and the voter himself is a third class. These classes can be
ordered in any possible way. We shall prove that if all agents have prefer-
ences of this type, the majority relation associated to any profile of opinions
by any number of voters is quasi-transitive (i.e., the strict majorities among
alternatives respect transitivity). This is sufficient for the existence of Con-
dorcet winners. It also allows to guarantee the existence of path independent
selections (Plott, 1973) from the set of Condorcet winners: elections can be
organized sequentially without any fear for agenda manipulation.

Our example can be extended. The linear structure is unnecessarily nar-
row. Agents may be at the nodes of any tree. Therefore, each agent may have
a different number of neighbors, as many as the number of branches starting
from or arriving to that node. An agent with k£ neighbors may now freely



rank k£ + 1 classes of alternatives, including oneself as a singleton class. Each
of the remaining classes includes one neighbor and all other candidates which
are further out than this neighbor within the tree structure. This is a very
substantial extension of the domain: very perceptive people can have many
neighbors and thus freely rank many classes of candidates. Other agents may
be restricted by their positions to only rank a few groups. Many structures
are allowed, provided they can be represented by a tree, of any form. The
tree structure is essential. It will be proved that preferences defined in a
similar way on graphs that include loops will always lead to majority cycles
for some distributions of opinion. We shall also prove, however, that our
basic result still holds if we impose further requirements on the preferences
associated with general graphs.

Our general domain restriction can be respected by many different sets
of preference profiles, depending on the underlying graph. Let us notice that
the preferences which are admissible for one agent are in general not the same
as those admissible for others. For the same reason, the set of triples which
are free for one agent need not coincide with that of triples which are free
for another. Because of these special features, our condition on preference
profiles is independent of other domain restrictions in the literature. We
shall discuss the connections between several classical domains and our own
in Section 5. Before that, the paper is structured as follows. In Section
2 we present our basic model, where individuals have preferences defined
on themselves and on other members of society. The connections among
members of society, which will be later used to restrict their preferences on
others, are also modelled, after the necessary introduction of some concepts
from the theory of graphs. In Section 3 we prove our main result: when the
graph restricting the agent’s preferences is a tree, then the majority relation
for any society satisfying our domain condition is always quasi-transitive:
hence, a majority (Condorcet) winner always exists. We also argue in this
section that not much more can be learnt from the model regarding the
position of these winners in the tree. Section 4 deals with the possibility of
extending the positive results of Section 3 to a larger class of graphs. We
shall discuss the connections between several classical domains and our own
in Section 5.

2 Agents, Networks and Preferences

Let N denote the finite set of agents. We always assume that |N| > 3.
Agents have preferences on themselves and on other agents, which are given
by complete, reflexive, transitive binary relations on N. The preferences of



agent ¢ are denoted by R;, his strict preferences by P; and his indifference
relation by ;. The restriction of a binary relation R; on a subset N’ of N will
be denoted by R;|N’. We shall concentrate on cases where the preferences
of agents on themselves and on other individuals are partially determined by
the structure of the set of relationships among agents. Specifically, we shall
assume in the next section that the relationships which are relevant for our
purposes can be represented by a tree. This will be relaxed later, in Section
4.

Before anything else, let us introduce some necessary pieces of language
from graph theory. An edge is an element (ij) € N x N such that i # j. Each
edge is undirected, i.e. for all (ij) € N x N, (ij) = (ji). A network is a pair
(N, E) where E is a set of edges. Given i,j € N such that i # j, a path from
i to j in (N, E) is a sequence (k;)icq1,... 4y such that (i) k& =4 and &, = 7, (ii)
k|l € {1,...,t}}| =1, and (iii) for all l € {2,...,t}, (ki_1k;) € E. Note
that (ii) ensures that a path does not contain any cycles. A network (N, E)
is connected if for all 4,7 € N such that ¢ # j, there exists a path from 7 to
jin (N, E). A network (N, E) is called a tree if (N, E) is connected and for
all 4,5 € N such that 7 # j, if (ki)ieq1,...,y and (k7)iequ,... #} are paths from
i tojin (N,E), then t =t and for all | € {1,...,t}, k, = kj. Let (N, E)
be a network. In case (N, E) is a tree, we denote by [i, j] the set of agents
belonging to the unique path from 7 to j in (N, E). Given i € N, let E(7)
denote the set of agents with whom 7 forms an edge including himself, i.e.
E(i) = {j € N\{i} | (i) € E} U {i}.

A cyclein (N, E) is a sequence (k;)ieq1,... ¢, such that (i) [{k; |1 € {1,... ,t}} =
t>3, (i) foralle{l,...,t—1}, (kki41) € F, and (iii) (kik1) € E.

A cyclical component of the network (N, FE) is a set C C N such that
(i) |C| > 3, (ii) for all i,j € C there exist two paths (k})eq,.. 23 and
(k?)ieq1,... 12y from @ to j in (N, E) such that {k} |l € {1,...,t'}} C C,
{k211e{1,...,?}} CC,and {k} [l € {1,... . ' }In{k} |l €{1,... ,t*}} =
{7,7}, and (ii) C is maximal with respect to inclusion, i.e. if C" C N satisfies
(ii) and C" D C, then C' = C. Given i € N, let C(i) denote the cyclical
components to which ¢ belongs to, i.e.

C(i)={C C N|i € C and C is a cyclical component in (N, E)}.

Let C = U;enC(4) denote the set of all cyclical components in (N, E).

We shall interpret that the network (N, E') represents the set of connec-
tions among the agents which are relevant to form their preferences. Based
on this interpretation, we shall describe the additional restrictions on prefer-
ences which we consider natural in our context. To begin with, take the case
where (N, E) is a tree. We shall then find that the permissible preferences for



agent ¢ are those that express any ranking of 7 and its immediate neighbors
E(i), and then declare each neighbor j indifferent to all other agents k£ such
that 7 is between ¢ and k. Formally, an admissible preference relation of 1
in a tree (N, E) is a transitive relation R; such that for all j,h € N\{i}, if
there exists g € E(i)\{:} such that g € [i,j] N [i, h], then jL;h. Thus, R; is
determined by the restriction of R; to the set E(i). Let R; denote the set of
i’s preference relations in (N, E). A (preference) profile is a list R = (R;)ien
such that for all i € N, R; € R;. Let Ry = X;enR; denote the set of
admissible profiles.

3 Existence of Condorcet Winners

Suppose that society must choose one agent from N, when each of its mem-
bers is endowed with preferences in a domain R; restricted by a tree (V, E).
One possibility is to choose by majority. For each profile belonging to Ry
the majority relation is defined as follows: Given R € Ry and 4,5 € N, let
N(@i =g j) = {h € N|iPy,j}. With each profile R € Ry we associate its
majority relation, denoted by R™: for all 7,5 € N, «R™j if and only if

IN(i =g 7)| > IN(j =R 7)|

It is well known that the majority relation derived from an arbitrary set
of preferences may be cyclical. When this occurs, the choices by majority
are not well defined. We are thus particularly interested in conditions guar-
anteeing that this problem is avoided. For each profile R € Ry, an agent is
a Condorcet winner if he is not beaten (in the strict sense) by another agent
under the majority relation, i.e. 7 € N is a Condorcet winner of R if for all
i € N, jR™i. We denote by Cy (R) the set of all Condorcet winners of R.
The existence of Condorcet winners is guaranteed at those profiles where the
majority relation is quasi-transitive (i.e. the strict relation associated with
the majority relation is transitive). This justifies our interest in the following
Theorem and its Corollary.

Theorem 1 Let (N, E) be a tree and R € Ry. Then the majority relation
associated with R s quasi-transitive.

Corollary 1 Let (N, E) be a tree. For all R € Ry, the set of Condorcet
winners of R is non-empty.

Proof of Theorem 1. Let R € Ry. First note the following fact. For all
i,j € N such that 7 # 7 we have

N(i >r j) C [i,4] and N(j > 1) C [i, ) (1)



Let a,b,c € N be such that aP™b and bP™c. We have to show that aP™c.

Because (N, E) is a tree and [{a,b,c}| = 3, there is d € N such that
{d} = [a,b] N [a,c] N [b,c]. Note that d = a, d = b, or d = c is possible.

Because [a,d[ N {a,b,c} C {a}, for all i € [a, d[ we have aP;bl;c (call this
preference over {a, b, c} the Type-I-preference), bl;cP;a (Type-II-preference),
or al;bl;c. Let ny denote the number of agents belonging to [a, d[ who have
Type-I-preference over {a, b, c}. Let ny denote the number of agents belong-
ing to [a, d[ who have Type-II-preference over {a, b, c}.

Because [b, d] N {a, b, c} C {b}, for all i € [b, d| we have bP;al;c (Type-III-
preference), al;cP;b (Type-IV-preference), or al;bI;c. Let ng denote the num-
ber of agents belonging to [b, d[ who have Type-IIl-preference over {a, b, c}.
Let ny denote the number of agents belonging to [b, d[ who have Type-IV-
preference over {a, b, c}.

Because [c,d[ N {a,b,c} C {c}, for all i € [¢,d] we have cPal;b (Type-V-
preference), al;bP;c (Type-VI-preference), or al;bI;c. Let ns denote the num-
ber of agents belonging to [¢,d| who have Type-V-preference over {a,b, c}.
Let ng denote the number of agents belonging to [c, d[ who have Type-VI-
preference over {a, b, c}.

For all ¢,7 € N, let 1,p,; = 1 if iP;j and 1;,p,; = 0 otherwise. By
[a,b] = [a,d] U {d} U[b,d][, (1), and aP™b, we have

N1+ Ny + Lopp > No + 13 + Lppy,. (2)
By [b,¢] = [b,d[ U {d} U [c,d], (1), and bP™c, we have
ng + ne + Lyp,e > na + ns + Lepp. (3)
From (2) and (3) we obtain
ny + ne + lappy + lop,e > no +ns5 + 1ppq + 1epp + 1. (4)
By (1) and [a, ¢] = [a,d[ U {d} U [c, d[, to show aP™c, we have to prove that
n1 + ng + lape > N2 + N5 + Lepa- (5)

We distinguish three cases.

Case 1: 1,p, + lpp,e = 0.
Then bR4a and cRqb. Thus, by transitivity of R4, cRqa and 1,p,. = 0.
Because 1yp,q + 1ep,e +1 > 1epya, (5) follows from (4).

Case 2: 1,p,p + lpp,e = 1.
Then 1pp,q + 1epp < 1. Thus, from (4) we obtain ny + ng > ng + ns + 1.
Then (5) follows.



Case 3: ]-anb + 1dec = 2.

Then aPyb and bP;c. Thus, by transitivity of Py, aPsc and 1,p,. = 1.
From (4) and 1,p,4 + 1cp,s = 0 we obtain ny + ng + 1 > ny + n5. Because
lop,e = 1, (5) follows from the previous inequality. O

Having proved our basic result, the rest of the Section is devoted to
introduce a number of relevant qualifications. First, notice that our domain
condition is based in identifying each of the agents with one node in the
graph. This is consistent with the interpretation that individuals are at the
same time the voters and the candidates for choice. It also requires that the
position of each of the individuals is exclusive. One could think of a closely
related but more general setup, where each node would stand for a generic
position in society, each position could be shared by several agents, and a
domain restriction on preferences based on the same principles would apply.
Unfortunately, Theorem 1 is not robust to such an extension, as shown by
the following example.

Example 1 Let N = {a,b,c,d,e} and E = {(ab), (bc), (cd), (de)}. Given
1 € N, let ¢; denote the number of agents which are located at node 7. Let
Go=0q.=4, gy =qgq =6, and g. = 3. Let R € Ry be such that

R, | Ry| R | Ra|R.
a ce a € ac

ce |l a|clac| e
b|le | d

Then N(a >g ¢) ={a,c} and N(c >x a) = {b}. Because ¢, +¢. =7 > 6 =
@, it follows that aP™c. Then N(c >x e) = {c,e} and N(e > ¢) = {d}.
Because g.+ g, = 7 > 6 = qq, it follows that cP™e. Then N(e > a) = {b, d}
and N(a >g e) = {a,c,e}. Because ¢y+¢qq = 12 > 11 = g, + ¢, +¢e, it follows
that eP™a. Thus, P™ is cyclic over {a, ¢, e}. Moreover, it is straightforward
to check that aP™b and ¢P™d, and thus Cy (R) C {a,c,e}. Hence, the set
of Condorcet winners is empty at R. <

We now turn attention to the possible implications of our domain restric-
tion, beyond quasi-transitivity of the majority relation. As we shall see, it
does not imply any particular constraints on the location of the Condorcet
winners within the tree that originates the domain restriction. This is in
contrast with the results attached to other domains. For example, under
single-peaked preferences (see Section 5), the Condorcet winners are to be
found in median positions. To be specific on the preceding point, we present
two results. The first one shows that any subset of N can be obtained as
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the set of Condorcet winners associated with some admissible preferences,
for any tree (IV, E). The second result shows that full transitivity is not to
be expected in general. This is illustrated by showing that under two natural
subdomains within our class, the typical situation is to obtain quasi-transitive
but not transitive majority relations.

Proposition 1 Let (N,E) be a tree and § # S C N. Then there erists
R € Ry such that Cw(R) = S.

Proof. Let R € Ry be such that (i) for all ; € S and all j,k € N\{i},
212]]11: and (ii) for all i € N\S and all j € N, il;j. It is straightforward that
Cw(R) =S. O

Any arbitrary transitive ranking of any three alternatives can be obtained
as the result of majority voting on our domains.! However, as the following
example shows, not any transitive relation on a tree can be obtained as the
majority relation on our preference domain.

Example 2 Let N = {a,b,c,d,e, f} and E = {(ab), (bc), (cd), (de), (ef)}.
Let Ry be the relation on N such that Ry : f,a,b,¢,d, e (i.e. fPyaPybPycPydPye).
We show that Ry cannot be obtained as a majority preference relation on
the domain Ry.

Suppose that there exists & € Ry such that R™ = Ry. Then by aP™b, we
have (aP,b and aRyb) or (aR,b and aPyb). By bP™c, bRyc and bR.c. Thus, by
transitivity of R, and R € Ry, we have (aP, f and aR,f) or (aR,f and aP,f).
Hence, |[N(a >=r f) N {a,b} > 1 and a,b ¢ N(f =g a). Similar arguments
together with bR.c and dRqe (by dP™e) yield |[N(a =g f) N {c,d}| > 1 and
¢,d ¢ N(f =g a). Therefore, |[N(a > f) N {a,b,c,d}| > 2 and N(f >g
a) C {e, f}. Hence, by definition of R™, aR™ f, which contradicts fPya and
R™ = R,. <

There are natural additional domain restrictions for which only in rare
cases majority rule is transitive. We define two subdomains of Ry and
identify for each domain the unique profile for which the majority rule is
transitive.

Given i € N, let RY C R; denote the preferences in R; under which i
ranks himself as the unique best element, i.e. R; € R! if and only if R; € R;

lGiven any three alternatives and a fixed ranking of these three alternatives, there
exists an ¢ € N such that these three alternatives are a free triple for him. Then choose
the profile for which the restriction of i’s relation to these three alternatives is the fixed
ranking and the other agents are indifferent between all alternatives.



and for all j € N\{i}, iP;j. Let Ry = X;enR!. The domain RY; applies
to situations in which each agent would like to be elected. Dutta, Jackson,
and Le Breton (2001) consider such domains for each agent running as a
candidate in an election.

There are also situations in which no agent would like to be elected. Each
agent strictly prefers another agent being elected to himself being elected.
Given 7 € N, let R? C R; denote the preferences in R; under which 7 ranks
himself as the unique worst element, i.e. R; € R if and only if R; € R; and
for all j € N\{i}, jPi. Let R = X;enRE.

Proposition 2 Let (N,E) be a tree and R € Ry URY. The majority
relation associated with R s transitive if and only if for all + € N and all
J,h € E(i)\{i}, jL;h (and therefore, R™ is the trivial relation, i.e. for all
j,h €N, jI™h).

Proof. Let R € RY URY. Then for all 4,5 € N, iR™;j if and only if
IN(G =g 5) N i, 5l > IN(G =g 9) N, 5] (6)

The only-if statement is trivial. In proving the if-statement, suppose that
R™ is transitive.

Let + € N and j,h € E(i)\{i}. By (6), jI™i and iI™h. Thus, by
transitivity of R™, jI™h. By (6), R™|{j,h} = R;|{j,h}. Hence, jL;h, the
desired conclusion. O

4 Voting on Connected Networks

In this section we consider connected networks which are not necessarily
trees. If (N, E) is not a tree, then (N, E') contains cycles.

There are several ways of extending preferences from trees to general
networks. For instance, consider a cycle containing four nodes. Then each
agent has a ranking over his neighbors and himself, and there is exactly one
agent whom he does not see. How should he rank this agent? One possibility
is to rank this agent indifferent to one of his direct neighbors. But this will
not be sufficient to avoid majority cycles. Just to check, we propose the
following extension of preferences: let (NN, E) be a connected network and
i,j € N be such that j ¢ E(i). Then ¢ considers j to be indifferent to one of
his direct neighbors who belongs to a shortest path from ¢ to 7 in the network.
This extension is conform with the definition of preferences in Section 2.

Each agent’s preference is determined by his preference over E(7) in the
following way: R; € R; if and only if for all j € N\{i}, there exists h €
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E(i)\{t} such that (i) j;h and (ii) there exists a path (k] )eq,.. 2} from i
to j in (N, E) such that kj = h and (iii) for all paths (k})ieq,... 2} from ¢ to
j in (N, E), we have t* > t'.

Condition (i) says that under R;, j is indifferent to a direct neighbor A of
i, and (ii) and (iii) say that A must belong to one of the shortest paths from
1 t0 j.

Proposition 3 Let (N, E) be a connected network. If (N, E) is not a tree,
then the set of Condorcet winners might be empty on the domain Ry.

Proof. Because (N, E) isnot a tree, (IV, E) contains cycles. Let (k;)ieq1,... 1
be a cycle in (N, E) of minimal length, i.e. for all cycles (k})c(1,... #y in (IV, E)
we have ¢’ > t. Because (k;)eq1,... 1) is a cycle of minimal length in (N, E),
we can choose a,b,c € {k; |l € {1,...,t}} such that {a,b,c} is a free triple
in R,, Ry, and R..

Let R € Ry be such that

e for all i € N\{a,b,c} and all j, h € N\{i}, jL;hP;,
e aP,bP,c and for all i € N\{a, b, c}, bR,i,

e bP,cPya and for all i € N\{a,b, c}, cRyi, and

e cP.aP.b and for all i € N\{a, b, c}, aR.i.

We show that Cy(R) = 0.

Let i« € N\{a,b,c}. By definition of R, N(a >r i) D {a,i} and N(i >
a) C {b}. Thus, aP™i and i ¢ Cy(R). Hence, Cyw(R) C {a,b,c}. By def-
inition of R, for all i € N\{aq, b, c}, al;bl;c. Thus, aP™b, bP™c, and cP™a.
Hence, a,b, c ¢ Cyw(R) and Cw(R) = 0, the desired conclusion. O

The domain Ry was too large to avoid majority cycles. We now present
a more stringent restriction, which still reduces to the condition proposed
in Section 2 when applied to trees, and which now will guarantee that the
majority relation is quasi-transitive, and thus a majority winner exists. For
that, we assume that each agent considers all other agents belonging to a
cyclical component of C(7) to be indifferent.

Given a connected network (N, E) and i € N, let R; denote the set of
all preferences R; € R; satisfying for all j, h € N\{i}, if for some C € C(i),
4, h € C, then jI;h. Let 7@]\] = XieNf]éi.

The idea of the proof is to successively delete links from the network until
we obtain a tree. Then we show that we are in position to apply Theorem 1.
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Theorem 2 Let (N, E) be a connected network and R € Ry. Then the
majority relation associated with R is quasi-transitive.

Corollary 2 Let (N, E) be a connected network. For all R € Ry, the set of
Condorcet winners of R is non-empty.

Proof of Theorem 2. If (N, E) is a tree, then Theorem 1 implies that
R™ is quasi-transitive. Suppose that (N, E) is not a tree. Then (N, E)
contains cycles. Let E° = E. Starting from E° we successively delete edges
from E° until we obtain a network which does not contain any cycles. Let
qg € NU{0}. If (N, E9) contains cycles, then choose a cycle (k])eq,.. s in
(N, E9) of minimal length and define F7"! = E9\{(k{ki)}. Since E? is finite,
there exists @ € N such that (N, E?) does not contain any cycles.

We show that for all ¢ € {0,1,...,Q — 1}, if (N, E9) is connected, then
(N, E9t1) is connected. Because (N, E9) is connected and (k])ieqi,.. 13 is a
cycle in (N, E?) of minimal length, for all i € N, there exists a path from
ki to i in (N, E4t1). Thus, for all 4,7 € N, there exists a path from k7 to i
in (N, Et') and a path from £Y to j in (N, E9t1). Therefore, there exists a
path from 4 to j in (N, E4™!). Hence, (N, E9t1) is connected.

Since (N, E9) is connected and does not contain any cycles, (N, E9) is
a tree. We show that for all # € N, R; is an admissible preference relation
of i in the tree (N, E?). Let j,g € N be such that g € (E9(:)\{:}) N [4, j]¥
([¢, /]9 refers to the path from i to j in (N, E¥)). It suffices to show that
jlig. By R; € R;, there is a shortest path (k;)cqi,..  from ¢ to j in (N, E)
such that jL;k,. If g belongs to all shortest paths from 7 to j in (N, E),
then g = ko and jI;g. If there is a cyclical component C' € C(i) such that
4, g € C, then R; € R; implies jI;g. If the previous two cases do not apply
and ke # g, then there is a cyclical component C' € C(i) such that g € C.
Suppose ky ¢ C. Because E9 C E, [i, 4] is also a path from i to j in (N, E).
Therefore, ky ¢ [i, ]9, (9,14, k2) is a path from g to ko in (N, E), and there is
a path in ([3,7]9U{k/ |l € {1,... ,t}})\{i} from g to ko in (N, F). This is a
contradiction to g € C and ko ¢ C. Thus, g,k € C. Since R; € R;, we have
kol;g. Because jl;ko, the transitivity of I; implies jI;g.

Hence, for all 7 € N, R; is an admissible preference relation of ¢ in the
tree (N, E9). By Theorem 1, R™ is transitive, the desired conclusion. [

5 Conclusion

There exists a vast literarture on domain restrictions and their implications
under different rules of preference aggregation. A very complete monograph

11



is due to Gaertner (2001). The most studied aggregation rule is simple major-
ity, and the standard properties which are sought from the majority relation
are transitivity, quasi-transitivity, acyclicity or the existence of a maximal
element of the relation. Among the many restrictions which have been stud-
ied, the most popular is still that of single-peakedness (Black, 1948). Other
domains were analyzed by Inada (1964,1969), Sen and Pattanaik (1969), De-
mange (1982), and Grandmont (1978).2 Our domains are different than any
of those we just mentioned, and they do not seem to have been considered
by the previous literature. We now comment briefly on the analogies and
the difference between our type of restrictions and those proposed by other
authors. First of all, the restrictions we describe are limited in scope, since
they only apply to the case where each distinct voter can be identified with a
distinct alternative. Its applicability is thus limited to cases where there are
as many voters as there are alternatives. Now, even in this particular case,
there is a fundamental difference between our setup and all the others we
mention (with the exception of Grandmont’s). In our case, the set of orders
of the alternatives which are admissible is different for each of the agents.
Indeed, each voter is allowed to have at most as many indifference classes as
the number of its immediate neighbors plus one (we refer to restrictions gen-
erated by trees, those considered in Section 2). Hence, agents with different
numbers of immediate neighbors will be allowed different sets of preferences.
Moreover, even those agents with the same number of neighbors will be in
such relationship with different sets of people, and this also accounts for
differences among their admissible sets of preferences. In short: under our
restrictions, admissible domains are personalized. By contrast, the classical
restrictions we now briefly review do limit the set of preferences which are
admissible, but then allow all agents to exhibit any of the preferences in
this common pool. Inada (1964) considered the case where each agent can
classify the set of alternatives into two groups, and then will consider all
alternatives within the same group as indifferent. Our conditions also rely
on the establishment of ”large” indifference classes, but the analogy stops
here.?

Another interesting set of restrictions were proposed by Sen and Pattanaik
(1969) and Inada (1969). A profile R € Ry satisfies value restriction if for

2Inada (1964,1969) and Grandmont (1978) were concerned with the transitivity of the
majority relation, Sen and Pattanaik (1969) with the quasi-transitivity of the majority
relation, and Demange (1982) with the existence of a maximal element.

3Not any classifications of Inada (1964) are included in our model. For example, let
N =1{1,2,3,4} and each agent classifies N into two sets of cardinality 2. If there is a tree
such that Ry includes Inada’s (1964) preferences, then the agents at the terminal nodes
must classify IV into a set of cardinality 1 and a set of cardinality 3, which is impossible.
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every triple of alternatives {a,b,c} C N there is one (say a) that is not
ranked worst (or best or medium) by all individuals who are not indifferent
between a, b, and ¢ (i.e. (for all « € N such that —al;bl;c, aP;b V aP;c) or
(for all ¢ € N such that —al;bl;c, bP;a V cP;a) or (for all i € N such that
—al;bl;c, (aPb A aPic)V (bPa A cPa))). A profile R € Ry satisfies extremal
restriction if for every triple of alternatives {a,b,c} C N and if for some
i € N, bPjaPc, then for all j € N, if cP;b, then cPjaP;b. A profile R € Ry
satisfies limited agreement if for every triple of alternatives {a,b,c} C N
there are two alternatives, say a and b, such that for all ¢ € N, aR;b.

These restrictions define domains under which the majority rule and other
forms of binary comparisons will be well behaved. As already noted, there
is no reason to expect that conditions of the above type would either imply
or be implied by ours, for any tree. The following set of preferences for three
agents and three candidates confirm that fact.

Example 3 Let N = {a,b,c} and E = {(ab), (bc)}. Let R € Ry be such
that

Then R violates value restriction, extremal restriction, and limited agree-
ment. <

Sen and Pattanaik (1969, Theorem V) show that a necessary and sufficient
condition for the majority rule to be quasi-transitive is that a profile of
preference orderings satisfies for each triple of alternatives at least one of
the conditions, value restriction, extremal restriction or limited agreement.
However, in their result the number of individuals is variable and therefore it
does not apply to our model. According to Theorem 1, the majority relation
is quasi-transitive in Example 3. Of course, if we allow several agents to be
located at one node, then Sen and Pattanaik’s result applies, as also shown
in Example 1.

Demange (1982) proposed an extension of single-peakedness based on the
relative positions of alternatives in the vertices of a tree (the original notion
of single-peakedness is based on their position on a line, which is a very
special tree). Demange’s proposal bears a resemblance with ours in that it
builds from a set of a priori given connections among alternatives which can
be formalized as a tree. But, once again, the analogy stops here, for the
reasons we already mentioned above. Finally, Grandmont (1978) proposed
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a notion of intermediate preferences leading to attractive and quite different
domain restrictions. This notion is based upon the possibility of defining
when an agent is in between two others. It requires that, if the two initial
agents agree on how to rank certain subset of alternatives, than any agent
who is intermediate between them also shares these common preferences.
Our domain restriction is also based on the relative positions of agents, but
the type of limitations it imposes on preferences is of completely different
nature.

As for applications, let us mention one instance where restrictions of
the type we just proposed do apply. In a recent paper, Demange (2000)
has studied the distribution of profits from cooperation in games with hi-
erarchies. Hierarchies are described by a tree, which describes connections
between agents, and by a specific individual, among all the agents, who plays
the role of the principal. Demange (2000) shows that if only coalitions which
are properly connected can form (she calls them teams), then the (restricted)
core of the cooperative game among these agents is nonempty and easy to
describe. The admissible teams (and thus, the resulting core distribution)
depend on the tree and also on the specific agent who plays the role of prin-
cipal. One may extend the analysis of Demange (2000) by separating these
two ingredients, and by allowing all possible hierarchies which arise from
the same tree, as the principal changes. In Demange’s interpretation, the
tree expresses possible channels of communication among agents. Suppose
that these channels are technologically determined, but that the directions
of hierarchical communication may be chosen. For example, all agents may
vote on who is going to play the role of the principal. Their preferences will
depend on the payoffs that they will get in the core, depending on who is the
principal (for a given tree). It turns out that agents will get the same payoff
for all principals who are on the same branch away from some of their imme-
diate neighbors. That is, preferences induced by the proposed extension of
Demange’s model satisfy our requirements. Hence, the majority rule would
always determine (at least) one winner if agents in that context would vote
for a principal. This example is mentioned to illustrate that the restriction
arises even in rather unexpected contexts. It suggests that other situations
where someone must be chosen to play a special role, may give rise to similar
conditions. Of course, voting is only one of the possible methods to choose
an agent to play a role. In certain contexts, especially if side payments are
possible, these roles may be auctioned (see Pérez-Castrillo and Wettstein
(2002)). But voting is, to say the least, one of the most prevailing methods
to choose agents, and it is good to know about conditions where its simplest
version, simple majority) will work properly.
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